
A new approach to Decimation in High Order

Boltzmann Machines

PhD dissertation

Student: E. Farguell (efarguell@salle.url.edu)

Advisor: F. Mazzanti (ferran.mazzanti@upc.edu)

Acknowledgments

There is a lot of people who should be addressed at this moment, and who have helped

me in so many ways that I do not have enough words to thank them for their efforts.

However, I would specially like to thank my parents and my fiancée for their support all

over those years when it was most needed. It has been 5 years Susanna now -not actually

counting from 1987 since we first met-, but it is just as the first day.

This note would not be complete if I did not thank my friends, the guys from the

old Electronics Department and these great people who move around Enginyeria i Ar-

quitectura La Salle and who I meet so often around there. I would like to thank finally

Enginyeria i Arquitectura La Salle for their support over these years.

Preface

Outline

The Boltzmann Machine (BM) is a stochastic neural network with the ability of both

learning and extrapolating probability distributions. However, it has never been as widely

used as other neural networks such as the perceptron, due to the complexity of both the

learning and recalling algorithms, and to the high computational cost required in the

learning process: the quantities that are needed at the learning stage are usually estimated

by Monte Carlo (MC) through the Simulated Annealing (SA) algorithm. This has led

to a situation where the BM is rather considered as an evolution of the Hopfield Neural

Network or as a parallel implementation of the Simulated Annealing algorithm.

Despite this relative lack of success, the neural network community has continued

to progress in the analysis of the dynamics of the model. One remarkable extension is

the High Order Boltzmann Machine (HOBM), where weights can connect more than two

neurons at a time. Although the learning capabilities of this model have already been

discussed by other authors [Kosmatopoulos and Christodoulou, 1994,Albizuri et al., 1995],

a formal equivalence between the weights in a standard BM and the high order weights

in a HOBM has not yet been established.

We analyze this latter equivalence between a second order BM and a HOBM by propos-

ing an extension of the method known as decimation [Itzykson and Drouffe, 1991,Saul and

Jordan, 1994]. Decimation is a common tool in statistical physics that may be applied to

some kind of Boltzmann Machines, that can be used to obtain analytical expressions for

the n-unit correlation elements required in the learning process. In this way, decimation

avoids using the time consuming Simulated Annealing algorithm. However, as it was first

conceived, it could only deal with sparsely connected neural networks. The extension that

we define in this thesis allows computing the same quantities irrespective of the topology

of the network. This method is based on adding enough high order weights to a standard

BM to guarantee that the system can be solved.

Next, we establish a direct equivalence between the weights of a HOBM model, the

probability distribution to be learnt and Hadamard matrices. The properties of these

matrices can be used to easily calculate the value of the weights of the system.

Finally, we define a standard BM with a very specific topology that helps us better

understand the exact equivalence between hidden units in a BM and high order weights

in a HOBM.

Contents

This memory is organized as follows: in chapter 1 a review of the historical facts that lead

to the development of the original neural networks theory is introduced. In this chapter,

the behavior of two of the best known neural network models that have been used along the

years (the multilayer perceptron and the Hopfield neural network) is also briefly revisited.

The dynamics of the BM, its extension to the HOBM model and the common learning

techniques that are used on Boltzmann Machines are described in chapter 2

Standard decimation is analyzed in chapter 3. The discussion includes the full expla-

nation on how this method works, as well as its limitations. The way all these problems

are overcome is described in the last sections of this chapter. Chapter 4 discusses how

a Hadamard matrix can be used to relate the weights of a HOBM with the probability

distribution that it represents. In chapter 5 we present a specific BM model where high

order weights find a direct equivalence in terms of second order connections and hidden

units.

Finally, chapter 6 points out the conclusions that are extracted from this thesis. In

the appendix we describe Hadamard matrices and the Walsh-Hadamard transform.

Contents

1 The Neural Network 1

1.1 Introduction . 1

1.2 The biological Neural Network . 2

1.2.1 Structure . 2

1.2.2 The transmission of electrical impulses 4

1.3 The Artificial Neural Network . 6

1.3.1 Dynamics and Topology . 7

1.3.2 Learning in ANNs . 12

1.3.3 High order ANN models . 16

2 The Boltzmann Machine 21

2.1 Introduction . 21

2.2 Simulated Annealing . 22

2.2.1 The Metropolis algorithm . 22

2.2.2 The Simulated Annealing algorithm 23

2.3 The Boltzmann Machine as a Neural Network 25

2.3.1 Topology of the BM . 25

2.3.2 Dynamics and algorithm for a BM 28

2.3.3 The mean field equations . 30

i

ii CONTENTS

2.3.4 The high order Boltzmann Machine 35

2.4 Learning on Boltzmann Machines . 36

2.4.1 Learning expression for a standard BM 36

2.4.2 Learning algorithm for a BM . 40

2.4.3 Learning on a HOBM . 42

2.4.4 The Mean Field learning solution 44

3 The process of Decimation 47

3.1 Introduction . 47

3.2 Decimation applied to the BM . 49

3.2.1 Main concepts from decimation . 49

3.2.2 Parallel association . 52

3.2.3 Serial association . 54

3.2.4 Star-triangle decimation . 57

3.3 Correlations and expectation values . 60

3.3.1 Expectation value for a single unit 61

3.3.2 Correlation of two free units . 62

3.3.3 Correlation of a free and a clamped connected units 64

3.4 High order Decimation . 65

3.4.1 Biased star-triangle decimation . 65

3.4.2 The HOBM applied to decimation 67

3.4.3 HOD numerical example . 73

3.5 Multiple unit decimation process . 75

3.5.1 Iterative HOD and the Multiple Decimation equivalence 76

3.5.2 Two units decimation . 77

3.5.3 Multiple unit decimation for a 10 units BM 80

CONTENTS iii

3.6 Simulations and results applying HOD . 83

3.6.1 The letter recognition problem: a toy problem 84

3.6.2 Problems from a benchmarking repository 86

3.6.3 The Monk Problem . 88

4 BM learning through Hadamard matrices 93

4.1 Introduction . 93

4.2 Reduction of connections between input units on a HOBM 94

4.3 The forward problem . 95

4.4 The backwards problem . 96

4.4.1 The backwards problem for a known p.d.f. 97

4.4.2 Backwards problem solution for a three units BM 103

4.4.3 The backwards problem for a conditional p.d.f. 106

4.4.4 General solution for the backwards conditional problem 111

4.4.5 The backwards incomplete problem 115

4.5 Backwards incomplete problem LU solution 117

4.5.1 Kullback-Leibler distance optimization and the LU solution 118

4.5.2 The priority encoder problem . 121

5 Analytical learning process for a BM 125

5.1 Introduction . 125

5.2 Boole arithmetic representation on a BM 126

5.2.1 Basic logic operations . 126

5.2.2 Extensions of the basic logic operations 131

5.2.3 Two stage logic operations . 140

5.2.4 System with two output units and several inputs 148

5.2.5 General case for the output joint probability distribution 159

iv CONTENTS

5.2.6 Error term due to the hyperbolic cosine approximation 166

5.3 Practical implementation of a BM . 169

5.3.1 Description of the implementation 169

5.3.2 Two inputs, two outputs BM . 170

5.3.3 Three inputs, three outputs BM . 177

6 Summary and conclusions 187

Properties of Hadamard matrices 193

A.1 General properties of Hadamard matrices 193

A.2 Use of Hadamard matrices in HOBMs . 195

A.2.1 The Walsh-Hadamard transform . 203

List of Figures

1.1 Standard neuron structure. 3

1.2 Activation process. Vrest is set at −60 mV, notice the time and voltage

scale represented in the upper part of the image. 5

1.3 Perceptron structure. 7

1.4 Perceptron with one hidden layer. 9

1.5 Piece-wise linear (a) and pure linear (b) functions. 10

1.6 Third order weight linking units Si, Sj and Sk. 17

2.1 Notation for input (a), hidden (b) and output (c) units. 26

2.2 Termination BM (a) and Input-Output BM (b). 26

2.3 Two hidden units linked by weight wij, and biases hi, hj 27

2.4 Two input units neural network with one hidden unit and an output unit. . 27

2.5 A third order weight connecting output units Si, Sj and Sk. 35

3.1 Applied example of decimation. 47

3.2 Decimatable structure and decimated model. 48

3.3 Parallel association. 53

3.4 Parallel bias simplification. 53

3.5 Serial association. 54

v

vi LIST OF FIGURES

3.6 Typical structure where serial decimation is applied to find the correlations

of the units. 55

3.7 Serial association between a bias term and a weight. 56

3.8 Star-triangle conversion. 57

3.9 Decimatable structure using a number of connections that the star-triangle

procedure can handle. Notice the bias terms and the weights linking the

output units. 58

3.10 Applied example of decimation. 61

3.11 Decimation of a pair of units to a single one. 61

3.12 Single unit connected to bias term J
(1)
i . 62

3.13 Two units structure connected by weight J
(2)
ij and bias terms J

(1)
i , J

(1)
j . . . 63

3.14 Correlation between a free and a clamped units. 64

3.15 Non decimatable, biased star-triangle structure with typical notation (a)

and our notation (b). 66

3.16 Third order weight linking three output units. 68

3.17 Third order smallest possible neural network. 68

3.18 Third order star-triangle conversion. 69

3.19 Original (a) and decimated (b) structures. 72

3.20 Decimation process to compute correlation < S2S3 >. 74

3.21 Two hidden and two output neurons BM. 77

3.22 High order Decimation process. 79

LIST OF FIGURES vii

4.1 Scheme of a simple Boltzmann Machine, with the different terms contribut-

ing to Eα,β,γ (So, Sh, Si) (a) and Ẽα,β,γ (So, Sh, Si) (b). In (a) all terms are

shown, with arrows pointing to those that contribute to Eγ (Si). In (b),

only the terms contributing to Ẽα,β,γ (So, Sh, Si) are depicted. Notice that

the dashed arrow in (a) indicates that only the bias terms connecting input

units belong to Eγ (Si), and this is why a remaining bias term appears in

the output unit in (b). 95

4.2 Three units neural network, with two inputs and an output unit. 104

5.1 Two input units neural network with an output unit. 128

5.2 BM used to represent the n-input AND problem. 131

5.3 NOT gate structure. 133

5.4 NOT gate applied to a BM with two input units. 134

5.5 BM used to build the 3-input example. 139

5.6 Three input, second order BM with inputs Si1 , Si2 and Si3 and output So. 141

5.7 Standard digital implementation. Notice how the hidden units imitate the

behavior of the intermediate AND gates. 142

5.8 Parallel association with the input units and the bias terms. 143

5.9 Serial association of the bias terms from the hidden units H
(1)
j and the

weights J
(2)
hjo connecting them with the output unit, resulting in the new

h
(1)
j connections. 145

5.10 BM topology for the non-exhaustive probability distribution. 147

5.11 Sparsely connected BM with three input units and two outputs. 150

5.12 Parallel association of the weights connecting the input units and the bias

terms from the hidden units. 152

5.13 Parallel and serial association with the input units, the bias terms and the

hidden units from units Sh1 to Sh16 . 153

viii LIST OF FIGURES

5.14 Equivalent decimated neural network. 155

5.15 Backwards problem structure solved for two output units. 157

5.16 Structure with no second order weight connecting the output units, this

connection is replaced by unit Sh25 . 158

5.17 Structure with three output units and ni input neurons. Notice that, in

order to create a simpler figure, the input units connecting the hidden

neurons are already associated with the bias terms. 160

5.18 Structure with three output units with a decimated structure, there are

only left these connections that will generate third order weights. 160

5.19 Structure that is added for a four output units and ni input neurons. . . . 164

5.20 Dressed weights structure to build a BM with 4 output units. 165

5.21 Dressed weights equivalence up to a third order dressed connection. 165

5.22 Structure used to build a 5 outputs BM. 166

5.23 Structure used to build an no outputs BM. 166

5.24 Structure with two output units and two input neurons. 172

5.25 Decimated structure with the hidden units. 172

5.26 Structure with the active set of hidden units. 173

5.27 Structure with three output units and three input neurons for a non-

exhaustive probability distribution with its required dressed weights. 179

5.28 Dressed weights equivalence for the 3 inputs, 3 outputs example. 179

6.1 The BM, its probability distribution and the HOBM. 188

6.2 New connections between the BM and HOBM, due to the HOD equivalence;

and the p.d.f. and the BM/HOBM models when using HOD to carry out

a learning process. 189

6.3 Schematic representation of the equivalence between hidden units in a BM

and high order weights (represented as a solid pattern) on a HOBM. 190

LIST OF FIGURES ix

6.4 New link established between the analysis of the p.d.f. and the HOBM

model. 190

6.5 New link established between the analysis of the p.d.f. and the HOBM

model. 191

A.1 Serial association to obtain a bias term. 196

A.2 High order star-triangle association. 198

A.3 Walsh functions. 204

x LIST OF FIGURES

List of Tables

3.1 Serial association equations. 55

3.2 Star-triangle transformation equations. 59

3.3 Third order equations for the star-triangle conversion. 70

3.4 Multiple vs. standard decimation trial example. 81

3.5 Decimation method against Monte Carlo implementation. 85

3.6 Decimation method against perceptron. 86

3.7 Decimation method versus perceptron. 88

3.8 BM topology and learning parameters. 89

3.9 Efficiency on solving the Monk’s problem. 90

3.10 High order Decimation algorithm convergence times, in seconds. Te and

〈e〉 stand for time per epoch and mean number of epochs, respectively. . . 91

4.1 Binary counting used used to order the probability distribution to learn. . 100

4.2 Probability distribution for the three units example. 104

4.3 Standard and conditional probability distributions. 112

4.4 Priority encoder truth table. 122

4.5 Noisy priority encoder truth table. 122

4.6 Noisy priority encoder truth table. 123

xi

xii LIST OF TABLES

5.1 Example of three different probability distributions that one can use to

represent an AND operation with a BM. 127

5.2 Basic boolean operations represented with a BM. 128

5.3 AND gate expected output value. 129

5.4 Basic boolean operations represented with the mean value and the proba-

bility p (So = 1) of the output unit on a BM. 130

5.5 Weights needed to build the Basic boolean operations. 130

5.6 BM representation of the n-input AND operation. 132

5.7 Weights J
(2)
ijo for the input unit j in the n-input BM implementing OR,

NAND and NOR operations. 133

5.8 Si1 · Si2 operation with inputs Si1 , Si2 and output So. 133

5.9 AND gate with 〈So〉3 taking any possible value within (−1, +1). 136

5.10 Variation to the expected values of the basic boolean operations. 137

5.11 Weights for the non-deterministic OR, NAND and NOR operations. 137

5.12 Modification to the AND gate with 〈So〉1 taking any possible value within

(−1, +1). 138

5.13 Weights for the non-deterministic, n-inputs OR, NAND and NOR operations.138

5.14 Table for the 3 input example. 139

5.15 Results for the three input OR problem. 140

5.16 Complete probability distribution for a three inputs BM, represented by

using the expected values of the output neuron. 141

5.17 Expected values for the hidden units of the system, when the unit is active

it depends on the value that we want at the output neuron. 143

5.18 Weights connecting input and hidden units. 144

5.19 Non-exhaustive probability distribution for a three inputs BM. 146

LIST OF TABLES xiii

5.20 Real behavior of the smaller BM built with the Boolean equivalence. Even

though it is not possible for the neural network to reach −1 values, the real

result would be closer. 147

5.21 Weights connecting input and hidden units for the non-exhaustive model. . 148

5.22 Probability distribution for a three input units BM with two output neurons.149

5.23 Activation pattern for the hidden units. 150

5.24 Weights connecting the hidden units with the input ones. 151

5.25 Output probability distribution for a two input two output BM. 171

5.26 Backwards problem solution for each input vector combination. 173

5.27 Non-exhaustive output probability distribution for a 3 input 3 output BM. 178

5.28 Solution to the backwards problems for the three inputs, three outputs

non-exhaustive system. 183

xiv LIST OF TABLES

Chapter 1

The Neural Network

1.1 Introduction

The human nervous system is often described in terms of a powerful, parallel processor

that is able to carry out sets of complex calculus in relatively short periods of time. Since

the beginnings of century XIX and during century XX, scientists have explored both the

learning capacity and the behavior of the human brain. The original concept behind the

first artificial neural network (ANN) models was to build a model of a highly complex

nervous system, motivated for the subjective human intelligence evaluation. This would

be based on the learning and behavior of the human brain, which is often referred to as

the biological neural network.

However, the enthusiasm of the first researchers who began to work in this field soon

experimented a hard decay, as they concluded that it was very difficult to create an

intelligent being and that the definition of intelligence was much broad than first expected:

the extent to which we regard something as behaving in an intelligent manner is determined

as much by our own state of mind and training as by the properties of the object under

consideration -Alan Turing (1949) in [Evans and Robertson, 1968]. Further investigation

during the next years established the basis of the ANN paradigm.

In this chapter we introduce the concepts of both biological and artificial neural net-

1

2 CHAPTER 1. THE NEURAL NETWORK

works, and discuss how the first paradigms slowly evolved into the current mathematical

models. The structure of this chapter is as follows: the biological neural network is de-

scribed in section 1.2, briefly reviewing how neurons work and connect to other cells;

section 1.3 is devoted to describe the first models that were defined in an attempt to

imitate the behavior of the biological network. This model is then compared to current

neural network models such as the multilayer perceptron and the Hopfield memory.

1.2 The biological Neural Network

The expression biological neural network is extensively used to describe the standard

central nervous system of any animal that has a structure such as a brain. In the first

part of this section the standard structure of the biological neural network is described; we

then proceed with a brief explanation about the mechanism used to transmit information

over such systems.

1.2.1 Structure

The biological neural network of an animal allows processing the external information,

taking decisions and, in essence, coordinating the behavior of the body. Though nowadays

the brain is accepted as the core processor of the organism, it has not always been like this:

ancient Greek philosophers considered it a refrigerator [Bear et al., 2006] to the emotions

of the person; Roman physicians deduced that the brain controlled both thoughts and

muscles, transmission was due to hydraulic movement -instead of electrical impulses-,

and as the result of an effective combination of four different liquids. It was not until the

Renaissance period, about 1500 years later, that those concepts arrived to a dead end.

The technological and philosophic achievements of this new era brought another point of

view from where to perform research: having Descartes related the concept of soul to the

brain, closer and careful exploration through the subsequent years brought the modern

ideas of neuro-science and psicobiology; which are the areas that study the human neural

1.2. THE BIOLOGICAL NEURAL NETWORK 3

structure and its relation to the human behavior.

Figure 1.1: Standard neuron structure.

The modern definition of the biological neural network is due to S. Ramón y Ca-

jal [Ramón y Cajal, 2008], who first described the basis of the neural tissue and the most

important pair of cells that conform it, the neurons and the glia cells. Any other work

previous to him would not consider separate cells or any smaller neural structure, rather

describing the brain as a block.

4 CHAPTER 1. THE NEURAL NETWORK

A neuron is a highly specialized cell which, in essence, does one task: to transmit

electrical pulses [Bear et al., 2006]. This strange ability prevents the cell from performing

any other task: nutrition, protection and disposition of non-profitable materials are jobs

externally provided by the glia cells. Furthermore, neurons can not reproduce themselves

-thus meaning that when a neuron dies, it is not replaced. The structure of a standard

neuron is depicted on Fig. 1.1. Typically, a neuron is composed of a cell body, an axon

and the dendrites. The axon is used to send electrical impulses to the neighboring cells

and the dendrites are their receiving terminals. The point where dendrites and axons

are connected is known as the synapse, and the terminal section from the axon and the

dendrites are referred to as the presynaptic axon terminal and the post synaptic dendrites,

respectively. On the other hand, neurotransmitters and ion channels are the physical

agents used for electrical impulse transmission. Though the walls of this cell are made

of conductive materials, the main body shares many common features with other kind of

cells: it includes the nucleus and the internal organs that are used to process the external

proteins that feed the neuron.

1.2.2 The transmission of electrical impulses

In order to describe the electrical transmission of impulses between neurons, we must

first recall how standard cells work: they are always in contact with a ionic dilution,

their semi-permeable walls allowing free passage to the proteins which feed the cell. This

permeability is based on a pressure equilibrium on both sides of the wall, and an excess of

pressure on one side can make the wall break or poison the cell with more proteins than

it is able to process -a situation that is toxic to the cell. Neurons are no exception to this

architecture, and even though feeding is provided by the external glia cells, they are still

surrounded by a ionic solution.

When a standard neuron is not active, its wall’s potential is fixed at Vrest = −60 mV

with respect to the outside [Breedlove et al., 2007]. This potential is due to its own

internal ion dissolution, which also keeps a pressure such that equilibrium with the fluids

1.2. THE BIOLOGICAL NEURAL NETWORK 5

that surround the cell is guaranteed. The walls of a quiet neuron are transparent to

sodium K+ ions, hence they are free to move across the cell; the holes that ions use to

come in and out of the neuron are known as voltage active gates, and they are described

as specific proteins with the ability to change their physical configuration -thus opening

and closing- when set to a given potential: this property can be activated by changing

the potential at the wall of the unit. There are two different kinds of gates: sodium K+

and potassium Na+, the later being a double door gate. They both become active -this is,

they change their physical configuration- when the potential at the neuron’s wall reaches

−40 mV.

Figure 1.2: Activation process. Vrest is set at −60 mV, notice the time and voltage scale

represented in the upper part of the image.

When the neuron is inactive, K+ gates remain opened and ions move freely, while

Na+ gates remain closed. Activation on a neuron begins when its dendrites read a total

voltage above the −40 mV threshold from their neighboring cells. The gates become now

active: K+ gates only allow ions to go outside the cell, while Na+ gates allow ions to get

inside it. These penetrate in order to equilibrate the pressure at the wall, while K+ ions

leave because they are repelled by the Na+ ions. This same process continues until the

wall reaches the activation potential, which is usually set at a positive value of +40 mV

-thus meaning that there has been a ΔV = 100 mV voltage difference. At this point,

gates recall their original structure, and K+ ions enter again in order to normalize the

pressure between the wall and the ion dissolution. However, Na+ ions have not yet been

6 CHAPTER 1. THE NEURAL NETWORK

expelled and the cell will have to process them; this will take some milliseconds and this is

why the neuron needs some time to recover from each activation. We can see this process

summarized on a picture made with the NeuralSim application from Ref. [Kandel et al.,

1995] on Fig. 1.2: it is shown in Fig. 1.2a how the potential at the wall of the cell changes

during the process, while Fig. 1.2b shows how the two doors of the Na+ gate -which are

known as inactivation and activation gate- work at different rates.

In essence, the voltage the cell is reading is somehow a combination of the potential

of the other neurons; it can be seen that activation happens on a non-linear basis, and it

does actually depend on the connection strengths. Even though these parameters are yet

to be rigorously defined, this is the main idea behind the analytical modeling that goes

from biological to artificial networks.

1.3 The Artificial Neural Network

In this section, the artificial neural network (ANN) is presented. According to its original

definition [Culloch and Pitts, 1943], an artificial neural network is a formalism designed

to emulate the behavior of a biological neural network. Since the description of the model

comprises both an explanation of its dynamical rule and a topology, the first part of

this section is devoted to introduce the basic concepts defining them. We also describe

some of the traditionally most popular models, which are the multilayer perceptron and

the Hopfield neural network. Next, the learning processes that have been defined for

those models are discussed. We conclude the section by introducing an enhanced neural

network model that no longer emulates a biological structure, but that rather appears as

an evolution of the mathematical formulation of the previous models with an improved

learning capacity.

1.3. THE ARTIFICIAL NEURAL NETWORK 7

1.3.1 Dynamics and Topology

The original ANN of 1943

The human brain is often seen as a multi-core processor, by considering the neurons as

a combined set of units that are able to process information in a parallel asynchronous

mode: a neuron is excited depending on the state of its neighbors and the way they

are connected. The scientists who began their research in this field were interested on

defining a mathematical model that would imitate this behavior; they would use units to

represent the neurons and weights to represent their connections. A symbolic formalism

was then developed by W. S. Mc Culloch and W. Pitts [Culloch and Pitts, 1943], defining

a relation function between the current state of a neuron S and the cells connected to it

as an unknown combination of AND and OR logical operations.

i 2
w oi1

w o

So

i1
S i2

S

Figure 1.3: Perceptron structure.

The first quantitative representation of this logical relations was given the name of

perceptron [Rosenblatt, 1961], and its first implementation was referred to as Mark I; this

topology is depicted on Fig. 1.3. This structure considers an output unit So as the neuron

that provides some response to the stimulation of two input Si1 and Si2 neurons. The

output unit is connected to these by real-valued numbers known as weights, denoted wi1o

and wi2o, respectively. Since biological neurons do only allow excited or inhibited state,

units were originally conceived as binary, this is, they could only be 0 or 1. The state of

8 CHAPTER 1. THE NEURAL NETWORK

the output unit So depends on the values of the input units according to

So =

⎧⎨
⎩ 1 if wi1oSi1 + wi2oSi2 ≥ θ

0 if wi1oSi1 + wi2oSi2 < θ
, (1.1)

where θ is the threshold value that the electrical impulse has to reach in order to activate

So. This expression can also be written in the form

So = U(wi1oSi1 + wi2oSi2 − θ) , (1.2)

U(x) being the step function, defined as

U (x) =

⎧⎨
⎩ 1 for x > 0

0 for x < 0
. (1.3)

Following the biological model, input units were defined as the external sensorial neu-

rons that produce the input signals to be processed. However, and though this paradigm

provided interesting results, it had some important drawbacks that prevented further

use of the model and stopped the ANN research topic for years: this simple structure

was unable to learn even some of the simplest binary relations, such as the XOR opera-

tion [Minsky and Papert, 1969]. An additional layer of neurons was later introduced to

overcome this limitation. This layer processes the input signals and forwards them to the

output units. This new layer could not be externally addressed and, therefore, it received

the name of hidden layer. Input units would still be considered as an external excitation,

hidden units were the core processor for the system and output units would show the

result of the process -both input and output units are commonly referred to as visible

units.

The multilayer perceptron

The multilayer perceptron has a structure that is defined by its ordering in layers; with

an input layer, a set of hidden layers and an output layer; all of them possibly having

different number of units. Though it is possible to define an arbitrary number of hidden

1.3. THE ARTIFICIAL NEURAL NETWORK 9

layers, a perceptron with a single layer is already able to approximate any continuous

function [Cybenko, 1989, Hornik et al., 1989]. This structure is depicted on Fig. 1.4,

where input units are represented as Si, hidden units as Sh and output ones as So. Weights

connecting input and hidden units are denoted as whi and those connecting the hidden

layer to the output one are referred to as woh. It is possible to show that a perceptron with

two hidden layers is able to approximate any function [Cybenko, 1988] with the required

precision, hence it is of little use to define perceptrons with more than two hidden layers.

So

Sh

Si

woh

whi

Figure 1.4: Perceptron with one hidden layer.

This model is inspired in the original, ANN model, as the signal propagation starts

from the input units and flows through the neural network. The hidden layer will process

the information from the input by setting the value of its units according to

Shk
= U

(∑
i

whkijSij − θhk

)
, (1.4)

where Shk
stands for the k-th unit of the hidden layer, θhk

being its bias term (which plays

the role of the threshold θ in Eq. 1.1), Sij the j-th unit from the input layer, and whkij

the weight connecting these units. Once this equation has been processed for every unit

which belongs to the first hidden layer, this algorithm is repeated for the output units

Sok
= U

(∑
i

wokhj
Shj

− θok

)
, (1.5)

where Shj
is the j-th hidden unit, Sok

is the k-th output unit, θok
is its bias term and,

finally, wokhj
is the weight that connects these two units. Notice that, since neurons are

10 CHAPTER 1. THE NEURAL NETWORK

only connected to the next layer, units from the same layer do not communicate with

each other; and thus the signal always propagates forward. When output units end their

processing, there is no possibility for the neural network to send the information back.

f(x)

x

f(x)

x

(a) (b)

Figure 1.5: Piece-wise linear (a) and pure linear (b) functions.

In standard implementations, the step function U(x) is commonly substituted by a

monotonous function f(x) which is known as the activation function. It can be lin-

ear [Hertz et al., 1991] -either piece-wise or pure, as depicted on figure 1.5- in its easiest

version; but other implementations [The MathworksTM , 2008b] also use the sigmoids

1/ (1 + ex) or tanh (x) and exponential-like e−x2
expressions, among others.

The Hopfield network

The Hopfield neural network [Hopfield, 1982] was originally conceived as a mathematical

model for an auto-associative memory type. This device acts as a content addressable

register, in the sense that it is able to recover previously learned information by providing

an input signal that is similar to one of its stored patterns. This ability is specially

interesting in image reconstruction and identification problems. The Hopfield model is

characterized by the absence of hidden units and the fact that it is recursive, all its neurons

are both used as input and output units.

The Hopfield network was taken as a simplified version of the biological neural network.

1.3. THE ARTIFICIAL NEURAL NETWORK 11

The main difference between this model and the perceptron is that the signal does not

move forward on a single direction: the Hopfield neural network is in this sense fully

recurrent. A set of differential equations is used to analyze its global behavior as a

dynamical system [Hopfield, 1984]. Let Si be a given unit from a Hopfield model with a

total amount of N neurons. The dynamics is such that Si (t) is function of all units and

is represented by

dSi (t)

dt
= −Si (t) + sgn

(
N∑

j=1

wijSj (t) + hi

)
. (1.6)

However, this expression is often solved under a discrete time reference

Si (t) = sgn

(
N∑

j=1

wijSj (t − 1) + hi

)
, (1.7)

where Sj (t − 1) is the state of the other units in the previous instant and wij the weights

linking units Si and Sj. On the other hand, hi stands for the bias term of unit Si -thus

being the equivalent θi from the perceptron-, and sgn (x) is the sign function

sgn (x) =
|x|
x

, (1.8)

hence the units of the neural network are binary taking values Si ∈ [−1, +1].

It can be shown [Kosko, 1992] that this dynamic rule is governed by a cost function

that is referred to as the energy functional

E = −1

2

N∑
i,j

wijSiSj −
N∑
i

hiSi , (1.9)

that has a set of global minima at some patterns vp = {Sp
1 , S

p
2 , . . . , S

p
N}, as seen in

Refs. [Baldi, 1988,Abe, 1989]. The evolution in time of the network is such that, upon

starting on an arbitrary vector vp′ = {Sp′
1 , Sp′

2 , . . . , Sp′
N} and arriving at a time where

Si (t) = Si (t − 1) ∀i, the system moves to the closest global minimum [Hertz et al.,

1991] from Eq. 1.9. At this point, it gives as output the stored pattern vp corresponding

to that minimum.

12 CHAPTER 1. THE NEURAL NETWORK

Since the energy functional in Eq. 1.9 is a Lyapunov function [Boyd et al., 1994], it can

also be shown that the system will reach convergence by running either in synchronous or

asynchronous mode: synchronous dynamics imply that all units are updated at the same

time, thus performing a parallel evaluation of Eq. 1.7. On the other hand, asynchronous

transitions are performed by randomly selecting a unit Si and updating its value according

to the same equation until all the units remain stable.

1.3.2 Learning in ANNs

First paradigms

A biological neural network is able to learn a given pattern discerning the most relevant

information from a training set of examples. The learning process increases the strength

of connexions that are most used, the less used ones are weakened. The whole process

is known as the Hebb rule, in honor to Donald O. Hebb [Hebb, 1949], and the first

approaches to algorithmically simulate a learning process were inspired on this procedure.

When applied to an ANN, a learning process refers to the system having some desired

behaviour, which is often to reproduce a given function that is obtained through a set of

vectors.

The Hebb rule was first applied as a learning rule to a perceptron model with only an

input and an output layer. We will refer again to input and output units as Si and So,

respectively; these are connected through weights wio, while the bias term for the output

units is referred to as θo. The learning patterns are denoted {ξp
i } for any input unit and

{ξp
o} for the output units, referred to the p-th vector of a P vectors learning set. The

learning algorithm for this system begins initializing randomly the values of the weights

and iteratively updating their value according to [Hertz et al., 1991]

wnew
io = wold

io + Δwio , (1.10)

1.3. THE ARTIFICIAL NEURAL NETWORK 13

where

Δwio =

⎧⎨
⎩ 2ηξp

i ξ
p
o if Sp

o �= ξp
o

0 otherwise
, (1.11)

Sp
o reads as the value for a given output unit when the input units are fixed at a p vector,

and η is the learning rate, which is tuned to carry out the learning process.

However, this learning rule can not be used on a hidden layer model, because the

hidden layer has no known value before the learning process begins. This last issue forced

the formal definition of the multilayer perceptron as a feed-forward neural network and

its learning method; that is today known as back-propagation [Bryson, Jr. and Ho, 1969].

Learning on the Multilayer perceptron

The standard learning rule that is used nowadays on a perceptron is called back-propaga-

tion and was originally presented in Ref. [Bryson, Jr. and Ho, 1969]. In this algorithm a

quadratic error function ε involving the learning pattern ξp
o and the current output state

Sp
o of the network is defined

ε =
1

2

∑
p,o

(ξp
o − Sp

o)
2 . (1.12)

Gradient descent is used to obtain an iterative learning procedure where weights and

bias terms are randomly initialized and updated at each step of the algorithm. Weights

are modified in the opposite direction of the gradient of the error

Δwio ∝ − ∂ε

∂wio

, (1.13)

Δθo ∝ − ∂ε

∂θo
. (1.14)

We first show how this rule is applied on a standard perceptron where output units So

are related to the input layer units Si by

So = f

(∑
i

wioSi − θo

)
, (1.15)

where f is any monotonous function as piece-wise linear, pure linear, hyperbolic tangent,

sigmoid function... as defined in Refs. [Hertz et al., 1991,The MathworksTM , 2008b].

14 CHAPTER 1. THE NEURAL NETWORK

For the wio weights one has

∂ε

∂wio
= −
∑
p,o

(ξp
o − Sp

o)
∂Sp

o

∂wio

= −
∑
p,o

(ξp
o − Sp

o)
∂f

∂wio
, (1.16)

where the derivative of f will change according to the selected function. Weights are

algorithmically modified according to

wnew
io = η

(∑
p,o

(ξp
o − Sp

o)
∂f

∂wio

)
+ wold

io , (1.17)

being η a convergence parameter to be tuned; the algorithm ends when all the weights

change their value below an arbitrary small ζ =
∣∣wnew

io − wold
io

∣∣ value. When gradient

descent is applied to the bias terms, one arrives at

θnew
o = η

(∑
p,o

(ξp
o − Sp

o)
∂f

∂θo

)
+ θold

o , (1.18)

with η being the same convergence constant as above.

This same concept is applied to find the weights connecting the different layers of a

multilayer perceptron [Rumelhart et al., 1986]. However, the function must be derived

with respect to the weights connecting the units from the separate layers

Δwih ∝ − ∂ε

∂wih
, (1.19)

Δwho ∝ − ∂ε

∂who
, (1.20)

wih being the weight that links hidden and input units and who the weights connecting

hidden and output layers. This rule does also apply to bias terms

Δθh ∝ − ∂ε

∂θh
, (1.21)

Δθo ∝ − ∂ε

∂θo
, (1.22)

where θh and θo are the biases for hidden and output units, respectively.

1.3. THE ARTIFICIAL NEURAL NETWORK 15

Learning on the Hopfield neural network

The Hopfield model is a recurrent network where all units can be connected to each other,

that has no hidden units and whose visible neurons act both as input and output cells.

We define now a N units network and a pattern of P binary vectors �vp = {ξp
1 , ξ

p
2 , . . . ξ

p
N}

that the system has to learn. For this structure the Hebb learning rule [Hebb, 1949] solves

entirely the problem at once, and can be directly implemented as follows

wij =
1

N

∑
p

ξp
i ξ

p
j , (1.23)

hi =
1

N

∑
p

ξp
i . (1.24)

This expression grants stability for any pattern; the dynamics is expected to drive the

neural network to a global state of equilibrium at t → ∞ in Eq 1.7

Si (t) = sgn

(
N∑

j=1

wijSj (t − 1) + hi

)
.

Equations 1.23 and 1.24 are compatible with the energy functional of the Hopfield model

from Eq. 1.9, which is a Lyapunov function [Kosko, 1992]

E = −1

2

N∑
i,j

wijSiSj −
N∑
i

hiSi ,

this energy functional will reduce its value as the neural network evolves through time,

arriving at one of the global minimum [Hertz et al., 1991]. Notice now that any previously

learned vector �vp = {ξp
1 , ξ

p
2, . . . ξ

p
N} makes the energy become minimal once weights are

replaced by their learning rule from Eqs. 1.23 and 1.24

E = −1

2

N∑
i,j

1

N

∑
p

ξp
i ξ

p
j SiSj −

N∑
i

1

N

∑
p

ξp
i Si

= − 1

2N

∑
p

(
N∑
i

ξp
i Si

)(
N∑
j

ξp
j Sj

)
− 1

N

∑
p

N∑
i

ξp
i Si , (1.25)

since it is a quadratic function that is built by using the learned set of vectors. When there

are too many vectors to learn for the system, it will generate spurious minimum; those

16 CHAPTER 1. THE NEURAL NETWORK

points are false solutions for the problem that differ from the real pattern. From [Baldi,

1988, Hertz et al., 1991] we know that the maximum number of vectors Vmax that the

Hopfield model can store is

Vmax =
N

2 lnN
, (1.26)

this is also referred to as the learning capacity.

This expression is particularly interesting as it can be seen that the neural network

has a relatively low capacity compared with the number of units it may have, at least if

the Hebb rule is used when learning is carried out. A formal derivation of the learning

capacity is found at [McEliece et al., 1987], with a full description of the capacity of

the neural network for different kinds of data distributions across the learning patterns.

However, final conclusions stick to Eq. 1.26 for unknown datasets. Though larger learning

patterns will cause the existence of local minimum, there are some solutions that may

be proposed in order to improve the learning capacity of the Hopfield model. The first

one is a variation on its own learning algorithm, as proposed in [Storkey, 1997]; this

maximizes ther distance between the minima of the system. However, -no matter which

is the learning method used- if the Hopfield model is forced to learn a set with more

vectors than units has the network -thus, P > N on previous examples-, the system will

be unable to achieve a stationary stable state [Abu-Mostafa and Jacques, 1985]. Another

proposal is a complex definition of the states, using phasors to define the different possible

states for the units [Jankowski et al., 1996,Muezzinoglu et al., 2003]. However, these kind

of variations are far from the scope of this work, as we are interested on this one: weights

can be modified to interconnect more than two units, even the whole network [Peretto

and Niez, 1986], to create a high order Hopfield model with increased learning capabilities.

1.3.3 High order ANN models

A high order neural network is conceived as an evolution of a standard neural network

where weights may connect more than two units at a time; even up to the total number

1.3. THE ARTIFICIAL NEURAL NETWORK 17

of units in the network. These kind of models have the advantage of using less hidden

units to process the information in spite of a higher connectivity [Giles and Maxwell,

1987]. One of the first higher order models which were defined was the high order Hop-

field memory [Peretto and Niez, 1986], though this topology has been also studied for

perceptrons [Xiang et al., 1994] and other models of neural networks [Kosmatopoulos and

Christodoulou, 1995,Kosmatopoulos et al., 1995,Pazienza et al., 2007].

From now on, we will represent these connections as a line joining the different units

from the neural network. For the sake of simplicity, we shall adopt the notation from [Bur-

shtein, 1998] and represent high order connections with the symbol w
(n)
σ ; (n) stands for

the number of units the weight is connecting, and σ stands for the set of indexes denoting

the units that are connected by this weight. As an example, we show the high order

Hopfield model, since its capacity has been deeply studied. The standard notation for

one and two-body weights is

w
(2)
ij = wij , (1.27)

w
(1)
i = hi , (1.28)

while a third order weight connecting units Si, Sj and Sk would be referred as w
(3)
ijk, and

depicted as in Fig. 1.6.

wijk
(3)

Si Sj Sk

Figure 1.6: Third order weight linking units Si, Sj and Sk.

In a Hopfield neural network, weights are invariant under permutation: second order

weights satisfy w
(2)
ij = w

(2)
ji , third order connections satisfy w

(3)
ijk = w

(3)
ikj = w

(3)
jki = . . .,

and so on. The inclusion of these high order terms forces a variation on the energy

functional [Peretto and Niez, 1986]

E = −
∑

i

w
(1)
i Si −

∑
i<j

w
(2)
ij SiSj −

∑
i<j<k

w
(3)
ijkSiSjSk − . . . − w

(N)
ijk...

∏
∀ρ

Sρ , (1.29)

18 CHAPTER 1. THE NEURAL NETWORK

where the term w
(N)
ijk... links all the N units from the neural network. This expression is

compacted [Burshtein, 1998] in the form

E = −
∑
σ,n

w(n)
σ

∏
Sρ . (1.30)

The dynamic evolution of the units in the high order Hopfield model is defined as

Si (t + 1) = (1.31)

= sgn

(
w

(1)
i +

∑
j

w
(2)
ij Sj (t) +

∑
j<k

w
(3)
ijkSj (t) Sk (t) + . . . + w

(N)
ijk...

∏
Sρ (t)

)
.

The energy functional from Eq. 1.29 is still a Lyapunov function [Dembo et al., 1991]

and the system will remain stable through time [Burshtein, 1998] when the following

differential equation is used to simulate its behavior

dSi (t)

dt
= −Si (t) + sgn

(
w

(1)
i +

∑
j

w
(2)
ij Sj (t) + . . . + w

(N)
ijk...

∏
Sρ (t)

)
. (1.32)

We now prove this system to be stable; according to Lyapunov control theory [Slotine

and Weiping, 1991], stability happens when the following two conditions are satisfied:

1. The energy functional E (S) from Eq. 1.30, expressed as a function of the units, is

bounded, and thus E (S) ∈ [Einf , Esup].

2. The derivative of the energy functional dE(S)
dt

is negative or zero, hence dE(S)
dt

≤ 0.

It can be readily seen that the energy functional is bounded: regardless of the values of

the units, the lowest value Einf that Eq. 1.30 can reach is Einf = −∑σ,n

∣∣∣w(n)
σ

∣∣∣, while its

maximum value stands for Esup =
∑

σ,n

∣∣∣w(n)
σ

∣∣∣. We now differentiate the energy functional

dE (S)

dt
= ∇E (S)

dS

dt
=

N∑
i=1

∂E (S)

∂Si

dSi

dt
, (1.33)

where

∂E (S)

∂Si

= −w
(1)
i −

∑
j

w
(2)
ij Sj −

∑
j<k

w
(3)
ijkSjSk − . . . , (1.34)

1.3. THE ARTIFICIAL NEURAL NETWORK 19

notice now that we can write Eq. 1.32 as

dSi (t)

dt
= −Si + sgn

(
w

(1)
i +

∑
j

w
(2)
ij Sj (t) + . . . + w

(N)
ijk...

∏
Sρ (t)

)

= −Si − sgn

(
∂E (S)

∂Si

)
, (1.35)

so

dE (S)

dt
=

N∑
i=1

(
−∂E (S)

∂Si

)(
Si + sgn

(
∂E (S)

∂Si

))
. (1.36)

We now analyze the values of ∂E(S)
∂Si

dSi

dt
depending on the sign of ∂E(S)

∂Si
. If ∂E(S)

∂Si
= −k < 0

for k ∈ +, then

∂E (S)

∂Si

dSi

dt
= −k (Si + sgn (−k)) = −k (1 − Si) . (1.37)

If Si = 1, then 1 − Si = 0; on the other hand, if Si = −1 then 1 − Si = 2 and, regardless

of the value of Si,
∂E(S)
∂Si

dSi

dt
≤ 0. We conclude this proof by discussing the case where

∂E(S)
∂Si

= k > 0 for k ∈ +. Now

∂E (S)

∂Si

dSi

dt
= −k (Si + sgn (k)) = −k (Si + 1) , (1.38)

where Si + 1 = 0 for Si = −1 and Si + 1 = 2 for Si = 1, hence ∂E(S)
∂Si

dSi

dt
≤ 0 always and

dE(S)
dt

≤ 0 irrespective of the value of Si. Then, this system is stable.

This high order model increases the capacity of the Hopfield neural network [Burshtein,

1998], which for some patterns can reach

Vmax =
Nn

2 (n + 1)λn ln N
, (1.39)

where N stands for the units on the neural network, n is the maximum number of units

that a weight is connecting and

λn =
(2n)!

n!2n
. (1.40)

However, both the representation of the neural network and its learning process become

more difficult as n increases, due to the large quantity of weights that the neural network

20 CHAPTER 1. THE NEURAL NETWORK

has. For an n-th order Hopfield network with N units, the total number of weights Nw

becomes

Nw =

⎛
⎝ N

1

⎞
⎠+

⎛
⎝ N

2

⎞
⎠+

⎛
⎝ N

3

⎞
⎠+ . . . +

⎛
⎝ N

n

⎞
⎠ , (1.41)

as for n = N , Nw becomes Nw = 2N − 1. Hence, if we are interested in using a high

order Hopfield network with a large number of units, it becomes a non-practical, though

powerful, model.

Chapter 2

The Boltzmann Machine

2.1 Introduction

The Boltzmann Machine (BM) [Aarts and Korst, 1989] is a recurrent, stochastic neural

network with the ability of learning and extrapolating probability distributions. Though it

can be seen as an enhanced, probabilistic model that has evolved from the Hopfield [Hop-

field, 1982] neural network, it was originally conceived as a parallel implementation of the

Simulated Annealing (SA) [Kirkpatrick et al., 1983] optimization algorithm. In order to

provide the system with an analytical learning expression, D. H. Ackley, T. J. Sejnowski

and G. E. Hinton [Ackley et al., 1985] proposed a measure of the error between a prob-

ability distribution to learn and the BM own distribution -this value is known as the

Kullback-Leibler [Kullback, 1959] distance.

The Simulated Annealing algorithm, whose dynamics describe the behavior of the

Boltzmann Machine, is briefly explained in section 2.2. Section 2.3 is devoted to the

analysis of the standard BM algorithm and its extension to the high order Boltzmann

Machine (HOBM) [Sejnowski, 1987] model. Finally, the Boltzmann Machine learning

equations, the main drawbacks of the BM and its standard learning solutions (as used

nowadays) are discussed in section 2.4.

