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The formation of planetesimals and planetary embryos during the earliest stages of the 

solar protoplanetary disk largely determined the composition and structure of the 

terrestrial planets. Within a few million years (Myr) after the birth of the solar system, 

chondrule formation and accretion of the parent bodies of differentiated achondrites and 

the terrestrial planets took place in the inner protoplanetary disk1,2. Here we show that, 

for chondrules in unequilibrated enstatite chondrites, high-precision Δ17O values 

(deviation of δ17O value from a terrestrial silicate fractionation line) vary significantly 

(ranging from -0.49 to +0.84‰) and fall on an array with a steep slope of 1.27 on a three 

oxygen isotope plot. This array can be explained by reaction between an olivine-rich 

chondrule melt and a SiO-rich gas derived from vaporized dust and nebular gas. Our 

study suggests that the majority of the building blocks of planetary embryos formed by 

successive silicate-gas interaction processes: silicate-H2O followed by silicate-SiO 

interactions under more oxidized and reduced conditions, respectively, within a few Myr 

after the formation of the solar system. 

Major precursor components of enstatite chondrites (EC), differentiated planetesimals, 

Mars, and the Earth are thought to have been formed at similar heliocentric distances3,4. The 

unequilibrated EC preserve records of nebular conditions in each component (chondrules, Ca-

Al-rich inclusions [CAIs], Fe-Ni-metal, and matrix), each of which has not been heavily 

overprinted by post-accretionary thermal processes. Thus, these components are considered 

reasonable analogs of the major source materials for the inner planets5. Oxygen isotopes of 

chondrules record distinct characteristics of the localized nebular environment, thus they are 

considered a key tracer of the nebular conditions at which planetesimal precursors formed 

during the earliest stages of the protoplanetary disk. Oxygen isotopic compositions for most of 

the bulk EC and EC chondrules resemble those of the Earth and Moon, clustered around the 

terrestrial fractionation line (TFL)6-8, whereas some pyroxenes and olivines have more 16O-poor 

and 16O-rich compositions, respectively9. Although these data show no clear trend on the three-

oxygen isotope diagram, they have been interpreted as the result of mixing processes between 

precursors solids including 16O-rich components and nebular gas with oxygen isotopic 

compositions near the TFL8,9. However, yet uncertain are the physical and chemical parameters 

for the chondrule formation process, including the oxygen isotopic compositions of the nebular 

gas, solid/gas ratios, temperature, and the exact mixing process involved. 

Oxygen isotopic compositions of individual chondrules in EC have been reported for 

only three EH chondrites (high-iron chemical group of EC)6-8. One of the reasons for the paucity 

of previous work is the analytical difficulty imposed by small sample sizes related to the mean 

diameter of chondrules in EH chondrites (0.2 mm). These chondrules are smaller than those in 

the other chondrite groups10. Recent analytical development (see detail in Methods) enables the 

analysis of Δ17O values of silicate minerals with an order of magnitude better precision, from 

an order of magnitude smaller sample, than in previous studies6-8. Also, careful sample 

pretreatment eliminated analytical artifacts caused by terrestrial weathering and by isotopic 

fractionation during sample digestion in the presence of sulfide minerals (see detail in Methods). 

Here we report highly precise 17O/16O and 18O/16O of 80 fractions of chondrules and enstatite-

rich fragments from 11 EC (Fig. 1; see detail in Methods and Supplementary Tables 1 and 2). 



The results reveal several new observations. (1) The δ18O values of chondrules and enstatites, 

except for silica-rich chondrule (SRC, Fig. 2), range between 5.0 and 6.0‰, a rage much 

narrower than that reported for bulk EC and of chondrule minerals (-5 to +6‰)9. (2) Chondrules 

in EH3 and EH4 show a wider range in Δ17O (-0.489 to +0.836‰) than bulk EC (-0.41 to 

+0.48‰6,11), and their δ18O’ and δ17O’ (see definitions in Methods), except for SRC, show a 

linear trend with a slope of 1.27 ± 0.18 (2SE). This steep slope of >1 is distinct from that for 

chondrules in all chondrite groups12, suggesting a unique formation process for the EC 

chondrules. (3) The chondrules in EH5 and enstatite in EH6, EL6, and EL6 show smaller 

variations in Δ17O (-0.084 to +0.149 ‰) similar to values for bulk EC. This observation 

indicates that the oxygen isotope compositions of chondrules and enstatites in type 5 and 6 EC 

approached equilibrium values during thermal metamorphism. The chondrules in St. Mark’s 

(EH5) show a linear slope of 0.60 ± 0.04 (2SE) slightly steeper than the mass-dependent 

equilibrium fractionation line (the latter with a slope of 0.5305). This implies that the diffusion 

of oxygen among these chondrules with initially more variable Δ17O was frozen during attempts 

to isotopically equilibrate. (4) SRC have distinct oxygen isotopic compositions, with greater 

δ18O (6.83‰) and relatively high Δ17O (0.340‰) relative to values for the enstatite-rich 

chondrules and enstatites. 

Petrography and the inferred crystallization path demonstrate that the SRC was a 

completely molten droplet (Fig. 2). The bulk composition of the SRC parental melt 

(Supplementary Table 3) cannot have formed, by any plausible magmatic process, from a liquid 

having compositions of solar or typical olivine- or pyroxene-rich chondrules. It also cannot 

have formed by fractional crystallization or impact melting from any known type of achondrite 

parent body. Silica polymorphs commonly appear in EC but are less abundant in carbonaceous 

and ordinary chondrites. This feature is consistent with the relative enrichment of Si/Mg ratio 

in bulk EC compared with bulk carbonaceous and ordinary chondrites13. Silica-enrichments 

during chondrule formation process can be explained by the addition of SiO2 into the Mg-rich 

chondrule by a reaction with SiO gas, one of the dominant gas species in the hot inner solar 

nebula14-16. High partial pressures of SiO in the gas phase favor high silica activity in chondrule 

melts, enabling the formation of silica minerals15. Therefore, the SRC could have been formed 

via reaction of molten Mg-rich chondrules with SiO vapor under high temperature conditions, 

>~1960 K (Fig. 2d). The association of silica-keilite in the mantle region of the SRC also 

suggests a gas-melt interaction process, at high partial pressures of SiO, and formation at high 

temperatures17,18. Because of the inferred high Si activity and high temperatures, the possibility 

of oxygen isotopic fractionation between SiO and O2 can be eliminated, and oxygen isotopic 

composition of the silica polymorph should thus reflect that of the SiO gas14. Thus, a mass-

balance calculation demonstrates that the oxygen isotope compositions (δ18O, δ17O) of the 

nebular gas and precursor chondrules were greater than (21.0‰, 20.0‰) and smaller than 

(5.0‰, 1.5‰), respectively, based on the following plausible assumptions: (i) All MgO and 

SiO2 in the SRC were derived from forsterite (Mg2SiO4) in the precursor chondrules and SiO 

and O2 in the nebula gas. (ii) The oxygen isotopic composition of the nebular gas was on the 

Young and Russell (YR) line representing the mixing between 16O-rich and 16O-poor reservoirs 

in the nebula19,20. (iii) The oxygen isotopic composition of the precursor chondrule was that of 

the olivine and olivine-rich chondrules in carbonaceous chondrites. More details regarding 

these assumptions and the procedures for calculations are presented in Methods. This is one 



 

solution to explain the data, but the oxygen isotopic composition determined for the gas 

reservoir is consistent with that estimated based on the calculated compositions of chondrules 

in carbonaceous chondrites for exchange with 50-70% H2O gas21. 

