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STRUCTURE OF THE THESIS 
 
This thesis is based on publications in various international journals. These papers 
have been edited to give uniform format and uniform mathematical notation along 
the thesis. 
 
The thesis is structured in seven chapters: 
 
Chapter 1 Introduction and objectives describes olive oil and the analytical 
techniques commonly used for its characterization. This chapter also points out the 
suitability of fluorescence spectroscopy for olive oil analysis. The potential of using 
three-dimensional fluorescence spectroscopy and chemometric methods is 
commented. Finally, the objectives of this thesis are stated. 
 
Chapter 2 Theoretical background is divided into three parts. The first part 
introduces excitation-emission fluorescence spectroscopy (EEFS). The fluorescent 
behaviour of the oil types used in this thesis is also commented. The second part 
explains the arrangement of EEMs in three-way arrays. The last part of the chapter 
describes the chemometric methods applied throughout this thesis. They are 
divided into methods of exploratory analysis and methods of classification.  

 
Chapter 3 Exploratory analysis of olive oils contains two papers about the 
application of chemometric methods to the fluorescence excitation–emission 
matrices (EEMs) of olive oils for exploratory analysis. These papers are Application 
of unfold principal component analysis and parallel factor analysis to the exploratory 
analysis of olive oils by means of excitation-emission matrix fluorescence spectroscopy, F. 
Guimet, J. Ferré, R. Boqué, and F.X. Rius, Anal. Chim. Acta 515 (2004) 75-85, and 
Cluster analysis applied to the exploratory analysis of commercial Spanish olive oils by 
means of excitation-emission fluorescence spectroscopy, F. Guimet, R. Boqué, and J. Ferré, 
J. Agric. Food Chem.  52 (2004) 6673-6679. 
 
In both papers, different spectral ranges and preprocessing methods for 
distinguishing between various types of oils are compared. The main advantages 
of using second-order data over first-order (multivariate) data are also commented. 
 



 

 

Chapter 4 Fluorescence-quality relationships in olive oils contains the paper 
Excitation-emission fluorescence spectroscopy combined with three-way methods of 
analysis as a complementary technique for olive oil characterization, F. Guimet, J. Ferré, R. 
Boqué, M. Vidal, and J. Garcia, J. Agric. Food Chem. (accepted for publication), which 
shows the potential of EEFS for olive oil characterization. In this paper, the 
relationship between the EEMs of a set of commercial Spanish olive oils and some 
of their quality parameters (peroxide value, K270) is studied. 
 
Chapter 5 Olive oil classification includes three papers. In the first one, Rapid 
detection of olive-pomace oil adulteration in extra virgin olive oils from the protected 
denomination of origin “Siurana” using excitation-emission fluorescence spectroscopy and 
three-way methods of analysis, F. Guimet, J. Ferré, and R. Boqué, Anal. Chim. Acta 544 
(2005) 143-152, various chemometric methods are applied to detect olive-pomace 
oil adulteration in extra virgin olive oils at low levels. The adulteration level is also 
quantified. 

The second paper of this chapter, Study of oils from the protected denomination of 
origin “Siurana” using excitation-emission fluorescence spectroscopy and three-way 
methods of analysis, F. Guimet, R. Boqué, and J. Ferré, Grasas y Aceites 56 (4) (2005) 292-
297, shows the suitability of EEFS and chemometric methods to discriminate 
between extra virgin olive oils from the two Spanish regions of the protected 
denomination of origin “Siurana” production area. 

 
In the third paper of this chapter, Application of non-negative matrix factorization 
combined with Fisher’s linear discriminant analysis for classification of olive oil excitation-
emission fluorescence spectra, F. Guimet, R. Boqué, and J. Ferré, Chemom. Intell. Lab. 
Syst. (accepted for publication), the suitability of the non-negative matrix 
factorization (NMF) algorithm applied to olive oil EEMs is studied. This paper 
shows that NMF decomposes the spectral data into meaningful parts, which may 
be related to the fluorescence species present in oils. The paper also shows the 
potential of NMF in conjunction with a linear discrimination method for 
classification purposes. 
 
Chapter 6 Conclusions and suggestions for future research contains the conclusions 
of the thesis and some ideas for future research. 



 

 

The last chapter is an Appendix containing a list of the abbreviations used in this 
thesis, the list of papers and meeting presentations in which the author took part 
during the period of development of this thesis and a summary of the thesis. 



 

 

 



 

 

TABLE OF CONTENTS        
 

Chapter 1. Introduction and objectives                                                             15  

 1.1 Olive oil                                                                                                                   17 
  1.1.1 A little history                                                                                       17 
  1.1.2 Composition and classification                                                                   18 
  1.1.3 Olive oil and health                                                            21 
  1.1.4 Characterization                                                                         22 

1.2 Objectives of the thesis                                                                                          26 
1.3 References                                                                     27 

 

Chapter 2. Theoretical background                          31 

 2.1 Fluorescence spectroscopy                33 
2.1.1 Background                               33 
2.1.2 Spectra correction                  35 
2.1.3 Instrumental settings                       38 
2.1.4 Range selection and Rayleigh scatter            39 
2.1.5 Fluorescence of olive oils                          40 

 2.2 Three-way data                       43 
  2.2.1 Notation                    43 
  2.2.2 Three-way arrays                  43 
  2.2.3 Preprocessing                     44 
 2.3 Chemometric methods                 47 
  2.3.1 Exploratory analysis                    47 
  2.3.2 Classification                            59 
 2.4 References                     64 
 

Chapter 3. Exploratory analysis of olive oils                    69 

 3.1 Introduction                             71 
 3.2 Paper. Application of unfold principal component analysis and parallel factor 72 
 analysis to the exploratory analysis of olive oils by means of excitation-emission 
 matrix fluorescence spectroscopy. Anal. Chim. Acta  515 (2004) 75-85. 



 

 

 3.3 Paper. Cluster analysis applied to the exploratory analysis of commercial  88 
Spanish olive oils by means of excitation-emission fluorescence spectroscopy. 
 J. Agric. Food Chem.  52 (2004) 6673-6679. 

 

Chapter 4. Fluorescence-quality relationships in olive oils      105 

      4.1 Introduction                        107 
 4.2 Paper. Excitation-emission fluorescence spectroscopy combined with      109              

 three-way methods of analysis as a complementary technique for olive oil     
 characterization. J.  Agric. Food Chem. (accepted for publication). 

 

Chapter 5. Olive oil classification                133 

 5.1 Introduction                     135 
5.2 Paper. Rapid detection of olive-pomace oi adulteration in extra virgin     141 
 olive oils from the protected denomination of origin “Siurana” using  
 excitation-emission fluorescence spectroscopy and three-way methods of 
 analysis.  Anal. Chim. Acta 544 (2005) 143-152.   
5.3 Paper. Study of oils from the protected denomination of origin “Siurana”    162 
using excitation-emission fluorescence spectroscopy and three-way methods 
of analysis. Grasas y Aceites 56 (4) (2005) 292-297. 
5.4 Paper. Application of non-negative matrix factorization combined with     174 
 Fisher’s linear discriminant analysis for classification of olive oil 
 excitation-emission fluorescence spectra.  Chemom. Intell. Lab. Syst. (accepted 
 for publication). 

Chapter 6. Conclusions and suggestions for future research               195 

 6.1 Conclusions                                        197 
 6.2 Suggestions for future research                          200 
 
Appendix                                    203 

 List of abbreviations                    205 
 List of papers and meeting contributions                                                        207 
      Summary                       210 



 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 1 
 
 

  
Introduction and 

Objectives 
 
 
 
 
 
 



 
 

 



Introduction and objectives 
 

 17

This chapter is organised as follows. Section 1.1 explains the importance of olive oil 
authentication and discusses the lack of rapid analytical techniques in olive oil 
quality control laboratories. This section also highlights the suitability of excitation-
emission fluorescence spectroscopy (EEFS) for olive oil characterization and 
reports that classification methods have been little explored in the field of three-
way analysis. These points justify the objectives of this thesis (section 1.2).  
 
1.1  OLIVE OIL 

1.1.1 A little history 

The origin of the olive tree (Fig. 1) is unknown. It is said to have appeared in 
prehistoric times in southern Asia Minor where there are now abundant forests of 
wild olive trees and appears to have spread from Syria towards Greece through 
Anatolia. However, other theories claim it originated in the Mediterranean basin or 
in Lower Egypt [1]. 

 
 
 
 
 
 
 
 
 

Figure 1. Olive tree. 

The claim that the olive tree originated in Europe could arise from the Greek myth 
about the fight between Athena and Poseidon for the control of Athens [2]. 
According to ancient Greek history, Poseidon, god of the sea, and Athena, goddess 
of peace and wisdom, argued over whose name should be given to the newly built 
city in the land of Attica. To end this dispute, it was decided that the city would be 
named after the one who offered the most precious gift to the citizens. Poseidon 
struck his trident on a rock and spring water began to flow. Athena struck her 
spear on the ground and it turned into an olive tree (Fig. 2). It was decided that the  
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Figure 2. Representation of the Greek myth about the origin of the olive tree. 
 
olive tree was more valuable to the people of Attica, so the new city was named  
Athens in honour of Athena. Even today, an olive tree stands where the legend 
took place. It is said that all the olive trees in Athens are descended from the first 
olive tree offered by Athena. 
 
Around 600 B.C. olive tree cultivation spread from Greece or Northern Africa to 
Italy, Spain and the other Mediterranean countries (Fig. 3). In Spain, the olive tree 
was probably introduced by the Greeks, the Romans and the Arabs [2].  

 
 
 
 
 
 

 
 

Figure 3. Olive tree expansion to the Mediterranean countries. 
 

The scientific name for olive tree is Olea europea L., which comes from the Greek 
word elea, which is used to designate the olive tree. In Latin this becomes olea. 
 

1.1.2 Composition and classification 

Olive oil is obtained from the fruit of the olive tree (the olive) (Fig. 4). It has a fine 
aroma, a pleasant taste and a high nutritional and health value. Olive oil mainly 
comprises triacylglycerols (triglycerides), and contains small quantities of free fatty  
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Figure 4. (a) Olives (arbequina variety) and (b) olive oil. 
 

acids, glycerol, phosphatides, pigments, flavour compounds, sterols, unidentified 
resinous substances and other constituents. The structures of some of the 
components of olive oil are shown in Figure 5. These components can be divided 
into two categories [3,4]: 
 

- The saponifiable fraction (triacylglycerols, free fatty acids, phosphatides). 
- The unsaponifiable fraction (hydrocarbons, sterols, tocopherols, fatty alcohols, 

phenolic compounds, pigments, phospholipids, volatile compounds, 
diacylglycerols, waxes), which covers a small percentage (0.5-1.5%). 

 
The main triacylglycerol present in olive oil is triolein (40% of the total 
composition). It consists of a glycerol with three ester linkages. The major fatty 
acids present as glycerides in olive oil are oleic acid (C18:1), linoleic acid (C18:2), 
palmitic acid (C16:0), and stearic acid (C18:0). Oleic acid is present at higher 
concentrations than the other acids (55-83%).  
 
The International Olive Oil Council (IOOC (1985, 1995, 1997)) proposed a 
classification and definition of olive oil and olive-pomace oil, which in general 
agree with those of European Union (EU Commission Regulations 1991, 1995) [3]. 
The classification and main characteristics of olive oils are summarized in Table 1. 
 
 
 
 
 
 

a) b)a) b)
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Figure 5. Chemical structures of some olive oil components: (a) triolein, (b) oleic acid, (c) 
linoleic acid, (d) steraric acid, (e) linolenic acid, (f) α-tocopherol, (g) chlorophyll a, (h) 
pheophytin a, and (i) hydroxytyrosol. 
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 Table 1. Olive oil classification according to the IOOC 

 

1.1.3 Olive oil and health 

Olive oil is a source of lipids, which provide chemical energy to the cells. Lipids 
are also a source of insoluble vitamins that play an important role in the 
development of the reproductive and nervous systems and have benefits for the 
skin and liver. Olive oil is also a source of vitamins A (β-carotene), E (tocopherols), 
and F (linoleic and linolenic acids) (Fig. 5). Vitamin F cannot be synthesized by the 
human organism but it is essential for regulating the fluency and permeability of 
the cellular membrane structure. For this reason, it must be present in the diet [2]. 

 

  

Olive oil type 
 

 

Characteristics 
 
 
 
 
 
 
 
 
 
 
 
 

 
Virgin olive oil 

 

 
 
 
 
 
 

Extra virgin olive oil (EVOO) 
 
 

 
 

Virgin olive oil (VOO) 
 

 
 

 
Ordinary virgin olive oil (OVOO) 

 
 
 

 
Lampante virgin olive oil (LVOO) 

- Obtained by mechanical or other physical means that 
do not lead to alterations of the oil. Has not undergone 
treatment other than washing, decantation, 
centrifugation and filtration. 
 
- Maximum acidity expressed as oleic acid, of 
1.0g/100g. Meets the requirements for the sensory 
characteristics and other quality criteria for this oil 
category. 
 
- Maximum acidity of 2.0g/100g. Meets the 
requirements for the sensory characteristics and other 
quality criteria for this oil category. May be named 
“fine olive oil” at the production stage. 
 
- Maximum acidity of 3.3g/100g. Meets the 
requirements for the sensory characteristics and other 
quality criteria for this oil category. 
 
- Acidity of over 3.3g/100g. Meets the requirements 
for sensory characteristics and other quality criteria for 
this oil category. Cannot be used for consumption as 
is. Must undergo refining or be used for technical 
purposes. 

Refined olive oil 
(ROO) 

 - Obtained from virgin olive oil by a refining process 
that does not lead to alterations in the initial glycerol 
structure. 

Olive oil 
 (or pure olive oil, POO) 

 - A blend of virgin olive oil (except lampante) and 
refined olive oil. 

 
 
 
 
 

 
Olive-pomace oil 

 
 
 
 
 

Crude olive-pomace oil (COPO) 
 
 

Refined olive oil (ROPO) 
 
 
 

Olive-pomace oil (OPO) 

- Extracted from olive-pomace using solvents. Does 
not include oils obtained by re-esterification processes 
or any mixture of other oils. 
 
-  Intended for refinement for human consumption or 
for technical purposes as is. 
 
- Obtained from crude olive-pomace oil by a refining 
process that does not lead to alterations in the initial 
glyceride structure. 
 
- A mixture of refined olive-pomace oil and virgin 
olive oil (except lampante). This blend should not be 
called “olive oil”. 
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Among the free fatty acids present in olive oil, monounsaturated fatty acids, such 
as oleic acid, offer protection against heart disease by reducing low-density 
lipoprotein (LDL) cholesterol levels while raising high-density lipoprotein (HDL) 
cholesterol levels. 
 
The accumulation of free radicals, due to oxidation processes in the body, causes 
serious problems for human health. Specifically, free radicals destroy the 
polyunsaturated fatty acids of the membranes and DNA. This facilitates the ageing 
process, damages the liver and can even lead to the formation of cancer. The 
human organism is protected from the free radicals by free radical scavengers such 
as vitamin E and phenols. Phenols, present in significant amounts in EVOO, 
prevent the destruction of human cells.  
 
Olive oil is greatly assimilated by the human body. This is mainly attributed to the 
high percentage of triolein. Also, the pigments chlorophylls a and b, pheophytins a 
and b and the aroma components present in olive oil (i.e. aldehydes, ketones, 
hydrocarbons, esters, ethers, terpene alcohols, furan and thiophene derivates) 
facilitate its absorption because they produce changes in the gastric fluid 
composition of the stomach and increase digestive activity. The great assimilation 
of olive oil also helps the absorption of vitamin E and phenols [2]. 
 

1.1.4 Characterization 

Olive oil is an economically important product, especially in Mediterranean 
countries, where it is one of the basic components of the diet. According to the 
Spanish Ministry of Agriculture, Fishing and Food [5], in 2001 the total production 
of olive oil in Spain was of 1,422,000 tons. The huge importance of this food 
product makes the quality control of olive oil and the detection of possible fraud 
issues of great interest. Olive oil authentication requires the measurement of 
several parameters. These are summarized in Table 2, which shows the legal limits 
established by the EU (Regulation (EEC) No 2568/91) [6]. 

The EU has established Official Methods of Analysis for these parameters. For 
example, stigmastadienes, fatty acids, erythrodiol and uvaol are analysed by gas 
chromatography with a flame ionization detector (GC-FID). Ultraviolet (UV) 
spectroscopy is used to determine K232, K270 and ∆K (eq. 1). Finally, free acidity and 
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Table 2. Characteristics of olive oil types (Regulation (EEC) No 2568/91) 

 

 
 
peroxide value (PV) are determined by titration [6]. Sensory analysis is also carried 
out to characterize olive oils [7]. 
 
 

                                              
2

KKK∆K 4m4m
m

+− +
−=                                                      (1) 

 
In eq. (1), Km is the specific extinction of a solution of 1% of oil in isooctane using a 
length path of 1 cm at the m wavelength (i.e. the wavelength with maximum 
absorption at around 270 nm). 
 
Of the techniques used to determine olive oil authenticity and quality, 
chromatographic techniques are the most widely used [8-14]. UV spectroscopy is 
also commonly used, especially for detecting adulterations [3,15]. Recently, 
however, other techniques in the field of olive oil analysis have emerged. The most 
noteworthy of these are headspace-mass spectrometry (HS-MS) [16,17], near-
infrared (NIR), mid-infrared (MIR), and Fourier transform-Raman (FT-Raman) 
spectroscopy [4,18-27], nuclear magnetic resonance (NMR) spectroscopy [23,28-32], 
and electronic olfactometry [33,34]. 
 
Studies on olive oil stability against oxidation are also found in the literature. 
Psomiadou and Tsimidou [35] studied the changes in the lipid substrate due to 
oxidation by PV and K232 measurements. These authors also evaluated the changes 
in the α-tocopherol, pigment and squalane contents by HPLC and measured total 
polar phenol content colorimetrically. Deiana et al. [36] studied the activity of α-
tocopherol in EVOOs by chromatographic analysis of α-tocopherol and 
hydroperoxides and took PV measurements. 

    
Category   Acidity   Peroxide value   Stigmastadienes   K232    K270      ∆K                                        Fatty acid content (%)                                     Total sterols    Erythrodiol 
                      (%)         (mEq O2/kg)           (mg/kg)                                            myristic   linolenic   arachidic   eicosenoic   behenic   lignoceric    (mg/kg)      and uvaol (%) 
 
 
EVOO ≤0,8               ≤20        ≤0,15           ≤2,50   ≤0,22   ≤0,01      ≤0,05         ≤1,0          ≤0,6           ≤0,4              ≤0,2           ≤0,2             ≥1000                ≤4,5 
VOO ≤2,0 ≤20 ≤0,15           ≤2,60   ≤0,25   ≤0,01      ≤0,05         ≤1,0          ≤0,6           ≤0,4              ≤0,2           ≤0,2             ≥1000                ≤4,5 
LOO >2,0                 -                           ≤0,50               -          -           -          ≤0,05         ≤1,0          ≤0,6           ≤0,4              ≤0,2           ≤0,2             ≥1000                ≤4,5  
ROO ≤0,3 ≤5                   -         -      ≤1,10    ≤0,16     ≤0,05         ≤1,0          ≤0,6           ≤0,4              ≤0,2           ≤0,2             ≥1000                ≤4,5  
POO ≤1,0 ≤15                   -                  -      ≤0,90    ≤0,15     ≤0,05         ≤1,0          ≤0,6           ≤0,4              ≤0,2           ≤0,2             ≥1000                ≤4,5 
COPO             -                    -                   -                  -          -           -          ≤0,05         ≤1,0          ≤0,6           ≤0,4              ≤0,3           ≤0,2             ≥2500                >4,5 
ROPO ≤0,3   ≤5                   -                  -      ≤2,00    ≤0,20     ≤0,05         ≤1,0          ≤0,6           ≤0,4              ≤0,3           ≤0,2             ≥1800                >4,5 
OPO ≤0,1           ≤15                -                  -      ≤1,70    ≤0,18     ≤0,05         ≤1,0          ≤0,6           ≤0,4              ≤0,3           ≤0,2             ≥1600                >4,5 
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Some of the species present in olive oils, e.g. vitamin E (tocopherols), chlorophylls, 
pheophytins and phenolic compounds, emit fluorescence (Fig. 5). Therefore, 
fluorescence spectroscopy can also be used to analyse these species.  
 
Using fluorescence to analyse olive oils was first proposed in 1925 by Frehse, who 
studied the possibility of detecting the presence of ROOs in VOO by examining the 
oils under a quartz lamp with a Wood filter [37]. From these results, fluorescence 
was applied to detect adulterations in VOOs [3,37]. Because of the high sensitivity 
of this technique, fluorescence detectors have often been coupled to HPLC 
instruments for olive oil analysis [9,14]. The main applications are the 
determination of tocopherols [9,38] and phenolic compounds [14,39,40]. However, 
chromatographic techniques have several disadvantages – for example, they 
require large amounts of chemicals and are time consuming. 
 
Engelsen [41] published an interesting study that evaluated the deterioration of 
frying oil (consisting of a blend of rapeseed and palm oil) from a commercial 
Chinese spring roll plant using fluorescence, near infrared-visible (NIR-VIS), FT-IR 
and FT-Raman spectroscopy. To resemble on-line measurements as closely as 
possible, all the sample spectroscopic evaluations were performed without 
pretreatments such as dilution or filtering. Several chemical-physical parameters 
(viscosity, glyceride content, free fatty acids, anisidine value, PV, iodine value, and 
vitamin E) were also measured in accordance with standard methods of analysis. 
This study showed that fluorescence used together with multivariate analysis is a 
powerful tool for monitoring the deterioration of frying oil. 
 
Kyriakidis and Skarkalis showed that fluorescence spectra measured directly to 
undiluted oils distinguish between VOO and other vegetable oils [42]. 
Fluorescence spectroscopy can therefore take non-invasive measurements of olive 
oils without using chemicals and speed up the analysis. Fluorescence spectroscopy 
was also used to determine the amount of VOO in commercial POOs [43] and to 
detect hazelnut oil adulteration in VOOs [44]. 
 
Though fluorescence spectroscopy is a selective technique, when applied to 
complex natural systems, the selectivity of conventional techniques appears to be 
insufficient. Multidimensional fluorescence techniques (e.g. synchronous 
luminescence and total luminescence spectroscopy (TLS)) are therefore used in 
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such applications and provide additional information about the samples [45,46]. 
TLS is also called excitation-emission fluorescence spectroscopy (EEFS) and 
involves the simultaneous acquisition of multiple excitation (λex) and emission 
(λem) wavelengths. As a result, a total fluorescence profile of the sample over the 
range scanned is obtained. This fluorescence landscape is called the excitation-
emission matrix (EEM) (Fig. 6) because it is a data matrix of dimensions (number of 
λem×  number of λex). The arrangement of the data in a matrix array is known as 
second-order data. 

 

 

 

 

 

 

Figure 6.  EEM of an EVOO between λex= 300-390 nm and λem= 400-600 nm. 

In 1984 Wolfbeis and Leiner [47] used EEFS to characterize various types of edible 
oils and this technique has recently been applied to olive oil characterization 
[46,48,49]. However, it is not well established in the field of olive oil analysis and, 
since its capabilities are still being explored, it is not normally used in olive oil 
quality control laboratories. 

To extract useful information from the data, chemometric methods must be used. 
Such methods when applied to a set of second-order data are called three-way 
methods of analysis because the data from several samples are arranged in a three-
dimensional structure. When several samples are measured with EEFS, a set of 
EEMs is obtained that can be arranged into a cube of dimensions (samples×number 
of λem×number of λex). 
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Three-way methods of analysis have been widely used for exploratory analysis 
and for quantitative purposes. These methods include unfold principal component 
analysis (unfold-PCA), parallel factor analysis (PARAFAC) and three-way partial 
least squares (PLS) regression methods. They have been widely applied to EEFS 
[50-60]. Classification methods applied to EEFS have been little explored, however. 
Wittrup [61] compared several classification methods (soft independent modelling 
of class analogy (SIMCA) and discriminant PLS methods) for classifying fungal 
extracts from three-way fluorescence data. In the field of food analysis, studies on 
the application of EEFS together with classification methods are scarce. Recently, 
Scott et al. [48] classified edible oils using EEFS and various chemometric methods. 
The lack of a fast technique for olive oil characterization and the presence of 
fluorescence species in this food product make olive oil analysis an interesting 
research area for exploring the capabilities of EEFS combined with three-way 
methods of analysis, particularly classification methods. 

 

1.2 OBJECTIVES OF THE THESIS 

The main objective of this thesis is to develop new methods based on EEFS 
combined with three-way methods of analysis for olive oil characterization. The 
chemometric methods applied in this thesis can be divided into two large groups: 
exploratory methods and classification methods.  
 
The first objective is to apply exploratory methods to the fluorescence EEMs of 
different types of oils to visualize the samples, discover sample groups, find 
relationships between them and between their fluorescence spectra and detect 
outliers. 
 
The second objective is to study the capabilities of EEFS combined with three-way 
methods as a fast complementary technique for assessing olive oil quality. 
 
The final objective is to develop new methods based on EEFS and three-way 
methods for olive oil authentication. Several aspects, including the detection of 
adulterations and authentication based on oil type and origin, are considered at 
this stage.  
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2.1 FLUORESCENCE SPECTROSCOPY  

2.1.1 Background 

Luminescence is the emission of light from any substance and occurs from 
electronically excited states. Molecular fluorescence is a type of luminescence in 
which the molecules emit light from excited singlet states after the absorption of 
visible or UV radiation (around 200-900 nm). In excited singlet states, the electron 
in the excited orbital is paired (of opposite spin) to the second electron in the 
ground-state orbital. Consequently, the return to the ground state is spin-allowed 
and occurs rapidly by the emission of a photon. Therefore, the emission rates of 
fluorescence are typically of 108 s-1, so the typical fluorescence lifetime of a 
fluorophor (i.e. the average time between excitation and the return to the ground 
state) is around 10 ns [1,2]. 
 
The processes that occur between the absorption and the emission of light are 
illustrated by a Jablonski diagram [1] (Fig. 7).  The singlet ground, first and second 
electronic states are depicted by S0, S1, and S2, respectively. At each of these 
electronic energy levels, the fluorophors can exist in a number of vibrational 
energy levels (v = 0,1,2). Absorption typically occurs from molecules with the 
lowest vibrational energy. After light absorption, several processes usually occur. 
A fluorophor is usually excited to some higher vibrational level of either S1 or S2. 
Then there is a relaxation to the lowest vibrational level of S1. This process, called 
internal conversion, generally occurs in 10-12 s or less. As fluorescence lifetimes are 
typically near 10-8 s, internal conversion is generally complete before the emission. 
Fluorescence emission therefore generally results from the lowest-energy 
vibrational state of S1.  
 
Molecules in the S1 state can also undergo a spin conversion to the first triplet state, 
T1 (i.e. the electron has the same spin as that in the ground-state orbital). Emission 
from T1 is named phosphorescence and is generally shifted to longer wavelengths 
(lower energy) than fluorescence. Conversion of S1 to T1 is called intersystem 
crossing. Transition from T1 to the singlet ground state is forbidden, so rate 
constants for triplet emission are several orders of magnitude smaller than those 
for fluorescence. 
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Figure 7. A simplified scheme of the Jablonski diagram. 

 
Fluorescence typically occurs from aromatic molecules, due to low energy π→π* 
transitions. Compounds containing the carbonyl group or structures with many 
conjugated double bonds can also present fluorescence.  
 
Fluorescence intensity is a simultaneous function of the excitation and emission 
wavelengths. The intensity values of a fluorescence emission spectrum are 
obtained by keeping the excitation wavelength (λex) constant while the emission 
wavelengths (λem) are scanned. Similarly, the intensity values of a fluorescence 
excitation spectrum are obtained by keeping the λem constant while the λex are 
scanned [3]. When measuring several emission spectra at different λex (or vice 
versa), a three-dimensional fluorescence landscape, the so-called fluorescence 
excitation-emission matrix (EEM), is obtained. 
 
Several factors affect fluorescence. A rise in temperature leads to a decrease in 
fluorescence because there are more collisions between the molecules. A decrease 
in the viscosity of the solvent has the same effect. Solvents containing heavy atoms 
(e.g. carbon tetrabromide or ethyl iodide) also diminish fluorescence. When the 
fluorophor contains acid or basic substituents, its fluorescence may be affected by 
the pH of the solution. Another important factor is concentration. For highly 
concentrated solutions there are many collisions between the molecules. These 
collisions produce self-absorption phenomena (primary and secondary inner filter 
effects) [4]. Quenching is also a frequent problem in fluorescent measurements. 
This involves a reduction in fluorescence by a competing deactivating process 
resulting from the interaction between a fluorophor and another substance present 
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in the system. Oxygen is the best-known fluorescence quencher, but many other 
species may also act as such [1]. 
 

2.1.2 Spectra correction 

The main components of a luminescence spectrometer are the source of light (or 
lamp) used to excite fluorescence, two grating monochromators (one in the path of 
the exciting light and the other in the path of the emitted fluorescence) and a 
detector to measure the intensity of fluorescence (Fig. 8). Because of their 
wavelength-dependence, these three components cause distortions in the 
fluorescence spectra. The light emitted by the lamp therefore cause distortions in 
the excitation spectra because the distribution of the intensity of this light depends 
on the wavelength. In addition, the efficiency of the monochromators and the 
sensitivity of the detector depend on the wavelength, which distorts the emission 
spectra [1,5]. To collect comparable spectra to those collected with other 
instruments, these distortions must be corrected. The instrument software itself 
includes correction factors to correct such deviations.  
 