21

22 CHAPTER 2. THE BOLTZMANN MACHINE

2.2 Simulated Annealing

The Simulated Annealing [Kirkpatrick et al., 1983] algorithm is a powerful, global stochas-

tic optimization algorithm that numerically emulates the behavior of a given material

under the process known as annealing. This process consists on heating it until liquid

state is reached; this condition will lead to a random walk across all its feasible energetic

states where it is equally possible to find its atoms on any spin direction. This material

should be slowly cooled upon absolute zero, and so a perfect crystal structure would be

obtained; at this point it would render on a global energetic minimum. However, since it

is not possible to reach such temperature value, the quantity that is minimized instead is

the Helmholtz free energy F
F = E − TS , (2.1)

where T stands for the real temperature, E is the internal energy of the system and S its

entropy.

In this section, the combinatorial optimization algorithm known as the Simulated An-

nealing algorithm is briefly described. The first part of this section presents the Metropolis

algorithm as the original concept that led to the design of this method. It then proceeds

by discussing the standard implementation for the SA algorithm.

2.2.1 The Metropolis algorithm

The Simulated Annealing was inspired by the Metropolis algorithm [Metropolis et al.,

1953], which is a numerical method originally proposed as a way to simulate the behavior

of a solid under a heat bath via Monte Carlo (MC) [Rubinstein, 1981] techniques: the

Metropolis algorithm allows the simulation of thermal equilibrium situation for any ergodic

physical system. It works by first proposing an initial random energetic state α with an

associated energy value Eα. A transition to a new random state β is then generated;

this new state will have an energy value Eβ . If the quantity ΔE = Eβ − Eα is negative,

state β is accepted as the new departing state. Otherwise, β is accepted with a certain

2.2. SIMULATED ANNEALING 23

probability p (α → β) such as

p (α → β) = e
Eα−Eβ

kBT , (2.2)

where kB is a physical constant known as the Boltzmann constant and T is the temperature

of the heat bath. This algorithm can also be carried out if Eq. 2.2 is exchanged by

p (α → β) =
1

1 + e(Eβ−Eα)/kBT
, (2.3)

which is widely used in the BM literature [Freeman and Skapura, 1993]. However, it can be

shown that this expression causes the algorithm to reach convergence slower [Metropolis

et al., 1953]. Thermal equilibrium is reached once the average number of transitions from

any given state α to any other β becomes the same [Itzykson and Drouffe, 1991], hence

p (α → β) pα = p (β → α) pβ . (2.4)

Upon reaching thermal equilibrium, the probability of being on a given state α is given

by the Boltzmann-Gibbs probability distribution

p (α) =
e
− Eα

kBT

Z , (2.5)

where Z is known as the partition function and stands for

Z =
∑

γ

e
− Eγ

kBT . (2.6)

2.2.2 The Simulated Annealing algorithm

The annealing process is a physical procedure which consists on heating a given material

upon reaching a liquid state, to slowly cool it until becoming a solid structure. If the

cooling process is slow enough, this solid state will have a crystal-like structure, thus

reaching a state where the energy is minimum. The Simulated Annealing was born as a

combinatorial optimization technique [Kirkpatrick et al., 1983] that emulated this process

by multiple repetition of the Metropolis algorithm: temperature would be slowly decreased

and thermal equilibrium reached at each Metropolis algorithm run.

24 CHAPTER 2. THE BOLTZMANN MACHINE

The temperature value that is used at each Metropolis algorithm run is defined as a

succession of monotonically decreasing K values. This succession of temperatures will

simulate the temperature variations through the annealing process and is known as the

cooling schedule [Aarts and Korst, 1989]. For each different temperature Tk from the

cooling schedule, the algorithm must iterate until reaching thermal equilibrium. However,

this is not often feasible in practical terms, and thereafter a number of iterations mk is

associated to each temperature of the cooling schedule.

Let a cost function f be a combinatorial function which depends on a given P variables

vector

�xi =
(
x

(i)
1 , x

(i)
2 , . . . , x(i)

p , . . . , x
(i)
P

)
, (2.7)

where

�xi �= �xj , ∀i �= j , (2.8)

and

fi = f (�xi) = f
(
x

(i)
1 , x

(i)
2 , . . . , x(i)

p , . . . , x
(i)
P

)
, (2.9)

we will assume however that there are N → ∞ possible instances of �xi, and therefore it

is not feasible to optimize f by exhaustive search. The Simulated Annealing algorithm

will compute the Metropolis algorithm with probability

p = e
fi−fj

Tk , (2.10)

where j is the transition from i

fj = f (�xj) = f
(
x

(j)
1 , x

(j)
2 , . . . , x(j)

p , . . . , x
(j)
P

)
. (2.11)

Notice that the product kBT is replaced by the k-nth temperature from the cooling

schedule Tk as a stochastic control parameter. This process is carried out mk times for

all the temperatures of the cooling schedule. It can be shown that for

Tk+1 = Tk − ΔT , ΔT → 0 , (2.12)

and having achieved real thermal equilibrium, thus mk → ∞ at each Tk, the algorithm

always finishes on a global minimum (this is, the smallest value that the function takes

2.3. THE BOLTZMANN MACHINE AS A NEURAL NETWORK 25

in a point within its entire domain) [Aarts and Korst, 1989]. Since it is computationally

exhausting to fulfill such conditions, the only statement that one can be made certain is

that a good cooling schedule will lead to a minimum that is close to the global one.

2.3 The Boltzmann Machine as a Neural Network

The Simulated Annealing algorithm can also be defined as a parallel algorithm [Aarts

and Korst, 1989,Younes, 1994] though in this case it is often known as the Boltzmann

Machine [Ackley et al., 1985]. This is actually a stochastic neural network model whose

dynamic is SA based, though we will not detail how the BM is used as a parallel opti-

mization tool -modeling a given task to be suitable for a parallel BM processing is usually

hard [Aarts and Korst, 1987,Koenig et al., 1992,Oyama, 1993]- but we will rather center

on its behavior as neural network.

The first part of this section describes the topology of the BM and the notation that

has been used in this work. The dynamics are detailed in the next section according

to the two main algorithms that are used to simulate the behavior of the model: the

Simulated Annealing and Mean Field (MF) algorithms. The first one is used when one is

interested on reaching a given probability distribution with the neural network, because it

can be used to attain a statistically exact estimation of its behavior. On the other hand,

the Mean Field algorithm is an inexact, though a much faster approach. This section

concludes with the introduction of the BM model known as the high order Boltzmann

Machine, whose weights may connect more than two units and up to the whole network.

2.3.1 Topology of the BM

Standard units from a BM are commonly referred to as Si, it is commonly accepted

that such units may take either two valued [−1, +1] [Hertz et al., 1991] or standard

binary [0, 1] [Freeman and Skapura, 1993] values. Though there are researchers who have

developed four state complex units [Rager, 1992], quasi continuous [Lin and Lee, 1995]

26 CHAPTER 2. THE BOLTZMANN MACHINE

or even continuous valued neurons [Beiu et al., 1992,Parra and Deco, 1993], we will stick

to the standard Si = [−1, +1] definition. These units are distributed on a three layer

recurrent topology, with input, hidden or output neurons that may be connected with no

restrictions; notation as shown on Fig. 2.1 will be used through this work to represent

them.

(a) (b) (c)

Figure 2.1: Notation for input (a), hidden (b) and output (c) units.

There are two possible structures for any BM: the Termination BM or the Input-

Output BM, which are depicted on Fig. 2.2. The Termination BM is a model whose

input units are also used as outputs, with the same topology as the Hopfield model with

added hidden units. The Input-Output BM is a three layer structure with separate input,

hidden and output layers. In this latter case, input units are assigned a value which can

not change until the final output of the neural network is calculated; when a unit on a

BM is not allowed to change its state it is commonly referred to as being a clamped unit.

(a) (b)

Figure 2.2: Termination BM (a) and Input-Output BM (b).

Each pair of units Si, Sj is connected by a symmetric weight wij = wji, this is com-

2.3. THE BOLTZMANN MACHINE AS A NEURAL NETWORK 27

monly depicted as a line linking both neurons. A full set of weights from a BM is numer-

ically represented by using a real-valued symmetric matrix with zero diagonal -units can

not receive feedback from themselves. It is possible for the neural network to have all its

units connected to bias terms. These are written down as hi, and they are represented

as a short line starting from their respective units Si. However, since we will be using

densely connected BM models through this work, we will not use this notation. Weights

linking units will be depicted as square lines that are separated from the units. In this

sense, bias terms will also be considered as weights and thereafter they will be represented

as short lines that will not begin at the unit. This notation is depicted in Fig. 2.3, where

two biased, connected hidden units Si, Sj are shown. Notice however that the label for

each connection is written down at its side.

S Si j

wij

h
h

i

j

Figure 2.3: Two hidden units linked by weight wij , and biases hi, hj.

We finally show a two inputs neural network with a hidden and an output unit in

Fig. 2.4. The input units have been labeled as Si1 and Si2 , while the hidden unit is

referred as Sh and the output neuron as So. Weights linking the units are depicted in the

same figure, notice then that there are no connections among the input units: since they

are not allowed to change their state, these values are not needed.

wh w w w wh hi oi h2i 2 o ohi1 1h o

Si 1

Si 2

Sh

So

Figure 2.4: Two input units neural network with one hidden unit and an output unit.

28 CHAPTER 2. THE BOLTZMANN MACHINE

2.3.2 Dynamics and algorithm for a BM

The dynamics of the Boltzmann Machine can be described in terms of an ergodic physical

system. In this sense, the SA algorithm is used to simulate its behavior considering that

the units of the neural network provide the orientation of the electrons from the system.

The energy functional of the system is that of a real one

E = −1

2

∑
wijSiSj −

∑
hiSi , (2.13)

this model is usually referred to as the Ising model [Hazewinkel and Vinogradov, 1995]

from statistical physics [Itzykson and Drouffe, 1991]. This expression is dependent on the

units, weights and biases of the neural network; this is the same functional as the Hopfield

model. When the BM has to compute any input vector γ, input units are clamped to

its values; they are unable to change their state until the simulation ends. The energy

functional is then evaluated by using the SA algorithm, though it is not intended to achieve

a global optimization solution: the cooling schedule is rather designed to achieve thermal

equilibrium at each temperature. As a result, the states of the units change according to

a stochastic dynamic until reaching a final state α for the output units, a state β for the

hidden layer and the already known clamped state γ for the input neurons, thus reaching

a state {α, β | Inputs = γ} that will result on an energy value Eα,β|γ. The probability of

finding the neural network in such state is given by the Boltzmann probability distribution

p (α, β|Inputs = γ) =
e
−Eα,β|γ

TK

Zγ
, (2.14)

where TK is the final temperature from the cooling schedule and Zγ is the partition

function with the input units clamped at a vector γ; this is actually a normalization

constant which sums over all feasible energetic states

Zγ =
∑
μ,ν

e
−Eμ,ν,γ

TK . (2.15)

In the following, and for a clearer notation purpose, we will define

p (α | γ) = p (α | Inputs=γ) , (2.16)

p (α, β | γ) = p (α, β | Inputs=γ) , (2.17)

2.3. THE BOLTZMANN MACHINE AS A NEURAL NETWORK 29

as conditioned probability distributions. Notice that the marginal probability distribution

definition is used to relate p(α) with p(α, β)

p (α) =
∑

β

p (α, β) , (2.18)

where the sum is for all feasible combination of states that the hidden units may take.

We now describe the algorithm for a ni input, nh hidden and no output units BM.

The process that is used to simulate the behavior of the BM can be described through

the following steps [Freeman and Skapura, 1993]:

1. Set a given state γ to the input units.

2. Set the first temperature T1 from the cooling schedule.

3. Select a random hidden or output unit Si. This unit will change its state to −Si

according to the SA probability

p (Si → −Si) = e
Eα,β|γ(Si)−Eα,β|γ(−Si)

T1 , (2.19)

where Eα,β|γ (Si) and Eα,β|γ (−Si) correspond to Eα,β|γ when evaluated at Si and

−Si, respectively. This step is carried out nh + no times.

4. Carry out the previous step m1 times. Notice then that an iteration of the cooling

schedule is accounted when all the units of the neural network that are not fixed at

a certain value have had the opportunity of being selected.

5. Repeat this process for each Tk temperature from the cooling schedule, upon reach-

ing the final TK final temperature.

Since the neural network is expected to achieve thermal equilibrium, it is able to

reproduce a probability distribution. The corresponding probability distribution func-

tion (p.d.f.) has to be estimated by carrying out enough iterations of the previous algo-

rithm, because this is only a reaction to a given input instance. Since the system is on a

thermal equilibrium situation, one could estimate the p.d.f. by following these steps:

30 CHAPTER 2. THE BOLTZMANN MACHINE

6. Repeat step 3 at temperature TK as many times as desired and store how many

times a given state has been selected.

7. Estimate the vale of the probability distribution function according to the previous

results.

This probability distribution reproducing ability can be used as a probability esti-

mation tool [Kappen, 1993,Thathachar and Arvind, 1999], in the same sense that non-

stochastic neural networks can extrapolate functions. Notice though that there are two

probability values that the neural network is unable to reproduce, which are 0 and 1, as

those would require Eα,β,γ → ±∞. Since it is not possible to reach such values for the

energy functional, a Boltzmann Machine can not be asked to learn exact 0 nor 1 proba-

bility values, though there are techniques for approximate such patterns while learning is

carried out [Hertz et al., 1991].

2.3.3 The mean field equations

The analysis of BM dynamics can however become complex when dealing with a high

number of neurons. The behavior of the multiple units of the neural network can be

approximated by using the mean field equations [Amit, 1989], where the BM is considered

a physical system whose units are real electrons. This model then uses an interaction term

wij between each pair of units; their orientation is written down as Si = [−1, +1], and an

external influence is set up as hi. These are the same terms as the biases from the neural

network. The mean field equations provide the mean value of the neurons

〈Si〉 = tanh

(
N∑

j=1

wij

T
〈Sj〉 +

hi

T

)
,

at a certain T value which is the last temperature of the cooling schedule. This equation is

used to generate a coupled system of equations that is solved by the fixed point iteration

algorithm [Press et al., 1993]. Notice then that the result is always the same [Itzykson and

Drouffe, 1991] for a given fixed {wij}, {hi} set of weights and biases. Due to this property,

2.3. THE BOLTZMANN MACHINE AS A NEURAL NETWORK 31

this model it is often referred to as the deterministic Boltzmann Machine [Kappen, 1995].

The complete probability distribution is then computed by approximating the correlations

of the system

〈SiSj〉 � 〈Si〉 〈Sj〉 ,

〈SiSjSk〉 � 〈Si〉 〈Sj〉 〈Sk〉 ,

. . . (2.20)

We now deduce the mean field equations, by using an approximation that is found by

working out a Legendre transform [Arnold, 1997] of the Helmholtz free energy [Peterson

and Anderson, 1987]. This quantity is minimal when the system reaches equilibrium at

the last temperature of the cooling schedule

F = E − TS = − lnZ , (2.21)

Z being the partition function of the Boltzmann probability distribution

Z =
∑
μ,ν

e−Eμ,ν/T . (2.22)

The Legendre transform of the Helmholtz free energy creates a new energy functional

G that depends both on the bias terms hi and the expected value of the given units 〈Si〉.
This new expression is known as the Gibbs free energy

G = F −
∑

i

hi

T

∂F
∂hi

, (2.23)

and we will use it to find some function that relates hi with 〈Si〉. The Gibbs energy can

be approximated by an expansion that is known as the Plefka [Plefka, 1982] expansion

when hi � wij. We then define a constant term λ � 0 such that wij = λw
′
ij and then

E = −
∑

i

hi −
∑
i<j

SiSjwij = −
∑

i

hi − λ
∑
i<j

SiSjw
′
ij � −

∑
i

hi , (2.24)

so we now consider that the Gibbs free energy is function of 〈Si〉 and λ, while F is function

of hi and λ. Then

G (〈Si〉 , λ) = F (hi, λ) −
∑

i

hi

T

∂F
∂hi

. (2.25)

32 CHAPTER 2. THE BOLTZMANN MACHINE

We need to add this λ term because the Plefka expansion states that

G (〈Si〉 , λ)|λ�0 � G (〈Si〉 , 0) + λ
∂G (〈Si〉 , 0)

∂λ
+ O (λ2

)
, (2.26)

thus considering that O (λ2) → 0 and therefore is negligible -this term however has been

approximated in a more precise expansion in Ref. [Kuroki et al., 1999]. We now analyze

both terms from the right hand side (rhs) of Eq. 2.26 to reach an expression that can

be used to relate hi with 〈Si〉. The process begins by calculating the derivative ∂F
∂hi

∣∣∣
λ=0

,

where

E = −
∑

i

hi , (2.27)

is assumed. The Boltzmann probability distribution p is thus approximated by using only

the bias terms of the units from the neural network

p =
e
∑

i
hi
T

Sα
i∑

Si
e
∑

i
hi
T

Si

, (2.28)

where the sum at the partition function Z =
∑

Si
e
∑

i
hi
T

Si is carried out for all the values

that these units can take. Now, we proceed

∂F
∂hi

∣∣∣∣
λ=0

= − 1

Z
∂Z
∂hi

= − 1∑
Si

e
∑

i
hi
T

Si

∑
Si

Sie
∑

i
hi
T

Si

= − tanh

(
hi

T

)
= −〈Si〉 . (2.29)

This expression can be inverted to place 〈Si〉 as function of hi in Eq. 2.23

hi = T ln

(√
1 + 〈Si〉
1 − 〈Si〉

)
= T ln

(√
1 + 〈Si〉
1 − 〈Si〉

)
, (2.30)

so we arrive at

G (〈Si〉 , λ) = F (hi, λ) +
∑

i

〈Si〉 ln

(√
1 + 〈Si〉
1 − 〈Si〉

)
. (2.31)

2.3. THE BOLTZMANN MACHINE AS A NEURAL NETWORK 33

We now replace the Helmholtz free energy for the expression of the partition function

for λ � 0, thus

G (〈Si〉 , 0) = − ln Z|λ=0 +
∑

i

〈Si〉 ln

(√
1 + 〈Si〉
1 − 〈Si〉

)

= − ln
∑
Si

e
∑

i ln

(√
1+〈Si〉
1−〈Si〉

)
Si

+
∑

i

〈Si〉 ln

(√
1 + 〈Si〉
1 − 〈Si〉

)

=
∑

i

(
1 + 〈Si〉

2
ln

1 + 〈Si〉
2

+
1 − 〈Si〉

2
ln

1 − 〈Si〉
2

)
. (2.32)

We now need to calculate the derivative from the Plefka expansion at Eq. 2.26

∂G
∂λ

= −∂ lnZ
∂λ

+
∂
(∑

i
hi

T
〈Si〉
)

∂λ
= − 1

Z

∂

(∑
Si

e−
∑

i
hi
T

Si+λ
∑

i<j

w
′
ij

T
SiSj

)

∂λ

= −
∑

Si,Sj

∑
i<j w

′
ijSiSje

∑ hi
T

Si+λ

∑
Si,Sj

∑
i<j w

′
ijSiSj

T

TZ

∣∣∣∣∣∣∣∣
λ=0

= −
∑

Si,Sj

∑
i<j w

′
ijSiSje

∑ hi
T

Si

TZ
= −

∑
i<j

w
′
ij

T
〈Si〉 〈Sj〉 , (2.33)

since
∂
(∑

i
hi

T
〈Si〉
)

∂λ
= 0 , (2.34)

as it does not depend on λ. We now take Eq. 2.26 and undo the normalization of the

weights wij = λw
′
ij thus arriving at

G (〈Si〉 , λ) �
∑

i

(
1 + 〈Si〉

2
ln

1 + 〈Si〉
2

+
1 − 〈Si〉

2
ln

1 − 〈Si〉
2

)
− λ
∑
i<j

w
′
ij

T
〈Si〉 〈Sj〉

=
∑

i

(
1 + 〈Si〉

2
ln

1 + 〈Si〉
2

+
1 − 〈Si〉

2
ln

1 − 〈Si〉
2

)
−
∑
i<j

wij

T
〈Si〉 〈Sj〉 ,

(2.35)

where wij � hi. Notice now that the differentiation of the Gibbs energy functional will

lead to a minimum of the Helmholtz free energy -it is a property of the Legendre transform.

34 CHAPTER 2. THE BOLTZMANN MACHINE

Furthermore, this minimum value of F is only achieved at thermal equilibrium in the

lowest temperature of the cooling schedule, therefore this is the point where we want to

compute the mean values of the neurons. Due to the Legendre transform properties, one

can state that

∂G
∂ 〈Si〉 =

hi

T
, (2.36)

so

∂G
∂ 〈Si〉 =

1

2
ln

(
1 + 〈Si〉

2

)
+

1

2
− 1

2
ln

(
1 − 〈Si〉

2

)
− 1

2
+

∂
(
−∑i<j

wij

T
〈Si〉 〈Sj〉

)
∂ 〈Si〉

=
1

2
ln

(
1 + 〈Si〉

2

)
− 1

2
ln

(
1 − 〈Si〉

2

)
+

∂
(
−∑i<j

wij

T
〈Si〉 〈Sj〉

)
∂ 〈Si〉

= atanh (〈Si〉) +
∂〈H〉
∂ 〈Si〉 =

hi

T
, (2.37)

and, finally

〈Si〉 = tanh

⎛
⎝hi

T
−

∂
(
−∑i<j

wij

T
〈Si〉 〈Sj〉

)
∂ 〈Si〉

⎞
⎠ , (2.38)

hence we arrive at the Mean Field equations

〈Si〉 = tanh

(
hi

T
+
∑

j

wij

T
〈Sj〉
)

,

which are a good approximation as far as hi � wij. From this expression we can see that

Hopfield neural network equations can be recalled as an Ising model where temperature

has reached zero value [Hertz et al., 1991,Baldi and Venkatesh, 1993]. Notice then that

Si = lim
T→0

tanh

(
hi

T
+
∑

j

wij

T
〈Sj〉
)

= sgn

(
hi +
∑

j

wijSj

)
. (2.39)

Though the deterministic BM is faster to compute, standard Monte Carlo simulation

must be used when the BM is either reproducing or extrapolating probability distribu-

tions, since it is unable to provide exact values for coupled correlations or the probability

distribution for the output units.

2.3. THE BOLTZMANN MACHINE AS A NEURAL NETWORK 35

2.3.4 The high order Boltzmann Machine

The high order Boltzmann Machine [Sejnowski, 1987] is an extension to the original

model where weights may connect more than two units, even up to N units on an N units

neural network. From now on, any weight from both standard BM and HOBM will be

represented by denoting the number of units it connects as (n)

w(n)
σ , (2.40)

while σ stands for the label of the units that the weight links. Bias terms and standard

weights now change their notation into

hi = w
(1)
i , (2.41)

wij = w
(2)
ij , (2.42)

while a third order weight would be expressed as w
(3)
ijk. This connection, which links units

Si, Sj and Sk is depicted on Fig. 2.5.

wijk
(3)

Si Sj Sk

Figure 2.5: A third order weight connecting output units Si, Sj and Sk.

The energy functional changes according to the newly introduced set of weights; for

an N units Boltzmann Machine it reads as

E = −
∑

i

w
(1)
i Si −

∑
i<j

w
(2)
ij SiSj −

∑
i<j<k

w
(3)
ijkSiSjSk − . . . − w

(N)
12...NS1S2 . . . SN , (2.43)

this expression is best written down [Albizuri et al., 1995,Burshtein, 1998] on a compact

notation

E = −
∑
n,σ

w(n)
σ

∏
ρ

Sρ . (2.44)

Despite the addition of these new, higher order connections, the HOBM has exactly

the same dynamics as the standard BM [Sejnowski, 1987]: it still uses the Simulated

36 CHAPTER 2. THE BOLTZMANN MACHINE

Annealing algorithm to simulate thermal equilibrium and to reach the Boltzmann proba-

bility distribution. Though the new energy functional is used instead of the standard one,

the neural network is still able to learn and extrapolate a probability distribution [Kos-

matopoulos and Christodoulou, 1994]. Mean Field equations are also defined on a HOBM

basis [Tanaka, 1999], equations do now stand for

〈Si〉 = tanh

(
w

(1)
i

T
+

N∑
j

w
(2)
ij

T
〈Sj〉 +

N∑
j,k

w
(3)
ijk

T
〈Sj〉 〈Sk〉 + . . . +

w
(N)
σ

T

∏
〈Sρ〉
)

, (2.45)

however they are still an approximation that works as far as w
(1)
i is higher enough than

the other values.

2.4 Learning on Boltzmann Machines

In this section, the learning process of the Boltzmann Machine is described. The learning

equations that are used on a standard BM are analyzed in the first part of this section; this

is used as an introduction to a next part where the learning process is briefly described.

We then explain how this algorithm is applied to a high order Boltzmann Machine; the

section is concluded by introducing an optional learning process based on the Mean Field

approach, where the quantities needed to compute the weight updates are approximated.

2.4.1 Learning expression for a standard BM

The Boltzmann Machine has the feature of being able to learn and extrapolate probability

distributions; this ability forces the usage of a metric that is able to relate both the

pattern that we want the neural network to learn and its own (Boltzmann) distribution.

The measure that describes this distance best is known as the Kullback-Leibler [Kullback,

1959] distance

G =
∑

γ

p (γ)
∑

α

r (α | γ) ln
r (α | γ)

p (α | γ)
. (2.46)

When G is applied to a BM, r (α | γ) is the probability distribution that we would

2.4. LEARNING ON BOLTZMANN MACHINES 37

like the neural network to learn and p (α | γ) is the Boltzmann probability distribution.

In this expression, p (α | γ) reads as the Boltzmann probability of finding an output state

α when a state γ has been set in the input units and r (α | γ) as the desired probability

distribution to be learned from the training set [Hertz et al., 1991]. It can be shown that

G > 0 for any p (α | γ) �= r (α | γ) and that it reaches the global minimum G = 0 when

p (α | γ) = r (α | γ). In absence of hidden units, this function is a convex function [Albizuri

et al., 1996]. If hidden units are added, the shape of G is uncertain, though the global

minimum still happens at p (α | γ) = r (α | γ). Gradient descent is commonly used to

find the update rule for weights and biases [Ackley et al., 1985]

Δw
(1)
i = −η

∂G

∂w
(1)
i

, (2.47)

Δw
(2)
ij = −η

∂G

∂w
(2)
ij

, (2.48)

where η is an arbitrary constant. The Kullback distance can be best differentiated with

the aid of the properties of the logarithm

G =
∑

γ

p (γ)
∑

α

r (α | γ) ln
r (α | γ)

p (α | γ)
(2.49)

=
∑

γ

p (γ)
∑

α

r (α | γ) (ln r (α | γ) − ln p (α | γ)) . (2.50)

The inclusion of hidden units to the neural network is denoted by adding a term β to

the probability distribution p (α | γ) for p (α, β | γ). Notice however that the probability

distribution that the hidden units may reach is often worthless: they are used to increase

the learning capacity of the BM, and we do not care about the values they take as far as

the output units reproduce a given probability distribution. We calculate p (α | γ) as a

marginal probability sum

p (α | γ) =
∑

β

p (α, β | γ) =
∑

β

e−
1
T

Eα,β|γ

Zγ
, (2.51)

the inclusion of these hidden units is applied to the partition function under a ν term

Zγ =
∑
μ,ν

e−
1
T

Eμ,ν|γ , (2.52)

38 CHAPTER 2. THE BOLTZMANN MACHINE

since the partition function sums over all feasible states; in this case input units are

clamped at a state γ. We will work both bias and weight updating expressions by setting

a generic order (n) on a standard weight w
(n)
σ ; hence

∂G

∂w
(n)
σ

= −
∑

γ

p (γ)
∑

α

r (α | γ)
∂ ln p (α | γ)

∂w
(n)
σ

= −
∑

γ

p (γ)
∑

α

r (α | γ)
1

p (α | γ)

∂p (α | γ)

∂w
(n)
σ

, (2.53)

since r (α | γ) does not depend on w
(n)
σ and thereafter ∂r(α|γ)

∂w
(n)
σ

= 0. We now differentiate

the energy functional

∂Eα,β|γ

∂w
(n)
σ

= −
∏
ρ∈σ

Sα,β|γ
ρ , (2.54)

where S
α,β|γ
ρ stands for either a hidden or output unit whose state depends on the input

units state γ. In this sense, notice that the output units state α from S
α,β|γ
ρ is fixed. We

now calculate ∂p(α|γ)

∂w
(n)
σ

, thus

∂p (α | γ)

∂w
(n)
σ

=
∑

β

⎛
⎝ 1

T

∏
ρ∈σ S

α,β|γ
ρ e−

1
T

Eα,β|γZγ − e−
1
T

Eα,β|γ ∂Zγ

∂w
(n)
σ

Z2
γ

⎞
⎠ , (2.55)

where differentiation of the partition function is required

∂Zγ

∂w
(n)
σ

=
∑
μ,ν

e−
1
T

Eμ,ν|γ 1

T

∏
ρ∈σ

Sγ
ρ =

1

T
Zγ

〈∏
ρ∈σ

Sγ
ρ

〉
, (2.56)

Eμ,ν|γ being the energy functional value obtained when input units get clamped at a state

2.4. LEARNING ON BOLTZMANN MACHINES 39

γ. Finally

∂G

∂w
(n)
σ

= −
∑

γ

p (γ)
∑

α

r (α | γ)

p (α | γ)

∑
β

⎛
⎝ 1

T

∏
ρ∈σ S

α,β|γ
ρ e−

1
T

Eα,β|γZγ − e−
1
T

Eα,β|γ ∂Zγ

∂w
(n)
σ

Z2
γ

⎞
⎠

= − 1

T

∑
γ

p (γ)
∑

α

r (α | γ)

p (α | γ)

∑
β

(∏
ρ∈σ S

α,β|γ
ρ e−

1
T

Eα,β|γ

Zγ
−
〈∏

ρ∈σ

Sγ
ρ

〉
e−

1
T

Eα,β|γ

Zγ

)

= − 1

T

∑
γ

p (γ)
∑

α

∑
β

(∏
ρ∈σ S

α,β|γ
ρ e−

1
T

Eα,β|γ

Zγ
−
〈∏

ρ∈σ

Sγ
ρ

〉
e−

1
T

Eα|γ

Zγ

)

= − 1

T

∑
γ

p (γ)

(∑
α,β

∏
ρ∈σ S

α,β|γ
ρ e−

1
T

Eα,β|γ

Zγ
−
〈∏

ρ∈σ

Sγ
ρ

〉∑
α,β

e−
1
T

Eα,β|γ

Zγ

)

= − 1

T

∑
γ

p (γ)

(〈∏
ρ∈σ

Sα,β|γ
ρ

〉
−
〈∏

ρ∈σ

Sγ
ρ

〉)
. (2.57)

These expectation values are computed for each different γ vector, therefore effectively

calculating

∑
γ

p (γ)

〈∏
ρ∈σ

Sα,β|γ
ρ

〉
=

〈∏
ρ∈σ

S
α,β|γ
ρ

〉
, (2.58)

∑
γ

p (γ)

〈∏
ρ∈σ

Sγ
ρ

〉
=

〈∏
ρ∈σ

Sγ
ρ

〉
, (2.59)

now we arrive at

∂G

∂w
(n)
σ

= − 1

T

∑
γ

p (γ)

(〈∏
ρ∈σ

Sα,β|γ
ρ

〉
−
〈∏

ρ∈σ

Sγ
ρ

〉)

= − 1

T

⎛
⎝
〈∏

ρ∈σ

S
α,β|γ
ρ

〉
−
〈∏

ρ∈σ

Sγ
ρ

〉⎞
⎠ . (2.60)

This expression is commonly written down as

∂G

∂w
(n)
σ

= − η

T

(〈∏
ρ∈σ

Sρ

〉∗

−
〈∏

ρ∈σ

Sρ

〉)
, (2.61)

where the ∗ term indicates that the correlations are computed for a fixed input and

output pattern to both input and output units; notice then that only hidden units are

40 CHAPTER 2. THE BOLTZMANN MACHINE

allowed to change. The units that are not allowed to change are referred to as being

clamped, and the estimation of these correlations is known as clamped phase. On the

other hand, the quantity with no ∗ is computed by setting a given input pattern to the

input layer but allowing the remaining neurons from the neural network to change their

state freely; according to the dynamics of the system. The process where these correlations

are estimated is known as free phase. In essence, we can say that this expression compares

the probability distribution that we want the neural network to learn (this is, the clamped

phase) against its own Boltzmann distribution (the free phase). The final update rule for

both bias and weights becomes

Δw(n)
σ =

η

T

(〈∏
ρ∈σ

Sρ

〉∗

−
〈∏

ρ∈σ

Sρ

〉)
. (2.62)

Since we are working with a standard BM, weights are restricted to second order

-n = 2- and bias terms -n = 1-, and then

Δw
(1)
i =

η

T
(〈Si〉∗ − 〈Si〉) , (2.63)

Δw
(2)
ij =

η

T
(〈SiSj〉∗ − 〈SiSj〉) . (2.64)

2.4.2 Learning algorithm for a BM

Now that we have seen how the learning expressions of a Boltzmann Machine are deduced,

we describe how these quantities are computed on a typical BM. Let us have a standard

BM learning pattern {Γ,A} consisting of V vectors, which describes the input and output

states

{Γ,A} = ({γ1, α1} {γ2, α2} . . . {γV , αV }) , (2.65)

for the input and output units, and the associated set of probabilities �p = (p1, p2, . . . , pV)

in which they happen. We will also consider that the neural network has ni input units,

nh hidden units and no output neurons. The learning algorithm is carried out by following

these steps [Freeman and Skapura, 1993]:

2.4. LEARNING ON BOLTZMANN MACHINES 41

1. Get the first learning vector {γ1, α1} from the learning pattern. Fix the input units

to a state γ1 and the output neurons to a state α1, this will begin the clamped

phase.

2. Carry out the simulation process to the neural network until it reaches thermal

equilibrium at the last temperature TK from the cooling schedule, thus selecting

only hidden units to carry out the SA process. Consider then that a single iteration

of the cooling schedule will run nh times, since these are the units that can change

their state.

3. Carry out the probability estimation process to the BM for m iterations, as described

in section 2.3.2. Calculate 〈SiSj〉∗ and 〈Si〉∗ as

〈SiSj〉∗ =
∑

v

∑
Si,Sj

pvSiSj , (2.66)

〈Si〉∗ =
∑

v

∑
Si

pvSi . (2.67)

4. Get again the first learning vector {γ1, α1} from the learning pattern. Fix the input

units to a state γ1, this will begin the free phase.

5. Carry out the simulation process to the neural network until it reaches thermal

equilibrium at the last temperature TK from the cooling schedule, just as seen on

the simulation process. Notice though that an iteration now runs nh + no times the

cooling schedule.

6. Carry out the probability estimation process to the BM for m iterations. Calculate

〈SiSj〉 and 〈Si〉.

7. Repeat this process from step 1 and compute the mean values and expectation

values for the whole learning pattern.

8. Update the weights according to the learning expression from Eqs. 2.63 and 2.64.

42 CHAPTER 2. THE BOLTZMANN MACHINE

9. Repeat this whole process until all Δw
(2)
ij < ε and all Δw

(1)
i < ε, where ε is an

arbitrarily small value that is selected for convergence means.

Notice now that this algorithm solves a standard MC integration [Press et al., 1993]

algorithm when computing the correlations and expectation values. Thus, the relative

error ErrR is about

ErrR ∝ 1√
m

, (2.68)

being m the number of samples. This is also the number of iterations that are carried out

at the last vale of the cooling schedule, once the system has reached thermal equilibrium.

The absolute error ErrA for a given correlation on a BM is calculated as

ErrA = 2 ErrR , (2.69)

since 2 is the spanning range of both correlations and expectation values. Therefore, the

absolute error can be expressed as function of m

ErrA ∝ 2√
m

. (2.70)

This expression means that the Boltzmann Machine has to be simulated about
√

m
2

times in order to perform a weight update once with a precision proportional to ErrA.

Learning process is typically carried out until Δw
(n)
σ < ε, where ε is an arbitrarily small

value. Notice that ErrA and ε are closely related: if it happens that ErrA > ε the

learning algorithm will not be able to finish on a reliable solution, because we can not

ensure that the same correlations have an implicit error bigger than this quantity. This

has been so far the issue with Boltzmann Machines, as the associated computational cost

for the learning algorithm prevents widespread usage of the neural network.

2.4.3 Learning on a HOBM

Learning on a high order Boltzmann Machine is also carried out by Kullback-Leibler

distance optimization between the own probability distribution of the neural network and

2.4. LEARNING ON BOLTZMANN MACHINES 43

the probability distribution that we want it to know. This operation results in

Δw(n)
σ =

η

T

(〈∏
ρ∈σ

Sρ

〉∗

−
〈∏

ρ∈σ

Sρ

〉)
,

for a third order BM [Sejnowski, 1987] it would read as

Δw
(3)
ijk =

η

T
(〈SiSjSk〉∗ − 〈SiSjSk〉) . (2.71)

However, higher order correlations become harder to estimate by Monte Carlo means

[Graña et al., 1997] and though the inclusion of these terms provides an enhanced learning

capability to the neural network [Albizuri et al., 1997], the algorithm does also greatly

increase in complexity [Tanaka, 1999]. Now it becomes a compromise between many

high order weights or many hidden units to reach similar capabilities on different neural

networks. A valid solution is so far shown in Ref. [Albizuri et al., 1996]: the Kullback

distance on an n-th order Boltzmann Machine with no hidden units is always a convex

function, and therefore the algorithm will always reach a final solution. In order to

decrease the complexity needed to compute the higher order correlations, the proposed

Boltzmann Machine uses high order weights that connect any quantity of input units to

either one or two output neurons. It is straightforward seen that, for a given set of n free

units [Si1 , Si2, . . . , Sin] and a given set of m clamped units [S∗
j1

, S∗
j2

, . . . , S∗
jm

], correlation

for a weight with order m + n can be computed as

〈
Si1Si2 · · ·SinS∗

j1
S∗

j2
· · ·S∗

jm

〉
= 〈Si1Si2 · · ·Sin〉S∗

j1
S∗

j2
· · ·S∗

jm
, (2.72)

hence, any high order connection involving two free units will be computed as

〈
Si1Si2S

∗
j1

S∗
j2
· · ·S∗

jm

〉
= 〈Si1Si2〉S∗

j1
S∗

j2
· · ·S∗

jm
, (2.73)

no matter the order of the weight.

The conclusion is that for a fully connected HOBM with no hidden units whose high

order terms connect no more than two output units, we will have higher learning capabil-

ities [Graña et al., 1997,Tanaka, 1999] than on a standard BM. Furthermore, the learning

algorithm will always provide the best solution that this topology is able to learn from a

44 CHAPTER 2. THE BOLTZMANN MACHINE

given dataset, being it convex, it is guaranteed that a global optimum of the Kullback-

Leibler distance is found. However, the high number of weights that are used on this

structure increases the complexity of this implementation.

2.4.4 The Mean Field learning solution

The Mean Field theory application to the Boltzmann Machine learning problem was

first proposed as the naive mean field learning process in Ref. [Peterson and Anderson,

1987], with the approximation of the system coupled correlations by the product of their

expectation values

〈SiSj〉 � 〈Si〉 〈Sj〉 , (2.74)

where 〈Si〉 is found by numerically solving the Mean Field equations, as seen in sec-

tion 2.3.3

〈Si〉 = tanh

(
w

(1)
i

T
+
∑ w

(2)
ij

T
〈Sj〉
)

.

The main point on using the mean field for the learning process is that correlations

are approximated analytically and faster than using Monte Carlo methods. Mean field

learning on a Boltzmann Machine is often referred to as learning on deterministic Boltz-

mann Machines [Hagiwara, 1992], and it is a standard solution for hardware implemen-

tations [Schneider and Card, 1993]. On the other hand, a more precise learning rule than

the naive mean field method was proposed by Ref. [Kappen and Rodriguez, 1998]. This

method is based in the Linear Response Theory [Parisi, 1988]

〈SiSj〉 = 〈Si〉 〈Si〉 + Aij , (2.75)

where Aij stands for the ij position of the following A matrix

A =

(
δij

1 − 〈Si〉2
− 1

T
W
)−1

, (2.76)

W being the matrix that represents the weights connecting the units from the neural

network. Notice that this matrix is symmetric with zero diagonal, since the weights of a

2.4. LEARNING ON BOLTZMANN MACHINES 45

BM are bidirectional and units are not connected to themselves. On the other hand, δij

is the Kronecker delta

δij =

⎧⎨
⎩ 1, if i = j

0, if i �= j
.

The mean field learning method has been widely used as an easy BM implemen-

tation [Kappen and Wiegerinck, 2001], since the learning algorithm is performed faster

than the standard MC based algorithm. As a consequence, it has impulsed research about

third [Tanaka, 1999] and fourth [Leisink and Kappen, 2000] order correlations estimation

for a MF, HOBM model. However, the relationship within weights and updates is not

so direct as a matrix inverse. Furthermore, the model has not yet been able to overcome

some serious drawbacks: if the neural network is reproducing a probability distribution,

it needs an annealing process (which becomes harder due to the higher order weights),

and the bias terms must still represent a significant value on the energy functional or the

solution will loose accuracy.

46 CHAPTER 2. THE BOLTZMANN MACHINE

Chapter 3

The process of Decimation

3.1 Introduction

Decimation is a technique that is used in statistical physics to reduce the size of the current

system to another similar one, yet retaining most of its features [Cardy, 1996]. It can be

used to focus on a fragment of the given material, hence reducing the complexity of the

associated calculus. In terms of a Boltzmann Machine [Saul and Jordan, 1994], it becomes

a procedure which allows us to make a transformation from a complex neural network

to another smaller without loss of its properties. This means that the new network is

an equivalent BM without one of its original units while the remaining ones yet retain

the same behavior. This process is shown in Fig. 3.1, where a central unit Sd connected

to units Si, Sj and Sk is decimated, thus creating a new set of connections linking these

neurons.

Si Sj Sk Sd Si Sj Sk

w

w

w

wij
(2)

wik
(2)

wjk
(2)

(2)
di
(2)
dj
(2)
dk

Figure 3.1: Applied example of decimation.

47

48 CHAPTER 3. THE PROCESS OF DECIMATION

In practical terms, decimation is applied to a Boltzmann Machine when one is inter-

ested on analytically finding the quantities that are needed at the learning stage

Δw(n)
σ =

η

T

(〈
n∏

ρ=1

Sρ

〉∗

−
〈

n∏
ρ=1

Sρ

〉)
, (3.1)

which should otherwise be estimated by using Monte Carlo means. The decimation pro-

cess as presented in Ref. [Saul and Jordan, 1994] was conceived to be applied iteratively

for each pair of connected units. The topology of a BM where decimation could be applied

was therefore referred to as decimatable [Rüger et al., 1996], an example of this structure

is depicted in Fig. 3.2. This neural network would be decimated in order to update weight

w
(2)
ij , thus computing the correlation value between Si and Sj . The process would then be

repeated for each pair of connected units in order to compute all the required correlations

and expectation values.

Si Sj

Si Sj

w(2)
ij
(1)wi

w(1)
j

ijw(2)

Figure 3.2: Decimatable structure and decimated model.

This chapter is organized as follows: section 3.2 presents the decimation process as

proposed in Ref. [Saul and Jordan, 1994] and as further extended in Ref. [Rüger, 1997].

Section 3.3 is devoted to explaining how these methods are used to compute exact ex-

pectation values and correlations in the Boltzmann Machine. The main drawbacks of the

standard decimation process, the high order Decimation (HOD) method [Farguell et al.,

2008] and the way that it overcomes the problems that are found when applying dec-

imation and a full discussion of its equations are analyzed in section 3.4. The chapter

proceeds then with an extension to the high order Decimation that has been named as the

Multiple Decimation process, thus allowing to algorithmically implement the HOD, and

is concluded with some results of the HOD method applied to a set of learning problems.

3.2. DECIMATION APPLIED TO THE BM 49

3.2 Decimation applied to the BM

This section describes the application of the decimation process to a neural network such

as the Boltzmann Machine. We start with an introduction to the equations that explain

how standard decimation works, and why is it made possible on some given topologies of

BM. The foregoing parts of this section are used to describe from the most basic to the

most complex decimation procedures.

3.2.1 Main concepts from decimation

The basic idea behind the decimation procedure is to suppress a given unit Sd connected

to its neighboring set of units S by a set of weights {w(1)
d , w

(2)
di }, and substitute it with

a new equivalent set of connections. This process is carried out at the last temperature

from the cooling schedule, which is the equilibrium temperature of the BM; therefore this

value is constant. The dependency on temperature can then be assimilated by the weights

if they are normalized

J
(2)
ij =

w
(2)
ij

T
, (3.2)

J
(1)
i =

w
(1)
i

T
, (3.3)

T being the last temperature from the cooling schedule , w
(2)
ij the weight connecting units

Si and Sj and w
(1)
i the bias term from unit Si. The Boltzmann probability distribution,

the partition function and the energy functional now read as

p (α) =
e−Eα

Z , (3.4)

Z =
∑

μ

e−Eμ , (3.5)

E = −1

2

∑
J

(2)
ij SiSj −

∑
J

(1)
i Si . (3.6)

The master equation of decimation stands for [Farguell et al., 2007]

ln

(
1

2

+1∑
Sd=−1

e
∑

J
(n)
dσ Sd

∏
ρ∈σ Sρ

)
= G(0) +

2∑
n=1, σ

G(n)
σ

∏
ρ∈σ

Sρ , (3.7)

50 CHAPTER 3. THE PROCESS OF DECIMATION

where J
(n)
dσ are the weights from the original neural network that connect any Sρ unit with

the one to decimate Sd and G
(n)
σ are the weights of the resulting BM.