The presence of relict olivine within enstatite in EH3 and EH4 chondrules, and the 

mechanism of formation of the SRC confirm that the enstatite-rich chondrules were formed by 

reaction between olivine-rich chondrule melt and SiO from the nebular gas16. To explain the 

oxygen isotope variation of EH3 and EH4 chondrules, model calculations were performed using 

an evaporation-driven gas‒melt interaction model20 involving reaction between SiO-rich vapor 

and precursor dust (see the details in Methods). In this model, the oxygen isotopic composition 

of enstatite-rich chondrules depends on four parameters: (i) isotopic compositions of the 

precursor dust, (ii) isotopic composition of initial gas, (iii) dust/gas ratio (R), and (iv) 

temperature (T). For the calculation, parameters (i) and (ii) which have already been determined 

by that of SRC are used. The results (Fig. 3 and Supplementary Table 4) show that most of the 

chondrules have formed with R values between 8 and 2.4 at 1000 to 1600 K when the δ18O of 

precursor olivine is given as 5‰. Even when the δ18O of the precursor olivine decreased to 3‰, 

the R values (6.3 – 3.5) and T (1000 – 2000K) do not change significantly. The contribution of 

oxygen from the gas phase to the reacting chondrule melt strongly depends on R and the 

duration of the reaction16,21,22. Relatively low R values (e.g., ~12 < R < ~100 at total pressures 

of 10-3 bar) are required to attain the highly reduced condition indicated by the mineralogy and 

the low FeO in enstatite (typically FeO < 0.8 wt.%) in the EH3 and EH4 chondrules22. The 

estimated R values are much lower than that implied by chondrule melt stability22,23. This may 

indicate that the chondrule melt was not entirely thermodynamically equilibrated with the 

surrounding gas because of the transient nature of the vaporization and re-condensation 

processes. The significantly smaller mean diameter and greater proportions of completely 

melted chondrules in EH chondrites, relative to other chondrite groups10, is consistent with this 

melting and partial vaporization processes. We conclude, therefore, that the oxygen isotopic 

compositions of EC chondrules preserve a record of reaction process between partially 

vaporized melt and highly reduced gas including SiO at relatively low gas/dust ratios. 

This study has revealed that the Δ17O values of EC chondrules span not only the ranges 

of for Earth and the Moon but also the entire range of differentiated meteorites (Fig. 3). Because 

oxygen constitutes >30 wt.% of rocky planetary materials, this isotopic coincidence strongly 

constrains their close genetic linkage in obtaining their major components. The precursor 

planetesimals of rocky planetary bodies are generally thought to have accreted from various 

mixtures of materials broadly similar to chondrites5. However, accretion ages of the parental 

bodies of the obtainable chondrites are younger than those of differentiated meteorites1,24. Thus, 

it is unlikely that the parental bodies of chondrites themselves are identical to the source 

materials of the differentiated planetary bodies. Nevertheless, the chondrules and other nebular 

components remain the best available analogues for the source materials of the differentiated 

planetary bodies, in that they originated in similar or various nebular reservoirs as evidenced 

by oxygen isotopic compositions as well as other stable isotopic systems2,25. The overlap in 

oxygen isotopic compositions suggest that the major source materials for these differentiated 

planetary bodies were formed by processes similar to those responsible for the EC chondrules, 

namely, combinations of dust evaporation and silicate-SiO interaction processes in the early 



inner disk. The lower δ18O value for most of the differentiated achondrites at a given Δ17O, 

relative to values for EC chondrules, may be due to melt extraction after accretion, because the 

δ18O values of the minerals in residues of partial melting generally show decrease26. Δ17O 

values for primitive achondrites such as acapulcoites-lodranites are lower than those for the EC 

chondrules and show large variation (Fig. 3). Their variation in Δ17O can be explained by 

insufficient melt-gas interaction, under the low T and/or high R conditions during the formation 

of their pristine components, followed by incomplete melting process in their parent bodies. 

Oxygen isotopic compositions of the CAI and olivine-rich chondrules formed at the 

earliest stage of Solar system were primarily controlled by fractionation of 16O-rich and 16O-

poor reservoirs in the inner and the outer regions of the solar nebula, respectively27. Water 

removal from the inner protoplanetary disk that occurred within a few Myr after the formation 

of Solar system led to decreased oxygen fugacity in this region28,29. We infer that the variation 

in the oxygen isotopic compositions of EC chondrules could reflect this decreased oxygen 

fugacity. With increase in SiO/H2O in the innermost region of the protoplanetary disk, silicate 

vaporization and melt-SiO reaction proceeded, resulting in the formation of enstatite-rich and 

silica-oversaturated chondrules. Over the same period, accretion of achondrite precursor bodies, 

followed by whole body melting, could have proceeded in the same region1. Dust vaporization 

and re-condensation also elevated the volatile elements (e.g., alkaline elements and halogens) 

without increasing the amount of H2O in the reactant, a characteristic of chondrules in EH 

relative to other chondrite groups13.  
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Figure 1 | Oxygen isotopic compositions of chondrule and enstatite separates from enstatite 
chondrites. a, chondrule(s) in EH3 and EH4. Dashed line is a regression line of EH3 and EH4 chondrules 
without SRC. Open circles are bulk composition of EH3 and EH46,11. b, chondrule(s) in EH5 and enstatite 
separates in EH6, EL5, and EL6. Dashed line is a regression line of chondrules in St. Mark’ s. Open 
circles are bulk composition of EH5, EH6, EL5, and EL66,11. Size of symbol indicates 1σ confidence 
ellipse of replicated analyses of reference samples (Supplementary Table 5). 



 

 

 

Figure 2 | Mineralogical characteristics of silica-rich chondrule (SRC). a, Photo of the SRC in Y-

791810. The divided smallest fragment was used for the observation (presented in b and c) and the 

remaining fragments were used for O isotope analysis. b, Back scattered electron image of SRC. The 

core region is mainly composed of fine-grained (<5μm) euhedral enstatite (En) and interstitial silica-

rich (SiO2 >90wt.%) glass (gl) and tridymite (Trd) with tridymite clots. The mantle region is composed 

of silica-rich glass (SiO2 > 92 wt.%), tridymite and keilite (Ke) with minor enstatite. The rim region is 

composed of tridymite and cristobalite (Crs) with minor amount of keilite (1.5 vol.%) and albite (<1 

vol.%). c, Tridymite clot showing dendrite texture, which is composed of tridymite, silica-rich glass, 

and troilite (Tro). d, Crystallization process of SRC (gray thick allows) shown in binary phase diagram 

of MgO-SiO2
30. The initial composition of melt droplet (A) is determined by the bulk composition of 

SRC (Supplementary Table 3). The presence of two domains in the core region, MgO-rich tridymite-

enstatite matrix (B1) and SiO2-rich tridymite clots (B2), can be explained by solvus exsolution of the 

parental melt above 1968 K. After the melt cooled to 1968 K, cristobalite began crystallizing in the rim 

region (C2). In the core region, SiO2-rich immiscible melt (B2) began crystallizing euhedral minerals in 

the MgO-rich melt matrix, then cristobalite began crystallizing along with keilite in the mantle region 

(C2). The MgO concentration of the remaining melt (C1) increased until the temperature cooled to the 

eutectic point at 1816 K. The dendritic texture of the clot (B2) indicates its rapid crystallization. Then, 

the melt was exhausted leaving a mixture of enstatite (D1) and cristobalite (D2). Finally, cristobalite 

converted to tridymite, which is stable below 1743 K (D2). Silica polymorphs were identified by micro-

Raman spectra (Supplementary Fig. 2). Fo: forsterite; L: liquid. 
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Figure 3 | Oxygen isotopic compositions of EC chondrules and enstatite. Green mesh lines show the 
calculated oxygen isotopic compositions of pyroxene using the model of evaporation-driven gas melt 
interaction20 and the determined parameters (δ18O = 5.0 ‰ and δ17O = 1.5 ‰ for precursor olivine and      
δ18O = 21.0 ‰ and δ17O = 20.0 ‰ for initial solar gas) at variable temperature (in kelvin) and dust/gas 
ratio (R). Details regarding the methods of calculation are provided in the Methods and results are 
provided in Supplementary Table 4. CCAM: Carbonaceous chondrite anhydrous mineral line, TLR: 
Tagish Lake chondrules, isolated forsterite and isolated olivine line, YR: Young and Russel line, and TSF: 
Terrestrial Silicate Fractionation line. Sources of data compiled here are shown in the Methods.