 

 

 

 

 

 

 

 
Figure 8. (a) Luminescence spectrometer Aminco Bowman Series 2, which has been used in 
this thesis. (b) Schematic representation of the instrumentation of a luminescence 
spectrometer. 
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We shall now describe the procedure for correcting excitation spectra. The output 
R of a photomultiplier tube is directly proportional to the flux of photons emitted 
by the excited sample. This relationship can be written as                            

fIR εφ0∝ , where 0I is the excitation intensity, ε is the molar absorptivity, and 

fφ is the quantum yield or fluorescence efficiency of the fluorophor (i.e. the ratio 
between the number of photons emitted and the number of photons used to excite 
the system). A plot of fεφ vs. the scanned wavelength is the true excitation 
spectrum. For many compounds, the quantum yield does not depend on the 
excitation wavelength. Therefore, the true excitation spectrum is a function of 
ε alone and is generally identical to the absorption spectrum. However, 

0I depends on the excitation source. The first step to correcting the excitation 
spectrum is to record the variation of 0I with wavelength. 0I is monitored using a 
reference channel (detector) equipped with a quantum counter. A tiny fraction of 
the excitation beam is directed to the reference detector. The quantum counter 
absorbs all this light and converts it to fluorescence with an efficiency of 100%. Any 
changes in the lamp output or monochromator will cause alterations in the output 
of the reference channel. Usually, because it covers a wide spectral range (220-600 
nm), a solution of Rhodamine B in ethylene glycol (0.3%) is used as quantum 
counter. The intensity of the fluorescence of the uncorrected spectrum is then 
divided by the intensity of excitation 0I at all the wavelengths over which the 
excitation spectrum is acquired, and a corrected excitation spectrum is obtained [5]. 
 
To determine the true emission spectrum, the following effects must be taken into 
account: the quantum efficiency of the detector, the bandwidth of the 
monochromator and the transmission efficiency of the monochromator. The 
dependence of the uncorrected emission spectrum on these effects can be 
expressed as  

                                            λλλλ λλλ
S

d
dIMBP

d
dI

d
dF

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=                                            (2) 

 

where λddF / is the apparent or observed intensity of fluorescence emission at 
wavelength λ ; λddI / is the true intensity at λ ; λP , λB , and λM represent the 
relative quantum efficiency of the photomultiplier, the relative bandwidth of the 
monochromator, and the fraction of light transmitted by the monochromator, 
respectively, at λ . These last three factors have been combined into a single factor 
in λS , which is called spectral sensitivity factor of the monochromator-
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photomultiplier combination. The true emission spectrum λddI / can be 
calculated from the apparent emission spectrum by dividing each ordinate 

λddF / by the corresponding value of λS . To determine λS , a lamp of known 
intensity distribution is used as excitation source. This intensity distribution is a 
function of wavelength and is represented as lampddI )/( λ . The emission 
monochromator is illuminated with a fully collimated beam from this lamp and the 
response of the photomultiplier lampddF )/( λ is recorded as a function of 
wavelengthλ . Since the spectral distribution of the lamp lampddI )/( λ is known, 
the quantity λS can be determined according to eq. (3) [5]. 
                                                                                                                                            

                                                
( )
( )lamp

lamp

ddI
ddF

S
λ
λ

λ /
/

=                                                            (3) 

 
All the spectra presented in this thesis have been corrected as described above. 
Figure 9 shows the effect of correcting one excitation and one emission spectrum of 
an EVOO. We can see that correction changes the intensity of the fluorescence 
peaks considerably. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. (a) Raw and (b) corrected spectra of an EVOO. Left: excitation spectra, right: 
emission spectra. 
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2.1.3 Instrumental settings 

The function of a monochromator is to isolate a narrow wavelength range of light 
from a wide range. The excitation monochromator therefore selects a narrow 
wavelength range to excite the sample, and the emission monochromator selects a 
narrow wavelength range to detect the luminescent emission and reject unwanted 
light. The band-pass is the instrument setting used to simultaneously adjust both 
the range of wavelengths and the amount of light that passes through a 
monochromator. As the band-pass is increased, so is the sensitivity of 
measurement, because more light passes through the sample. However, selectivity 
(i.e. the resolution of the peaks) is reduced because the wavelength range of light is 
widened [1]. 
 
Besides the band-pass, another parameter to set up is the step size of the 
monochromators (i.e. the frequency of the measurements). The step size 
determines the number of points to be recorded and influences the time of 
analysis. Figure 10 shows the EEMs of the same EVOO obtained using different 
step sizes. Both matrices were recorded in the λex = 300-390 nm; λem = 400-600 nm 
range but in Figure 10a it was recorded every 2 nm in the excitation domain and 
every 1 nm in the emission domain and in Figure 10b it was recorded every 5 nm 
in both dimensions. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 10. EEMs of an EVOO recorded at different step sizes. 
 
 
 

 

a) b)a)a) b)b)
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Obviously, some information is always lost when the step size is increased. 
However, the main sources of variation are kept in the data (see Figure 10). Also, 
the lower number of points to be recorded helps to speed up the analysis. As an 
example, Table 3 shows the time of analysis needed at different step sizes (range 
recorded and scan rate kept constant). 
 
 

 
Table 3. Time of analysis at different step sizes (range: λex = 300-390 nm; λem = 400-600 
nm, scan rate = 30 nm/s). 

 

                                               

 

2.1.4 Range selection and Rayleigh scatter 
 
When deciding which range to include in an EEM, one has to bear in mind that 
emission wavelengths below the excitation wavelength do not exhibit any 
fluorescence because the emitted energy is always lower than the excitation 
energy.  
 
Scattering is produced by small particles in the samples and makes the light 
deviate from its original path and spread in all directions. Scattering provides no 
information about the fluorescence properties of the sample and must be removed. 
Rayleigh scatter is often the most difficult type of scattering to deal with. In 
fluorescence EEMs, Rayleigh scatter produces a diagonal line across the landscapes 
[2] (see Figure 11a-b). This line always appears at emission wavelengths equal to 
excitation wavelengths (first-order Rayleigh). Rayleigh scatter appears again at 
emissions obtained at wavelengths around twice the excitation wavelength 
(second-order Rayleigh). 
 
There are different ways of handling Rayleigh scatter e.g. inserting missing values 
or zeros on the scattered area or plainly avoiding the part of the matrix that 
includes the scatter. However, this can only be done when the removed 
wavelengths contain little or no information [6]. With olive oils, most of the 

        excitation increment         emission increment              time of analysis 
                     (nm)                                    (nm)       

                        1                                           1                                  11 min 38.8 s 
                        1                                           2                                    5 min 53.3 s 
                        5                                           5                                    2 min 28.8 s 
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information is placed at emissions above 400 nm. For this reason, we have not 
considered emission wavelengths below 400 nm in this thesis (Fig. 11c). 
 

2.1.5 Fluorescence of olive oils 

The fluorescence that olive oils emit in their native form has been related to species 
such as vitamin E, oxidation products and chlorophylls [7] (Fig. 11a and 11c). As 
Figure 11a shows, in EVOOs, the chlorophyll peak (λem = 600-700 nm) is much 
more intense than those of the other fluorescent species. The different magnitude 
of this peak may cause problems when handling the data and, for this reason, the 
fluorescent region of chlorophylls has been often removed in this thesis. When 
included, preprocessing methods were applied so as to reduce these differences of 
magnitude. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. EEMs of an EVOO at different ranges: (a) λex = 300-400 nm, λem = 300-695 nm, (b) 
λex= 300-400 nm, λem= 300-600 nm and (c) λex= 300-390 nm, λem= 400-600 nm. (a) and (b) 
present Rayleigh scatter.  
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The various grades of olive oils have compositional differences that can be 
detected from their fluorescence EEMs. There are also great differences between 
the EEMs of olive oils and those of other vegetable oils. These EEMs of vegetable 
oils can therefore be used as fingerprints for oil characterization. As an example, 
Figure 12 shows the fluorescence EEMs of an EVOO, a POO, an OPO and a 
sunflower oil, in the λex = 300-390 nm; λem = 400-600 nm range. The larger vitamin E 
content in EVOOs (Fig. 12a) causes the higher fluorescence intensity of the spectra 
of these samples around λem = 525 nm. On the other hand, oils that underwent 
refining processes (Fig. 12 b-d) present a broad peak at around λem = 450 nm, 
which is due to large quantities of oxidation products. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Fluorescence EEM of an EVOO (a), a POO (b), an OPO (c), and a sunflower oil (d) 
in the  λex = 300-390 nm; λem = 400-600 nm range. 
 
 

As we stated earlier, measuring highly concentrated samples may cause the 
appearance of inner filter effects. This especially occurs when working with right-

a) b)

c) d)

a) b)

c) d)
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angle geometries (i.e. when the detector is oriented 90º with respect to the lamp) 
[1,8]. Inner filter effects involve the attenuation of the emission intensity due to the 
absorption of the incident excitation light and to the absorption of the emitted light 
[1,9]. This leads to distortions in the intensity and shape of the spectra. To 
overcome this problem, front-face geometries are often used to measure the 
fluorescence spectra of undiluted olive oils [9,10] because front-face fluorescence 
spectra are much less affected by inner filter effects. Another way to reduce these 
distortions is to dilute the sample with an appropriate solvent. As an example, 
Figure 13 shows the changes to the spectrum of an EVOO upon dilution with n-
hexane at different proportions. Despite their possible distortions, however, the 
spectra of undiluted oils may be of interest for the differentiation and 
characterization of oils. Another advantage of working with undiluted oils is that 
quenching (i.e. reduction in fluorescence due to the interaction between the 
fluorophor and another substance) is reduced because there are fewer collisions 
between the fluorophor and oxygen or other quenchers in viscous samples than in 
diluted solutions [9]. As we can see in Figure 12, directly measuring EEMs from 
undiluted oils provides useful information about the samples and may help to 
detect differences between different types of oils. For this reason, all the results in 
this thesis were obtained from undiluted oils. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Fluorescence spectra of an EVOO between λem = 415-600 nm at λex = 345 nm. (a) 
undiluted oil, and dilutions (b) 1:3, (c) 1:6, (d) 1:30, and (e) 1:150 in n-hexane. 
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2.2 THREE-WAY DATA 

2.2.1 Notation 

In this section we summarise the mathematical notation used in this thesis, which 
is the one commonly accepted by the scientific community [11].  
 
Italic lowercase letters (e.g. x ) indicate scalars (i.e. zero-order data), bold 
lowercase letters (e.g. x ) indicate vectors (i.e. first-order data), bold uppercase 
letters (e.g. X ) indicate matrices (i.e. second-order data), and underlined bold 
uppercase letters (e.g. X ) indicate three-way arrays. Transposition of a vector or 
matrix is symbolized by a superscripted “T” (e.g. TX ). A superscripted “-1” (e.g. 

1−X ) indicates the inverse matrix. Finally the symbol ⊗  symbolizes the Khatri-
Rao product of two matrices ( A and B ) with the same number of columns ( J ). 
The Khatri-Rao product is defined as  
 

                                 BA⊗ = [ 11 ba ⊗   22 ba ⊗   …  JJ ba ⊗ ]                                  (4) 

 
where ⊗ is the Kronecker product, which is defined as 
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J

aa

aa

1

111

                                                              (5) 

2.2.2 Three-way arrays 

Any set of data for which the elements can be arranged as 
 
                                  xijk...          i=1,...,I,  j=1,...,J,  k=1,...,K, ...                                            (6) 
 
where the number of indices may vary, is a multi-way array. When three 
dimensions are used, the data can be arranged in a three-way array, where the ith 
index refers to the rows, the jth index refers to the columns and the kth index refers 
to the third dimension (or tubes) (Fig. 14). Each dimension of this array is named 
way or mode and the number of levels in the mode is named the dimension of the 
mode [12]. Any set of second-order data can be arranged in a three-way array. 
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Thus, a set of EEMs obtained by measuring different samples can be arranged in a 
three-way array where, for example, samples are in the first mode, λem are in the 
second mode and λex are in the third mode (Fig. 14). 
 
 
 

 

 
 

 
 

Figure 14. Three-way array. 

2.2.3 Preprocessing 

Unfolding 
Unfolding (or matricization) involves rearranging a three-way array to form a 
matrix [11,12]. This is done by combining two of the original modes while keeping 
the other fixed. Unfolding a three-way structure of KJI ××  dimensions can be 
done in three different ways, depending on which modes are combined: the second 
and the third ( JKI × ), the third and the first ( KIJ × ) or the first and the second 
( IJK × ). Figure 15 shows graphically the process of unfolding a three-way array 
by concatenating the second and third modes. This type of unfolding has been 
used in this thesis in order to keep the sample mode (mode 1) and to combine the 
spectral modes (modes 2 and 3). 
 

 
 

 

 

 

 
 

Figure 15. Unfolding of a three-way array by combining the second and the third modes. 
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Several authors have used unfolding as a method to handle three-way data [12-24]. 
However, although unfolding may often be helpful, it has several disadvantages.  
For example, the three-way structure of the data is lost, the number of variables of 
the resulting matrix is high because of the combination between the variables of 
two of the modes, and the resulting models are more difficult to interpret [12].  
 

Centering 
To remove a constant offset, the data can be translated along the coordinates’ 
origin. In two-way data (matrices), the most common procedure is column mean-
centering, where every datum ijx is centered by subtracting the column mean jx  
according to: 
 

                                                             ijijcentij xxx −=)(                                                   (7) 

 
where i is the row index, j is the column index, and jx is the column mean 
calculated from:  

                                                              ∑
=

=
n

i
ijj x

n
x

1

1
                                                       (8) 

 
Centering a three-way array may be applied across any of the modes. For example, 
centering the first mode can be done by unfolding the array to a JKI × matrix 
(Fig. 16), and then column mean-centering as described above. If centering is to be 
performed across more than one mode, one has to do this by first centering one 
mode and then centering the outcome of this centering [13]. 
 
Scaling 
Scaling is done to eliminate differences of magnitude between variables or 
samples. There are various scaling methods.  One of the most common methods is 
  
 
 
 
 

 
Figure 16. Scheme of a three-way unfolded array, showing the directions along which 
scaling and centering should be performed.  
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standardization, which involves dividing each element of a matrix by its column 
standard deviation: 
 

                                                           
j

ij
stij s

x
x =)(                                                               (9) 

 
Another scaling method is autoscaling. In this case, the columns are mean-centered 
and then divided by their standard deviation. Autoscaled data have column mean 
zero and column unit variance [25]: 
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Another scaling method is the normalization of a data vector to length one. This is 
done by dividing the vector by the Euclidean norm ( jx ). This procedure is 
described below: 
 

                                                      
j

ij
normij

x
x

x
=)(                                                            (12) 

    

                              where         22
2

2
1 ... njjjj xxx +++=x                                          (13) 

 
 

Normalization is performed in order to remove systematic variation, which is 
usually associated with the total amount of sample [26]. In this thesis, this method 
has been used to reduce differences in intensity between the fluorescence spectra of 
different oils. 
 
In three-way analysis, scaling must be done on the rows of a matrix and not across 
the columns, as is the case with centering (i.e. one has to scale whole matrices 



Theoretical background 

                    47

instead of columns) (Fig. 16). For example, to remove differences in magnitude 
between the λem of a set of EEMs, one can scale the three-way array within the 
emission mode. To do this, the three-way array has to be unfolded in such a way 
that λem (variable j ) is in the rows and then the rows are scaled. This is because all 
the columns where variable j occurs have to be scaled [13]. Not all combinations 
between centering and scaling are possible when working with three-way data. 
Only centering across arbitrary modes or scaling within one mode is 
straightforward [13].  
 

2.3 CHEMOMETRIC METHODS 

In this section we provide an overview of the chemometric methods used in this 
thesis. These methods are grouped into two blocks. The first block contains 
methods used for exploratory analysis (unfold principal component analysis 
(unfold-PCA or U-PCA), non-negative matrix factorization (NMF), parallel factor 
analysis (PARAFAC) and hierarchical cluster analysis (HCA)). The second block 
contains methods used for discrimination and classification purposes: Fisher’s 
linear discriminant analysis (LDA), discriminant unfold partial least squares (DU-
PLSR) regression and discriminant multi-way partial least squares (DN-PLS) 
regression.  
 

2.3.1 Exploratory analysis 

Exploratory analysis involves applying chemometric methods to find patterns in 
the data, i.e. to better understand the structure of the data. No previous knowledge 
of the data is used to find such patterns. For this reason, these methods are often 
called unsupervised pattern recognition methods [27]. Some typical aims are to 
reveal groups and trends in the data, to find relationships between samples and 
variables and to detect outliers. The results of exploratory analysis are often 
presented in graphical displays, which makes it easy to interpret the information. 
 
Unfold Principal Component Analysis (unfold-PCA) 
Unfold-PCA involves computing principal component analysis (PCA) on a matrix 
( X ) obtained after unfolding a three-way array ( X ). This method is also named 
multi-way principal component analysis [18,19] or Tucker1 [14]. The aim of PCA is 
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to retain the main information contained in the original variables in a smaller 
number of variables, called principal components (PCs), which describe the main 
variations in the data. These PCs are linear combinations of the original variables 
[26]. Some properties of PCs are that they are orthogonal (i.e. uncorrelated to each 
other), hierarchical (i.e. the first PC retains the maximum information of the data, 
the second PC retains the maximum information that is not included in the first 
one, and so on), and are calculated sequentially (i.e. the F-1 component model is a 
subset of the F component model). 

 
Unfold-PCA involves first unfolding a three-way array in any of the three modes 
and then computing the PCA model, which  makes a bilinear decomposition of the 
X matrix into a score matrix ( T ) and a loading matrix ( P ), which describe the 
original data in a more condensed way (eq. 14). If unfolding has been done by 
keeping the sample mode, T will contain information about the samples and P  
will contain information about the variables (see Fig. 15). The residuals (i.e. the 
difference between the original and the reconstructed matrix with the calculated 
PCs) are collected in the E matrix (Fig. 17): 

 
 

                                            ETPX += T                                                         (14) 
 

The I, J×K and F indices in Figure 17 stand for samples, variables and PCs, 
respectively. 
 
Unfold-PCA is a powerful tool for obtaining an overview of second-order data, 
such as fluorescence EEMs [15]. After reducing dimensionality, it allows us to find 
groups and trends in the data and provides information about what variables are 
responsible for the main variations in the data. In this thesis, unfold-PCA has been 
used as a method for exploratory analysis. It has also been used to reduce 
dimensionality and so that the scores can be used as inputs for subsequent 
discrimination methods. 
 
One of the main disadvantages of the methods used after unfolding is that the 
loadings are very difficult to interpret because the variables in the unfolded modes 
get mixed up. To overcome this problem, we can fold back the loadings of each PC 
into a matrix with the same dimensions of the matrices that formed the original 
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Figure 17. Principal component decomposition. 

 
three-way array. This process is often called refolding [18] and provides more 
interpretable loadings. However, though refolding makes it easier to visualize the 
loadings, note that such loadings do not correspond to the initial three-way 
structure because the combination of two of the modes in the unfolding process 
causes the loss of the three-way structure. Figure 18 shows an example of how 
refolding improves the understanding of the unfold-PCA loadings. In this 
example, the dimensions of X  were 49× 41× 21 (samples ×  number of λem 
× number of λex). After unfolding the array by combining the spectral modes, an 
X  matrix of size 49× 861 was obtained. Unfold-PCA was then computed on the 
unfolded matrix and each PC was a row vector with 861 elements. Figure 18a 
shows the loadings of the first PC. If the PC loadings are reshaped into the same 
dimensions of the original EEMs (41× 21), they can be plotted as shown in Figure 
18b. As we can see, the refolded loadings are easier to interpret. 
 
 
 

 

 

 

 
 

 

 

Figure 18. (a) Unfolded and (b) refolded loadings of unfold-PCA. 
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From any PCA model, two statistics can be defined: Hotelling 2T and Q . The 
Hotelling 2T statistic is calculated for the systematic part of the variation of the 
data. The Hotelling 2T plot therefore represents the projection of each 
measurement onto the hyperplane defined by the PCs of the model. For each 
sample i , 2T is defined as 
 

                                            TT1T12T iiiii xPPλxtλt −− ==                                               (15) 

 

where it refers to the ith  row of the score matrix T from eq. 14, P is the loading 
matrix from eq. 14 and 1−λ is the diagonal matrix containing the inverse of the 
eigenvalues associated with the f  PCs retained in the model. Alternatively, the 
Q statistic is calculated for the residual part (i.e. the part not included in the 
model). Q is the sum of squares of each sample of E from eq. 14, i.e., for the 
ith sample in X , ix : 
 

                                             TTT
i )(Q iffiii xPPIxee −==                                       (16) 

 

where ie is the ith row of E , fP is the matrix of the f loading vectors retained in 
the PCA model and I is the identity matrix. The Q  plot represents the squared 
distance of each new measurement perpendicular to the plane defined by the PCs.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19. Plot of Hotelling 2T and Q statistics. 
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These statistics have been widely applied in the statistical process control of 
multivariate processes [17,28]. Confidence limits for both parameters can be 
defined from a training set and then the Hotelling 2T  and Q values for new 
observations can be computed. Those lying outside the control limits are 
considered to be out of control in the space spanned by the PCs and the residuals, 
respectively (Fig. 19). In this thesis, the Hotelling 2T and Q statistics have been 
applied to unfold-PCA as a fast screening method for discrimination purposes. 
 

Model selection 
In any PCA model, one has to decide how many PCs to include in the model. We 
shall now briefly describe the methods used in this thesis for choosing the number 
of PCs in the PCA models.           
 
 - Cross-validation (CV) 
In this procedure, a subset of samples (the cancellation group) is removed from the 
data set and a PCA model is built. The residuals of the left out samples (i.e. the 
difference between the measured and the estimated values) are then calculated. 
The subset of samples is returned to the data set and the process is repeated for 
different subsets of samples until each sample has been excluded from the data set 
once. Finally, the root mean square error of cross-validation (RMSECV_PCA) is 
computed [26]. This error is calculated for different numbers of PCs: 
 

                                       
I

jiresidual
I

i

J

j
f

f

∑∑
= == 1 1

2)),((
RMSECV_PCA                                      (17) 

 

In eq. (17), PCARMSECV _ is a measure of the magnitude of the residuals of the 
new samples projected onto the PCA with f PCs. The term ),( jiresidual f is the 
residual for the ith  sample and the jth variable.  
 
Leave-one-out cross-validation (or full cross-validation) is a particular case of CV 
in which one sample is left out at a time. This procedure has been widely used in 
this thesis. 
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- Double cross-validation (DCV) 
In 1978 Wold introduced DCV as an alternative method to CV for determining the 
number of significant components of PCA models [29]. In DCV the cancellation 
groups are not samples, as in CV, but points in the data matrix [30]. DCV uses the 
NIPALS (non-linear iterative partial least squares) algorithm [31], since it can 
compute loadings even in the case of missing data. The DCV procedure is 
described below [29,30]: 

1. Take X , which is the original data matrix properly preprocessed. 

2. Compute the sum of squares of X  (or residual squared error ( RSE )): 

                                                 ∑∑
= =

=
I

i

J

j
ij

f xRSE
1 1

2                                                           (18) 

where I and J indicate the number of cancellation groups and variables, 
respectively, and f indicates the number of PCs (at the beginning, ).0=f   

3. Create a cancellation matrix, with as many rows and columns as X , and divide it 
into G groups by numbering it from 1 to G. (Normally, to reduce computer time, G 
is chosen to be lower than the total number of data). A common approach used to 
create the cancellation matrix is to delete values on the diagonals of X [30], but 
random number schemes may also be employed [27]. Figure 20 shows an example 
of a cancellation matrix with 5 randomly chosen cancellation groups (numbered 
from 1 to 5). Data in X whose corresponding position in the cancellation matrix is 
filled with 1 will make up the first cancellation group. 

 

 

 

 

 
Figure 20. Example of a cancellation matrix for DCV with 5 cancellation groups. The 
numbers indicate the membership of the data points in a cancellation group (e.g. all 
positions labelled 1 constitute the first cancellation group). 
 

4. Remove the first cancellation group ( 1X ) of X to obtain MX , which is the 
X matrix with missing values in the positions marked with 1. Then compute PC1 
from MX . 

1 2 4 2 1 1 2 5 1 3 4 1 2 5 4 2 3 3 1 2 4
3 5 3 2 2 3 4 2 5 4 3 1 2 3 1 4 5 3 4 1 5
1 4 3 3 4 5 1 1 3 5 2 2 1 4 3 5 1 5 2 3 4
5 4 4 5 1 2 2 4 2 1 5 4 3 2 1 5 2 3 4 1 2
1 2 3 4 4 3 1 3 4 5 1 3 2 1 4 3 5 4 2 1 3

1 2 4 2 1 1 2 5 1 3 4 1 2 5 4 2 3 3 1 2 4
3 5 3 2 2 3 4 2 5 4 3 1 2 3 1 4 5 3 4 1 5
1 4 3 3 4 5 1 1 3 5 2 2 1 4 3 5 1 5 2 3 4
5 4 4 5 1 2 2 4 2 1 5 4 3 2 1 5 2 3 4 1 2
1 2 3 4 4 3 1 3 4 5 1 3 2 1 4 3 5 4 2 1 3
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5. Predict 1X from PC1 ( 1pX ) . 

6. Compute the prediction error (residual matrix) 

                                                            1p11 XXE −=                                                      (19) 

and the sum of squares of the residual matrix to give the partial predicted residual 
error sum of squares ( PPRESS ): 

                                                         
2

1P ∑= EPRESS                                                   (20) 

7. Restore X and successively delete the G cancellation groups, each time 
calculating PPRESS as in step 6. 

8. When all G groups have been deleted once, and so all elements in X have been 
deleted once and only once, sum the partial PRESS to obtain the total PRESS 
( TPRESS ). 

9. Compute the ratio fRSEPRESSR /T= . 1<R  shows that the predictions are 
improved by including the latest PC. 

10. Compute PCA on the complete matrix X , reconstruct it from PC1 and compute 
the new residual matrix E . Increase f by one and go back to step 2. 

11. 1>R indicates that the latest PC ( )1+f did not improve the prediction errors 
and the best value is f .  

 
Non-negative matrix factorization (NMF) 
Although PCA is the most common method for compressing multivariate data, the 
mathematical property of orthogonality implies having both negative and positive 
loadings and scores. This does not have much chemical or physical sense for 
signals that are inherently non-negative.  
  
The NMF algorithm [32] is another method for compressing multivariate data that 
uses non-negativity constraints. These constraints mean that only positive values 
can be obtained for the decomposed data. Also, with NMF we can obtain parts-
based representations of the data. This is because of the non-negative constraints of 
the algorithm, which allow only additive, not subtractive, combinations. In some 
cases, therefore, NMF may be more suitable than PCA because it provides a more 
realistic interpretation of the data. 
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The NMF algorithm works as described below. To apply the method, the X matrix 
of dimensions JI × (samples×variables) has to be transposed to obtain a 
V matrix of dimensions IJ ×  (i.e. each column of V is the vector data 
corresponding to one sample). This matrix is then approximately decomposed into 
a FJ ×  matrix W and a IF ×  matrix H . The NMF algorithm builds 
approximate decompositions of the form: 
 

                                              ∑
=

=≈
F

f
fijfjiji

1

)( HWWHV                                                    (21) 

 

where the f columns of W are called the basis set, each column of H is called an 
encoding, and F is the rank of the factorization. NMF does not allow negative 
entries in the matrices W and H . 
 
The NMF algorithm proposed by Lee and Seung [32] starts by randomly 
initializing matrices W and H , which are iteratively updated to minimize the 
objective function  
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subject to non-negative constraints. Different update rules can be applied to 
minimize the objective function [33]. In this thesis we have used the divergence-
based update equations [34]: 
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To represent a new vector using a predefined set of basis functions, the same 
algorithm is iterated without modifying the matrix factor W . So, fixing W and 
starting with positive random H obtains a representation of a new data vector 
according to the basis defined in W . 
 
Some researchers have modified the original algorithm by, for example, adding 
constraints [35] and modifying the initialization step [36]. 
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NMF has been successfully applied to many areas, such as image [32] and text 
analysis [32,37,38], genetics [34], spectral analysis [36,39], and sound analysis 
[40,41]. It has also been used to resolve overlapped chromatograms and mass 
spectra [35]. 
 

Parallel Factor Analysis (PARAFAC) 
PARAFAC is a decomposition method for multi-way data that works directly on 
the multi-way structure. This decomposition is made into triads or trilinear 
components. Each component consists of three loading vectors that are treated 
mathematically in the same way [13]. However, the vector associated with the 
sample mode is often named the score vector. A PARAFAC model of a three-way 
array is therefore given by three loading matrices, A , B and C , with elements ifa , 

jfb and kfc , where the i, j and k indices refer to the dimensions of the array and f is 
the number of factors of the model. Figure 21 is a graphical representation of the 
PARAFAC decomposition. The cube E contains the residuals. 
 
 
 
 
 
 
Figure 21. Representation of a two-component PARAFAC model of the data array X . 