We now discuss this equation: we begin from a given neural network with a set of units

{S, Sd}; these can take a certain state αd with an energy value Eαd
. Once the decimation

process is carried out, the resulting neural network still keeps the set of units {S}, but

unit Sd is decimated. As a consequence, the resulting model has no weights linking unit

Sd to any other neuron. Let αd be then an energy state on a BM with associated energy

value Eαd
(S, Sd). This state is due to a set of neurons {S, Sd} which have taken a certain

combination of values where Sd is undefined

Eαd
(S, Sd) = −

∑
J (n)

σ

∏
ρ∈σ

Sρ −
∑

J
(n)
dσ Sd

∏
ρ∈σ

Sρ , (3.8)

this set of neurons S is connected through a set of temperature normalized weights

{J (1)
d , J

(2)
di } to the unit Sd, which is going to be decimated. The value of the energy

depends on Sd, and thereafter we could reach Eαd
(S, +1) for Sd = +1 and Eαd

(S,−1)

when Sd = −1. We now calculate the sum of the conditional probability distribution for

all the possible values that unit Sd can take, which are −1 and +1. Thus

p (α) = p (αd)|Sd=1 + p (αd)|Sd=−1 , (3.9)

where the state α is a given combination of the set of units S and has an associated energy

value Eα (S), hence

p (α) =
e−Eα(S)

Z , (3.10)

notice then that Eα (S) depends on a different set of weights
{
J̃

(1)
i , J̃

(2)
ij

}
, for i, j �= d,

because the decimation process creates a new set of connections. Furthermore, Eα (S)

also depends on the units from the set S

Eα (S) = −
∑

J̃ (n)
σ

∏
ρ∈σ

Sρ , d �∈ σ . (3.11)

We now introduce ΔEd (S, Sd) as the following quantity

ΔEd (S, Sd) = −
∑

J
(n)
dσ Sd

∏
ρ∈σ

Sρ , Sρ ∈ S , (3.12)

3.2. DECIMATION APPLIED TO THE BM 51

which is straightforward used in combination with Eqs. 3.8 and 3.9, thus leading to

p (α) = p (αd)|Sd=1 + p (αd)|Sd=−1

=
e
∑

J
(n)
σ
∏

ρ∈σ Sρ−ΔEd(S,+1)

Z +
e
∑

J
(n)
σ
∏

ρ∈σ Sρ−ΔEd(S,−1)

Z
= e

∑
J

(n)
σ
∏

ρ∈σ Sρ

(
e−ΔEd(S,+1)

Z +
e−ΔEd(S,−1)

Z
)

. (3.13)

We now take from Ref. [Saul and Jordan, 1994] the original equation of decimation

+1∑
Sd=−1

e−ΔEd(S,Sd) =
√

Ce
∑

G
(n)
σ
∏

ρ∈σ Sρ , (3.14)

where G
(n)
σ are the unknown weights directly resulting from the decimation operation. If

we apply this expression to the one in Eq. 3.13 we arrive at

p (α) = e
∑

J
(n)
σ
∏

ρ∈σ Sρ

√
Ce
∑

G
(n)
σ
∏

ρ∈σ Sρ

Z . (3.15)

Now it becomes necessary to work with the partition function in order to reach the

following expression

Z =
√

CZ ′
, (3.16)

thus assuming that

Z =

Γ∑
γ=1

e−Eγd
(S,Sd) , (3.17)

where the sum is carried out for all the possible states that {S, Sd} can reach. This

expression also reads as

Z =
Γ∑

γ=1

e−Eγ(S,Sd) =
∑
S,Sd

e−Eγd
(S,Sd) , (3.18)

which leads us to

Z =
∑
S,Sd

e
∑

J
(n)
σ
∏

ρ∈σ Sρ+
∑

J
(n)
dσ Sd

∏
ρ∈σ Sρ

=
∑
S

e
∑

J
(n)
σ
∏

ρ∈σ Sρ
∑
Sd

e
∑

J
(n)
dσ Sd

∏
ρ∈σ Sρ

=
∑
S

e
∑

J
(n)
σ
∏

ρ∈σ Sρ
√

Ce
∑

G
(n)
σ
∏

ρ∈σ Sρ =
√

CZ ′
. (3.19)

52 CHAPTER 3. THE PROCESS OF DECIMATION

We now take Eq. 3.15 and combine it with the previous expression

p (α) = e
∑

J
(n)
σ
∏

ρ∈σ Sρ

√
Ce
∑

G
(n)
σ
∏

ρ∈σ Sρ

√
CZ ′

=
e
∑

J
(n)
σ
∏

ρ∈σ Sρ+
∑

G
(n)
σ
∏

ρ∈σ Sρ

Z ′ , (3.20)

and recall the definition of Eα (S) from Eq. 3.11

Eα (S) = −
∑

J̃ (n)
σ

∏
ρ∈σ

Sρ , d �∈ σ ,

thus arriving to the following equivalence

p (α) =
e
∑

J
(n)
σ
∏

ρ∈σ Sρ+
∑

G
(n)
σ
∏

ρ∈σ Sρ

Z ′ =
e
∑

J̃
(n)
σ
∏

ρ∈σ Sρ

Z ′ , (3.21)

where

Z ′
=
∑
S

e
∑

J
(n)
σ
∏

ρ∈σ Sρe
∑

G
(n)
σ
∏

ρ∈σ Sρ =
∑
S

e
∑(

J
(n)
σ +G

(n)
σ

)∏
ρ∈σ Sρ . (3.22)

Therefore, a new set of connections

J̃ (n)
σ = J (n)

σ + G(n)
σ , (3.23)

which link the set of units {S} is left in place of the decimated unit Sd. We have shown

that the equality from Eq. 3.7 is used in order to decimate any structure, and that this

expression is applied to a marginal probability sum of the unit that is currently being

decimated. However, this equation is better written down if logarithm is applied at both

sides [Farguell et al., 2007], and
√

C/2 is placed into the exponential term with a new

notation

ln

(
1

2

+1∑
Sd=−1

e
∑

J
(n)
dσ Sd

∏
ρ∈σ Sρ

)
= G(0) +

2∑
n=1, σ

G(n)
σ

∏
ρ∈σ

Sρ .

3.2.2 Parallel association

Parallel association is a weight addition that is carried out once decimation has been

used over a given structure and a new set of weights has been generated. Hence, it does

3.2. DECIMATION APPLIED TO THE BM 53

not eliminate any unit, but it is used to combine the remaining weights of the neural

network with the new set of connections. It is explained by working out its temperature

normalized energy expression

J̃
(2)
ij = J

(2)
ij + G

(2)
ij , (3.24)

where J
(2)
ij and G

(2)
ij are the weights connecting units Si and Sj and J̃

(2)
ij the resulting

connection. We can graphically see how parallel association works in Fig. 3.3.

Sj
Si Sj

Si

J(2)
ij

Gij
(2) J(2)

ij
~

Figure 3.3: Parallel association.

We now analyze how Eq. 3.24 is generated. Let E be the energy functional of the

structure depicted in Fig. 3.3

E = J
(2)
ij SiSj + G

(2)
ij SiSj = SiSj

(
J

(2)
ij + G

(2)
ij

)
, (3.25)

so the new weight J̃
(2)
ij is the addition of the original terms.

J(1)
i

Si

Si

Gi
(1) J(1)

i
~

Figure 3.4: Parallel bias simplification.

An interesting fact of the parallel association is that one can add two bias terms by

the same way or any set of clamped input units [Saul and Jordan, 1994], as depicted in

Fig. 3.4. Notice then that the clamped units can be reduced to a set of parallel associated

biases [DeGloria et al., 1993]: let Si1 and Si2 be two input units which are always clamped,

54 CHAPTER 3. THE PROCESS OF DECIMATION

either when learning or on simulation process. These neurons are connected to a given

biased unit Sj by weights J
(2)
i1j , J

(2)
i2j . We refer the bias term as J

(1)
j and, since these units

are clamped when the learning process is carried out, one can proceed as follows

J̃
(1)
j = Si1J

(2)
i1j + Si2J

(2)
i2j + J

(1)
j , (3.26)

for each vector of a given learning pattern set.

3.2.3 Serial association

Serial association was originally proposed in Ref. [Saul and Jordan, 1994] as the most

basic decimation procedure used to suppress a unit. This association can only be carried

out when there is a single, unbiased unit that is linked to another two neurons, the process

is depicted in Fig. 3.5.

Sd Sj

J(2)
di

Si Sj

Si

J(2)
dj

Gij
(2)

Figure 3.5: Serial association.

Therefore, the structure of the neural network that is being used must be sparsely

connected, because we will repeat this process to isolate each pair of connected units. We

can see an example of a neural network where this process is applied in Fig. 3.6, thus

rendering two units to compute their correlation analytically.

Let Sd be a unit connected to units Si and Sj by temperature normalized weights J
(2)
di

and J
(2)
dj , respectively; the equation to perform standard serial association over Sd is

G
(2)
ij =

1

2
ln

⎛
⎝cosh

(
J

(2)
di + J

(2)
dj

)
cosh
(
J

(2)
di − J

(2)
dj

)
⎞
⎠ , (3.27)

3.2. DECIMATION APPLIED TO THE BM 55

Figure 3.6: Typical structure where serial decimation is applied to find the correlations

of the units.

where G
(2)
ij is the resulting weight. Equation 3.27 can be proven by recalling Eq. 3.7,

hence

ln

(
1

2

+1∑
Sd=−1

eJ
(2)
di SiSd+J

(2)
dj SjSd

)
= G(0) + G

(2)
ij SiSj ,

ln cosh
(
J

(2)
di Si + J

(2)
dj Sj

)
= G(0) + G

(2)
ij SiSj , (3.28)

where G(0) and G
(2)
ij are the weights that result from the decimation process.

Si Sj ln cosh
(
J

(2)
di Si + J

(2)
dj Sj

)
= G(0) + G

(2)
ij SiSj

−1 −1 ln cosh
(
J

(2)
di + J

(2)
dj

)
= G(0) + G

(2)
ij

−1 1 ln cosh
(
J

(2)
di − J

(2)
dj

)
= G(0) − G

(2)
ij

1 −1 ln cosh
(
J

(2)
di − J

(2)
dj

)
= G(0) − G

(2)
ij

1 1 ln cosh
(
J

(2)
di + J

(2)
dj

)
= G(0) + G

(2)
ij

Table 3.1: Serial association equations.

When all possible combinations of values for Si and Sj are written down we arrive to

the set of equations from table 3.1; such equations read as

ln cosh
(
J

(2)
di − J

(2)
dj

)
= G(0) − G

(2)
ij , (3.29)

ln cosh
(
J

(2)
di + J

(2)
dj

)
= G(0) + G

(2)
ij , (3.30)

56 CHAPTER 3. THE PROCESS OF DECIMATION

this leads to

G
(2)
ij =

1

2
ln

⎛
⎝cosh

(
J

(2)
di + J

(2)
dj

)
cosh
(
J

(2)
di − J

(2)
dj

)
⎞
⎠ .

This expression may be worked out to match with the original one from Ref. [Saul and

Jordan, 1994], which reads as follows

tanh
(
G

(2)
ij

)
= tanh

(
J

(2)
di

)
tanh

(
J

(2)
dj

)
, (3.31)

hence

G
(2)
ij =

1

2
ln

⎛
⎝cosh

(
J

(2)
di

)
cosh
(
J

(2)
dj

)
+ sinh

(
J

(2)
di

)
sinh
(
J

(2)
dj

)
cosh
(
J

(2)
di

)
cosh
(
J

(2)
dj

)
− sinh

(
J

(2)
di

)
sinh
(
J

(2)
dj

)
⎞
⎠

= ln

⎛
⎜⎜⎜⎜⎝

√√√√√√√√
1 +

sinh
(
J

(2)
di

)
sinh
(
J

(2)
dj

)
cosh
(
J

(2)
di

)
cosh
(
J

(2)
dj

)

1 − sinh
(
J

(2)
di

)
sinh
(
J

(2)
dj

)
cosh
(
J

(2)
di

)
cosh
(
J

(2)
dj

)

⎞
⎟⎟⎟⎟⎠

= ln

⎛
⎜⎝
√√√√√1 + tanh

(
J

(2)
di

)
tanh

(
J

(2)
dj

)
1 − tanh

(
J

(2)
di

)
tanh

(
J

(2)
dj

)
⎞
⎟⎠

= atanh
(
tanh

(
J

(2)
di

)
tanh

(
J

(2)
dj

))
.

Finally

tanh
(
G

(2)
ij

)
= tanh

(
J

(2)
di

)
tanh

(
J

(2)
dj

)
.

Sd Si

J(1)
d

J(2)
di

Si

Gi
(1)

Figure 3.7: Serial association between a bias term and a weight.

3.2. DECIMATION APPLIED TO THE BM 57

Notice that this association can also be used to perform serial association between a

bias term and a weight, as depicted in Fig. 3.7. If Eq. 3.28 is taken and unit Sj is clamped

at Sj = 1 one arrives to

ln cosh
(
J

(1)
d + J

(2)
di Si

)
= G(0) + G

(1)
i Si , (3.32)

the following equations are obtained

ln cosh
(
J

(1)
d − J

(2)
di

)
= G(0) − G

(1)
i ,

ln cosh
(
J

(1)
d + J

(2)
di

)
= G(0) + G

(1)
i ,

which can finally be written down as

G
(1)
i =

1

2
ln

⎛
⎝cosh

(
J

(2)
di + J

(1)
d

)
cosh
(
J

(2)
di − J

(1)
d

)
⎞
⎠ . (3.33)

3.2.4 Star-triangle decimation

Finally, we describe the most complex structure that decimation is able to handle [Rüger,

1997] and the process that is carried out when it is decimated. This association, which is

known as star-triangle decimation, transforms a non-biased unit Sd that is connected to

units Si, Sj and Sk by weights J
(2)
di , J

(2)
dj and J

(2)
dk to a new structure that is composed of

units Si, Sj, Sk and the weights G
(2)
ij , G

(2)
ik , G

(2)
jk that link them; graphic for this conversion

is shown in Fig. 3.8.

J(2)
dj

Si Sj Sk Sd

J(2)
dk

J(2)
di

Si Sj

Gij
(2)

Gjk
(2)

Gik
(2)

Sk

Figure 3.8: Star-triangle conversion.

58 CHAPTER 3. THE PROCESS OF DECIMATION

The star-triangle association allows more complex structures to be decimated, thus

increasing the number of connections that can be used in a given BM. The structures

which allow usage of parallel, serial and star-triangle decimation are known as decimatable

and a typical structure of this kind is depicted in Fig. 3.9. Notice that this structure is

more densely connected than the one from Fig. 3.6, which was the one that allowed only

serial association to be applied. The equations related to this process are written down

as follows

ln

(
1

2

+1∑
Sd=−1

eJ
(2)
di SdSi+J

(2)
dj SdSj+J

(2)
dk SdSk

)
= G(0) + G

(2)
ij SiSj + G

(2)
ik SiSk + G

(2)
jk SjSk ,

ln cosh
(
J

(2)
di Si + J

(2)
dj Sj + J

(2)
dk Sk

)
= G(0) + G

(2)
ij SiSj + G

(2)
ik SiSk + G

(2)
jk SjSk , (3.34)

where Sd is the decimated unit, which is connected to units Si, Sj and Sk by the temper-

ature normalized weights J
(2)
di , J

(2)
dj and J

(2)
dk .

Figure 3.9: Decimatable structure using a number of connections that the star-triangle

procedure can handle. Notice the bias terms and the weights linking the output units.

When one is willing to use the star-triangle decimation procedure, it is necessary to

generate the system of equations by giving proper values to units Si, Sj and Sk from

Eq. 3.34. This leads to the system of equations that can be seen on table 3.2 and, since

3.2. DECIMATION APPLIED TO THE BM 59

Si Sj Sk

ln cosh
(
J

(2)
di Si + J

(2)
dj Sj + J

(2)
dk Sk

)
=

= G(0) + G
(2)
ij SiSj + G

(2)
ik SiSk + G

(2)
jk SjSk

−1 −1 −1 ln cosh
(
−J

(2)
di − J

(2)
dj − J

(2)
dk

)
= G(0) + G

(2)
ij + G

(2)
ik + G

(2)
jk

−1 −1 1 ln cosh
(
−J

(2)
di − J

(2)
dj + J

(2)
dk

)
= G(0) + G

(2)
ij − G

(2)
ik − G

(2)
jk

−1 1 −1 ln cosh
(
−J

(2)
di + J

(2)
dj − J

(2)
dk

)
= G(0) − G

(2)
ij + G

(2)
ik − G

(2)
jk

−1 1 1 ln cosh
(
−J

(2)
di + J

(2)
dj + J

(2)
dk

)
= G(0) − G

(2)
ij − G

(2)
ik + G

(2)
jk

1 −1 −1 ln cosh
(
J

(2)
di − J

(2)
dj − J

(2)
dk

)
= G(0) − G

(2)
ij − G

(2)
ik + G

(2)
jk

1 −1 1 ln cosh
(
J

(2)
di − J

(2)
dj + J

(2)
dk

)
= G(0) − G

(2)
ij + G

(2)
ik − G

(2)
jk

1 1 −1 ln cosh
(
J

(2)
di + J

(2)
dj − J

(2)
dk

)
= G(0) + G

(2)
ij − G

(2)
ik − G

(2)
jk

1 1 1 ln cosh
(
J

(2)
di + J

(2)
dj + J

(2)
dk

)
= G(0) + G

(2)
ij + G

(2)
ik + G

(2)
jk

Table 3.2: Star-triangle transformation equations.

there are some repeated equations, to

ln cosh
(
J

(2)
di − J

(2)
dj − J

(2)
dk

)
= G(0) − G

(2)
ij − G

(2)
ik + G

(2)
jk , (3.35)

ln cosh
(
J

(2)
di − J

(2)
dj + J

(2)
dk

)
= G(0) − G

(2)
ij + G

(2)
ik − G

(2)
jk , (3.36)

ln cosh
(
J

(2)
di + J

(2)
dj − J

(2)
dk

)
= G(0) + G

(2)
ij − G

(2)
ik − G

(2)
jk , (3.37)

ln cosh
(
J

(2)
di + J

(2)
dj + J

(2)
dk

)
= G(0) + G

(2)
ij + G

(2)
ik + G

(2)
jk , (3.38)

their solution reads as

G
(2)
ij =

1

4
ln

⎛
⎝cosh

(
J

(2)
di + J

(2)
dj + J

(2)
dk

)
cosh
(
J

(2)
di + J

(2)
dj − J

(2)
dk

)
cosh
(
J

(2)
di − J

(2)
dj − J

(2)
dk

)
cosh
(
J

(2)
di − J

(2)
dj + J

(2)
dk

)
⎞
⎠ , (3.39)

G
(2)
ik =

1

4
ln

⎛
⎝cosh

(
J

(2)
di + J

(2)
dj + J

(2)
dk

)
cosh
(
J

(2)
di − J

(2)
dj + J

(2)
dk

)
cosh
(
J

(2)
di − J

(2)
dj − J

(2)
dk

)
cosh
(
J

(2)
di + J

(2)
dj − J

(2)
dk

)
⎞
⎠ , (3.40)

G
(2)
jk =

1

4
ln

⎛
⎝cosh

(
J

(2)
di + J

(2)
dj + J

(2)
dk

)
cosh
(
J

(2)
di − J

(2)
dj − J

(2)
dk

)
cosh
(
J

(2)
di − J

(2)
dj + J

(2)
dk

)
cosh
(
J

(2)
di + J

(2)
dj − J

(2)
dk

)
⎞
⎠ . (3.41)

This method does also work when any of the units is exchanged by a bias term [Rüger

et al., 1996]. In such case, we arrive at a similar system of equations where Sk = 1,

60 CHAPTER 3. THE PROCESS OF DECIMATION

J
(2)
dk = J

(1)
d , G

(2)
ik = G

(1)
i and G

(2)
jk = G

(1)
j ; this is

ln cosh
(
J

(2)
di + J

(2)
dj − J

(1)
d

)
= G(0) + G

(2)
ij − G

(1)
i − G

(1)
j , (3.42)

ln cosh
(
J

(2)
di − J

(2)
dj − J

(1)
d

)
= G(0) − G

(2)
ij − G

(1)
i + G

(1)
j , (3.43)

ln cosh
(
J

(2)
di − J

(2)
dj + J

(1)
d

)
= G(0) − G

(2)
ij + G

(1)
i − G

(1)
j , (3.44)

ln cosh
(
J

(2)
di + J

(2)
dj + J

(1)
d

)
= G(0) + G

(2)
ij + G

(1)
i + G

(1)
j . (3.45)

This system of equations is similar to the last one and its solution is

G
(2)
ij =

1

4
ln

⎛
⎝cosh

(
J

(2)
di + J

(2)
dj − J

(1)
d

)
cosh
(
J

(2)
di + J

(2)
dj + J

(1)
d

)
cosh
(
J

(2)
di − J

(2)
dj + J

(1)
d

)
cosh
(
J

(2)
di − J

(2)
dj − J

(1)
d

)
⎞
⎠ , (3.46)

G
(1)
i =

1

4
ln

⎛
⎝cosh

(
J

(2)
di − J

(2)
dj + J

(1)
d

)
cosh
(
J

(2)
di + J

(2)
dj + J

(1)
d

)
cosh
(
J

(2)
di + J

(2)
dj − J

(1)
d

)
cosh
(
J

(2)
di − J

(2)
dj − J

(1)
d

)
⎞
⎠ , (3.47)

G
(1)
j =

1

4
ln

⎛
⎝cosh

(
J

(2)
di − J

(2)
dj − J

(1)
d

)
cosh
(
J

(2)
di + J

(2)
dj + J

(1)
d

)
cosh
(
J

(2)
di − J

(2)
dj + J

(1)
d

)
cosh
(
J

(2)
di + J

(2)
dj − J

(1)
d

)
⎞
⎠ . (3.48)

We finally show that serial association is a particular case of these equations, provided

that J
(1)
d = 0. Then, G

(1)
i = G

(1)
j = 0 and

G
(2)
ij =

1

2
ln

⎛
⎝cosh

(
J

(2)
di + J

(2)
dj

)
cosh
(
J

(2)
di − J

(2)
dj

)
⎞
⎠ .

3.3 Correlations and expectation values

It has been shown that decimation is applied to reduce the size of a BM in order to

analytically compute the quantities needed at the learning stage. We now explain how

these correlations and expectation values

Δw
(2)
ij = η (〈SiSj〉∗ − 〈SiSj〉) ,

Δw
(1)
i = η (〈Si〉∗ − 〈Si〉) ,

are actually calculated.

3.3. CORRELATIONS AND EXPECTATION VALUES 61

Si Sj

Si Sj

J(2)
ij

G(2)
ij
(1)Gi

G(1)
j

Figure 3.10: Applied example of decimation.

In this section, we will assume that there is a Boltzmann Machine model that has

already been decimated, and thereafter we have a small set of neurons where correlations

and expectation values have to be found. In this sense, the process shown in Fig. 3.10 has

already been carried out, thus leading to a smaller structure where 〈SiSj〉 is computed.

At this point, it is possible to analytically calculate 〈SiSj〉; the mean value for Si is found

by applying serial association as shown in Fig. 3.11.

G(1)
i

Ji
(1)

ij
(2)J

Jj
(1)

Ji
(1)

G(1)
i

S S
Si

i

Si

j

~

Figure 3.11: Decimation of a pair of units to a single one.

3.3.1 Expectation value for a single unit

We want now to calculate the expectation value for a single unit. This calculus is made

once a pair of units has been decimated; one arrives then to the structure shown in

Fig. 3.12, which is an isolated unit whose only connection is a first order weight J
(1)
i . We

are going to find an analytical expression that provides the expectation value according

to this connection, hence we begin with the mathematical expression for an expectation

62 CHAPTER 3. THE PROCESS OF DECIMATION

value

〈Si〉 =
∑

Si=±1

Si p (Si = ±1)

= 1 p (Si = 1) − 1 p (Si = −1) , (3.49)

where the probability distribution is the Boltzmann probability distribution

p (Si = 1) =
eJ

(1)
i

eJ
(1)
i + e−J

(1)
i

, (3.50)

p (Si = −1) =
e−J

(1)
i

eJ
(1)
i + e−J

(1)
i

, (3.51)

we finally arrive at

〈Si〉 =
eJ

(1)
i

eJ
(1)
i + e−J

(1)
i

− e−J
(1)
i

eJ
(1)
i + e−J

(1)
i

=
eJ

(1)
i − e−J

(1)
i

eJ
(1)
i + e−J

(1)
i

= tanh
(
J

(1)
i

)
. (3.52)

Ji
(1)

Si

Figure 3.12: Single unit connected to bias term J
(1)
i .

3.3.2 Correlation of two free units

We now discuss the case where the correlation for two units that are set free is calculated,

and provide the analytical expressions that are used to compute this value. We use

here the term free to denote that these units would be able to change their state during

the Monte Carlo learning process, regardless of whether we are on the learning free or

clamped phase. Let Si and Sj be two units linked by a temperature normalized weight

J
(2)
ij and two first order connections J

(1)
i , J

(1)
j as depicted in Fig. 3.13. Notice then that

3.3. CORRELATIONS AND EXPECTATION VALUES 63

the decimation process has been carried out and that therefore, the other units of the

neural network are represented by this final set of connections. It has already been shown

that the remaining units from the neural network do still behave according to the same

probability distribution, hence this two units will have the same correlation regardless

than if we use the current connections to compute it or the whole neural network.

ij
(2)J

Jj
(1)

Ji
(1)

S Si j

Figure 3.13: Two units structure connected by weight J
(2)
ij and bias terms J

(1)
i , J

(1)
j .

The correlation value 〈SiSj〉 is calculated as follows

〈SiSj〉 =
∑

Si,Sj=±1

Si Sj p (Si, Sj = ±1)

=
∑

Si,Sj=±1

Si Sj
e−E

Z , (3.53)

where

E = −SiSjJ
(2)
ij − SiJ

(1)
i − SjJ

(1)
j , (3.54)

and

Z =
∑
∀γ

e−Eγ

= eJ
(2)
ij +J

(1)
i +J

(1)
j + eJ

(2)
ij −J

(1)
i −J

(1)
j + e−J

(2)
ij +J

(1)
i −J

(1)
j + e−J

(2)
ij −J

(1)
i +J

(1)
j

= 2
(
eJ

(2)
ij cosh

(
J

(1)
i + J

(1)
j

)
+ e−J

(2)
ij cosh

(
J

(1)
i + J

(1)
j

))
. (3.55)

64 CHAPTER 3. THE PROCESS OF DECIMATION

Hence, finally

〈SiSj〉 =
1

Z
(
eJ

(2)
ij −J

(1)
i −J

(1)
j + eJ

(2)
ij +J

(1)
i +J

(1)
j − e−J

(2)
ij +J

(1)
i −J

(1)
j − e−J

(2)
ij −J

(1)
i +J

(1)
j

)

=
eJ

(2)
ij cosh

(
J

(1)
i + J

(1)
j

)
− e−J

(2)
ij cosh

(
J

(1)
i − J

(1)
j

)
eJ

(2)
ij cosh

(
J

(1)
i + J

(1)
j

)
+ e−J

(2)
ij cosh

(
J

(1)
i − J

(1)
j

) . (3.56)

3.3.3 Correlation of a free and a clamped connected units

We now discuss the situation where a unit that is set free and is then able to change its

state during the Monte Carlo simulation process is connected to a clamped unit. Again,

we refer to a clamped unit as the neuron that is not able to change its state. This would be

the case, either for an input unit when the learning process is carried out or for an output

unit when clamped phase at learning stage happens. We are interested in calculating the

correlation between this pair of units, because this quantity is needed during the learning

process. Let Si and Sj be a pair of units as depicted in Fig. 3.14, where Si is a free unit

and Sj = S∗
j remains clamped, herein the ∗ symbol. We will determine an analytical

expression for
〈
SiS

∗
j

〉
.

ij
(2)J

Jj
(1)

Ji
(1)

S Si j

Figure 3.14: Correlation between a free and a clamped units.

If we apply the definition of expectation value

〈
SiS

∗
j

〉
=
∑

Si=±1

SiS
∗
j

eJ
(2)
ij SiS∗

j +J
(1)
i Si

Z , (3.57)

the sum is only carried out accounting unit Si, because Sj is clamped and its state can

3.4. HIGH ORDER DECIMATION 65

not be changed. Thus

〈
SiS

∗
j

〉
= S∗

j

(
eJ

(2)
ij S∗

j +J
(1)
i − e−J

(2)
ij S∗

j −J
(1)
i

Z

)

= S∗
j tanh

(
J

(2)
ij S∗

j + J
(1)
i

)
, (3.58)

which is nothing else than a parallel association between the bias term J
(1)
i and the product

J
(2)
ij S∗

j .

3.4 High order Decimation

In this section, the high order Decimation method is presented and discussed in four

parts: we first analyze the limits of the standard decimation process, while the second

part proceeds with the concept that is used to overcome them, thus showing the master

equation that is used for the high order Decimation process. The section is concluded

with a numerical example that is carried out step by step, thus following all the calculus

that are done on a simple, HOD process.

3.4.1 Biased star-triangle decimation

Decimation, as explained so far, is not able to handle some kind of topologies. We

begin this discussion with the structure depicted in Fig. 3.15, where a central Sd unit is

at the center of a triangle, connected to three standard units Si, Sj, Sk by temperature

normalized weights J
(2)
di , J

(2)
dj and J

(2)
dk and to an external unit by a temperature normalized

bias term J
(1)
d . We will name this grouping as the biased star-triangle structure because

it can be depicted as having this shape.

The structure proposed in such picture can not be decimated [Rüger et al., 1996]

66 CHAPTER 3. THE PROCESS OF DECIMATION

Sk

J(2)
dj

J(2)
di

J(2)
dk

Sd

J(1)
d

Si

Sj

Sd

Si

Sj

Sk

J(1)
d J(2)

di J(2)
dj J(2)

dk

(a) (b)

Figure 3.15: Non decimatable, biased star-triangle structure with typical notation (a) and

our notation (b).

because the system of equations does not have enough degrees of freedom

ln cosh
(
J

(1)
d − J

(2)
di − J

(2)
dj − J

(2)
dk

)
= G(0) + G

(2)
ij + G

(2)
ik + G

(2)
jk , (3.59)

ln cosh
(
J

(1)
d − J

(2)
di − J

(2)
dj + J

(2)
dk

)
= G(0) + G

(2)
ij − G

(2)
ik − G

(2)
jk , (3.60)

ln cosh
(
J

(1)
d − J

(2)
di + J

(2)
dj − J

(2)
dk

)
= G(0) − G

(2)
ij + G

(2)
ik − G

(2)
jk , (3.61)

ln cosh
(
J

(1)
d − J

(2)
di + J

(2)
dj + J

(2)
dk

)
= G(0) − G

(2)
ij − G

(2)
ik + G

(2)
jk , (3.62)

ln cosh
(
J

(1)
d + J

(2)
di − J

(2)
dj − J

(2)
dk

)
= G(0) − G

(2)
ij − G

(2)
ik + G

(2)
jk , (3.63)

ln cosh
(
J

(1)
d + J

(2)
di − J

(2)
dj + J

(2)
dk

)
= G(0) − G

(2)
ij + G

(2)
ik − G

(2)
jk , (3.64)

ln cosh
(
J

(1)
d + J

(2)
di + J

(2)
dj − J

(2)
dk

)
= G(0) + G

(2)
ij − G

(2)
ik − G

(2)
jk , (3.65)

ln cosh
(
J

(1)
d + J

(2)
di + J

(2)
dj + J

(2)
dk

)
= G(0) + G

(2)
ij + G

(2)
ik + G

(2)
jk , (3.66)

notice that for this system there are 8 equations but only 4 unknown terms. The system

is not compatible because Eqs. 3.59, 3.60, 3.61 and 3.62 are the same expressions as

Eqs. 3.66, 3.65, 3.64 and 3.63 respectively, but with different values in the left hand

side (lhs) of the equations. We want to obtain a system of equations that can be solved,

so we will enter as many variables as possible to reach 8 unknown terms and generate a

system with 8 equations and 8 unknown terms. We begin by introducing the set of bias

3.4. HIGH ORDER DECIMATION 67

terms that is added to the resulting structure

ln cosh
(
J

(1)
d − J

(2)
di − J

(2)
dj − J

(2)
dk

)
= G(0) − G

(1)
i − G

(1)
j − G

(1)
k + G

(2)
ij + G

(2)
ik + G

(2)
jk ,

ln cosh
(
J

(1)
d − J

(2)
di − J

(2)
dj + J

(2)
dk

)
= G(0) − G

(1)
i − G

(1)
j + G

(1)
k + G

(2)
ij − G

(2)
ik − G

(2)
jk ,

ln cosh
(
J

(1)
d − J

(2)
di + J

(2)
dj − J

(2)
dk

)
= G(0) − G

(1)
i + G

(1)
j − G

(1)
k − G

(2)
ij + G

(2)
ik − G

(2)
jk ,

ln cosh
(
J

(1)
d − J

(2)
di + J

(2)
dj + J

(2)
dk

)
= G(0) − G

(1)
i + G

(1)
j + G

(1)
k − G

(2)
ij − G

(2)
ik + G

(2)
jk ,

ln cosh
(
J

(1)
d + J

(2)
di − J

(2)
dj − J

(2)
dk

)
= G(0) + G

(1)
i − G

(1)
j − G

(1)
k − G

(2)
ij − G

(2)
ik + G

(2)
jk ,

ln cosh
(
J

(1)
d + J

(2)
di − J

(2)
dj + J

(2)
dk

)
= G(0) + G

(1)
i − G

(1)
j + G

(1)
k − G

(2)
ij + G

(2)
ik − G

(2)
jk ,

ln cosh
(
J

(1)
d + J

(2)
di + J

(2)
dj − J

(2)
dk

)
= G(0) + G

(1)
i + G

(1)
j − G

(1)
k + G

(2)
ij − G

(2)
ik − G

(2)
jk ,

ln cosh
(
J

(1)
d + J

(2)
di + J

(2)
dj + J

(2)
dk

)
= G(0) + G

(1)
i + G

(1)
j + G

(1)
k + G

(2)
ij + G

(2)
ik + G

(2)
jk ,

(3.67)

but this solution leads to a system of eight equations with seven unknowns, this is yet a

non compatible system of equations. We need to introduce an eighth element which makes

the system solvable: the only feasible solution is using a higher order term [Sejnowski,

1987, Farguell et al., 2006] that would at least grant a sufficient number of unknowns.

Notice, however, that even by having such a drawback, decimation has been used so far

for pattern recognition over a set of images [Nijman and Kappen, 1996] and for medical

diagnosis [Rüger, 1997], thus proving than standard decimation is suitable for solving

some learning problems.

3.4.2 The HOBM applied to decimation

The HOBM [Sejnowski, 1987] is an extension of the Boltzmann Machine where weights

may connect more than two units. These are known as high order weights and the resulting

BM model is typically referred to as a high order Boltzmann Machine. A typical high

order connection is depicted in Fig. 3.16, though this one is linking three units such

weights may connect up to N units on an N units neural network.

The energy functional is changed to allow the same dynamics with this new set of

68 CHAPTER 3. THE PROCESS OF DECIMATION

wijk
(3)

Si Sj Sk

Figure 3.16: Third order weight linking three output units.

connections

E = −
N∑

n=1,σ

w(n)
σ

∏
ρ∈σ

Sρ ,

and weights, regardless of their order, are again temperature normalized

J (n)
σ =

w
(n)
σ

T
.

JijkJij Jik JjkJ J Ji j k
(3)(2)(1)(1)(1) (2)(2)

S

S

S

i

j

k

Figure 3.17: Third order smallest possible neural network.

A fully connected, three units neural network with temperature normalized weights is

depicted in Fig. 3.17. Notice also that this is the minimal structure that allows inclusion of

high order terms, as there are three units. We will consider bias terms as first order weights

and standard connections as second order ones. Now, we recall the biased star-triangle

association that had no solution in the previous section and add a third order element

as an unknown. The transformation which is taking place is schematically described in

3.4. HIGH ORDER DECIMATION 69

Fig. 3.18, where we decimate unit Sd. The related equation reads

ln cosh
(
J

(1)
d + J

(2)
di Si + J

(2)
dj Sj + J

(2)
dk Sk

)
= (3.68)

= G(0) + G
(1)
i Si + G

(1)
j Sj + G

(1)
k Sk + G

(2)
ij SiSj + G

(2)
ik SiSk + G

(2)
jk SjSk + G

(3)
ijkSiSjSk ,

this results on linear system of eight equations with eight unknowns, as represented in

table 3.3.

J(1)
d

Jdi
(2)

Jdj
(2)

Jdk
(2)

Si Sj Sk Sd

G(1)
i

G(2)
jk

G(3)
ijk

G(1)
j

G(1)
k

G(2)
ij

G(2)
ik

Si Sj Sk

Figure 3.18: Third order star-triangle conversion.

When such system is solved, we obtain

G
(3)
ijk =

1

8
ln

(
A1A2A4A7

A0A3A5A6

)
,

G
(2)
ij =

1

8
ln

(
A0A1A6A7

A2A3A4A5

)
,

G
(2)
ik =

1

8
ln

(
A0A2A5A7

A1A3A4A6

)
,

G
(2)
jk =

1

8
ln

(
A0A3A4A7

A1A2A5A6

)
,

G
(1)
i =

1

8
ln

(
A4A5A6A7

A0A1A2A3

)
,

G
(1)
j =

1

8
ln

(
A2A3A6A7

A0A1A4A5

)
,

G
(1)
k =

1

8
ln

(
A1A3A5A7

A0A2A4A6

)
, (3.69)

70 CHAPTER 3. THE PROCESS OF DECIMATION

Si Sj Sk ln cosh
(
J

(1)
d + J

(2)
di Si + J

(2)
dj Sj + J

(2)
dk Sk

)

−1 −1 −1
ln cosh

(
J

(1)
d − J

(2)
di − J

(2)
dj − J

(2)
dk

)
=

= −G
(3)
ijk + G

(2)
ij + G

(2)
ik + G

(2)
jk − G

(1)
i − G

(1)
j − G

(1)
k + G(0) = lnA0

−1 −1 1
ln cosh

(
J

(1)
d − J

(2)
di − J

(2)
dj + J

(2)
dk

)
=

= G
(3)
ijk + G

(2)
ij − G

(2)
ik − G

(2)
jk − G

(1)
i − G

(1)
j + G

(1)
k + G(0) = ln A1

−1 1 −1
ln cosh

(
J

(1)
d − J

(2)
di + J

(2)
dj − J

(2)
dk

)
=

= G
(3)
ijk − G

(2)
ij + G

(2)
ik − G

(2)
jk − G

(1)
i + G

(1)
j − G

(1)
k + G(0) = ln A2

−1 1 1
ln cosh

(
J

(1)
d − J

(2)
di + J

(2)
dj + J

(2)
dk

)
=

= −G
(3)
ijk − G

(2)
ij − G

(2)
ik + G

(2)
jk − G

(1)
i + G

(1)
j + G

(1)
k + G(0) = lnA3

1 −1 −1
ln cosh

(
J

(1)
d + J

(2)
di − J

(2)
dj − J

(2)
dk

)
=

= G
(3)
ijk − G

(2)
ij − G

(2)
ik + G

(2)
jk + G

(1)
i − G

(1)
j − G

(1)
k + G(0) = ln A4

1 −1 1
ln cosh

(
J

(1)
d + J

(2)
di − J

(2)
dj + J

(2)
dk

)
=

= −G
(3)
ijk − G

(2)
ij + G

(2)
ik − G

(2)
jk + G

(1)
i − G

(1)
j + G

(1)
k + G(0) = lnA5

1 1 −1
ln cosh

(
J

(1)
d + J

(2)
di + J

(2)
dj − J

(2)
dk

)
=

= −G
(3)
ijk + G

(2)
ij − G

(2)
ik − G

(2)
jk + G

(1)
i + G

(1)
j − G

(1)
k + G(0) = lnA6

1 1 1
ln cosh

(
J

(1)
d + J

(2)
di + J

(2)
dj + J

(2)
dk

)
=

= G
(3)
ijk + G

(2)
ij + G

(2)
ik + G

(2)
jk + G

(1)
i + G

(1)
j + G

(1)
k + G(0) = ln A7

Table 3.3: Third order equations for the star-triangle conversion.

arriving to a general equivalence for the star-triangle system with a central biased unit.

Notice though that standard star-triangle equations can be found by setting J
(1)
d = 0,

since it will make the system loose four equations. This is a starting point to obtain the

serial association expressions. However, this method allows us to reduce a second order

Boltzmann Machine structure that was considered as non-decimatable [Rüger et al., 1996]

to a third order equivalent neural network.

Now that we know how to solve the biased star-triangle transformation, we can inquiry

if adding high order terms would always provide a solution to decimate any given topology

of a Boltzmann Machine. This concept of adding high order weights to the decimated

3.4. HIGH ORDER DECIMATION 71

network constitutes the basic idea behind the high order Decimation procedure. In this

sense, we now consider Sd to be a biased neuron from a BM model which is connected to

other units S1 to SN . Weights up to order N are added in the decimation expression and,

as a result, a fully connected N-th order neural network is obtained. The corresponding

equations have the following form

ln cosh

(
J

(1)
d +

∑
i

J
(2)
di Si

)
=

= G(0) +
∑

i G
(1)
i Si +

∑
j<i G

(2)
ij SiSj +

∑
k<j<i G

(3)
ijkSiSjSk + (3.70)

We now count the total number of equations required to perform high order decimation,

as there are

•
⎛
⎝ N

0

⎞
⎠ = 1 normalization constants G(0),

•
⎛
⎝ N

1

⎞
⎠ = N biases G

(1)
i ,

•
⎛
⎝ N

2

⎞
⎠ = N(N−1)

2
second order weights G

(2)
ij ,

•
⎛
⎝ N

3

⎞
⎠ = N(N−1)(N−2)

6
third order terms G

(3)
ijk,

• . . .

•
⎛
⎝ N

N

⎞
⎠ = 1 N-th order G

(N)
12...N weight.

However, this is a known identity⎛
⎝ N

0

⎞
⎠ +

⎛
⎝ N

1

⎞
⎠ +

⎛
⎝ N

2

⎞
⎠ + . . . +

⎛
⎝ N

N

⎞
⎠ = 2N ,

making it for a total of 2N variables. Since there are N units, these can take 2N com-

binations, hence there are 2N equations and a 2N unknown terms. The HOD process

72 CHAPTER 3. THE PROCESS OF DECIMATION

is schematically shown in Fig. 3.19, where the originally second order neural network of

Fig. 3.19a is decimated to produce the result of Fig. 3.19b. It is shown in the appendix

that the matrix associated to the resulting system of equations is a 2N × 2N Hadamard

type [Sylvester, 1867] and that therefore its determinant is always different from zero.

Hadamard matrices are a family of square matrices which are widely used in the commu-

nication area and have some interesting properties: let H
2N×2N

be a Hadamard matrix of

size 2N , it is shown in the appendix that

det {H2N×2N} �= 0 , (3.71)

H2N×2N · HT
2N×2N = HT

2N×2N · H2N×2N = 2NI , (3.72)

H−1
2N×2N =

1

2N
HT

2N×2N . (3.73)

In this way, the system of equations has always a solution that is unique because a

Hadamard matrix does always have an inverse.

Jd1 Jd2
Sd

S1

S2

SN

Jd3
S1

S2

S3

SN

G i G ij G ijk G 12...N
Jd

(a) (b)

(2) (2) (2)

(1) (2) (3) (N)
(1)

Figure 3.19: Original (a) and decimated (b) structures.

When the original network is already of high order, all weights connected to the unit

to be decimated must be taken into account in the lhs of the previous expression, leading

to the HOD master equation

ln cosh

(
J

(1)
d +

∑
i

J
(2)
di Si +

∑
j<i

J
(3)
dij SiSj + ... + J

(N+1)
d123...NS1S2S3 . . . SN

)
=

= G(0) +
∑

i G
(1)
i Si +

∑
j<i G

(2)
ij SiSj +

∑
k<j<i G

(3)
ijkSiSjSk + (3.74)

3.4. HIGH ORDER DECIMATION 73

Notice that the equations for the standard BM, where only two-body weights are con-

sidered, can be recovered from this expression by setting J
(n>2)
σ = 0. Once the system

is solved, a new Boltzmann Machine with one less unit is left, although the resulting

network is highly connected due to the inclusion of the new, high order weights. In order

to compute the needed n-th order correlations appearing in the weight update rule for

the Boltzmann Machine learning algorithm, the process is iterated until all the required

units are decimated.

3.4.3 HOD numerical example

We have already seen that HOD can be applied to any Boltzmann Machine structure,

regardless of its order. A numerical example over the neural network depicted in Fig. 3.20,

which is a fourth order HOBM, is now carried out. In this example, the value of the

correlation < S2S3 > is calculated. Notice however that a learning process would require

to repeat this same algorithm for each connection from the neural network.

We initialize the normalized weights
{
J

(n)
σ

}
of this model randomly and in the range

[−1, +1], hence

J
(1)
1 = 0.86 J

(1)
2 = −0.068 J

(1)
3 = −0.163 J

(1)
4 = 0.69

J
(2)
12 = 0.050 J

(2)
13 = −0.60 J

(2)
14 = 0.34

J
(2)
23 = 0.68 J

(2)
24 = −0.96 J

(2)
34 = 0.36

J
(3)
123 = −0.24 J

(3)
124 = 0.66 J

(3)
134 = 0.0056 J

(3)
234 = 0.42

J
(4)
1234 = −0.14

we now apply these values to Eq. 3.74 which, for this example, reads as

ln cosh
(
J

(1)
4 S4 + J

(2)
14 S1S4 + J

(2)
24 S2S4 + J

(2)
34 S3S4+

J
(3)
124S1S2S4 + J

(3)
134S1S3S4 + J

(3)
234S2S3S4 + J

(4)
1234S1S2S3S4

)
=

= G(0) + G
(1)
1 S1 + G

(1)
2 S2 + G

(1)
3 S3 +

+G
(2)
12 S1S2 + G

(2)
13 S1S3 + G

(2)
23 S2S3 + G

(3)
123S1S2S3 . (3.75)

74 CHAPTER 3. THE PROCESS OF DECIMATION

S1

S2

S3

S4
(a)

S2

(c)

S3

S1

S2

S3

(b)

Figure 3.20: Decimation process to compute correlation < S2S3 >.

When the system of equations is solved, one arrives to these values

G(0) = 1.1

G
(1)
1 = −0.45 G

(1)
2 = 0.077 G

(1)
3 = −0.79

G
(2)
12 = −0.30 G

(2)
13 = 0.22 G

(2)
23 = −0.045

G
(3)
123 = 0.31

which are added to the original connections. This leads then to a new set of weights{
J

(n)′
σ

}
, as shown in Fig. 3.20b. These are

J
(1)′
1 = 0.41 J

(1)′
2 = 0.010 J

(1)′
3 = −0.86

J
(2)′
12 = 0.20 J

(2)′
13 = −0.38 J

(2)′
23 = 0.63

J
(3)′
123 = 0.070

that are again set into the HOD equation. We decimate now unit S1 and Eq. 3.74 reads

then as

ln cosh
(
J

(1)′
1 S1 + J

(2)′
12 S1S2 + J

(2)′
13 S1S3 + J

(2)′
23 S2S3 + J

(3)′
123 S1S2S3

)
=

= G(0)′ + G
(1)′
2 S2 + G

(1)′
3 S3 + G

(2)′
23 S2S3 . (3.76)

The set
{
G

(n)′
σ

}
that is obtained is the following

G(0)′ = 0.65

G
(1)′
2 = 0.19 G

(1)′
3 = −0.51

G
(2)′
23 = −0.15

3.5. MULTIPLE UNIT DECIMATION PROCESS 75

we arrive then to the weights that are depicted in Fig. 3.74c, which are referred to as{
J

(n)′′
σ

}
. These values are

J
(1)′′
2 = 0.20 J

(1)′′
3 = −1.37

J
(2)′′
23 = −0.08

the value of the correlation < S2S3 > is then calculated by using Eq. 3.56. The final

result is then

< S2S3 >= −0.25 , (3.77)

notice again that this process has to be carried out for each pair of connected units, in

order to calculate the quantities that are needed to carry out the learning process.