 

Methods 

Samples and Analytical procedures.  

Chunk meteorite samples of Sahara 97103 (EH3), Yamato 691 (Y-691, EH3), Indarch 

(EH4), Yamato 74370 (Y-74370, EH4), Yamato 79810 (Y-79810, EH4), Asuka 881475 (A-

881475, EH5), St. Mark’s (EH5), Yamato 980223 (Y-980223, EH6), NWA 1222 (EL5), Eagle 

(EL6), and Hvittis (EL6) were used in this study. Indarch, NWA 1222, Eagle, and Hvittis 

meteorites are from the DREAM sample depository at the Institute for Planetary Materials31, 

all the Antarctica meteorites were loaned from the National Institute of Polar Research in Tokyo, 

and the St. Mark’s meteorite was loaned from Natural History Museum in Vienna. Analyzed 

chondrules were either porphyritic pyroxene or radial pyroxene (Supplementary Fig. 1) except 

for one silica-rich chondrule (SRC) (Fig. 2). The Mg# (=100×Mg/[Mg+Fe2+] in mol) of 

enstatite in chondrules and enstatite-rich fragments, analyzed for representative samples, ranges 

from 98 to 100. Petrographic characteristics of enstatite-rich fragments separated from EH3, 

EH4, and EH5 (Supplementary Fig. 1) indicate that they are fragments of chondrules. Thus, 

both the chondrule and enstatite-rich fragments from these samples are referred to as 

“chondrule”. On the other hand, chondrules underwent metamorphic recrystallization in EH6, 

EL5, and EL6. Thus, enstatite-rich fragments from these samples are referred to as “enstatite”. 

Poikilitic olivine inclusions (Mg# = 99 to 100) in enstatite (< 5 % in volume) occur in 

porphyritic pyroxene chondrules from all EH3 and EH4, but are absent in EH5, EH6, EL5, and 

EH6 (Supplementary Fig. 1). These olivine inclusions have been interpreted as relics of initial 

condensation products that survived later reduction or melting processes that formed the 

surrounding enstatite9. 

The chunk samples were roughly crushed with a silicon nitride mortar and pestle. Then, 

chondrule and chondrule-rich fragments were hand-picked using tweezers under a binocular 

microscope. The chondrules and remaining fragments were then acid-leached. Newton et al.11 

leached the bulk powder of EC finds by 1M HCl, and demonstrated significant isotopic shifts 

between unleached and leached samples. However, those authors did not indicate whether the 

weathering product and sulfide minerals were completely dissolved in their acid-leached 

samples. In this study, sample fragments were washed using 6M HCl for a few hours until the 

production of reactant gas ceased, then washed more than three times with ion-exchanged water. 

Part of the acid-washed chondrule and pyroxene separates were observed using optical and 

electron microscopes. Acid-leaching does not dissolve enstatite and Na-rich plagioclase32, 

which are the main constituents of the EC chondrules; however this acid-leaching completely 

dissolved weathered materials, Fe-Ni alloy, and troilite on the surface area of the sample 

fragments. Electron microprobe observations confirmed that pyroxene, plagioclase, and 

enclosed olivine, mesostasis, and sulfide minerals were not reacted with the HCl 

(Supplementary Fig. 1). Chondrules of >0.3 mg were selected for the single chondrule analysis 

and chondrules of <0.3 mg were combined for analyses of composite chondrules. 

The fluorination and gas purification methods used for analysis are modified after 

Sharp33 and details of the method have been described eleswhere34. The O2 from silicate sample 

was extracted using a CO2 laser with BrF5 as an oxidation agent. The extracted O2 was purified 

on the extraction line, then trapped with 13 Å molecular sieve at liquid N2 temperature. The 

isotope ratios in the extracted O2 gas were determined using a Thermo MAT253 gas source 



 

mass spectrometer in dual inlet mode with simultaneous detection of m/z = 32, 33, and 34. The 

ion beams were collected in Faraday collectors attached to amplifiers with 3x108, 3x1011, and 

1x1011 Ω feedback resistors. For each sample, 8 blocks of 11 cycles each were measured with 

a total measurement time of ~ 90 min. The 18O/16O and 17O/16O of the sample is expressed as 

the common delta notation relative to VSMOW2 as δ17 or 18O = (17 or 18O/16O)sample/ (17 or 
18O/16O)VSMOW2 – 1. The working reference gas was calibrated by VSMOW2 and SLAP2 just 

before this analytical sequence, and all data are expressed using the VSMOW2/SLAP2 scale. 

The results of the reference gas calibrations have been reported elsewhere35. The oxygen 

isotopic composition of the MSOL1 (in-house San Carlos olivine standard) and all data for 

unknowns analyzed in this study were identical between VSMOW2- and VSMOW2/SLAP2-

scale within the error. The excess 17O value relative to terrestrial silicate fractionation line 

(TSFL) is defined as Δ17O = δ17O’ - 0.527×δ18O’, where δ17O’ = ln(δ17O* + 1),  δ17O* = δ17O 

+ 0.039 × 10-3, and δ18O’ = ln(δ18O + 1). Analytical uncertainty for the data was determined by 

repeat analyses of MSOL-1 analyzed every 2 to 3 analyses of unknowns (Supplementary Table 

5). The intermediate precision of MSOL-1 was obtained as δ17O = 2.754 ± 0.035 ‰, δ18O = 

5.288 ± 0.072 ‰, and Δ17O = 0.004 ± 0.009 ‰ (1SD, N = 39). 

Several chondrule and enstatite separates contain significant amounts of plagioclase or 

albitic mesostasis, up to ~10 vol. %. When the analyzed samples contain 10 wt.% of albite with 

90 wt.% of enstatite, the δ18O value of the mixture can be elevated by 0.11 to 0.03 ‰ when they 

were equilibrated between 1200 and 2000°C36. The deviation can exceed the 1SD external 

precision (0.072) if they are equilibrated at <1400 °C. However, the deviation is much smaller 

than the 2SD intermediate precision and also the variation in each meteorite. Thus, effects of 

sample impurity are regarded as being negligible in the present discussion. 

Parts of the chondrule and enstatite separates were mounted in epoxy resin and 

polished. The major element concentrations of mineral phases were determined using a JEOL 

JSM-7001F SEM equipped with energy dispersive X-ray spectrometers (EDS) and Oxford 

INCA X-Max and X-art. The analyses were conducted at a 10 kV acceleration voltage and a 5 

nA beam current, and with 100 s integration times. Silicate mineral standards were used for 

calibration of the quantitative analyses. The repeat analyses of San Carlos olivine mounted in 

the same epoxy yielded a composition of (in wt.%) SiO2 = 40.5 ± 0.1, FeO = 9.0 ± 0.1, MgO = 

49.8 ± 0.1, MnO = 0.11 ± 0.07, NiO = 0.41 ± 0.09, CaO = 0.06 ± 0.03, and Mg# = 90.8 ± 0.1 

(N = 13, 1SD). This compositions is identical to that obtained using an electron probe micro 

analyzer with wavelength dispersive spectrometers34. The bulk composition of SRC 

(Supplementary Table 3) was determined by analyzing the 127 broad areas.  