 
Mathematically, the PARAFAC model with F-components is expressed as [13]: 

 

                                               ijkkfjf
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                                                 (24) 

The model can also be expressed in matrix form as [12]: 

                                                 aa EBCAX +⊗= T)(                                                   (25) 

where aX   ( )JKI × is the unfolded matrix along mode A from the array X , A , 
B  and C  are the loading matrices and aE ( )JKI ×  is the unfolded residual 
matrix. 
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Unlike bilinear methods such as PCA, PARAFAC provides unique solutions. This 
means that, apart from trivial variations of scale and column order, no restrictions 
are needed to estimate the model [12,13]. Another difference with respect to PCA is 
that PARAFAC is a non-nested model (i.e. it cannot be calculated sequentially). 
This means that the F-1 factor model is not a subset of the F factor model. 
 
There are several ways to determine the correct number of components in 
PARAFAC [13]. In this thesis, we used split-half analysis and residual analysis.  
 
Split-half analysis involves dividing the data into two halves and then making a 
PARAFAC model on both halves. Because of the uniqueness of the PARAFAC 
model, if the correct number of components is used, the same loadings in the non-
split modes on both data sets should be obtained [13]. 
 
Residual analysis can be performed as in bilinear models. Systematic variation left 
in the residuals indicates that more components can be extracted. If a plot of the 
residual sum of squares against the number of components sharply flattens out for 
a certain number of components, this indicates that the right number of 
components has been reached [13]. 
 
PARAFAC can be used for quantitative purposes because the score matrix A  
contains information about the differences of composition between the samples. In 
this thesis we have applied multiple linear regression (MLR) to the PARAFAC 
scores in order to build regression models between them and some of the quality 
parameters of olive oils. MLR is a generalisation of univariate linear regression that 
is used when several independent predictor variables x are to be used to predict 
y [42]. The model can be written as: 

 

                                                       exbby
K

k
kk ++= ∑

=1
0                                                 (26) 

 

where 0b and kb are the regression coefficients and e is the random error. 
 
The MLR model can also be expressed in matricial form as: 
 
                                                        eXby +=                                                                (27) 
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The regression coefficients of the model are calculated as 
 
                                                          yXb +=                                                                  (28) 

where +X is the pseudoinverse matrix ( ( ) T1T XXXX −+ = ), in the case that X is 
non-singular and JI > . 
 
In recent years, PARAFAC has been widely used in food analysis [12,13,15,43-48]. 
 
Hierarchical cluster analysis (HCA) 
Cluster analysis (CA) is an unsupervised pattern recognition method used to find 
natural groups in multivariate data according to the similarity of the variables of 
the samples [25,42]. To perform CA, one must measure the similarity (or 
dissimilarity) of the samples. There are several measures of similarity [49]. In this 
thesis, we have used Euclidean distance. The equation of Euclidean distance 
between samples i and i’ is 
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where J is the number of variables. 
 
Hierarchical agglomerative methods are widely used in CA. These start from as 
many clusters as there are samples. Gradually, samples are joined into clusters, up 
to the final cluster with all the samples [50]. HCA is represented graphically by a 
tree called a dendrogram (Fig. 22). 
 
Computing the distances between all pairs of samples yields the dissimilarity 
matrix, which is a symmetrical matrix containing these distances. There are several 
algorithms to compute the hierarchical clustering from the dissimilarity matrix 
[49,51]. In this thesis we used the average linkage algorithm, which involves 
computing the average of the distances of the samples to be merged into a new 
cluster. 
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Figure 22. Hierarchical clustering representation (dendrogram). 

 
One of the most important issues in CA is the evaluation of clustering results in 
order to find the partitioning that best fits the underlying data. This is the main 
subject of cluster validity [52]. One way to measure the validity of the cluster is to 
compare the information generated by the linkage algorithm and the original 
proximity between samples. If the clustering is valid, the linking samples in the 
cluster tree should have a strong correlation with the distance between samples in 
the dissimilarity matrix. The cophenetic correlation coefficient computes the 
correlation between these two sets of values. The closer the cophenetic correlation 
coefficient is to one, the better the clustering solution [53]. 

 
Exploratory analysis and outlier detection  
Exploratory analysis methods are useful for detecting outlier samples because they 
provide several tools that can be used for this purpose [26].  
 
One easy and simple way to detect outliers is to study the score plots obtained 
from methods such as unfold-PCA or PARAFAC. Score plots reveal how the 
samples are related to each other on the basis of the measurements made [26]. 
Samples with similar measurements will therefore be placed close to each other on 
the score plots. If a sample is placed a long way from the others, it may be an 
outlier. 
 
Residual analysis is another widely used strategy for detecting outliers [26]. If an 
outlier is projected into a model built with “normal” samples, its residuals will be 
larger than those of the other samples because part of the variability of the outlier 
sample has not been included in the model.  
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Grouping methods such as HCA can also be used to reveal the presence of outliers 
[26] since samples with similar characteristics should be close to each other in the 
cluster tree. If not, this is an indication that something unusual has happened with 
the samples.  
 

2.3.2 Classification 

In this section we describe the classification methods used in this thesis. 
Classification methods use a training set (i.e. a set of samples belonging to a known 
class) to derive a classification rule that enables us to classify new samples with 
unknown origin in one of the known classes. For this reason, these methods are 
often called supervised pattern recognition methods [49]. The validity of the 
classification rule is assessed with a test set. 
 
To validate classification methods we distinguish between recognition and 
prediction ability. Recognition (or classification) ability is characterized by the 
percentage of the members of the training set that are correctly classified.  
Prediction ability is determined by the percentage of new samples not included in 
the training set that are correctly classified. Both recognition and prediction ability are 
usually expressed as correct classification rate [49]. It is always necessary to 
determine prediction ability because it illustrates how well the model will work with 
new samples. If only recognition ability is determined, this information is not 
obtained and one runs the risk of taking an overoptimistic view of the classification 
results. 
 
The ideal situation for validating a method is to have enough samples available to 
create independent training and test sets. In this case, the training set is used to 
develop the classification rule and to compute the recognition ability, whereas the 
test set is used to determine the prediction ability. When few samples are available, 
CV is usually used to determine the prediction ability. The procedure is similar to 
the one described in section 2.3.1, in that the left out samples are used as a test set. 
 

Fisher’s linear discriminant analysis (LDA) 
Fisher’s LDA or canonical variate analysis (CVA) is a discrimination method that 
provides classification rules for unknown samples by maximizing the differences 
between the classes. This is because it seeks directions in multivariate space that 
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separate the groups as much as possible and uses information along these 
directions in simple scatter plots [42].   
 
The method begins by computing two matrices. First, the within-classes sum of 
squares and products (SSP) matrix, which measures the variability within classes, 
is calculated. It is defined as 
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where X is the matrix of observations for class j , and G is the number of classes. 
The between-class SSP matrix, which measures the variability between classes, is 
then calculated: 
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where jN is the number of samples in each class and x is the average vector for 
the whole data set. 
  
The algorithm then seeks a direction defined by the vector a that maximizes the 
ratio 
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This means that the algorithm finds the direction for which the difference between 
the means of the classes is as large as possible compared to the within-class 
variance. The vector a  can be found as the eigenvector of BW 1− , which 
corresponds to the largest eigenvalue. This is called the first canonical variate or 
Fisher’s linear discriminant function (LDF). The value of LDF for a particular 
sample is called the score on the LDF. 
 
With more than two classes, it will be necessary to compute more than one 
discriminant axis. They are defined in the same way as in (32), but in such a way 
that the variability along each vector is uncorrelated with variability along already 
computed vectors. The maximum number of canonical variates that can be 
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computed to discriminate between G groups is 1−G , but fewer are usually 
enough. 
 
Some examples of Fisher’s LDA applied in food analysis are found in the literature 
[42,54,55]. 
 
Discriminant unfold partial least squares regression (DU-PLSR) 
Partial least squares (PLS) regression is a method for building regression models 
between independent ( X ) and dependent ( Y ) variables. It is based on a bilinear 
decomposition of the calibration matrix and establishing a relationship (regression) 
between X and Y [21]. The decomposition is achieved by maximizing the 
covariance between X and Y . Thus, an optimal regression is achieved with respect 
to the prediction error. Factors of X and Y are computed simultaneously by 
successively substituting the scores of the X matrix (called t ) by the scores of the 
Y matrix (called u ), and vice versa, up to convergence [56]. The PLS 
decomposition can be expressed in matricial form as: 
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T and TW are  the score and loading matrices of X , respectively, while U and 

TQ are the score and loading matrices of Y . The columns of W are often called 
the loading weights because they indicate how the t -scores are to be computed 
from X to obtain an orthogonal decomposition. E and F are the corresponding 
error matrices.  
 
There are several ways to calculate the PLS model parameters. The most intuitive 
method is known as NIPALS for non-iterative PLS [57] and is described below. 
 
The PLS decomposition begins by selecting a column of Y , ,jy as the starting 
estimate for 1u (usually the column of Y with the greatest variance is chosen). In 
the case of univariate y , yu =1 . For the X data block, the algorithm works as 
follows: 
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In the Y data:    
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If the Y -block is univariate, eq. (37) and (38) can be omitted and 11 =q . 
Convergence is checked by comparing 1t in eq. (36) with the value from the 
previous iteration. If they are not equal (within rounding error), the algorithm 
returns to eq. (35) using the 1u from eq. (38). When convergence is achieved, the 
X data block loadings ( P ) are calculated and the scores ( T ) and weights ( W ) are 
rescaled: 
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Then the regression coefficient ( 1b ) is calculated: 
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After the scores and loadings have been calculated for the first factor, the residuals 
of the X and Y blocks are calculated as follows: 
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The entire procedure is then repeated for the next factor starting from eq. (35). 
X and Y are replaced with their residuals 1E and 1F , respectively, and all 
subscripts are incremented by one. 

 

When the property to be predicted ( Y ) is membership to one class, the method is 
called discriminant PLS and can be used for classification. If there are only two 
classes, y is a vector of ones and zeros depending on the class membership of the 
sample in X (i.e. ones indicate membership to the class and zeros indicate non-
membership). For more than two classes, there are as many y column vectors as 
classes. Each vector has ones for samples belonging to the class and zeros for the 
other samples. In this case, PLS regression must be done separately between 
X and each y column. 
 
Discriminant unfold partial least squares regression (DU-PLSR) has been used in 
the field of sensors [20], in EEFS for classifying fungal extracts [58], and to 
discriminate between snack groups by measuring their chewing sounds [59]. In 
this thesis we applied DU-PLSR to EEFS to discriminate between oils of different 
origins. 
 
Discriminant multi-way partial least squares regression (DN-PLSR) 
The basis of multi-linear or multi-way partial least squares (N-PLS) regression is 
the same as that of bilinear PLS but extended to multi-way data. For three-way 
data, the method is named tri-PLS. This refers to the decomposition of a cube 
X into a set of triads. A triad is the trilinear equivalent of a bilinear factor. It 
consists of one score vector t and two weight vectors - one in the second order, 
called Jw , and one in the third order, called Kw . The model of X can be 
expressed by eq. (46) [21]. The term ijke is the error.  

 

                                              ijk
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The X decomposition can also be expressed in matricial form: 
 

                                                   ( ) EWWTX +⊗=
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where X has been previously unfolded to an X matrix. Figure 23 is a 
representation of this decomposition. 
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Figure 23. Graphical representation of X  decomposition using one N-PLS factor. 

 

If the dependent variable Y is a two-way matrix as is the multivariate case, its 
decomposition is performed as in eq. (34). 

 

When the N-PLS method is used for discrimination purposes, it is called DN-PLSR. 
In this case the Y matrix is made up of a set of columns. Each column is a class 
and has ones for samples that belong to this class and zeros for those that do not. 
When there are only two classes, y is a column vector with ones for the samples 
that belong to one of the classes and zeros for the samples that belong to the other. 
 
Some applications of DN-PLS are found in the literature [20,58,59]. In this thesis we 
used this method to discriminate between adulterated and non-adulterated oils 
and between oils from two different geographical origins. 
 
N-PLS has several advantages over unfold-PLS because the trilinear model is much 
simpler, easier to interpret and less prone to noise, since the information across all 
orders is used for the decomposition [21]. However, the choice of method depends 
on the behaviour of the data and no method is definitive. 
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3.1 INTRODUCTION   

Olive oil authentication is of primary importance in order to ensure the quality and 
the authenticity of this food product. The lack of a fast analytical technique to carry 
out such authentication and the knowledge that olive oil contains fluorescent 
species [1-3] was the starting point of this thesis. 
 
Kyriakidis and Skarkalis [2] compared the fluorescence spectra of a set of vegetable 
oils. They found that the spectra of virgin olive oil have considerable differences to 
those of the rest of oils, which have undergone refining processes during their 
manufacturing. The spectra of virgin olive oil display four peaks at λem = 445, 475, 
525 and 681 nm. The peak at 681 nm was attributed to the chlorophylls. The 
assignment of the other peaks was less obvious. It was suggested that the peak at 
525 nm may partially derive from vitamin E. The peaks at 445 and 475 nm were 
related to oxidation products. However, a study about vitamin E stability that was 
also made in this work showed that the fluorescence spectra of oxidized vitamin E 
also displayed a peak around 445 nm. All refined oils displayed only one intense 
peak between λem = 400-550 nm. This peak was attributed to oxidation products 
formed as a result of the larger content of polyunsaturated fatty acids in these oils. 
In this work, first-order data were used (i. e. a single fluorescence spectrum for 
sample) and individual fluorescence values at one emission wavelength were 
related to some of the oil parameters by means of univariate analysis.  
 
From the results reported by Kyriakidis and Skarkalis [2], the first aim of this thesis 
was to study whether fluorescence EEMs (second-order data) are more 
advantageous compared to single fluorescence spectra (multivariate or first-order 
data) to distinguish between oil types. Thus, EEFS was applied to various sets of 
commercial Spanish olive oils. The fluorescent second-order peaks were related to 
chemical species present in oils. Different spectral ranges and preprocessing 
methods were applied and compared. 
 
The results of this study are presented in two papers that show the application of 
several three-way methods for the exploratory analysis of olive oils. In the first 
paper (Application of unfold principal component analysis and parallel factor analysis to 
the exploratory analysis of olive oils by means of excitation-emission matrix fluorescence 
spectroscopy, Anal. Chim. Acta 515 (2004) 75-85), two types of oils (29 virgin olive oils 
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(including 28 EVOOs and 1 VOO) and 20 POOs) were studied using unfold-PCA 
and PARAFAC. Both methods enabled to distinguish between the two types of 
oils. In addition, PARAFAC had the advantage of providing good approximations 
of the excitation and emission profiles of the fluorescence species present in oils. 
 
In the second paper (Cluster analysis applied to the exploratory analysis of commercial 
Spanish olive oils by means of excitation-emission fluorescence spectroscopy, J. Agric. Food 
Chem. 52 (2004) 6673-6679), the same groups of oils plus a third group of 7 OPOs 
were used. In this case, the ability of HCA to discriminate between the three types 
of oils was studied. HCA was applied to the unfolded EEMs of oils. In addition, an 
algorithm for selecting the most discriminatory variables was developed. The best 
results were obtained by applying HCA to the unfolded EEMs after normalization 
and column autoscaling of the data. In this case, all the samples were clustered into 
the correct groups. 
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ABSTRACT 

Discrimination between virgin olive oils and pure olive oils is of primary 
importance for controlling adulterations. Here, we show the potential usefulness of 
two multi-way methods, unfold principal component analysis (U-PCA) and 
parallel factor analysis (PARAFAC), for the exploratory analysis of the two types 
of oils. We applied both methods to the excitation-emission fluorescence matrices 
(EEM) of olive oils and then compared the results with the ones obtained by 
multivariate principal component analysis (PCA) based on a fluorescence 
spectrum recorded at only one excitation wavelength. For U-PCA and PARAFAC, 
the ranges studied were λex = 300-400 nm, λem = 400-695 nm and λex = 300-400 nm, 
λem = 400-600 nm. The first range contained chlorophylls, whose peak was much 
more intense than those of the rest of species. The second range did not contain the 
chlorophylls peak but only the fluorescence spectra of the remaining compounds 
(oxidation products and Vitamin E). The three-component PARAFAC model on 
the second range was found to be the most interpretable. With this model, we 
could distinguish well between the two groups of oils and we could find the 
underlying fluorescent spectra of three families of compounds. 
 
 
 
Keywords: U-PCA; PARAFAC; EEM; Olive oils; Three-way analysis 
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1. INTRODUCTION 

Olive oil, obtained from the fruit of the olive tree (Olea europea L.), is an 
economically important product. The International Olive Oil Council (IOOC) has 
established criteria for classifying of olive oil into various grades: namely virgin, 
refined and pure. The best quality oil is called “extra virgin” and is derived from 
the first, cold pressing of the olive. Refined olive oil is obtained from virgin olive 
oil using refining methods that do not lead to alterations in the initial glyceridic 
structure, whereas pure olive oil (or simply olive oil) consists of a blend of virgin 
and refined oil [1-4]. 
 
Because of its high price, fraudulent practices have led to olive oil being 
adulterated with small amounts of seed oils or olive-pomace oil [3,5-7]. Ultraviolet 
spectroscopy is widely used to detect the adulteration of extra virgin olive oil with 
refined oil [1,5-7]. Other analytical techniques used are gas chromatography (GC) 
and liquid chromatography (HPLC), but these are time consuming and involve the 
use of solvents [1,3-7]. More recently, the use of spectroscopic techniques such as 
Fourier transform infrared (FT-IR) [1,5-7], Raman spectroscopy [5-7] and nuclear 
magnetic resonance (NMR) spectroscopy [5-7] combined with multivariate 
techniques, have been shown to have potential for discriminating between extra 
virgin olive oils and seed oils. 
 
Olive oils exhibit strong fluorescence [8-10] and it is possible to distinguish 
between virgin and pure olive oils on the basis of their fluorescence emission 
spectra. Kyriakidis and Skarkalis [8] pointed out that the fluorescent spectra of 
virgin olive oils at excitation wavelength 365 nm have a peak around 681 nm, due 
to chlorophylls, and three other peaks (two of low intensity at 445 and 475 nm, and 
one more intense at 525 nm), which can be attributed to Vitamin E, whereas refined 
oils have one wide peak at 400-500 nm, produced by oxidation products. 
 
Factors such as oxygen, temperature, light, ionising radiations and metals 
accelerate oxidation, which involves the addition of oxygen to the double bonds of 
unsaturated fatty acids and formation of hydroperoxides that later are degraded to 
aldehydes and ketones [2,11]. Hence, the fluorescence emission spectra of olive oils 
will be related to its composition and stability. Virgin olive oils are quite stable 
against oxidation because of their low fatty acid unsaturation and the antioxidant 
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activity of phenolic compounds and Vitamin E (α-tocopherol) [2,12,13]. In 
addition, chlorophylls protect oils in the darkness. They have a synergic effect with 
Vitamin E as a free radical scavenger, but act as a photosensitiser in the presence of 
light (photooxidation) [2,11]. So the fluorescence emission spectra of virgin olive 
oils contain peaks related to Vitamin E and chlorophylls, as indicated above [8]. 
However, refining processes decrease the antioxidants, such as Vitamin E, and 
pigments, such as chlorophylls. As a result, refined oils are more liable to undergo 
oxidation processes. These changes are reflected in their fluorescence spectra, in 
which these oxidation products give a wide peak between 400 and 500 nm [8]. This 
is why the fluorescence spectra of virgin and pure olive oils are quite different, 
even though in some cases virgin olive oil is added to pure olive oils to improve 
their quality. 
 
The aim of this paper is to show that excitation-emission matrix (EEM) 
fluorescence spectroscopy and three-way methods of analysis, concretely unfold 
principal component analysis (U-PCA) and parallel factors analysis (PARAFAC), 
can be used for distinguishing between commercial samples of virgin and pure 
olive oils. These methods provide more information about the fluorescent species 
in these oils than the fluorescence emission spectra measured at only one excitation 
wavelength. 
 

2. EXPERIMENTAL 

2.1. Samples 
Forty-nine olive oils (29 virgin and 20 pure) were acquired in a shopping centre. 
The samples were stored at room temperature and protected from light until they 
were analysed. The oils were analysed without any prior treatment. 
 
2.2. Instrumentation and software 
EEMs were measured with an Aminco Bowman series 2 luminescence 
spectrometer equipped with a 150 W xenon lamp and 10 mm quartz cells. The 
detector was operated with a high voltage of 600 V and in a ratio mode, i.e., the 
fluorescence intensity was related to the lamp source signal in order to minimise 
the effect of lamp fluctuations. The excitation and emission ranges were λex = 300-
400 nm and λem= 400-700 nm. The step size and band-pass of both 
monochromators  were  set to 5 and 4 nm, respectively. Scan rate was set to 30 nm 
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s-1. The instrument software was used to correct the EEMs from deviations of 
ideality of the lamp, monochromators and detector [14,15]. 
 
Data were processed with Matlab software (version 6.0) [16] and the PARAFAC 
algorithm was obtained from the N-way toolbox [17]. The NIPALS algorithm for 
double cross-validation (DCV) was obtained from the Multi-block Toolbox [17]. 
 

3. RESULTS AND DISCUSSION 

3.1. EEMs and preprocessing 
Fig. 1 shows the EEMs of virgin and pure olive oils in the range λex= 300-400 nm, 
λem = 400-695 nm. The very intense peak at λem = 600-695 nm is attributed to 
chlorophylls [8,9] while the range λex = 300-400, λem = 400-600 nm mainly shows 
peaks due to oxidation products and Vitamin E [8] (Fig. 2). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. EEMs of a virgin (a) and a pure (b) 
olive oil between λex = 300 and 400 nm, 
λem = 400 and 695 nm. 
 

Fig. 2. EEMs of a virgin (a) and a pure (b) 
olive oil between λex = 300 and 400 nm, 
λem = 400 and 600 nm. 
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Studies were carried out first on the full measured range. In order to avoid the 
decomposition being dominated by the chlorophylls peak, autoscaling was used in 
PCA and U-PCA, and scaling in PARAFAC. Secondly, a more focused study about 
the contribution of oxidation products and Vitamin E was carried out without 
considering the chlorophylls peak. In this case, column mean-centering was used 
in PCA and U-PCA. No preprocessing was used in PARAFAC. 
 
 
3.2. Deterioration of virgin olive oil 
In order to determine whether the peaks in the fluorescence spectra of virgin olive 
oils were related to Vitamin E and chlorophylls, as indicated by Kyriakidis and 
Skarkalis [8], the effect of oxidation on the fluorescence spectra of virgin olive oils 
was studied. Fifty millilitres of virgin olive oil were placed in a beaker and heated 
at 70-95ºC for 3 h. A stream of air from an air source was directed to the oil surface 
through a Pasteur pipette at regular intervals so as to accelerate oxidation. EEMs 
were measured in the range λex = 300-400 nm, λem = 400-695 nm, before and after 
deterioration. Fig. 3 shows the total component spectra of the oil, i.e., the sum of all 
the fluorescence emission spectra that constituted the total EEMs.  

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Total component spectra of a virgin olive oil. (a) Fluorescence emission spectra 
between 400 and 695 nm; (b) fluorescence emission spectra between 400 and 600 nm. 
Continuous line: before oxidation; dotted line: after 3 h heating. Two replicates were 
measured. 
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It can be seen that oil degradation caused by heat and oxygen decreased the peak 
between 650 and 700 nm (Fig. 3a), which is due to chlorophylls [8], and those 
around 440, 475 and 525 nm (Fig. 3b), which can be attributed to Vitamin E [8]. 
Because of the high stability of virgin olive oils to oxidation, peaks formed by 
oxidation products were not detected. 
 
3.3. Principal component analysis (PCA)    
PCA was calculated on the emission spectra of oils between λem = 400 and 695 nm 
measured at λex = 365 nm, on the basis of the work of Kyriakidis and Skarkalis [8] 
(Fig. 4). Two preprocessing methods were tested. Column mean-centering led to 
PCA being dominated by the chlorophylls peak, which is much more intense than 
the peaks of the rest of species. This decomposition was outperformed by PCA 
after column autoscaling, which could also make use of the contributions of the 
other species. For autoscaled data, the number of significant principal components 
(PCs) was five (99.1% of explained variance), when DCV [18] with random 
cancellation matrix with 11 cancellation groups was applied. Only the first PC 
(81.8% of explained variance, Table 1) could differentiate the two classes of oils 
(Fig. 5a). This PC combines the contribution of the chlorophylls (λem = 650-695 nm) 
and oxidation products (λem = 400-550 nm) (Fig. 5b). It must be noted, however, 
that both groups of oils overlapped slightly. Virgin olive oils 1, 25, 26 and 28 are 
similar to pure olive oils. In particular, sample 25 was commercially labelled as a 
virgin olive oil. However, its fluorescence emission zone of chlorophylls (λem = 650-
695 nm) is much less intense than for the rest of virgin olive oils. It also has 
abnormal high intensity at the oxidation products zone (λem = 400-550 nm). Hence, 
this sample was more deteriorated than virgin olive oils usually are. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Fluorescence emission spectra (λem = 400-695 nm) of the 49 olive oils, measured at λex 
= 365 nm. 
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Fig. 5. (a) Score plot from PCA calculated on the emission spectra of the oils (λem = 400-695 
nm) at λex = 365 nm. (◊) Virgin olive oils; ( ) pure olive oils. (b) Loading plot. Continuous 
line: PC1; dotted line: PC2. Column autoscaled data. 
 
 
In order to avoid the influence of chlorophylls, we applied PCA on the 
fluorescence emission spectra between  λem = 400 and 600 nm. In this case, data 
were column mean-centered. The two first PCs accounted for 99.6% of variance 
(Table 1). Again, only PC1 contributed to differentiate between virgin and pure 
olive oils (Fig. 6a). This separation is mainly due to oxidation products [8], as it can 
be seen from the large loadings around λem = 400-550 nm (Fig. 6b). The pure olive 
oil samples are more scattered than the virgin olive oils. This is to be expected 
because pure olive oils are mixtures of different olive oils and their compositional 
variability is much larger than for virgin oils. Moreover, the virgin olive oils group 
is now less disperse than when chlorophylls are considered in the model (Fig. 5a). 
This might be due to the varying amount of chlorophyll in these samples. Vitamin 
E is the main contribution in PC2, because of the similarity between PC2 loadings 
and the fluorescence spectrum of this compound [8]. The content of Vitamin E is 
not related to the type of oil. This explains why the two types of olive oils cannot 
be distinguished along PC2. It is to note that sample 25 still remained close to pure 
olive oils. In order to check if this sample could have a strong influence on the 
PCA, we calculated the model again without sample 25. The results were almost 
identical than when the sample was included. 
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Fig. 6. (a) Score plot from PCA calculated on the emission spectra of the oils (λem = 400-600 
nm) at λex = 365 nm. (◊) Virgin olive oils; ( ) pure olive oils. (b) Loading plot. Continuous 
line: PC1; dotted line: PC2. 
 
 

Table 1. Percentage of explained variance of the PCA, U-PCA and PARAFAC models 
 
 
 
 
 
 

 
 
 
 

3.4. Unfold principal component analysis (U-PCA) 
Two three-dimensional structures (cubes) of data were built with the EEMs of the 
49 samples considering the two ranges shown in Figs. 1 and 2 (with and without 
chlorophylls). As the signal had been measured every 5 nm, the dimensions of the 
cubes were 49×21×60 and 49×21×41 (samples × number of λex × number of λem). 
Later the cubes were unfolded by combining the spectral modes (Fig. 7). Hence, 
two matrices of dimensions 49 × 1260 (with chlorophyll peaks) and 49 × 861 
(without chlorophyll peaks) were obtained. Then PCA was calculated on the 
unfolded matrices [19, 20]. 
 
 
 

300-400     400-695          81.8           11.6                 (a) 60.5      18.7              (c) 98.7 (four components)
300-400     400-600          97.0             2.6                 (b) 94.9      2.3              (d) 99.0 (three components)

λex (nm)    λem (nm)         PCA (λex = 365 nm)        U-PCA                         PARAFAC (non-negativity
constraints on all modes)  

PC1          PC2      PC1          PC2                                    

Matrix and cube dimensions: (a) 49 1260; (b) 49 861; (c) 49 21 60; (d) 49 21 41. 
In (c) data were scaled within the emission mode. 

300-400     400-695          81.8           11.6                 (a) 60.5      18.7              (c) 98.7 (four components)
300-400     400-600          97.0             2.6                 (b) 94.9      2.3              (d) 99.0 (three components)

λex (nm)    λem (nm)         PCA (λex = 365 nm)        U-PCA                         PARAFAC (non-negativity
constraints on all modes)  

PC1          PC2      PC1          PC2                                    
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In (c) data were scaled within the emission mode. 
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Fig. 7. Arrangement of the EEMs in a cube and unfolding by combining the spectral modes. 
 
 
As in Section 3.3, when the fluorescence emission zone of chlorophylls was 
included in the model, the most remarkable results were obtained for column 
autoscaled data. DCV was carried out as in Section 3.3. The first eight PCs were 
significant and accounted for 97.6% of variance. Again, the first PC (60.5%, Table 1) 
was the most important for separating the two types of oils. The score plot (Fig. 8) is 
similar to the one obtained when a single emission spectrum for each sample is 
used (Fig. 5a), but the two types of oils are less overlapped. Hence, considering 
additional emission spectra in the analysis had a positive effect on differentiating 
between the two groups. Again sample 25 has an abnormal behaviour since it is 
closer to pure olive oils. For a better visualisation, loadings were refolded, i.e., each 
loading vector was reshaped to the same dimensions as the measured EEM (Fig. 9).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Score plot from U-PCA of the 49× 1260 matrix (column autoscaled). (◊) Virgin olive 
oils; ( ) pure olive oils. 
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Fig. 9. Refolded loadings from U-PCA of the 49 × 1260 matrix (column autoscaled). (a) PC1; 
(b) PC2. 
 