3.5 Multiple unit decimation process

In this section an extension of the high order Decimation method is proposed by deci-

mating a given number of units at once. The final result of the neural network is yet the

same, though in this sense the intermediate steps where high order weights are added in

parallel structures are not used anymore.

In the first part of this section, we calculate the marginal probability distribution sum

for a multiple decimation process and show it to be the same calculus that is used on

an iterative HOD process. We then proceed on a simple case for a BM with two hidden

units whose decimated results are numerically proven to be the same as per standard

decimation. This section concludes then with the generalization of the multiple decimation

instance, thus allowing further analysis of the decimation process and a comparative

analysis on the results that are obtained by following an iterative decimation procedure

and the multiple decimation algorithm.

76 CHAPTER 3. THE PROCESS OF DECIMATION

3.5.1 Iterative HOD and the Multiple Decimation equivalence

The high order Decimation process carries out decimation for a high order energy func-

tional. In this sense, Eq. 3.7 is applied to a HOBM model and a sum over the possible

states of the unit that is being decimated is carried out. Consider now a given neural

network with N + 1 units, where the decimation process leads to an equivalent model

with N units. The HOD master equation reads as

ln

(
1

2

+1∑
Sd=−1

e
∑

J
(n)
dσ Sd

∏
ρ∈σ Sρ

)
= G(0)′ +

n=N∑
n=1, σ

G(n)
σ

∏
ρ∈σ

Sρ . (3.78)

where Sd is the unit to decimate and σ represents the labels that weight G
(n)
σ connects;

notice also that G(0)′ has been explicitly separated from the rest of the weights. This

expression is used within the marginal probability sum

p (α) = p (αd)|Sd=1 + p (αd)|Sd=−1 , (3.79)

where αd is an energy state which depends on both a set of units S and a certain unit

Sd that is being decimated. Decimating two units Sd1 and Sd2 at the same time would

therefore be equivalent to

p (α) = (3.80)

p (αD)|Sd1
=1,Sd2

=1 + p (αD)|Sd1
=1,Sd2

=−1 + p (αD)|Sd1
=−1,Sd2

=1 + p (αD)|Sd1
=−1,Sd2

=−1 ,

where αD depends on a given set of units S that are connected to the two units that are

being decimated. We consider now the decimation process for a set of M units Sd on a

given neural network that originally had a total of N + M neurons. In this sense, the

previous expression now becomes

p (α) =
∑
Sd

p (αD) , (3.81)

and the sum is carried out for all the values that the units from Sd can take. The HOD

master expression from Eq. 3.78 becomes then

ln

(
1

2

∑
Sd

e
∑n=N+M

n=1, σ J
(n)
dσ Sd

∏
ρ∈σ Sρ

)
= G(0)′ +

n=N∑
n=1, σ

G(n)
σ

∏
ρ∈σ

Sρ . (3.82)

3.5. MULTIPLE UNIT DECIMATION PROCESS 77

where
{
G

(n)
σ

}
is the new set of weights that connects all the units from set S. We do also

introduce the term G(0) instead of G(0)′ , which absorbs − ln 1
2
, and put this term into the

sum

ln

(∑
Sd

e
∑n=N+M

n=1, σ J
(n)
dσ Sd

∏
ρ∈σ Sρ

)
=

n=N∑
n=0, σ

G(n)
σ

∏
ρ∈σ

Sρ , (3.83)

thus becoming the multiple decimation master equation.

3.5.2 Two units decimation

We have seen that a certain structure can be decimated on a single step by carrying out

a sum over all the units that are being decimated. In this sense, it becomes a simpler

process than carrying out a multiple set of HOD processes. We now propose a simple,

second order structure with two output units and a hidden layer with two neurons that

is represented in Fig. 3.21. This structure will be first decimated by using HOD, since

this method will generate a third order weight for this topology. This weight will then be

decimated to reach a simpler structure only with the output units. The results that are

obtained by carrying out this process will then be compared to the ones that are found

by carrying out Multiple Decimation.

J(2)
h h J(2)

h o J(2)
h oJ(2)

ohJ(2)
h oJ(1)

hJ(1)
h

Sh 1

So 2

So 1

Sh 2

1 2 2 1 2 21 21 121

Figure 3.21: Two hidden and two output neurons BM.

We now proceed to write down the equations for a multiple decimation process assum-

ing that the conditioned probability distribution of the output neurons remains unchanged

∑
Sh1

Sh2

e
Sh1

(
J

(1)
h1

+J
(2)
h1o1

So1+J
(2)
h1o2

So2

)
+Sh2

(
J

(1)
h2

+J
(2)
h1o1

So1+J
(2)
o2h2

So2

)
+J

(2)
h1h2

Sh1
Sh2 =

= eG(0)+G
(1)
o1

So1+G
(1)
o2

So2+G
(2)
o1o2

So1So2 , (3.84)

78 CHAPTER 3. THE PROCESS OF DECIMATION

where the set of weights
{
J

(n)
σ

}
is known and

{
G

(n)
σ

}
is the unknown set to be found.

When logarithm is taken at both sides of the equation we arrive at

ln

⎡
⎣ ∑

Sh1
Sh2

e
Sh1

(
J

(1)
h1

+J
(2)
h1o1

So1+J
(2)
h1o2

So2

)
+Sh2

(
J

(1)
h2

+J
(2)
h1o1

So1+J
(2)
o2h2

So2

)
+J

(2)
h1h2

Sh1
Sh2

⎤
⎦ =

= G(0) + G(1)
o1

So1 + G(1)
o2

So2 + G(2)
o1o2

So1So2 , (3.85)

we can now reach the same system of equations that we already knew from the high order

Decimation method

ln Aγ =
n=2∑

n=0,σ

G(n)
σ

∏
Sρ , (3.86)

where the term Aγ is used to describe the lhs from Eq. 3.85 and
{
G

(n)
σ

}
is the new set

of connections that links the remaining units. Again, this equation can be expressed as a

system of equations with a Hadamard matrix

H22×22 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 1

1 −1 1 −1

1 1 −1 −1

1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.87)

notice however that the resulting neural network does only have the two output units,

and therefore the Hadamard matrix is 22 × 22.

We now carry out an example with this topology. We shall use the following numerical

values for the weights, which have been set up randomly within a [−1, +1] range as

J
(1)
h1

= 0.90026 , J
(2)
h1h2

= −0.087065 , J
(2)
h1o1

= −0.53772 , J
(2)
h1o2

= 0.21369 ,

J
(1)
h2

= −0.028035 , J
(2)
h2o1

= 0.7826 , J
(2)
h2o2

= 0.52419 ,

J
(1)
o1 = 0.78730 , J

(2)
o1o2 = −0.88422 ,

J
(1)
o2 = −0.29426 ,

this neural network is being both decimated as per multiple decimation and standard high

order Decimation, as shown in Fig. 3.22. Applying multiple decimation leads (directly)

3.5. MULTIPLE UNIT DECIMATION PROCESS 79

to the following values

G(1)
o1

= −0.4072 ,

G(1)
o2

= 0.1042 ,

G(2)
o1o2

= 0.2677 ,

which are added to the original J
(1)
o1 , J

(1)
o2 and J

(2)
o1o2

G̃(1)
o1

= J (1)
o1

+ G(1)
o1

= 0.3801 ,

G̃(1)
o2

= J (1)
o1

+ G(1)
o1

= −0.1900 ,

G̃(2)
o1o2

= J (2)
o1o2

+ G(2)
o1o2

= −0.6165 .

J(2)
h h J(2)

h o J(2)
h oJ(2)

ohJ(2)
h oJ(1)

hJ(1)
h J J J JJ J J(1)|

h
(1)|
o

(1)|
o

(2)|
h o

(2)|
h o

(2)|
o o

(3)|
h o o

J J J(1)||
o

(1)||
o

(2)||
o o

Sh 1

So 2

So 1

Sh 2

1 2 2 1 2 21 21 121

So 2

So 1

Sh 2

So 2

So 1

2 1 2 2 1 2 2 1 2 2 1 2

1 2 1 2

Figure 3.22: High order Decimation process.

On the other hand, we apply HOD to the same randomly initialized weights through

this expression

ln cosh
(
J

(1)
h1

+ J
(2)
h1h2

Sh2 + J
(2)
h1o1

So1 + J
(2)
h1o2

So2

)
= (3.88)

= G(0) + G
(1)
h2

Sh2 + G(1)
o1

So1 + G(1)
o2

So2 +

+G
(2)
h2o1

Sh2So1 + G
(2)
h2o2

Sh2So2 + G(2)
o1o2

So1So2 + G
(3)
h2o1o2

Sh2So1So2 ,

where we first decimate unit Sh1. We reach the following intermediate values

G
(1)
h2

= −0.05301 , G
(2)
h2o1

= 0.024002 , G
(2)
h2o2

= −0.010013 , G
(3)
h2o1o2

= −0.0061618 ,

G
(1)
o1 = −0.3588 , G

(2)
o1o2 = −0.058601 ,

G
(1)
o2 = 0.1314 ,

which are then added to previously existing ones

J (n)′
σ = J (n)

σ + G(n)
σ , (3.89)

80 CHAPTER 3. THE PROCESS OF DECIMATION

thus arriving to

J
(1)′
h2

= −0.081045 , J
(2)′
h2o1

= 0.8066 , J
(2)′
h2o2

= 0.51418 , J
(3)′
h2o1o2

= −0.0061618 ,

J
(1)′
o1 = 0.4285 , J

(2)′
o1o2 = −0.94282 ,

J
(1)′
o2 = −0.16286 .

We apply again HOD to suppress unit Sh2 . The following equation is used

ln cosh
(
J

(1)′
h2

+ J
(2)′
h2o1

So1 + J
(2)′
h2o2

So2 + J
(3)′
h2o1o2

So1So2

)
= G(0)′′ + G(1)′′

o1
So1 + G(1)′′

o2
So2 + G(2)′′

o1o2
So1So2 , (3.90)

thus leading to

G
(1)′′
o1 = −0.048408 , G

(2)′′
o1o2 = 0.32634 ,

G
(1)′′
o2 = −0.027151 ,

these are again added to the original connections

J (n)′′
σ = J (n)′

σ + G(2)′′
σ , (3.91)

and we obtain the following quantities

J
(1)′′
o1 = 0.38009 , J

(2)′′
o1o2 = −0.61649 ,

J
(1)′′
o2 = −0.19001 ,

which are exactly the same as per multiple decimation process. Finally, table 3.4 shows

a five instances multiple decimation trial: multiple decimation has been run over five

different randomly generated sets of weights. The values shown in the table are the initial

J
(n)
σ , intermediate J

(n)′
σ and final values J

(n)′′
σ . These last ones can be compared to the

ones obtained by the multiple decimation process G̃
(n)
σ , notice however that both process

provide the same results.

3.5.3 Multiple unit decimation for a 10 units BM

Finally, we propose a numerical example that is used to compare the Multiple Decimation

process with the high order Decimation method. We will decimate a second order standard

3.5. MULTIPLE UNIT DECIMATION PROCESS 81

Trial number 1 2 3 4 5

J
(1)
h1

0.90026 0.23086 -0.88422 -0.96945 0.67624

J
(2)
h1h2

-0.087065 0.87094 -0.60256 0.69244 0.41894

J
(2)
h1o1

-0.53772 0.58387 -0.29426 0.49357 -0.96072

J
(2)
h1o2

0.21369 0.84363 0.62633 -0.10981 0.36255

J
(1)
h2

-0.028035 0.47641 -0.98028 0.86363 -0.24104

J
(2)
h2o1

0.7826 -0.64747 -0.72222 -0.068011 0.66359

J
(2)
h2o2

0.52419 -0.18859 -0.59447 -0.1627 0.0056258

J
(1)
o1 -0.96299 0.83381 0.20758 0.050305 -0.14222

J
(2)
o1o2 -0.11059 0.7873 -0.60237 0.34427 -0.62069

J
(1)
o2 0.64281 -0.17946 -0.45562 -0.59471 -0.39077

J
(1)′
h2

-0.081045 0.58175 -0.6532 0.42829 -0.10205

J
(2)′
h2o1

0.8066 -0.37293 0.35786 0.097147 0.42525

J
(2)′
h2o2

0.51418 0.26143 -0.79883 -0.20011 0.083138

J
(3)′
h2o1o2

-0.0061618 -0.04987 -0.62887 -0.019423 0.052702

J
(1)′
o1 -1.3218 0.90365 -0.7926 -0.23783 -0.55941

J
(2)′
o1o2 -0.16919 1.048 -0.69926 0.31658 -0.82509

J
(1)′
o2 0.77421 -0.078672 0.055192 -0.53351 -0.2701

J
(1)′′
o1 -1.3702 0.71426 0.56755 -0.19677 -0.59627

J
(2)′′
o1o2 0.15714 0.056605 -0.48987 0.29292 -0.79664

J
(1)′′
o2 0.74706 0.95569 -0.40708 -0.61435 -0.25636

G̃
(1)
o1 -1.3702 0.71426 0.56755 -0.19677 -0.59627

G̃
(2)
o1o2 0.15714 0.056605 -0.48987 0.29292 -0.79664

G̃
(1)
o2 0.74706 0.95569 -0.40708 -0.61435 -0.25636

Table 3.4: Multiple vs. standard decimation trial example.

82 CHAPTER 3. THE PROCESS OF DECIMATION

topology with ten units in order to compare the correlations that should be used for all

the weights. Notice that we are only working with a part of a whole learning process,

which would be a free correlation calculus for a set of ten units. In this structure, there

are 45 second order weights and 10 bias terms, since units are not connected to themselves

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0 w
(2)
1,2 w

(2)
1,3 · · · w

(2)
1,9 w

(2)
1,10

w
(2)
1,2 0.0 w

(2)
1,3 · · · w

(2)
2,9 w

(2)
2,10

w
(2)
1,2 w

(2)
1,3 0.0 · · · w

(2)
3,9 w

(2)
3,10

...
...

...
. . .

...
...

w
(2)
1,10 w

(2)
2,10 w

(2)
3,10 · · · 0.0 w

(2)
1,9

w
(2)
1,10 w

(2)
2,10 w

(2)
3,10 · · · w

(2)
1,9 0.0

w
(1)
1 w

(1)
2 w

(1)
3 · · · w

(1)
9 w

(1)
10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.92)

We now compute all the expectation values and correlations that are involved in the pro-

cess for a 1000 randomly generated set of W instances, decimated by HOD and Multiple

Decimation. These will be referred as 〈∏Sρ〉HOD and 〈∏Sρ〉MDec, respectively. We have

calculated the following statistics to measure how the correlations found by HOD differ

from the ones computed by multiple decimation:

• Mean absolute difference μ between the two results, defined as

μ =
1

100 · 1000

∑∣∣∣〈∏Sρ

〉
HOD

−
〈∏

Sρ

〉
MDec

∣∣∣ = 0.000854 . (3.93)

• Standard deviation σ associated to this mean value

σ =
1

100 · 1000

(∑(∣∣∣〈∏Sρ

〉
HOD

−
〈∏

Sρ

〉
MDec

∣∣∣− μ
)2
) 1

2

= 0.0064247 .

(3.94)

• Maximum and minimum values associated to the same operation

maxS = max
{∣∣∣〈∏Sρ

〉
HOD

−
〈∏

Sρ

〉
MDec

∣∣∣} = 0.30578 , (3.95)

minS = min
{∣∣∣〈∏Sρ

〉
HOD

−
〈∏

Sρ

〉
MDec

∣∣∣} = 0.0 . (3.96)

3.6. SIMULATIONS AND RESULTS APPLYING HOD 83

By using statistical theory, it can be shown that about 99.73% of the values will

have an error smaller than 3σ = 0.0193, and that in the 99.994% of the cases it will

be 4σ = 0.0257. Notice however that this example is working with a case that involves

solving the HOD equations for 10 units, hence the algorithm has to solve a total of

1024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 = 2044 equations. Notice also that the

previous example resulted in more similar values, as far as decimating a four units neural

network does not imply as many calculus as the ten units neural network decimation

example.

3.6 Simulations and results applying HOD

In this section we solve some problems through the HOD method to show the effectiveness

of the algorithm. In the first part of this section we describe a problem that was created as

a toy problem: toy problems are non-real in the sense that they are used to test if a given

algorithm could be used on a real life, commercial application. The configuration of the

neural network, its learning parameters and a comparison with the multilayer perceptron

are then described, as the results are discussed. The second part of this section proceeds

with the BM applied to some problems that were once solved as real problems, and that

now stand in a benchmarking repository [Newman et al., 1998,Prechelt, 1994]. We finally

conclude this section by solving a toy problem that was specifically created as a benchmark

for multiple learning algorithms: the Monk problem [Thrun et al., 1991].

However, we will first describe a modification to the standard gradient descent learning

process: the BM learning problem is solved by performing gradient descent over the

Kullback-Leibler distance, thus resulting in the following expression

Δw(n)
σ =

η

T

(〈∏
ρ∈σ

Sρ

〉∗

−
〈∏

ρ∈σ

Sρ

〉)
,

where the values of the correlations are computed by using either the MC based algorithm

or either the high order Decimation method. However, the learning process is better

carried out when a variation of the gradient descent algorithm, which is known as conjugate

84 CHAPTER 3. THE PROCESS OF DECIMATION

gradient [Duda et al., 2001], is applied to this expression. This new algorithm changes

the previous equation into

Δw(n)
σ

∣∣
k

= (1 − α)

[
η

T

(〈∏
ρ∈σ

Sρ

〉∗

−
〈∏

ρ∈σ

Sρ

〉)]
+ α Δw(n)

σ

∣∣
k−1

, (3.97)

where k is the current algorithm iteration and α is a new parameter that has to be properly

tuned to reach convergence and that can not be greater than 1; notice that the increment

of the weights at the previous iteration is being used to update their current value.

3.6.1 The letter recognition problem: a toy problem

The high order decimation method has been tested against a perceptron and a traditional

BM in a letter recognition dataset context, where the network has to recognize characters

from a noisy source. A system of 24 letters written with a Times New Roman font is used,

and each letter is represented by a 50x50 pixels binary image. While these neat characters

are the ones to be learned, a set of 100 different images for each letter is generated by

adding random noise which is implemented via bit negation. The amount of noise present

is characterized by a parameter γ, which is proportional to the percentage of negated bits.

Thus for example, 10% of bits are reversed when γ = 10. Once the learning using the

previous patterns has been carried out, a new set of noisy characters is generated using

the same procedure to test the network.

Table 3.5 shows the amount of time and epochs (equal to the number of times weights

are updated in a complete run of the learning algorithm) required by a Boltzmann Ma-

chine trained with the high order Decimation method compared with results for the same

network trained with the standard Monte Carlo algorithm using the above stated patterns

for γ = 20. All calculations have been performed on a DELL workstation mounting a

Pentium Xeon EMT64 with 2Mb of cache processor working at 3.0 GHz and equipped

with 1.0 Gb DDR2 ECC RAM memory. As it can be seen, not only the high order Dec-

imation performs faster but also requires less epochs to reach the desired result. This

is due to the fact that every Monte Carlo simulation has an associated statistical error,

3.6. SIMULATIONS AND RESULTS APPLYING HOD 85

Algorithm Mean epochs Mean time/epoch (seconds)

Monte Carlo 45 586.68

high order Decimation 11 4.39

Table 3.5: Decimation method against Monte Carlo implementation.

and bringing that below a certain limit (imposed by the accuracy to be achieved) can be

very expensive in computational terms. The network used in this calculation has 2500

input units (corresponding to the 50x50 pixel images used as input), 1 hidden and 5

output units. The training parameters were η = 0.2, α = 0.1, maximum absolute error

| ∂E/∂w |= 0.05 and maximum absolute initial random value for the weights |w0 |= 1.0.

The relation time/epoch describes how long does it take to run a complete epoch in the

simulation. As it can be seen from the table, Decimation performs considerably better in

both aspects. A Decimation epoch is faster because there is no need to run a Simulated

Annealing but only to solve a system of equations. On the other hand, it needs less epochs

to end because it does not suffer from statistical errors as does a Monte Carlo simulation.

Finally, a comparison between the performance of the BM trained with the high order

Decimation method and a dual layer perceptron is presented. The comparison is made on

the basis that both networks can provide a full solution to the problem at hand if enough

learning instances are allowed. In fact both networks have been trained many times and

its efficiency tested at the end of each learning process, finding that both systems can be

100% efficient in many cases. Taking into account this fact, the mean efficiency over a

batch of instances of the same problem has been measured, and this parameter used to

decide which network performs better in a statistical sense.

The BM used in the comparison is fully connected, with five output units and a

variable number of hidden neurons ranging from zero to two. Learning parameters are

once again η = 0.2, α = 0.1, maximum absolute error | ∂E/∂w |= 0.05 and maximum

absolute initial random value for weights | w0 |= 1.0. On the other hand, the topology

of the perceptron employed has been optimized to get best results. The experiment has

86 CHAPTER 3. THE PROCESS OF DECIMATION

γ Mean eff. for BM Mean eff. for perceptron

0.10 97.25 60.38

0.15 96.87 68.77

0.20 94.58 83.49

0.25 94.05 88.55

0.30 86.90 84.87

Table 3.6: Decimation method against perceptron.

been repeated using a number of hidden units spanning the range from 5 to 2500, using

both lineal and hyperbolic tangent transfer functions, and a momentum α between 0.0

and 0.2 with an adaptive η learning rate. Results on the performance are presented in

Table 3.6.

It can be seen from the table that the Boltzmann Machine performs slightly better than

the perceptron. This can be understood when the problem is carefully analyzed, as it has

an original discrete nature. Since the Boltzmann Machine is a binary neural network and

the perceptron is a continuous one, the BM is better suited to solve the problem. However,

the perceptron is a widely used multi purpose network, and it can perform very well on

problems where other continuous models fail. In any case and although the Boltzmann

Machine does a better job, the perceptron still provides solutions that are more than

satisfactory. Still when high order Decimation is employed, the Boltzmann Machine not

only outperforms the perceptron but also gets the solution in a similar period of time.

3.6.2 Problems from a benchmarking repository

The efficiency of the HOD method has been tested against three classification problems

drawn from the UCI [Newman et al., 1998] and Proben1 [Prechelt, 1994] repositories. The

following tasks were selected in order to establish a comparison between the performance

of the BM and the Perceptron:

3.6. SIMULATIONS AND RESULTS APPLYING HOD 87

• Balance problem. This dataset belongs to the UCI repository and was generated

to model psychological experimental results [Klahr and Siegler, 1978]. Each ex-

ample is classified as having the balance scale tip to the right, tip to the left,

or be balanced. The attributes are the left weight, the left distance, the right

weight, and the right distance. The correct way to find the class is the greater of

(left-distance× left-weight) and (right-distance× right-weight). If they are equal, it

is balanced.

• Tic-tac-toe problem. This database has been extracted from the UCI repository. It

encodes the complete set of possible board configurations at the end of tic-tac-toe

games, and the target concept is win for x (hence, it is true when x has one of the

8 possible ways to create a three-in-a-row), where x is assumed to have played first.

This dataset was first used in [Matheus and Rendell, 1989].

• Gene problem. The Primate splice-junction gene sequences problem, which will be

referred to as Gene problem, comes from the Proben1 database and was first used

in [Noordewier et al., 1991]. Splice junctions are points on a DNA sequence where

superfluous DNA is removed during the process of protein creation. The problem

posed in this dataset is to recognize, given a DNA sequence, the boundaries between

exons (the parts that must be retained after splicing), introns (the parts that must

be spliced out) and the ones that are neither exons nor introns (that is, parts that

can be kept or not without an apparent impact on the result).

All three problems were originally conceived as classification tasks with a discrete set

of inputs. Since the Boltzmann Machine is a discrete neural network, they are presum-

ably well suited for it. The comparison has been carried out using a standard ten-fold

cross validation method [Stone, 1977], where the data is divided in ten different random,

uniformly distributed, test sets. These sets are combined to generate ten separate train-

ing patterns, and the final efficiency is calculated as the mean efficiency on solving each

pattern separately. The training parameters and topologies for both the Perceptron and

88 CHAPTER 3. THE PROCESS OF DECIMATION

the Boltzmann Machine were systematically tuned until the best possible results were

achieved. These are summarized in Table 3.7.

Problem Perceptron efficiency BM efficiency

Balance 93.90 96.49

Tic-tac-toe 100.00 98.44

Gene 96.77 97.80

Table 3.7: Decimation method versus perceptron.

The convergence time for both algorithms is similar, taking only a few seconds to

finish on a 2.6 GHz standard Pentium IV platform. Both methods solve the problems

efficiently: the perceptron outperforms the Boltzmann Machine on the Tic-tac-toe, while

the BM wins on the other two tasks. In any case, both algorithms perform remarkably

well when dealing with any of these problems.

3.6.3 The Monk Problem

The Monk problem [Thrun et al., 1991] was originally proposed as a benchmarking com-

parative between many data classification methods. This problem was given to several

different research groups who where either creators or experts in the use of these algo-

rithms. Back in 1992, M. Graña et al. solved this problem with a good overall efficiency

by using a HOBM [Graña et al., 1997], which indicates that it can be a good starting

point to test the high order Decimation method presented in this work.

The Monk Problem is characterized by a space M containing 432 different vectors

used to compute three different tasks, referred to as M1, M2 and M3, respectively. Each

input vector has six discrete variables x0 to x5, which can only take integer values in the

ranges x0 ∈ [1, 2, 3], x1 ∈ [1, 2, 3], x2 ∈ [1, 2], x3 ∈ [1, 2, 3], x4 ∈ [1, 2, 3, 4] and x5 ∈ [1, 2].

Every task in the Monk Problem is evaluated independently of the other two. They

are described in terms of the following boolean logical functions:

• M1 classifies true according to the logical operation (x0 = x1) + (x4 = 1). For this

3.6. SIMULATIONS AND RESULTS APPLYING HOD 89

task, 124 specific vectors were selected as the training set and all 432 were used for

testing purposes. The 124 training vectors were randomly selected from the whole

space by the authors of the problem.

• M2 classifies true if exactly two of the six inputs are set to 1. As before, 169 vectors

specified by the authors are used for training and the whole space M for testing.

• M3 classifies true if [(x4 = 3) · (x3 = 1)] + [(x4 �= 4) · (x1 �= 3)]. In this case,

122 vectors were randomly selected as the training set. However, 5% of them were

misclassified, in an attempt to simulate the effects induced by noise on the patterns.

The results obtained by the Boltzmann Machine with the high order Decimation

method are compared against other classification techniques in Table 3.9, and are ex-

pressed as the percentage of correctly classified test vectors for each task. These values

have been obtained using the same learning and test vectors employed in Refs. [Graña

et al., 1997] and [Thrun et al., 1991]. As it can be seen from the table, the results obtained

with the decimated Boltzmann Machine are good when compared to the other methods.

Task # hidden units η α

M1 4 0.8 0.2

M2 3 0.4 0.4

M3 4 0.8 0.2

Table 3.8: BM topology and learning parameters.

The learning parameters η and α from Eq. 3.97 and the topology employed are reported

in Table 3.8. Notice that the table only shows the number of hidden units, as in all cases

a total of 10 input and 1 output units were used, and the networks employed were fully

connected.

The weights were initialized at random in the range [−1, +1] and the learning algorithm

was considered to have finished when |εerr| ≤ 0.02, as we found this value to be a suitable

bound to achieve the accuracy reported on Table 3.9.

90 CHAPTER 3. THE PROCESS OF DECIMATION

Method M1 M2 M3

AQ17-DCI 100 100 94.2

AQ17-HCI 100 93.1 100

AQ17-FCLS - 92.6 97.2

AQ14-NT - - 100

AQ15-GA 100 86.8 100

Assistant professional 100 81.3 100

mFOIL 100 69.2 100

ID5R 81.7 69.2 95.2

IDL 97.2 66.2 -

ID5R-hat 90.3 65.7 -

TDIDT 75.7 66.7 -

ID3 98.6 67.9 94.4

ID3, no windowing 83.2 69.1 95.6

AQR 95.9 79.7 87.0

CN2 100 69.0 89.1

CLASSWEB 0.10 71.8 64.8 80.8

CLASSWEB 0.15 65.7 61.6 85.4

CLASSWEB 0.20 63.0 57.2 75.2

PRISM 86.3 72.7 90.3

ECOBWEB leaf prediction 71.8 67.4 68.2

ECOBWEB l.p. & information utility 82.7 71.3 68.0

Backpropagation 100 100 93.1

Backpropagation with weight decay 100 100 97.2

Cascade correlation 100 100 97.2

Monte Carlo HOBM 100 98.8 97.0

Decimated Boltzmann Machine 100 100 98.2

Table 3.9: Efficiency on solving the Monk’s problem.

3.6. SIMULATIONS AND RESULTS APPLYING HOD 91

As in Ref. [Farguell et al., 2006], we compare both the execution time and the conver-

gence speed of the high order Decimation method to our implementation of the standard

BM based on MC dynamics. Furthermore, the last temperature used in the cooling sched-

ule was set at T � 0.3 and the number of samples used to evaluate correlations in the

MC algorithm was 1000 times the sum of the number of hidden and output units. This

implementation produced an average error |εerr| ≤ 0.02, which can be identified with the

standard deviation of the simulation. Results for both algorithms are given in Table 3.10.

The information reported is the time (in seconds) needed to evaluate a full set of correla-

tions (which is referred to as an epoch) in a weight update iteration, and the mean epochs

needed to reach convergence. The values reported in Table 3.10 were obtained using a

personal computer equipped with a 2.6 GHz Pentium IV processor and 512 Mb of RAM,

working at 533 MHz.

Task HOD Te HOD 〈e〉 MC Te MC 〈e〉
M1 0.025 67 0.49 108

M2 0.010 12 0.53 31

M3 0.025 20 0.48 23

Table 3.10: High order Decimation algorithm convergence times, in seconds. Te and 〈e〉
stand for time per epoch and mean number of epochs, respectively.

These results indicate that the Decimation algorithm is faster than the standard im-

plementation of the Boltzmann Machine, both in the time needed to compute an epoch

and in the number of iterations required for the algorithm to converge. Moreover, the

HOD method allows for a HOBM implementation with no hidden units: the algorithm

itself can be used to decimate any kind of connection and the high order weights sup-

ply enough degrees of freedom to make this process feasible. The high order Decimation

equations state that the information stored by the hidden units can be introduced in the

high order weights instead.

92 CHAPTER 3. THE PROCESS OF DECIMATION

Chapter 4

BM learning through Hadamard

matrices

4.1 Introduction

In this chapter, we show that the Boltzmann probability distribution reproduced by a

HOBM model can be described in terms of Hadamard matrices and a set of high order

weights. The multiple decimation process can then be used to show that a standard BM

with hidden units is equivalent to a smaller (with less units) HOBM with no hidden units,

at the price of having to deal with high order weights.

This chapter is distributed as follows: the effect that a set of weights connecting only

the input units has on the behavior of the neural network is discussed in section 4.2. In

section 4.3, we discuss a forward problem, which is simply to find the resulting probability

distribution of a HOBM when the complete set of connections linking all the units in

the network is known. In section 4.4, we present the backwards problem, which can

be considered as a learning process for a HOBM: given a probability distribution that

characterizes a known problem we want the neural network to learn it. This chapter

concludes with the application of a particular solution to the backwards problem.

93

94 CHAPTER 4. BM LEARNING THROUGH HADAMARD MATRICES

4.2 Reduction of connections between input units on

a HOBM

In this section, we consider a Boltzmann Machine (a standard BM or a HOBM) with

ni input units, nh hidden units and no output units for a total of N = ni + nh + no

neurons. We assume that input units are connected among themselves, and therefore we

have

⎛
⎝ N

1

⎞
⎠ bias terms,

⎛
⎝ N

2

⎞
⎠ second order terms,

⎛
⎝ N

3

⎞
⎠ third order terms, and so

on, until the last, single N -th order weight connecting all units; yielding a total of 2N − 1

connections. We now recall the Boltzmann probability distribution and the definition of

conditional probability to write down the equation

p (α, β|γ) =
p (α, β, γ)

p (γ)

=
e−Eα,β,γ(So,Sh,Si)∑
μ,ν e−Eμ,ν,γ (So,Sh,Si)

, (4.1)

corresponding to the probability of finding the output units So in the state α, the hidden

units Sh in a state β and the input units Si clamped to a state γ. In these expressions,

the temperature normalized energy functional reads

Eα,β,γ (So, Sh, Si) = −
∑
i1∈ni

J
(1)
i1

Si1 −
∑

i1<i2∈ni

J
(2)
i1i2

Si1Si2 − . . . − J
(ni)
123...ni

S1S2S3 . . . Sni
+

+Ẽα,β,γ (So, Sh, Si)

= Eγ (Si) + Ẽα,β,γ (So, Sh, Si) , (4.2)

where the Eγ (Si) term in the first line connects only input units, while Ẽα,β,γ (So, Sh, Si)

stands for the sum of all the other terms contributing to the energy. An example of this

separation can be seen in Fig. 4.1, where a network with input units (empty circles), no

hidden units and a single output unit, is shown. The terms contributing to Eγ (Si) are

marked with an arrow in Fig. 4.1a and are not present in Fig. 4.1b.

Since for a clamped input Eγ (Si) is a constant, one can simplify it in the numerator

4.3. THE FORWARD PROBLEM 95

Figure 4.1: Scheme of a simple Boltzmann Machine, with the different terms contribut-

ing to Eα,β,γ (So, Sh, Si) (a) and Ẽα,β,γ (So, Sh, Si) (b). In (a) all terms are shown, with

arrows pointing to those that contribute to Eγ (Si). In (b), only the terms contributing

to Ẽα,β,γ (So, Sh, Si) are depicted. Notice that the dashed arrow in (a) indicates that only

the bias terms connecting input units belong to Eγ (Si), and this is why a remaining bias

term appears in the output unit in (b).

and denominator of Eq. 4.1 to find

p (α, β | γ) =
e−Eα,β,γ(So,Sh,Si)∑
μ,ν e−Eμ,ν,γ(So,Sh,Si)

≡ e−Ẽα,β,γ(So,Sh,Si)∑
o,h e−Ẽμ,ν,γ(So,Sh,Si)

. (4.3)

Of course, the term Eγ (Si) will change when the input pattern is changed, but it will

anyway cancel in Eq. 4.3, irrespective of the value of {Si}. This leads to the conclusion

that for any given HOBM, weights linking only input units do not affect the output

conditional probabilities corresponding to the situation where the input units are clamped

to any input state γ.

4.3 The forward problem

Consider now an N -th order Boltzmann Machine with ni inputs, no outputs and no hidden

units, for a total of N = ni + no neurons. We assume here that this neural network has

a known set of connections
{
J

(n)
σ

}
, with n the order of the weight and σ the set of

labels denoting the units being connected. In the forward problem one seeks to find the

96 CHAPTER 4. BM LEARNING THROUGH HADAMARD MATRICES

probability distribution associated to these weights assuming once again that input units

can be connected among themselves. The forward problem is trivial since we know that

the resulting probability distribution is of the Boltzmann type and a full set of weights

determines it uniquely

p (α, γ) =
e−Eα,γ

Z ,

Z being the partition function,

Z =
∑
α,γ

e−Eα,γ .

4.4 The backwards problem

The backwards problem is exactly the opposite of the forward problem presented above.

It is much closer to a real learning problem in neural network theory. The goal of the

backwards problem is to find a set of weights that reproduce a given probability distribu-

tion.

The first problem that we analyze is how to find these weights (thus solving the

learning problem) when we know the complete probability distribution of all the states of

the neural network, we then discuss a numerical example to illustrate how the backwards

problem is solved for a HOBM. We proceed with the extension of the backwards problem

to the case where only input-output conditioned probabilities are known. A solution to

this problem is presented in the next subsection, thus proving that this learning problem

can be solved analytically. The section is concluded with the discussion of the situation

where one does not know the complete probability distribution for all the states, which is

the instance of a real learning problem where the neural network has to extrapolate the

unknown probabilities.

4.4. THE BACKWARDS PROBLEM 97

4.4.1 The backwards problem for a known p.d.f.

In this section, we present an analytical solution to the learning problem of the high

order Boltzmann Machine in the particular case where there are no hidden units and the

complete probability distribution of all states is known. In this sense, the probability

distribution for all possible states is directly shown to the neural network.

We start with the analysis of an N -th order Boltzmann Machine with ni input units,

no output units and no hidden units, for a total of N = ni +no neurons. The value of the

weights is not known, though the neural network may have all possible connections up to

order N . In the backwards problem it is assumed that the complete probability distri-

bution associated to the BM, p (α, γ), is known for every input state γ and every output

state α. We now look for a set of weights that reproduce this probability distribution,

which shall be of the Boltzmann form

p (α, γ) =
e−Eα,γ

Z .

Applying logarithms on both sides one finds

ln p (α, γ) = − lnZ+ (4.4)

+
∑
i1

J
(1)
i1

Si1 +
∑
i1<i2

J
(2)
i1i2

Si1Si2 +
∑

i1<i2<i3

J
(3)
i1i2i3

Si1Si2Si3 + . . . + J
(N)
12...NS1S2 . . . SN .

Of course, there are 2N equations of this form corresponding to the 2N different states

the units in the network can take. The set of

⎛
⎝ N

1

⎞
⎠ bias terms,

⎛
⎝ N

2

⎞
⎠ two-body

weights,

⎛
⎝ N

3

⎞
⎠ three-body weights, and up to

⎛
⎝ N

N

⎞
⎠=1 N-body weights form a total

of
∑N

i=1

⎛
⎝ N

i

⎞
⎠ = 2N − 1 unknown coefficients

{
J

(n)
σ

}
. The relation given in Eq. 4.4

produces 2N different equations when all possible values of the input and output units are

used. In this way, Eq. 4.4 yields 2N equations for the 2N − 1 weights
{
J

(n)
σ

}
. One might

think that the partition function Z can not be used as an independent variable, since it

98 CHAPTER 4. BM LEARNING THROUGH HADAMARD MATRICES

is fixed by the
{
J

(n)
σ

}
weights through its definition

Z =
∑
ν,μ

e−Eν,μ .

However, Z is just a real number and so an arbitrary energy shift E0 = −J (0) + lnZ can

always be added to the energy functional without changing the probability distribution.

This can be trivially seen by multiplying the numerator and denominator of the terms

entering in the probabilities p (α, γ) by eJ(0)

p (α, γ) =
eJ(0)

e−Eα,γ

eJ(0)
∑

ν,μ e−Eν,μ
=

eJ(0)−Eα,γ∑
ν,μ eJ(0)−Eν,μ

=
e−Ẽα,γ∑
ν,μ e−Ẽν,μ

, (4.5)

when Ẽα,γ is the new shifted energy functional. We see then that one additional unknown

weight J (0) can always be introduced without affecting the probability distributions, lead-

ing to a system of 2N equations for 2N unknown variables. In this way, one obtains a

set of linear equations for the 2N quantities
{
J (0), J

(n)
σ

}
, which will be in the following

simply denoted by
{
J

(n)
σ

}
, thus implicitly understanding that a J (0) term has already

been added. We then write the general equation for the backwards problem in the form

ln [�p (α, γ)] = J (0)+ (4.6)

+
∑
i1

J
(1)
i1

Si1 +
∑
i1<i2

J
(2)
i1i2

Si1Si2 +
∑

i1<i2<i3

J
(3)
i1i2i3

Si1Si2Si3 + . . . + J
(N)
12...NS1S2 . . . SN ,

where ln [�p (α, γ)] stands for a vector that contains the probability distribution that the

4.4. THE BACKWARDS PROBLEM 99

system is going to learn and that is completely known

ln [�p (α, γ)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ln p (α1, γ1)

ln p (α1, γ2)
...

ln p (α1, γ2ni)

ln p (α2, γ1)

ln p (α2, γ2)
...

ln p (α2, γ2ni)
...

ln p (α2no , γ1)

ln p (α2no , γ2)
...

ln p (α2no , γ2ni)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.7)

This vector is ordered according to both the values of the input and output units. We

now describe the order that the input units follow according to the input set γ as

γ1 =
{
Si1 = −1, Si2 = −1, . . . , Sini−1 = −1, Sini

= −1
}

,

γ2 =
{
Si1 = −1, Si2 = −1, . . . , Sini

−1 = −1, Sini
= 1
}

,

γ3 =
{
Si1 = −1, Si2 = −1, . . . , Sini−1 = 1, Sini

= −1
}

,

. . .

γ2ni =
{
Si1 = 1, Si2 = 1, . . . , Sini−1 = 1, Sini

= 1
}

. (4.8)

Notice that this ordering corresponds to a binary counting sequence for all the input units;

100 CHAPTER 4. BM LEARNING THROUGH HADAMARD MATRICES

the output set α is built by using the same concept with the output units

α1 =
{
So1 = −1, So2 = −1, . . . , Sono−1 = −1, Sono

= −1
}

,

α2 =
{
So1 = −1, So2 = −1, . . . , Sono−1 = −1, Sono

= 1
}

,

α3 =
{
So1 = −1, So2 = −1, . . . , Soni−1 = 1, Sono

= −1
}

,

. . .

α2no =
{
So1 = 1, So2 = 1, . . . , Sono−1 = 1, Sono

= 1
}

. (4.9)

The order in which these elements appear in ln [�p (α, γ)] is shown in table 4.1.

Position Si1 Si2 . . . Sini
So1 So2 . . . Sono−1 Sono

ln [�p (α, γ)]

1 −1 −1 . . . −1 −1 −1 . . . −1 −1 ln p (α1, γ1)

2 −1 −1 . . . −1 −1 −1 . . . −1 1 ln p (α2, γ1)

3 −1 −1 . . . −1 −1 −1 . . . 1 −1 ln p (α3, γ1)

4 −1 −1 . . . −1 −1 −1 . . . 1 1 ln p (α4, γ1)

. .

2N − 1 1 1 . . . 1 1 1 . . . 1 −1 ln p (α2no−1, γ2ni)

2N 1 1 . . . 1 1 1 . . . 1 1 ln p (α2no , γ2ni)

Table 4.1: Binary counting used used to order the probability distribution to learn.

This expression from Eq. 4.6 produces 2N different equations corresponding to the 2N

available states of the network that can be built from the binary values [+1,−1] that units

S1 to SN can take. Consequently, this expression provides a set of 2N linear equations for

the 2N unknown quantities
{
J

(n)
σ

}
. This set of equations has always a non-zero solution

that is also unique, as the system of equations is structured on a Hadamard 2N × 2N

matrix H2N×2N ([Sylvester, 1867], see also the appendix)

ln [�p (α, γ)] = H2N×2N · �J , (4.10)

where �J is a vector of 2N components

�J =
(
J (0), J

(1)
1 , J

(1)
2 , . . . , J

(2)
12 , J

(2)
13 , . . . , J

(N)
12...N

)
, (4.11)

4.4. THE BACKWARDS PROBLEM 101

formed with the complete set of weights
{
J

(n)
σ

}
. On the other hand, Hadamard matrices

are made of orthogonal binary [−1, +1] valued vectors, being their rows and columns

orthogonal and fulfilling the relations

det {H2N×2N} �= 0 , (4.12)

H2N×2N · HT
2N×2N = HT

2N×2N · H2N×2N = 2NI , (4.13)

H−1
2N×2N =

1

2N
HT

2N×2N . (4.14)

Due to these properties, Eq. 4.10 can be multiplied by the transpose of the Hadamard

matrix at the right to find a solution for the system

HT
2N×2N · ln [�p (α, γ)] = HT

2N×2N · H2N×2N · �J = 2NI · �J . (4.15)

The general solution of the system of equations reads

�J =
HT

2N×2N · ln [�p (α, γ)]

2N
. (4.16)

In summary, a HOBM with no hidden units and a fully known probability distri-

bution has a unique set of weights
{
J

(n)
σ

}
given by this expression. The arguments

given above show also that the HOBM with no hidden units is always able to

learn any probability distribution provided that no state has zero probability.

Furthermore, this same argument implies that there is no need to use hidden

units in a HOBM. In this sense, the learning problem for that network is completely

solved by the expression in Eq. 4.16. Notice now that, as it happened with the high order

Decimation method in chapter 3, this is also the expression that is used to carry out a

Walsh Hadamard transform [Shanks, 1969] over the logarithm of the probabilities that

the system is expected to learn.

In order to write down an explicit solution for each weight, we now refer to the

Hadamard matrix in terms of its columns

H2N×2N = (4.17)

=
(

{1} {S1} . . . {SN} {S1S2} . . . {SNSN−1} . . . {S1S2 · · ·SN−1SN}
)

.

102 CHAPTER 4. BM LEARNING THROUGH HADAMARD MATRICES

This matrix is generated as follows: the first column is set at 1. The next N columns are

then built by writing all the values that the N units from the neural network can take;

this sequence is defined as the same binary counting that is used to order the probability

distribution ln [�p (α, γ)] that is shown to the system, and that is depicted in table 4.1.

Notice also that these columns correspond to the units that are multiplying the bias

terms entering in Eq. 4.6, though the sum is carried out with this ordering.

The next

⎛
⎝ N

2

⎞
⎠ columns correspond to the products of the units that connect the

second order weights in Eq. 4.6. These columns are generated by multiplying the previous

columns term by term, thus using all the possible combinations. The algorithm that is

used to generate the next columns is the same: the

⎛
⎝ N

3

⎞
⎠ subsequent columns stand for

the units associated to the third order terms entering in the energy functionals, these are

built by multiplying term by term their correspondent columns from the binary sequence.