Identification of silica polymorphs (Supplementary Fig. 2) was accomplished by 

micro-Raman spectroscopy using a Thermo Scientific DXR equipped with a 532 nm Nd-YVO4 

laser and a confocal optical microscope. The laser system is equipped with grating of resolution 

of 3 cm-1 that covers the range of wavenumbers from 50 to 1800 cm-1. A Raman spectrum was 

collected using 1 mW laser and 50 μm pinhole aperture with exposure time of 60s. The laser 

diameter was 0.6 μm. Spectra were processed by automatic baseline correction using the 

OMNIC software. Phases were identified by matching with reference Raman spectra in the 

RRUFF database. 

 



 

Oxygen isotope fractionation of olivine during fluorination in the presence of pyrrhotite. 

Fluorination of sulfate minerals with BrF5 yields low recovery of oxygen (approximately 20 – 

40 %) and isotopic fractionation of the extracted oxygen from the original value because of the 

formation of S-O-F molecules such as SO2F2
37. Enstatite chondrites contain significant amounts 

of sulfide minerals: the proportion of sulfur relative to oxygen expressed by fs value (molar 

S/[S+O]) in EC ranges between 0.06 and 0.23 (average = 0.13 ± 0.09, 2SD)38-40. For the samples 

of enstatite chondrite, an opaque shell of troilite and Fe-Ni metal and sulfide-rich matrix, 

impossible to remove mechanically, often surround the separated chondrules. Thus, it is likely 

that sulfide contamination in EC chondrules can significantly modify the original oxygen 

isotopic composition during fluorination. To avoid this analytical artifact, we completely 

dissolved sulfide minerals on the surfaces of the separated fractions using 6M HCl. The acid-

leaching treatment also effectively removed Fe-Ni metal and terrestrial weathering products. 

However, this method could not remove the sulfide inclusions present at up to 1.5 vol. % in the 

interiors of the chondrule and enstatite fractions. 

In this study, we evaluated the degree of oxygen isotopic fractionation of silicate 

minerals in the presence of sulfide minerals. The experiment was performed using San Carlos 

olivine (MSOL-1, 73 - 200 𝜇m) and pyrrhotite (Fe0.92S, Nikolaevskiy mine, Dal’negorsk, 

Russia, < 100 𝜇m) with various mixing ratios. The mixed sample was put in the Ni capsule and 

placed in the reaction chamber. To avoid the cross contamination and partial fluorination of 

pyrrhotite, only one sample was placed in each valve-closed chamber. For the same reason, no 

prefluorination treatment was performed. The oxygen blank in the pyrrhotite powder was 

negligible. 

The results are shown in Supplementary Figure 3 and Supplementary Table 6. 

Recovery of oxygen and its isotopic composition do not change measurably when the fs is lower 

than 0.1. However, when the fs is greater than 0.12, the recovery of oxygen proportionally 

decreased with increasing of fs. Oxygen recovery is ~50 % when the sample mixture has 

equivalent mole fraction of S and O. Oxygen isotopic compositions were also modified when 

fs is greater than 0.15. The slope of ln(δ18O + 1) vs. ln(δ17O + 1) gave 0.519 ± 0.004 (1σ), which 

is near that of the kinetic mass-dependent fractionation (0.5158) rather than that of equilibrium 

isotope fractionation (0.5305)41. Thus, it appears that kinetic isotope fractionation of oxygen 

between O2 and S-O-F compounds occurred during fluorination. 

Our results demonstrated that the modification of oxygen isotope data by sulfide 

contamination is negligible for the acid-leached chondrules and enstatite fractions because of 

the low modal abundance of sulfide minerals (<1.5 vol. %). However, caution is necessary when 

bulk enstatite samples were analyzed without removing sulfide minerals. Without removal of 

sulfide, δ18O and Δ17O values of bulk samples can be modified up to ~0.7 ‰ and down to ~20 

ppm, respectively. 

 

Calculation method for open-system gas-melt interaction model. 

The detailed calculation method for the determination of δiOpyroxene values (i refers to either 17 

or 18) shown in Fig. 3 is described in Marrocchi and Chaussidon20, and will be briefly described 

here. This model considers the oxygen isotopic variation of the Mg-rich chondrules as resulting 



 

from open-system gas-melt interactions between precursor silicate dust and a SiO-enriched gas 

in the protoplanetary disk. Enrichment of the SiO in the gas can be due to the partial melting 

and evaporation of silicate dust. Thus, the molar contents of Si and O and the oxygen isotopic 

composition of the evolved gas can be written as: 

 

[𝑆𝑖]𝑔𝑎𝑠 = [𝑆𝑖]𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑎𝑠 + 𝑅 × [𝑆𝑖]𝑑𝑢𝑠𝑡 (1) 

 

[𝑂]𝑔𝑎𝑠 = [𝑂]𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑎𝑠 + 𝑅 × [𝑂]𝑑𝑢𝑠𝑡 (2) 

 

𝛿𝑖𝑂𝑔𝑎𝑠 =
𝛿𝑖𝑂𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑎𝑠×[𝑂]𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑎𝑠+𝑅×𝛿𝑖𝑂𝑑𝑢𝑠𝑡×[𝑂]𝑑𝑢𝑠𝑡

[𝑂]𝑔𝑎𝑠
 (3) 

 

where [Si or O]gas, [Si or O]initial gas, and [Si or O]dust are molar contents of Si or O in the evolved 

gas, initial gas, and precursor dust, respectively; R is the dust/gas ratio; and δiOx is the oxygen 

isotopic composition in each component (gas, initial gas, and precursor dust). In a high-

temperature region of the solar nebula, CO is the most dominant O-bearing molecule42,43. When 

the R value is increased, SiO becomes an important O-bearing molecule in the gas next to the 

CO. The fraction of O carried by SiO in the gas is defined as: 

 

𝑓𝑆𝑖𝑂 =
[𝑆𝑖𝑂]

[𝑆𝑖𝑂]+[𝐶𝑂]
 (4) 

 

where [SiO] and [CO] are molar contents of the gas in SiO and CO, respectively. Using the fSiO 

value, the oxygen isotopic composition of the gas can be written as: 

 

𝛿𝑖𝑂𝑔𝑎𝑠 = 𝑓𝑆𝑖𝑂 × 𝛿𝑖𝑂𝑆𝑖𝑂 𝑔𝑎𝑠 + (1 − 𝑓𝑆𝑖𝑂) × 𝛿𝑖𝑂𝐶𝑂 𝑔𝑎𝑠 (5) 

or 

𝛿𝑖𝑂𝑆𝑖𝑂 𝑔𝑎𝑠 = 𝛿𝑖𝑂𝑔𝑎𝑠 − (1 − 𝑓𝑆𝑖𝑂) × ∆𝑖𝑂𝐶𝑂−𝑆𝑖𝑂 (6) 

 

where ΔiOCO-SiO is the equilibrium isotopic fractionation of δ17 or 18O between CO and SiO. As 

SiO is the dominant Si-bearing gaseous species, the reaction of SiO into the melt and the 

reaction between olivine and melt can be written as16: 

 

𝑆𝑖𝑂(𝑔𝑎𝑠) +
1

2
𝑂2(𝑔𝑎𝑠) = 𝑆𝑖𝑂2(𝑚𝑒𝑙𝑡) (7) 

 

𝑀𝑔2𝑆𝑖𝑂4(𝑜𝑙𝑖𝑣𝑖𝑛𝑒) + 𝑆𝑖𝑂2(𝑚𝑒𝑙𝑡) = 𝑀𝑔2𝑆𝑖2𝑂6(𝑚𝑒𝑙𝑡) = 𝑀𝑔2𝑆𝑖2𝑂6(𝑝𝑦𝑟𝑜𝑥𝑒𝑛𝑒) (8) 

 



 

Hence, the oxygen isotopic composition of the pyroxene is: 

 