 
The loadings of PC1 and PC2 are similar to those found when PCA was applied to 
the fluorescence spectra at λex = 365 nm. However, a larger contribution of 
oxidation products can be observed on PC1 (the peaks at low emission 
wavelengths in Fig. 9a). As we have explained above, these species enabled a good 
differentiation between the two types of oils. On the other hand, PC2 has less 
influence of chlorophylls (the small peak between λem = 600 and 695 nm, Fig. 9b). 
 
In order to avoid the contribution of chlorophylls, we applied PCA on the 49 × 861 
unfolded matrix. As in Section 3.3, data were column mean-centered. The two first 
PCs accounted for 97.2% of the variance (Table 1). In the score plot (Fig. 10), the 
group of virgin olive oils was less scattered than when chlorophylls were included 
in the model and the two groups appeared more separated. Sample 25 remained 
closer to the group of pure olive oils because of its PC1 value. Hence, the same 
pattern observed in PCA is repeated in U-PCA. The refolded loadings (Fig. 11) 
show that the wavelengths that most influence PC1 were between λex = 300-400 
and λem = 400-500 nm (Fig. 11a). The peak observed in this region was attributed to 
oxidation products and hydrocarbons formed during the refining process of olive 
oils [8,9]. The low scores in the PC1 of virgin olive oils indicate that these samples 
have a low content of oxidation products, unlike pure olive oils. The position and 
shape of loadings indicate that Vitamin E was the most influential species in PC2 
[11]. Unlike PC1, PC2 does not distinguish well between the two types of oils, 
meaning that the model cannot distinguish the oils on the basis of their Vitamin E 
content. 
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Fig. 10. Score plot from U-PCA of the 49× 861 matrix (column centered). (◊) Virgin olive oils; 
( ) pure olive oils. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11. Refolded loadings from U-PCA of the 49 × 861 matrix (column centered). (a) PC1;  
(b) PC2. 
 
 
3.5. Parallel factor analysis (PARAFAC)  
PARAFAC models with a different number of components and non-negativity 
constraints on all modes were calculated on EEMs in the range λex = 300-400 nm; 
λem = 400-695 nm. Data were scaled within the emission mode: EEMs were 
unfolded to a 60× 1029 matrix (number of λem × (samples × number of λex)) and 
each row was then divided by its standard deviation [21]. Residual and split-half 
analysis [21] pointed out that the four-component model (explained variance 
98.7%, Table 1) was the optimal. The score and loading plots are shown in Fig. 12a-
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d. Emission loadings were rescaled, i.e., loadings at each emission wavelength 
were multiplied by the standard deviation calculated above. The separation 
between the two types of oils was accomplished mainly along the third and the 
fourth component (Fig. 12a). This separation was clearer than the one obtained 
from PCA and U-PCA applied to the same range (Figs. 5a and 8). Again sample 25 
was closer to the pure olive oil group. The first component was mainly related to 
Vitamin E, because of the peaks at λem = 440, 475 and 525 nm (Fig. 12d). The second 
component is due to chlorophylls (Fig. 12c) and its emission profile is much more 
intense than the rest. The third component has contribution of oxidation products 
(λem = 400-600 nm) and chlorophylls. Finally, the fourth component is related to 
oxidation products. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. (a) Score plot on component 3 and 4 of the four-component PARAFAC model 
calculated on the 49 × 21 × 60 cube of EEM spectra, (b) excitation profiles (λex = 300-400 nm), 
(c) and (d) rescaled emission profiles (λem = 400-695 nm). Continuous line: component one; 
broken line: component two; dotted line: component three; dash-dotted line: component 
four. Data scaled within the emission mode. 
 
The same procedure was repeated but this time on the raw EEMs in the range λex = 
300-400 nm, λem = 400-600 nm. Residual and split-half analysis [21] suggested that a 
three-component model (explained variance 99.0%, Table 1) was the optimal. 
Again the group of pure olive oils was more scattered than the virgin olive oils 
(Fig. 13a-c), especially in the first two components (Fig. 13a). Most virgin olive oils 
do not contain component one, which is related to oxidation products, since its 
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emission profile has a wide peak around 450 nm (Fig. 13d) [8,9]. The reason why 
component one is zero for most of virgin olive oils is due to the non-negativity 
constraint applied on the concentration mode. Without this constraint, scores 
would be slightly negative although very little scattered. Therefore, the low value 
of virgin olive oils on this component is consistent with the knowledge that this 
type of oil has very low amounts of oxidation products. The second component is 
thought to be another family of oxidation products, because it was obtained from 
the decomposition of the component related to oxidation products in a two-
component PARAFAC model. Virgin olive oils have low values on this component 
as well (Fig. 13a and c). On the contrary, virgin olive oils vary considerably along 
the third component. This component was attributed to Vitamin E, because of its 
shape and position [8]. All PARAFAC score plots in this range provided a rather 
good distinction between the two classes of oils studied. However, sample 25 was 
still close to pure olive oils, which confirmed that it is an outlier. 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. (a-c) Score plots of the three-component PARAFAC model calculated on the 
49 × 21 × 41 cube of EEM spectra, (d) excitation (λex = 300-400 nm) and emission (λem = 400-
600 nm) profiles. Continuous line: component one; broken line: component two; dotted line: 
component three. Raw data. 
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4. CONCLUSIONS 

EEM fluorescence spectroscopy has been shown to be a very useful technique for 
discerning composition differences between olive oils. Both U-PCA and PARAFAC 
applied to the EEMs of the two main groups of olive oils (virgin and pure) show 
clear differences between these types of oils. Chlorophylls had a strong influence 
on the models because of their high fluorescence intensity. As a result, data have to 
be scaled when its fluorescence region is included in the models. If the chlorophyll 
peak is not considered, column mean-centering is enough for U-PCA and no 
preprocessing is needed in PARAFAC. Differentiation between the two types of 
oils is better when the chlorophylls fluorescence region is not included in the 
models. In this case, oxidation products are the species that most contribute to the 
separation between the two groups.  

 
The main advantage of using PARAFAC instead of U-PCA is that the output 
loadings are more interpretable, since they correspond to the underlying spectra of 
the fluorescent compounds or mixtures of compounds. 

 
The encouraging results of this exploratory analysis suggest that the study could 
be extended to the development and application of three-way clustering and 
classification methods to EEM fluorescence and other second-order data. 
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ABSTRACT 

Olive oil fluorescence is related to oil composition. Here it is shown that the 
natural clustering of different types of commercial Spanish olive oils depends on 
their fluorescence excitation-emission matrices (EEMs). Fifty-six commercial 
samples of olive oil (29 virgin olive oils, 20 pure olive oils, and 7 olive-pomace oils) 
were used. The clustering method was hierarchical agglomerative clustering using 
the Euclidean distance as a similarity measure and the average linkage. Two 
spectral ranges were considered (which either contained the fluorescence peak of 
the chlorophylls or did not), and various methods for preprocessing the 
fluorescence spectra were compared. The oils were clearly distinguished using the 
unfolded EEMs measured between λex = 300-400 nm and λem = 400-600 nm. The 
optimal preprocessing was normalization of the unfolded spectra followed by 
column autoscaling. Also shown are the advantages of using second-order data 
(EEMs) instead of first-order data (a single fluorescence spectrum) for each sample. 

 
 
 
 

Keywords: Fluorescence spectroscopy; Olive oil; Cluster analysis; Second-order data 
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INTRODUCTION 

Food science is receiving more and more attention because of its close relationship 
with health. Chemometric techniques applied to analytical data have proved to be 
important tools in food analysis, because they can be used for exploratory analysis 
and classification (1-4). Olive oil is an economically important product. It is 
obtained from the fruit of the olive tree (Olea europea L.). There are different types 
of olive oils, with virgin olive oil being the one with the best quality. The 
characteristic odor and flavor of virgin olive oil are due to the olives being 
mechanically pressed and the lack of any refining processes. Refined olive oil is 
obtained from virgin olive oil with refining methods that do not lead to alterations 
in the initial glyceridic structure. This oil does not have adequate organoleptic 
properties. Hence, it is blended with virgin olive oil to form pure olive oil (or 
simply olive oil). By extracting the olive-pomace (i.e., the olive residue remaining 
from previous pressings) with authorized solvents, refined olive-pomace oil is 
obtained. This oil is improved with edible virgin oil to obtain the oil known as 
olive-pomace oil (4, 5). 

 
Olive oil has been analyzed with such techniques as chromatography (6, 7), mass 
spectrometry (MS) (4), and a variety of spectroscopic techniques: infrared (IR) and 
Fourier transform (FT)-Raman (8-11), nuclear magnetic resonance (NMR) (9, 12, 
13), fluorescence (14-17), and chemiluminescence (18). The advantages of 
fluorescence spectroscopy are its speed of analysis and the fact that solvents and 
reagents are not required, because olive oil exhibits natural fluorescence (14, 15). 
Other interesting advantages are that only a small amount of sample is needed and 
that it is a nondestructive technique. However, fluorescence applied to olive oil has 
been explored only very little, basically using a fluorescence emission spectrum 
recorded at one excitation wavelength (first-order data) (14, 15). Nevertheless, it is 
also possible to record entire fluorescence excitation-emission matrices (EEMs), 
which consist of emission spectra measured at different excitation wavelengths 
(second-order data). Wolfbeis and Leiner (16) used EEMs to characterize four types 
of edible oils. Scott et al. (17) applied pattern recognition methods to fluorescence 
EEMs to discriminate between four types of vegetable oils and to detect 
adulterations in extra virgin olive oils. 
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Cluster analysis (CA) is a pattern recognition technique used to form groups of 
objects having variables of similar values. Several similarity measures can be 
applied to form such groups (19, 20). The main advantage of CA over visualization 
techniques such as principal component analysis (PCA) is that it provides 
numerical values of the similarity between objects. As a result, the information is 
more objective (19, 20). In addition, when a large number of principal components 
(PCs) are required to visualize the information, CA has the advantage of reducing 
dimensionality while keeping the information. In many cases, the joint use of both 
visualization and clustering techniques is recommended (19). In the field of olive 
oil analysis, clustering has been applied to many different forms of data for many 
different reasons. It has been used with chromatographic data to characterize the 
stage of ripeness of virgin olive oil by determining the content of volatile 
compounds (3). With IR and FT-Raman spectroscopic data, it has been used to 
detect the adulteration of virgin olive oil (10, 11), and with visible and near-IR 
spectroscopic data, it has made a geographic classification of Mediterranean extra 
virgin olive oils (21). With NMR spectroscopic data it has been used to study the 
effects of climatic conditions on olive oil (12) and to geographically categorize 
virgin olive oils (13). Finally, it has been used with sensory, chromatographic, and 
MS data to differentiate virgin olive oils on the basis of the extraction methodology 
adopted during industrial olive oil processing (22). However, there are no 
references to applications of CA to discriminate between different types of oils 
using fluorescence data. 

 
The objective of this paper is to test the ability of CA to discriminate between the 
three main types of commercial Spanish olive oils used for human consumption 
(virgin, pure, and olive-pomace oil) using EEMs as fingerprints. We applied the 
hierarchical agglomerative clustering (HAC) method with the Euclidean distance 
as a similarity measure and the average linkage method (19, 20) to the unfolded 
EEMs. Different preprocessing methods and EEM ranges were tested to find the 
most appropriate way of handling data and optimizing the sample grouping into 
clusters. Then we compare the results obtained from the EEMs to those obtained 
from a single fluorescence spectrum. This spectrum is selected as the one that 
maximizes the differences among samples. We show that the oils are best grouped 
into types when EEMs are used instead of single fluorescence spectra. 
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MATERIALS AND METHODS 

Samples 
A set of 56 olive oil bottles containing three different types of edible Spanish olive 
oils (29 virgin, 20 pure, and 7 olive-pomace oils) (Table 1) were purchased in a 
shopping center. Although they were not reference samples, they were suitable for 
the exploratory purposes of this study. Most of them were well-known Spanish 
brands, and some even prestigious. The samples were stored in the dark at room 
temperature until the moment of analysis. The samples were analyzed without any 
prior treatment. 
 

  Table 1. Samples 

 
       aV, virgin olive oil; P, pure olive oil; OP, olive-pomace oil. 

 
samplea 

 

 
olive variety 

 
origin 

V1 
V2 
V3 
V4 
V5 
V6 
V7 
V8 
V9 
V10 
V11 
V12 
V13 
V14 
V15 
V16 
V17 
V18 
V19 
V20 
V21 
V22 
V23 
V24 
V25 
V26 
V27 
V28 
V29 
P30-49 
OP50-56 

Arbequina 
Arbequina 
Arbequina 
Arbequina 
 
 
 
Hojiblanca, Arbequina 
Hojiblanca 
Picual, Hojiblanca 
Picual, Hojiblanca, Picuda 
 
Arbequina 
Arbequina 
Arbequina 
Arbequina 
Arbequina 
Arbequina, Cornicabra, Hojiblanca 
Hojiblanca 
Hojiblanca 
Picual 
Picual 
 
 
 
 
 
 
Morrut, Farga, Sevillano 

La Palma d’Ebre (Tarragona) 
Reus (Tarragona) 
La Serra d’Almos (Tarragona) 
Llorenç del Penedès (Tarragona) 
Jaén 
Granada 
Jaén 
Córdoba 
Málaga 
Córdoba 
Córdoba 
Sevilla 
Tàrrega (Lleida) 
Tàrrega (Lleida) 
Reus (Tarragona) 
Córdoba 
Les Borges Blanques (Lleida) 
Jaén 
Tàrrega (Lleida) 
Tàrrega (Lleida) 
Tàrrega (Lleida) 
Tàrrega (Lleida) 
Jaén 
Córdoba 
Málaga 
Sevilla 
Tortosa (Tarragona) 
Córdoba 
Montsià (Tarragona) 
different areas of Spain 
different areas of Spain 
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Instrumentation and Software 
Oil EEMs were measured with an Aminco Bowman series 2 luminescence 
spectrometer equipped with a 150 W xenon lamp and 10 mm quartz cells. The 
instrument detector was operated using the EmL/Ref channel and applying a 600 
V voltage for virgin and pure olive oil samples. However, P32 and olive-pomace 
oil samples were measured at 580 and 560 V, respectively, to avoid detector 
saturation. Excitation and emission ranges were λex = 300-400 nm and λem = 400-700 
nm, respectively. Measuring emission wavelengths above excitation wavelengths 
prevented Rayleigh scatter. The step size and band-pass of both monochromators 
were 5 and 4 nm, respectively. The scan rate was 30 nm s-1. The instrument 
software was used to correct the EEMs for deviations in the ideality of the lamp, 
monochromators, and detector (23, 24). As a result, the last emission wavelength 
was lost and the final ranges were λex = 300-400 nm and λem = 400-695 nm. 

 
Data were processed with Matlab software (version 6.0) (25), and dendrograms 
were constructed from the Matlab statistics toolbox (25). PCA models were 
validated using Unscrambler software (version 8.0) (26). 
 

Algorithm for Selecting the Most Discriminatory Wavelengths 
Olive oil can be characterized by means of fluorescence spectroscopy. This has 
usually been done with emission spectra measured at one excitation wavelength 
(14, 15). Here we checked whether EEMs would make the clustering better than 
when a single fluorescence spectrum was used for each sample. Because we had 
recorded the EEMs, we applied the following algorithm to select the most 
discriminatory excitation wavelength (λex): 

1. Take the fluorescence emission spectrum at λex = 300 nm of every sample 
from the EEMs and make them the rows in a matrix Q. 

2. Normalize each row of Q ( iq ) to length one (27) to obtain QN, that 
is, ))/(( 1/2

iiiNi
Tqqqq = , where T means transposed and Niq is the ith row of QN. 

3. Column mean-center QN to obtain QNC, that is, calculate the mean of each 
column of QN and subtract it from every value in the column. 

4. Calculate the sum of squares (SS) of all the elements of QNC. This SS value 
represents the differences between each fluorescence emission spectrum at λex = 
300 nm and the average spectrum. 
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5. Repeat steps 1-4 for the rest of λex. 
 
Hence, for each λex, a value of SS was obtained. The λex giving the highest SS was 
considered to be the most discriminatory of all the excitation wavelengths tested. 
To find the emission wavelength (λem) that best distinguished the types of oils, a 
similar procedure was used, but this time Q contained the fluorescence spectrum 
of each sample at one λem. 
 

RESULTS AND DISCUSSION 

EEMs 
Figure 1 shows the average EEMs of the three types of oils studied in the ranges λex 
= 300-400 nm and λem = 400-695 nm. Virgin and pure olive oil spectra look similar 
due to their high peak between λex = 300-400 nm and λem = 650-695 nm, which is 
attributed to chlorophylls (14, 15). In the olive-pomace oil EEMs, this peak is much 
less intense and an intense peak appears between λex = 300-400 nm and λem = 400-
550 nm, which is attributed to oxidation products (14). Oxidation products are 
formed when oil comes in contact with oxygen. The process of oxidation of olive 
oil involves radical reactions between oxygen and double bonds of unsaturated 
fatty acids. Light accelerates this process. As a result, conjugated hydroperoxides 
are formed. These compounds are unstable, and they quickly decompose into 
aldehides and ketones (5). 
 
Because the chlorophyll peak may hamper oil differentiation (28), the EEMs 
without this peak (λex = 300-400 nm, λem = 400-600 nm) were also considered 
(Figure 2). In this range, the EEMs of the studied oils have considerable differences 
(Figure 2). The shape of virgin olive oil EEMs (Figure 2a) is mainly due to vitamin 
E, which emits between λex = 300-400 nm, λem = 500-600 nm, whereas pure and 
olive-pomace oil samples have a larger content of oxidation products, which give 
rise to a broad peak at lower emission wavelengths (14). The different position of 
this peak on pure and olive-pomace EEMs enables us to distinguish between them 
(Figure 2b,c). 
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To perform CA on the full range of EEMs, the matrices were stacked in a three-way 
array of 56×21×60 (samples× number of λex× number of λem) and the EEMs 
without the chlorophylls in a three-way array of 56× 21× 41 (samples× number of 
λex× number of λem). 

Figure 1. Average EEMs between λex=300-400 
nm and λem = 400-695 nm: (a) virgin olive oil; 
(b) pure olive oil; (c) olive-pomace oil. 

Figure 2. Average EEMs between λex = 300-
400 nm and λem = 400-600 nm: (a) virgin olive 
oil; (b) pure olive oil; (c) olive-pomace oil. 
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Cluster Analysis of Unfolded EEMs 
The HAC method was applied to the EEMs in the two ranges indicated above 
(with and without the chlorophyll peak). In both cases, each three-way array was 
first unfolded to a matrix of size [samples × (number of λex × number of λem)], 
where each row contained the unfolded EEM of a sample. These rows were then 
normalized to length one (27) to avoid variations due to differences in intensity, 
and the resulting matrix was column autoscaled (i.e., every column of the matrix 
was set to zero mean and unit variance). 

 
EEMs Containing the Chlorophyll Peak  
After unfolding of the full-range three-way array, a 56× 1260 matrix was obtained; 
the rows were samples and the columns were the excitation and emission 
wavelengths. Neither the raw matrix nor the matrix preprocessed as indicated 
above provided a good distinction between the three types of oils. Two other 
preprocessing methods were also tested: row normalization to length one only (27) 
and normalization to length one followed by scaling within emission mode (29). 
However, the results did not improve. The reason was that the chlorophyll peak 
had large variations, even between samples of the same type. A previous study 
based on unfolded principal component analysis and parallel factor analysis (28) 
had already shown that the chlorophyll peak hampered oil separation. The 
inclusion of the chlorophyll peak caused a larger overlap between the groups. For 
this reason, the results for the EEMs will henceforth be shown in the ranges λex = 
300-400 nm and λem = 400-600 nm, without the chlorophyll peak. 

 
EEMs without the Chlorophyll Peak 
The unfolding of the three-way array not containing the chlorophyll peak led to a 
56× 861 matrix. The same three preprocessing methods used for the full-range 
matrices were tested. Then HAC was applied. Results were best when the matrix 
was normalized and column autoscaled. PCA was also calculated for this matrix to 
determine the number of variability sources in the data and to find what 
wavelengths caused the main differences between the types of olive oils. The PCA 
model was validated by leave-one-out cross-validation, and seven PCs (98.9% of 
explained variance) were found to be significant. However, the greatest differences 
between the types of oils could be seen from the score plot using the first two PCs 
(84.7% of explained variance (Figure 3)). The three types of oils are separated 
mainly along PC1. Olive-pomace oils have the most negative scores and virgin 
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olive oils the most positives scores. The loadings in Figure 4 indicate that a high 
score in PC1 is related to a high content in vitamin E and a low content in oxidation 
products. This is concluded from the two main regions in Figure 4a. The region 
with positive values (region 1, around λex = 300-380 nm and λem = 500-600 nm) is 
related to vitamin E, which emits fluorescence in this range (see Figure 2a). The 
region with negative loadings (region 2, around λex = 340-400 nm and λem = 400-480 
nm) is related to oxidation products, mainly those present in olive-pomace oils (see 
Figure 2c). Thus, the positive scores of virgin olive oils on PC1 indicate that they 
have high vitamin E content and fewer oxidation products than the other oils. PC2 
does not separate the groups as well as PC1, but pure olive oils tend to have 
negative scores, whereas the rest of the oils tend to have positive scores. The 
wavelengths that most influence PC2 are in region 3, around λex = 300-380 nm and 
λem = 400-550 (Figure 4b). This region has negative loadings and is related to the 
oxidation products of pure olive oils (see Figure 2b). Hence, a sample with 
negative scores on PC2 has a higher content on this type of products. Olive-pomace 
oil samples are very different from the rest on both PCs, and in general their scores 
are the lowest on PC1 and the highest on PC2. Only a few samples (V25, V28, V29, 
and OP52) appear separated from their oil group. This indicates that they are 
probably extreme examples of their sample type. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Score plot from PCA on the 56× 861 unfolded matrix [samples× (number of 
λex× number of λem)], containing the spectra measured between λex = 300-400 nm and λem = 
400-600 nm: (◊) virgin olive oil; ( ) pure olive oil; ( ) olive-pomace oil (normalized and 
autoscaled spectra). 
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Figure 4. Loading plot from PCA on the 56× 861 unfolded matrix [samples × (number of 
λex × number of λem)], containing the spectra measured between λex = 300-400 nm and λem = 
400-600 nm: (a) PC1; (b) PC2 (normalized and autoscaled spectra). 
 
 
The CA dendrogram showed the three types of oils perfectly separated (Figure 5). 
The cophenetic correlation coefficient (Coph. r) was used as an indication of the 
cluster validity (25, 30). It measures the correlation between the linked objects in 
the cluster tree and the distances between objects. A Coph. r close to one indicates 
that the cluster solution reflects the similarity between objects before the tree is 
built. In this case, Coph. r = 0.7. Thus, the solution was quite good. As in PCA, the 
largest differences are between olive-pomace oils and the rest. These two clusters 
merge at a dissimilarity level of 75%. Slightly below this level (dotted line), the 
dendrogram shows three well-differentiated clusters, each of which contains all of 
the samples of one of the types of oils studied. Even samples V25, V28, and V29 are 
grouped in the expected cluster. However, because the number of samples of olive-
pomace oil is much smaller than the others, this result must be seen as a trend and 
not as a general conclusion about the application of this method to olive-pomace 
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oils. The sample source is also a limitation. Hence, the relevance of these clustering 
results must be considered taking into account the facts that the samples were 
purchased in shopping centers and that they are not reference samples. Thus, we 
have only the information given by the suppliers on the label of the sample bottles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Dendrogram of the 56× 861 unfolded matrix (λex = 300-400 nm, λem = 400-600 nm) 
using the Euclidean distance as similarity measure and the average linkage method. The 
distance is expressed as a percentage of dissimilarity (normalized and autoscaled spectra). 
 
 
Clustering Based on Selected Fluorescence Spectra 
To determine whether the same information could be obtained by using a single 
fluorescence spectrum for each sample instead of the whole EEM, we applied the 
variable selection algorithm described under Materials and Methods to find the 
most discriminatory fluorescence excitation and emission spectra.  

 
The most discriminatory variables were selected from the ranges λex = 300-400 nm 
and λem = 400-600 nm. In all cases, after the variables had been selected, two 
preprocessing methods were applied to spectra taken from raw EEMs: 
normalization to length one (27) and normalization to length one plus column 
autoscaling. Then CA was applied. 
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Clustering Based on Emission Spectra 
To find the excitation wavelength that provided the main differences between 
fluorescence emission spectra, the variable selection algorithm was applied for 
each λex. Hence, for each λex a 56× 41 (samples × number of λem) matrix was built, 
and the algorithm was run on each matrix. The SS value was maximum for λex = 
345 nm. Hence, CA was applied to the emission spectra between λem = 400 and 600 
nm at λex = 345 nm (Figure 6a). The results were worse than when the 56× 861 
unfolded matrix was used. In both cases, the dendrograms displayed two large 
clusters, one of which contained all pure and olive-pomace oil samples and V25. 
Therefore, it was not possible to distinguish the oil types on the basis of the 
selected wavelengths.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Average fluorescence spectra of each type of oil: (a) emission spectra between λem 
=  400 and 600 nm at λex = 345 nm; (b) excitation spectra between λex = 300 and 400 nm at λem 
= 410 nm; ( ⎯ ) virgin olive oil; (− − −) pure olive oil; (   ) olive-pomace oil. 
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the emission spectra at λex = 365 nm [see Kyriakidis et al. (14)] and λex = 390 nm, 
which was close to the excitation wavelength proposed by Marini et al. (λex = 392 
nm) (15). However, both preprocessing methods applied to these sets of spectra led 
to dendrograms that contained clusters with mixtures of samples of different 
types. 
 
Clustering Based on Excitation Spectra 
To find the emission wavelength that provided the main differences between 
fluorescence excitation spectra, the variable selection algorithm was applied again, 
this time for each λem. Hence, for each λem a 56× 21 (samples × number of λex) 
matrix was built, and the algorithm was run on each matrix. The difference was 
maximum for λem = 410 nm. Hence, CA was applied to the excitation spectra 
between λex = 300 and 400 nm at λem = 410 nm (Figure 6b). When only 
normalization was carried out, virgin olive oil samples V12, V14, and V29 could 
not be distinguished from the pure olive oil cluster and samples V28 and OP52 
were very different from the rest of samples, joining the olive-pomace oil cluster. 
Autoscaling provided a dendrogram similar to the previous one. The most 
noteworthy difference is that V29 was the only virgin olive oil sample that 
remained in the pure olive oil cluster. 
 
Conclusions 
This work has shown the potential of fluorescence spectroscopy to distinguish 
three types of commercial Spanish olive oils (virgin, pure and olive-pomace). 
Visual inspection of the EEMs of samples makes it possible to assign a large 
number of samples to the expected type. However, special characteristics, such as 
different olive oil varieties or the high deterioration of some virgin olive oil 
samples, may cause considerable variations in the shape of EEMs and thus hamper 
type differentiation. We used samples whose membership is stated in order to 
study the ability of the HAC method to cluster olive oil samples of different types. 
Different preprocessing methods and wavelength ranges were compared, and the 
results were best with the normalized and autoscaled unfolded matrix obtained 
from the EEMs between λex = 300-400 nm and λem = 400-600 nm. Under these 
conditions, the samples were perfectly grouped. We also developed an algorithm 
for variable selection to find the most discriminatory emission and excitation 
spectra. However, the use of a single fluorescence spectrum worsened the 
grouping. These results indicate that working with second-order data is more 
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advantageous than working with first-order data, because the larger number of 
variables used contains additional information that increases discrimination 
power. 

 
The results obtained here might lay the foundations for developing and applying 
classification methods to the EEMs of olive oils. Possible applications are olive oil 
characterization or the detection of frauds. 
 

ABBREVIATIONS USED 

CA, cluster analysis; EEM, excitation-emission matrix; FT, Fourier transform; HAC, 
hierarchical agglomerative clustering; IR, infrared; MS, mass spectrometry; PC, 
principal component; PCA, principal component analysis. 
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4.1 INTRODUCTION 

Olive oil authentication is based on the evaluation of many parameters. Some of 
them are acidity, major fatty acids composition, peroxide value (PV), UV 
absorbance, trinolein content, sterol composition [1-3] and sensory analysis [3]. 
Thus, quality assessment of olive oils requires several analyses, which sometimes 
are tedious and time-consuming. Hence, a complementary fast technique capable 
of providing information about the state of the oils would be very helpful, 
especially for doubtful samples. Recently, Brezmes et al. [4] proposed an electronic 
nose system and modified fuzzy artmap neural techniques for discriminating 
between defective and defect-free olive oils. In addition, total luminescence 
spectroscopy (TLS) has been applied to characterize and differentiate between 
several vegetable oils (soybean, rapessed, corn, sunflower, linseed and olive oils). 
This technique has also been applied to control the effect of thermal and photo-
oxidation in oils [5]. 
 
Besides detecting defective samples, it is also important to ensure the genuiness of 
the olive oil (i.e. the oil type and the origin). Thus, techniques capable of providing 
oil fingerprints are very valuable. Spectral nephelometry has been proposed for 
this purpose [6]. 
 