The same rule applies for the

⎛
⎝ N

4

⎞
⎠,

⎛
⎝ N

5

⎞
⎠, ... up to

⎛
⎝ N

N

⎞
⎠ terms that connect the

weights from the neural network. Since there is a relationship between the units connected

to a given weight and the column of the Hadamard matrix, we will denote each vector

column as H
(n)
σ , where (n) denotes the number of units the weight connects and σ is its

label. Therefore, we have

H2N×2N = (4.18)

=
(

H(0) H
(1)
1 . . . H

(1)
N H

(2)
12 . . . H

(2)
N−1N . . . H

(N)
12···N−1N

)
=
(

{1} {S1} . . . {SN} {S1S2} . . . {SNSN−1} . . . {S1S2 · · ·SN−1SN}
)

.

In this sense, each element from Eq. 4.16 can be written in the form

J (n)
σ =

(
H

(n)
σ

)T

· ln [�p (α, γ)]

2N
, (4.19)

therefore the solution to a given weight of the neural network uses the column vector of

the units it connects. Finally, one can apply an exponential operation to both sides of

4.4. THE BACKWARDS PROBLEM 103

Eq. 4.6 to find

p (α, γ) = eJ(0)

e
∑

σ,n>0 J
(n)
σ
∏

Sρ ,∑
α,γ

p (α, γ) =
∑
α,γ

eJ(0)

e
∑

σ,n>0 J
(n)
σ
∏

Sρ , (4.20)

where all the equations of the set have been added up, thus arriving at

1 = eJ(0)
∑
α,γ

e
∑

σ,n>0 J
(n)
σ
∏

Sρ ,

e−J(0)

=
∑
α,γ

e
∑

σ,n>0 J
(n)
σ
∏

Sρ ,

−J (0) = lnZ , (4.21)

hence providing a real solution for the J (0) term, which is now tied to the partition function

of the system.

4.4.2 Backwards problem solution for a three units BM

We carry out now a backwards problem example with a small Hadamard matrix, corre-

sponding to a two input units Si1 and Si2 and an output neuron So, as it can be seen on

Fig. 4.2. We want this system to learn a known p (α, γ) probability distribution for all α,

γ, which is shown in table 4.2. The values of the probability distribution have been given

at random, and are also included in this table.

For the sake of simplicity, we write down the matrix in this order: input units will be

written down first, as any possible combinations involving only input units. We will write

then all connections between the inputs and the output, to conclude with the output cell

�S =
(

1 Si1 Si2 So Si1Si2 Si1So Si2So Si1Si2So

)
. (4.22)

We now proceed to show how the matrix of the system is created for this example:

the first four columns of the Hadamard matrix are the first to be written down. The first

104 CHAPTER 4. BM LEARNING THROUGH HADAMARD MATRICES

�p (α, γ) ln [�p (α, γ)] Si1 Si2 So

p (α1, γ1) = 0.2158 ln p (α1, γ1) = −1.5333 −1 −1 −1

p (α2, γ1) = 0.0525 ln p (α2, γ1) = −2.9469 −1 −1 1

p (α1, γ2) = 0.1378 ln p (α1, γ2) = −1.9816 −1 1 −1

p (α2, γ2) = 0.1104 ln p (α2, γ2) = −2.2037 −1 1 1

p (α1, γ3) = 0.2025 ln p (α1, γ3) = −1.5972 1 −1 −1

p (α2, γ3) = 0.1731 ln p (α2, γ3) = −1.7538 1 −1 1

p (α1, γ4) = 0.1037 ln p (α1, γ4) = −2.2664 1 1 −1

p (α2, γ4) = 0.0042 ln p (α2, γ4) = −5.4720 1 1 1

Table 4.2: Probability distribution for the three units example.

JJi
(1)
1

Ji
(1)
2

Jo
(1) J(2)

i i1 2
J(2)

i 1o J(2)
i 2 o

(3)
i 1i 2 o

Si 1

Si 2

So

Figure 4.2: Three units neural network, with two inputs and an output unit.

column is a 1 value vector, the other ones refer to units Si1 , Si2 and So, respectively

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1

1 −1 −1 1

1 −1 1 −1

1 −1 1 1

1 1 −1 −1

1 1 −1 1

1 1 1 −1

1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.23)

we then add the first set of products Si1Si2 , Si1So, Si2So as the next three columns of the

4.4. THE BACKWARDS PROBLEM 105

system

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 1 1 1

1 −1 −1 1 1 −1 −1

1 −1 1 −1 −1 1 −1

1 −1 1 1 −1 −1 1

1 1 −1 −1 −1 −1 1

1 1 −1 1 −1 1 −1

1 1 1 −1 1 −1 −1

1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.24)

finally the Si1Si2So product column is added

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 1 1 1 −1

1 −1 −1 1 1 −1 −1 1

1 −1 1 −1 −1 1 −1 1

1 −1 1 1 −1 −1 1 −1

1 1 −1 −1 −1 −1 1 1

1 1 −1 1 −1 1 −1 −1

1 1 1 −1 1 −1 −1 −1

1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.25)

We now find the analytical values for all the weights of the system by using

J (n)
σ =

(
H

(n)
σ

)T

· ln [�p (α, γ)]

2N
,

106 CHAPTER 4. BM LEARNING THROUGH HADAMARD MATRICES

assuming that

ln [�p (α, γ)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1.5333

−2.9469

−1.9816

−2.2037

−1.5972

−1.7538

−2.2664

−5.4720

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.26)

then

J (0) =
1

23

(
1 1 1 1 1 1 1 1

)
· ln [�p (α, γ)] = −2.4694 ,

J
(1)
i1

=
1

23

(
−1 −1 −1 −1 1 1 1 1

)
· ln [�p (α, γ)] = −0.3030 ,

J
(1)
i2

=
1

23

(
−1 −1 1 1 −1 −1 1 1

)
· ln [�p (α, γ)] = −0.5116 ,

J
(1)
i3

=
1

23

(
−1 1 −1 1 −1 1 −1 1

)
· ln [�p (α, γ)] = −0.6247 ,

J
(2)
i1i2

=
1

23

(
1 1 −1 −1 −1 −1 1 1

)
· ln [�p (α, γ)] = −0.5853 ,

J
(2)
i1o =

1

23

(
1 −1 1 −1 −1 1 −1 1

)
· ln [�p (α, γ)] = −0.2158 ,

J
(2)
i2o =

1

23

(
1 −1 −1 1 1 −1 −1 1

)
· ln [�p (α, γ)] = −0.2322 ,

J
(3)
i1i2o =

1

23

(
−1 1 1 −1 1 −1 −1 1

)
· ln [�p (α, γ)] = −0.5301 . (4.27)

4.4.3 The backwards problem for a conditional p.d.f.

In this section we extend the previous discussion to the more realistic learning problem

involving conditional probability distributions. A standard learning problem on a BM is

usually given in terms of conditional probabilities: given a fixed input pattern γ, we know

the probability p (α | γ) of finding a state α in the output units. Of course, we typically

know p (α | γ) only for a restricted set of states γ and α and the network has to infer the

4.4. THE BACKWARDS PROBLEM 107

remaining probabilities. We now discuss what we call the complete backwards problem for

a conditional probability distribution: given all the conditional probabilities p (α | γ) find

the complete set of weights
{

J
(n)
σ

}
of the HOBM that conforms to these probabilities.

We begin this discussion with an N -th order Boltzmann Machine with ni input units

Si, no output units So and no hidden units, for a total of N = ni + no neurons. We do

not know the value of its connections, though we know that the neural network may have

all possible weights up to order N . In this instance of the backwards problem, we assume

we know the complete conditional probability distribution associated to the HOBM, that

is, we assume we know p (α | γ) for every output state α, conditioned to a clamped input

state γ. We again look for a set of weights that reproduces this probability distribution.

We know that, by definition

p (α | γ) =
p (α, γ)

p (γ)
, (4.28)

so we can replace p (α, γ) by p (α | γ) p (γ) in Eq. 4.16 to find

�J =
HT

2N×2N · (ln [�p (α | γ)] + ln [�p (γ)])

2N
. (4.29)

In this new formulation of the problem, we know all the p (α | γ). However, additional

knowledge of p (γ) is needed. One may wonder if p (γ) can be recovered once we know

p (α | γ) for every state α and γ. This is not the case, as there are infinite possible choices

for p (γ). In this sense, we realize that knowing p (α, γ) is enough to get p (α | γ) and

p (γ) but the inverse is not true. In order to see the conditional probabilities do not fix

univoquely the input probabilities we discuss a simple example.

Let A and B be two binary (0 and 1) random variables that happen with probability

p (A, B). The conditional probabilities p (A | B) that can be derived are

p (A = 0 | B = 0) =
p (A = 0, B = 0)

p (B = 0)
,

p (A = 1 | B = 0) =
p (A = 1, B = 0)

p (B = 0)
,

p (A = 0 | B = 1) =
p (A = 0, B = 1)

p (B = 1)
,

p (A = 1 | B = 1) =
p (A = 1, B = 1)

p (B = 1)
, (4.30)

108 CHAPTER 4. BM LEARNING THROUGH HADAMARD MATRICES

with the normalization condition

p (A = 0, B = 0) + p (A = 1, B = 0) + p (A = 0, B = 1) + p (A = 1, B = 1) = 1 .

(4.31)

Consider now a different probability distribution q (A, B) such that

q (A = 0, B = 0) = λ p (A = 0, B = 0) ,

q (A = 1, B = 0) = λ p (A = 1, B = 0) ,

q (A = 0, B = 1) = μ p (A = 0, B = 1) ,

q (A = 1, B = 1) = μ p (A = 1, B = 1) , (4.32)

for some real values of λ and μ. In the following, we show that there is an infinite set

of solutions for λ and μ that produce the same conditional probabilities. First of all, the

substitution of Eq. 4.32 into Eq. 4.30 tells us that

p (A = 0 | B = 0) =
p (A = 0, B = 0)

p (B = 0)
=

q (A = 0, B = 0)

q (B = 0)
= q (A = 0 | B = 0) ,

p (A = 1 | B = 0) =
p (A = 1, B = 0)

p (B = 0)
=

q (A = 1, B = 0)

q (B = 0)
= q (A = 1 | B = 0) ,

p (A = 0 | B = 1) =
p (A = 0, B = 1)

p (B = 1)
=

q (A = 0, B = 1)

q (B = 1)
= q (A = 0 | B = 1) ,

p (A = 1 | B = 1) =
p (A = 1, B = 1)

p (B = 1)
=

q (A = 1, B = 1)

q (B = 1)
= q (A = 1 | B = 1) ,

(4.33)

so the conditional probabilities are the same. Now we show that these relations and the

previous ones can be fulfilled for values other than the trivial λ = μ = 1. We impose now

the additional normalization constraint

q (A = 0, B = 0) + q (A = 1, B = 0) + q (A = 0, B = 1) + q (A = 1, B = 1) = 1 , (4.34)

which means

λp (A = 0, B = 0) + λp (A = 1, B = 0) + μp (A = 0, B = 1) + μp (A = 1, B = 1) = 1 .

(4.35)

4.4. THE BACKWARDS PROBLEM 109

Since both probability distributions are (properly) normalized to one, the sum over

all p (A, B) equals the sum over all q (A, B) and then we can write

λ [p (A = 0, B = 0) + p (A = 1, B = 0)] + μ [p (A = 0, B = 1) + p (A = 1, B = 1)] =

= p (A = 0, B = 0) + p (A = 1, B = 0) + p (A = 0, B = 1) + p (A = 1, B = 1) .

(4.36)

From here, we arrive to the condition

λ − 1

μ − 1
= −p (A = 0, B = 1) + p (A = 1, B = 1)

p (A = 0, B = 0) + p (A = 1, B = 0)
, (4.37)

where

λ = 1 +
p (A = 0, B = 1) + p (A = 1, B = 1)

p (A = 0, B = 0) + p (A = 1, B = 0)
(1 − μ) . (4.38)

Now, we give some values to the previous numbers and carry out the following example

p (A = 0, B = 0) =
1

10
,

p (A = 1, B = 0) =
2

10
,

p (A = 0, B = 1) =
3

10
,

p (A = 1, B = 1) =
4

10
. (4.39)

We will find a q (A, B) for λ = 3
2

and λ = 2. We fix λ = 3
2

and find a suitable value for

μ, thus

3
2
− 1

μ − 1
= −

3
10

+ 4
10

1
10

+ 2
10

, (4.40)

so

μ =
11

14
, (4.41)

110 CHAPTER 4. BM LEARNING THROUGH HADAMARD MATRICES

and generate q (A, B)

q (A = 0, B = 0) =
3

20
,

q (A = 1, B = 0) =
3

10
,

q (A = 0, B = 1) =
33

140
,

q (A = 1, B = 1) =
44

140
. (4.42)

We sum these values to ensure that λ and μ are correct

3

20
+

3

10
+

33

140
+

44

140
=

21

140
+

42

140
+

33

140
+

44

140
= 1 . (4.43)

We now repeat this process for λ = 2, hence

2 − 1

μ − 1
= −

3
10

+ 4
10

1
10

+ 2
10

, (4.44)

and

μ =
4

7
, (4.45)

the new probability distribution q (A, B) reads then as

q (A = 0, B = 0) =
1

5
,

q (A = 1, B = 0) =
2

5
,

q (A = 0, B = 1) =
12

70
,

q (A = 1, B = 1) =
16

70
. (4.46)

which does also satisfy that the sum of its terms is 1

1

5
+

2

5
+

12

70
+

16

70
=

14

70
+

28

70
+

12

70
+

16

70
= 1 . (4.47)

Notice then that we could find as many different values as desired for λ, and that it

would lead to different values of μ that would yet provide new valid probability distribu-

tions. In this sense, there is an infinite set of probability distributions that lead to the

same conditional distribution.

4.4. THE BACKWARDS PROBLEM 111

4.4.4 General solution for the backwards conditional problem

In this section we prove that there exists a general solution for the conditional probability

backwards problem, which is formulated as

J (n)
σ =

H
(n)
σ · (ln [�p (α | γ)] + ln [�p (γ)])

2N
, (4.48)

and that it can be found even if the input units probability distribution is not known.

Though, this solution does only provide the values for the weights that are not limited to

connecting only input units. The easiest case is considered to happen on a two inputs, one

output topology; we then propose the generic case for N units, to prove that the system

will yet be able to solve the backwards problem regardless the value p (γ) might take.

We begin with a high order Boltzmann Machine as the one proposed in the previous

section, with two input units Si1 and Si2 and an output neuron So. The vector of weights

of the system reads as

�J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J (0)

J
(1)
i1

J
(1)
i2

J
(1)
o

J
(2)
i1i2

J
(2)
i1o

J
(2)
i2o

J
(3)
i1i2o

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.49)

and the probability distribution is written down on Table 4.3.

We start from the probability distribution system of equations

�J =
HT

23×23 · ln [�p (So, Si1, Si2)]

23
, (4.50)

112 CHAPTER 4. BM LEARNING THROUGH HADAMARD MATRICES

Si1 Si2 So p (Si1, Si2 , So) = p (So|Si1, Si2) p (Si1 , Si2)

−1 −1 −1 p (−1,−1,−1) = p (−1 | −1,−1) p (−1,−1)

−1 −1 1 p (−1,−1, 1) = p (1 | −1,−1) p (−1,−1)

−1 1 −1 p (−1, 1,−1) = p (−1 | −1, 1) p (−1, 1)

−1 1 1 p (−1, 1, 1) = p (1 | −1, 1) p (−1, 1)

1 −1 −1 p (1,−1,−1) = p (−1 | 1,−1) p (1,−1)

1 −1 1 p (1,−1, 1) = p (1 | 1,−1) p (1,−1)

1 1 −1 p (1, 1,−1) = p (−1 | 1, 1) p (1, 1)

1 1 1 p (1, 1, 1) = p (1 | 1, 1) p (1, 1)

Table 4.3: Standard and conditional probability distributions.

the solution for this system is

J
(1)
i1

= ln

(
p (−1, 1,−1) p (1, 1,−1) p (−1, 1, 1) p (1, 1, 1)

p (−1,−1,−1) p (1,−1,−1) p (−1,−1, 1) p (1,−1, 1)

)

J
(1)
i2

= ln

(
p (−1,−1, 1) p (−1, 1, 1) p (1,−1, 1) p (1, 1, 1)

p (−1,−1,−1) p (−1, 1,−1) p (1,−1,−1) p (1, 1,−1)

)

J (1)
o = ln

(
p (1,−1,−1) p (1, 1,−1) p (1,−1, 1) p (1, 1, 1)

p (−1,−1,−1) p (−1, 1,−1) p (−1,−1, 1) p (−1, 1, 1)

)

J
(2)
i1i2

= ln

(
p (−1,−1,−1) p (1,−1,−1) p (−1, 1, 1) p (1, 1, 1)

p (−1,−1, 1) p (1,−1, 1) p (−1, 1,−1) p (1, 1,−1)

)

J
(2)
i1o = ln

(
p (−1,−1,−1) p (−1,−1, 1) p (1, 1,−1) p (1, 1, 1)

p (1,−1,−1) p (1,−1, 1) p (−1, 1,−1) p (−1, 1, 1)

)

J
(2)
i2o = ln

(
p (−1,−1,−1) p (1,−1, 1) p (−1, 1,−1) p (1, 1, 1)

p (1,−1,−1) p (−1,−1, 1) p (1, 1,−1) p (−1, 1, 1)

)

J
(3)
i1i2o = ln

(
p (1,−1,−1) p (−1,−1, 1) p (−1, 1,−1) p (1, 1, 1)

p (−1,−1,−1) p (1,−1, 1) p (1, 1,−1) p (−1, 1, 1)

)
. (4.51)

The conditional probability solution shows that the input probability references are

4.4. THE BACKWARDS PROBLEM 113

cleared for any solution that is not limited to connecting only input units

J
(1)
i1

= ln

(
p (−1 | 1,−1) p (1 | 1,−1) p (−1 | 1, 1) p (1 | 1, 1)

p (−1 | −1,−1) p (1 | −1,−1) p (−1 | −1, 1) p (1 | −1, 1)

)

+2 ln

(
p (1,−1) p (1, 1)

p (−1, 1) p (−1,−1)

)
,

J
(1)
i2

= ln

(
p (−1 | −1, 1) p (−1 | 1, 1) p (1 | −1, 1) p (1 | 1, 1)

p (−1 | −1,−1) p (−1 | 1,−1) p (1 | −1,−1) p (1 | 1,−1)

)

+2 ln

(
p (−1, 1) p (1, 1)

p (1,−1) p (−1,−1)

)
,

J (1)
o = ln

(
p (1 | −1,−1) p (1 | 1,−1) p (1 | −1, 1) p (1 | 1, 1)

p (−1 | −1,−1) p (−1 | 1,−1) p (−1 | −1, 1) p (−1 | 1, 1)

)
,

J
(2)
i1i2

= ln

(
p (−1 | −1,−1) p (1 | −1,−1) p (−1 | 1, 1) p (1 | 1, 1)

p (−1 | −1, 1) p (1 | −1, 1) p (−1 | 1,−1) p (1 | 1,−1)

)

+2 ln

(
p (−1,−1) p (1, 1)

p (−1, 1) p (1,−1)

)
,

J
(2)
i1o = ln

(
p (−1 | −1,−1) p (−1 | −1, 1) p (1 | 1,−1) p (1 | 1, 1)

p (1 | −1,−1) p (1 | −1, 1) p (−1 | 1,−1) p (−1 | 1, 1)

)
,

J
(2)
i2o = ln

(
p (−1 | −1,−1) p (1 | −1, 1) p (−1 | 1,−1) p (1 | 1, 1)

p (1 | −1,−1) p (−1 | −1, 1) p (1 | 1,−1) p (−1 | 1, 1)

)
,

J
(3)
i1i2o = ln

(
p (1 | −1,−1) p (−1 | −1, 1) p (−1 | 1,−1) p (1 | 1, 1)

p (−1 | −1,−1) p (1 | −1, 1) p (1 | 1,−1) p (−1 | 1, 1)

)
. (4.52)

The resulting equations for the weights connecting output and hidden units are the

same as before, but using p (So | Si1 , Si2) instead of p (Si1 , Si2, So). These probabilities are

numerically different and one may think that the equations are, in consequence, different.

However, this happens not to be true, since p (Si1, Si2 , So) = p (So | Si1 , Si2) p (Si1 , Si2)

and those p (Si1 , Si2) are further cleared. We can see then that the weights J
(1)
o , J

(2)
i1o , J

(2)
i2o

and J
(3)
i1i2o are the same for both systems of equations; we also realize that this happens

regardless of the values p (Si1, Si2) may take.

Now, we analyze what happens for a number N of units in the neural network, with

ni input units Si and no output units So; we consider again that the problem is solved

when the values of the weights connecting only output or either input and output units

are found. We have a given weight connecting any number mi of input units Si1 , Si2 , up

to Simi
with any number of mo output units So1 , So2, up to Somo

, being that mo �= 0.

114 CHAPTER 4. BM LEARNING THROUGH HADAMARD MATRICES

From Eq 4.48, we can see that the solution for such weight involves a vector H
(n)
σ which

is composed of the combinations of products of the very same units that it connects

H(n)
σ =

{
Si1Si2 · · ·Simi

So1So2 · · ·Somo

}
. (4.53)

When the backwards problem is proposed, the Hadamard matrix that is related to

such vector is then given values on an orderly manner, as function of the α and γ vectors

H
(n)
σ,1,1 =

{
Sγ1

i1
Sγ1

i2
· · ·Sγ1

imi
Sα1

o1
Sα1

o2
· · ·Sα1

omo

}
,

H
(n)
σ,1,2 =

{
Sγ1

i1
Sγ1

i2
· · ·Sγ1

imi
Sα2

o1
Sα2

o2
· · ·Sα2

omo

}
,

H
(n)
σ,1,3 =

{
Sγ1

i1
Sγ1

i2
· · ·Sγ1

imi
Sα3

o1
Sα3

o2
· · ·Sα3

omo

}
,

...

H
(n)
σ,2mi ,2mo =

{
S

γ2mi

i1
S

γ2mi

i2
· · ·Sγ2mi

imi
Sα2mo

o1
Sα2mo

o2
· · ·Sα2mo

omo

}
, (4.54)

hence for each input γ vector, we will also have 2mo different output possible α combina-

tions. We now define a subset of vectors where the input units are clamped to the same

γ state and the output units are those 2mo different α output states associated to such

input values

H
(n)
σ,γ,1 =

{
Sγ

i1
Sγ

i2
· · ·Sγ

imi
Sα1

o1
Sα1

o2
· · ·Sα1

omo

}
,

H
(n)
σ,γ,2 =

{
Sγ

i1
Sγ

i2
· · ·Sγ

imi
Sα2

o1
Sα2

o2
· · ·Sα2

omo

}
,

...

H
(n)
σ,γ,2mo =

{
Sγ

i1
Sγ

i2
· · ·Sγ

imi
Sα2mo

o1
Sα2mo

o2
· · ·Sα2mo

omo

}
. (4.55)

Notice that any H
(n)
σ,γ,α is a vector that considers all possible product terms from the

units that the weight is connecting, and that this is true for all α related to the same

γ input vector. This is then a vector with the same number of +1 and −1 terms; thus

H
(n)
σ,γ,α · �1 = 0, hence for any weight connecting only output or, either, input and output

4.4. THE BACKWARDS PROBLEM 115

units

J (n)
σ =

H
(n)
σ · (ln [�p (α | γ)])

2N
+

H
(n)
σ · (ln [�p (γ)])

2N

=
H

(n)
σ · (ln [�p (α | γ)])

2N
+
∑

γ

ln [�p (γ)]
(
H

(n)
σ,α,γ ·�1

)
2N

, (4.56)

being ln [�p (γ)] the probabilities of reaching a given γ input state, expressed as a vector.

Finally

J (n)
σ =

H
(n)
σ · (ln [�p (α | γ)])

2N
, (4.57)

as far as J
(n)
σ only connects input and output, or only output units.

4.4.5 The backwards incomplete problem

We have already analyzed what happens when an N units, N -th order HOBM with no

hidden units has to learn a probability distribution p (α, γ) known for all α, γ: there is only

one possible set of weights that is able to yield the corresponding Boltzmann probability

distribution, as far as there are no p = 0 nor p = 1 values. We will now discuss what

happens when this is not the case, that is, when we only know some of the probabilities

p (α, γ); this is also the realistic case when the neural network is learning a set of vectors

that is not fully defined.

We begin from a standard, high order BM with ni input units Si and no output units So

for a total of ni +no = N neurons, and a partially known absolute probability distribution

p (α, γ) such as

p (α, γ) = {ϕ1 . . . ϕm1λ1 . . . λm2} , (4.58)

where the subset ϕi of m1 < 2N values is known and we consider that there are m2 =

2N − m1 unknown λj m2 vectors. We make use of Eq. 4.10 to relate the probability

distribution from Eq. 4.58 to the set of weights for this neural network

ln [�p (α, γ)] = H2N×2N · �J ,

116 CHAPTER 4. BM LEARNING THROUGH HADAMARD MATRICES

this system of equations can be written down on its matricial notation

ln

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ1

. . .

ϕm1

λ1

. . .

λm2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= H2N×2N · �J , (4.59)

where there are a total of m2 unknown values as the natural logarithm of the terms from

the probability distribution. Let then any λj take an arbitrary value -constrained to∑
α,γ p (α, γ) = 1 and p (α, γ) �= 0, p (α, γ) �= 1-; then Eq. 4.59 is solved regardless of these

values, because the matrix of the system is Hadamard. In this sense, there is an infinite

range of solutions that will yet be compatible with ϕi terms.

Furthermore, let r (α, γ) be a non-normalized probability distribution such as

∑
α,γ

r (α, γ) = k , (4.60)

for k ∈ + and r (α, γ) > 0, ∀α, γ; thus assuming that all λj values are again arbitrary.

Notice that Eq. 4.59 is solved regardless of these values, because the matrix of the system

is Hadamard. Let p (α, γ) be a normalized probability distribution such as

p (α, γ) =
r (α, γ)

k
, (4.61)

thus
∑

α,γ p (α, γ) = 1. Notice that

ln �p (α, γ) = ln

[
�r (α, γ)

k

]
= H2N×2N · �J , (4.62)

the constant can be moved to the rhs of the equation

ln�r (α, γ) = ln k + H2N×2N · �J , (4.63)

effectively being added to the J (0) constant term: notice from Eq. 4.6 that this zero order

terms always has 1 as coefficient and therefore arriving at a new J (0)′ = J (0) + ln k. In

this sense, the set �J
(n>0)
σ is the same for both p (α, γ) and r (α, γ).

4.5. BACKWARDS INCOMPLETE PROBLEM LU SOLUTION 117

Hence, the system for a partially known normalized probability distribution p (α, γ)

where the unknown terms can be arbitrarily fixed -such that
∑

α,γ p (α, γ) = 1- reads as

ln

⎛
⎜⎜⎜⎝

ϕ1

. . .

ϕm1

⎞
⎟⎟⎟⎠ = H2N×m1

· �J , (4.64)

where the rows of the Hadamard matrix considered are those from the known probability

distribution. We will arrive to a system where as much as m1 weights will need to be

fixed to obtain the numerical values that match the probability distribution. Therefore,

the system is not analytically solved but rather it should be solved by numerical means.

4.5 Backwards incomplete problem LU solution

The backwards complete problem is a unique problem approach as far as the learning vec-

tors are completely known, which is something that does not happen when dealing against

real-life problems. It has already been shown that this problem is always accurately solved

for a high order Boltzmann Machine with no hidden units, since the Hadamard matrix

that is generated by the very same vectors leads to a solvable system of equations

ln �p (α | γ) = H2N×2N · �J ,

where N stands for the total number of both input and output units, �p (α | γ) is a 2N

component vector of probabilities for the system and �J is vector that represents the

weights of the BM.

In this section we will discuss the solution for a learning set of vectors that is not

complete, which has been named as the backwards incomplete problem. As it has already

been shown, the system of equations that is generated in this case is incomplete

ln �p (α, γ) = Hp · �J ,

where Hp is a non-square matrix that has some selected rows from a Hadamard matrix,

thus obtaining a certain number of degrees of freedom that should be fixed. In this

118 CHAPTER 4. BM LEARNING THROUGH HADAMARD MATRICES

section we propose a simple solution to this problem, which is a regression through the

LU decomposition of Hp. In the first part of this section we show that this solution

will indeed reach a global minimum of the Kullback-Leibler distance; the section is then

concluded with the application of the LU solution to a typical toy problem, which is

known as the priority encoder.

4.5.1 Kullback-Leibler distance optimization and the LU solu-

tion

We now inquiry about the correct solution to the backwards incomplete problem that

one can obtain through LU factorization. Since this method leads to a mathematical

regression, the incomplete backwards problem will be solved as a regression where the

points are approximated by a function which is now the high order energy functional of

the BM. The matricial equation for the incomplete backwards problem reads as

ln �p (α, γ) = Hp · �J , (4.65)

where �p (α, γ) is the set of m probability values that are known at this learning stage,

from a total of 2N for a total of N units. On the other hand, �J are the weights that

the neural network will set up once it learns, while Hp is a matrix whose rows are the

combinations of input and output units that are known. Its columns are the same as a

Hadamard matrix hence

Hp · H ′
p = mI , (4.66)

being m the number of rows that the matrix has and I the identity matrix. Since this is

not a Hadamard matrix, it also happens that

H ′
p · Hp �= mI , (4.67)

notice that the dimension of this matrix is actually 2N ×m, and that we have m
′
= 2N −m

degrees of freedom. Notice also that, since this is an incomplete learning set, the real value

4.5. BACKWARDS INCOMPLETE PROBLEM LU SOLUTION 119

for these weights is not known and may not be set to zero. Said this, we show a possible

solution for this problem, which consists on a standard regression calculus and show it to

be a global minimum of the Kullback-Leibler distance.

Let an error function Θ which results from the LU factorization of the previous system,

as seen in Ref. [The MathworksTM , 2008a], be defined as

Θ =
1

2

∑
α,γ

(∑
σ

J (n)
σ

∏
Sρ∈α,γ − ln p (α, γ)

)2

, (4.68)

where
∏

Sρ∈α,γ stands for all the units which are linked by a given connection J
(n)
σ when

an input pattern γ and an output pattern α are set. This system is solved by using Least

Squares, hence we need to carry out the partial derivative of this expression for a given

weight J
(n)
τ as

∂Θ

∂J
(n)
τ

=
∑
α,γ

(∑
σ

J (n)
σ

∏
Sρ∈α,γ − ln p (α, γ)

)∏
S�∈α,γ = 0 , (4.69)

∏
S�∈α,γ being the units linked by the weight J

(n)
τ . This expression can be worked out to

reach

∑
α,γ

(∑
σ

J (n)
σ

∏
Sρ∈α,γ

)∏
S�∈α,γ =

∑
α,γ

ln p (α, γ)
∏

S�∈α,γ , (4.70)

now we apply the conditioned probability definition where

p (α, γ) = p (α | γ) p (γ) , (4.71)

thus arriving at

∑
α,γ

(∑
σ

J (n)
σ

∏
Sρ∈α,γ

)∏
S�∈α,γ =

∑
α,γ

(ln p (α | γ) + ln p (γ))
∏

S�∈α,γ . (4.72)

We now recall the discussion about the relevance of p (γ) over the values of p (α | γ)

from section 4.4.4: the value of the weights is the same for a given p (α | γ) regardless

p (γ) as far as these do not connect only input units. In this sense, Eq. 4.72 becomes

∑
α,γ

(∑
σ

J (n)
σ

∏
Sρ∈α,γ

)∏
S�∈α,γ =

∑
α,γ

ln p (α | γ)
∏

S�∈α,γ , (4.73)

120 CHAPTER 4. BM LEARNING THROUGH HADAMARD MATRICES

for any weight that is not limited to connecting only input units. Thus, the probability

distribution p (γ) does not need to be known.

Finally, we discuss the relationship between Eq. 4.73 and the Kullback-Leibler distance

minimization used in the Boltzmann Machine learning process. This is

G =
∑
α,γ

r (α | γ) ln

(
r (α | γ)

p (α | γ)

)
,

where r (α | γ) is the probability distribution that we want the neural network to learn

and p (α | γ) is the current response, due to its weights and units. The derivative of this

expression is the standard learning equation for the BM and reads

∂G

∂J
(n)
σ

=
1

T

(〈∏
ρ∈σ

Sρ

〉∗

−
〈∏

ρ∈σ

Sρ

〉)
.

We assume now that the system has learned a given probability distribution, and there

is no further variation on its weights. At this point, ∂G

∂J
(n)
σ

= 0 and

(〈∏
ρ∈σ

Sρ

〉∗

−
〈∏

ρ∈σ

Sρ

〉)
= 0 ,

we now get the following equality

〈∏
ρ∈σ

Sρ

〉∗

=

〈∏
ρ∈σ

Sρ

〉
,

∑
α,γ

r (α, γ)
∏

S�∈α,γ =
∑
α,γ

p (α, γ)
∏

S�∈α,γ , (4.74)

where we define the Boltzmann probability p (α, γ) as

p (α, γ) = eJ(0)+
∑

J
(1)
i1

Si1
+
∑

J
(2)
i1i2

Si1
Si2

+
∑

J
(3)
i1i2i3

Si1
Si2

Si3
+... , (4.75)

considering that the partition function Z stands for

lnZ = −J0 , (4.76)

4.5. BACKWARDS INCOMPLETE PROBLEM LU SOLUTION 121

thus, it is already included into the equation. Since r (α, γ) are the target values to learn,

when this system is written down in matricial notation one can proceed as follows

�r (α, γ) · Hp = �p (α, γ) · Hp ,

�r (α, γ) · Hp · Hp = �p (α, γ) · Hp · Hp ,

�r (α, γ) = �p (α, γ) ,

ln�r (α, γ) = ln �p (α, γ) ,

ln�r (α, γ) = J (0) +
∑

J
(1)
i1

Si1 +
∑

J
(2)
i1

i2Si1Si2 + . . . , (4.77)

which matches exactly the backwards problem, whether it is the incomplete or the com-

plete case

ln�r (α, γ) = Hp · �J , (4.78)

thus, proving that this is one correct solution from the multiple set of solutions that may

be taken. Notice then that the difference between applying LU factorization and the

Kullback-Leibler standard learning algorithm is the way in which they explore the space

of solutions in the space: the LU method finds a solution that is not moving through such

distance.

4.5.2 The priority encoder problem

We now solve a toy problem that is often used to test the ability of a given learning

algorithm: the priority encoder is generated through an arithmetic boolean function that

can be defined for any given set of bits. We define a sequence �X of ni bits, ordered as

�X = {xni
, xn1−1, . . . , x2, x1} , (4.79)

where the Most Significant Bit (MSB) is in the ni position and the Least Significant Bit

stands for x1. The output units are activated representing a decimal value that matches

the most significant bit activated in the input units, minus 1; hence there are as many

outputs y as log2ni. We can see standard priority encoder for 4 input units in Table 4.4;

notice that input units with ? value stand for don’t care values.

122 CHAPTER 4. BM LEARNING THROUGH HADAMARD MATRICES

x4 x3 x2 x1 y2 y1

0 0 0 0 ? ?

0 0 0 1 0 0

0 0 1 ? 0 1

0 1 ? ? 1 0

1 ? ? ? 1 1

Table 4.4: Priority encoder truth table.

Since the output units will take their given value regardless ? input values, the boolean

function for this encoder becomes

y1 = x4 + x4x3x2 ,

y2 = x4 + x3 , (4.80)

which can be generalized for any number of input units. Notice that this is not an

exhaustive problem, since there is an input combination whose output result is not cared

for. In order not to get an exhaustive problem that we already know that the BM can

learn by using Hadamard matrices, we add some noise bits that do not contribute to the

output function; in our case we have added up to 5 noisy bits, as seen in Table 4.5, and

disregarded the input pattern that produces an unknown combination of output units.

x9 x8 x7 y6 y5 x4 x3 x2 x1 y2 y1

? ? ? ? ? 0 0 0 1 0 0

? ? ? ? ? 0 0 1 ? 0 1

? ? ? ? ? 0 1 ? ? 1 0

? ? ? ? ? 1 ? ? ? 1 1

Table 4.5: Noisy priority encoder truth table.

Notice however that this input values produce up to 29 − 25 = 480 combinations,

though the real information is contained in 24 = 16 input vectors. However, and since

there are 9 different inputs, the neural network would not be able to generalize under a

4.5. BACKWARDS INCOMPLETE PROBLEM LU SOLUTION 123

given number of combinations. The benchmark that we have carried out to the neural

network considers only removing random instances of the learning set, hence the neural

network will have to figure out the function from Eq. 4.80 by removing the unnecessary

additional information. Table 4.6 reports the efficiency on recognizing the full dataset;

this values are computed as a mean over 1000 learning and test repetitions where the

excluded learning vectors are randomly selected.

Instances removed Efficiency

48 (10%) 100.0%

96 (20%) 100.0%

144 (30%) 100.0%

150 (32%) 99.8%

Table 4.6: Noisy priority encoder truth table.

Since the test is carried out by using LU factorization, the BM that is being used at

this point is a high order Boltzmann Machine with no hidden units that may have any

available connection between its units. Notice that the performance of the neural network

decreases when 150 instances are removed. Starting at this point, the efficiency of the

BM decreases almost lineally with every new vector that is removed from the training set.

The LU method can be used to effectively carry out a learning process on a HOBM.

However, this algorithm is included in the same version from Ref. [The MathworksTM ,

2008b], and it is stated to always select the same degrees of freedom from the whole

set. In this sense, the system is giving values to a set of weights that do actually meet

the desired learning distribution. However, these weights are not able to generalize the

function that the BM is expected to learn, this does then cause the performance to drop.

A possible solution to this issue would be to let the system change the weights that it

selects as degrees of freedom, though the criteria that should be followed in this sense is

yet unknown.

124 CHAPTER 4. BM LEARNING THROUGH HADAMARD MATRICES

Chapter 5

Analytical learning process for a BM

5.1 Introduction

In this chapter we present a method that, through the decimation equations and the

backwards problem, is used to build a second order Boltzmann Machine that can learn

any given pattern. This structure is used to fix the number of hidden units and connections

between the neurons of the BM that effectively solves the problem at hand. However,

this process is not intended for building a BM that solves a so called real-life problem.

Instead, it has been conceived as a way to provide the size and topology of a BM that

can solve it.

This chapter is divided in two sections: in the first one we analyze this method, from

the simplest BM that emulates basic logical, Boole based operations to a more complex

neural network with any number of input and output neurons, and that is able to learn

any given probability distribution. In this section we discuss the numerical error that the

process introduces and show that it can become negligible. The chapter is then concluded

with some practical examples on how to build these systems, where we calculate all the

weights required to build these systems.

125

126 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

5.2 Boole arithmetic representation on a BM

In this section, we propose a numerical method that can be used to create a second order

BM that is able to learn any probability distribution. The method can be used to set the

size of the neural network that is able to solve a problem at hand, but it is not intended

to be used as a solution to real-life problems nor a commercial application.

In the first part of this section we propose a simple method to build a second order

BM that is able to reproduce simple logical gates, which are defined as AND, OR, NAND

and NOR [Ercegovac et al., 1998], and the modifications that one can apply to make such

systems learn a probability output distribution other than closer to 0 and 1 for a given

input vector. The second part of this section discusses how this procedure is used to

implement more complex boolean systems. We then proceed with the extension of this

method to the case of an exhaustive probability distribution, where all the combinations of

any number of output and input units are defined in the learning pattern, and associated

to a certain probability distribution. We conclude this section with a discussion of the

numerical error that is introduced when one uses this method to build a BM, and prove

it to become negligible.

5.2.1 Basic logic operations

The BM is a stochastic neural network that can not learn exact zero nor one probabilities.

Thus, one has to decide how the values that define a Boole based or a classifying problem

are represented in terms of a BM. In this sense, consider the two inputs AND operation

shown in table 5.1, which has been expressed in terms of this neural network (hence 0

and 1 values are depicted as −1 and 1) for a set of valid probability values. However, for

the sake of simplicity, we will consider that any probability greater than 0.99 is treated

as being effectively 1.0, and that any probability smaller than 0.01 is treated as 0.0: we

are not willing the neural network to learn and extrapolate a probability distribution,

we want it to represent a boolean function. We could use values greater than 0.99 and

5.2. BOOLE ARITHMETIC REPRESENTATION ON A BM 127

smaller than 0.01 but, as we will later see, this would just mean higher values associated

to the weights. In this sense, we would regard p (So|Si1, Si2)2 as a better approximation

to an AND gate than p (So|Si1 , Si2)1 is, and we would consider p (So|Si1, Si2)3 as the best

(of the subset p (So|Si1, Si2)1, p (So|Si1, Si2)2 and p (So|Si1, Si2)3) representation that a BM

can achieve.

Si1 Si2 So p (So|Si1 , Si2)1 p (So|Si1, Si2)2 p (So|Si1, Si2)3

−1 −1 −1 0.7 0.9 p > 0.99

−1 −1 1 0.3 0.1 p < 0.01

−1 1 −1 0.7 0.9 p > 0.99

−1 1 1 0.3 0.1 p < 0.01

1 −1 −1 0.7 0.9 p > 0.99

1 −1 1 0.3 0.1 p < 0.01

1 1 −1 0.3 0.1 p < 0.01

1 1 1 0.7 0.9 p > 0.99

Table 5.1: Example of three different probability distributions that one can use to repre-

sent an AND operation with a BM.

We now show in table 5.2 how one can represent any of the basic logical operations

AND, OR, NAND and NOR with a small BM. Notice however that both XOR and NXOR

are not considered as basic here because

a ⊕ b = ab̄ + āb ,

a ⊕ b = ab + āb̄ . (5.1)

The structure that we consider in this section is a simple one with two input units Si1

and Si2 and an output neuron So, as depicted in Fig. 5.1. It has only two weights and a

bias term.

As an example, we now design an AND gate with the BM shown in Fig. 5.1. We will

consider that the weights of the system are set as∣∣w(1)
o

∣∣ = ∣∣∣w(2)
i1o

∣∣∣ = ∣∣∣w(2)
i2o

∣∣∣ = w , (5.2)

128 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

Si1 Si2 So pAND pOR pNAND pNOR

−1 −1 −1 p > 0.99 p > 0.99 p < 0.01 p < 0.01

−1 −1 1 p < 0.01 p < 0.01 p > 0.99 p > 0.99

−1 1 −1 p > 0.99 p < 0.01 p > 0.99 p < 0.01

−1 1 1 p < 0.01 p > 0.99 p < 0.01 p > 0.99

1 −1 −1 p > 0.99 p < 0.01 p > 0.99 p < 0.01

1 −1 1 p < 0.01 p > 0.99 p < 0.01 p > 0.99

1 1 −1 p < 0.01 p < 0.01 p > 0.99 p > 0.99

1 1 1 p > 0.99 p > 0.99 p < 0.01 p < 0.01

Table 5.2: Basic boolean operations represented with a BM.

wo
(1) w wo1i 2 oi

(2)(2)

Si 1

Si 2

So

Figure 5.1: Two input units neural network with an output unit.

being w ∈ + an arbitrary value that we will show how to calculate by using standard

decimation process. We consider the weights to be temperature normalized

J (n)
σ =

w
(n)
σ

T
. (5.3)

Thus

∣∣J (1)
o

∣∣ = ∣∣∣J (2)
i1o

∣∣∣ = ∣∣∣J (2)
i2o

∣∣∣ = J , (5.4)

and using the definition of mean value for a single units from Eq. 3.52 and standard

parallel association (the clamped input units are associated with the bias term of the

5.2. BOOLE ARITHMETIC REPRESENTATION ON A BM 129

neural network) to obtain

〈So〉 = tanh

(
w

(1)
o

T
+

w
(2)
i1o

T
Si1 +

w
(2)
i2o

T
Si2

)

= tanh
(
J (1)

o + J
(2)
i1oSi1 + J

(2)
i2oSi2

)
, (5.5)

where we can establish a relationship between 〈So〉 and the probability of the output unit

p (So = 1) by using this expression

〈So〉 = p (So = 1) − p (So = −1)

= p (So = 1) − (1 − p (So = 1))

〈So〉 = 2p (So = 1) − 1 , (5.6)

p (So = 1) =
〈So〉 + 1

2
. (5.7)

Si1 Si2 〈So〉j p (So = 1)

−1 −1 〈So〉0 < −0.98 0.01

−1 1 〈So〉1 < −0.98 0.01

1 −1 〈So〉2 < −0.98 0.01

1 1 〈So〉3 > 0.98 0.99

Table 5.3: AND gate expected output value.

We now analyze the values of the weights for the AND case, assuming that the values

that we want to obtain are those shown in table 5.3, and are found by using Eq. 5.5.

Notice that the label j of the term 〈So〉j in this table is given by the numerical value of

the binary sequence.

This process is done by checking the mean value of the output unit for each possible

different set of input values, and assigning the proper value to the sign of the weight. We

choose

J
(2)
i1o = J

(2)
i2o = J ,

J (1)
o = −J , (5.8)

130 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

Si1 Si2 〈So〉OR p 〈So〉NAND p 〈So〉NOR p

−1 −1 〈So〉 < −0.98 0.01 〈So〉 > 0.98 0.99 〈So〉 > 0.98 0.99

−1 1 〈So〉 > 0.98 0.99 〈So〉 > 0.98 0.99 〈So〉 < −0.98 0.01

1 −1 〈So〉 > 0.98 0.99 〈So〉 > 0.98 0.99 〈So〉 < −0.98 0.01

1 1 〈So〉 > 0.98 0.99 〈So〉 < −0.98 0.01 〈So〉 < −0.98 0.01

Table 5.4: Basic boolean operations represented with the mean value and the probability

p (So = 1) of the output unit on a BM.

thus

Si1 = −1 Si2 = −1 〈So〉0 = tanh
(
J (1)

o − J
(2)
i1o − J

(2)
i2o

)
= tanh (−J − J − J) = tanh (−3J) ,

Si1 = −1 Si2 = 1 〈So〉1 = tanh (−J − J + J) = tanh (−J) ,

Si1 = 1 Si2 = −1 〈So〉2 = tanh (−J + J − J) = tanh (−J) ,

Si1 = 1 Si2 = 1 〈So〉3 = tanh (−J + J + J) = tanh (J) , (5.9)

where we have the constraint tanh (J) > 0.98, which is solved as

J > atanh (0.98) = 2.2976 . (5.10)

Weight OR NAND NOR

J
(1)
o J J −J

J
(2)
i1o J −J −J

J
(2)
12o J −J −J

Table 5.5: Weights needed to build the Basic boolean operations.