𝛿𝑖𝑂𝑝𝑦𝑟𝑜𝑥𝑒𝑛𝑒 =
2

3
𝛿𝑖𝑂𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟 𝑜𝑙𝑖𝑣𝑖𝑛𝑒 +

1

3
(∆𝑖𝑂𝑝𝑦𝑟𝑜𝑥𝑒𝑛𝑒−𝑆𝑖𝑂 + 𝛿𝑖𝑂𝑆𝑖𝑂) (9) 

 

where  

 

𝛿𝑖𝑂𝑆𝑖𝑂 =
𝛿𝑖𝑂𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑎𝑠×[𝑂]𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑎𝑠+𝑅×𝛿𝑖𝑂𝑑𝑢𝑠𝑡×[𝑂]𝑑𝑢𝑠𝑡

[𝑂]𝑔𝑎𝑠
−

∆𝑖𝑂𝐶𝑂−𝑆𝑖𝑂

1+[𝑆𝑖𝑂] [𝐶𝑂]⁄
 (10) 

 

For the calculation, chemical compositions of CI chondrite and the Solar abundance44 were 

used for the precursor dust and initial gas compositions, respectively ([Si]dust = [Si]initial gas = 

1× 106, [O]dust = 7.55× 106, [O]initial gas = 1.41× 107, [C]dust = 7.72× 105, and [C]initial gas = 

7.08×106). The ΔiOCO-SiO and ΔiOpyroxene-SiO values were temperature-dependent fractionation 

factors45. 

Marrocchi and Chaussidon20 assumed that the oxygen isotopic composition of the 

initial gas lies on the YR line with δ18O = +10‰. It is widely accepted that the oxygen isotopic 

composition of the nebular gas was controlled by mixing of 16O-rich CO and 16O-poor H2O, 

which forms slope 1 line on the three oxygen isotope plot46. Thus, it is likely that the oxygen 

isotopic composition of the initial gas lies on the YR line. However, it was not clearly explained 

by those authors why the δ18O value of the initial gas is +10‰20. In this study, the δiOinitial gas 

and δiOprecursor olivine was determined using the oxygen isotopic compositions of SRC. 

Proportions of SiO2 and Mg2SiO4 in the SRC calculated from bulk composition (Supplementary 

Table 3) are 69.0 and 24.8 wt.%, respectively. Thus, contributions of oxygen in the SRC derived 

from the gas and chondrule melt were calculated as 76.5% and 23.5%, respectively. Thus, the 

δiOSRC can be written as: 

 

𝛿𝑖O𝑆𝑅𝐶 = 0.235 × 𝛿𝑖O𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟 𝑜𝑙𝑖𝑣𝑖𝑛𝑒 + 0.765 × (∆𝑖𝑂𝑆𝑅𝐶−𝑆𝑖𝑂 + 𝛿𝑖𝑂𝑆𝑖𝑂) (11) 

 

where δ18OSRC = 6.846 and δ17OSRC = 3.943‰ (Supplementary Table 1) and ΔiOSRC-SiO is 

temperature-dependent fractionation factor between SRC and SiO. Since the SRC was achieved 

at >~1970 K (Fig. 2), ΔiOSRC-SiO can be calculated by the ΔiOpyroxene-SiO and ΔiOquartz-SiO at 

2000K45 using the molar fractions of MgSiO3 and SiO2 in the bulk SRC.   

Since δiOinitial gas is on the YR line: 

 

ln(𝛿17𝑂𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑎𝑠 + 1) = ln(𝛿18𝑂𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑎𝑠 + 1) − 1.04 × 10−3 (12) 

 

For the δiOprecursor olivine, Tagish Lake chondrules, isolated forsterite and isolated olivine (TLR) 

line which were precisely determined by a laser fluorination method47 was used as: 



 

 

ln(𝛿17𝑂𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟 𝑜𝑙𝑖𝑣𝑖𝑛𝑒 + 1) = 0.953 × ln(𝛿18𝑂𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟 𝑜𝑙𝑖𝑣𝑖𝑛𝑒 + 1) − 3.24 × 10−3 (13) 

and 

δ18Oprecursor olivine ≤ 5 ‰ (14) 

Although the oxygen isotopic compositions of bulk Tagish Lake meteorite was modified by 

asteroidal aqueous alteration, the compositions of olivine and forsterite grains preserve nebular 

conditions47. These data do not differ within error from those defined for the anhydrous mineral 

separates from Murchison chondrite48 and primitive chondrule minerals line determined by in-

situ analyses of chondrule minerals49. By solving equations (11) to (14), the δ17Oinitial gas, 

δ18Oinitial gas, δ17Oprecursor olivine and R values were calculated for a given δiOprecursor olivine value. 

When the δ18Oprecursor olivine are 5, 4, and 3‰, the δ18Oinitial gas values are calculated as 21.0, 29.0, 

and 39.9 ‰, respectively, and the R values as 8.0, 8.3. and 9.3, respectively.  

The result of δiOpyroxene values (Equation 9) at δ18Oprecursor olivine = 5 calculated for 

varying dust/gas ratio (R) and temperature (T) ranges as shown in Supplementary Table 4 and 

Fig. 3. 

 

Data compilation for O isotopic compositions of achondrites. Data sources of oxygen 

isotopic compositions of achondrite and Lunar samples shown in Fig. 3 are: Acaplucoite-

lodranite50, winonaite51, brachinite51, pallasite52, mesosiderite52, IIE53, HED50,54 , angrite50, 

Lunar55 ,56, and Mars57. Because the measurements of the δ18O and δ17O values of San Carlos 

olivine, UWG-2, and NBS-28 of ref. 57 are systematically lower than those in our study, their 

data were recalculated by adding +0.295 ‰ and +0.184 ‰ for δ18O and δ17O values, 

respectively. 

 

Data availability 

The data that support the plots within this paper and other findings of this study are available 

from the corresponding author upon reasonable request.  
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Supplementary Figure 1 | Back scattered electron images of separated and acid-leached 
chondrule fragment (a) and enstatite-rich fraction (b). En: enstatite, Aug: augite; Ab: albite, 
Ng: niningerite, Tro: troilite, Fo: forsterite, mes: mesostasis, Ano: anorthoclase. Number indi-
cates Mg# of enstatite.
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Supplementary Figure 2 | Raman spectra of silica-rich chondrule (SRC). a, Back 
scattered electron (BSE) image of SRC (Y791810-Ch6). Red circles with number indi-
cates the analyzed point for Raman spectra. b, Raman spectra of SiO2 phases in SRC. 
[1] and [2] orthorhombic tridymite, enstatite, and amorphous phase in the tridymite 
clot, [3] triclinic tridymite and enstatite peaks in the matrix of core region, [4] ortho-
rhombic tridymite, amorphous phase, and enstatite peaks in the mantle region, and [5] 
cristobalite peaks in the rim region. Reference Raman spectra of orthorhombic tridy-
mite (OP)58, triclinic tridymite (RRUFFID = R040143), cristobalite (RRUFFID = 
X050046), and orthoenstatite are also shown.
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Supplementary Figure 3 | Oxygen isotopic data of San Carlos olivine (MSOL-1) – pyrrho-
tite mixture. a, The δ18O value and recovery of oxygen from MSOL-1 and pyrrhotite mixture 
with various mixing ratios. The solid and broken lines are average values and 2SD analytical 
uncertainties, respectively, for δ18O value and recovery yield determined by repeated analyses 
of MSOL-1. The shaded area indicates the range of S/(S+O) for bulk enstatite chondrites calcu-
lated from the modal abundance data38-40. b, The slope of δ18O’ vs. δ17O’ for the MSOL-1 and 
pyrrhotite mixtures 



 

Supplementary Table 1 | Oxygen isotopic composition of chondrules and enstatite 
separates in EH3 and EH4 chondrites. 
 

