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RÉSUMÉ.— La résorption foliaire de quelques macro- (N, P, S) et micronutriments (Fe, Zn, Cu, Mn dans les forêts 

de Pterocarya fraxinifolia (Poiret) Spach en Turquie.— Pterocarya fraxinifolia (Poiret) Spach a une distribution plutôt 

restreinte en Turquie dans les forêts marécageuses. La résorption foliaire de quelques macro- (N, P et S) et 
micronutriments (Fe, Mn, Zn, Cu) a été étudiée dans des populations de P. fraxinifolia du nord et du sud de la Turquie. 

Comparativement aux populations méridionales, les populations nordiques ont montré une résorption de l’azote (NRE) 

plus efficiente mais une résorption du phosphore (PRE) plus faible. Les populations tant nordiques que méridionales se 
sont montrées P-proficientes alors que seules les populations nordiques se sont révélées P-proficientes. Des valeurs 

négatives pour ZnRE et MnRE ont été trouvées dans les populations méridionales. SRE s’est révélée plus élevée que 

celle d’autres espèces décidues. Des ratios NRE/PRE > 1 ont été trouvés dans les populations nordiques mais < 1 dans 
les méridionales. 

SUMMARY.— Pterocarya fraxinifolia (Poiret) Spach has a rather restricted distribution in Turkey and occurs in 
swamp forests. Foliar resorption of some macro- (N, P and S) and micronutrients (Fe, Mn, Zn, Cu) in northern and 

southern populations of P. fraxinifolia in Turkey was studied. In northern populations, comparatively to southern 

populations, nitrogen resorption efficiency (NRE) was higher, while phosphorus resorption efficieny (PRE) was lower. 
Both northern and southern populations were P-proficient, while only northern populations were N-proficient. Negative RE 

values were found with respect to Zn and MnRE in southern populations. SRE was found to be higher as compared to other 

deciduous species. It has been found that NRE/PRE ratios >1 in northern populations, while <1 in southern populations. 

_________________________________________________ 

Plants have a high capacity to absorb mobile ions by diffusion, while they have a relatively lower 

capacity to absorb immobile ions like phosphate. For example, plants absorb any form of soluble 

nitrogen that is available in the soil, while they usually differ in their relative preference for different N 

forms like ammonium (NH4
+
) and nitrate (NO3

-
). Leaves with high nutrient concentrations lose more 

nutrients than those with low tissue concentrations, in either gaseous form (NH3) or as solutions (Aerts & 

Chapin, 2000). Foliar resorption enables a plant re-using the same nutrients (Busotti et al., 2003). 

Resorption can be expressed as resorption efficiency (RE) and resorption proficiency (RP) 

respectively. RE is defined as the percentage of a nutrient recovered from a senescing leaf (Kilic et al., 

2010; Yilmaz et al., 2014). RP is known as the amount of a particular nutrient that remains in fully 

senesced leaves and is not subject to temporal variation in nutrient concentration in green leaves or the 

timing of sampling (Killingbeck, 1996, 2004). There are several studies about foliar resorption of 

nutrients and the factors that influence foliar resorption (Aerts & Chapin, 2000; Busotti et al., 2003; 

Kutbay & Ok, 2003; Covelo et al., 2011; Kilic et al., 2010, 2012). Most of these studies indicate that 
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foliar resorption may be changed in different individuals of a plant population. It has been stated that 

northern and southern populations of a particular species may have different RE and RP with respect to 

foliar macro- and micronutrient concentrations (Oleksyn et al., 2002, 2003). Vergutz et al. (2012) 

stated that mass loss correction factor (MLCF) should be used for the calculation of foliar resorption 

because foliar mass will be changed between green and senesced leaves (Reed et al., 2012; Yilmaz et 

al., 2014). 