This operation can be repeated for the boolean operators OR, NAND and NOR, whose

expected values and probability for the output unit are represented in table 5.4; notice

that p stands for p (So = 1). Starting from Eq. 5.4, if this process is carried out for the

other logical operations, a proper choice for the weights is shown in table 5.5, considering

again that J > atanh (0.98).

5.2. BOOLE ARITHMETIC REPRESENTATION ON A BM 131

5.2.2 Extensions of the basic logic operations

We have already discussed how one can build a BM that reproduces a given logical gate

with two inputs. This concept, however, can be extended to some different situations

that we discuss in this section. We begin by building some basic logical gates where

the number of inputs is increased, thus building an n-inputs logical operation. We then

proceed by discussing the case where any input is negated, and conclude this section by

analyzing what happens when one of the regular outputs of the gate is changed for any

other value than 0 or 1 (asymptotic) probability. We will need this three tools to conclude

the chapter with a structure that uses a combination of all them, and that will be able to

learn any Boole based set of rules.

o
(1)

1i
(2)

2 oi
(2)J

n oi
(2)J J o J

Si 1

Si 2

So

Si n

Figure 5.2: BM used to represent the n-input AND problem.

We now consider an n-input AND operation, which is represented by the neural net-

work of Fig. 5.2, and described in table 5.6. Notice that the neural network is expected

to carry out a simple operation, that is reduced to

if Si1 = Si2 = . . . = Sin = 1 then 〈So〉 > 0.98 , (5.11)

otherwise 〈So〉 < −0.98. In this sense, we consider

J
(2)
i1o = J

(2)
i2o = . . . = J

(2)
ino = J ,

J (1)
o = kJ , k ∈ , (5.12)

132 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

where the unknown terms are both k and J . To solve this problem, one has to make sure

that when all the inputs are active this condition is satisfied

〈So〉 = tanh (kJ + nJ) > 0.98 . (5.13)

Si1 Si2 . . . Sin−1 Sin 〈So〉
−1 −1 . . . −1 −1 〈So〉0 < −0.98

−1 −1 . . . −1 1 〈So〉1 < −0.98

−1 −1 . . . 1 −1 〈So〉2 < −0.98

.

1 1 . . . −1 1 〈So〉2n−2 < −0.98

1 1 . . . 1 −1 〈So〉2n−1 < −0.98

1 1 . . . 1 1 〈So〉2n > 0.98

Table 5.6: BM representation of the n-input AND operation.

On the other hand, any other input units value has to fulfill 〈So〉 < −0.98. This

happens when

〈So〉 = tanh (kJ + (n − 2)J) < −0.98 , (5.14)

and the total contribution from the other neurons is at most (n − 2)J . Any other com-

bination of values from the input units will lead to a value smaller than this. We have to

solve then the following system of inequations

tanh ((k + n) J) > 0.98 , (5.15)

tanh ((k + n − 2)J) < −0.98 . (5.16)

A simple solution is to set k = 1 − n and then

tanh ((1 − n + n) J) = tanh (J) > 0.98 , (5.17)

tanh (−J) < −0.98 , (5.18)

5.2. BOOLE ARITHMETIC REPRESENTATION ON A BM 133

and thus the final solution is achieved by solving J > atanh (0.98), again. Consider now

that any other n-input logic gate can be implemented by following the same concept; the

solution to build n-input OR, NAND and NOR operations is given in table 5.7. We are

representing J
(2)
ijo as the weight connecting the j-nth input unit Sij with the output neuron

So from this model.

Weight OR NAND NOR

J
(1)
o (n − 1) J (n − 1) J (1 − n) J

J
(2)
ijo J −J −J

Table 5.7: Weights J
(2)
ijo for the input unit j in the n-input BM implementing OR, NAND

and NOR operations.

The other possible variation to a given boolean operator is to negate an input. We show

an example of a simple boolean operation where a given input is negated in table 5.8,

notice however that this is still a variation of the basic AND operation that would be

represented as

So = Si1 · Si2 . (5.19)

Si1 Si2 Si2 Si1 · Si2 〈So〉
−1 −1 1 −1 〈So〉0 < −0.98

−1 1 −1 −1 〈So〉1 < −0.98

1 −1 1 1 〈So〉2 > 0.98

1 1 −1 −1 〈So〉3 < −0.98

Table 5.8: Si1 · Si2 operation with inputs Si1 , Si2 and output So.

SoSi
W

Figure 5.3: NOT gate structure.

134 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

We now show a way to build the NOT gate that is needed for this operation. We

propose the structure depicted in Fig. 5.3 for a standard NOT gate, where the weight W

is chosen such as W � 1. We discuss the equation for the expected value of So, which

reads

〈So〉 = tanh (−WSi) , (5.20)

now we give values to Si and assume W → ∞, thus

Si = 1 〈So〉 = tanh (−W) = −1 = −Si ,

Si = −1 〈So〉 = tanh (W) = 1 = −Si , (5.21)

so we use the structure from Fig. 5.4 to solve the negated AND, where J
(2)
i1o = J , J

(2)
i2h =

−W , J
(2)
ho = J , J

(1)
o = −J and W � J , for J ∈ +.

J J o J J
2i

(2)
h
(2)

o
(1)

1i
(2)

h o

Si 1

Si 2

So

Sh

Figure 5.4: NOT gate applied to a BM with two input units.

Notice however that one can carry out serial association between W and J for an

effective J
(2)
i2o weight

J
(2)
i2o =

1

2
ln

⎛
⎝cosh

(
J

(2)
i2o + J

(2)
ho

)
cosh
(
J

(2)
i2o − J

(2)
ho

)
⎞
⎠ =

1

2
ln

(
cosh (J − W)

cosh (J + W)

)
. (5.22)

Since W � J we write this expression as

J
(2)
i2o =

1

2
ln

(
cosh (W − J)

cosh (W + J)

)
, (5.23)

where it is possible to apply the following approximation

lim
W→∞

ln (cosh (W + J)) = lim
W→∞

ln
(
eW−J + e−W+J

)− ln 2

� W − J − ln 2 , (5.24)

5.2. BOOLE ARITHMETIC REPRESENTATION ON A BM 135

thus

lim
W→∞

1

2
ln

(
cosh (W − J)

cosh (W + J)

)
= lim

W→∞
1

2
ln

(
eW−J + e−W+J

eW+J + e−W−J

)

� 1

2
ln

(
eW−J

eW+J

)

� 1

2
ln
(
e−2J
)

= −J , (5.25)

so

J
(2)
i2o = −J , (5.26)

effectively resulting in a change of sign. In essence, the operation from Eq. 5.19 is simply

carried out on the BM by changing the sign of the weight associated to the input unit

J
(2)
i1o = −J

(2)
i2o = J ,

J (1)
o = −J . (5.27)

It is however easy to check that these weights implement such an operation

Si1 = −1 Si2 = −1 〈So〉 = tanh
(
J (1)

o − J
(2)
i1o + J

(2)
i2o

)
= tanh (−J − J + J) = tanh (−J) ,

Si1 = −1 Si2 = 1 〈So〉 = tanh (−J − J − J) = tanh (−3J) ,

Si1 = 1 Si2 = −1 〈So〉 = tanh (−J + J + J) = tanh (J) ,

Si1 = 1 Si2 = 1 〈So〉 = tanh (−J + J − J) = tanh (−J) , (5.28)

where the condition to be satisfied is tanh (J) > 0.98 again. Therefore, we have shown

that one can always use a BM to build any (probabilistic) AND, OR, NAND and NOR

logical gate of an arbitrary number of inputs. It has also been shown then that, in general,

one can generate a BM that reproduces the behavior of a certain logical operation.

We now analyze the situation where we want to introduce a mean value for the output

unit other than |〈So〉| > 0.98. An example of this is shown in table 5.9 as a modified, two

input AND operator.

136 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

Si1 Si2 〈So〉
−1 −1 〈So〉0 < −0.98

−1 1 〈So〉1 < −0.98

1 −1 〈So〉2 < −0.98

1 1 〈So〉3 ∈ (−1, +1)

Table 5.9: AND gate with 〈So〉3 taking any possible value within (−1, +1).

The concept that describes best the process that one uses to build this AND gate is

using a bias term H such that its magnitude is closer to J , thus |H| ∼ |J |, but with some

little added value d that ensures |H| − |J | = d. According to this idea, we give values to

the weights of the system

J
(2)
i1o = J

(2)
i2o = J ,

J (1)
o = −2J + d , (5.29)

where d ∈ is an arbitrary constant whose value is found by calculating the mean value

of the output unit for each different input set

Si1 = −1 Si2 = −1 〈So〉0 = tanh
(
J (1)

o − J
(2)
i1o − J

(2)
i2o

)
= tanh (−2J + d − J − J) = tanh (−4J + d) ,

Si1 = −1 Si2 = 1 〈So〉1 = tanh (−2J + d − J + J) = tanh (−2J + d) ,

Si1 = 1 Si2 = −1 〈So〉2 = tanh (−2J + d + J − J) = tanh (−2J + d) ,

Si1 = 1 Si2 = 1 〈So〉3 = tanh (−2J + d + J + J) = tanh (d) , (5.30)

the actual value of d becomes then

d = atanh (〈So〉3) . (5.31)

Notice that this process can be reproduced with the other basic boolean operators, as

reported in table 5.10. The values of the weights associated to the basic OR, NAND and

NOR systems are shown in table 5.11, where d ∈ is introduced again as a parameter

that has to be tuned.

5.2. BOOLE ARITHMETIC REPRESENTATION ON A BM 137

Si1 Si2 〈So〉OR 〈So〉NAND 〈So〉NOR

−1 −1 〈So〉0 ∈ (−1, +1) 〈So〉0 > 0.98 〈So〉0 ∈ (−1, +1)

−1 1 〈So〉1 > 0.98 〈So〉1 > 0.98 〈So〉1 < −0.98

1 −1 〈So〉2 > 0.98 〈So〉2 > 0.98 〈So〉2 < −0.98

1 1 〈So〉3 > 0.98 〈So〉3 ∈ (−1, +1) 〈So〉3 < −0.98

Table 5.10: Variation to the expected values of the basic boolean operations.

Weight OR NAND NOR

J
(1)
o 2J + d 2J + d −2J + d

J
(2)
i1o J −J −J

J
(2)
12o J −J −J

Table 5.11: Weights for the non-deterministic OR, NAND and NOR operations.

Notice also that, if one uses these values

J
(2)
i1o = J

(2)
i2o = J ,

J (1)
o = d , (5.32)

the behavior of the neural network is changed into

Si1 = −1 Si2 = −1 〈So〉0 = tanh
(
J (1)

o − J
(2)
i1o − J

(2)
i2o

)
= tanh (d − J − J) = tanh (−2J + d) ,

Si1 = −1 Si2 = 1 〈So〉1 = tanh (d − J + J) = tanh (d) ,

Si1 = 1 Si2 = −1 〈So〉1 = tanh (d + J − J) = tanh (d) ,

Si1 = 1 Si2 = 1 〈So〉2 = tanh (d + J + J) = tanh (2J + d) , (5.33)

thus effectively having a probability distribution as described in table 5.12. However, this

behavior is not useful to the discussion that is carried out in the next section, hence it will

not be considered again: we will want the neural network to reproduce a given probability

distribution due to only one input combination.

Notice however that the multiple input case and the negation of a given input can

138 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

Si1 Si2 〈So〉
−1 −1 〈So〉0 < −0.98

−1 1 〈So〉1 ∈ (−1, +1)

1 −1 〈So〉1 ∈ (−1, +1)

1 1 〈So〉2 > 0.98

Table 5.12: Modification to the AND gate with 〈So〉1 taking any possible value within

(−1, +1).

be used in the same model. In essence, this process can be applied to create a n-input

operator AND, OR, NAND, NOR operator with n ≥ 2. The values of the corresponding

weights J
(2)
ijo connecting any input and output units are shown in table 5.13. Bear in mind,

though, that by using this method, only one input pattern can be given a probability

significantly different from 0 or 1.

Weight AND OR NAND NOR

J
(1)
o −nJ + d nJ + d nJ + d −nJ + d

J
(2)
ijo J J −J −J

Table 5.13: Weights for the non-deterministic, n-inputs OR, NAND and NOR operations.

We finally propose an example to illustrate how a BM with this structure is built. We

will use the topology depicted in Fig. 5.5 to build a different logical gate implementing

f = Si1 + Si2 + Si3 , that is represented in table 5.14; we will also change the probability

of the output due to input vector Si1 = −1, Si2 = 1 and Si3 = −1.

It has been shown that the values of the weights of the system for an n-input OR

operation with an output other than |〈So〉| > 0.98 are

J
(2)
i1o = J

(2)
i2o = J

(2)
i3o = J ,

J (1)
o = nJ + d , (5.34)

5.2. BOOLE ARITHMETIC REPRESENTATION ON A BM 139

Si1 Si2 Si2 Si3 〈So〉
−1 −1 1 −1 〈So〉0 > 0.98

−1 −1 1 1 〈So〉1 > 0.98

−1 1 −1 −1 〈So〉2 = 0.3

−1 1 −1 1 〈So〉3 > 0.98

1 −1 1 −1 〈So〉4 > 0.98

1 −1 1 1 〈So〉5 > 0.98

1 1 −1 −1 〈So〉6 > 0.98

1 1 −1 1 〈So〉7 > 0.98

Table 5.14: Table for the 3 input example.

o
(1)

1i
(2)

2 oi
(2)J

3 oi
(2)JJ J o

Si 1

Si 2

Si 3

So

Figure 5.5: BM used to build the 3-input example.

we apply these values to our example, considering that n = 3 and Si2 is negated

J
(2)
i1o = −J

(2)
i2o = J

(2)
i3o = J ,

J (1)
o = 3J + d , (5.35)

and we calculate the value for d. We proceed by analyzing the case where 〈So〉2 = 0.3,

because this is when all the values save to d are canceled

〈So〉2 = tanh
(
J (1)

o − J
(2)
i1o − J

(2)
i2o − J

(2)
i3o

)
= tanh (3J + d − J − J − J) = tanh (d) .

(5.36)

In consequence, d is fixed as d = atanh (0.3) = 0.3095. We now find the values of J

such that 〈So〉b < 0.98 in any other case, this is, b �= 2. If we consider all the possible

140 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

Si1 Si2 Si2 Si3 〈So〉
−1 −1 1 −1 〈So〉0 = 0.9805 > 0.98

−1 −1 1 1 〈So〉1 = 0.9996 > 0.98

−1 1 −1 −1 〈So〉2 = 0.3000

−1 1 −1 1 〈So〉3 = 0.9805 > 0.98

1 −1 1 −1 〈So〉4 = 0.9996 > 0.98

1 −1 1 1 〈So〉5 = 1.0000 > 0.98

1 1 −1 −1 〈So〉6 = 0.9805 > 0.98

1 1 −1 1 〈So〉7 = 0.9996 > 0.98

Table 5.15: Results for the three input OR problem.

values for the input units and the previous equation, we have the following possibilities

〈So〉 = tanh (2J + d) > 0.98 , (5.37)

〈So〉 = tanh (4J + d) > 0.98 , (5.38)

〈So〉 = tanh (6J + d) > 0.98 , (5.39)

being tanh (2J + d) > 0.98 the most restrictive. Then

2J + 0.3095 > atanh (0.98) = 2.2976 ,

J > 0.9940 . (5.40)

We fix J = 1.0 and then we check these values to be correct in table 5.15.

5.2.3 Two stage logic operations

In the previous section, we discussed a method to build a BM that is able to reproduce

a given n-inputs OR, AND, NAND, NOR operation. We have also discussed the possi-

bility of adding noise to these gates, making one (and only one) input pattern to behave

stochastically, with output probabilities appreciably different from 0 or 1. In this section

we analyze the generic case for more complex Boole based operations, and propose a

5.2. BOOLE ARITHMETIC REPRESENTATION ON A BM 141

method that one can use to build a second order BM where the complete input/output

probability distribution is passed to the neural network.

Si1 Si2 Si3 〈So〉
−1 −1 −1 〈So〉0
−1 −1 1 〈So〉1
−1 1 −1 〈So〉2
−1 1 1 〈So〉3
1 −1 −1 〈So〉4
1 −1 1 〈So〉5
1 1 −1 〈So〉6
1 1 1 〈So〉7

Table 5.16: Complete probability distribution for a three inputs BM, represented by using

the expected values of the output neuron.

Sh 5
Sh 6

Sh 7 Sh 8

Si 1
Si 2

Si 1
Si 2

Si 3
Si 1

Si 2
Si 3

Si 3
Si 1

Si 2
Si 3

Sh 1
Sh 2

Sh 3 Sh 4

Si 1
Si 2

Si 1
Si 2

Si 3
Si 1

Si 2
Si 3

Si 3
Si 1

Si 2
Si 3

So

Figure 5.6: Three input, second order BM with inputs Si1 , Si2 and Si3 and output So.

Consider now the general case of 3 input and 1 output units shown in table 5.16. The

second order BM that we use to implement this operation is depicted in Fig. 5.6. The

hidden units are expected to behave as separate AND gates, and one activates when a

given input vector is passed to the input units. This is represented in table 5.17, where

the function f (So)j stands for an unknown function that represents the behavior of the

142 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

hidden unit Shj
, which becomes active due to a certain input vector. The other units

remain inactive at a value close to −1 (here depicted as −1 for the sake of simplicity).

On the other hand, the output unit behaves as an OR operation: if the expected values

could certainly be −1 or +1, this neuron would behave as a real OR operator, becoming

active due to a certain hidden unit activation. Since the active hidden unit Shj
is having

some expected value different from −1, this value is translated to the output unit; we

will then adjust the weights of the system to reach the values shown in table 5.16. Notice

however that this concept is exactly the same that is carried out to build large boolean

operations [Ercegovac et al., 1998], and that we represent in Fig. 5.7.

Si 1
Si 2
Si 3

Si 1
Si 2
Si 3

Si 1
Si 2
Si 3

Sh 1

Sh 2

Sh 3

So

Figure 5.7: Standard digital implementation. Notice how the hidden units imitate the

behavior of the intermediate AND gates.

Now we use decimation to analyze what happens on any AND gate, represented by

a given hidden unit, when a certain input is used. As a matter of fact, we will consider

that any J
(n)
ih � J

(n)
ho , for the same order n = 1, 2 in this, our BM. We will also consider

that the AND operations that are made by the hidden units are stochastic with expected

values assimptotically close to ±1 as we did in the previous section, and that the weights

have the values described there (see Eq. 5.8). Since we want each hidden unit to become

active for each separate input vector, we need to set the weights at the values shown

in table 5.18. In this table, we consider only one two-body weight W ∈ +, and eight

different terms dhj
� W , dhj

∈ that are added to the biases, just as we did in the

previous section.

5.2. BOOLE ARITHMETIC REPRESENTATION ON A BM 143

Si1 Si2 Si3 〈Sh1〉 〈Sh2〉 〈Sh3〉 〈Sh4〉 〈Sh5〉 〈Sh6〉 〈Sh7〉 〈Sh8〉
−1 −1 −1 f (So)1 −1 −1 −1 −1 −1 −1 −1

−1 −1 1 −1 f (So)2 −1 −1 −1 −1 −1 −1

−1 1 −1 −1 −1 f (So)3 −1 −1 −1 −1 −1

−1 1 1 −1 −1 −1 f (So)4 −1 −1 −1 −1

1 −1 −1 −1 −1 −1 −1 f (So)5 −1 −1 −1

1 −1 1 −1 −1 −1 −1 −1 f (So)6 −1 −1

1 1 −1 −1 −1 −1 −1 −1 −1 f (So)7 −1

1 1 1 −1 −1 −1 −1 −1 −1 −1 f (So)8

Table 5.17: Expected values for the hidden units of the system, when the unit is active it

depends on the value that we want at the output neuron.

We begin the discussion of the behavior of the network by analyzing the first possible

input value, which is Si1 = Si2 = Si3 = −1. We associate all the weights connecting input

units with their bias terms by using parallel association from decimation, and find a new

set of bias terms H
(1)
i that leads to the representation shown in Fig. 5.8.

Sh 5
Sh 6

Sh 7 Sh 8
Sh 1

Sh 2
Sh 3 Sh 4

So

h 1
(1)H h 3

(1)H h 4
(1)H h 5

(1)H h 6
(1)H h 7

(1)H h 8
(1)Hh 2

(1)H

Figure 5.8: Parallel association with the input units and the bias terms.

144 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

J
(2)
i1h J

(2)
i2h J

(2)
i3h J

(1)
h

Sh1 −W −W −W −3W + dh1

Sh2 −W −W W −3W + dh2

Sh3 −W W −W −3W + dh3

Sh4 −W W W −3W + dh4

Sh5 W −W −W −3W + dh5

Sh6 W −W W −3W + dh6

Sh7 W W −W −3W + dh7

Sh8 W W W −3W + dh8

Table 5.18: Weights connecting input and hidden units.

We reach then the following values

H
(1)
1 = J

(2)
i1h1

Si1 + J
(2)
i2h1

Si2 + J
(2)
i3h1

Si3 + J
(1)
h1

= W + W + W − 3W + dh1 = dh1 ,

H
(1)
2 = W + W − W − 3W + d2 = −2W + dh2 ,

H
(1)
3 = W − W + W − 3W + d3 = −2W + dh3 ,

H
(1)
4 = W − W − W − 3W + d4 = −4W + dh4 ,

H
(1)
5 = −W + W + W − 3W + d5 = −2W + dh5 ,

H
(1)
6 = −W + W − W − 3W + d6 = −4W + dh6 ,

H
(1)
7 = −W − W + W − 3W + d7 = −4W + dh7 ,

H
(1)
8 = −W − W − W − 3W + d8 = −6W + dh8 . (5.41)

Notice that if |W | � dhα, ∀α, one can consider that H
(1)
j → ∞ except for H

(1)
1 , being this

one the only relevant contribution.

We now associate these weights with those connecting the hidden units with the output

neuron by serial association. As we are performing an OR operation, the values of the

weights J
(2)
ho and J

(1)
o are set to

J
(2)
h1o = J

(2)
h2o = J

(2)
h3o = J

(2)
h4o = J

(2)
h5o = J

(2)
h6o = J

(2)
h7o = J

(2)
h8o = J ,

J (1)
o = 7J , (5.42)

5.2. BOOLE ARITHMETIC REPRESENTATION ON A BM 145

where J ∈ and |J | � |W |. We now calculate the serial association of H
(1)
j and J

(2)
hjo,

thus producing new bias terms for So of the form h
(1)
j as

h
(1)
j =

1

2
ln

⎛
⎝cosh

(
J

(2)
hjo + H

(1)
j

)
cosh
(
J

(2)
hjo − H

(1)
j

)
⎞
⎠ , (5.43)

this process is shown in Fig. 5.9.

So
o
(1)J

(1)
1h (1)

2h (1)
3h (1)

4h (1)
5h (1)

6h (1)
7h (1)

8h

Figure 5.9: Serial association of the bias terms from the hidden units H
(1)
j and the weights

J
(2)
hjo connecting them with the output unit, resulting in the new h

(1)
j connections.

For any j �= 1, we are willing to achieve the following

h
(1)
j � −J

(2)
hjo = −J , (5.44)

as with J � 1, the corresponding unit Shj
will remain inactive; thus meaning that〈

Shj

〉 � −1 and p
(
Shj

= 1
) � 0. This can be done if W is big enough; in this case we

assume W → ∞ in

lim
W→∞

ln
(
cosh
(
J − nW + dhj

))
= lim

W→∞
ln
(
e−J+nW−dhj + eJ−nW+dhj

)
− ln 2

� ln
(
enW−J−dhj

)
− ln 2

� nW − J − dhj
− ln 2 , (5.45)

and then

h
(1)
j =

1

2
ln

⎛
⎝cosh

(
J

(2)
hjo + H

(1)
j

)
cosh
(
J

(2)
hjo − H

(1)
j

)
⎞
⎠ =

1

2
ln

(
cosh
(
J − nW + dhj

)
cosh
(
J + nW − dhj

)
)

= ln

(
eJ−nW+dhj + e−J+nW−dhj

eJ+nW−dhj + e−J−nW+dhj

)
� 1

2
ln

(
e−J+nW−dhj

eJ+nW−dhj

)

� 1

2
ln
(
e−2J
)

= −J , (5.46)

146 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

for n = 2, n = 4 and n = 6, which are the possible values that n can take. Then

h
(1)
j � −J , ∀j �= 1. Since J

(1)
o = 7J , the parallel association of all the h

(1)
j terms results in

h(1)
o = h

(1)
1 + h

(1)
2 + h

(1)
3 + h

(1)
4 + h

(1)
5 + h

(1)
6 + h

(1)
7 + h

(1)
8 + J (1)

o

=
1

2
ln

⎛
⎝cosh

(
J + H

(1)
1

)
cosh
(
J − H

(1)
1

)
⎞
⎠− 7J + 7J

=
1

2
ln

(
cosh (J + dh1)

cosh (J − dh1)

)
. (5.47)

We now assume J � dhj
and repeat the approximation

h(1)
o = lim

J→∞
1

2
ln

(
cosh (J + dh1)

cosh (J − dh1)

)
= dh1 , (5.48)

and therefore

〈So〉1 = tanh
(
h(1)

o

)
= tanh dh1 , (5.49)

hence the value of the output unit in this case depends only on dh1, provided that W �
J � dhj

.

In summary, we have seen that the expected value of the output unit depends on the

value of the bias from the active hidden unit; but we have also shown that this topology

can learn any problem involving three input and one output units. This same process can

be carried out for a neural network with ni input units and 1 output neuron, thus using

up to nh = 2ni hidden units (it will cover all the possible combinations that the input

units can take).

Si1 Si2 Si3 〈So〉
−1 −1 −1 〈So〉1
−1 1 1 〈So〉2
1 1 −1 〈So〉3
1 1 1 〈So〉4

Table 5.19: Non-exhaustive probability distribution for a three inputs BM.

5.2. BOOLE ARITHMETIC REPRESENTATION ON A BM 147

Sh 3
Sh 4

Si 1
Si 2

Si 1
Si 2

Si 3
Si 3

Sh 1 Sh 2

Si 1
Si 2

Si 3
Si 1

Si 2
Si 3

So

Figure 5.10: BM topology for the non-exhaustive probability distribution.

Notice however that it is not mandatory to provide an exhaustive probability distri-

bution to the system: we could build the equivalent AND systems in the first stage of

the BM to become active due to certain inputs, according to the probability distribution

shown in table 5.19.

Si1 Si2 Si3 〈So〉
−1 −1 −1 〈So〉1
−1 −1 1 −1

−1 1 −1 −1

−1 1 1 〈So〉2
1 −1 −1 −1

1 −1 1 −1

1 1 −1 〈So〉3
1 1 1 〈So〉4

Table 5.20: Real behavior of the smaller BM built with the Boolean equivalence. Even

though it is not possible for the neural network to reach −1 values, the real result would

be closer.

The topology for this neural network is shown in Fig. 5.10, the values of its connections

148 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

calculated by using the same method that has been described so far. In this sense, the

weights resulting from the process would be the ones shown in table 5.21; though the bias

term J
(1)
o is changed into J

(1)
o = 3J , because we now consider the output unit to behave

as a four input OR type gate. However, this BM would show a probability distribution

as the one described in table 5.20, because the hidden units would stay only active as a

response to some input values and remain inactive for the other ones, thus forcing the

output unit to remain inactive.

J
(2)
i1h J

(2)
i2h J

(2)
i3h J

(1)
h

Sh1 −W −W −W −3W + dh1

Sh2 −W W W −3W + dh2

Sh3 W W −W −3W + dh3

Sh4 W W W −3W + dh4

Table 5.21: Weights connecting input and hidden units for the non-exhaustive model.

5.2.4 System with two output units and several inputs

Now we consider the situation where the probability distribution of the output units is

described in terms of both units, thus being a joint probability distribution. We propose

a simple example of this problem in table 5.22, where a three input neural network with

two output units is expected to learn a given probability distribution. Since it is hard to

fit all the possible values that the units can take in the table, we have not written them

all. Instead, they are represented in terms of the decimal values that correspond to the

binary counting (where 0 value is replaced by −1) that the units can take as

p (So1 , So2|Si1 , Si2, Si3) = p (mo|mi) . (5.50)

Then, we would use

p (So1 = −1, So2 = −1|Si1 = −1, Si2 = −1, Si3 = −1) = p (0|0) . (5.51)

5.2. BOOLE ARITHMETIC REPRESENTATION ON A BM 149

Si1 Si2 Si3 So1 So2 p (So1 , So2 |Si1, Si2, Si3)

−1 −1 −1 −1 −1 p (0|0)

−1 −1 −1 −1 −1 p (1|0)

−1 −1 −1 −1 −1 p (2|0)

−1 −1 −1 −1 −1 p (3|0)

−1 −1 −1 −1 −1 p (0|1)

−1 −1 −1 −1 −1 p (1|1)

.

−1 −1 −1 −1 −1 p (1|7)

−1 −1 −1 −1 −1 p (2|7)

−1 −1 −1 −1 −1 p (3|7)

Table 5.22: Probability distribution for a three input units BM with two output neurons.

The second order structure that we will use to learn this probability distribution is

shown in Fig. 5.11. This structure has 8 hidden units linked with the three inputs and

separately connected to the output units, for a total of 16 hidden units. There are also

8 hidden units connecting both output units that are linked with the input ones, hence

there are 16 + 8 = 24 hidden neurons. All these hidden neurons will remain inactive

by following the same principles that we described in the previous section: they work as

simple logical gates that are activated only when the input vector is the desired one.

The weights that we use in the neural network are described in terms of the units they

connect. The weights connecting all input units Si1 , Si2 and Si3 to the hidden ones Shj

are set as

∣∣∣J (2)
i1hj

∣∣∣ = ∣∣∣J (2)
i2hj

∣∣∣ = ∣∣∣J (2)
i3hj

∣∣∣ = W , (5.52)

while the bias terms of the hidden units are

J
(1)
hj

= −3W + dhj
, dhj

∈ , (5.53)

On the other hand, the hidden units are connected to the outputs So1 and So2 by the

150 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

Sh 1
Sh 2

Si 1
Si 2

Si 1
Si 2

Si 3
Si 3

Sh 8

Si 1
Si 2

Si 3

Sh 9

Si 1
Si 2

Si 3
Si 1

Si 2
Si 3

Sh 10 Sh 16

Si 1
Si 2

Si 3

Si 1
Si 2

Si 3

Si 1
Si 2

Si 3

So 1
So 2Sh 24

Sh 17

Figure 5.11: Sparsely connected BM with three input units and two outputs.

Si1 Si2 Si3 Active units

−1 −1 −1 Sh1 , Sh9 , Sh17

−1 −1 1 Sh2 , Sh10 , Sh18

−1 1 −1 Sh3 , Sh11 , Sh19

−1 1 1 Sh4 , Sh12 , Sh20

1 −1 −1 Sh5 , Sh13 , Sh21

1 −1 1 Sh6 , Sh14 , Sh22

1 1 −1 Sh7 , Sh15 , Sh23

1 1 1 Sh8 , Sh16 , Sh24

Table 5.23: Activation pattern for the hidden units.

weights

J
(2)
hjo1

= J
(2)
hjo2

= J , (5.54)

consider however that the discussion from the previous sections does also apply here, and

that the signs of the weights are placed depending on whether we want the hidden unit

to become active due to a certain input value; it does also happen that W � J � 1 and

that W � J � ∣∣dhj

∣∣. The hidden units that become active and the input that activates

5.2. BOOLE ARITHMETIC REPRESENTATION ON A BM 151

them is shown in table 5.23, and the weights connecting these sets of units with the input

ones are represented in table 5.24.

Set of hidden units connected to the inputs Si1 Si2 Si3

Sh1 , Sh9 , Sh17 −J −J −J

Sh2, Sh10 , Sh18 −J −J J

Sh3, Sh11 , Sh19 −J J −J

Sh4, Sh12 , Sh20 −J J J

Sh5, Sh13 , Sh21 J −J −J

Sh6, Sh14 , Sh22 J −J J

Sh7, Sh15 , Sh23 J J −J

Sh8, Sh16 , Sh24 J J J

Table 5.24: Weights connecting the hidden units with the input ones.

We begin the example by analyzing the first case, which is given by Si1 = Si2 = Si3 =

−1. Now we show that the parallel association of the bias terms and weights connecting

the input and the hidden units will lead to the following values for the bias terms of units

Sh1, Sh9 and Sh17

J
(1)
h1

= −J
(2)
i1h1

− J
(2)
i2h1

− J
(2)
i3h1

+ J
(1)
h1

= W + W + W − 3W + dh1 = dh1 ,

J
(1)
h9

= −J
(2)
i1h9

− J
(2)
i2h9

− J
(2)
i3h9

+ J
(1)
h9

= W + W + W − 3W + dh9 = dh9 ,

J
(1)
h17

= −J
(2)
i1h17

− J
(2)
i2h17

− J
(2)
i3h17

+ J
(1)
h17

= W + W + W − 3W + dh17 = dh17 .

(5.55)

The parallel association for the other, inactive, hidden units leads to

J
(1)
hj

= −J
(2)
i1hj

− J
(2)
i2hj

− J
(2)
i3hj

+ J
(1)
hj

= W − W − W − 3W + dhj
= −4W + dhj

,

(5.56)

for j = 2, 3, 5, 10, 11, 13, 18, 19, 21, while

J
(1)
hj

= −J
(2)
i1hj

− J
(2)
i2hj

− J
(2)
i3hj

+ J
(1)
hj

= W + W − W − 3W + dhj
= −2W + dhj

,

(5.57)

152 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

for j = 4, 6, 7, 12, 14, 15, 20, 22, 23, and

J
(1)
hj

= −J
(2)
i1hj

− J
(2)
i2hj

− J
(2)
i3hj

+ J
(1)
hj

= −W − W − W − 3W + dhj
= −6W + dhj

,

(5.58)

for j = 8, 16, 24, thus arriving to the structure shown in Fig. 5.12.

Sh 1
Sh 2 Sh 8

Sh 9
Sh 10 Sh 16

So 1
So 2Sh 24

Sh 17

Sh 18

Figure 5.12: Parallel association of the weights connecting the input units and the bias

terms from the hidden units.

Now we carry out serial association to suppress hidden units from Sh1 to Sh16 , thus

associating weights J
(1)
hj

with J
(2)
hjok

for j from 1 to 16; the resulting model is shown in

Fig. 5.13. We have split this process in two steps: in the the first one we decimate units

Sh1 and Sh9, which are the active ones, thus obtaining new set of biases T
(1)
o1 and T

(1)
o2 for

the output neurons; we will then proceed with the remaining hidden units. This second

step will produce some different bias terms, which will be represented as H
(1)
o1 and H

(1)
o2 .

Notice however that this process is the same that one would follow in order to build the

two stage structure that was shown in the previous section. We find T
(1)
o1 and T

(1)
o2 as

T (1)
o1

=
1

2
ln

(
cosh (J + dh1)

cosh (J − dh1)

)
= dh1 , (5.59)

T (1)
o2

=
1

2
ln

(
cosh (J + dh9)

cosh (J − dh9)

)
= dh9 . (5.60)

We now associate the bias terms J
(1)
hj

and the weights connecting the inactive hidden units

J
(2)
hjok

with the output neurons, to find H
(1)
o1 and H

(1)
o2 . This process is done for j spanning

5.2. BOOLE ARITHMETIC REPRESENTATION ON A BM 153

from 2 to 8 and from 10 to 16, and considers again that W � J in the following equations

H(1)
o1

=
1

4
ln

(
cosh
(
J + nW − dhj

)
cosh
(
J − nW + dhj

)
)

, (5.61)

H(1)
o2

=
1

4
ln

(
cosh
(
J + nW − dhj

)
cosh
(
J − nW − dhj

)
)

, (5.62)

where n stands for n = −2,−4,−6 depending on the value of j. We apply then the

approximation from Eq 5.24, and thus

4H (1)
o1

= |n|W + dhj
− 2J − |n|W − dhj

− 2J = −4J ,

4H(1)
o2

= |n|W + dhj
− 2J − |n|W − dhj

− 2J = −4J , (5.63)

so H
(1)
o1 = H

(1)
o2 = −J .

So 1
So 2Sh 24

Sh 17

Sh 18

Figure 5.13: Parallel and serial association with the input units, the bias terms and the

hidden units from units Sh1 to Sh16 .

Now we use star-triangle decimation from the basic decimation procedures to suppress

unit Sh17 , which is connected to units So1 and So2 by weights J
(2)
h17o1

and J
(2)
h17o2

and has a

bias term J
(1)
h17

. This operation will generate a second order weight G
(2)
o1o2 linking So1 with

So2 and two new bias terms G
(1)
o1 , G

(1)
o2 connected to these units. The equations that we

154 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

use are the following

G(2)
o1o2

=
1

4
ln

⎛
⎝cosh

(
J

(2)
h17o1

+ J
(2)
h17o2

− J
(1)
h17

)
cosh
(
J

(2)
h17o1

+ J
(2)
h17o2

+ J
(1)
h17

)
cosh
(
J

(2)
h17o1

− J
(2)
h17o2

+ J
(1)
h17

)
cosh
(
J

(2)
h17o1

− J
(2)
h17o2

− J
(1)
h17

)
⎞
⎠ , (5.64)

G(1)
o1

=
1

4
ln

⎛
⎝cosh

(
J

(2)
h17o1

− J
(2)
h17o2

+ J
(1)
h17

)
cosh
(
J

(2)
h17o1

+ J
(2)
h17o2

+ J
(1)
h17

)
cosh
(
J

(2)
h17o1

+ J
(2)
h17o2

− J
(1)
h17

)
cosh
(
J

(2)
h17o1

− J
(2)
h17o2

− J
(1)
h17

)
⎞
⎠ , (5.65)

G(1)
o2

=
1

4
ln

⎛
⎝cosh

(
J

(2)
h17o1

− J
(2)
h17o2

− J
(1)
h17

)
cosh
(
J

(2)
h17o1

+ J
(2)
h17o2

+ J
(1)
h17

)
cosh
(
J

(2)
h17o1

− J
(2)
h17o2

+ J
(1)
h17

)
cosh
(
J

(2)
h17o1

+ J
(2)
h17o2

− J
(1)
h17

)
⎞
⎠ . (5.66)

If we put values to these expressions we obtain

G(2)
o1o2

=
1

4
ln

(
cosh (J + J − dh17) cosh (J + J + dh17)

cosh (J − J + dh17) cosh (J − J − dh17)

)

=
1

4
ln

(
cosh (2J + dh17) cosh (2J − dh17)

cosh2 (dh17)

)
, (5.67)

G(1)
o1

=
1

4
ln

(
cosh (J + J + dh17)

cosh (J + J − dh17)

)
, (5.68)

G(1)
o2

=
1

4
ln

(
cosh (J + J + dh17)

cosh (J + J − dh17)

)
, (5.69)

where we now analyze the values of the weights for J � dh17 and J is big enough to carry

out the approximation from Eq. 5.24 again

4G(2)
o1o2

� 4J − 2 ln 2 − ln cosh2 (dh17) ,

4G(1)
o1

= 4G(1)
o2

� 2J + dh17 − ln 2 − 2J + dh17 + ln 2 = dh17 . (5.70)

We finally use star-triangle decimation to suppress the units that are connected to the

output units, and that remain inactive; these are units Sh18 to Sh24. The resulting weights

will be named as H
(2)
o1o2, H

(1)
o1 and H

(1)
o2 , and stand for the second order weight that connect

units So1 and So2 and their respective bias terms. Notice that these are the same names

that we previously used when decimating the other inactive units: we will see that the

5.2. BOOLE ARITHMETIC REPRESENTATION ON A BM 155

result is the same. We use the following equations

H(2)
o1o2

=
1

4
ln

(
cosh
(
2J − nW + dhj

)
cosh
(
2J + nW − dhj

)
cosh (nW) cosh

(−nW + dhj

)
)

(5.71)

H(1)
o1

=
1

4
ln

(
cosh
(
2J + nW − dhj

)
cosh
(
2J − nW + dhj

)
)

, (5.72)

H(1)
o2

=
1

4
ln

(
cosh
(
2J + nW − dhj

)
cosh
(
2J − nW + dhj

)
)

, (5.73)

where n stands again for n = −2,−4,−6 depending on the value of j. We apply then the

approximation from Eq 5.24, and thus

4H (2)
o1o2

= |n|W − 2J + dhj
+ |n|W + 2J + dhj

− 2|n|W − dhj
= 0 ,

4H(1)
o1

= |n|W − 2J + dhj
− |n|W − 2J − dhj

= −4J ,

4H(1)
o2

= |n|W − 2J + dhj
− |n|W − 2J − dhj

= −4J , (5.74)

so H
(2)
o1o2 = 0, H

(1)
o1 = H

(1)
o2 = −J .

So 1(1)
o 1

J

o 1
G(1)

o 1 o 2
G(2)

o 1
J o 2

(2)

So 2 (1)
o 2

J

o 2
G(1)

o 1
T (1)

o 2
H(1)

o 2
T (1)

o 1
H(1)

Figure 5.14: Equivalent decimated neural network.

Consider now that all the hidden units have been decimated, and thus we have an

equivalent neural network that is represented in Fig. 5.14. In this picture, we have rep-

resented J
(2)
o1o2 , J

(1)
o1 and J

(1)
o2 as the connections that the original network had, G

(2)
o1o2 , G

(1)
o1

and G
(1)
o2 as the weights obtained through star-triangle association of unit Sh17 , H

(2)
o1o2 , H

(1)
o1

and H
(1)
o2 as the terms obtained decimating all the hidden, inactive units of the neural

156 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

network (this is, from unit Sh2 to Sh8 , from Sh10 to Sh16 and from Sh18 to Sh24) and, finally,

T
(1)
o1 and T

(1)
o2 are the bias terms that are found by decimating active units Sh1 and Sh9 .

We now write down the values of these variables

G(1)
o1

=
dh17

2
,

G(1)
o2

=
dh17

2
,

G(2)
o1o2

= H − 1

2
ln 2 − 1

4
ln cosh2 (dh17) ,

H(1)
o1

= −J ,

H(1)
o2

= −J ,

T (1)
o1

= dh1 ,

T (1)
o2

= dh9 , (5.75)

and add their value to the original J
(n)
σ set of weights that connects the output units, thus

obtaining a new set of weights J
(n)′
σ

J (2)′
o1o2

= J (2)
o1o2

+ G(2)
o1o2

,

J (1)′
o1

= J (1)
o1

+ G(1)
o1

+ 14H(1)
o1

+ T (1)
o1

,

J (1)′
o2

= J (1)
o2

+ G(1)
o2

+ 14H(1)
o2

+ T (1)
o2

, (5.76)

which leads to

J (2)′
o1o2

= J (2)
o1o2

+ J − 1

2
ln 2 − 1

4
ln cosh2 (dh17) ,

J (1)′
o1

= J (1)
o1

+
dh17

2
− 14J + dh1 ,

J (1)′
o2

= J (1)
o2

+
dh17

2
− 14J + dh9 . (5.77)

Notice that J
(2)
o1o2 , J

(1)
o1 and J

(1)
o2 are still free and untouched. We can give values to them

freely, and make them take the right values that cancel with quantities we want to remove.

On the other hand, we compute J
(2)′
o1o2 , J

(1)′
o1 and J

(1)′
o2 by solving the backwards problem for

the model shown in Fig. 5.15. In this sense, we would use the four probabilities p (0|0),

5.2. BOOLE ARITHMETIC REPRESENTATION ON A BM 157

(1)
o 1

J (1)
o 2

J

o 1
J o 2

(2)

So 1
So 2

Figure 5.15: Backwards problem structure solved for two output units.

p (1|0), p (2|0), p (3|0) as follows

ln ln p (0|0) = J (0)′ − J (1)′
o1

− J (1)′
o2

+ J (2)′
o1o2

,

ln ln p (1|0) = J (0)′ − J (1)′
o1

+ J (1)′
o2

− J (2)′
o1o2

,

ln ln p (2|0) = J (0)′ + J (1)′
o1

− J (1)′
o2

− J (2)′
o1o2

,

ln ln p (3|0) = J (0)′ + J (1)′
o1

+ J (1)′
o2

+ J (2)′
o1o2

, (5.78)

so now we can find the values for the J
(n)
σ set of weights. To this purpose, we analyze

Eq. 5.77 and decide that dh1, dh9 and dh17 depend on the value of the input units; an easy

solution for the bias terms is then

J (1)
o1

= 14J ,

J (1)
o2

= 14J , (5.79)

however the second order weight is not so direct. Notice that

J (2)
o1o2

= −J +
1

2
ln 2 ,

(5.80)

may lead to a non-existent solution for Eq. 5.77, because the inverse of the hyperbolic

cosine might not exist. To prevent from this, we take

−J (2)′
o1o2

− J (2)
o1o2

− J +
1

2
ln 2 =

1

4
ln cosh2 (dh17) , (5.81)

and then carry out some basic operations√
e
4
(
−J

(2)′
o1o2

−J
(2)
o1o2

−J+ 1
2

ln 2
)

= cosh (dh17) . (5.82)

158 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

In order to provide an always existing solution to this expression, one has to force the

following condition √
e
4
(
−J

(2)′
o1o2

−J
(2)
o1o2

−J+ 1
2

ln 2
)
≥ 1 , (5.83)

and therefore

J (2)
o1o2

≤ 1

2
ln 2 − J (2)′

o1o2
− J . (5.84)

The process that one should follow then in order to find the correct weight is to solve

the system in Eq. 5.78 for all possible output values, for all the possible values that the

input units can take. In this example, and since there are 3 input units, this would lead

to 23 = 8 possible sets of equations; we would then find J
(2)
o1o2 for dh17 to dh24 and select

the value that allows solving√
e
4
(
−J

(2)′
o1o2

−J
(2)
o1o2

−J+ 1
2

ln 2
)

= cosh
(
dhj

)
, for any j ∈ [17, 24] . (5.85)

Sh 1
Sh 2

Si 1
Si 2

Si 1
Si 2

Si 3
Si 3

Sh 8

Si 1
Si 2

Si 3

Sh 9

Si 1
Si 2

Si 3
Si 1

Si 2
Si 3

Sh 10 Sh 16

Si 1
Si 2

Si 3

So 1
So 2

Si 1
Si 2

Si 3

Si 1
Si 2

Si 3

Sh 25

Sh 24

Sh 17

Figure 5.16: Structure with no second order weight connecting the output units, this

connection is replaced by unit Sh25 .