Some quality parameters measured in olive oil characterization are related to their 
degradation. High PV and UV absorbance at 232 nm (K232) indicate large content of 
primary oxidation products (i.e. conjugated hydroperoxides), meaning that oils are 
highly degraded. High absorbance at 270 nm (K270) indicates large amounts of 
secondary oxidation products (aldehides, ketones and low molecular weight 
acids), and hence, an advanced degradation stage of the oil [7]. 
 

It was shown in the previous chapter that different types of commercial olive oils 
can be distinguished with EEFS. However, for samples whose spectra do not 
follow the general trend of their type, it is difficult to decide if this is due to a major 
degradation of these oils or if they have been subjected to some fraudulent 
practice. In order to find out the cause of this special behaviour, data about their 
composition must be available, namely, the typical parameters analysed according 
to Official Methods of Analysis. 
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This chapter is devoted to study the possibilities of EEFS for olive oil 
characterization. We show that EEFS may be a complementary technique to the 
routine methods. Concretely, the relationship between the EEMs of a set of Spanish 
olive oils and the quality parameters commented above (PV, K232 and K270) is 
studied. In addition, we tried to associate the chemical species responsible of these 
parameters to specific regions of the fluorescence landscapes. We also show that 
data modelling carried out by PARAFAC enables to obtain fluorescence profiles 
that can be used as fingerprints of the oil types.   
 
The results of this study are presented in the paper Excitation-emission fluorescence 
spectroscopy combined with three-way methods of analysis as a complementary technique 
for olive oil characterization, J. Agric. Food Chem. (accepted for publication). The sample 
set used for this study included 13 EVOOs, 2 VOOs, 16 POOs and 2 OPOs. The 
quality parameters of oils were analysed according to official methods (Regulation 
(EEC) No 2568/91) of the EU [8]. The relationship between the fluorescence spectra 
and the quality parameters was evaluated in terms of correlation. Various 
regression methods were applied and compared. They included N-PLS regression 
and MLR computed to the PARAFAC scores. N-PLS provided the best results. This 
method showed that there is a strong correlation between the fluorescence spectra 
of olive oils and the peroxide value and K270, which are key quality parameters of 
oils. 
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ABSTRACT 

This paper shows the potential of excitation-emission fluorescence spectroscopy 
(EEFS) and three-way methods of analysis (parallel factor analysis (PARAFAC) 
and multi-way partial least squares (N-PLS) regression) as a complementary 
technique for olive oil characterization. The fluorescence excitation-emission 
matrices (EEMs) of a set of Spanish extra virgin, virgin, pure and olive-pomace oils 
were measured and the relationship between them and some of the quality 
parameters of olive oils (peroxide value, K232 and K270) was studied. N-PLS was 
found to be more suitable than PARAFAC combined with multiple linear 
regression (MLR) for correlating fluorescence and quality parameters, yielding 
better fits and lower prediction errors. The best results were obtained for 
predicting K270. EEFS allowed detecting extra virgin olive oils highly degraded at 
early stages (with high peroxide value) and little oxidized pure olive oils (with low 
K270). The proposed methodology may be used as an aid to analyze doubtful 
samples. 

 
 
 

Keywords: Olive oils; Characterization; Fluorescence; Three-way methods 
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INTRODUCTION 

Olive oil is obtained from the fruit of the olive tree (Olea europea L.). There are 
different grades of olive oils (e.g. extra virgin (EV), virgin (V), pure (or simply olive 
oil) (P) and olive-pomace (OP) oil, among others). Each of these grades must fulfill 
some specifications. Due to its nutritional and economic importance, olive oil 
authentication is an issue of great interest in the manufacturing countries. 
Authenticity covers many aspects, including adulteration, mislabeling, 
characterization and misleading origin (1). Olive oil authentication is usually based 
on chemical parameters (acidity, major fatty acids composition, peroxide value 
(PV), ultraviolet absorbance, trinolein content and sterol composition) (1-3) and 
sensory analysis (4). 
 
Olive oils are oxidized in the dark in contact with oxygen. As a result, essential 
fatty acids are destroyed and the fat soluble vitamins E (tocopherols) and A (β-
carotene) disappear (oxidation). Oxidation products have an unpleasant flavor and 
odor and may affect the nutritional value of the oil. Nevertheless, the low content 
on polyunsaturated fatty acids and the natural antioxidants (phenolic compounds, 
tocopherols and β-carotene) present in olive oils protect them against oxidation. 
The four pigments contained in olive oils (chlorophyll a and b, and their derivates 
pheophytin a and b) also act as antioxidants in the dark, but have and oxidizing 
effect in presence of light (photo-oxidation) (5). As a result of oxidation of 
polyunsaturated fatty acids, conjugated hydroperoxides are formed (primary 
oxidation products). These compounds have high absorbance in the ultraviolet 
(UV) region at 232 nm (K232) and they are also detected by measuring the peroxide 
value (PV) of the oils. Due to their low stability, hydroperoxides decompose 
rapidly into aldehides, ketones and low molecular weight acids (secondary 
oxidation products). These compounds have high absorbance at 270 nm (K270) (5). 
Due to the role of chlorophylls as sensitizers in the photo-oxidation mechanism, 
the longer the oils are exposed to light the more rapidly will be the conversion of 
conjugated hydroperoxides into secondary oxidation products. This implies an 
increase on K270. Evaluation of the oxidation state of oils should not be done only 
on the basis of the peroxide value. This is because the oxidation products present 
in much degraded oils are not detected by measuring the peroxide value and this 
parameter may actually give normal values. Thus, other parameters must be 
considered, especially sensory analysis. The processes involved in olive oil 
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production have also influence on their stability. Thus, refining processes remove 
almost totally phenolic compounds. As a result, P and OP oils, which undergo 
refining processes during their manufacturing, are more prone to degradation than 
EV or V olive oils. In addition, refining processes produce conjugated dienes and 
trienes. These compounds increase K232 and K270 values, respectively. 
 
Despite the determination of quality and purity parameters of olive oils is done 
according to official methods of analysis, samples that do not fulfill the 
reglamentation are usually analyzed again to ensure the results. Sometimes this 
implies much work, since some of the determinations are tedious and time-
consuming, as in the case of the PV, which involves several steps. For this reason, a 
complementary technique capable of providing rapid information for doubtful 
samples would be very helpful. 
 
Fluorescence spectroscopy has been used in the past for determining olive oil 
authenticity (6). The advantages of this technique are its speed of analysis, no use 
of solvents and reagents and that small amounts of sample are required. In 
addition, it is a non-invasive technique. Kyriakidis and Skarkalis (7) showed that 
useful information can be extracted from the fluorescence spectra of native 
vegetable oils. They showed that the fluorescence spectra of virgin olive oils 
between 400-700 nm measured at excitation wavelength (λex) 365 nm have clear 
differences compared to the spectra of other vegetable oils. Virgin olive oils present 
two low peaks at 445 and 475 nm, one intense peak at 525 nm and another peak at 
681 nm. Kyriakidis and Skarkalis suggested that the peaks at 445 and 475 nm were 
related to fatty acid oxidation products and the one at 525 nm was derived from 
vitamin E. However, they also showed that addition of vitamin E acetate to a 
virgin olive oil not only increased fluorescence intensity at 525 nm but also at 445 
and 475 nm. They stated that this was due to oxidized vitamin E, which emits 
fluorescence approximately in this region. Finally, the peak at 681 nm was related 
to the chlorophylls. The very low intensity of the peaks at 445 and 475 nm of virgin 
olive oils is due to their large content on monounsaturated fatty acids and phenolic 
antioxidants, which provide them more stability against oxidation. All refined oils 
show only one intense and wide peak at around 400-560 nm, which is due to a 
larger oxidation state of these oils as a result of their large content on 
polyunsaturated fatty acids. Fluorescence of native olive oils has also been used for 
detecting adulterations (8). 



J. Agric. Food Chem. (accepted for publication) 
 

 113

Besides measuring one fluorescence spectrum at one λex, a set of fluorescence 
spectra at different λex can also be recorded. Thus, for each sample, a three-
dimensional landscape is obtained, the so-called fluorescence excitation-emission 
matrix (EEM). The main advantage of EEMs is that more information about the 
fluorescent species can be extracted, because the bands arising in a wider area are 
considered. There are some examples in the literature of the application of 
excitation-emission fluorescence spectroscopy (EEFS) to native olive oils (9-12). 
 
The aim of this paper is to study the potential of EEFS combined with three-way 
methods of analysis (parallel factor analysis (PARAFAC) and multi-way partial 
least squares (N-PLS) regression) as a complementary technique for olive oil 
characterization. The relationship between the fluorescence EEMs of EV, V, P and 
OP oils and some of the quality parameters of oils (peroxide value, K232, and K270) is 
studied. In addition, the PARAFAC factors provide fingerprints for the different 
oil types. 
 

MATERIALS AND METHODS 

Samples and reagents 
A set of 33 olive oil samples, consisting of 13 EV, 2 V, 16 P and 2 OP oils were 
kindly supplied by the official laboratory of the Catalan government, in Spain. All 
oils came from Spanish cultivars and were obtained during the same harvesting 
year (final 2003-2004). The chemical analyses were performed by this laboratory, 
according to official methods of analysis (Regulation (EEC) No 2568/91) and 
included quality parameters (acidity, peroxide value, K232, K270, ∆K) and purity 
parameters (individual fatty acids, trans isomers, sterols, stigmastadienes, 
erythrodiol and uvaol). Table 1 shows some of the parameters analyzed. The 
peroxide value and K232 of some of the samples were not available. They are 
marked with a hyphen in Table 1. Oils were stored in amber glass bottles. The 
fluorescence EEMs were measured directly from the samples, without any prior 
treatment. All samples were measured in duplicate and the mean value of each 
sample was always used. 
 
(+/-)-α-tocopherol acetate was purchased from Sigma-Aldrich Chimie 
(Alcobendas, Spain) and was stored at 7ºC. 
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                      Table 1. Analytical parameters of oils 
Legal limits (Regulation (EEC) No 2568/91): PV (mEq O2/kg): 20 (EV and V), 15 

 (P and OP); K232: 2.50 (EV), 2.60 (V); K270: 0.22 (EV), 0.25(V), 0.90 (P), 1.70 (OP) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Instrumentation and software 
EEMs were measured with an Aminco Bowman series 2 luminescence 
spectrometer equipped with a 150 W xenon lamp and 10 mm quartz cells. The 
instrument detector was operated using the EmL/Ref channel and applying a 600 
V voltage. Excitation and emission ranges were λex = 300-390 nm and λem = 415-600 
nm, with 5 nm intervals in both dimensions. The band-pass of both 
monochromators were set at 4 nm. The scan rate was 30 nm s-1. The instrument 

             
Sample            Peroxide value               K232                  K270 

                                      (mEq O2/kg) 
 
  
            EV1                         10                           1.74   0.15 
 EV2                      9                  1.81    0.18 

EV3         6                         2.05   0.11 
EV4       8                         2.21   0.11 
EV5     7                         1.80  0.09 
EV6                            11            1.79   0.14 
EV7                        9                   1.96   0.10 

 EV8                             12             2.11   0.15 
EV9                             7              1.93   0.23 

 EV10                           -                2.30    0.16 
EV11                           -               2.30    0.14 
EV12               19    3.21   0.13 
EV13   9     1.97   0.21 

 V1     11                            2.29   0.19 
 V2    11       2.22   0.21 

P1         5         -               0.20 
 P2                 6         -         0.24 

P3           5           -         0.29 
P4        9       -        0.28 
P5                 4      -         0.27 

 P6      5    -         0.32 
 P7      3           -         0.32 

P8      3            -        0.35 
 P9    5             -         0.26 
 P10     6               -            0.59 

P11               5              -         0.41 
 P12            6         1.78       0.15 
 P13                      6            1.91   0.18 
 P14              3    -         0.34  
 P15          6     -        0.42 

P16                7    -     0.34 
 OP1             2     -        1.34 

OP2                3     -         1.23 
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software was used to correct the EEMs for deviations in the ideality of the lamp, 
monochromators and detector (13, 14).  
 
Data were exported to ASCII code and processed with Matlab software (version 
6.5) (15). The chemometric models were calculated with the PLS-Toolbox (16).  
 

RESULTS AND DISCUSSION 

Exploratory analysis 
Fluorescence EEMs of oils 
Fig. 1 shows the EEMs in the range between λex = 300-390 nm; λem = 415-600 nm of 
one sample of each type studied (EV, V, P and OP). Most of the samples analyzed 
displayed the same pattern and thus, in general, the types of oils can be 
differentiated from their fluorescence landscapes. EV and V oils present their 
maximum fluorescence intensity at emissions above 500 nm (Fig. 1a, b). On the 
contrary, P and OP oils exhibit much more fluorescence intensity below 500 nm 
(Fig. 1c, d). The main difference between these two types of oils is that EEMs of OP 
oils have very little fluorescence when exciting below λex = 340 nm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. EEMs between λex = 300-390 nm; λem = 415-600 nm of an EV (a), a V (b), a P (c), and 
(d) an OP oil. 
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Fig. 2. EEM between λex = 300-390 nm; λem = 415-600 nm of EV12 (a), and P12 (b). 

 
In spite of the general trend, there are some samples (EV12, P12, and P13) with 
special fluorescence landscapes. The EEM of sample EV12 is very different from 
the other EV olive oils. It exhibits strong fluorescence at emissions below 500 nm 
(Fig. 2a).  On the other hand, the EEMs of samples P12 and P13 are very similar to 
those of EV oils. Fig. 2b shows the EEM of sample P12. It is well-known that P oils 
consist of a blend of EV and refined oils. We suggest that the similarity between 
P12, P13 and EV oils is due to a high ratio EV/refined oils in P12 and P13, which 
would explain the shape of their EEMs. 
 
 

Parallel factor analysis (PARAFAC) 
In order to look into the whole set of fluorescence data, the EEMs of the 33 samples 
were arranged in a three-dimensional structure of size 33×38×19 (samples 
×number of λem×number of λex). The array was decomposed by PARAFAC (17) 
using different number of factors. In all cases, non-negativity constraints for the 
resolved profiles in all modes were applied. This was done in order to obtain a 
realistic solution, because the concentrations and the spectra should be positive. 
Residual analysis indicated that the optimal number of factors was three (98.65% of 
explained variance).  
 
Figures 3-4 show the spectral profiles and the sample projection plots obtained 
from the PARAFAC model. The emission profile of factor 1 (Fig. 3a) is very similar 
to the fluorescence spectra of EV olive oils, whereas that of factor 2 is very similar 
to the fluorescence spectra of refined oils (7). As it was said above, the peak at λem 
= 525 nm is thought to be related to vitamin E (Fig. 3a, factor 1) and the peak 
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between λem = 415-560 nm to oxidation products (Fig. 3a, factor 2). The sample 
projection plots (Fig. 4) show that the oil types are quite differentiated on the basis 
of the PARAFAC factors. OP oils are very different from the rest of samples, 
having the highest values on factor 2 and the lowest on factor 1. This indicates that 
factor 2 describes mainly the oxidation products contained in OP oils and that OP 
oils are the ones having the lowest content on vitamin E. EV and V oils have the 
lowest values on factor 2 because of their stability against oxidation. These two 
types of oils cluster together because acidity, which is the parameter that 
distinguishes between the two grades, is not captured by fluorescence 
measurement. EV and P oils have similar values on factor 1. This means that these 
two types of oils have similar vitamin E content. However, P oils have larger 
values on factor 3. This suggests that factor 3 may be related to the presence of 
degradation products of oils produced during the manufacturing processes. Note 
that EV12 is very similar to P oils as far as factor 3 is concerned, and that P12 and 
P13 cluster with EV oils in all the plots. The special characteristics of these three 
samples have been commented above.  
 
 
 
 

 

 

 

 

 

 

 

 

 

 
 
Fig. 3. Emission (a) and excitation (b) profiles obtained from the three-factor PARAFAC 
model calculated on the EEMs of the 33 oils in the range λex = 300-390 nm; λem = 415-600 nm. 
Factor 1 ( ⎯ ), factor 2 ( − − −), factor 3 ( … ).  

 

 

420 440 460 480 500 520 540 560 580 600
0

0.05

0.1

0.15

0.2

0.25

0.3

Emission wavelength (nm)

Lo
ad

in
g

300 310 320 330 340 350 360 370 380 390
0

0.1

0.2

0.3

0.4

Excitation wavelength (nm)

Lo
ad

in
g

a) 

b) 

420 440 460 480 500 520 540 560 580 600
0

0.05

0.1

0.15

0.2

0.25

0.3

Emission wavelength (nm)

Lo
ad

in
g

300 310 320 330 340 350 360 370 380 390
0

0.1

0.2

0.3

0.4

Excitation wavelength (nm)

Lo
ad

in
g

a) 

b) 



Chapter 4 
 

 118

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.  Sample projection plots of the three-factor PARAFAC model calculated on the EEMs 
of the 33 oils in the range λex = 300-390 nm; λem = 415-600 nm. Oil types: EV (◊), V ( ), P ( ), 
OP (o). The region containing EV and V oils has been enlarged (plots on the right). 
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Fig. 5. Three-dimensional structure of factor 1 (a), factor 2 (b) and factor 3 (c) from 
PARAFAC.  
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Fig. 5 shows the three-dimensional structure of the PARAFAC factors, obtained 
after multiplying each pair of excitation and the emission profiles plotted in Fig. 3. 
Note the resemblance between the PARAFAC factors and the EEMs plotted in Fig. 
1. Factor 1 (Fig. 5a) describes well EV and V oils (Fig. 1a), factor 2 (Fig. 5b) 
describes OP oils (Fig. 1c) and factor 3 (Fig. 5c) describes P oils (Fig. 1b). Hence, the 
PARAFAC factors may be used as a fingerprint of the types of olive oils studied.  
 
Vitamin E and fluorescence 
In order to confirm the hypothesis that the fluorescence peak at λem = 525 nm 
corresponds to vitamin E, we added vitamin E acetate ((+/-)-α-tocopherol acetate) 
to an EV olive oil sample. We used vitamin E acetate and not pure vitamin E 
because the latter is more unstable and is quickly oxidized by atmospheric oxygen 
(7). Vitamin E acetate was added directly to the oil so as to avoid solvent 
interferences and to obtain spectra directly comparable to the raw oil. The addition 
was made at two concentration levels. The first one consisted on adding 160 ppm 
of vitamin E acetate, which is equivalent to 146 ppm of pure vitamin E. The second 
addition consisted on 320 ppm of vitamin E acetate, which is equivalent to 292 
ppm of pure vitamin E. Then, the EEMs of the spiked samples and the raw oil were 
recorded at the same range that the previous oils. In order to avoid detector 
saturation its sensitivity was set to 60% of full scale using the more concentrated 
sample. Each sample was measured in duplicate and the mean value of each pair 
of EEMs was calculated. For a better visualization of the changes produced after 
the addition of vitamin E acetate, we extracted the fluorescence spectra at λex = 350 
nm from the entire EEMs (Fig. 6). This λex was selected because it provides the 
most intense fluorescence spectra. The plot confirms that addition of vitamin E to 
an EV olive oil increases fluorescence intensity at 525 nm. However, the peaks at 
445 and 475 nm also increase. This was already observed by Kyriakidis and 
Skarkalis (7) who explained that this may be due to the fluorescence that oxidized 
vitamin E emits near this region. The hypothesis that fatty acid oxidation products 
are the main responsible for the peaks at 445 and 475 nm in the fluorescence 
spectra of EV oils could not be confirmed at this stage. 
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Fig. 6. Mean fluorescence spectra between λem = 415-600 nm at λex = 350 nm. Raw EV olive 
oil  ( ⎯ ), EV olive oil with 146 ppm of vitamin E added ( − − −), EV olive oil with 292 ppm 
of vitamin E added ( … ).  

 
Relationship between fluorescence and primary oxidation products 
Fluorescence, PV and K232 
PV and K232 indicate the presence of primary oxidation products (i.e. conjugated 
hydroperoxides) in olive oils. We studied the relationship between fluorescence 
EEMs of oils and these parameters. All samples have values within the limits 
established by the Regulation (EEC) No 2568/91 (Table 1), with the exception of 
EV12, which has a K232 above the limit (2.50). This sample also has a PV very 
superior to those of the rest of EV oils and very close to the maximum allowed (20 
mEq O2/kg). The high values of these parameters pointed out that this sample has 
been much degraded and thus it presents rancidity. This may explain its special 
fluorescence. However, further analysis confirmed that this sample had not been 
adulterated, because the content on stigmastadienes was below the maximum 
allowed (0.15 mg/kg). 
 
Fig. 7 shows a chart of the fluorescence EEMs arranged in increasing order of PV. 
The general trend is that OP oils have the lowest PV, whereas EV and V oils have 
the highest ones. We suggest that the low content of hydroperoxides in OP oils is 
due to the fact that they have been further oxidized into carbonyl compounds 
(secondary oxidation products), which do not contribute to PV. As it was 
commented in the introduction section, most of the natural antioxidants in OP oils 
are removed during the manufacturing processes. This makes these oils be very 
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prone to oxidation. Therefore conversion of primary oxidation products into 
secondary oxidation products is more probable in these oils. This makes that most 
of the oxidation products present in OP oils are not detectable by indicators of 
primary oxidation products, such as PV or K232, but they should be detected by 
indicators of secondary oxidation products, such as K270. The samples with the 
lowest PV display strong fluorescence around λex = 340-390 nm; λem = 415-600 nm 
(Fig. 1d). On the contrary, the sample with the highest PV (EV12) has its maximal 
fluorescence around λex = 315-370 nm; λem = 415-460 nm (Fig. 2a). Therefore, oils at 
early degradation stages (i.e. with large amounts of primary oxidation products) 
can be detected by fluorescence, since they exhibit strong fluorescence between λex 
= 315-370 nm; λem = 415-460 nm, which does not occur for well conserved samples. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. EEMs of oils arranged in increasing order of PV (in mEq O2/kg). Horizontal axis: λem 
= 415-600 nm (from right to left); vertical axis: λex = 300-390 nm (from bottom to top). 
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Correlation between fluorescence and PV  
We studied the correlation between fluorescence and PV. The EEMs of samples 
with known PV (Table 1) were arranged in a three-dimensional array of size 30×38 
×19 (samples×number of λem×number of λex). EV12 was excluded for its high PV.  
 
A three-factor PARAFAC model (98.76% explained variance) was calculated on the 
array applying again non-negativity constraints on all modes. The spectral profiles 
and sample projection plots were very similar to those plotted in Figs. 3-4. A 
multiple linear regression (MLR) model was then applied to correlate the values of 
the projected samples (i.e. scores) obtained from PARAFAC with the PV. The 
prediction error calculated by means of the leave-one-out cross-validation 
procedure was 1.7 mEq O2/kg and the correlation coefficient of the MLR model 
obtained in the validation step was rval = 0.78. Despite of the global correlation 
observed, no good predictions were obtained for some samples. For example, EV3, 
P12, P13, P2, P10 and P15 have similar measured PV, but their predicted values 
differ considerably. This may indicate that the model is sensitive to some 
variations in fluorescence that occur between these samples that are not captured 
when measuring the PV. 

 
We checked if correlation between the fluorescence EEMs and PV could be 
improved by using the N-PLS regression method. N-PLS is a generalization of PLS 
to multi-way data (18). This method has some nice properties, since it models both 
the independent ( X ) and the dependent ( Y ) variables simultaneously to find the 
latent variables in X that will best predict the latent variables in Y . The model was 
applied on the centered data (across the sample mode). The optimum number of 
factors, selected by leave-one-out cross-validation was nine (99.92% of explained 
variance ( X ), 88.15% of explained variance ( Y )). The high number of factors 
obtained is probably due to the presence of some samples that are not very well 
fitted by the model. This would force the model to require more factors so as to 
reduce the error. However, as the number of samples available for doing this study 
was not very high, we decided not to remove any sample so as not to lose 
robustness. Figs. 8-9 show the spectral profiles and sample projection plots of the 
first two factors. For a better visualization, the region containing EV and V oils in 
Fig. 9 has been enlarged. The types of oils appear quite separated on the basis of 
the N-PLS factors (Fig. 9). OP oils have the highest values on factor 2. This factor is 
related to fluorescence at λem around 430 nm and λex around 320 and 350 nm. P oils 
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have the lowest values on factor 2 and EV and V oils have the highest values on 
factor 1. This factor is related to a wide fluorescence peak around λem = 460 nm and 
λex = 370 nm. Again, P12 and P13 are grouped with EV and V oils. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Emission (a) and excitation (b) profiles of the first two factors of the nine-factor N-PLS 
model calculated to correlate the fluorescence EEMs with the PV. Factor 1 ( ⎯ ), factor 2 ( − − 
−).  

 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Sample projection plot of the first two factors of the nine-factor N-PLS model 
calculated to correlate the fluorescence EEMs with the PV. EV (◊), V ( ), P ( ), OP (o). 
 

Fig. 10 shows the predicted vs. measured PV obtained from the nine-factor N-PLS 
model. Using N-PLS, correlation between fluorescence and PV was improved 
compared to MLR on the PARAFAC scores. In addition, the prediction errors were 
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lower. A similar procedure was carried out to correlate fluorescence and K232 (not 
shown). However a poor correlation was observed between these two parameters. 
This may indicate that some of the species that contribute to K232 do not emit 
fluorescence in the range studied. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Predicted vs. measured PV from the nine-factor N-PLS model in the range between 
λex = 300-390 nm; λem = 415-600 nm. Calibration ( • ), validation ( o ). RMSE (calibration) is 
the root mean square error of calibration and RMSE (validation) is the root mean square 
error of cross-validation. 
 
From the results obtained, we can state that EEFS is capable to detect samples 
highly degraded at early stages, because they emit strong fluorescence around λex 
= 315-370 nm; λem = 415-460 nm. Thus, samples having high PV (as EV12), can be 
detected rapidly by recording their EEM. Hence EEFS is proposed as a rapid 
complementary technique for samples with high PV. 
 
Relationship between fluorescence and secondary oxidation products 
Fluorescence and K270   
As it has been commented previously, K270 is also an indicator of the oxidation state 
of oil, because secondary oxidation products (aldehides, ketones and other 
carbonyl compounds) absorb at 270 nm. Table 1 shows the K270 values of the 33 
samples. As it can be seen, in general there is a relationship between the oil type 
and its K270. OP oils have the highest K270, whereas EV oils tend to have the lowest 
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values of this parameter. This indicates that OP oils are the most deteriorated and 
thus they contain more secondary oxidation products, whereas EV oils are the 
most preserved, which was expected due to their larger content on natural 
antioxidants. Note that, as a general trend, the higher K270 the lower the PV is. So 
there is an inverse relationship between the amount of primary and secondary 
oxidation products in oils. As it was explained above, this is due to the conversion 
of primary oxidation products into secondary oxidation products. The variation of 
K270 values in oils is also captured by the fluorescence EEMs. The oils having the 
highest K270 (OP) exhibit a wide peak between λex = 340-390 nm and λem = 415-600 
nm with a maximum fluorescence at λex = 390 nm and λem = 470 nm (Fig. 1d). For 
oils having the lowest K270 (EV) the main fluorescence peaks appear above λem = 
500 nm (Fig. 1a), with the exception of EV12.  
 
Correlation between fluorescence and K270  
We applied MLR to correlate the PARAFAC scores of the 33 samples with K270. The 
PARAFAC model chosen was that depicted in Figs. 3-4. In this case, sample EV12 
was included because it was not an outlier regarding K270. Validation was 
performed by leave-one-out cross-validation following the same procedure as 
above. The correlation coefficients were rcal = 0.97 and rval = 0.95 and the calibration 
and prediction errors were root mean square error of calibration RMSEC = 0.07 
and root mean square error of cross-validation RMSECV = 0.08. In spite of the high 
correlation coefficients obtained for the whole set of samples, little correlation was 
observed for EV oils. 
 
We tried to improve the correlation between fluorescence and K270 by applying N-
PLS. Data were centered across the first mode (i.e. a matrix where each row 
consisted of all the emission spectra of one sample concatenated was created. Then 
each column of this matrix was centered by subtracting its mean value). The 
optimum number of factors was selected by leave-one-out cross-validation. Six 
factors were found to be significant (99.75% of explained variance ( X ), 97.32% of 
explained variance ( Y )). Figs. 11-12 show the spectral profiles and sample 
projection plots of the first two factors. In Fig. 12, the region containing EV and V 
oils has been enlarged so as to make easier visualization. Note that the profiles of 
factor 1 (Fig. 11) were very similar to those of Fig. 8. On the contrary, factor 2 
presented more differences. When N-PLS is applied to correlate fluorescence and 
K270, the excitation profile has only one wide peak with a minimum at 350 nm. OP 
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oils have the lowest values on factor 1, whereas EV and V oils tend to have the 
highest (Fig. 11). P oils have the highest values on factor 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11. Emission (a) and excitation (b) profiles of the first two factors of the six-factor N-PLS 
model calculated to correlate the fluorescence EEMs with K270. Factor 1 ( ⎯ ), factor 2 ( − − 
−). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. Sample projection plot of the first two factors of the six-factor N-PLS model 
calculated to correlate the fluorescence EEMs with K270. EV (◊), V ( ), P ( ), OP ( o ).  
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Fig. 13 shows the predicted vs. measured K270 values obtained from the six-factor 
N-PLS model. The group of samples not including OP oils has been enlarged. 
Using N-PLS enabled to obtain a better fit compared to that obtained from MLR 
applied to the PARAFAC scores, especially for EV samples. As it can be seen from 
the plot, the N-PLS factors are highly correlated with K270 (rcal = 0.99, rval = 0.96), 
and the prediction errors are lower compared to MLR on the PARAFAC scores. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13. Predicted vs. measured K270 from the six-factor N-PLS model in the range between 
λex = 300-390 nm; λem = 415-600 nm. Calibration ( • ), validation ( o ). RMSE (calibration) is 
the root mean square error of calibration and RMSE (validation) is the root mean square 
error of validation. 
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Throughout this study, we have shown that the fluorescence data of samples P12 
and P13 are very similar to those of EV oils. Nevertheless, the analytical 
parameters shown in Table 1 confirm that these samples belong to the P grade, 
because all the parameters are within the limits established. As far as K270 is 
concerned, P12 and P13 have the lowest values among the P group (Table 1 and 
Fig. 13). K270 is an indicator of the quality of oils. Low K270 values indicate low 
content of secondary oxidation products, which is due to a high stability of oils. As 
it was commented above, the appearance of the EEMs of P12 and P13 seems 
indicate a high ratio EV/refined oils in these samples. This would imply having a 
high level of natural antioxidants such as phenolic compounds, which would 
explain their stability. Hence, EEFS may be useful for studying the quality of P oils. 
 