sample†  number 
of grain type‡ diameter 

(mm) 
weight  for 
analysis (mg) 

δ18O 
(‰) 

δ17O 
(‰) 

δ17O* 
(‰) 

Δ17OTSFL 
(‰) 

Sahara 97103 (EH3)                     
WR     1.87 6.245 (4) 3.265 (10) 3.298 0.011 (9) 
Ch1 1 PP 1.22 0.65 5.845 (6) 3.072 (13) 3.105 0.029 (13) 
Ch comp1 5 PP 0.54-0.68 0.63 5.509 (7) 2.615 (12) 2.648 -0.251 (12) 
Ch comp2 12 PP 0.26-0.72 0.62 5.690 (6) 2.940 (5) 2.973 -0.022 (5) 
En1 nc - 0.16-0.66 0.57 5.989 (4) 3.152 (9) 3.185 0.034 (9) 
En2 nc - 0.14-0.56 0.69 5.817 (4) 3.059 (5) 3.092 0.030 (5) 
En3 nc - 0.18-0.52 0.47 5.834 (4) 3.108 (9) 3.141 0.070 (9) 
En4 nc - 0.07-0.25 1.07 5.470 (5) 2.849 (10) 2.882 0.003 (8) 
Y-691 (EH3)                       
Ch1 1 PP 0.92 0.47 5.366 (5) 2.482 (8) 2.514 -0.309 (9) 
Ch2 1 RP 1.5 0.42 5.322 (4) 2.371 (13) 2.403 -0.396 (12) 
Ch3 1 RP 0.79 0.45 5.621 (4) 2.600 (6) 2.633 -0.325 (6) 
Ch4 1 PP 1.08 0.34 5.395 (9) 2.572 (6) 2.604 -0.235 (10) 
Ch5 1 PP 1.1 0.36 5.436 (7) 2.561 (13) 2.594 -0.267 (9) 
Ch comp1 2 PP 0.83-1.10 0.30 5.127 (19) 2.368 (42) 2.401 -0.297 (17) 
Ch comp2 21 - 0.40-0.57 0.50 5.683 (4) 2.678 (9) 2.711 -0.279 (9) 
Ch comp3 9 - 0.30-1.0 0.54 5.482 (7) 2.506 (6) 2.538 -0.346 (5) 
Ch comp4 7 - 0.43-0.60 0.40 5.378 (7) 2.466 (8) 2.499 -0.331 (8) 
Ch comp5 24 - 0.18-0.54 0.42 5.594 (6) 2.630 (11) 2.663 -0.280 (13) 
En1 nc - 0.07-0.2 0.52 5.655 (2) 2.626 (8) 2.659 -0.317 (9) 
En2 nc - 0.07-0.2 0.45 5.850 (4) 2.885 (9) 2.917 -0.161 (9) 
Indarch (EH4)                     
WR     1.44 5.490 (3) 2.945 (12) 2.978 0.089 (11) 
WR (EATG)   - - 1.44 5.443 (3) 2.861 (6) 2.894 0.029 (12) 
Ch1 1 PP 1.9 0.70 5.637 (5) 3.035 (6) 3.068 0.101 (6) 
Ch2 1 PP 1.04 0.47 5.787 (4) 3.176 (9) 3.209 0.162 (10) 
Ch3 1 RP 1.1 0.46 5.498 (4) 2.650 (6) 2.682 -0.211 (5) 
Ch4 1 PP 0.72 0.41 6.045 (11) 3.408 (19) 3.441 0.259 (18) 
Ch5 1 PP 0.64 0.37 5.390 (11) 2.698 (7) 2.730 -0.106 (7) 
Ch6 1 PP 0.64 0.37 5.404 (12) 2.784 (12) 2.817 -0.027 (11) 
Ch comp1 2 PP 0.64-0.70 0.45 5.762 (4) 2.927 (10) 2.960 -0.073 (10) 
Ch comp2 25 - 0.18-0.36 0.50 5.890 (12) 3.267 (16) 3.300 0.200 (10) 
Ch comp3 2 PP 0.53-0.57 0.37 5.831 (7) 3.178 (5) 3.211 0.142 (4) 
Ch comp4 3 PP 0.60-0.74 0.54 5.847 (5) 3.290 (9) 3.323 0.245 (11) 
Ch comp5 3 RP 0.63-0.70 0.37 5.705 (4) 3.086 (13) 3.119 0.116 (13) 
Ch comp6 3 PP 0.54-0.74 0.43 5.870 (6) 3.461 (7) 3.494 0.403 (8) 
Ch comp7 74 - 0.07-0.31 0.40 5.414 (8) 2.910 (15) 2.943 0.093 (14) 
En1 7 - 0.38-0.66 0.53 5.708 (4) 3.030 (14) 3.062 0.058 (12) 
En2 17 - 0.24-0.54 0.52 5.750 (4) 3.066 (6) 3.099 0.072 (7) 
En3 nc - 0.18-0.48 1.12 5.714 (4) 3.144 (12) 3.177 0.169 (13) 
En4 nc - 0.30-0.34 1.02 5.649 (4) 3.089 (5) 3.122 0.149 (7) 
Y-74370 (EH4)                     
Ch1 1 PP 0.87 0.57 5.384 (4) 2.445 (10) 2.478 -0.355 (9) 
Ch2 1 PP 0.97 0.52 5.193 (6) 2.344 (5) 2.377 -0.355 (5) 
Ch3 1 RP 1.5 0.57 5.004 (8) 2.110 (7) 2.142 -0.491 (7) 
Ch4 1 RP 1.22 0.42 5.317 (10) 2.486 (10) 2.519 -0.279 (10) 
Ch5 1 PP 0.9 0.42 5.232 (5) 2.365 (10) 2.398 -0.355 (10) 
Ch comp1 21 - 0.20-0.36 0.63 5.255 (5) 2.452 (3) 2.485 -0.280 (4) 
Ch comp2 4 PP 0.60-0.62 0.53 5.281 (7) 2.466 (8) 2.499 -0.280 (8) 
Ch comp3 3 RP 0.66-0.76 0.44 5.099 (8) 2.285 (4) 2.317 -0.366 (4) 
En1 10 - 0.26-0.60 0.64 5.328 (6) 2.525 (8) 2.558 -0.246 (10) 
En2 20 - 0.32-0.64 0.55 5.152 (5) 2.403 (6) 2.436 -0.275 (5) 
Y-791810 (EH4)                     
Ch1 1 PP 0.88 0.51 5.831 (4) 3.876 (8) 3.909 0.837 (8) 
Ch2 1 PP 0.86 0.43 5.917 (5) 3.421 (8) 3.454 0.339 (7) 
Ch3 1 PP 0.7 0.51 5.987 (5) 3.169 (10) 3.202 0.051 (8) 
Ch4 1 PP 0.82 0.44 5.848 (5) 3.258 (8) 3.291 0.212 (8) 
SRC 1 CC 0.84 0.42 6.846 (6) 3.910 (9) 3.943 0.339 (9) 
Ch comp1 3 PP 0.64-0.74 0.50 5.772 (3) 3.179 (8) 3.212 0.174 (8) 
Ch comp2 9 - 0.24-0.52 0.40 5.618 (4) 3.066 (10) 3.099 0.142 (10) 
En1 nc - 0.10-0.42 0.58 5.611 (4) 3.017 (8) 3.050 0.096 (9) 
En2 nc - 0.14-0.48 0.46 5.675 (5) 3.059 (8) 3.092 0.105 (7) 
En3 nc - 0.10-0.48 0.49 5.733 (5) 3.097 (9) 3.130 0.112 (8) 
En4 11 - 0.26-0.60 0.52 5.665 (4) 2.949 (9) 2.982 0.001 (9) 

 
†WR = whole rock without leaching, WR (EATG) = whole rock washed by EATG, Ch = single chondrule, Ch comp = chondrule composite, En = enstatite 
separates 
‡PP = porphyritic pyroxene, RP = radial pyroxene, SRC = silica-rich chondrule, 
nc = not counted, - = not analyzed 
The number inside the parenthesis is a last digit of standard error (1SE). 
   