5.2. BOOLE ARITHMETIC REPRESENTATION ON A BM 159

However, we are more interested in showing that this system can be solved: it is always

possible to build a second order neural network with two output units that solves a given

problem that requires two output units. In this case, we would have to use 3 · 23 hidden

neurons: 23 for each output, and 23 linked to both outputs; this is actually the maximum

number of weights that one would use to connect these units. Notice now that, for an

n-input BM, one would require up to 3 · 2n hidden neurons. In the following section, we

now discuss the case for no output units and ni input neurons.

Finally, it is interesting to point out that J
(2)
o1o2 is included in our analysis but this may

not be required. In this sense, we could have used the topology shown in Fig. 5.16 instead,

where this connection is replaced by a hidden unit connected to both output units, due

to the star-triangle decimation equivalence.

5.2.5 General case for the output joint probability distribution

We now show that the topology proposed in the previous sections can be extended to

analyze the more general case of having ni inputs and no outputs. We begin this discussion

with a three outputs, second order BM with ni input units. For the sake of simplicity,

we consider that all input units have already been parallel associated, thus leading to

the neural network that we represent in Fig. 5.17. In this figure, we use the concepts

detailed above: there are 2ni hidden units for each output unit, 2ni hidden units for each

second order connection between the three units, thus yielding 3 · 2ni neurons; and finally

2ni hidden units connecting all three output units altogether. Finally, the values of the

weights are J
(2)
ho = J for connections between hidden and output units,

∣∣∣J (2)
ih

∣∣∣ = W for

the connections between input and hidden units; the sign for these weights is again given

depending on the input combination that activates them. The bias terms J
(1)
h are set as

J
(1)
h = −niW +dh, where dh is a value that depends on each hidden unit and whose value

will be discussed in this section.

Notice however that the hidden units connecting the output units in pairs have already

been discussed in the previous section, as the hidden units connected only to a given

160 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

Figure 5.17: Structure with three output units and ni input neurons. Notice that, in

order to create a simpler figure, the input units connecting the hidden neurons are already

associated with the bias terms.

output. Since each one of these neurons is isolated from the other hidden units, the

analysis carried out before is still valid. In this sense, we do only need to analyze what

happens with the hidden units connecting all the outputs altogether, which are the units

shown in Fig. 5.18, and discuss how decimating these hidden units affects the system.

Figure 5.18: Structure with three output units with a decimated structure, there are only

left these connections that will generate third order weights.

We will also consider that the hidden units from Fig. 5.18 are activated by following

5.2. BOOLE ARITHMETIC REPRESENTATION ON A BM 161

the same principles that we describe above: there is a single hidden unit that is active

for a certain input value, while the other ones are inactive and thus Sh = −1. We will

name the active unit as Sha , the inactive ones will be therefore referred to as Shi
. Since

they are not connected between themselves, this should not be an issue. We begin our

discussion by decimating unit Sha and so we recall the high order Decimation equations

for this case

G(3)
o1o2o3

=
1

8
ln

(
A1A2A4A7

A0A3A5A6

)
,

G(2)
o1o2

=
1

8
ln

(
A0A1A6A7

A2A3A4A5

)
,

G(2)
o1o3

=
1

8
ln

(
A0A2A5A7

A1A3A4A6

)
,

G(2)
o2o3

=
1

8
ln

(
A0A3A4A7

A1A2A5A6

)
,

G(1)
o1

=
1

8
ln

(
A4A5A6A7

A0A1A2A3

)
,

G(1)
o2

=
1

8
ln

(
A2A3A6A7

A0A1A4A5

)
,

G(1)
o3

=
1

8
ln

(
A1A3A5A7

A0A2A4A6

)
, (5.86)

where Ai is given by the following relations

ln cosh
(
J

(1)
ha

− J
(2)
hao1

− J
(2)
hao2

− J
(2)
hao3

)
= ln A0 ,

ln cosh
(
J

(1)
ha

− J
(2)
hao1

− J
(2)
hao2

+ J
(2)
hao3

)
= ln A1 ,

ln cosh
(
J

(1)
ha

− J
(2)
hao1

+ J
(2)
hao2

− J
(2)
hao3

)
= ln A2 ,

ln cosh
(
J

(1)
ha

− J
(2)
hao1

+ J
(2)
hao2

+ J
(2)
hao3

)
= ln A3 ,

ln cosh
(
J

(1)
ha

+ J
(2)
hao1

− J
(2)
hao2

− J
(2)
hao3

)
= ln A4 ,

ln cosh
(
J

(1)
ha

+ J
(2)
hao1

− J
(2)
hao2

+ J
(2)
hao3

)
= ln A5 ,

ln cosh
(
J

(1)
ha

+ J
(2)
hao1

+ J
(2)
hao2

− J
(2)
hao3

)
= ln A6 ,

ln cosh
(
J

(1)
ha

+ J
(2)
hao1

+ J
(2)
hao2

+ J
(2)
hao3

)
= ln A7 , (5.87)

where J
(2)
haok

= J ∀k and, for the same reasons discussed in the previous section, we take

162 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

J
(1)
ha

= dha , considering again that J � dha. Now

ln A0 = ln cosh (3J − dha) ,

ln A1 = ln cosh (J − dha) ,

ln A2 = ln cosh (J − dha) ,

ln A3 = ln cosh (J + dha) ,

ln A4 = ln cosh (J − dha) ,

ln A5 = ln cosh (J + dha) ,

ln A6 = ln cosh (J + dha) ,

ln A7 = ln cosh (3J + dha) , (5.88)

and using the approximation from Eq. 5.24

ln cosh (nJ) � nJ − ln 2 , (5.89)

we use Eq. 5.86 to get

ln A0 � 3J − dha ,

ln A1 � J − dha ,

ln A2 � J − dha ,

ln A3 � J + dha ,

ln A4 � J − dha ,

ln A5 � J + dha ,

ln A6 � J + dha ,

ln A7 � 3J + dha , (5.90)

5.2. BOOLE ARITHMETIC REPRESENTATION ON A BM 163

so we now find the values of the weights

G(3)
o1o2o3

= −dha

2
,

G(2)
o1o2

=
J

2
,

G(2)
o1o3

=
J

2
,

G(2)
o2o3

=
J

2
,

G(1)
o1

=
dha

2
,

G(1)
o2

=
dha

2
,

G(1)
o3

=
dha

2
. (5.91)

Notice how the new bias and the high order term depend only on the original parameter

from the hidden active unit dha .

We also have to analyze the case where the hidden units are inactive. In order to do

so, we proceed as we did in the previous section: the equivalent bias term for units Shi
is

now J
(1)
hi

= −nW +dhi
, being n any value that results from the parallel association of the

weights from the input units. We use the same approximation as above, thus considering

that W � J and hence

ln A0 � nW + 3J − dhi
,

ln A1 � nW + J − dhi
,

ln A2 � nW + J − dhi
,

ln A3 � nW − J − dhi
,

ln A4 � nW + J − dhi
,

ln A5 � nW − J − dhi
,

ln A6 � nW − J − dhi
,

ln A7 � nW − 3J − dhi
, (5.92)

164 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

thus yielding

G(3)
o1o2o3

= 0 ,

G(2)
o1o2

= 0 ,

G(2)
o1o3

= 0 ,

G(2)
o2o3

= 0 ,

G(1)
o1

= −J ,

G(1)
o2

= −J ,

G(1)
o3

= −J . (5.93)

This process can be repeated for all the possible values that the input units can take,

thus effectively finding all the connections of the neural network. It is then possible to

find all the weights needed to build a second order BM with three output units and an

arbitrary number of input neurons.

Figure 5.19: Structure that is added for a four output units and ni input neurons.

Now we inquiry about the case for a neural network with four output units: we create

a structure that uses the same topology as shown above, that should be added to the

one shown in Fig. 5.19. We will add to this model 2ni hidden units connected to each

separate output unit and to all the inputs, for a total of 4 · 2ni units. We will also add

2ni hidden units connecting all the possible pairs of outputs, for a total of 6 · 2ni hidden

units; and finally 2ni hidden units connecting the output units in groups of three, this will

make 4 · 2ni more hidden units; and a total number of 14 · 2ni which adds to the 2ni units

5.2. BOOLE ARITHMETIC REPRESENTATION ON A BM 165

from Fig. 5.19 for a final number of 15 · 2ni hidden units. Notice then that this stands for

(24 − 1)2ni hidden units.

Figure 5.20: Dressed weights structure to build a BM with 4 output units.

The resulting structure is shown in a simplified version in Fig. 5.20. This representation

uses dressed weights in order to show the hidden units connected to the output units: the

equivalence for this weights is depicted in Fig. 5.21, where one can generalize for a high

order dressed weight.

Figure 5.21: Dressed weights equivalence up to a third order dressed connection.

166 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

Notice now that a BM with five output units will use as many as 2no − 1 dressed

weights, which represent all the required connections with the input and hidden units.

This structure is shown in Fig. 5.22.

Figure 5.22: Structure used to build a 5 outputs BM.

This process can be repeated to build any BM, regardless of the number of input

and output units that it needs. In essence, the structure that one needs is shown in

Fig. 5.23, where there are 2no−1 dressed weights that one uses to reproduce any probability

distribution. Since each of these weights stands for 2ni input units, the resulting neural

network yields a total of (2no − 1)2ni hidden units.

Figure 5.23: Structure used to build an no outputs BM.

5.2.6 Error term due to the hyperbolic cosine approximation

In the previous sections, we have made an approximation for the hyperbolic cosine terms

of the decimation expressions; so now we inquiry about the error introduced there. We

recall the approximation from Eq. 5.24, which in a general form is expressed as

lim
W→∞

ln cosh (nW − J − dh) = nW − J − dh − ln 2 , (5.94)

5.2. BOOLE ARITHMETIC REPRESENTATION ON A BM 167

for finite J and dh, and n ∈ N
∗; or either

lim
J→∞

ln cosh (nJ − dh) = nJ − dh − ln 2 , (5.95)

for finite dh and n ∈ N
∗, again; and depending on the section of the neural network that

we are decimating. Notice however that the first expression assumes |W | � |J | ± |dh|,
while the second one goes for |J | � |dh|. Since the approximation that we are using here

considers the difference of the biggest terms in the operation where the error is introduced,

we will later show how both Eq. 5.94 and Eq. 5.95 are unified.

We will consider that, for a multiple variable function

z = f (x1, x2, . . . , xN) , (5.96)

the error εz is, to first order

εz =

√(
∂f

∂x1
εx1

)2

+

(
∂f

∂x2
εx2

)2

+ . . . +

(
∂f

∂xM
εxM

)2

, (5.97)

where εxj
is the error introduced by the j-th variable. In our case, we define

z = f (x1, x2, . . . , xM) =

M∑
j=1

(−1)α ln cosh (xj) , αj = 0, 1 , (5.98)

and consider that M is the product of three values

M = m1 · m2 · m3 , (5.99)

where m1 is the number of times that one has to apply decimation to the neural network.

Since we decimate all the hidden units, this stands for 2ni+no − 2ni. On the other hand,

m2 is the number of times that we associate the resulting weights in parallel, this is,

m2 = 2ni+no − 2ni , which is the number of dressed weights that we have in the system

and the sum of the resulting decimated weights that they represent. Finally, m3 is the

number of operations that one has to carry out when decimating a given unit. This value

depends on the number of neurons this unit is connected to, being 2 for two units and 2no

for no output units. The error reaches its worst value for m3 = 2no , hence

M ≤ (2ni+no − 2ni
)2

2no . (5.100)

168 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

Now we need to define the error for a given xj , we begin from

ln cosh (xj) = ln
(
exj + e−xj

)− ln 2 = ln
[
exj
(
1 + e−2xj

)]− ln 2

= xj + ln
(
1 + e−2xj

)− ln 2 , (5.101)

hence

εxj
= ln
(
1 + e−2xj

)
, (5.102)

because xj → ∞. Now we calculate the partial derivatives of z as

∂f

∂xj

=
1

cosh (xj)
sinh (xj) = tanh (xj) , (5.103)

and finally arrive at

εz =

√√√√ M∑
j=1

tanh2 (xj) ln2 (1 + e−2xj) . (5.104)

The worst case for this expression is that tanh2 (xj) = 1, and thus

εz =

√√√√ M∑
j=1

tanh2 (xj) ln2 (1 + e−2xj) ≤
√√√√ M∑

j=1

ln2 (1 + e−2xj) . (5.105)

If we consider the biggest xj to be y, we can obtain a standard expression form these

worst cases

xj = y = |W | − J − |d| = Aj − Bj , ∀ j , (5.106)

for Bj = J + |d|, or either

xj = y = J − |d| = Aj − Bj , ∀ j , (5.107)

and so we will use a certain A−B such as the minimum value of any given, possible worst

case

A − B = max {|W | − J − |d| , J − |d|} , (5.108)

thus we can write a general equation for the error as

εz =
(
2ni+no − 2no

)
2

no
2 ln
(
1 + e−2A+2B

)
, (5.109)

5.3. PRACTICAL IMPLEMENTATION OF A BM 169

notice then that the error can be expressed in terms of a Taylor expansion for the loga-

rithmic term as

εz �
(
2ni+no − 2no

)
2

no
2

1

e−2A+2B
, (5.110)

However, since we are building the BM, ni and no are imposed and W , J and d are fixed.

In this sense, we can guarantee that the error can be made arbitrarily small, because we

will select the values that satisfy W � J � d and J � ni + no. It has been shown then

that it is possible to build a second order BM that is able to learn any given probability

distribution with an error as low as desired.

5.3 Practical implementation of a BM

In this section we build two BMs by using the method presented above. We first describe

the process that should be followed in order to use the equations shown above to build a

given BM model. We then proceed by building a simple neural network with two input

units and two output neurons, in this example all the weights of the system are calculated

and explicitly written down. The section is concluded highlighting the more relevant

aspects of the process, regarding a second order BM with three input and three output

units.

5.3.1 Description of the implementation

We now describe the process that one should follow in order to build a given BM model

according to a certain p.d.f. that describes its behavior. This process is carried out by

using the equations that have been discussed above, and hence we will divide it in the

following steps:

1. Count the number of required hidden units.

2. Carry out a backwards learning problem to obtain the values of the high order

weights for each given input value.

170 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

3. Set the values of the dhj
terms from the bias terms of the hidden units that become

active due to each one of the input patterns.

4. Give values to the weights connecting any pair of connected units, according to the

previous equations and the desired error term value.

The number oh hidden units nh depends on the number of input ni and output no

neurons: we will need 2ni + 1 hidden units for each connection that is generated through

the backwards problem solution, with the exception of the first and second order terms.

This value is directly found as 2no − 1, hence one arrives to

nh = 2ni (2no − 1) if no ∈ [1, 3] , (5.111)

nh = (2ni + 1) (2no − 1) − no − no (no − 1)

2
if no > 3 .

5.3.2 Two inputs, two outputs BM

In this section we show how the process described so far is used to build a second order

BM with two inputs and two output units. We will create a system that is able to learn

the probability distribution that is represented in table 5.25.

To build this neural network, we use the structure represented in Fig. 5.24, and that

has been discussed in the previous section. We will carry out this process by assuming

that J
(2)
ijhk

= |W |, J
(2)
hjok

= J and that J
(1)
hj

= −2W + dhj
, the objective is therefore to find

W (where the sign is fixed according to the unit that becomes active due to a certain

unit), J and dhj
for j = 1 to j = 12. We begin this process by finding J

(1)
o1 , J

(1)
o2 and J

(2)
o1o2 .

In order to calculate these values it is necessary to set dhj
, dhk

and dhl
, corresponding to

the hidden units that connect So1 , So2 and both of them, respectively. We first decimate

the system in Fig. 5.24 to reach the one shown in Fig. 5.25, which contains the weights

J
(1)
o1 , J

(1)
o2 and J

(2)
o1o2 .

We then proceed by decimating this structure to obtain the final one shown in Fig. 5.26,

which has the set of weights G
(1)
o1 , G

(1)
o2 and G

(2)
o1o2 . These weights are related to J

(1)
o1 , J

(1)
o2

5.3. PRACTICAL IMPLEMENTATION OF A BM 171

Si1 Si2 So1 So2 p (So1 , So2 |Si1, Si2)

−1 −1 −1 −1 0.1

−1 −1 −1 1 0.4

−1 −1 1 −1 0.4

−1 −1 1 1 0.1

−1 1 −1 −1 0.2

−1 1 −1 1 0.3

−1 1 1 −1 0.4

−1 1 1 1 0.1

1 −1 −1 −1 0.4

1 −1 −1 1 0.1

1 −1 1 −1 0.1

1 −1 1 1 0.4

1 1 −1 −1 0.7

1 1 −1 1 0.1

1 1 1 −1 0.1

1 1 1 1 0.1

Table 5.25: Output probability distribution for a two input two output BM.

and J
(2)
o1o2 by the following expressions

G(1)
o1

= J (1)
o1

+
dhl

2
+ dhj

− 6J , (5.112)

G(1)
o2

= J (1)
o2

+
dhl

2
+ dhk

− 6J , (5.113)

G(2)
o1o2

= J (2)
o1o2

+ J − 1

2
ln 2 − 1

4
ln cosh2 (dhl

) . (5.114)

172 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

Si 1
Si 2

Sh 12
Sh 10

Sh 11

Si 2
Si 1

Sh 5

Si 2
Si 1

Sh 6

Si 2
Si 1

Sh 7

Si 2
Si 1

Sh 8

Si 2
Si 1

Sh 1

Si 2
Si 1

Sh 2

Si 2
Si 1

Sh 3

Si 2
Si 1

Sh 4

So 1
So 2

Sh 9

Si 1
Si 2

Si 1
Si 2 Si 1

Si 2

Figure 5.24: Structure with two output units and two input neurons.

Sh j

So 1
So 2

Sh l

Sh k

h l
(1)J

h k
(1)Jh j

(1)J

J h

J h io l
(2)

h i

k2o
(2)

o 2
(2)J

o l
(1)J

o l
(2)

h j
J

o l
(2)

o 2
J

o 2
(1)J

Figure 5.25: Decimated structure with the hidden units.

The set of weights G
(1)
o1 , G

(1)
o2 and G

(2)
o1o2 is found by solving the backwards problem as

ln p (So1 = −1, So2 = −1) = G(0) − G(1)
o1

− G(1)
o2

+ G(2)
o1o2

,

ln p (So1 = −1, So2 = 1) = G(0) − G(1)
o1

+ G(1)
o2

− G(2)
o1o2

,

ln p (So1 = 1, So2 = −1) = G(0) + G(1)
o1

− G(1)
o2

− G(2)
o1o2

,

ln p (So1 = 1, So2 = 1) = G(0) + G(1)
o1

+ G(1)
o2

+ G(2)
o1o2

, (5.115)

notice however that these expressions are solved for each one of the combinations that

5.3. PRACTICAL IMPLEMENTATION OF A BM 173

o l
(1)G o 2

(1)G

So 2
So 1

o l
(2)

o 2
G

Figure 5.26: Structure with the active set of hidden units.

the input units can take. Hence, one will have to solve this equations for Si1 = Si2 = −1,

as well as Si1 = 1, Si2 = −1; Si1 = −1, Si2 = 1 and finally Si1 = Si2 = 1. The results for

each input vector are represented in table 5.26.

Si1 Si2 G
(1)
o1 G

(1)
o2 G

(2)
o1o2

−1 −1 0.0 0.0 -0.15

−1 1 0.0 -0.05 -0.10

1 −1 0.0 0.0 0.15

1 1 -0.15 -0.15 0.15

Table 5.26: Backwards problem solution for each input vector combination.

Now, using Eq. 5.114 we can decide that J
(1)
o1 = J

(1)
o2 = 6J , and from the results in

table 5.26 we find

−0.15 = J (2)
o1o2

+ J − 1

2
ln 2 − 1

4
ln cosh2 (dh9) ,

−0.10 = J (2)
o1o2

+ J − 1

2
ln 2 − 1

4
ln cosh2 (dh10) ,

0.15 = J (2)
o1o2

+ J − 1

2
ln 2 − 1

4
ln cosh2 (dh11) ,

0.15 = J (2)
o1o2

+ J − 1

2
ln 2 − 1

4
ln cosh2 (dh12) , (5.116)

174 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

and we set up the values that allow the hyperbolic cosine to be inverted. Hence

cosh (d9) = e2J
(2)
o1o2

+2J−ln 2+0.3 ≥ 1 ,

cosh (d10) = e2J
(2)
o1o2

+2J−ln 2+0.2 ≥ 1 ,

cosh (d11) = e2J
(2)
o1o2

+2J−ln 2−0.3 ≥ 1 ,

cosh (d12) = e2J
(2)
o1o2

+2J−ln 2−0.3 ≥ 1 . (5.117)

Now we will have to set a proper value to J
(2)
o1o2 and J to find dhj

. The most restrictive

condition comes from the last two equations and mean that

2J (2)
o1o2

+ 2J − ln 2 − 0.3 ≥ 0 , (5.118)

and therefore

J (2)
o1o2

= −J +
1

2
ln 2 + 0.15 = −J + 0.50 , (5.119)

which, once inserted back in Eq. 5.117, leads to

cosh (dh9) = e0.6 = 1.82 ≥ 1 ,

cosh (dh10) = e0.5 = 1.65 ≥ 1 ,

cosh (dh11) = cosh (d12) = e0 = 1 ≥ 1 , (5.120)

and one finds

dh9 = 1.21 ,

dh10 = 1.09 ,

dh11 = dh12 = 0.0 . (5.121)

Now we have found dhj
for j = 9, 10, 11, 12, as the bias terms from the central unit shown

in Fig. 5.25. Notice then that J
(2)
o1o2 and J are still undefined; we will set their values at

the end of the calculations. Now we go for the other terms of Fig. 5.25; since we have set

J
(1)
o1 = J

(1)
o2 = 6J , we get

G(1)
o1

= J (1)
o1

+
dhl

2
+ dhj

− 6J =
dhl

2
+ dhj

,

G(1)
o2

= J (1)
o2

+
dhl

2
+ dhk

− 6J =
dhl

2
+ dhk

, (5.122)

5.3. PRACTICAL IMPLEMENTATION OF A BM 175

and solve this system for dh1, dh2, dh3, dh4, dh5, dh6, dh7 and dh8. Thus, using the values

from table 5.26, we obtain the following results corresponding to the input units values

as

0.0 =
dh9

2
+ dh1

0.0 =
dh9

2
+ dh5

⎫⎬
⎭ for Si1 = −1, Si2 = −1 ,

0.0 =
dh10

2
+ dh2

−0.05 =
dh10

2
+ dh6

⎫⎬
⎭ for Si1 = −1, Si2 = 1 ,

0.0 =
dh11

2
+ dh3

0.0 =
dh11

2
+ dh7

⎫⎬
⎭ for Si1 = 1, Si2 = −1 ,

−0.15 = d12

2
+ dh4

−0.15 = d12

2
+ dh8

⎫⎬
⎭ for Si1 = 1, Si2 = 1 , (5.123)

so we get trivially

dh1 = −0.61 ,

dh5 = −0.61 ,

dh2 = 0.55 ,

dh6 = 0.52 ,

dh3 = 0.0 ,

dh7 = 0.0 ,

dh4 = −0.15 ,

dh8 = −0.15 . (5.124)

Now that we know the values for the bias terms, we can finally fix J and W . This

values are set satisfying |W | � |J | � ∣∣dhj

∣∣, so the error introduced in the approximation

from Eq. 5.24 is little enough. We can take for instance

2W − 2J − 2
∣∣dhj

∣∣ ≤ 9.3 , ∀j ,

2J − 2
∣∣dhj

∣∣ ≤ 9.3 , ∀j , (5.125)

176 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

thus yielding W = 19.6, J = 10.3 and A − B = 9.3 in

A − B = min {|W | − J − |d| , J − |d|} , (5.126)

from

εz �
(
2ni+no − 2no

)
2

no
2

1

e2A−2B
≤ 0.01 , (5.127)

hence the error εz becomes smaller than 10−2.

We finally write down all the the values of the weights for this BM

−J
(2)
i1h1

= −J
(2)
i2h1

= −J
(2)
i1h2

= J
(2)
i2h2

= J
(2)
i1h3

= −J
(2)
i2h3

= J
(2)
i1h4

= J
(2)
i2h4

= 19.6 ,

−J
(2)
i1h5

= −J
(2)
i2h5

= −J
(2)
i1h6

= J
(2)
i2h6

= J
(2)
i1h7

= −J
(2)
i2h7

= J
(2)
i1h8

= J
(2)
i2h8

= 19.6 ,

−J
(2)
i1h9

= −J
(2)
i2h9

= −J
(2)
i1h10

= J
(2)
i2h10

= J
(2)
i1h11

= −J
(2)
i2h11

= J
(2)
i1h12

= J
(2)
i2h12

= 19.6 ,

J
(2)
h1o1

= J
(2)
h2o1

= J
(2)
h3o1

= J
(2)
h4o1

= 10.3 ,

J
(2)
h5o1

= J
(2)
h6o1

= J
(2)
h7o1

= J
(2)
h8o1

= 10.3 ,

J
(2)
h9o1

= J
(2)
h10o1

= J
(2)
h11o1

= J
(2)
h12o1

= 10.3 ,

J
(2)
h1o2

= J
(2)
h2o2

= J
(2)
h3o2

= J
(2)
h4o2

= 10.3 ,

J
(2)
h5o2

= J
(2)
h6o2

= J
(2)
h7o2

= J
(2)
h8o2

= 10.3 ,

J
(2)
h9o2

= J
(2)
h10o2

= J
(2)
h11o2

= J
(2)
h12o2

= 10.3 ,

J (2)
o1o2

= −9.7 , (5.128)

and the bias terms

J
(1)
h1

= −39.81 J
(1)
h2

= −38.65 J
(1)
h3

= −39.2 J
(1)
h4

= −39.35 ,

J
(1)
h5

= −39.81 J
(1)
h6

= −38.68 J
(1)
h7

= −39.2 J
(1)
h8

= −39.35 ,

J
(1)
h9

= −37.99 J
(1)
h10

= −38.11 J
(1)
h11

= −39.2 J
(1)
h12

= −39.2 ,

J (1)
o1

= 61.8 J (1)
o2

= 61.8 . (5.129)

Notice now that the error from the approximation can become minimized if the values

set at W and J are big enough. In this sense, it is possible to select any given value

5.3. PRACTICAL IMPLEMENTATION OF A BM 177

provided that the error related equations are satisfied, because the probability distribution

of the neural network is based upon the subtraction or addition of the values when parallel

decimating.

5.3.3 Three inputs, three outputs BM

In this last example we build a BM with three input units and three output neurons.

We create a system that is able to learn the probability distribution that is represented

in table 5.27; notice that there are only some instances of the 23+3 = 64 total number

of states that can be generated with three input and three output units. Hence, this

problem is not exhaustive. This has been made for practical reasons, since an exhaustive,

fully defined probability distribution requires an excessive amount of weights: there are

23 hidden units connecting each output with the input units for some dressed bias terms,

these need 4 weights each and a bias term for a total of 3 · 23 · 4 = 96 weights, plus

the 3 bias terms of the output units; 23 hidden units linking each pair of output units

which are represented as 3 second order dressed weights, with 4 weights each one for

3 · 23 · 5 = 120 weights, which are added to the 3 second order terms connecting the

output neurons. Finally, there is a third order dressed weight that needs 23 hidden units

with 6 connections each, for a total of 3 ·23 ·6 = 144 weights. In essence, this makes a total

of 3 · 23 + 3 · 23 + 23 = 56 hidden units and 99 + 123 + 144 = 366 weights. However, since

we are only considering the probability distribution associated to three different input

patterns, we will use the structure is represented in Fig. 5.27 using the dressed weights

notation from the previous section, this is shown in Fig. 5.28. Notice though that we will

only need 3 hidden units for each dressed weight instead of the 23 shown above. This

makes 3 · 3 · 4 = 36 weights for the dressed bias terms, 3 · 3 · 5 = 45 connections for the

second order dressed weights and 3 · 3 · 6 = 54 for the third order dressed links; for a total

of 135 weights.

Again, we begin by analyzing the set of weights G
(n)
σ that results from decimating

all the hidden units in the neural network and joining the resulting weights by parallel

178 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

Inputs Outputs Probabilities

Si1 Si2 Si3 So1 So2 So3 p (So1 , So2, So3 |Si1, Si2 , Si3)

−1 −1 −1 −1 −1 −1 0.15

−1 −1 −1 −1 −1 1 0.15

−1 −1 −1 −1 1 −1 0.25

−1 −1 −1 −1 1 1 0.05

−1 −1 −1 1 −1 −1 0.10

−1 −1 −1 1 −1 1 0.10

−1 −1 −1 1 1 −1 0.15

−1 −1 −1 1 1 1 0.05

−1 1 −1 −1 −1 −1 0.10

−1 1 −1 −1 −1 1 0.15

−1 1 −1 −1 1 −1 0.30

−1 1 −1 −1 1 1 0.05

−1 1 −1 1 −1 −1 0.15

−1 1 −1 1 −1 1 0.15

−1 1 −1 1 1 −1 0.05

−1 1 −1 1 1 1 0.05

1 −1 1 −1 −1 −1 0.05

1 −1 1 −1 −1 1 0.05

1 −1 1 −1 1 −1 0.05

1 −1 1 −1 1 1 0.05

1 −1 1 1 −1 −1 0.20

1 −1 1 1 −1 1 0.20

1 −1 1 1 1 −1 0.05

1 −1 1 1 1 1 0.15

Table 5.27: Non-exhaustive output probability distribution for a 3 input 3 output BM.

5.3. PRACTICAL IMPLEMENTATION OF A BM 179

Figure 5.27: Structure with three output units and three input neurons for a non-

exhaustive probability distribution with its required dressed weights.

Figure 5.28: Dressed weights equivalence for the 3 inputs, 3 outputs example.

association. Assuming that J
(2)
hjok

= J , |J (2)
ijhk

| = W and J
(1)
hj

= −3W + dhj
, we recall

180 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

Eqs. 5.91, 5.93 and 5.114 which are now written down as

G̃(3)
o1o2o3

= −dhj1

2
,

G̃(2)
o1o2

=
J

2
,

G̃(2)
o1o3

=
J

2
,

G̃(2)
o2o3

=
J

2
,

G̃(1)
o1

=
dhj1

2
,

G̃(1)
o2

=
dhj1

2
,

G̃(1)
o3

=
dhj1

2
, (5.130)

for the active neuron Shj
. The contribution from the other two hidden, inactive neurons

becomes

Ĝ(3)
o1o2o3

= 0 ,

Ĝ(2)
o1o2

= 0 ,

Ĝ(2)
o1o3

= 0 ,

Ĝ(2)
o2o3

= 0 ,

Ĝ(1)
o1

= −2J ,

Ĝ(1)
o2

= −2J ,

Ĝ(1)
o3

= −2J . (5.131)

5.3. PRACTICAL IMPLEMENTATION OF A BM 181

Now we consider the hidden units that connect each pair of output units as

Ǧ(2)
o1o2

= J − 1

2
ln 2 − 1

4
ln cosh2

(
dhj2

)
,

Ǧ(2)
o1o3

= J − 1

2
ln 2 − 1

4
ln cosh2

(
dhj3

)
,

Ǧ(2)
o2o3

= J − 1

2
ln 2 − 1

4
ln cosh2

(
dhj4

)
,

Ǧ(1)
o1

=
dj2

2
+

dj3

2
− 4J ,

Ǧ(1)
o2

=
dj2

2
+

dj4

2
− 4J ,

Ǧ(1)
o3

=
dj3

2
+

dj4

2
− 4J , (5.132)

Finally, we write down the values that emulate the original boolean building system as

Ḡ(1)
o1

= dhj5
− 2J ,

Ḡ(1)
o2

= dhj6
− 2J ,

Ḡ(1)
o3

= dhj7
− 2J , (5.133)

and now we associate the weights G̃
(n)
σ , Ĝ

(n)
σ , Ǧ

(n)
σ , Ḡ

(n)
σ and the previously existing J

(n)
σ

set as G
(n)
σ = J

(n)
σ + G̃

(n)
σ + Ĝ

(n)
σ + Ǧ

(n)
σ + Ḡ

(n)
σ to reach the following equations

G(3)
o1o2o3

= −1

2
dhj1

,

G(2)
o1o2

= J (2)
o1o2

− 1

2
ln 2 − 1

2
ln cosh

(
dhj2

)− 1

2
J ,

G(2)
o1o3

= J (2)
o1o3

− 1

2
ln 2 − 1

2
ln cosh

(
dhj3

)− 1

2
J ,

G(2)
o2o3

= J (2)
o2o3

− 1

2
ln 2 − 1

2
ln cosh

(
dhj4

)− 1

2
J ,

G(1)
o1

= J (1)
o1

+
dj2

2
+

dj3

2
+ dhj5

− 8J +
1

2
dhj1

,

G(1)
o2

= J (1)
o2

+
dj2

2
+

dj4

2
+ dhj6

− 8J +
1

2
dhj1

,

G(1)
o3

= J (1)
o3

+
dj3

2
+

dj4

2
+ dhj7

− 8J +
1

2
dhj1

. (5.134)

At this point we should now solve the backwards problem for each one of the output

182 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

vectors. For the input vector Si1 = Si2 = Si3 = −1 these read as

ln 0.15 = G(0) − G(1)
o1

− G(1)
o2

− G(1)
o3

+ G(2)
o1o2

+ G(2)
o1o3

+ G(2)
o2o3

− G(3)
o1o2o3

,

ln 0.15 = G(0) − G(1)
o1

− G(1)
o2

+ G(1)
o3

+ G(2)
o1o2

− G(2)
o1o3

− G(2)
o2o3

+ G(3)
o1o2o3

,

ln 0.25 = G(0) − G(1)
o1

+ G(1)
o2

− G(1)
o3

− G(2)
o1o2

+ G(2)
o1o3

− G(2)
o2o3

+ G(3)
o1o2o3

,

ln 0.05 = G(0) − G(1)
o1

+ G(1)
o2

+ G(1)
o3

− G(2)
o1o2

− G(2)
o1o3

+ G(2)
o2o3

− G(3)
o1o2o3

,

ln 0.10 = G(0) + G(1)
o1

− G(1)
o2

− G(1)
o3

− G(2)
o1o2

− G(2)
o1o3

+ G(2)
o2o3

+ G(3)
o1o2o3

,

ln 0.10 = G(0) + G(1)
o1

− G(1)
o2

+ G(1)
o3

− G(2)
o1o2

+ G(2)
o1o3

− G(2)
o2o3

− G(3)
o1o2o3

,

ln 0.15 = G(0) + G(1)
o1

+ G(1)
o2

− G(1)
o3

+ G(2)
o1o2

− G(2)
o1o3

− G(2)
o2o3

− G(3)
o1o2o3

,

ln 0.05 = G(0) + G(1)
o1

+ G(1)
o2

+ G(1)
o3

+ G(2)
o1o2

+ G(2)
o1o3

+ G(2)
o2o3

+ G(3)
o1o2o3

,

(5.135)

while for input vector Si1 = −Si2 = Si3 = −1 we obtain

ln 0.10 = G(0) − G(1)
o1

− G(1)
o2

− G(1)
o3

+ G(2)
o1o2

+ G(2)
o1o3

+ G(2)
o2o3

− G(3)
o1o2o3

,

ln 0.15 = G(0) − G(1)
o1

− G(1)
o2

+ G(1)
o3

+ G(2)
o1o2

− G(2)
o1o3

− G(2)
o2o3

+ G(3)
o1o2o3

,

ln 0.30 = G(0) − G(1)
o1

+ G(1)
o2

− G(1)
o3

− G(2)
o1o2

+ G(2)
o1o3

− G(2)
o2o3

+ G(3)
o1o2o3

,

ln 0.05 = G(0) − G(1)
o1

+ G(1)
o2

+ G(1)
o3

− G(2)
o1o2

− G(2)
o1o3

+ G(2)
o2o3

− G(3)
o1o2o3

,

ln 0.15 = G(0) + G(1)
o1

− G(1)
o2

− G(1)
o3

− G(2)
o1o2

− G(2)
o1o3

+ G(2)
o2o3

+ G(3)
o1o2o3

,

ln 0.15 = G(0) + G(1)
o1

− G(1)
o2

+ G(1)
o3

− G(2)
o1o2

+ G(2)
o1o3

− G(2)
o2o3

− G(3)
o1o2o3

,

ln 0.05 = G(0) + G(1)
o1

+ G(1)
o2

− G(1)
o3

+ G(2)
o1o2

− G(2)
o1o3

− G(2)
o2o3

− G(3)
o1o2o3

,

ln 0.05 = G(0) + G(1)
o1

+ G(1)
o2

+ G(1)
o3

+ G(2)
o1o2

+ G(2)
o1o3

+ G(2)
o2o3

+ G(3)
o1o2o3

.

(5.136)

5.3. PRACTICAL IMPLEMENTATION OF A BM 183

Finally, the system of equations for Si1 = −Si2 = Si3 = 1 is

ln 0.05 = G(0) − G(1)
o1

− G(1)
o2

− G(1)
o3

+ G(2)
o1o2

+ G(2)
o1o3

+ G(2)
o2o3

− G(3)
o1o2o3

,

ln 0.05 = G(0) − G(1)
o1

− G(1)
o2

+ G(1)
o3

+ G(2)
o1o2

− G(2)
o1o3

− G(2)
o2o3

+ G(3)
o1o2o3

,

ln 0.05 = G(0) − G(1)
o1

+ G(1)
o2

− G(1)
o3

− G(2)
o1o2

+ G(2)
o1o3

− G(2)
o2o3

+ G(3)
o1o2o3

,

ln 0.05 = G(0) − G(1)
o1

+ G(1)
o2

+ G(1)
o3

− G(2)
o1o2

− G(2)
o1o3

+ G(2)
o2o3

− G(3)
o1o2o3

,

ln 0.20 = G(0) + G(1)
o1

− G(1)
o2

− G(1)
o3

− G(2)
o1o2

− G(2)
o1o3

+ G(2)
o2o3

+ G(3)
o1o2o3

,

ln 0.20 = G(0) + G(1)
o1

− G(1)
o2

+ G(1)
o3

− G(2)
o1o2

+ G(2)
o1o3

− G(2)
o2o3

− G(3)
o1o2o3

,

ln 0.05 = G(0) + G(1)
o1

+ G(1)
o2

− G(1)
o3

+ G(2)
o1o2

− G(2)
o1o3

− G(2)
o2o3

− G(3)
o1o2o3

,

ln 0.15 = G(0) + G(1)
o1

+ G(1)
o2

+ G(1)
o3

+ G(2)
o1o2

+ G(2)
o1o3

+ G(2)
o2o3

+ G(3)
o1o2o3

.

(5.137)

The results for these systems of equations can be seen in table 5.28.

G
(n)
σ Si1 = Si2 = Si3 = −1 Si1 = −Si2 = Si3 = −1 Si1 = −Si2 = Si3 = 1

G
(1)
o1 −0.1652 −0.1733 0.4839

G
(1)
o2 −0.1094 −0.2747 −0.2092

G
(1)
o3 −0.3385 −0.1733 0.1373

G
(2)
o1o2 0.0375 −0.2747 −0.2092

G
(2)
o1o3 0.0639 0.1733 0.1373

G
(2)
o2o3 −0.3385 −0.2747 0.1373

G
(3)
o1o2o3 −0.0639 −0.2747 −0.1373

Table 5.28: Solution to the backwards problems for the three inputs, three outputs non-

exhaustive system.

Now we take Eq. 5.134 to find the set of weights J
(n)
σ , and write it down for the

184 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

Si1 = Si2 = Si3 = −1 configuration

G(3)
o1o2o3

= −dh1

2
,

G(2)
o1o2

= J (2)
o1o2

− 1

2
ln 2 − 1

2
ln cosh (dh2) −

J

2
,

G(2)
o1o3

= J (2)
o1o3

− 1

2
ln 2 − 1

2
ln cosh (dh3) −

J

2
,

G(2)
o2o3

= J (2)
o2o3

− 1

2
ln 2 − 1

2
ln cosh (dh4) −

J

2
,

G(1)
o1

= J (1)
o1

+
d2

2
+

d3

2
+ dh5 − 8J +

dh1

2
,

G(1)
o2

= J (1)
o2

+
d2

2
+

d4

2
+ dh6 − 8J +

dh1

2
,

G(1)
o3

= J (1)
o3

+
d3

2
+

d4

2
+ dh7 − 8J +

dh1

2
, (5.138)

so we can fix J
(1)
o1 = J

(1)
o2 = J

(1)
o3 = 8J . Now we fix the second order terms; we begin with

J
(2)
o1o2 as we did in the previous example

0.0375 = J (2)
o1o2

− 1

2
ln 2 − 1

2
ln cosh (dh2) −

J

2
,

−0.2747 = J (2)
o1o2

− 1

2
ln 2 − 1

2
ln cosh (dh9) −

J

2
,

−0.2092 = J (2)
o1o2

− 1

2
ln 2 − 1

2
ln cosh (dh16) −

J

2
, (5.139)

we obtain

cosh (dh2) = e2J
(2)
o1o2

−ln 2−0.075−J ≥ 1 ,

cosh (dh9) = e2J
(2)
o1o2

−ln 2+0.5494−J ≥ 1 ,

cosh (dh16) = e2J
(2)
o1o2

−ln 2+0.4148−J ≥ 1 , (5.140)

so we have to satisfy the following constraints

2J (2)
o1o2

− ln 2 − 0.075 − J ≥ 0 ,

2J (2)
o1o2

− ln 2 + 0.5494 − J ≥ 0 ,

2J (2)
o1o2

− ln 2 + 0.4148 − J ≥ 0 , (5.141)

being the most restrictive solution 2J
(2)
o1o2 = ln 2+0.075+J , hence J

(2)
o1o2 = ln 2

2
+0.0375+ J

2
.

5.3. PRACTICAL IMPLEMENTATION OF A BM 185

Now we find

dh2 = 0 ,

dh9 = acoshe0.075+0.5494 = 1.237 ,

dh16 = acoshe0.075+0.4148 = 1.072 , (5.142)

and repeat this process with the remaining J
(2)
o1o3 , J

(2)
o2o3 , dh3, dh4, dh10, dh11, dh17 and dh18

terms

J
(2)
o1o3 = ln 2

2
− 0.0320 + J

2
, J

(2)
o2o3 = ln 2

2
+ 0.169 + J

2
,

dh3 = 0 , dh4 = 0 ,

dh10 = 0.476 , dh11 = 0.361 ,

dh17 = 0.389 , dh18 = 1.054 .

(5.143)

We proceed now with the dh1, dh8 and the dh15 terms, which are directly found by

using the third order term that one can obtain through the backwards problem solution

G
(3)
o1o2o3 = −1

2
dhj

, and so

dh1 = 0.1278 ,

dh8 = 0.5494 ,

dh15 = 0.2746 .

(5.144)

We conclude the example by finding the proper values for the terms dh5, dh6, dh7, dh12,

186 CHAPTER 5. ANALYTICAL LEARNING PROCESS FOR A BM

dh13, dh14, dh19 , dh20 and dh21 through the following equations

−0.1652 = J (1)
o1

+
dh2

2
+

dh3

2
+ dh5 − 8J +

dh1

2
,

−0.1094 = J (1)
o2

+
dh2

2
+

dh4

2
+ dh6 − 8J +

dh1

2
,

−0.3385 = J (1)
o3

+
dh3

2
+

dh4

2
+ dh7 − 8J +

dh1

2
,

−0.1733 = J (1)
o1

+
dh9

2
+

dh10

2
+ dh12 − 8J +

dh8

2
,

−0.2747 = J (1)
o2

+
dh9

2
+

dh11

2
+ dh13 − 8J +

dh8

2
,

−0.1733 = J (1)
o3

+
dh10

2
+

dh11

2
+ dh14 − 8J +

dh8 ,

0.4839 = J (1)
o1

+
dh16

2
+

dh17

2
+ dh19 − 8J +

dh15

2
,

−0.2092 = J (1)
o2

+
dh16

2
+

dh18

2
+ dh20 − 8J +

dh15

2
,

0.1373 = J (1)
o3

+
dh17

2
+

dh18

2
+ dh21 − 8J +

dh15

2
, (5.145)

and so

dh5 = −0.2291 ,

dh6 = −0.1733 ,

dh7 = −0.4024 ,

dh12 = −1.3045 ,

dh13 = −1.3484 ,

dh14 = −0.8665 ,

dh19 = −0.3839 ,

dh20 = −1.4095 ,

dh21 = −0.7215 . (5.146)

Notice however that to complete the example it requires J and W to be fixed. To

this purpose, we define an arbitrary error εz ≤ 0.01, and choose J = 11.2 and W = 20.9,

according again to Eq. 5.110.

Chapter 6

Summary and conclusions

In this work, we have studied new aspects of the learning process, the dynamics and

the capacity of Boltzmann Machines (BM) and their extension to High Order Boltz-

mann Machines (HOBM) where weights can connect more than two units at a time. The

Boltzmann Machine neural network is a system with the ability of learning and extrap-

olating probability distributions. However, the exhaustive computational cost and the

large amount of time associated to the learning process have prevented widespread usage

of this model. Though there are several authors who have proposed different methods

to reduce the learning time, the BM is still better known as the parallel implementation

of the Simulated Annealing (SA) algorithm than as a neural network useful in solving

practical, real-life problems. Up to now, the existing relations between a BM, a proba-

bility distribution (p.d.f.) and a High Order Boltzmann Machine were the ones shown in

Fig. 6.1.

In its standard form, learning in Boltzmann Machines is carried out using a gradient

descent algorithm where in each iteration weights are modified according to the update

rules

Δw
(1)
i ∝ (〈Si〉∗ − 〈Si〉) ,

Δw
(2)
ij ∝ (〈SiSj〉∗ − 〈SiSj〉) . (6.1)

187

188 CHAPTER 6. SUMMARY AND CONCLUSIONS

Learning
process

Learning
process

MC sampling MC sampling

HOBMBM

p.d.f.

Figure 6.1: The BM, its probability distribution and the HOBM.

Being a gradient descent algorithm, this leads to the local minimum of the Kullback-

Leibler distance closest to the departing state. Though this is the standard procedure,

statistically exact methods such as Simulated Annealing optimization could be used to

achieve better results. These considerations also apply to the High Order Boltzmann

Machine, whose weights are updated according to the rule

Δw
(3)
i1i2i3... ∝ (〈Si1Si3Si3 · · · 〉∗ − 〈Si1Si3Si3 · · · 〉) . (6.2)

On the other hand, if the weights of a BM are known the p.d.f. reproduced by the network

can estimated by Monte Carlo (MC) simulation employing the Metropolis algorithm.