Conclusions 
This paper has shown the potential of EEFS and three-way methods of analysis 
(PARAFAC and N-PLS) as a complementary technique for olive oil 
characterization. This methodology is proposed as an aid to determine the quality 
of olive oils and may be especially helpful for doubtful samples. Concretely, it has 
been shown that EEFS enables to detect EV oils highly deteriorated at early stages 
(with high PV) and little oxidized P oils (with low K270). However, the results 
reported have to be interpreted taken into account the scarce number of samples 
analyzed. In further studies we aim to enlarge the data set and include more 
doubtful samples so as to confirm these results. 
 
The methodology presented here is somewhat innovative. Previous studies on 
olive oils had already been reported about studying the correlation between 
fluorescence intensity and quality parameters. However, none of them used EEFS 
and three-way chemometric methods. The latter has some additional advantages. 
For instance, EEFS enables to obtain an overview of the fluorescence of various 
chemical species from the same analysis, which may be of interest for finding 
trends or patterns into the data. In addition, the chemometric analysis of these data 
enables to extract the spectral profiles related to the fluorescent species of oils. 
These profiles may be later used to make a comparative study of the contribution 
of the fluorescent species in the oil samples. 
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5.1 INTRODUCTION 

Three-way classification methods had been hardly explored when this thesis was 
started. Some examples of classification methods with three-way data are shown in 
the literature [1-3]. Recently, Scott et al. [4] applied several chemometric methods 
to the fluorescence EEMs of edible oils for classification purposes. However, this 
field is still to be explored and more research should be done so as to establish new 
methodologies.  
 
As it was shown in chapters 3 and 4, EEFS allows to distinguish between different 
types of olive oils. This chapter is devoted to study the possibilities of EEFS 
together with three-way classification methods for classification of olive oils. The 
first study presented in this chapter shows the suitability of various three-way 
classification methods for detecting adulterations. In the second study, EVOOs 
from two close geographical regions were discriminated. Finally, the third study of 
this chapter proposes a new classification method based on NMF combined with 
Fisher’s LDA. The method was applied for classifying oils according to their 
category, their origin and for detecting adulterations.  
 
An important aspect of olive oil authenticity is detection of adulterations. 
Adulteration has negative economic and nutritional implications. For this reason, 
constant controls for detecting such a practice are carried out. 
 
Most of the detection of edible oil adulteration is based on chromatographic 
analysis [5]. Other techniques such as HS-MS [6], NMR spectrometry [7-9], UV 
[10,11], NIR, MIR, and FT-Raman spectroscopy [7,12-17], and chemiluminescence 
[18] have also been applied. García-González and Aparicio [19] have proposed 
metal oxide semiconductor sensors combined with neural networks for detecting 
lampante olive oils in virgin olive oils. Fluorescence spectroscopy has also been 
applied to detect hazelnut oil in virgin olive oils [20]. Moreover, EEFS has been 
applied to detect sunflower and rapessed oils in EVOOs [4]. In this case, simplified 
fuzzy adaptive resonance theory mapping (SFAM), traditional back propagation 
(BP) and radial basis function (RBF) neural networks were compared to detect such 
adulterations. 
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OPO is one of the adulterants commonly found in EVOOs. This is because OPOs 
are the less expensive oils obtained from olives, whereas EVOOs are the most 
expensive. Thus, several methodologies have been developed for detecting this 
type of adulterant [6,12,14,15]. None of these methodologies used EEFS. 
 
The first paper of this chapter (Rapid detection of olive-pomace oil adulteration in extra 
virgin olive oils from the protected denomination of origin “Siurana” using excitation-
emission fluorescence spectroscopy and three-way methods of analysis, Anal. Chim. Acta 
544 (2005) 143-152) shows that EEFS and three-way methods of analysis enable to 
detect OPO adulteration in EVOOs at low levels (5% w/w). In a first approach, the 
Hotelling T2 and Q statistics are applied to unfold-PCA as a fast screening method 
for detecting adulteration. Then, two supervised pattern recognition methods are 
applied and compared (Fisher’s LDA and DN-PLSR). DN-PLS gave the best 
results. With this method the percentages of correct classification were 100% for 
the non-adulterated samples as well as for the adulterated. The level of 
adulteration was also quantified by means of the N-PLS method, which provided 
acceptable prediction errors.  
 
Besides controlling adulterations, there is also the need for authenticating the 
geographical origin of EVOOs. This is usually done from data about the chemical 
composition of oils, such as free acidity, PV and fatty acids, among others. These 
parameters are usually determined according to Official Methods of Analysis [21-
24]. Other techniques such as HS-MS [25], NMR spectroscopy [26,27], VIS and IR 
spectroscopy [28,29] and isotope ratio mass spectrometry (IRMS) [30] have also 
been applied. Chemometric methods have enabled to discriminate between oils 
from different origin [21-25,27,30,31]. 
 
In order to protect quality agriculture and food products of recognised origin from 
fraud, the EU created two distinctions under the EC Regulation 2081/92 [11], 
concretely, Protected Denomination of Origin (PDO) and Protected Geographical 
Indication (PGI). PDO is used to describe foodstuffs which are produced, 
processed and prepared in a given geographical area using recognised know-how 
[32]. Some quality olive oils are protected under the PDO label. 
 
PDO “Siurana” olive oil includes the EVOOs produced within the Tarragona 
province, in Catalonia (Spain) (Fig. 24). These EVOOs come mainly from arbequina 
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olives and are characterized for having excellent sensory properties and typical 
physicochemical characteristics [33]. The PDO production area can be divided into 
two regions: Siurana-Montsant (SM) and Siurana-Camp de Tarragona (SC) (Fig. 
24). Due to differences in orography, soil characteristics and climatic conditions, 
oils produced in the two regions have different composition, which gives them 
different stability. There are also other factors affecting the physicochemical 
composition of oils, such as the harvesting year and the ripening stage of the 
olives. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 24. Map of the production area of PDO “Siurana” olive oils. 

 
Tous et al. [33] differentiated between SM and SC oils on the basis of several 
parameters (free acidity, K270, phenolic content, bitterness (K225), stability, fatty 
acids composition, and sensory analysis). However, there are not references on 
application of fluorescence spectroscopy to distinguish between oils from different 
geographical origin. 
 
The second paper of this chapter includes a study about the capability of 
fluorescence spectroscopy to distinguish between a set of SC and SM oils. The 
study is based on applying EEFS and DU-PLS for discriminating between them. 
The results are presented in the paper Study of oils from the protected denomination of 
origin “Siurana” using excitation-emission fluorescence spectroscopy and three-way 
methods of analysis, Grasas y Aceites 56 (4) (2005) 292-297. 
 
Lee and Seung [34] proposed the NMF algorithm for obtaining a parts-based 
representation from image data. They showed that this method has some 
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advantages respect to other decomposition methods, such as PCA, because of the 
non-negative constraints of the NMF algorithm. These constraints make that only 
positive solutions can be obtained, which provide a more realistic approximation 
of the data when working with non-negative data. 
 
Besides image analysis, NMF has been successfully applied to text analysis [34-36], 
genetics [37], spectra [38,39] and sound analysis [40,41], and curve resolution [42]. 
 
NMF is able to handle spectroscopic data because of their non-negative 
characteristics. However it has not been applied to fluorescence spectroscopy. In 
this part of the thesis, application of NMF to the fluorescence EEMs of various sets 
of olive oils is studied. This method is applied with two objectives. First, to 
decompose the EEMs into meaningful parts and to relate them to the fluorescence 
species present in oils. Second, to study the capabilities of this method for oil 
classification. To achieve this second objective, NMF is used together with Fisher’s 
LDA.  
 
The study was carried out using three sets of olive oils. The first one contained 
three types of commercial olive oils (virgin, pure and olive-pomace). The second 
one contained EVOOs from the two PDO “Siurana” production area. The last set 
included the same “Siurana” oils and admixtures of them with 5% (w/w) of OPOs. 
In all the cases, good classifications were obtained (90-100%). In addition, some of 
the parts obtained from the NMF decomposition could be related to the fluorescent 
species of oils.  The results of this study are presented in the paper Application of 
non-negative matrix factorization combined with Fisher’s linear discriminant analysis for 
classification of olive oil excitation-emission fluorescence spectra, Chemom. Intell. Lab. 
Syst. (accepted for publication). 
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ABSTRACT 

Extra virgin olive oil (EVOO) is the highest-quality type of olive oil. This makes it 
also the most expensive. For this reason, it is sometimes adulterated with cheaper 
oils. One of these is olive-pomace oil (OPO). The protected denomination of origin 
(PDO) “Siurana” distinction is given to the EVOO produced in a specific area of 
the south of Catalonia. Here we study the potential of excitation-emission 
fluorescence spectroscopy (EEFS) and three-way methods of analysis to detect 
OPO adulteration in PDO “Siurana” olive oils at low levels (5%). First, we apply 
unfold principal component analysis (unfold-PCA) and parallel factor analysis 
(PARAFAC) for exploratory analysis. Then, we use the Hotelling T2 and Q 
statistics as a fast screening method for detecting adulteration. We show that 
discrimination between non-adulterated and adulterated samples can be improved 
using Fisher’s linear discriminant analysis (LDA) and discriminant multi-way 
partial least squares (N-PLS) regression, the latter giving a 100% of correct 
classification. Finally, we quantify the level of adulteration using N-PLS. 
 
 
 

Keywords: Olive oils; Adulteration; Fluorescence; Three-way methods; Discrimination 
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1. INTRODUCTION 

Olive oil is an economically important product in the Mediterranean countries. It 
has a fine aroma and a pleasant taste, and it is also known for its health benefits. 
The quality of olive oil ranges from the high-quality extra virgin olive oil (EVOO) 
to the low-quality olive-pomace oil (OPO) (or raw residue oil). EVOO is obtained 
from the fruit of the olive tree (Olea europea L.) by mechanical press and without 
application of refining processes. Its acidity cannot be greater than 1%. Due to its 
high quality it is the most expensive type of olive oil. For this reason, it is 
sometimes mislabelled or adulterated. Mislabelling often consists in false labelling 
concerning the geographic origin or the oil variety of an olive oil [1-3]. 
Adulteration involves addition of cheaper oils. The most common adulterants 
found in virgin olive oil are refined olive oil, OPO, synthetic olive oil-glycerol 
products, seed oils (such as sunflower, soy, maize and rapessed) [4-8] and nut oils 
(such as hazelnut and peanut oil) [8-10].  In some cases, besides the economic 
fraud, adulteration may cause serious harm to health, such as happened in 1981 in 
the case of the Spanish toxic oil syndrome, which affected over 20000 people [11]. 
 
Olive pomace is one of the main by-products of oil fruit processing. It contains 
fragments of skin, pulp, pieces of kernels and some oil. The oil present in the olive 
pomace undergoes rapid deterioration due to the moisture content that speeds up 
trialylglycerol hydrolysis. Refined olive-pomace oil is obtained from olive pomace 
after an extraction with authorized solvents and a refining process, which includes 
neutralization, deodorization and decolorization. This oil is improved with virgin 
olive oil to obtain the oil known as OPO [12]. Owing to the low price of this oil, it is 
sometimes used for adulterating EVOO. For this reason, a rapid method to detect 
such a practice is important for quality control and labelling purposes [7,13]. 
 
Several techniques can be used to detect olive oil adulteration. These include 
colorimetric reactions, determination of iodine value, saponification value, density, 
viscosity, refractive index and ultraviolet absorbance [14]. Chromatographic 
techniques have also been widely applied [9,15]. However, they may be time-
consuming and require sample manipulation. To overcome these handicaps, other 
techniques have been applied. The most noteworthy are headspace-mass 
spectrometry (HS-MS) [7,8] and spectroscopic techniques, such as near-infrared  
(NIR), mid-infrared (MIR), Fourier transform infrared (FT-IR), Fourier transform 
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Raman (FT-Raman) [4-6,13-19], nuclear magnetic resonance (NMR) [17,20] and 
chemiluminescence [21]. Recently, Mignani et al. have proposed spectral 
nephelometry for recording EVOO fingerprints [22]. Usually spectroscopic 
techniques are applied together with multivariate analysis. Hence, supervised 
pattern recognition methods are commonly used [4-6,10,13,16,18-20]. 
 
Fluorescence spectroscopy has been used in the past for determining the 
authenticity of olive oils [14]. However, few papers have been published in recent 
years on the use of fluorescence in vegetable oils. Sayago et al. [10] applied 
fluorescence spectroscopy for detecting hazelnut oil adulteration in virgin olive 
oils. This technique has some advantages such as its speed of analysis, that it is 
reagentless, and that small amounts of sample are required. Kyriakidis and 
Skarkalis [23] showed that emission fluorescence spectra of virgin olive oils 
between 400 and 700 nm measured at excitation wavelength 365 nm have clear 
differences compared to the spectra of other vegetable oils. Virgin olive oils present 
two low peaks at 445 and 475 nm (related to conjugated hydroperoxides), one 
intense peak at 525 nm (due to vitamin E) and another peak at 681 nm (due to 
chlorophylls). The very low intensity of the peaks at 445 and 475 nm is due to their 
large content on monounsaturated fatty acids and phenolic antioxidants, which 
provide more stability against oxidation. All refined oils show only one intense 
peak at 445 nm. It is due to fatty acid oxidation products formed as a result of the 
large percentage of polyunsaturated fatty acids present in these oils. 
 
In recent years, instrumental improvements and the availability of software 
specially designed to extract the information contained in spectra have contributed 
to the development of fluorescence spectroscopy. Hence, it is possible to record 
one fluorescence excitation-emission matrix (EEM) for each sample, i.e. a set of 
emission spectra recorded at several excitation wavelengths. EEMs had already 
been used in 1984 by Wolfbeis and Leiner [24] to characterize four types of edible 
oils. More recently, Scott et al. [25] discriminated between different vegetable oils 
and detected adulterations in EVOO from their EEMs. They applied simplified 
fuzzy adaptive resonance theory mapping, traditional back propagation and radial 
basis function neural networks. We have already shown the potential of excitation-
emission fluorescence spectroscopy (EEFS) and three-way methods of analysis to 
distinguish between commercial Spanish olive oils [26,27]. 
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The aim of this paper is to develop a fast screening method based on EEFS and 
three-way methods of analysis for detecting adulterations of OPO at 5% level in 
EVOO from the protected denomination of origin (PDO) “Siurana”. This is a 
prestigious distinction given to the EVOO produced in a specific area of the south 
of Catalonia, Spain. These oils come mainly from arbequina olives and they are 
guaranteed to be of high quality [28]. We first apply unfold principal component 
analysis (unfold-PCA) and parallel factor analysis (PARAFAC) for exploratory 
analysis. Then, we compare the ability of Hotelling T2 and Q statistics, Fisher’s 
linear discriminant analysis (LDA) and discriminant multi-way partial least 
squares (N-PLS) regression for discriminating between EVOO and adulterated 
samples. Finally, we quantify the level of adulteration by using the N-PLS 
regression method. 
 

2. EXPERIMENTAL 

2.1 Samples 
In the present work, 29 EVOO from the PDO “Siurana” and 5 commercial OPO 
were analysed. A set of 13 samples was selected from the EVOO group and was 
used as a test set for the chemometric methods. The test set was used for preparing 
admixtures (AD) of EVOO containing 5% (w/w) of OPO. The AD were prepared 
as follows: each sample of the test set was used for preparing five AD, each one 
containing a different OPO. Thus, 65 AD were prepared. Samples were stored in 
amber glass bottles under nitrogen atmosphere. The samples were analysed 
without any prior treatment. All samples were measured in duplicate and the 
mean value of each sample was always used. 
 
2.2 Instrumentation and software 
EEMs were measured with an Aminco Bowman series 2 luminescence 
spectrometer equipped with a 150 W xenon lamp and 10 mm quartz cells. The 
instrument detector was operated using the EmL/Ref channel. Excitation and 
emission ranges were λex = 300-390 nm and λem = 415-600 nm, respectively. 
Measuring emission above excitation prevented Rayleigh scatter. The step size and 
band-pass of both monochromators were 5 and 4 nm, respectively. The scan rate 
was 30 nm s-1. The instrument software was used to correct the EEMs for 
deviations in the ideality of the lamp, monochromators and detector [29,30]. EVOO 
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and the AD were measured applying a 600 V voltage, whereas OPO were 
measured at 570 V, in order to avoid detector saturation. 
 
Data were exported to ASCII code and processed with Matlab software (version 
6.5) [31]. Unfold-PCA, PARAFAC, Hotelling T2 and Q statistics were calculated 
with the PLS-Toolbox [32]. The Fisher’s LDA algorithm was built in-house. 
 

3. RESULTS AND DISCUSSION 

3.1. Exploratory analysis 
3.1.1 Spectra 
Fig. 1 shows some of the measured EEMs. They were obtained from two EVOO (a) 
and (d), an OPO (b) and a 5% AD (c).  Most EVOO analysed had EEMs similar to 
that plotted in Fig. 1a. The most intense peaks of the spectra of this type of oil 
appear between λex = 300-390 nm; λem = 500-600 nm and they are due to Vitamin E. 
At lower λem there are some less intense peaks, which are related to conjugated 
hydroperoxides formed as a result of oil oxidation. The low intensity of these 
peaks indicates that EVOO are highly stable against oxidation. However, sample 6 
has an abnormally high fluorescence intensity below λem = 500 nm (Fig. 1d), being 
more similar to the AD in this range (Fig. 1c). All OPO showed only one wide peak 
between λex = 340-390 nm; λem = 415-550 nm (Fig. 1b). This means that their content 
on conjugated hydroperoxides is higher as a result of a greater oxidation [12,23]. It 
can be seen that adulteration mainly causes an increase of fluorescence at 
emissions below 500 nm (Fig. 1c). However, it is not always easy to detect 
adulterations by visual inspection of the spectra. For this reason, chemometric 
methods must be used for discrimination. As it has been shown, recording entire 
EEMs enables to extract more information from the samples compared to when a 
single fluorescence spectrum is measured. In this case, only the changes produced 
at one λex can be observed. 
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Fig. 1. EEMs of two EVOO (a) and (d), an OPO (b) and a 5% AD (c). Range: λex = 300-390 nm; 
λem = 415-600 nm. 
 

 
3.1.2 Unfold principal component analysis 
In order to do a preliminary study of the data and to detect possible outliers, we 
applied unfold-PCA to the EVOO group. The EEMs were first arranged in a 

KJI ×× three-way array (29×38×19), where the indexes JI , and K refer to 
samples, emission wavelengths (λem) and excitation wavelengths (λex), respectively. 
Then the array was unfolded to a matrix of size JKI × (29×722). Before applying 
unfold-PCA, the matrix was column mean-centered. Figs. 2 and 3 show the score 
and loading plots of the first three PCs (94.57% expl. var.). 
 
 
 

a) b)

c) d)

a)a) b)b)

c)c) d)d)
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Fig. 2. Score plots of the first three PCs from unfold-PCA calculated to the 29 EVOO: PC1 vs. 
PC2 (a), PC1 vs. PC3 (b) and PC2 vs. PC3 (c). The samples marked with circles were used as 
training set for the discrimination models. 
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Fig. 3. Refolded loading plots of the first three PCs from unfold-PCA calculated from the 29 
EVOO: PC1 (a), PC2 (b), and PC3 (c). 

 
It can be seen that, in general, sample 6 appears quite separated from the rest of 
EVOO, especially along PC3. The special features of this sample have been 
commented above. Since it was very different from the rest of EVOO, sample 6 was 
removed from the sample set and not considered any longer. 
 
As it has been commented, in the range considered (λex = 300-390 nm; λem = 415-600 
nm), the main fluorescent species present in EVOO are Vitamin E and some 
oxidation products (depending on the state of degradation). This is captured on the 
loadings of the first three PCs (Fig. 3), because they have influence of the 
wavelengths where these species emit. Thus, the loadings above λem = 500 nm 
explain variations due to Vitamin E, whereas those below λem = 500 nm describe 
oxidation products. 
 
3.1.3 Parallel factor analysis 
To study the effect of adulteration on the oils, we decomposed the EEMs of each 
group (EVOO, OPO, and 5% AD) using PARAFAC. The sizes of the three-way 
arrays (samples×number of λem×number of λex) were as follows: 28×38×19 
(EVOO), 65×38×19 (AD) and 5×38×19 (OPO). 
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All PARAFAC models were fitted using non-negativity constraints on all modes. 
The optimum number of factors was selected on the basis of residual analysis and 
split-half analysis [33]. In all cases, the best solution was obtained using three 
factors. Fig. 4 shows the emission and the excitation loadings related to the EVOO, 
5% AD and OPO sample sets. The excitation loadings are more difficult to interpret 
than the emission loadings because of the lack of fluorescence excitation spectra in 
the literature.  
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. PARAFAC excitation and emission loadings of EVOO (a), 5% AD (b) and OPO (c). 
Top: emission loadings, bottom: excitation loadings. Factor 1 (⎯), factor 2 (− − −), factor 3 
(…). Var. expl.: 99.81% (a), 99.83% (b), and 99.98% (c). 
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Factor 1 is not much modified by adulteration and the greatest changes are 
produced on the shape and position of the excitation profile. For EVOO, factors 2 
and 3 have contributions of Vitamin E (the peak around λem = 525 nm) and 
oxidation products (the peaks around λem = 445 nm and λem = 475 nm) (see Fig. 4a, 
emission loadings). Nevertheless, the influence of the oxidation products is less 
important on factor 2 and adulteration only produces a slight rise on these peaks 
(Fig. 4a and b). On the contrary, factor 3 undergoes more changes due to 
adulteration and there is a clear rise of the peaks related to oxidation products and 
a decrease of the Vitamin E peak. As far as OPO are concerned, the emission 
loadings of factors 2 and 3 have only one wide peak (see Fig. 4c) that is attributed 
to the very high content on oxidation products due to the advanced state of 
oxidation of these oils. 
 
Next, we projected the 5% AD onto the PARAFAC model of the EVOO. The score 
plot of factor 1 versus factor 3 (Fig. 5) clearly shows the differences between the 
types of oils. The AD tend to have the highest scores on factor 3, meaning that 
adulteration is at least partially described by this factor. This agrees with the fact 
that factor 3 undergoes great changes as a result of adulteration, as it was 
explained above. In spite of the trend seen on the score plot, there is an overlap 
between the groups of oils. 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

 
Fig. 5. Score plot of the PARAFAC model. Training set: EVOO (◊); projected set: 5% AD ( ). 
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3.2 Discrimination 
3.2.1 Selection of the training set 
In order to discriminate between EVOO and the 5% AD, we applied different 
chemometric methods. To select the training set to be used, we applied unfold-
PCA to the mean-centered matrix of the EVOO group. The size of this matrix was 
28×722. The number of PCs was selected by leave-one-out cross-validation (five 
PCs, 99.49% expl. var.). The loadings and score plots are very similar to those in 
Figs. 2 and 3. The selection of the training set was made on the basis of the score 
plots and the dendrogram obtained after clustering the scores of the first five PCs. 
The criterion was to cover all the domain of variability. The 15 selected samples are 
marked inside a circle in Fig. 2a-c. As explained in Section 2.1, the rest of EVOO 
were used for preparing the 5% AD and were used as test set. 
 
3.2.2 Hotelling T2 and Q statistics 
The Hotelling T2 statistic is calculated for the systematic part of the variation of the 
data, i.e. the Hotelling T2 plot represents the projection of each new measurement 
onto the plane defined by the principal components (PCs). The Q statistic is 
calculated for the residual part, i.e. the Q plot represents the squared distance of 
each new measurement perpendicular to the plane defined by the PCs. In this 
paper we apply these statistics to establish a fast screening method for detecting 
OPO adulteration. EVOO are considered to be normal samples and a PCA model is 
built with them. Then, the adulterated samples are expected to fall out of the 
confidence limits of the PCA model. Thus, the Hotelling T2 and Q statistics are 
easily applicable for detecting adulterations because only non-adulterated samples 
have to be measured for building the model. 
 
We calculated unfold-PCA on the 15×722 column mean-centered matrix 
containing the training set selected above. We used five PCs (99.64% expl. var.), 
selected by leave-one-out cross-validation. Afterwards, we projected the rest of 
EVOO and their AD onto this model. Fig. 6 shows the score plot of the training set 
and the projected samples using the first two PCs (96.13% expl. var.). The loadings 
were almost identical to those in Fig. 3. In spite of the fact that the two groups of 
oils appear quite mixed up, there are more samples having negative scores on PC2 
within the AD group. These values are related to oxidation products (the negative 
loadings below λem = 500 nm, Fig. 3b). This indicates again that adulteration is 
mainly detected by a rise on oxidation products content. On the contrary, EVOO 
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tend to have the highest scores on PC2, which are related to Vitamin E (the positive 
loadings above λem = 500 nm, Fig. 3b), and the lowest on PC1. 

 
 
 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Score plot from unfold-PCA calculated to the training set formed by the 15 EVOO 
selected: EVOO (◊), and 5% AD ( ). 

 
We calculated the limits of the Hotelling T2 and Q statistics from the training set 
(the fifteen selected EVOO) with a 95% of confidence. The limits were 23.28 for 
Hotelling T2 and 0.12 for Q. The Q limit was calculated using the Jackson and 
Mudholkar’s method [34]. Fig. 7 shows the enlarged joint plot of the two statistics 
for the projected samples (considering only the region near the confidence limits) 
and Table 1 summarizes the percentage of correct assignation to the groups. For 
EVOO, the best results were obtained for Hotelling T2. This statistical test assigned 
all the EVOO to the correct group. In contrast, the AD had better percentages of Q. 
This means that EVOO are best described by the variation contained in the model 
and the AD are best described by the residual part, since  
adulteration is not included in the model. The percentage of correct classification of 
the AD was 97% considering the Q statistical and only 68% regarding to Hotelling 
T2 (Table 1). Thus, other discriminant methods should be applied to improve the 
detection of OPO adulteration in EVOO. 
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Fig. 7. Enlarged joint plot of the Hotelling T2 and Q statistics (95% of confidence): EVOO (◊), 
and 5% AD ( ). 
 

                   
                  Table 1. Results of Hotelling T2 and Q statistics 

 

 
 
 
 
 
 
 

3.2.3 Fisher’s linear discriminant analysis (LDA) 
Using supervised pattern recognition methods usually improves discrimination, 
because the subgroups made up of the different types of samples are included in 
the training set and are used for developing the classification rules. These rules are 
later used for allocating new and unknown samples to the most probable subgroup 
(class). Fisher’s LDA (or canonical variate analysis) is a supervised pattern 
recognition method. It finds the directions in multivariate space for which the 
difference between the groups’ means is as large as possible compared to the 
within-group variance, i.e. the directions that discriminate as much as possible 
between all groups [35, 36]. One problem of applying this method to spectroscopic 
data is collinearity. If a large number of variables are used, it will not be possible to 
calculate the inverse of the covariance matrices involved. In order to overcome this 
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problem, we first applied unfold-PCA to the EEMs to reduce dimensionality. Then, 
we applied Fisher’s LDA to the unfold-PCA scores. 
 
We applied Fisher’s LDA to test its ability for discriminating between EVOO and 
5% AD. Before applying Fisher’s LDA, unfold-PCA was computed to reduce 
dimensionality. It was computed on the same 15×722 unfolded and column mean-
centered matrix used in Section 3.2.2. Again five PCs were considered for 
computing the model (99.64% expl. var.). The unfold-PCA scores of these 15 EVOO 
were used as class 1 of the training set. Since adulterated samples have also to be 
included in the training set, we prepared mixtures (at 5% adulteration level) of the 
oils in class 1 and four of the five OPO, making a total of 28 AD. They were 
prepared by adding the OPO randomly. These samples were projected onto the 
unfold-PCA model of the EVOO samples and their scores were used as class 2 of 
the training set. Afterwards, we projected the rest of EVOO (13 samples) and their 
AD (65 samples), whose scores formed the test set of Fisher’s LDA. This procedure 
enabled to have independent samples on the two sets. In addition, one of the 
adulterants of the test set was not included in the training set. This was done in 
order to test the model against new adulterants not included in the calibration 
data. 
 