Euro-Siberian phytogeographical region in Turkey has peculiar characteristics. This region includes 

two different regions as Euxine and Colchic provinces and also includes different species belonging to 

different phytogeographical regions in addition to typical Euxine and Colchic species. Especially the 

eastern part of Euxine province more closely resembles the Hyrcanian province of North Iran and 

adjacent Talysh than any other part of the Euro-Siberian region. Two provinces are separated by the 

lower Aras valley and they are often treated as a single province as Hyrcano-Euxine province 

(http://www.paeon.de/h1/davis/16_phyto.html). Pterocarya fraxinifolia (Poiret) Spach is one of the 

most remarkable relict species in swamp forests in Turkey belonging to Hyrcano-Euxine 

phytogeographical region and this species was previously known only from the Caspian lowland 

forests. In the Hyrcanian area, P. fraxinifolia is a thermophilous tree growing mostly in swamp forests 

and valleys with running water at an altitude mostly below 1000 m (Sheykholislami & Ahmadi, 2009). 

P. fraxinifolia has a rather restricted distribution area in Turkey and it has a discontinuous distribution 

and occurs in northern and southern parts of Turkey. In studied localities P. fraxinifolia formed pure 

stands and outside the study area this species formed mixed stands with other species mainly Alnus L., 

Populus L., etc (Akhani & Salimian, 2003). 

There were many studies on foliar macroelement especially nitrogen (N) and phosporus (P) 

resorption in temperate deciduous forests (Kilic et al., 2010; Covelo et al., 2011; Yilmaz et al,. 2014; 

Surmen et al., 2014). However, comparatively, studies regarding foliar resorption of micronutrients in 

temperate forests were scarce (Killingbeck, 1985; Oleksyn et al., 2003; Killingbeck, 2008; Housman et 

al., 2012). In the present study, northern and southern populations of P. fraxinifolia in Turkey were 

compared with each other (i) to find whether foliar resorption of macro- and micronutrients patterns 

were differed or not with respect to resorption efficiency (RE) and resorption proficieny (RP); (ii) to 

find the differences among RE values with and without MLCF and (iii) to find which populations were 

proficient regarding macro- and micronutrients and uncover relationships among leaf macro- and 

micronutrient concentrations and foliar RE and RP of macro- and micronutrients. 

MATERIALS AND METHODS 

STUDY AREA 

P. fraxinifolia specimens were taken from northern (one station: Samsun: 41°18’N; 36°55’E) and southern parts (3 stations: 
Kilis, Hatay and Gaziantep: 36°52'N, 37°34'E; 36°49'N, 36°32'E; 36°56'N, 37°30'E) of Turkey. In northern part of the study area, 

mean annual temperature and mean annual precipitation respectively are 13.8 oC and 895.2 mm, against 16.8oC and 714.4 mm 

respectively in southern part. Northern part of the study area has an oceanic-type climate, whereas semi-arid Mediterranean climate 
is seen in southern part. Hydromorphic alluvial soils are widespread in the study area (Hüseyinova et al., 2013). 

SAMPLING AND CHEMICAL ANALYSIS 

Van Heerwaarden et al. (2003) suggested pre-selection of leaves in order to minimize the risk of comparing green and 
senescent leaves of different cohorts. Five individual plants were selected from each population. Seven fully expanded leaves per 

individual plant were marked by tying a small tag at their base and were pooled for analysis (Kilic et al., 2010; Zhang et al., 

2015). Individuals were selected ≥ 2.5 m from the stems of neighbouring canopy trees to avoid potential microsite variation 
(Boerner & Koslowsky, 1989). Green leaves were sampled in the end of June. When a leaf or at least two-thirds of its area 
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turned yellow or brown, it was considered senesced (Williams-Linera, 2000; Kilic et al., 2012). Senescent leaves were sampled 

in December. P. fraxinifolia leaf samples were scanned and specific leaf area (SLA) was calculated by using Net Cad software 

(Anonymous, 1999).  
 

  

  

(a) (b) 

Figure 1.— Full leaf (a) and senescence (Resorption proficiency; RP) (b) micro and macroelements concentrations. 

Data are mean and ± 1 SD. 
 