Once again, the same thing applies to the HOBM model.

So far this describes the state of the art prior to this work. In this thesis we have made

some extensions of that, introducing new relevant aspects that improve the performance

of the dynamics and learning in BMs and HOBMs.

In chapter 3 the original decimation algorithm that was presented in Ref. [Saul and

Jordan, 1994] and further extended in Ref. [Rüger et al., 1996] is described. Decimation

was conceived as a procedure that can be used in sparsely connected BMs to analytically

compute the statistical moments of Eq. 6.1. Decimation of a unit is a process that

eliminates it and produces a new network with one less neuron and additional connections

between the remaining ones, keeping their probability distribution unaffected. Decimation

of several units was obtained by successive application of this algorithm to each one of

the units to be removed. A serious drawback of the method proposed was that it could

189

HOD learning

HOD equivalence

HOD learning

HOBMBM

p.d.f.

Figure 6.2: New connections between the BM and HOBM, due to the HOD equivalence;

and the p.d.f. and the BM/HOBM models when using HOD to carry out a learning

process.

not be used when units are connected to more than three other units. We have derived

an extension of this procedure that overcomes this problem, thus allowing the unit to

be decimated to connect to an arbitrary number of units in the network. This has been

referred to as High Order Decimation (HOD), where the moments required to update

the weights of any BM or HOBM can be computed analytically (instead of using the

standard MC based algorithm), at the expense of producing as a result high order weights

connecting the remaining units. When used on a HOBM, this method is more precise that

other popular algorithms like the high order Mean Field (MF) approximation proposed

in Ref. [Kuroki et al., 1999]. In this sense, and as a first contribution, we have added

additional links relating the p.d.f. to both the BM and the HOBM to the scheme of

Fig. 6.1, as shown in Fig. 6.2.

In particular, High Order Decimation can be used to decimate all hidden units in a

BM, producing a HOBM with only visible units. In this way, we have shown that hidden

units in a BM can be replaced by a set of high order connections, keeping the probability

distribution of the visible units unaffected. This is schematically represented in Fig. 6.3.

This process relates the BM and the HOBM as shown by the lower link in Fig. 6.2.

190 CHAPTER 6. SUMMARY AND CONCLUSIONS

Figure 6.3: Schematic representation of the equivalence between hidden units in a BM

and high order weights (represented as a solid pattern) on a HOBM.

Furthermore, an extension of the decimation process, where any number of units is

decimated at once, has also been proposed and checked to work. This method, referred

to as Multiple Decimation (MD), is also shown to be faster than reiterated application of

the HOD procedure. HOD and MD lead to the same decimated system. Additionally, we

have also tested the efficiency of the HOD method when applied to the learning process of

a BM in classifying problems. When compared to other well-known classifying algorithms,

the HOD method is shown to be competitive at least in accuracy. With this method we

have solved real-life problems such as the balance and the tic-tac-toe from Ref. [Newman

et al., 1998], the gene problem from Ref. [Prechelt, 1994], and the benchmarking Monk’s

problem from Ref. [Thrun et al., 1991].

Forward
problem

Backwards
problem

HOBMBM

p.d.f.

Figure 6.4: New link established between the analysis of the p.d.f. and the HOBM model.

In chapter 4 we have discussed a representation of the set of equations connecting the

high order weights of the network and the p.d.f. implemented by a HOBM, in terms of

191

Hadamard matrices. This representation turns out to be quite useful since the particular

properties of Hadamard matrices allow for a neat determination of the weights of the

network when the whole p.d.f. of the system is known. This has been referred to as the

backwards problem, which is the inverse of the much simpler forward problem where one

knows all the weights of the network and computes the values of the probabilities. The

backwards problem has been shown to be exactly solvable for a p.d.f. that is fully known,

that is, for a p.d.f. where one knows the probability of every state of the network. However

when only some probabilities are known (as happens in real problems), there is an infinite

set of solutions that can reproduce them. We have not discussed in detail the whole family

of solutions, but have analyzed a specific solution based on an LU factorization of the

Hadamard matrix of the system. This establishes an additional link between the p.d.f. to

be learnt and the HOBM model as shown with a dotted line in Fig. 6.4.

Analytic BM
learning

Analytic BM
learning

HOBMBM

p.d.f.

Figure 6.5: New link established between the analysis of the p.d.f. and the HOBM model.

Finally, in chapter 5 a specific BM with a fixed topology has been devised in such a

way that one can directly find the values of the weights linking the different units when the

whole p.d.f. of the system is know. In this sense, a solution to the backwards problem for

that specific topology has been given. This topology has been adopted in order to prove

the existing equivalence between hidden units in a BM and high order weights in a HOBM.

Starting from the known p.d.f. a HOBM is built by solving the corresponding backwards

192 CHAPTER 6. SUMMARY AND CONCLUSIONS

problem. Once the high order weights are known, the high order decimation equations

for the adopted BM are inverted and the associated two-body weights are obtained. In

this way, a second order BM with a fixed topology is shown to be able to reproduce any

p.d.f. that does not assign zero probability to any state.

Appendix

Properties of Hadamard matrices

In this appendix, we briefly describe what Hadamard matrices are and how they are

related to the systems of equations that are discussed in this thesis. We will only discuss

the concepts that are needed to understand the ideas presented in the text.

This appendix has been structured in two sections: first, we discuss Hadamard matri-

ces in general, and their most relevant mathematical properties. The next section focuses

on the specific type of Hadamard matrices that are used in this work, we also discuss an

alternative Hadamard matrix creation rule that better suits our requirements, and prove

that they can be generated with a slight modification of the general recursive rule.

A.1 General properties of Hadamard matrices

Hadamard matrices were first presented by J. J. Sylvester in Ref. [Sylvester, 1867]. They

are binary valued square m × m matrices Hm with {−1, +1} entries whose rows are

pairwise orthogonal [Hedayat and Wallis, 1978], in other words

Hm · HT
m = mI . (A.1)

193

194 APPENDIX. PROPERTIES OF HADAMARD MATRICES

Consequently, one immediately derives the following properties

det {Hm×m} �= 0 , (A.2)

H−1
m×m =

1

m
HT

m×m , (A.3)

Hm×m · HT
m×m = HT

m×m · Hm×m = mI , (A.4)

I being the identity matrix. Property A.2 is a direct consequence of the fact that all

row vectors are orthogonal. Furthermore, since the determinant of the product of square

matrices equals the product of their respective determinants, and the determinant of the

transpose equals the determinant of the original matrix, one readily infers that

det {Hm×m} = ±√
m . (A.5)

In this way, H−1
m×m is guaranteed to exist. On the other hand, multiplying Eq. A.1 on the

left by H−1
m×m we find property A.3. We now multiply Eq. A.3 on the right by Hm×m

I =
1

m
HT

m×m · Hm×m , (A.6)

thus proving Eq. A.4.

It is not obvious that Hadamard matrices of any dimensionality do actually exist. It

has been conjectured in Ref. [Paley, 1933] that, if m = 1, m = 2 or either m is divisible

by 4 and is of the form

m = 2c
(
pk + 1

)
k, c ∈ Z , k > 0 , c ≥ 0 , (A.7)

where p is a prime number different from 2, there always exist Hadamard matrices of order

m. Still, Hadamard matrices for m = 2k, ∀k ∈ Z ≥ 0 are confirmed to exist [Hedayat

and Wallis, 1978]. There are several operations that can be carried out on a Hadamard

matrix which will still preserve the Hadamard properties [Orrick, 2008], and therefore

yield another Hadamard matrix. Examples of such operations are transposition, the

permutation of rows or columns, or changing the sign of any number of rows or columns.

Hadamard matrices are nowadays extensively used in cryptography [Lipmaa, 2002],

error detection [Fenwick et al., 1977], spectrography [Gentry et al., 2006], modulation

USE OF HADAMARD MATRICES IN HOBMS 195

[Nyström and Popovic, 1998] and signal correlation [Horadam, 2006]. They are generated

in many different ways, depending on the value of m [Kharaghani and Tayfeh-Rezaie,

2004, Bouyukliev et al., 2005, Doković, 2008]. In this thesis, we are only interested in

values of the form m = 2N , N being (possibly a subset of) the number of neurons in the

network. These Hadamard matrices can be built via the Sylvester rule [Sylvester, 1867]

H2m =

⎛
⎝ Hm Hm

Hm −Hm

⎞
⎠ , H2 =

⎛
⎝ 1 1

1 −1

⎞
⎠ . (A.8)

We now show by induction that any Hadamard matrix that is generated through this

rule satisfies Eq. A.2. It is obvious that the row vectors of H2 are orthogonal. We now

assume that all row vectors in Hm are orthogonal, and show that this is also true for H2m.

We start assuming that the row vectors in Hm are orthogonal. Take two row vectors �u
(2m)
i

and �u
(2m)
j from H2m with i �= j. These are of the general form

�u
(2m)
i =

⎛
⎝ �u(m)

±�u(m)

⎞
⎠ , �u

(2m)
j =

⎛
⎝ �v(m)

±�v(m)

⎞
⎠ , (A.9)

with �u(m) �= �v(m) and �u(m) ·�v(m) = 0, since �u(m) and �v(m) are orthogonal vectors from Hm.

Then

�u
(2m)
i · �u(2m)

j = �u(m) · �v(m) ± �u(m) · �v(m) = 0 . (A.10)

We have shown that Sylvester’s rule always produces Hadamard matrices.

A.2 Use of Hadamard matrices in HOBMs

In this work, we have used Hadamard matrices to build the systems of equations that

define the HOBM model. However, we do not use Sylvester’s rule directly. In this section,

we write explicitly the equations of the HOD process and the backwards problem using

Hadamard matrices. We begin this discussion analyzing a simple example consisting in

the serial association of a two-unit network, as shown in Fig. A.1a, which after decimation

produces A.1b.

196 APPENDIX. PROPERTIES OF HADAMARD MATRICES

Sd

J(1)
d

G(1)

J(2)
d

S
S

(a) (b)

Figure A.1: Serial association to obtain a bias term.

The decimation equations for Sd are

ln cosh
(
J

(1)
d + J

(2)
d

)
= G(0) + G(1) for S = 1,

ln cosh
(
J

(1)
d − J

(2)
d

)
= G(0) − G(1) for S = −1. (A.11)

In matrix notation this system becomes

⎛
⎝ ln cosh

(
J

(1)
d + J

(2)
d

)
ln cosh

(
J

(1)
d − J

(2)
d

)
⎞
⎠ =

⎛
⎝ 1 1

1 −1

⎞
⎠
⎛
⎝ G(0)

G(1)

⎞
⎠ , (A.12)

where

⎛
⎝ 1 1

1 −1

⎞
⎠ fulfills properties A.2 to A.3 and is therefore of the Hadamard type.

Actually this matrix is H2 in Sylvester rule. Notice that Eq. A.12 could also be represented

in matrix form using the alternative matrix H2×2 =

⎛
⎝ 1 −1

1 1

⎞
⎠ by simply reversing the

order of the equations in Eq. A.11. Since this matrix does also fulfill properties A.2

to A.3, it is of the Hadamard type. We thus see that one can find at least two different

Hadamard matrices describing the system. As we shall see below, this statement is general

and applies to all the networks analyzed in this text.

Now we work out the first non-trivial example, corresponding to the star-triangle

transformation shown in Fig. A.2. The system of equations related to the decimation

USE OF HADAMARD MATRICES IN HOBMS 197

process of unit Sd reads

ln cosh
(
J

(1)
d − J

(2)
d1 − J

(2)
d2 − J

(2)
d3

)
= A0 =

= G(0) − G
(1)
1 − G

(1)
2 − G

(1)
3 + G

(2)
12 + G

(2)
13 + G

(2)
23 − G

(3)
123

ln cosh
(
J

(1)
d − J

(2)
d1 − J

(2)
d2 + J

(2)
d3

)
= A1 =

= G(0) − G
(1)
1 − G

(1)
2 + G

(1)
3 + G

(2)
12 − G

(2)
13 − G

(2)
23 + G

(3)
123

ln cosh
(
J

(1)
d − J

(2)
d1 + J

(2)
d2 − J

(2)
d3

)
= A2 =

= G(0) − G
(1)
1 + G

(1)
2 − G

(1)
3 − G

(2)
12 + G

(2)
13 − G

(2)
23 + G

(3)
123

ln cosh
(
J

(1)
d − J

(2)
d1 + J

(2)
d2 + J

(2)
d3

)
= A3 =

= G(0) − G
(1)
1 + G

(1)
2 + G

(1)
3 − G

(2)
12 − G

(2)
13 + G

(2)
23 − G

(3)
123

ln cosh
(
J

(1)
d + J

(2)
d1 − J

(2)
d2 − J

(2)
d3

)
= A4 =

= G(0) + G
(1)
1 − G

(1)
2 − G

(1)
3 − G

(2)
12 − G

(2)
13 + G

(2)
23 + G

(3)
123

ln cosh
(
J

(1)
d + J

(2)
d1 − J

(2)
d2 + J

(2)
d3

)
= A5 =

= G(0) + G
(1)
1 − G

(1)
2 + G

(1)
3 − G

(2)
12 + G

(2)
13 − G

(2)
23 − G

(3)
123

ln cosh
(
J

(1)
d + J

(2)
d1 + J

(2)
d2 − J

(2)
d3

)
= A6 =

= G(0) + G
(1)
1 + G

(1)
2 − G

(1)
3 + G

(2)
12 − G

(2)
13 − G

(2)
23 − G

(3)
123

ln cosh
(
J

(1)
d + J

(2)
d1 + J

(2)
d2 + J

(2)
d3

)
= A7 =

= G(0) + G
(1)
1 + G

(1)
2 + G

(1)
3 + G

(2)
12 + G

(2)
13 + G

(2)
23 + G

(3)
123 , (A.13)

where Aγ stands for

Aγ = (A.14)

= G(0) + G
(1)
1 S1 + G

(1)
2 S2 + G

(1)
3 S3 + G

(2)
12 S1S2 + G

(2)
13 S1S3 + G

(2)
23 S2S3 + G

(3)
123S1S2S3 .

198 APPENDIX. PROPERTIES OF HADAMARD MATRICES

S1 S3 SdS2

G12
(2)

G23
(2)

G13
(2)

G1
(1)

S1 S2 S3

G2
(1)

G3
(1)

G123
(3)

J(1)
d

J(2)
d2

J(2)
d3

J(2)
d1

Figure A.2: High order star-triangle association.

This system of equations can also be expressed in matrix form as⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0

A1

A2

A3

A4

A5

A6

A7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 1 1 1 −1

1 −1 −1 1 1 −1 −1 1

1 −1 1 −1 −1 1 −1 1

1 −1 1 1 −1 −1 1 −1

1 1 −1 −1 −1 −1 1 1

1 1 −1 1 −1 1 −1 −1

1 1 1 −1 1 −1 −1 −1

1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G(0)

G
(1)
1

G
(1)
2

G
(1)
3

G
(2)
12

G
(2)
13

G
(2)
23

G
(3)
123

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.15)

Notice that the matrix in Eq. A.15 is of the Hadamard type, though it has not directly

been generated through Sylvester’s rule. This system results from the specific order in

which the equations have been written (defining the order of the rows in Eq. A.15) and the

order chosen for the different terms entering in each equation (defining the order of the

columns in Eq. A.15). One could, for instance, obtain an equivalent matrix representation

of the system of equations permuting rows 1 and 3, which would correspond to write, in

Eq. A.13, first the third equation, then the second one, then the first one, and finally all the

others in the same order they appear. In this way, all permutations of rows are allowed,

since they correspond to a different order in which the equations are being presented.

Furthermore, one could also change columns in the matrix, and that would correspond

to a rearrangement of the different terms entering in the energy functional. The order in

USE OF HADAMARD MATRICES IN HOBMS 199

which the terms appear in Eq. A.13 corresponds to writing the energy functional in the

standard form

E = (A.16)

= G(0) + G
(1)
1 S1 + G

(1)
2 S2 + G

(1)
3 S3 + G

(2)
12 S1S2 + G

(2)
13 S1S3 + G

(2)
23 S2S3 + G

(3)
123S1S2S3 ,

where one writes first the zero order weight G(0), next all the first order (bias) terms, then

the second order (two-body weights) terms, and so on until the last, unique N -th order

connection. For instance, a permutation of columns two and five in Eq. A.15 corresponds

to changing the second and fifth terms in this previous expression, leading to

E = (A.17)

= G(0) + G
(2)
12 S1S2 + G

(1)
2 S2 + G

(1)
3 S3 + G

(1)
1 S1 + G

(2)
13 S1S3 + G

(2)
23 S2S3 + G

(3)
123S1S2S3 ,

which obviously represents the same energy. We can now take advantage of the fact that

permutation of rows and/or columns are allowed, as we have just discussed, to build an

equivalent Hadamard matrix describing this very same system. In the system matrix of

Eq. A.15, change rows as follows: 1 ↔ 8, 2 ↔ 7, 3 ↔ 6, and finally 4 ↔ 5, to produce

H̃23×23 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1

1 1 1 −1 1 −1 −1 −1

1 1 −1 1 −1 1 −1 −1

1 1 −1 −1 −1 −1 1 1

1 −1 1 1 −1 −1 1 −1

1 −1 1 −1 −1 1 −1 1

1 −1 −1 1 1 −1 −1 1

1 −1 −1 −1 1 1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.18)

Next change columns as follows: column 2 goes to column 5, column 4 goes to column 2,

column 5 goes to column 7, and column 7 goes to column 4. The outcome of the whole

200 APPENDIX. PROPERTIES OF HADAMARD MATRICES

process is

H23×23 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.19)

which is a Hadamard matrix that has been directly generated through Sylvester rule, as

can be easily checked. Once again, the decimation process can be described in terms of a

Hadamard matrix.

Now we prove the general statement that the system of equations describing the result

of any HOD process can be expressed in terms of a Hadamard matrix. We recall the

expression of the decimation equations (single or multiple) corresponding to an N -th

order, N units neural network

Aγ = −J (0) −
∑
i1

J
(1)
i1

Si1 −
∑
i1<i2

J
(2)
i1i2

Si1Si2 −
∑

i1<i2<i3

J
(3)
i1i2i3

Si1Si3Si3 − . . . , (A.20)

where Aγ stand for the logarithm terms involving the weights of the network prior to

decimation. The matrix associated to this system of equations is usually written in the

form

Ĥ2N×2N = (A.21)[{1} {S1} {S2} . . . {SN} {Si1Si2} . . .
{
Si1Si2 · · ·SiN−1

} {S1S2 · · ·SN}
]

.

The first column {1} in Ĥ2N×2N represents a column vector with every component set

equal to 1. The next N terms {S1}, {S2} to {SN} stand for N column vectors of 2N

components each one. Their values are drawn from a 2N rows × N columns matrix

corresponding to the different N -bit words (organized in rows), representing the integer

USE OF HADAMARD MATRICES IN HOBMS 201

numbers 0, 1, 2, . . . , 2N − 1 in ascendant order with the lowest value 0 on top and the

highest value 2N − 1 on the bottom, and with every 0 replaced by −1. All other elements

in Ĥ2N×2N are obtained multiplying the values of units Si1 , Si2, . . . , SiN taken from columns

2 to N +1 in the same row. In this way and following the previous example corresponding

to a neural network with N = 3 units, one starts from

S1 S2 S3

1 −1 −1 −1

1 −1 −1 1

1 −1 1 −1

1 −1 1 1

1 1 −1 −1

1 1 −1 1

1 1 1 −1

1 1 1 1

to build

S1S2 S1S3 S2S3 S1S2S3

1 1 1 −1

1 −1 −1 1

−1 1 −1 1

−1 −1 1 −1

−1 −1 1 1

−1 1 −1 −1

1 −1 −1 −1

1 1 1 1

.

Joining all the columns generated in this way one ends up with the full 23 × 23 matrix of

Eq. A.19.

All in all, what we end up with is a matrix formed by columns corresponding to all

possible products of units, ranging from zero units (this is the first column of 1’s) to the

product of all the N units (last column). The order in which the different columns appear

is irrelevant, and the same applies to the rows. One can build a simple rule that generates

iteratively all the required rows and columns. In order to do so, one starts writing a 2×2

matrix H2×2 corresponding to the elements {1} and {S1} with S1 = 1 on top and S1 = −1

on the bottom

H2×2 =
[
1 S1

]
=

⎛
⎝ 1 1

1 −1

⎞
⎠ . (A.22)

Now we can describe a system with a second neuron building a 22 × 22 matrix H22×22 ,

multiplying H2×2 by {1} and H2×2 by {S2}, with S2 = 1 on top and S2 = −1 on the

202 APPENDIX. PROPERTIES OF HADAMARD MATRICES

bottom

H22×22 = [H2×2 × 1 H2×2 × S2] =
[

[1 S1] [1 S1]S2

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎝ 1 1

1 −1

⎞
⎠× 1

⎛
⎝ 1 1

1 −1

⎞
⎠× (S2 = 1)

⎛
⎝ 1 1

1 −1

⎞
⎠× 1

⎛
⎝ 1 1

1 −1

⎞
⎠× (S2 = −1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A.23)

We can now include a third neuron S3 to generate H23×23 , by following the same

procedure

H23×23 = [H22×22 × 1 H22×22 × S3]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

× 1

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

× (S3 = 1)

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

× 1

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

× (S3 = −1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A.24)

USE OF HADAMARD MATRICES IN HOBMS 203

thus arriving to

H23×23 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.25)

This process can obviously be iterated in order to obtain H2N×2N , which fulfills

H2N×2N = [H2N−1×2N−1 × 1 H2N−1×2N−1 × SN] =

=

⎡
⎣ H2N−1×2N−1 × 1 H2N−1×2N−1 × (SN = 1)

H2N−1×2N−1 × 1 H2N−1×2N−1 × (SN = −1)

⎤
⎦ , (A.26)

which matches the Sylvester rule for Hadamard matrix generation. Since H2×2 is already

Hadamard, and Sylvester rule applied to Hadamard matrices is known to produce new

Hadamard matrices, H2N×2N is guaranteed to be of the Hadamard type. Therefore, the

system of linear equations that is derived from this algorithm can always be solved.

The same argument applies to the equations of the backwards problem that appear in

chapter 4.

A.2.1 The Walsh-Hadamard transform

It has been shown that both the HOD method and the backwards problem use Hadamard

matrices to carry out the decimation process over a given BM topology. Actually, the

Hadamard matrices, other than a set of binary values, are the standard numerical rep-

resentation of the Walsh functions [Walsh, 1923], as seen in Fig. A.3. This functions

conform an orthogonal set that can be used to generate a Fourier-like transform which is

known as Walsh-Hadamard transform [Shanks, 1969].

204 APPENDIX. PROPERTIES OF HADAMARD MATRICES

Figure A.3: Walsh functions.

The Walsh-Hadamard transform W (k) of a given sequence x (t) of length 2N is defined

as

W (k) = H2N×2N · x (t) , (A.27)

where H2N×2N is the Hadamard matrix of order 2N . This transform can be applied to

solve complex Boolean functions [Langevin and Zanotti, 2005] and image compression

and signal processing [Pichler, 2004], since it returns a numerical sequence comparable to

the one generated by a Discrete Fourier transform [Tallia et al., 1984]. In this sense, and

close to the Fast Fourier transform algorithm, there is a Fast Walsh Hadamard transform

algorithm that can be implemented in order to speed up the process [Shanks, 1969]. Notice

now that the high order Decimation algorithm is equivalent to carrying out a WHT over

a given sequence, being it the set of weights of the neural network.

Bibliography

[Aarts and Korst, 1987] Aarts, E. and Korst, J. (1987). Boltzmann Machines and their

applications. In Parallel architectures on PARLE: Parallel Architectures and Languages

Europe, Volume I, pages 34–50, London, UK. Springer-Verlag.

[Aarts and Korst, 1989] Aarts, E. and Korst, J. (1989). Simulated Annealing and Boltz-

mann Machines. New York: Wiley, 2 edition.

[Abe, 1989] Abe, S. (1989). Theories on the Hopfield neural networks. In International

Joint Conference on Neural Networks (IJCNN), volume 1, pages 557–564.

[Abu-Mostafa and Jacques, 1985] Abu-Mostafa, Y. and Jacques, J. S. (1985). Infor-

mation capacity of the Hopfield model. IEEE Transactions on Information Theory,

31(4):461–464.

[Ackley et al., 1985] Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A learning

algorithm for Boltzmann Machines. Cognitive Science, 9:147–169.

[Albizuri et al., 1997] Albizuri, F. X., d’Anjou, A., Graña, M., and Larrañaga, P. (1997).

Structure of the high-order Boltzmann Machine from independence maps. IEEE Trans-

actions on Neural Networks, 8(6):1351–1358.

[Albizuri et al., 1996] Albizuri, F. X., d’Anjou, A., Graña, M., and Lozano, J. A.

(1996). Convergence properties of high-order Boltzmann Machines. Neural Networks,

9(9):1561–1567.

205

206 BIBLIOGRAPHY

[Albizuri et al., 1995] Albizuri, F. X., d’Anjou, A., Graña, M., Torrealdea, F. J., and

Hernández, M. C. (1995). The high-order Boltzmann Machine: Learned distribution

and topology. IEEE Transactions on Neural Networks, 6(3):767–770.

[Amit, 1989] Amit, D. J. (1989). Modelling brain function: The world of attractor neural

networks. Cambridge University Press, 40 West 20th Street, New York NY 10011-4211,

USA.

[Arnold, 1997] Arnold, V. I. (1997). Mathematical Methods of Classical Mechanics.

Springer.

[Baldi, 1988] Baldi, P. (1988). Neural networks, orientations of the hypercube, and alge-

braic threshold functions. IEEE Transactions on Information Theory, 34(3):523–530.

[Baldi and Venkatesh, 1993] Baldi, P. and Venkatesh, S. S. (1993). Random interactions

in higher order neural networks. IEEE Transactions on Information Theory, 39(1):274–

283.

[Bear et al., 2006] Bear, M. F., Connors, B., and Paradiso, M. (2006). Neuroscience:

Exploring the Brain. Lippincott Williams and Wilkins; 3Rev Ed edition.

[Beiu et al., 1992] Beiu, V., Ioan, D. C., and Dumbrava, M. C. (1992). Continuous Boltz-

mann Machines: theoretical aspects and applications. In Proceedings of the CompEuro

’92, Computer Systems and Software Engineering, pages 193–198.

[Bouyukliev et al., 2005] Bouyukliev, I., Fack, V., and Winne, J. (2005). Hadamard ma-

trices of order 36 and double-even self-dual [72,36,12] codes. In DMTCS Proceedings,

2005 European Conference on Combinatorics, Graph Theory and Applications (Euro-

Comb ’05), pages 93–98.

[Boyd et al., 1994] Boyd, S., Ghaoui, L. E., Feron, E., and Balakrishnan, V. (1994). Lin-

ear Matrix Inequalities in System and Control Theory, volume 15 of Studies in Applied

Mathematics. Society for Industrial and Applied Mathematics (SIAM).

BIBLIOGRAPHY 207

[Breedlove et al., 2007] Breedlove, S. M., Rosenzweig, M. R., and Watson, N. V. (2007).

Biological Psychology: An Introduction to Behavioral, Cognitive, and Clinical Neuro-

science, Fifth Edition. Sinauer Associates, Inc.

[Bryson, Jr. and Ho, 1969] Bryson, Jr., A. E. and Ho, Y. (1969). Applied optimal control:

optimization, estimation and control. Blaisdell, Buffalo, New York.

[Burshtein, 1998] Burshtein, D. (1998). Long term attraction in higher order neural net-

works. IEEE Transactions on Neural Networks, 9(1):42–50.

[Cardy, 1996] Cardy, J. (1996). Scaling and Renormalization in Statistical Physics. UK:

Cambridge University Press.

[Culloch and Pitts, 1943] Culloch, W. S. M. and Pitts, W. (1943). A logical calculus of

the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 5(4):115–133.

[Cybenko, 1988] Cybenko, G. (1988). Continuous valued networks with two hidden layers

are sufficient. Technical Report.

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a sigmoid fuc-

ntion. Mathematics of Control, Signals, and Systems (MCSS), 2(4):303–314.

[DeGloria et al., 1993] DeGloria, A., Faraboschi, P., and Olivieri, M. (1993). Efficient

implementation of the Boltzmann Machine algorithm. IEEE Transactions on Neural

Networks, 4(1):159–163.

[Dembo et al., 1991] Dembo, A., Farotimi, O., and Kailath, T. (1991). High-order abso-

lutely stable neural networks. IEEE Transactions on Circuits and Systems, 38(1):57–65.

[Doković, 2008] Doković, D. Ž. (2008). Hadamard matrices of order 764 exist. Combina-

torica, 28(4):487–489.

[Duda et al., 2001] Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classifi-

cation. Wiley-Interscience Publication, John Wiley & Sons, INC., 2nd edition.

208 BIBLIOGRAPHY

[Ercegovac et al., 1998] Ercegovac, M. D., Lang, T., and Moreno, J. H. (1998). Introduc-

tion to Digital Systems. Wiley.

[Evans and Robertson, 1968] Evans, C. R. and Robertson, A. D. J. (1968). Cybernetics:

Key Papers. University Park Press.

[Farguell et al., 2006] Farguell, E., Mazzanti, F., and Gómez-Ramı́rez, E. (2006). Increas-

ing Boltzmann Machine learning speed and accuracy with the High Order Decimation

method. In International Conference on Neural Networks and Associative Memories

(NNAM), México, D.F. Instituto Politécnico Nacional.

[Farguell et al., 2007] Farguell, E., Mazzanti, F., and Gómez-Ramı́rez, E. (2007). Boltz-

mann Machines learning using High Order Decimation, volume 208, pages 21–42.

Springer Berlin / Heidelberg.

[Farguell et al., 2008] Farguell, E., Mazzanti, F., and Gómez-Ramı́rez, E. (2008). Boltz-

mann Machines reduction by High Order Decimation. IEEE Transactions on Neural

Networks, 19(10):1816–1821.

[Fenwick et al., 1977] Fenwick, D. M., Steele, R., and Vasanji, N. (1977). Error detec-

tion and correction of dpcm signals using a walsh hadamard transform technique. In

Conference on Digital Processing of Signals in Communications, pages 225–268.

[Freeman and Skapura, 1993] Freeman, J. A. and Skapura, D. M. (1993). Redes neu-

ronales: Algoritmos, Aplicaciones y Técnicas de Programación. Addison-Wesley.

[Gentry et al., 2006] Gentry, S. M., Wehlburg, C. M., Wehlburg, J. C., Smith, M. W.,

and Smith, J. L. (2006). US patent 6996292 - Staring 2-D Hadamard transform spectral

imager.

[Giles and Maxwell, 1987] Giles, C. L. and Maxwell, T. (1987). Learning, invariance, and

generalization in high order neural networks. Applied Optics, 26(23):4972–4978.

BIBLIOGRAPHY 209

[Graña et al., 1997] Graña, M., d’Anjou, A., Albizuri, F. X., Hernández, M., Torrealdea,

F. J., de la Hera, A., and González, A. I. (1997). Experiments of fast learning with

high order Boltzmann Machines. Applied Intelligence, 7(4):287–303.

[Hagiwara, 1992] Hagiwara, M. (1992). Acceleration for both Boltzmann Machine learn-

ing and mean field theory learning. In International Joint Conference on Neural Net-

works (IJCNN), volume 1, pages 687–692.

[Hazewinkel and Vinogradov, 1995] Hazewinkel, M. and Vinogradov, I. (1995). Ency-

clopaedia of Mathematics. Dordrecht, Kluwer Academic, London.

[Hebb, 1949] Hebb, D. O. (1949). The organization of behavior. New York: Wiley.

[Hedayat and Wallis, 1978] Hedayat, A. and Wallis, W. D. (1978). Hadamard matrices

and their applications. Annals of statistics, 6(6):1184–1238.

[Hertz et al., 1991] Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to the

theory of neural computation. Addison-Wesley Publishing Company, Santa Fe Institute,

Santa Fe.

[Hopfield, 1982] Hopfield, J. J. (1982). Neural networks and physical systems with emer-

gent collective computational abilities. In Proc. Natl. Acad. Sci., pages 2554–2558.

[Hopfield, 1984] Hopfield, J. J. (1984). Neurons with graded response have collective com-

putational abilities like those of two-state neurons. In Proc. Natl. Acad. Sci., volume 81,

pages 3088–3092.

[Horadam, 2006] Horadam, K. J. (2006). Hadamard Matrices and Their Applications.

Princeton University Press, Princeton.

[Hornik et al., 1989] Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer

feedforward networks are universal approximators. Neural Networks, 2(5):359–366.

[Itzykson and Drouffe, 1991] Itzykson, C. and Drouffe, J. (1991). Statistical field theory.

Cambridge University Press.

210 BIBLIOGRAPHY

[Jankowski et al., 1996] Jankowski, S., Lozowski, A., and Zurada, J. M. (1996). Complex-

valued multistate neural associative memory. IEEE Transactions on Neural Networks,

7(6):1491–1496.

[Kandel et al., 1995] Kandel, E. R., Schwartz, J. H., and Jessell, T. M. (1995). Essentials

of Neural Science and Behavior. Appleton & Lange.

[Kappen, 1993] Kappen, B. (1993). Using Boltzmann Machines for probability estima-

tion. In Gielen, S. and Kappen, B., editors, Proceedings of the International Conference

on Artificial Neural Networks ICANN ’93, pages 521–526. Springer-Verlag.

[Kappen, 1995] Kappen, H. J. (1995). Deterministic learning rules for Boltzmann Ma-

chines. Neural Networks, 8:537–548.

[Kappen and Rodriguez, 1998] Kappen, H. J. and Rodriguez, F. B. (1998). Efficient

learning in Boltzmann Machines using Linear Response Theory. Neural Computation,

10(5):1137–1156.

[Kappen and Wiegerinck, 2001] Kappen, H. J. and Wiegerinck, W. (2001). Second order

approximations for probability models. In Leen, T., Dietterich, T., and Tresp, V.,

editors, Advances in Neural Information Processing Systems, volume 13, pages 238–

244.

[Kharaghani and Tayfeh-Rezaie, 2004] Kharaghani, H. and Tayfeh-Rezaie, B. (2004). A

Hadamard matrix of order 428. Journal of Combinatorial Designs, 13(6):435–440.

[Kirkpatrick et al., 1983] Kirkpatrick, S., Gelatt, C., and Vecchi, M. (1983). Optimization

by Simulated Annealing. Science, 220(4598):671–680.

[Klahr and Siegler, 1978] Klahr, D. and Siegler, R. S. (1978). The Representation of

Children’s Knowledge, pages 61–116. New York: Academic Press.

BIBLIOGRAPHY 211

[Koenig et al., 1992] Koenig, A., Wehn, N., and Glesner, M. (1992). Partitioning on

Boltzmann Machines. In Proceedings of the IEEE International Symposium on Circuits

and Systems (ISCAS), volume 1, pages 324–327.

[Kosko, 1992] Kosko, B. (1992). Neural networks and fuzzy systems. Prentice Hall inter-

national editions.

[Kosmatopoulos and Christodoulou, 1994] Kosmatopoulos, E. B. and Christodoulou,

M. A. (1994). The Boltzmann g-RHONN: a learning machine for estimating unknown

probability distributions. Neural Networks, 7(2):271–278.

[Kosmatopoulos and Christodoulou, 1995] Kosmatopoulos, E. B. and Christodoulou,

M. A. (1995). High-order neural network structures for identification of dynamical

systems. IEEE Transactions on Crcuits and Systems II: Analog and Digital Signal

Processing, 42(9):592–603.

[Kosmatopoulos et al., 1995] Kosmatopoulos, E. B., Polycarpou, M. M., Christodoulou,

M. A., and Ioannou, P. A. (1995). High-order neural network structures for identifica-

tion of dynamical systems. IEEE Transactions on Neural Networks, 6(2):422–431.

[Kullback, 1959] Kullback, S. (1959). Information theory and statistics. New York: Wiley,

2nd edition.

[Kuroki et al., 1999] Kuroki, T., Tanaka, T., and Taki, M. (1999). Examination of ef-

fectiveness of higher-order mean field Boltzmann Machine learning based on linear

response theorem. In International Joint Conference on Neural Networks (IJCNN),

volume 2, pages 1442–1445.

[Langevin and Zanotti, 2005] Langevin, P. and Zanotti, J. P. (2005). Nonlinearity of some

invariant boolean functions. Designs, Codes and Cryptography, 36(2):131–146.

[Leisink and Kappen, 2000] Leisink, M. A. R. and Kappen, H. J. (2000). Learning in

higher order Boltzmann Machines using Linear Response. Neural Networks, 13(3):329–

335.

212 BIBLIOGRAPHY

[Lin and Lee, 1995] Lin, C. T. and Lee, C. S. G. (1995). A multi-valued Boltzmann

Machine. IEEE Transactions on Systems, Man and Cybernetics, 25(4):660–669.

[Lipmaa, 2002] Lipmaa, H. (2002). On Differential Properties of Pseudo-Hadamard

Transform and Related Mappings, volume 2551, pages 48–61. Springer Berlin / Heidel-

berg.

[Matheus and Rendell, 1989] Matheus, C. J. and Rendell, L. A. (1989). Constructive in-

duction on decision trees. In Proceedings of the Eleventh International Joint Conference

on Artificial Intelligence, pages 645–650, Detroit, MI. Morgan Kaufmann.

[Thrun et al., 1991] Thrun et al., S. (1991). The MONK’s problems: A performance com-

parison of different learning algorithms. Technical Report CMU-CS-91-197, Carnegie

Mellon University, Computer Science Department, Pittsburgh, PA.

[McEliece et al., 1987] McEliece, R., Posner, E., Rodemich, E., and Venkatesh, S. (1987).

The capacity of the Hopfield associative memory. IEEE Transactions on Information

Theory, 33(4):461–482.

[Metropolis et al., 1953] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller,

A. H., and Teller, E. (1953). Equation of state calculations by fast computing machines.

Journal of Chemical Physics, 21:1087–1092.

[Minsky and Papert, 1969] Minsky, M. and Papert, S. (1969). An introduction to Com-

putational Geometry. MIT Press.

[Muezzinoglu et al., 2003] Muezzinoglu, M. K., Guzelis, C., and Zurada, J. M. (2003).

A new design method for the complex-valued multistate Hopfield associative memory.

IEEE Transactions on Neural Networks, 14(4):891–899.

[Newman et al., 1998] Newman, D. J., Hettich, S., Blake, C. L., and Merz, C. J. (1998).

UCI repository of machine learning databases.

BIBLIOGRAPHY 213

[Nijman and Kappen, 1996] Nijman, M. J. and Kappen, H. J. (1996). Efficient learning

in sparsely connected Boltzmann Machines. In Proceedings of the Artificial Neural

Networks - ICANN 96 6th International Conference, volume 1112 of Lecture Notes in

Computer Science, pages 41–46.

[Noordewier et al., 1991] Noordewier, M. O., Towell, G. G., and Shavlik, J. W. (1991).

Training Knowledge-Based Neural Networks to recognize genes in DNA sequences. In

Advances in Neural Information Processing Systems, volume 3. Morgan Kaufmann.

[Nyström and Popovic, 1998] Nyström, J. and Popovic, B. (1998). US patent 6526091 -

communication methods and apparatus based on orthogonal hadamard-based sequences

having selected correlation properties.

[Orrick, 2008] Orrick, W. P. (2008). Switching operations for Hadamard matrices. SIAM

J. Discrete Math, 22(1):31–50.

[Oyama, 1993] Oyama, T. (1993). Fault section estimation in power system using Boltz-

mann Machine. In Proceedings of the Second International Forum on Applications of

Neural Networks to Power Systems (ANNPS), pages 3–8.

[Paley, 1933] Paley, R. E. A. C. (1933). On orthogonal matrices. J. Math. Phys, 12:311–

320.

[Parisi, 1988] Parisi, G. (1988). Statistical field theory. Frontiers in Physics, 66. Addison-

Wesley.

[Parra and Deco, 1993] Parra, L. and Deco, G. (1993). Continuous Boltzmann Machine

with Rotor Neurons. In Proceedings of 1993 International Joint Conference on Neural

Networks (IJCNN), volume 2, pages 1397–1400.

[Pazienza et al., 2007] Pazienza, G. E., Gómez-Ramı́rez, E., and Vilaśıs, X. (2007). Poly-

nomial Cellular Neural Networks for Implementing the Game of Life, volume 4668,

pages 914–923. Springer Berlin / Heidelberg.

214 BIBLIOGRAPHY

[Peretto and Niez, 1986] Peretto, P. and Niez, J. J. (1986). Long term memory storage

capacity of multiconnected neural networks. Biological Cybernetics, 54(1):53–63.

[Peterson and Anderson, 1987] Peterson, C. and Anderson, J. R. (1987). A mean field

theory learning algorithm for neural networks. Complex Systems, 1(5):995–1019.

[Pichler, 2004] Pichler, F. (2004). Walsh-functions: early ideas on their application

in signal processing and communication engineering. In The 2004 International

TICSP Workshop on Spectral Methods and Multirate Signal Processing Proceedings,

SMMSP2004, volume 25.

[Plefka, 1982] Plefka, T. (1982). Convergence condition of the TAP equation for the

infinite-ranged ising spin glass model. J. Phys. A, 15:1971–1978.

[Prechelt, 1994] Prechelt, L. (1994). PROBEN1 - A set of benchmarks and benchmarking

rules for neural network training algorithms. Technical Report 21/94, Fakultät für

Informatik, Universität Karlsruhe, MA.

[Press et al., 1993] Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.

(1993). Numerical Recipes in C: The Art of Scientific Computing. Cambridge University

Press, Cambridge.

[Rager, 1992] Rager, J. E. (1992). Complex Boltzmann networks and one stage learning.

In International Joint Conference on Neural Networks (IJCNN), volume 4, pages 791–

795.

[Ramón y Cajal, 2008] Ramón y Cajal, S. (2008). Histoloǵıa del sistema nervioso del

hombre y de los vertebrados. Consejo Superior de Investigaciones Cient́ıficas (CSIC).

[Rosenblatt, 1961] Rosenblatt, F. (1961). Principles of Neurodynamics. Perceptrons and

the theory of brain mechanisms. Cornell Aeronautical Lab, Inc., Buffalo, New York.

[Rubinstein, 1981] Rubinstein, R. Y. (1981). Simulation and the Monte Carlo method.

John Wiley & Sons, Inc., New York, NY, USA.

BIBLIOGRAPHY 215

[Rüger, 1997] Rüger, S. M. (1997). Decimatable Boltzmann Machines for diagnosis: Ef-

ficient learning and inference.

[Rüger et al., 1996] Rüger, S. M., Weinberger, A., and Wittchen, S. (1996). Decimat-

able Boltzmann Machines vs. Gibbs Sampling. Technical Report 96-29, Informatik,

Technische Universität, Berlin.

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).

Learning internal representations by error propagation. Parallel distributed processing:

Explorations in the microstructure of cognition. Volume 1: Foundations, pages 45–76.

[Saul and Jordan, 1994] Saul, L. and Jordan, M. I. (1994). Learning in Boltzmann trees.

Neural Computation, 6(6):1174–1184.

[Schneider and Card, 1993] Schneider, C. R. and Card, H. C. (1993). Analog CMOS

deterministic Boltzmann circuits. Solid-State Circuits, IEEE Journal of, 28(8):907–

914.

[Sejnowski, 1987] Sejnowski, T. J. (1987). High-order Boltzmann Machines. In AIP Con-

ference Proceedings 151 on Neural Networks for Computing, pages 398–403, Snowbird,

Utah, E.U.A.

[Shanks, 1969] Shanks, J. L. (1969). Computation of the fast Walsh-Fourier transform.

IEEE Transactions on Computers, 18(5):457–459.

[Slotine and Weiping, 1991] Slotine, J. J. and Weiping, L. (1991). Applied Nonlinear

Control. Prentice Hall.

[Stone, 1977] Stone, M. (1977). Asymptotics for and against cross-validation. Biometrika,

64:29–35.

[Storkey, 1997] Storkey, A. (1997). Increasing the capacity of a Hopfield network without

sacrificing functionality. In International Conference on Artificial Neural Netwroks

(ICANN), pages 451–456.

216 BIBLIOGRAPHY

[Sylvester, 1867] Sylvester, J. J. (1867). Thoughts on inverse orthogonal matrices, si-

multaneous sign successions, and tessellated pavements in two or more colours, with

applications to Newton’s rule, ornamental tile-work, and the theory of numbers. Philo-

sophical Magazine, 34:461–475.

[Tallia et al., 1984] Tallia, R., Morello, P., and Castellano, G. (1984). The Walsh-

Hadamard transform: An alternative means of obtaining phase and amplitude. Journal

of Nuclear Medicine, 25(5):608–612.

[Tanaka, 1999] Tanaka, T. (1999). Estimation of third-order correlations within mean

field approximation. In Usui, S. and Omori, T., editors, Proceedings of the Fifth Inter-

national Conference on Neural Information Processing ’98 Kitakyushu, volume 1, pages

554–557s.

[Thathachar and Arvind, 1999] Thathachar, M. A. L. and Arvind, M. T. (1999). Global

Boltzmann perceptron network for online learning of conditional distributions. IEEE

Transactions on Neural Networks, 10(5):1090–1098.

[The MathworksTM , 2008a] The MathworksTM (2008a). Matlab Help. The

MathworksTM , Release 14.

[The MathworksTM , 2008b] The MathworksTM (2008b). MATLAB R© 7.6 - The Language

of Technical Computing. Neural Networks ToolboxTM .

[Walsh, 1923] Walsh, J. L. (1923). A closed set of normal orthogonal functions. Amer.

J. Math, 45:5–24.

[Xiang et al., 1994] Xiang, Z., Bi, G., and Le-Ngoc, T. (1994). Polynomial perceptrons

and their applications to fading channel equalization and co-channel interference sup-

pression. IEEE Transactions on Signal Processing, 42(9):2470–2480.

[Younes, 1994] Younes, L. (1994). Learning algorithms for extended models of Boltzmann

Machines. In Proceedings of the 12th IAPR International conference on pattern recog-

BIBLIOGRAPHY 217

nition, 1994. Vol. 2 - Conference B: Computer Vision & Image Processing, volume 2,

pages 602–604.