 

Supplementary Table 2 | Oxygen isotopic composition of chondrules and enstatite 
separates in EH5, EH6, EL5, and EL6 chondrites. 
 

sample†  number 
of grain type‡ diameter 

(mm) 
weight  for 
analysis (mg) 

δ18O 
(‰) 

δ17O 
(‰) 

δ17O* 
(‰) 

Δ17OTSFL 
(‰) 

A-881475 (EH5)                     
Ch1 1 PP 0.94 0.49 5.656 (4) 2.960 (8) 2.993 0.016 (9) 
Ch comp1 2 PP 0.60-0.64 0.42 5.455 (7) 2.753 (9) 2.786 -0.084 (9) 
Ch comp2 6 PP 0.36-0.48 0.41 5.405 (4) 2.794 (8) 2.826 -0.018 (9) 
En1 nc - 0.14-0.46 0.67 5.243 (3) 2.709 (13) 2.742 -0.018 (13) 
En2 nc - 0.08-0.14 0.63 5.372 (6) 2.782 (8) 2.814 -0.013 (7) 
En3 nc - 0.08-0.14 0.70 5.408 (3) 2.821 (6) 2.854 0.007 (7) 
St. Mark's (EH5)                     
Ch1 1 PP 0.8 0.40 5.639 (7) 2.942 (13) 2.975 0.007 (15) 
Ch2 1 RP >1.76 0.50 5.803 (5) 3.045 (6) 3.078 0.024 (5) 
Ch comp1 2 PP 0.62-0.64 0.51 5.476 (6) 2.839 (7) 2.872 -0.010 (8) 
Ch comp2 7 PP 0.28-0.66 0.46 5.601 (5) 2.931 (11) 2.963 0.015 (11) 
Ch comp3 2 RP >1.40 0.37 6.002 (3) 3.167 (9) 3.200 0.041 (9) 
En1 5 - 0.56-0.64 0.48 5.672 (5) 2.978 (7) 3.011 0.026 (6) 
En2 42 - 0.40-0.52 0.47 5.864 (4) 3.073 (11) 3.106 0.020 (11) 
En3 18 - 0.20-0.60 0.43 5.626 (4) 2.951 (8) 2.984 0.023 (8) 
Y-980223 (EH6)                     
En1 nc - <0.1 0.66 5.866 (4) 3.201 (11) 3.233 0.146 (11) 
En2 nc - <0.1 0.85 5.888 (4) 3.215 (7) 3.248 0.149 (7) 
En3 nc - <0.1 0.83 5.862 (5) 3.196 (10) 3.229 0.144 (9) 
NWA 1222 (EL5)                     
WR    1.49 5.975 (4) 3.160 (6) 3.193 0.048 (7) 
En1 nc - 0.07-0.2 0.92 5.902 (6) 3.145 (12) 3.178 0.072 (12) 
En2 nc - 0.07-0.2 0.80 6.017 (4) 3.213 (5) 3.246 0.080 (7) 
Eagle (EL6)                       
WR    1.57 5.849 (2) 3.073 (2) 3.106 0.028 (3) 
En1 nc - 0.07-0.2 1.05 5.887 (7) 3.117 (8) 3.150 0.052 (9) 
En2 nc - 0.07-0.2 0.98 5.764 (2) 3.053 (10) 3.086 0.053 (11) 
Hvittis (EL6)                      
WR    1.34 5.836 (5) 3.091 (9) 3.124 0.052 (7) 
En1 nc - 0.07-0.2 1.00 5.855 (1) 3.124 (7) 3.157 0.076 (7) 
En2 nc - 0.07-0.2 1.22 5.848 (3) 3.095 (10) 3.128 0.050 (10) 

 
†WR = whole rock without leaching, WR (EATG) = whole rock washed by EATG, Ch = single chondrule, Ch comp = chondrule composite, En = enstatite 
separates 
‡PP = porphyritic pyroxene, RP = radial pyroxene, SRC = silica-rich chondrule, 
nc = not counted, - = not analyzed 
The number inside the parenthesis is a last digit of standard error (1SE) 
  



 

Supplementary Table 3 | Major element composition in core, mantle, and rim regions of 
SRC. 
 

region core* clot mantle rim bulk

vol.%† 47.6 - 19.1 33.3

SiO2 72.8 88.0 76.2 91.4 79.6

TiO2 0.02 0.07 0.01 0.01 0.02

Cr2O3 0.04 0.13 0.25 0.14 0.12

Al2O3 2.50 1.29 2.18 1.39 2.07

FeO 0.18 1.09 2.63 1.33 1.03

MnO 0.06 0.21 0.61 0.28 0.24

MgO 22.1 7.2 13.7 3.2 14.2

NiO 0.03 0.04 0.01 0.03 0.03

CaO 0.42 0.14 0.38 0.11 0.31

Na2O 1.66 1.09 1.66 0.93 1.42

K2O 0.03 0.00 0.01 0.00 0.02

P2O5 0.04 0.01 0.03 0.06 0.05

S 0.13 0.79 2.32 1.14 0.88

Mg# 99.6 92.1 90.3 81.0 96.1
 

 
*Tridymite clot. The modal abundance of core region includes the tridymite clot. 
†The radius of the core region is estimated as 0.33 mm, assuming that the chondrule is sphere in shape. 
 
  



Supplementary Table 4 | Result of model calculations for gas-melt interactions 
between olivine and gas. 
 

R SiO/CO fSiO δ18Oneb δ18OSiO δ18Opyroxene Δ18Opx-ol δ17Oneb δ17OSiO δ17Opyroxene 

T=1000K         
1 0.25 0.20 15.43 9.52 6.87 1.87 13.53 10.46 4.68 
2 0.35 0.26 12.73 7.23 6.11 1.11 10.43 7.57 3.72 
3 0.43 0.30 11.15 5.95 5.68 0.68 8.60 5.89 3.16 
5 0.55 0.35 9.36 4.57 5.22 0.22 6.53 4.04 2.54 
10 0.74 0.43 7.52 3.27 4.79 -0.21 4.42 2.21 1.93 
20 0.93 0.48 6.37 2.53 4.54 -0.46 3.09 1.09 1.56 
100 1.20 0.55 5.29 1.92 4.34 -0.66 1.85 0.10 1.23 
1000 1.28 0.56 5.03 1.78 4.29 -0.71 1.54 -0.14 1.15 
          
T=1300K         
1 0.25 0.20 15.43 11.70 7.43 2.43 13.53 11.59 4.98 
2 0.35 0.26 12.73 9.26 6.62 1.62 10.43 8.62 3.99 
3 0.43 0.30 11.15 7.86 6.16 1.16 8.60 6.89 3.41 
5 0.55 0.35 9.36 6.33 5.65 0.65 6.53 4.96 2.77 
10 0.74 0.43 7.52 4.84 5.15 0.15 4.42 3.02 2.12 
20 0.93 0.48 6.37 3.95 4.85 -0.15 3.09 1.83 1.72 
100 1.20 0.55 5.29 3.16 4.59 -0.41 1.85 0.74 1.36 
1000 1.28 0.56 5.03 2.98 4.53 -0.47 1.54 0.48 1.27 
          