Leaf samples were dried at 70 °C until constant weight, and grounded, sieved to a mesh and digested in a mixture of 

concentrated nitric and perchloric acids. Nitrogen was determined by the micro Kjeldahl method with a Kjeltec Auto 1030 
Analyser (Tecator, Sweden) after digesting the samples in concentrated H2SO4 with a selenium catalyst. P was determined with 

stannous chloride method by using a Jenway spectrophotometer (Allen et al., 1986; Kutbay & Ok, 2003) filtered through a 

Whatman filter paper No.42. Sulphur concentrations were determined by using turbidimetric calcium-sulphate method 
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(Bayrakli, 1987; Hüseyinova et al., 2009) Micronutrient (Fe, Zn, Cu and Mn) concentrations were determined by a Perkin Elmer 

2280 atomic absorption spectrophotometer, using an air /acetylene flame after digesting HNO3 and HClO4 (Allen et al., 1986). 

Macro- and micronutrient resorption efficiency (NRE, PRE, FeRE, ZnRE, CuRE, MnRE, and SRE) (%) was calculated as 
the percentage of macro- and micronutrients recovered from senescing leaves and calculated by RE = (macro- or micronutrient 

in mature green – macro- or micronutrient in senescent) / macro- or micronutrient in mature green × 100 %, where: macro- or 

micronutrient in mature green = macro- or micronutrient in mature green leaves, macro- or micronutrient in senescent = macro- 
or micronutrient in senescent leaves (Killingbeck, 1985; Kilic et al., 2010). MLCF is defined as the ratio of dry mass of senesced 

leaves to the dry mass of green leaves (Yilmaz et al., 2014). Foliar resorption was also calculated by accounting mass loss 

correction factor (MLCF) by the help of following equation: 
Foliar resorption = (1-nutrients in senescent leaves/nutrients in green leaves x MLCF) x 100 

Nutrient resorption proficiency (RP) is simply the amount of a nutrient that remains in fully senesced leaves (Killingbeck, 

1996; Kilic et al., 2012). 
 

 

TABLE I 

Full leaf and senescence macroelements (mg/g) and microelements (mg/kg) concentrations 
and their comparisons between populations 

Full leaf 

Dependent 
Variable 

Locality Mean 
Std. 

Deviation 
N 

Type III Sum 
of Squares df Mean Square F Sig. 

N 
Southern Populations 24.74 2.82 15 

141.09 1 141.09 10.34 0.01* Northern Populations 18.61 5.78 5 

P 
Southern Populations 0.51 0.12 15 

0.04 1 0.04 3.50 0.07 Northern Populations 0.41 0.04 5 

S 
Southern Populations 6.37 3.89 15 

103.91 1 103.91 8.79 0.01* Northern Populations 1.11 0.14 5 

Fe 
Southern Populations 129.91 35.48 15 

218583.27 1 218583.27 186.45 0.01* Northern Populations 371.34 29.46 5 

Zn 
Southern Populations 13.40 4.07 15 

18005.87 1 18005.87 499.63 0.01* Northern Populations 82.70 10.19 5 

Cu 
Southern Populations 11.10 3.09 15 

5891.29 1 5891.29 242.46 0.01* Northern Populations 50.74 8.70 5 

Mn 
Southern Populations 10.12 7.20 15 

22.22 1 22.22 50.92 0.01* Northern Populations 89.88 2.32 5 

Senescence 

Dependent 

Variable 
Locality Mean 

Std. 

Deviation 
N 

Type III Sum 

of Squares df Mean Square F Sig. 