The training set was used to compute the Fisher’s linear discriminant function 
(LDF) or canonical variate. Then, the samples of the training and test sets were 
projected onto the LDF and their Fisher’s LDA scores calculated. Fig. 8 shows the 
score plot of Fisher’s LDA. The boundary between classes was set taking the 
centroid of each class and drawing a line half-way between the two centroids [36]. 
Table 2 shows the percentage of correct classification for the training set 
(recognition ability) and the test set (prediction ability). All the samples on the 
training set were classified in the correct class. For the test set, high percentages of 
correct classification were obtained (85% for EVOO and 98% for AD). The AD of 
the test set prepared from the new OPO not included in the training set were 
correctly classified. Comparing these results with those obtained from Hotelling T2 
and Q statistics (Table 1), it should be noticed that both methods have similar 
ability to recognize non-adulterated samples. In the case of the AD, Fisher’s LDA is 
slightly better than Q and very superior than Hotelling T2. 
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Fig. 8. Score plot from Fisher’s LDA (training and test sets): EVOO (◊), and 5% AD ( ). 
Boundary between classes (− − − ). 
 
  

              Table 2. Results of Fisher’s LDA 
 
 
 
 

 
 
 
 
3.2.4 Discriminant multi-way partial least squares regression 
Another supervised pattern recognition method is discriminant N-PLS. We 
checked if discrimination between EVOO and 5% AD could be improved by using 
this method. The training set (43×38×19) (samples×number of λem×number of 
λex) contained the 15 EVOO selected in section 3.2.1 and the same 28 AD made 
from these oils, used in Fisher’s LDA. The test set (78×38×19) contained the rest of 
EVOO (13 EEMs) and their AD (65 EEMs). As in Fisher’s LDA, one of the 
adulterants of the test set was not included in the training set. As we had only two 
classes, we used discriminant N-PLS1. The dependent variable y had 0 for objects 
belonging to the EVOO group (class 1) and 1 for objects belonging to the 5% AD 
group (class 2). 

 

Class Correct classification (%)

Recognition ability Prediction ability

EVOO                     100                                    85
5% AD                    100                                    98
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Prior to the application of the N-PLS model, the data were centered across the first 
mode (samples). After applying leave-one-out cross-validation, we selected six 
factors to be considered in the model (var. expl. y  = 99%, var. expl. X  = 85%, 
calibration error (RMSEC = 0.2), cross-validation error (RMSECV = 0.2)). Then we 
projected the test set. The prediction error (RMSEP) was around 0.2. Fig. 9 shows 
the N-PLS scores of the training and the test sets of the first two factors (78.67% of 
expl. var.) and Fig. 10, the loadings of these factors. Discrimination between the 
two classes was achieved by a combination of factors 1 and 2. The loading plot  
shows that factor 1 has mainly contributions of oxidation products because of the 
presence of two peaks around λem = 440 nm and λem = 470 nm (Fig. 10a). Some 
contribution of Vitamin E can also be observed (λem = 525 nm). On the contrary, 
factor 2 has more influence of Vitamin E. 
 
The criterion to assign one object to one class was that predicted y smaller than 0.5 
was interpreted as belonging to the EVOO class and y predicted larger than 0.5 
was interpreted as belonging to the AD class. On the basis of this criterion, a 100% 
of correct classification was obtained for the training and the validation sets. Fig. 11 
shows the plot of the predicted vs. the measured values for the validation set. As it 
can be seen, there is no overlap between the two classes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Score plot from discriminant N-PLS. Factor 1 vs. factor 2 (training and test set): EVOO 
(◊), and 5% AD ( ). 
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Fig. 10. Discriminant N-PLS emission (a) and excitation (b) loadings: factor 1 ( ⎯ ), factor 2 ( 
− − − ). 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11. Predicted vs. measured values for the test set obtained by discriminant N-PLS using 
six factors. Boundary between classes (− − − ). 

 
3.3 Quantification 

We applied the N-PLS regression method to check if besides detecting OPO 
adulteration, N-PLS was also able to quantify it at the level of 5%. In order to 
ensure not having predicted values at the extremes of the model and thereby 
avoiding large prediction errors, we included 10% AD in the calibration set. Thus, 
the calibration set contained the same samples used as training set for Fisher’s 
LDA and discriminant N-PLS plus a group of 10% AD. The latter was prepared 
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similarly to the 5% AD (i.e. from the 15 EVOO of the training set by adding the 
same four OPO). In this way, one of the OPO used for preparing the AD of the test 
set remained out of the calibration set. Hence, the calibration set was composed of 
71 samples (15 EVOO, 28 AD at 5% and 28 AD at 10% level). The test set consisted 
of the rest of EVOO (13 samples) and their 5% AD (65 EEMs). Prior to the 
application of the N-PLS model, the data were centered across the first mode 
(samples). The optimum number of factors was selected by leave-one-out cross-
validation. We found six factors to be significant (99.60% expl. var. ( X ), 87.36% 
expl. var. ( y )) and the RMSECV and RMSEC were 1.6% and 1.4%, respectively. 
The prediction error for the test set was RMSEP = 1.2%. 

4. CONCLUSIONS 

We have shown the potential of EEFS combined with three-way methods of 
analysis to detect OPO adulteration in EVOO from the PDO “Siurana” at 5% level. 
Unfold-PCA combined with Hotelling T2 and Q statistics can be used as a fast 
screening method for discriminating between non-adulterated and adulterated 
oils. The Q statistic gave best classifications than Hotelling T2 for adulterated 
samples (97%). The reason is that Q is calculated for the residual part of the 
projected samples and thus finds more easily variations that are not included in the 
model. The results were slightly improved by using Fisher’s LDA. Subsequently, 
discriminant N-PLS was found to be superior for detecting adulteration and a 
100% of correct classification was obtained. Finally, we quantified OPO 
adulteration around 5% level using the N-PLS regression method, obtaining a 
prediction error of 1.2%. 
 
In future work we aim to build a robust methodology based on EEFS and three-
way methods of analysis for detecting other adulterations in EVOO. 
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SUMMARY 

The production area of the Protected Denomination of Origin (PDO) “Siurana” 
olive oils can be divided into two regions: “Montsant” and “Camp de Tarragona”, 
with different orography, soil characteristics and climatic conditions. As a result of 
these differences, oils have different stability. Here we show that excitation-
emission fluorescence can detect this different stability. Oils from “Montsant” 
region (more stable) show more fluorescence intensity above 500 nm (due to 
vitamin E) and less below 500 nm (due to oxidation products) than those from 
“Camp de Tarragona”. Discrimination between oils from the two PDO “Siurana” 
regions was achieved by means of discriminant unfold partial least squares 
regression, giving a percentage of correct classification of 94% for “Siurana-Camp” 
and 100% for “Siurana-Montsant” oils. 
 
 
 
 
 
Keywords: Fluorescence spectroscopy; Partial least squares; PDO “Siurana”; Three-way 
methods of analysis; Virgin olive oil  
 
 



Chapter 5 
 

        164

1. INTRODUCTION 

Olive oil is an important food product, especially in the Mediterranean countries, 
and its characterisation is an issue of current interest. At present, there is no single 
analytical index for characterising it, and numerous physical and chemical 
parameters (such as free acidity, peroxide value, K232 and K270 among others) must 
be measured to determine its geographical origin and/or olive variety (Aparicio, 
1988; Tous et al., 1997; Lanteri et al., 2002; Marini et al., 2004). This requires 
application of several techniques, such as chromatographic and spectroscopic, 
which have often the problem of being time-consuming. Other techniques (e.g. 
headspace-mass spectrometry (Marcos et al., 2002) and nuclear magnetic resonance 
(Sacchi et al., 1998)) have also been applied for this purpose. However some of 
them are not always present in the quality control laboratories. Fluorescence 
spectroscopy has also been applied to assess the authenticity of olive oils 
(Kyriakidis and Skarkalis, 2000; Sayago et al., 2004). The main advantages of this 
technique are that no complex sample preparation is required and that it is very 
fast. With excitation-emission fluorescence spectroscopy (EEFS) a set of 
fluorescence spectra can be recorded at different excitation wavelengths (λex) 
yielding an excitation-emission matrix (EEM). Such amount of data enables more 
information to be obtained compared to when a single spectrum is measured. 
There are some examples of the application of EEFS to olive oils in the literature 
(Scott et al., 2003; Guimet et al., 2004 a, b). Multivariate chemometric methods have 
been widely applied to the data obtained from analytical techniques in order to 
differentiate between olive oil cultivars and/or varieties (Armanino et al., 1989; 
Boggia et al., 2002; Lanteri et al., 2002, Marini et al., 2004). 
 
Spain is one of the most important olive oil producers and currently has nine 
protected denominations of origin (PDO) (five in Andalusia, two in Catalonia, one 
in Castilla La Mancha and one in Aragon). The PDO label defines the origin of the 
oils and the varieties used and guarantees the production and transformation of 
the product in its geographic areas. The products included in the same PDO have 
some exceptional characteristics in common, including both analytical 
specifications and organoleptic properties. In this work we focus on olive oils from 
the PDO “Siurana”. The PDO “Siurana” production area is a strip of the province 
of Tarragona, in Catalonia (Spain). “Siurana” oils, which are mainly obtained from 
arbequina olives (more than 90%), may also contain small proportions of royal and 
morruda varieties. The physicochemical characteristics of “Siurana” oils, such as 
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fatty acids, polyphenols, and stability vary depending on several factors. One of 
the most important is the state of ripeness of the olives. The geographical origin of 
olives (which includes orography, soil characteristics and climatic conditions) has 
also great influence (Tous et al., 1997). The PDO “Siurana” production area can be 
divided into two regions: one inner and mountainous region, which is 
denominated “Montsant” and another closer to the sea, which is denominated 
“Camp de Tarragona”. “Siurana-Montsant” (SM) oils have more content on oleic 
acid and phenolic compounds and less content on linoleic acid than Siurana-Camp 
(SC) oils. This makes SM oils more stable against oxidation than SC oils. These two 
types of oils have also different sensory properties. SM oils are in general bitterer 
and their colour is more intense, whereas SC oils are sweeter and more fluid. The 
differences between SM and SC oils are explained in more detail elsewhere (Tous 
et al., 1997). 
 
In this paper we show the potential of the fast technique EEFS to differentiate 
between oils from the two regions of PDO “Siurana”. The method discriminant 
unfold partial least squares regression (DU-PLSR) was applied due to its ability for 
discriminating. 

2. EXPERIMENTAL 

2.1. Samples 
29 extra virgin olive oils from the PDO “Siurana” were analysed. Samples 1-16 
came from SC region and samples 17-29 came from SM region. All the samples 
analysed came mainly from arbequina olives and were obtained during the same 
harvesting year (2003). The ripeness stage of the two sets of olives was similar. 
Table 1 shows the locality of origin of the samples. The oils were stored in amber 
glass bottles under nitrogen atmosphere at 7ºC and were analysed without any 
prior treatment. All samples were measured in duplicate. 
 
2.2. Instrumentation and software 
EEMs were measured with an Aminco Bowman series 2 luminescence 
spectrometer equipped with a 150 W xenon lamp and 10 mm quartz cells. The 
instrument detector was operated using the EmL/Ref channel and applying a 600 
V voltage. Excitation and emission ranges were λex = 300-390 nm and λem = 415-600 
nm, respectively. Measuring emission above excitation prevented Rayleigh scatter. 
The step size and band-pass of both monochromators were 5 nm and 4 nm, 
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respectively. The scan rate was 30 nm s-1. The instrument software was used to 
correct the EEMs for deviations in the idealiy of the lamp, monochromators and 
detector (Lakowicz, 1999). 
 
Data were exported to ASCII code and processed with Matlab software (version 
6.5) (Matlab, 2002) and the PLS-Toolbox (version 3.0) (PLS-Toolbox, 2003). 
 
                        Table 1. Samples and their locality of origin 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. RESULTS AND DISCUSSION 

3.1. Spectra 

In the range studied (λex = 300-390 nm; λem = 415-600 nm) (Fig. 1), the main 
fluorescent compounds present in virgin olive oils are vitamin E, which emits 
around λem = 525 nm and oxidation products (conjugated hydroperoxides formed 
as a result of fatty acids oxidation by oxygen), which give rise to two low peaks 
around λem = 445 and λem = 475 nm (Kyriakidis and Skarkalis, 2000). The inspection 

     Sample                      Origin                                     Region 
     number 
     1, 10       La Selva del Camp             SC 
     2-4           Reus                                        SC 
     5               Llorenç del Penedès    SC 
     6                                 Valls                               SC 
     7         Alcover                  SC 
     8            Constantí                  SC 
     9, 16           La Canonja                    SC 
     11             Maspujols          SC 
     12          Alforja                  SC 
     13   Les Borges del Camp     SC 
     14       Almoster        SC 
     15                               Castellvell            SC 
     17, 18                         Ulldemolins           SM 
     19                               La Serra d’Almos         SM  
     20                               La Bisbal de Falset        SM 
     21                               Margalef                  SM 
     22                               Cabacés              SM 
     23                               La Vilella Alta                           SM 
     24                               Marçà                       SM 
     25                               Capçanes           SM 
     26                               Falset                        SM 
     27                               El Masroig              SM 
     28                               El Molar               SM 
     29                               La Palma d’Ebre   SM 
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of the EEMs of the samples reveals that the two types of “Siurana” oils have 
different fluorescence. SC oils tend to have less intensity at emissions above 500 
nm (vitamin E) and more intensity at emissions below 500 nm (oxidation products) 
than SM oils. A large content on oxidation products indicates a major degradation 
of the oils, whereas vitamin E contributes to give them stability, because of its 
antioxidant effect. Thus, the trend seen on the EEMs agrees with the fact that SM 
oils are more stable than SC oils. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Average EEMs between λex = 300-390 nm; λem = 415-600 nm: (a) “Siurana-Camp”; (b) 
“Siurana-Montsant” oils. 
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In order to check if the differences between the mean spectra plotted in Figure 1 
were statistically significant, we applied the Hotelling’s T2 statistic (Krzanowski, 
2000). For applying this test, the mean values of the two replicates of each sample 
were used. The EEMs were unfolded in such a way that all emission spectra of 
each EEM were concatenated in a row. Thus, for each sample a row-vector of size 
(1×722) was obtained, where 722 is the product number of λex×number of λem. As 
the number of variables was superior to the number of samples, principal 
component analysis (PCA) was computed to reduce dimensionality. The 
Hotelling’s T2 statistic was applied on the scores of the PCA model using five PCs. 
The calculated F was Fcal = 18.21 and it was compared to the critical F-value for a 
two-sided test at α = 0.05 (Ftab = 3.15). As Fcal was higher than the critical F-value, 
we can conclude that the mean spectra of the two “Siurana” regions are statistically 
different. However, the differences between the EEMs of the two groups of oils 
were not obvious for all the samples. For this reason, chemometric methods were 
applied for discrimination. 

 

3.2. Discriminant unfold partial least squares regression (DU-PLSR) 
Partial least squares regression (PLSR) is a calibration method widely used in 
multivariate analysis. The regression is based on factors determined by employing 
both the independent variables ( X ) and the variable to be predicted ( y ). 
Discriminant partial least squares regression (D-PLSR) is a particular case of PLSR 
in which the variable to be predicted is the membership or no-membership of the 
samples to one class. 
 
Before applying D-PLSR, an X matrix containing the unfolded EEMs of the 
samples was built (i.e. each row consisted of all the fluorescence spectra measured 
of one sample concatenated). Then, the method applied to this matrix is named 
DU-PLSR. The size of X was 58×722 (samples (in duplicate)× (number of 
λem×number of λex)). The matrix was column mean-centered. Then we built a 
regression model )(Xy f=  where y was a class variable made up of a column 
with zeros for SC oils (class 1) and ones for SM oils (class 2). The optimal number 
of factors, selected by leave-two-out cross-validation was two. The explained 
variance by the two factors was 93% of X and 76% of y . Figures 2-3 show the score 
and loading plots of DU-PLSR. The loadings were folded back. The score plot (Fig. 
2) shows that factor 1, which has 33% expl. var. of X and 71% expl. var. of y , is 
the most discriminating between the two types of oils, because SM oils tend to  



Grasas y Aceites 56 (4) (2005) 292-297 
 

        169

have scores higher than 1 on this factor and SC oils tend to have scores lower than 
1. However, some of the samples are not well separated along factor 1 (12, 14, 19, 
27, 28, and 29). As far as factor 2 is concerned, there is no discrimination between 
“Siurana” regions. These results can be interpreted by looking at the loadings (Fig. 
3). Factor 1 loadings have two differentiated regions: a positive zone at emissions 
above 500 nm (due to the influence of vitamin E) and a negative zone at emissions 
below 500 nm (due to oxidation products). The larger value of the loadings in the 
negative zone indicates that oxidation products have more influence than vitamin 
E on this factor. A closer inspection of the EEMs revealed that the main differences 
between the two “Siurana” types of oils lie in the fluorescence below λem = 500 nm 
(the oxidation products emission region), whereas the differences on vitamin E (λem 

above 500 nm) are less obvious. This explains the greater weight of oxidation 
products on the most discriminant factor of DU-PLSR. Thus, the negative scores on 
factor 1 of most of SC oils indicate that they are more deteriorated than SM oils. On 
the contrary, high scores on factor 1 indicate more stability of the oils (high content 
on vitamin E and low on oxidation products). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Score plot from DU-PLSR to the EEMs of the “Siurana” olive oils. ( ) SC oils, (ο) SM 
oils.  
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Fig. 3.  Refolded loadings from DU-PLSR to the EEMs of the “Siurana” olive oils . (a) factor 
1; (b) factor 2. 

 
Samples 12 and 14 are located on the boundary between the two classes, having 
scores close to one on factor 2 (Fig. 2). The special behaviour of samples 12 and 14 
is due to the fact that their EEMs are very similar to those of samples 19, 20 and 21, 
whose region below λem = 500 nm is almost flat. This indicates a very low content 
on oxidation products. This can be due to several factors, e.g., a greater stability or 
a better storage. In addition, the whole intensity of these EEMs was not very high. 
In spite of the membership of sample 12 to the SC region, it is very close to the SM 
region. This may explain its position on the score plot (Fig. 2). For sample 14, the 
reason is less obvious, but the shape of its fluorescence EEMs indicated that this 
sample has been very little deteriorated. 
 
Factor 2 was seen to be correlated to the whole fluorescence intensity of the oils. 
Thus, the most intense EEMs (samples 6 and 29) had the largest scores of this factor 
and the less intense EEM (sample 13) had the lowest scores. From the score plot 
(Fig. 2), it can also be observed that repeatability of the measurements was quite 
good, because the duplicates of the samples appear very close each other. In order 
to check the precision of the method, we applied analysis of variance (ANOVA) to 
the score matrix. Varwithin indicates the percentage of variance between the pairs of 
replicates, and varbetween indicates the percentage of variance between samples. 
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Both values are referred to the total variability. These values were varwithin = 0.2% 
and varbetween = 99.8% in relative terms. From these results, we can conclude that 
the precision of the method was acceptable because the variability between 
replicates is much smaller than the variability between samples. 
 
Figure 4 shows the predicted vs. reference values obtained by cross-validation 
from DU-PLSR for the two-factor model. The oils were assigned to SC class when 
the predicted y was lower than 0.5. Oils with a predicted value higher than 0.5 
were assigned to SM class. Under this criterion, the percentage of correct 
classification was 94% for SC oils and 100% for SM oils. Only sample 14 was 
misclassified. The root mean square error of cross-validation (RMSECV) was 0.27. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4. Predicted vs. reference values obtained by cross-validation from DU-PLSR (2 factors). 
The straight line is the ideal regression line. The broken line (− − −) identifies the boundary 
between classes. 
 
Besides of concatenating the data matrices to form a larger matrix, they can also be 
arranged in a three-dimensional structure. The D-PLSR method applied to the data 
arranged in this way is named discriminant multi-way partial least squares 
regression (DN-PLSR). We checked if the results obtained from DU-PLSR could be 
improved using DN-PLSR. Thus, the oil EEMs were stacked on a three-way array 
of size 58×38×19 (samples (in duplicate)×number of λem×number of λex). Then 
the three-way array was centered along the first mode (samples) and DN-PLSR 
was computed on it. The class variable was defined as in DU-PLSR. The optimal 
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number of factors, selected by leave-two-out cross-validation was two (90% expl. 
var. of X and 76% expl. var. of y ). The results did not improve compared to DU-
PLS. The percentages of correct classification were 91% for SC oils and 100% for 
SM oils. The two replicates of sample 14 were misclassified and one replicate of 
sample 12 was in the boundary between the classes ( y = 0.5). 

4. CONCLUSIONS 

This work has shown the potential of EEFS and three-way methods of analysis for 
discriminating between the two types of “Siurana” olive oils. The different 
orography, soil characteristics and climatic conditions of the SC and SM regions 
lead to olive oils with different chemical composition, which can be detected by 
fluorescence spectroscopy. The more stability of SM oils makes them to have less 
content on oxidation products. This implies that SM emit much less fluorescence at 
emissions below 500 nm compared to SC, which are more deteriorated. In addition, 
SM oils tend to have more content on vitamin E (emissions above 500 nm). 
 
Using DU-PLSR enabled to discriminate between the two types of “Siurana” oils 
with a percentage of correct classification of 94% for SC and 100% for SM oils, with 
only one misclassified sample. This method also showed the good repeatability of 
the measurements.  
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ABSTRACT 

Non-negative matrix factorization (NMF) is a technique that decomposes 
multivariate data into a smaller number of basis functions and encodings using 
non-negative constraints. These constraints make that only positive solutions can 
be obtained and thus this method provides a more realistic approximation to the 
original data than other factorization methods that allow positive and negative 
values. Here we show that NMF is a powerful technique for learning a meaningful 
parts-based representation of the fluorescence excitation-emission matrices (EEMs) 
of different sets of olive oils. The capabilities of NMF together with Fisher’s LDA 
for discriminating between various types of oils were also studied. In all cases, 
good classifications were obtained (90-100%). 
 
 
 
 

Keywords: Non-negative matrix factorization; Fisher’s linear discriminant analysis; 
classification; olive oil; EEMs 
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1. INTRODUCTION 

Olive oil authentication is an issue of great interest in the manufacturing countries 
of this food product. Authenticity covers many aspects, including adulteration, 
mislabelling, characterization, and misleading origin [1]. Edible olive oils include 
virgin (V), pure (P), and olive-pomace (OP) oil. V olive oil is the highest-quality 
type of olive oil. It is obtained from the fruit of the olive tree by mechanical 
processes that do not lead to alterations in the oil. It is divided into different 
categories regarding its acidity and its sensory characteristics. Thus, extra virgin 
(EV) olive oil has a maximum acidity allowed of 1.0g/100g, expressed as oleic acid, 
whereas fine virgin (FV) olive oil has a maximum acidity allowed of 2.0g/100g. P 
olive oil is a blend of edible V olive oil and refined olive oil. By extracting the olive-
pomace (i.e. the olive residue remaining from previous pressings) with authorized 
solvents, refined olive-pomace oil is obtained. This oil is improved with edible V 
olive oil to obtain OP oil [2]. 
 
Owing to its higher price, V olive oil is susceptible of undergoing fraudulent 
practices concerning its authenticity. For this reason, analytical techniques must 
constantly be developed and improved to fight against fraud. Nowadays, olive oil 
authenticity is manly carried out by means of chromatographic techniques [1]. 
These techniques have some handicaps, such as being time-consuming and 
requiring sample manipulation. For this reason, other techniques have also been 
applied. They include headspace-mass spectrometry (HS-MS) [3], and 
spectroscopic techniques, such as near infrared (NIR), mid-infrared (MIR), Fourier 
transform infrared (FT-IR), Fourier transform-Raman (FT-Raman) [4-11], nuclear 
magnetic resonance (NMR) [9,12-15], chemiluminescence [16], and spectral 
nephelometry [17]. Fluorescence spectroscopy has also been applied for assessing 
olive oil authenticity [18-24]. This technique has some nice properties, such as its 
speed of analysis, that it is reagentless, and that small amounts of sample are 
required. When a set of fluorescence spectra at different λex are recorded, a three-
dimensional landscape is obtained, the so-called fluorescence excitation-emission 
matrix (EEM). Recording EEMs enables to obtain more information about the 
fluorescent species present in the oils, because the bands arising in a wider area are 
considered [22,23]. 
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Several chemometric methods, including unsupervised pattern recognition 
[6,12,17,22,23], classification [3,6,14,15,19,20,24,25] and regression [4-6,8,10,11,24] 
methods have been widely applied for olive oil authentication. 
 
Lee and Seung [26] introduced non-negative matrix factorization (NMF) in its 
modern formulation as a method to decompose images into parts-based 
representations. The method compresses the data using non-negativity constraints. 
These constraints make that only additive combinations of the parts are allowed to 
represent the original data. As a result, and unlike principal component analysis 
(PCA), NMF leads to decompositions with only positive values. Lee and Seung [26] 
applied this method to a set of face images and showed that the resulting basis 
functions represented localized features that corresponded with intuitive notions 
of the parts of faces (eyes, mouths, noses, …). By contrast, they noted that the 
application of PCA to image data yielded components with no obvious visual 
interpretation. Hence, in some cases, NMF may be more suitable than PCA, 
because it provides a more realistic interpretation of the data. 
 
Besides image analysis, NMF has been applied to other many areas, including text 
data [26-28], genetics [29], colour spectra [30], and sound signals [31]. In some 
cases, NMF has been successfully applied for discrimination purposes [27,28]. 
 
In this paper we apply NMF to the EEMs of different sets of olive oils with a 
twofold objective. On one side, we study the ability of NMF to obtain a meaningful 
parts-based representation of the spectra, and look into the decomposed data to see 
if they can be related to the fluorescence species present in oils. On the other side, 
we check the capabilities of NMF used together with a discrimination method such 
as Fisher’s linear discriminant analysis (LDA) for classification of different sets of 
oils. 

2. NON-NEGATIVE MATRIX FACTORIZATION (NMF) 

The NMF algorithm [26,32] is a method that compresses a set of objects in a smaller 
number of basis functions and their encodings. The basis functions are analogous 
to PCA loadings, because they contain information about the variables, whereas 
the encodings are analogous to PCA scores, because they are related to the objects. 
Given a set of multivariate j-dimensional data vectors, the vectors are placed in the 
columns of a IJ × matrix V where I indicates the number of objects in the data 
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set. This matrix is then approximately factorized into a FJ × matrix W and a 
IF × matrix H . Then the NMF algorithm constructs approximate factorizations of 

the form: 
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where the f columns of W are called the basis set, each column of H is called and 
encoding, and F is the rank of the factorization. Although there is not a clear 
criterion for selecting F , it is generally chosen by FIJ )( + < JI . NMF does not 
allow negative entries in the matrix factors W and H . 
 
The method starts by randomly initializing matrices W and H with positive 
values, which are iteratively updated to minimize the objective function 
 

                                           [ ]∑∑
= =

−=
J

j

I

i
jijijiD

1 1
)()log( WHWHV                                        (2) 

 

subject to the non-negativity constraints described above. Different update rules 
can be applied for minimizing the objective function [32]. Here we apply the 
divergence-based update equations [29]: 
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To represent a new vector using a predefined set of basis functions, the same 
algorithm is iterated without modifying the matrix W . Thus, fixing W  and 
starting with positive random h , a representation of a new data vector according 
to the basis defined in W is obtained. 
 
Some features of NMF that distinguish it from PCA are summarized below: 

- The basis functions are non-orthogonal and they do not correspond to directions 
of maximal variance, but to physical or conceptual features in a non-negative 
space. 
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- NMF is not nested (i.e. it provides different basis functions depending on how 
many factors are computed). 

- Implementation requires non-linear iterative optimization. 

- Different objectives functions can be used. 

- Data must not be centered before applying the algorithm, because they must 
remain non-negative. 

 

3. EXPERIMENTAL 

3.1. Sample sets 
3.1.1. Commercial Spanish olive oils 
In the present work, three sets of olive oils were considered. The first set was 
composed of 56 commercial olive oils from different Spanish regions and from 
different olive varieties. It included 29 V (28 EV and 1 FV), 20 P and 7 OP oils [23]. 
Figure 1 shows the average EEMs of each type of oil. They have noticeable 
differences. V oils have their maximum fluorescence above λem = 500 nm, whereas 
at lower emissions the fluorescence peaks are much lower. This is because of the 
high content of vitamin E and the low content of oxidation products in these oils 
[18]. On the contrary, P and OP oils have a larger content of oxidation products, 
which give rise to a broad peak around λem = 450 nm. 
 
3.1.2. Extra virgin olive oils from the Protected Denomination of Origin “Siurana” 
The second set was composed of 28 EV olive oils from the Protected Denomination 
of Origin (PDO) “Siurana”. This production area is divided into two regions 
(“Siurana-Camp” (SC) and “Siurana-Montsant” (SM)). Oils from these regions 
differ on composition, which makes them have different stability and sensory 
properties [33]. The set of “Siurana” oils used in this study was composed of 15 SC 
and 13 SM oils. Figure 2 shows the average EEMs of the SC and the SM oils used. 
The main difference between them is that SC EEM displays a peak around λex = 
300-350 nm, λem = 415-470 nm, which does not appear in SM EEM. This indicates a 
more advanced degradation stage for SC oils. 
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Figure 1. Average EEMs of data set 1 between λex = 300-390 nm; λem = 415-600 nm: (a) V, (b) 
P, and (c) OP oils. 
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3.1.3. Extra virgin olive oils adulterated with olive-pomace oils 
The third set of oils contained the same 28 PDO “Siurana” EV olive oils and 
admixtures (ADs) of them with 5% (w/w) of 5 different OP oils. The total number 
of ADs was 93. The procedure for preparing the ADs is explained elsewhere [24]. 
Figure 3 shows the average EEMs of the 28 EV olive oils and the 93 ADs. Note that 
adulteration mainly causes an increase of fluorescence at emissions below 500 nm. 
This is due to the presence of oxidation products in the OP oils added. 
 