T=1600K         
1 0.25 0.20 15.43 12.88 7.76 2.76 13.53 12.21 5.14 
2 0.35 0.26 12.73 10.37 6.92 1.92 10.43 9.20 4.14 
3 0.43 0.30 11.15 8.91 6.43 1.43 8.60 7.43 3.55 
5 0.55 0.35 9.36 7.30 5.89 0.89 6.53 5.46 2.89 
10 0.74 0.43 7.52 5.69 5.36 0.36 4.42 3.47 2.23 
20 0.93 0.48 6.37 4.72 5.04 0.04 3.09 2.23 1.82 
100 1.20 0.55 5.29 3.84 4.74 -0.26 1.85 1.09 1.44 
1000 1.28 0.56 5.03 3.63 4.67 -0.33 1.54 0.82 1.35 
          
T=1900K         
1 0.25 0.20 15.43 13.59 7.95 2.95 13.53 12.58 5.25 
2 0.35 0.26 12.73 11.02 7.10 2.10 10.43 9.54 4.23 
3 0.43 0.30 11.15 9.53 6.60 1.60 8.60 7.76 3.64 
5 0.55 0.35 9.36 7.87 6.05 1.05 6.53 5.76 2.97 
10 0.74 0.43 7.52 6.20 5.49 0.49 4.42 3.73 2.30 
20 0.93 0.48 6.37 5.18 5.15 0.15 3.09 2.47 1.88 
100 1.20 0.55 5.29 4.25 4.84 -0.16 1.85 1.30 1.49 
1000 1.28 0.56 5.03 4.02 4.76 -0.24 1.54 1.02 1.39 

 
The initial conditions are: δ18O = 5.0 and δ17O = 1.5 ‰ for olivine and δ18O = 21.0 and δ17O = 20.0 ‰ for 
the gas. Other parameters and calculation method are same as in ref 19. R: the dust/gas ratio, fSiO: the 
fraction of O in the gas carried by SiO, δ18Oneb: δ18O of the gas that was equilibrated with chondrule 
equilibrated, δ18OSiO: calculated δ18O value of the SiO gas, δ18Opyroxene: calculated δ18O of the pyroxene, 
and Δ18Opx-ol = δ18Orelict olivine - δ18Opyroxene. 



 

Supplementary Table 5 | Oxygen isotopic composition of reference San Carlos olivine. 
 
reference
number

weight 
(mg) δ17O* (‰)

1 1.32 5.271 ±0.006 2.746 ±0.003 2.778 0.004 ±0.006
2 1.17 5.266 ±0.007 2.746 ±0.007 2.779 0.007 ±0.009
3 1.55 5.270 ±0.003 2.733 ±0.010 2.766 -0.008 ±0.009
4 1.64 5.243 ±0.005 2.727 ±0.004 2.760 0.000 ±0.002
5 1.28 5.364 ±0.007 2.782 ±0.007 2.815 -0.008 ±0.007
6 0.87 5.288 ±0.007 2.751 ±0.008 2.784 0.001 ±0.005
7 0.64 5.188 ±0.005 2.728 ±0.008 2.760 0.030 ±0.007
8 0.57 5.206 ±0.006 2.714 ±0.014 2.747 0.007 ±0.013
9 0.55 5.152 ±0.004 2.695 ±0.008 2.728 0.016 ±0.009
10 0.94 5.371 ±0.008 2.796 ±0.005 2.829 0.002 ±0.003
11 0.52 5.176 ±0.004 2.692 ±0.010 2.725 0.000 ±0.009
12 0.57 5.329 ±0.011 2.791 ±0.016 2.824 0.019 ±0.011
13 0.67 5.371 ±0.009 2.813 ±0.009 2.846 0.019 ±0.009
14 0.52 5.210 ±0.007 2.723 ±0.008 2.756 0.014 ±0.007
15 0.66 5.383 ±0.007 2.801 ±0.008 2.834 0.001 ±0.009
16 0.54 5.236 ±0.009 2.731 ±0.008 2.764 0.008 ±0.008
17 0.63 5.312 ±0.009 2.761 ±0.013 2.794 -0.002 ±0.012
18 0.71 5.233 ±0.002 2.720 ±0.009 2.753 -0.002 ±0.008
19 0.56 5.209 ±0.006 2.710 ±0.006 2.743 0.001 ±0.006
20 0.72 5.325 ±0.009 2.771 ±0.010 2.803 0.001 ±0.009
21 0.50 5.320 ±0.007 2.778 ±0.014 2.811 0.010 ±0.013
22 0.55 5.259 ±0.006 2.741 ±0.009 2.773 0.005 ±0.008
23 0.58 5.241 ±0.003 2.718 ±0.007 2.751 -0.007 ±0.008
24 0.56 5.318 ±0.005 2.774 ±0.007 2.807 0.008 ±0.006
25 0.54 5.260 ±0.005 2.742 ±0.007 2.775 0.007 ±0.006
26 0.66 5.299 ±0.009 2.745 ±0.007 2.778 -0.012 ±0.007
27 0.57 5.274 ±0.004 2.744 ±0.010 2.777 0.001 ±0.009
28 0.72 5.349 ±0.006 2.775 ±0.014 2.808 -0.007 ±0.011
29 0.65 5.406 ±0.006 2.799 ±0.013 2.832 -0.014 ±0.013
30 0.66 5.359 ±0.003 2.786 ±0.009 2.819 -0.001 ±0.009
31 0.83 5.357 ±0.010 2.794 ±0.010 2.827 0.007 ±0.010
32 0.53 5.295 ±0.003 2.750 ±0.009 2.782 -0.005 ±0.008
33 0.76 5.365 ±0.008 2.789 ±0.011 2.821 -0.002 ±0.009
34 0.51 5.371 ±0.006 2.795 ±0.005 2.828 0.001 ±0.006
35 0.52 5.375 ±0.010 2.793 ±0.010 2.826 -0.003 ±0.009
36 0.52 5.088 ±0.005 2.663 ±0.009 2.696 0.018 ±0.011
37 0.67 5.343 ±0.009 2.787 ±0.015 2.820 0.008 ±0.011
38 0.46 5.260 ±0.005 2.751 ±0.008 2.783 0.015 ±0.008
39 0.54 5.278 ±0.006 2.758 ±0.006 2.791 0.012 ±0.007

5.288 ±0.072 2.754 ±0.035 2.787 0.004 ±0.009

δ18O (‰) δ17O (‰) Δ17OTSFL (‰)

average ±1SD



 

Supplementary Table 6 | Isotopic composition of the San Carlos olivine-extracted 
oxygen in the presence of pyrrhotite during fluorination. 
 

sample S/(S+O) yield

name olivine pyrrhotite (in mol) (%)

Ol96Po4 1.60 0.06 0.032 98 5.276 ±0.003 2.745 ±0.010 -0.005 ±0.010

Ol90Po10 1.50 0.17 0.091 97 5.372 ±0.003 2.807 ±0.008 0.007 ±0.007

Ol86Po14 1.32 0.22 0.128 91 5.429 ±0.003 2.809 ±0.009 -0.021 ±0.008

Ol83Po17 1.56 0.31 0.149 90 5.489 ±0.004 2.832 ±0.012 -0.030 ±0.013

Ol82Po18 1.09 0.24 0.162 89 5.942 ±0.004 3.086 ±0.006 -0.015 ±0.007

Ol80Po20 1.36 0.34 0.180 88 5.434 ±0.005 2.820 ±0.004 -0.013 ±0.005

Ol75Po25 1.08 0.36 0.227 79 5.932 ±0.003 3.069 ±0.007 -0.026 ±0.006

Ol70Po30 1.45 0.62 0.273 74 5.952 ±0.003 3.074 ±0.008 -0.032 ±0.008

Ol66Po34 1.35 0.70 0.313 68 7.393 ±0.004 3.846 ±0.007 -0.019 ±0.007

Ol50Po50 1.51 1.51 0.468 54 8.140 ±0.004 4.214 ±0.006 -0.043 ±0.007

weight (mg) δ18O δ17O Δ17OTSFL

(‰) (‰) (‰)

 
  