N 
Southern Populations 13.35 2.77 15 

317.84 1 317.84 47.50 0.01* Northern Populations 4.14 1.77 5 

P 
Southern Populations 0.07 0.01 15 

0.23 1 0.23 168.29 0.01* Northern Populations 0.32 0.07 5 

S 
Southern Populations 0.65 0.19 15 

0.08 1 0.08 2.77 0.11 Northern Populations 0.50 0.08 5 

Fe 
Southern Populations 15.62 6.62 15 

247874.39 1 247874.39 171.63 0.01* 
Northern Populations 67.94 4.48 5 

Zn 
Southern Populations 9.66 10.42 15 

10263.26 1 10263.26 265.61 0.01* 
Northern Populations 29.10 6.95 5 

Cu 
Southern Populations 15.42 10.03 15 

0.25 1 0.25 6.09 0.02 
Northern Populations 75.46 5.19 5 

Mn 
Southern Populations 15.42 10.03 15 

13518.00 1 13518.00 160.35 0.01* 
Northern Populations 75.46 5.19 5 

*P<0.01 
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STATISTICAL ANALYSIS 

Statistical analysis was performed by using a SPSS (21.0 version) software (IBM Corp., 2012). Data were analysed for 
normality by using Shapiro-Wilk test, and square, ln (square) and invers transformation of the data was used for normal distribution 

before performing the one-way MANOVA tests. One-way MANOVA was performed to show the differences between populations 

with respect to macro- and microelement concentrations. Mann-Whitney U test and student’s t test were used to show the differences 
between populations with respect to RE. Northern and southern populations were assigned as independent variable, while macro- 

and microelements concentrations and RE were selected as the dependent variables. The Pearson’s and Concordance correlation 

tests were used to fit between the calculation of macro- and microelement RE with and without MLCF correction. 
 

 

  

  
(a) (b) 

Figure 2.— The macro- and microelements resorption efficiency without MLCF (a) and with MLCF correction (b). 
Data are mean and ± 1 SD. 



402 

 

 

 

TABLE II 

The macroelements resorption efficiency (%) with and without MLCF correction and their comparisons between populations 

Without MLCF correction 

Dependent 

Variable 
Locality N Median Range Mean SD Sig. 

N 
Southern Populations 15 45.43 53.83 45.72 12.11 

0.01* 
Northern Populations 5 75.35 34.93 75.21 13.75 

P 
Southern Populations 15 84.77 12.03 85.48 3.67 

0.01* 
Northern Populations 5 23.02 30.24 25.38 11.53 

S 
Southern Populations 15 91.01 76.04 79.93 22.93 

0.01* 
Northern Populations 5 57.04 30.41 53.96 11.33 

With MLCF correction 

Dependent 
Variable 

Locality N Median Range Mean SD Sig. 

N 
Southern Populations 15 42.12 42.83 40.69 11.75 

0.34 
Northern Populations 5 45.01 31.10 46.55 11.95 

P 
Southern Populations 15 76.23 49.29 76.20 13.70 

0.01* 
Northern Populations 5 12.73 17.51 15.45 6.82 

S 
Southern Populations 15 71.55 110.67 70.99 24.99 

0.01* 
Northern Populations 5 32.91 22.48 33.07 7.99 

*P<0.01 

 
 

 

TABLE III 

The microelements resorption efficiency (%) with and without MLCF correction and their comparisons between populations. 

Without MLCF correction 

Dependent Variable Locality N Median Range Mean SD Sig. 

Fe 
Southern Populations 15 52.19 56.12 48.98 20.30 

0.01* 
Northern Populations 5 11.74 30.07 11.95 1.23 

Zn 
Southern Populations 15 -32.46 166.63 -21.24 46.70 

0.01* 
Northern Populations 5 15.80 24.38 17.06 9.21 

Cu 
Southern Populations 15 68.98 174.33 21.03 76.55 

0.34 
Northern Populations 5 38.92 34.13 41.86 13.03 

Mn 
Southern Populations 15 -58.48 60.98 -61.26 17.51 

0.01* 
Northern Populations 5 16.96 13.61 16.04 5.21 

With MLCF correction 

Dependent Variable Locality N Median Range Mean SD Sig. 

Fe 
Southern Populations 15 41.19 65.16 44.40 21.17 

0.01* 
Northern Populations 5 7.01 3.48 7.35 1.28 

Zn 
Southern Populations 15 -24.78 162.33 -15.46 43.02 

0.03 
Northern Populations 5 9.99 14.54 10.34 5.35 

Cu 
Southern Populations 15 54.94 192.63 17.83 69.99 

0.30 
Northern Populations 5 24.60 27.11 26.08 10.31 

Mn 
Southern Populations 15 -55.01 96.53 -55.08 22.39 

0.01* 
Northern Populations 5 10.11 7.80 9.76 3.11 

*P < 0.01 
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RESULTS 

Macroelement concentrations (N, P, S) were found to be higher in southern populations, while 

microelement concentrations (Fe, Zn, Cu, Mn) were found to be higher in northern populations. Northern 

populations were N, P and S-proficient because lower concentrations were found in senescent leaves. 

However, southern populations were Fe, Zn, Cu and Mn-proficient (Fig 1). 

Significant differences were found between northern and southern populations with respect to macro 

and micro-element concentrations except for P concentrations in full leaves. However, no significant 

differences were found between northern and southern populations with respect to S and Cu 

concentrations in senescent leaves (Tab. I). 

It has been found that Mn and Zn were accreted in southern populations, while they were resorbed 

in northern populations. In addition to this, RE was found to be lower with MLCF correction and 

significant differences were found between northern and southern populations except for NRE with 

MLCF correction (Fig 2; Tab. II).  

ZnRE was not significantly changed between northern and southern populations without MLCF 

correction. However, NRE and CuRE were not significantly changed with MLCF correction (Tab. III). 

The calculation of macro- and micolements RE with or without MLCF correction were supported 

each other by statistical models (Tab. IV). 
 

TABLE IV 

The results of Pearson’s and Concordance correlation tests between the calculation of macro- and microelements resorption 

efficiency with and without MLCF correction 

Elements N Concordance correlation coefficient 
95% Confidence 

Interval 
r P 

N 20 0.52 0.25-0.71 0.72 0.01* 

P 20 0.86 0.71-0.94 0.92 0.01* 

S 20 0.77 0.56-0.89 0.87 0.01* 

Fe 20 0.94 0.86-0.97 0.95 0.01* 

Zn 20 0.97 0.94-0.98 0.98 0.01* 

Cu 20 0.97 0.93-0.98 0.98 0.01* 

Mn 20 0.93 0.85-0.97 0.94 0.01* 

*P<0.01 

DISCUSSION 

According to Killingbeck (1996) foliar resorption is highly proficient in plants if nitrogen and 

phosphorus concentrations below 7 mg.g
−1

 and 0.5 mg.g
−1

of dry matter respectively in their senescent 

leaves (Kilic et al., 2010). According to threshold values both northern and southern populations were P-

proficient, while only northern populations were N-proficient. It has been found that northern populations 

were N-, and S- proficient, while southern populations were P, Fe, Zn, Cu, and Mn-proficient because 

their concentrations were lower in senescent leaves although there is no threshold values for 

micronutrients. 

NRE was found to be higher in northern populations as compared to southern populations, while 

the opposite trend was found with respect to PRE in the present study. Salehi et al. (2013) studied NRE 

and PRE in some poplar species in Hyrcano-Euxine phytogeographical region. Northern and southern 

populations of P. fraxinifolia had high NRE than that of poplar species, while northern populations had 

similar PRE. However, southern populations had rather high PRE than poplar species. It has been 
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emphasized that foliar nutrient concentrations and foliar resorption vary largely among individuals of the 

same species and between different species (Salehi et al., 2013). S concentrations in senescent leaves 

were found to be low and SRE was found to be high. Liu et al. (2014) reported that S is only 

significantly resorbed in deciduous tree species among functional groups and found SRE was 12.5% in 

deciduous trees. Bilgin et al. (2015) also found low S concentrations in leaves of Vaccinium species 

and reported that S is weakly resorbed in deciduous trees. However, SRE was much higher in southern 

populations than the reported values and SRE was found to be about three-fold higher even in northern 

populations with MLCF correction (33.06 %). Nutrient concentrations in plants vary depending on the 

ability to transfer nutrients from xylem or phloem by plants and it has been reported that S is known to 

be highly mobile nutrient in phloem (Mailard et al., 2015). 

NRE/PRE ratios were found >1 in northern populations, while <1 in southern populations. Reed 

et al. (2012) stated that if NRE/PRE ratios were < 1 more P was consistently resorbed relative to N. It 

has been found that PRE was higher as compared to NRE in southern populations. Several authors 

implied that P compounds in a leaf are more readily resorbed as compared to N compounds therefore 

PRE is more significant with respect to nutrient use efficiency than NRE (Aerts & Chapin, 2000; Salazar 

et al., 2011; Yilmaz et al., 2014). However, the opposite trend was found in northern populations and 

NRE was higher than PRE. Reed et al. (2012) and Brant & Chen (2015) reported that NRE was 

increased while PRE was decreased with increasing latitude and tree species in northern regions tend to 

be more N-limited mainly due to N losses regarding leaching and denitrification. High RE also indicated 

low litter quality and low mineralization rates. The swamp forests in northern part of Turkey exhibit 

low rates of soil organic matter decomposition due to high precipitation (Horuz et al., 2014). 

Foliar Zn and Cu concentrations of P. fraxinifolia in the present study were similar to those of 

Fraxinus excelsior L. populations in Europe. Foliar Fe concentrations were similar to those of Fagus 

sylvatica L. However, micronutrient especially foliar Mn concentrations were lower than some 

European tree species quoted by Hagen-Thorn et al. (2006). 

Negative Zn and MnRE values were found in southern populations. This means Zn and Mn are 

accreted in southern populations. Housman et al. (2012) and Medina et al. (2015) also found that Mn 

and Cu were accreted and they stated that the accretion of foliar micronutrients is probably due to lower 

nutrient mobility or lack of a driving force for their nutrient conservation and that resorbed micronutrients 

are more limiting or they may be close to the resorption of macronutrients. Mn was classified as a low 

mobility micronutrient in phloem (Maillard et al., 2015). Zn and Mn were more limiting in northern 

populations of P. fraxinifolia because they were resorbed, while they were accreted in southern 

populations. The differences between northern and southern populations may likely be due to 

differences in the uptake process of micronutrients among different individuals (Oleksyn et al., 2002, 

2003). 

N, Zn, Cu and MnRE were found to be higher in northern populations, while P, S and FeRE were 

found to be higher in southern populations. This may be interpreted on the basis that northern 

populations of P. fraxinifolia have higher N, Zn, Cu and Mn requirements, while southern populations 

have high P, S and Fe requirements (Yan et al., 2015). If a particular nutrient is limiting, plant resorbs 

more that particular nutrient (Brant & Chen, 2015). This would explain that NRE, MnRE, ZnRE and 

CuRE were found to be higher in northern populations whereas PRE, FeRE, and SRE were higher in 

southern populations.  

Foliar RE should be corrected due to leaf mass loss during leaf senescence and MLCF correction 

should be applied (Vergutz et al., 2012; Surmen et al., 2014). There were significant differences 

among foliar RE values when MLCF was used or not. Additionally, NRE was found to be lower for 

woody deciduous species at global scale. However, PRE was higher than global estimates for PRE 
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when MLCF was not used, while very close to global PRE values when MLCF was used (Brant & 

Chen, 2015). We also found that the calculations of macro- and microelements RE with or without 

MLCF correction were each supported by statistical models. 

In summary, we found that northern populations were N-proficient, while southern populations were 

P-proficient. It has been found that micronutrients (Zn and Mn) were more limiting in northern than 

southern populations because they were resorbed in northern populations but accreted in southern 

populations. SRE was found to be higher than in other deciduous species. We agree with Liu et al. (2014) 

who stated that nutrient resorption patterns strongly depend on a particular nutrient and plant species.  

González (2012) stated that the ecological integrity of floodplain forests may be protected by 

effective restoration and management measures. Patterns of foliar resorption and of macro- and 

microelement use may help to achieve these goals and our results may serve to assess nutrient using 

patterns of swamp forest species. Such studies may also contribute to specify threshold-values for 

resorption proficiency of micronutrients. 
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