3.2. Instrumentation and software 
EEMs were measured with and Aminco Bowman series 2 luminescence 
spectrometer equipped with a 150W xenon lamp and 10 mm quartz cells. The 
instrument detector was operated using the EmL/Ref channel and a voltage 

Figure 2. Average EEMs of data set 2 
between λex = 300-390 nm; λem = 415-600 
nm: (a) SC, (b) SM oils. 
 

Figure 3. Average EEMs of data set 3 
between λex = 300-390 nm; λem = 415-600 
nm: (a) PDO “Siurana” EV olive oils, (b) 5% 
(w/w) ADs with OP oils. 
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around 600 V was applied for all samples. Excitation and emission ranges were λex 

= 300-390 nm and λem = 415-600 nm, respectively. Measuring emission above 
excitation prevented Rayleigh scatter. The step size and band-pass of both 
monochromators were 5 and 4 nm, respectively. The scan rate was 30 nm s-1. The 
instrument software was used to correct the EEMs for deviations in the ideality of 
the lamp, monochromators, and detector [34,35]. 
 
Data were exported to ASCII code and processed with Matlab software (version 
6.5) [36]. The Matlab code for the NMF algorithm was obtained from the Broad 
Institute’s website [37]. The Fisher’s LDA algorithm was built-in-house. 
 

4. RESULTS AND DISCUSSION 

4.1. Selection of the training and tests sets 
For all the sets of oils, the procedure for selecting the training and the test sets for 
the chemometric methods was the following. The EEMs were stacked in a three-
way array of size (samples ×number of λem×number of λex). This array was then 
unfolded to a matrix of size (samples × (number of λem×number of λex)) by 
combining the spectral modes. PCA was computed on the centered matrix after 
selecting the optimal number of factors by means of the leave-one-out cross-
validation method. The samples in the training set were chosen on the basis of the 
score plots. The criterion was to cover the entire variability domain. The rest of 
samples were included in the test set. 
 
For the set of commercial Spanish olive oils a six-factor PCA model (99.78% expl. 
var.) was calculated on the unfolded matrix containing the spectra of the 56 
samples. From the score plots, it was decided to split the sample set into a training 
set containing 28 oils (14 V, 10P and 4 OP) and a test set with 28 oils (15 V, 10 P and 
3 OP). 
 
In the case of oils from the two “Siurana” regions, a five-factor PCA model (99.49% 
expl. var.) was calculated. The set of 28 samples was split into a training set of 15 
oils (8 SC and 7 SM) and a test set of 13 oils (7 SC and 6 SM). 
 
For the set of PDO “Siurana” oils and their ADs, only non-adulterated samples 
were considered for the PCA model. The training set to be used for Fisher’s LDA 
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contained 15 EV oils and the 28 ADs prepared from them. The test set included the 
remaining 13 EV oils and the 65 ADs prepared from them [24]. 
 

4.2. Application of non-negative matrix factorization and Fisher’s linear 
discriminant analysis 

4.2.1. Discrimination between commercial Spanish olive oils 
NMF was applied to the unfolded matrix containing the spectra of the 28 oils of the 
training set. Different number of factors (2-6) were considered. After obtaining the 
basis functions and the encodings for the training set, the test set was projected 
onto the models and the encodings of the new samples were calculated. 
Afterwards, the NMF encodings of the training set were used to compute the 
Fisher’s linear discriminant functions (LDFs) for discriminating between the three 
classes of oils. The NMF encodings of the test set were also used as test set for 
Fisher’s LDA. 

 
The best classification was obtained from the NMF model using 5 factors (99.18% 
expl. var.). Figure 4 shows the basis functions obtained from this model. They were 
folded back to the original dimensions of the EEMs.  
 
Figure 5 shows the encodings of factor 3 vs. factor 5 for all the samples, which are 
those displaying the best separation between the three classes of oils. The basis 
functions obtained provided representations of typical fluorescent features of the 
oil types. Thus, basis functions 1 and 3 (Fig. 4a and 4c) are similar to the EEMs of V 
oils (Fig. 1a), specially basis function 3, having strong fluorescence around λem = 
525 nm (due to vitamin E) and emitting little fluorescence below λem = 500 nm [23]. 
Basis function 4 (Fig. 4d) provides a good representation of the fluorescence 
landscapes of P oils (Fig. 1b), and basis function 5 (Fig. 4e) displays the typical 
fluorescence of OP oils (Fig. 1c). The broad peak at λem below 500 nm found in P 
and OP oils has been related to the presence of large amounts of oxidation 
products [23]. Basis function 2 does not match with the whole EEM of any type of 
oil, but the peak arising around λex = 310-360 nm; λem = 415-480 nm may also be 
related to the presence of oxidation products in highly degraded oils [23]. 
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Figure 4. NMF basis functions obtained for the commercial Spanish olive oils (data set 1). 
 

A quite good separation of the oil types was obtained from the encodings of factors 
3 and 5 (Fig. 5). As it was expected from the shape of the basis functions, OP oils 
had the highest encodings of factor 5, and V oils had the highest of factor 3. 
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Figure 5. NMF encodings of factor 3 vs. factor 5 for data set 1 (training and test set). V (◊), P 
( ), and OP ( ) oils. 
 
 
Figure 6 shows the score plot of Fisher’s LDA. The boundaries between classes 
were set taking the centroid of each class and drawing a line half-way between the 
pair of centroids [38]. This procedure was followed for all the Fisher’s LDA models 
presented in this paper. Table 1 shows the percentage of correct classification for 
the training set (recognition ability) and the test set (prediction ability). All V and 
OP oils were classified in the correct class. Regarding to P oils, a 90% of correct 
classification was obtained for both the training and the test set. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Score plot from Fisher’s LDA applied to data set 1 (training and test sets): V (◊), P 
( ), and OP ( ) oils. Boundaries between classes (− − −). 
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                     Table 1. Results of Fisher’s LDA applied to the commercial Spanish 
                     olive oils 
 
 
 
 
 
 
 
 

Fisher’s LDA was computed again using PCA scores instead of NMF scores. The 
six-factor PCA model (99.74% expl. var.) gave the best results. Classification 
percentages were identical to those obtained from NMF. 
     
4.2.2. Discrimination between EV oils from the two “Siurana” regions 
NMF was applied to the unfolded matrix containing the spectra of the 15 oils of the 
training set (8 SC and 7 SM oils). Then the test set was projected.  
 
In this case, the best classification was obtained with the NMF model using 6 
factors (99.97% expl. var.). Figure 7 shows the refolded basis functions of this 
model, and Figure 8 shows the encodings of factors 1, 3 and 4, which are the most 
discriminating. Basis function 1 displays a peak around λex = 300-360 nm, λem = 
415-480 nm. As it was said above, high fluorescence in this region indicates 
degraded oils. In general, SC oils have the highest encodings on factor 1 (Fig. 8). 
This means that they are more degraded than SM oils. Actually, this feature can 
also be observed from their EEMs (Fig. 2). Basis functions 3 and 4 (Fig. 7c and 7d) 
are related to the fluorescence of vitamin E. This is inferred from their shape, 
having a maximum intensity around λem = 525 nm. The encoding plots (Fig. 8) 
indicate that SM oils have more content on vitamin E than SC, because their 
encodings on factors 3 and 4 tend to be higher. The shape of basis function 2 (Fig. 
7b) indicates that it has also some influence of vitamin E. In addition, contributions 
of oxidation products of oils can also be found on this basis function (fluorescence 
around λex = 300-380 nm; λem = 415-440 nm). Basis functions 5 and 6 (Fig. 7e and 7f) 
are not assignable to any particular species, because their profiles cover the whole 
range. 
 
 

Class Correct classification (%) 

 Recognition ability                           Prediction ability 

1 (V) 
2 (P) 
3 (OP) 

         100                                                       100       
           90                                                         90 
         100                                                       100 
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Figure 7. NMF basis functions obtained for the PDO “Siurana” EV olive oils (data set 2). 

 
               Table 2. Results of Fisher’s LDA applied to the oils of the two “Siurana” 
                regions 

 
 
 
 
 

Class Correct classification (%) 
 Recognition ability                           Prediction ability 

1 (SC)             
2 (SM) 

         100                                                     100 
         100                                                     100                           
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Figure 8. NMF encodings for data set 2. (a) factor 1 vs. factor 3, (b) factor 1 vs. factor 4. SC 
( ), SM ( ) oils. 
 
 
 
Figure 9 shows the score plot of Fisher’s LDA for the PDO “Siurana” oils and Table 
2 the percentage of correct classification. As it can be seen, a 100% of correct 
classification was achieved for the training and the test sets. 
 
These results were compared to those obtained from PCA combined with Fisher’s 
LDA. The six-factor PCA model was the most suitable (99.77% expl. var.). The 
prediction ability for the SC group was 86%. For the rest of sets, classifications of 
100% were obtained. Thus, NMF was superior to PCA for discriminating between 
“Siurana” oils. 
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Figure 9. Score plot from Fisher’s LDA applied to data set 2. SC ( ), SM ( ) oils. Boundary 
between classes (− − −). 

 
4.2.3. Discrimination between EV oils and adulterations with OP oils 
NMF was applied to the same 15 EV olive oils as in the “Siurana” regions case. 
Then, the rest of samples were projected onto the model (the 13 EV oils of the test 
set and the ADs of both the training and the test set). The NMF encodings of the 15 
EV oils of the training set constituted class 1 for Fisher’s LDA, and those of the 28 
ADs prepared from these samples formed class 2. The remaining 13 EV oils and 
their 65 ADs were used as test set for Fisher’s LDA. 
 
As in the case of discrimination between the “Siurana” regions, the NMF model 
using 6 factors (99.97% expl. var.) was the most suitable. Thus, the same basis 
functions (Fig. 7) were considered. NMF factors 2, 5 and 6 captured the features 
that best distinguished between the two classes of oils. This can be seen from the 
encodings of these factors (Fig. 10). Thus, the general trend is that the ADs have the 
highest encodings on factor 2 and 6, whereas the non-adulterated samples have the 
highest encodings on factor 5. However, there are a few ADs that do not follow 
this trend. 
 
Figure 11 shows the score plot of Fisher’s LDA for the set of non-adulterated and 
adulterated EV oils, and Table 3 the percentage of correct classification. For non-
adulterated samples, a 93% of correct classification was obtained for the training 
set, and a 92% for the test set, with only one misclassified sample on both sets. In 
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the case of the ADs, all the samples of the training set were correctly classified, 
whereas the prediction ability was 98%, with one sample misclassified. 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. NMF encodings for EV oils and ADs (data set 3). (a) factor 2 vs. factor 5, (b) factor 
2 vs. factor 6. EV oils (◊), ADs (o). 
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Figure 11. Score plot from Fisher’s LDA applied to data set 3. EV oils (◊), ADs (o). Boundary 
between classes (− − −). 
 
 

Table 3. Results of Fisher’s LDA applied to the EV olive oils and the ADs 
 

Class Correct classification (%) 

 Recognition ability                           Prediction ability 
1 (EV)              
2 (AD) 

           93                                                     92 
         100                                                     98                                  

 

Fisher’s LDA was also applied to the PCA scores. The five-factor PCA model was 
the most discriminating (99.64% expl. var.). In this case, the recognition ability was 
100% for both classes, but the prediction ability was 85% and 98% for EV oils and 
ADs, respectively. 

5. CONCLUSIONS 

We have shown that NMF is a powerful technique for learning a meaningful parts-
based representation of spectroscopic data. The algorithm was applied to the 
fluorescence EEMs of three sets of olive oils. The basis functions represented 
specific features of the whole fluorescence landscape of oils, which could be related 
to some of their fluorophors. The non-negativity constraints of the algorithm 
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enabled to obtain realistic solutions, because only positive basis functions and 
encodings are obtained. 
 
The capabilities of NMF used together with Fisher’s LDA for discriminating 
between the different types of oils were also studied. In all cases, classifications 
above 90% were achieved. In some cases, NMF yielded better classifications than 
PCA. 
 
The results look very promising with regard to applicability of NMF to second-
order fluorescence data for discrimination purposes. However, further research on 
the combination of this method with other discrimination methods, such as 
quadratic discriminant analysis (QDA), discriminant partial least squares (PLS) 
regression or density methods is needed in order to improve classifications. 
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6.1 CONCLUSIONS 

The first part of this chapter summarizes the conclusions of the work presented in 
this thesis. 
 
1. EEFS can be applied directly to olive oils for obtaining information about their 
characteristics. Using EEMs (i.e. second-order data) is more advantageous than 
recording a single fluorescence spectrum at one excitation wavelength 
(multivariate data). The reason is that more information about the fluorescent 
species is considered. As a result, when EEMs are recorded differentiation between 
oil types improves compared to when a single fluorescence spectrum is 
considered. 
 
2. Unsupervised pattern recognition methods such as unfold-PCA, PARAFAC and 
HCA are very useful for the exploratory analysis of olive oils from bi-dimensional 
fluorescence data. They enabled to distinguish between different types of 
commercial olive oils (virgin, pure and olive-pomace) on the basis of their EEMs. 
In addition, unfold-PCA and PARAFAC allowed relating the fluorescence 
landscapes of oils to some of the fluorescence species present in oils (vitamin E, 
oxidation products and chlorophylls). It has to be taken into account that the 
samples used at this stage were not reference samples, since they were purchased 
in shopping centres. Thus, the conclusions stated here are referred to this type of 
samples. It is also important to note that the number of samples used in this study 
was reduced, especially OPOs. Hence, if the number of available samples had been 
higher, the results would have probably been different. In addition, all samples 
came from Spanish regions and other origins were not considered. Thus, the 
results of the exploratory analysis have to be seen as a trend considering the 
mentioned limitations. 
 
3. Application of exploratory methods to olive oil differentiation was performed 
considering two spectral ranges. The first one (λex = 300-400 nm; λem = 400-695 nm) 
contained the chlorophyll peak, whereas the second one (λex = 300-400 nm; λem = 
400-600 nm) did not include it. Chlorophylls had strong influence on all the models 
because of their high fluorescence intensity in virgin and pure olive oils. To 
overcome this problem data was scaled when the fluorescence region of the 
chlorophylls was included in the models. Nevertheless, even scaling data, 
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differentiation between oil types was worse when the fluorescent region of the 
chlorophylls was considered compared to when it was no used. 
 
4. Considering the spectral range without chlorophylls (λex = 300-400 nm; λem = 
400-600 nm) differentiation between oil types is manly due to the oxidation 
products in oils (conjugated hydroperoxides, and carbonyl compounds). These 
compounds exhibit a wide peak below λem = 500 nm in the fluorescence EEMs. On 
the contrary, vitamin E, which emits mainly above λem = 500 nm has low 
discrimination power. 
 
5. PARAFAC improves discrimination between oil types compared to unfold-PCA. 
In addition, PARAFAC has the advantage that extracts the underlying spectra of 
the main families of fluorophores. This method can also be used as a fingerprint of 
the oil types because the PARAFAC profiles are good approximations of the 
original EEMs.         
 
6. Inspection of unfold-PCA and PARAFAC score plots is an easy and rapid way of 
detecting outliers. In addition, as the loadings obtained contain information about 
the spectra, information about the cause of the different characteristics of such 
samples (e.g. a major degradation) can be extracted. Anyway, a deeper study about 
the properties of these samples should be done by reference method of analysis. 
 
7. The suitability of HCA to discriminate between a set of commercial Spanish 
olive oils (virgin, pure and olive-pomace) was studied. Concretely, HAC using the 
Euclidean distance as a similarity measure and the average linkage was applied. In 
this study, various preprocessing methods were compared. The best results were 
obtained when the unfolded EEMs in the range between (λex = 300-400 nm; λem = 
400-600 nm) were row normalized to length one and column autoscaled. In these 
conditions, all the samples were clustered in the correct group. Again, the results 
obtained here must to be considered bearing in mind that the samples were 
purchased in shopping centres and that the number of samples was reduced. 
 
8. The relationship between the fluorescence EEMs of oils and some quality 
parameters (PV and K270) was studied. Two methods were compared to study the 
correlation between the fluorescence spectra and these parameters: MLR computed 
on the PARAFAC scores and N-PLS regression. The latter provided better fits and 
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lower prediction errors. With N-PLS, the correlation between EEMs and PV was r 
= 0.94 and that between EEMs and K270 was r = 0.99, which are acceptable values. It 
has also been shown that EEFS is able to detect samples highly degraded at early 
stages (with high PV), because they exhibit strong fluorescence between λex = 315-
370 nm; λem = 415-460 nm. Thus, fluorescence in this region can be related to high 
amount of primary oxidation products (conjugated hydroperoxides). However, 
low correlation was observed between fluorescence and other quality parameters 
of olive oils (e.g. K232). Thus, EEFS is not a definitive technique for oil analysis, but 
can be used as a complementary technique for obtaining additional information to 
that obtained from the official methods of analysis.   
 
9. It has been shown that OPO adulteration in EVOOs can be detected by 
fluorescence measurements. Such adulteration increases the fluorescence intensity 
at emissions below 500 nm. This is due to the high content of oxidation products in 
OPO oils. The capability of this technique to detect other adulterants has not been 
tested yet. 
 
10. Three-way classification methods applied to second-order fluorescence data are 
able to discriminate between EVOOs from the PDO “Siurana” these oils 
adulterated with OPOs at low levels (5% w/w). The Hotelling T2 and Q statistics 
can be applied to unfold-PCA as a fast screening method for detecting such 
adulteration. However, in order to improve discrimination between non-
adulterated and adulterated samples, some supervised pattern recognition method 
must be applied. Fisher’s LDA computed on the unfold-PCA scores provides quite 
good classifications, but DN-PLSR is superior. In the study presented in this thesis, 
DN-PLSR yielded to a 100% of correct classifications for both the training and the 
test sets. The adulteration level can also be quantified by using N-PLSR. The ability 
of EEFS and the chemometric methods presented here to detect OPO adulteration 
below the 5% level has not been tested yet. 
 
11. PDO “Siurana” EVOOs from “Camp de Tarragona” and “Montsant” regions 
have different composition, which gives them different stability. These differences 
are captured by their fluorescence EEMs. It has been shown that oils from “Camp 
de Tarragona” in general emit more fluorescence at emission below 500 nm, due to 
a larger content of oxidation products, which gives them less stability compared to 
oils from “Montsant” region. Two three-way classification methods have been 
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applied to discriminate between these two types of oils (DU-PLSR and DN-PLSR). 
Both methods yielded good classifications. Nevertheless those obtained from DU-
PLSR were slightly better (94% of correct classification for “Siurana-Camp” oils 
and 100% for “Siurana-Montsant” oils). It has to be taken into account that this 
method has only been used to discriminate between oils from two very close 
geographical areas. No studies about discrimination between oils from other 
origins have been made so far. 
 
12. NMF has been applied to fluorescence spectroscopy for the first time. It has 
been shown that this method can decompose the EEMs of olive oils into parts that 
can be related to the fluorescence species contained in oils. The main advantage of 
NMF respect to PCA is that it provides a more realistic interpretation of the data 
because only positive solutions are allowed. In addition, a new classification 
method based on NMF combined with Fisher’s LDA has also been proposed. The 
capabilities of the method have been checked by applying it to classify oils in three 
different situations. In all cases, good classifications were obtained (90-100%).  
 

6.2 SUGGESTIONS FOR FUTURE RESEARCH 

This thesis has been focused on studying the possibility of applying three-way 
methods of analysis to the fluorescence EEMs of olive oils for discrimination. It has 
been shown that three-way classification methods can be applied for 
discriminating between olive oils in several situations. However there are some 
aspects that still need to be studied in more detail. They are summarized below. 
 
1. This thesis has shown that using EEFS and three-way methods enables to detect 
OPO adulteration in EVOOs. However, more research should be done so as to 
build a robust methodology based on EEFS and three-way methods of analysis for 
detecting other typical adulterants (e.g. sunflower, soy, maize, rapessed and nut 
oils) in EVOOs. 
 
2. This thesis has shown that three-way classification methods are able to 
discriminate between oils from two geographical regions within the PDO 
“Siurana” production area on the basis of their EEMs. This study could be 
extended to the authentication of the origin of oils from other regions. This 
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includes distinguishing between oils from various PDOs and detecting 
misclassified samples. 
 
3. Another interesting issue to be explored is the suitability of EEFS and three-way 
methods for discriminating between olive oil varieties and between oils produced 
in different harvesting years. 
  
4. Some research on olive oil degradation using EEFS and multi-way methods 
could be done. For instance, studying oil degradation over time or the effect of 
frying. 
 
5. In this thesis, we have proposed NMF as a method to obtain meaningful parts-
based representations of bi-dimensional fluorescence data. This method has also 
been applied for classification purposes. In further research, NMF could be 
compared with PARAFAC, which also enables to obtain positive solutions when 
non-negativity constraints are applied. 
 
6. Further research could still be done to study the viability of applying other 
classification methods to the fluorescence EEMs of olive oils. Some of these 
methods may be QDA and neural networks, for instance. Another suggestion is to 
develop new three-way classification methods and to apply them to oil EEMs.  
 
7. Studies on the viability of the developed three-way methods to other second-
order data (i.e. GC-MS and HPLC-DAD) for the analysis of olive oils could be 
carried out.  
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LIST OF ABBREVIATIONS   

AD Admixture 
ANOVA Analysis of variance 
BP Back propagation 
CA Cluster analysis 
COPO Crude olive-pomace oil 
CV Cross-validation 
CVA Canonical variate analysis 
DNA Deoxyribonucleic acid 
DCV Double cross-validation 
DN-PLSR Discriminant multi-way partial least squares regression 
D-PLSR Discriminant partial least squares regression 
DU-PLSR Discriminant unfold partial least squares regression 
EEC European Economic Community 
EEFS Excitation-emission fluorescence spectroscopy 
EEM Excitation-emission matrix 
EU European Union 
EVOO Extra virgin olive oil 
FID Flame ionization detector 
FT-IR Fourier transform infrared  
FT-Raman Fourier transform Raman 
GC Gas chromatography 
HAC Hierarchical agglomerative clustering 
HCA Hierarchical cluster analysis 
HDL High-density lipoprotein  
HPLC High performance liquid chromatography 
HS-MS Headspace-mass spectrometry 
IOOC International Olive Oil Council 
IRMS Isotope ratio mass spectrometry 
LDA Linear discriminant analysis 
LDF Linear discriminant function 
LDL Low-density lipoprotein  
LVOO Lampante virgin olive oil 
MIR Mid-infrared 
MLR Multiple linear regression 
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MPCA Multi-way principal component analysis 
MS Mass spectrometry 
NIPALS Non-linear iterative partial least squares 
NIR Near-infrared  
NMF Non-negative matrix factorization 
NMR Nuclear magnetic resonance 
N-PLS Multi-way partial least squares 
OPO Olive-pomace oil 
OVOO Ordinary virgin olive oil 
PARAFAC Parallel factor analysis 
PC Principal component 
PCA Principal component analysis 
PDO Protected denomination (designation) of origin 
PGI Protected geographical indication 
PLS Partial least squares 
PLSR Partial least squares regression 
POO Pure olive oil  
PRESS Predicted residual error sum of squares 
PV Peroxide value 
QDA Quadratic discriminant analysis 
RBF Radial basis function 
ROO Refined olive oil 
RMSECV Root mean square error of cross-validation 
RMSEP Root mean square error of prediction 
ROPO Refined olive-pomace oil 
SC Siurana-Camp de Tarragona 
RSE Residual square error 
SFAM Simplified fuzzy adaptive resonance theory mapping 
SIMCA Soft independent modelling of class analogy 
SM Siurana-Montsant 
SSP Sum of squares and products 
TLS Total luminescence spectroscopy 
U-PCA (unfold-PCA) Unfold principal component analysis 
UV Ultraviolet 
VIS Visible 
VOO Virgin olive oil 



List of papers and meeting contributions 
 

            207

LIST OF PAPERS AND MEETING CONTRIBUTIONS 

List of papers presented by the author in this thesis (in chronological order): 
 

1. F. Guimet, J. Ferré, R. Boqué, F.X. Rius. 
Application of unfold principal component analysis and parallel factor 
analysis to the exploratory analysis of olive oils by means of excitation-
emission matrix fluorescence spectroscopy. 
Analytica Chimica Acta 515 (2004) 75-85. 
(Chapter 3) 

 
2. F. Guimet, R. Boqué, J. Ferré. 

Cluster analysis applied to the exploratory analysis of commercial Spanish 
olive oils by means of excitation-emission fluorescence spectroscopy. 
Journal of Agricultural and Food Chemistry 52 (2004) 6673-6679. 
(Chapter 3) 
 

3. F. Guimet, J. Ferré, R. Boqué. 
Rapid detection of olive-pomace oil adulteration in extra virgin olive oils 
from the protected denomination of origin “Siurana” using excitation-
emission fluorescence spectroscopy and three-way methods of analysis. 
Analytica Chimica Acta 544 (2005) 143-152. 
(Chapter 5) 
 

4. F. Guimet, R. Boqué, J. Ferré. 
Study of oils from the protected denomination of origin “Siurana” using 
excitation-emission fluorescence spectroscopy and three-way methods of 
analysis. 
Grasas y Aceites 56 (4) (2005) 292-297. 
(Chapter 5) 

 
5. F. Guimet, J. Ferré, R. Boqué, M. Vidal, J. Garcia. 

Excitation-emission fluorescence spectroscopy combined with three-way 
methods of analysis as a complementary technique for olive oil 
characterization. 
Journal of Agricultural and Food Chemistry (accepted for publication). 



Appendix 
 

 208

(Chapter 4) 
 

6. F. Guimet, R. Boqué, J. Ferré 
Application of non-negative matrix factorization combined with Fisher’s 
linear discriminant analysis for classification of olive oil excitation-
emission fluorescence spectra. 
Chemometrics and Intelligent Laboratory Systems (accepted for 
publication). 
(Chapter 5) 
 

 
List of contributions to international and national meetings (in chronological 
order): 
 

1. F. Guimet, J. Ferré, R. Boqué, F.X. Rius. 
Exploratory analysis of olive oils by means of excitation-emission matrix 
fluorescence spectroscopy and three-way pattern recognition methods. 
V Colloquim Chemometricum Mediterraneum, Ustica (Italy), 2003. 
Poster communication. 
 

2. F. Guimet, J. Ferré, R. Boqué. 
Detection of olive-pomace oil adulteration in extra virgin olive oils from 
the protected denomination of origin “Siurana” using excitation-emission 
fluorescence spectroscopy and three-way methods of analysis. 
9th Chemometrics in Analytical Chemistry Conference (CAC’04), Lisbon 
(Portugal), 2004. 
Poster communication. 
 

3. F. Guimet, J. Ferré, R. Boqué. 
Caracterització d’olis d’oliva mitjançant espectroscòpia de fluorescència 
d’excitació-emissió i mètodes d’anàlisi de tres vies. 
Workshop de la Xarxa Catalana de Quimiometria, Barcelona (Spain), 2005. 
Poster communication. 
 
 
 



List of papers and meeting contributions 
 

            209

4. F. Guimet, R. Boqué, J. Ferré. 
Olive oil characterization by means of excitation-emission fluorescence 
spectroscopy and three-way PLS methods. 
4th International Symposium on PLS and Related Methods (PLS’05), 
Barcelona (Spain), 2005. 
Oral communication. 
 
  



Appendix 
 

 210

SUMMARY 

L’oli d’oliva és un producte de gran importància econòmica i nutricional. Això fa 
que la seva anàlisi sigui fonamental per tal d’assegurar la seva qualitat i evitar 
possibles fraus. Les tècniques més emprades en l’anàlisi d’olis d’oliva són les 
cromatogràfiques, però també se n’han utilitzat d’altres, com l’espectroscòpia 
ultravioleta-visible, l’espai de cap acoblat a l’espectrometria de masses, 
l’espectroscòpia d’infraroig proper, infraroig mitjà i Raman amb transformada de 
Fourier, la ressonància magnètica nuclear i l’olfactometria electrònica. 
 
Degut a què els olis d’oliva contenen espècies fluorescents, com la vitamina E, 
pigments (clorofil·les i feofitines), productes d’oxidació i compostos fenòlics, 
l’espectroscòpia de fluorescència també s’ha aplicat en alguns casos a l’anàlisi 
d’olis, principalment per a detectar adulteracions. Aquesta tècnica té l’avantatge 
que permet analitzar les mostres en poc temps. A més, les mesures es poden fer 
directament sobre els olis sense realitzar cap etapa prèvia de dilució o addició de 
reactius, amb la qual cosa es redueix el temps d’anàlisi i no es generen residus 
addicionals. 

 
La instrumentació permet obtenir un conjunt d’espectres de fluorescència a 
diferents longituds d’ona d’excitació en una única mesura. D’aquesta manera, per a 
cada mostra analitzada s’obté un perfil de fluorescència bidimensional que recull la 
intensitat de fluorescència a cada longitud d’ona d’excitació i d’emissió. 
Matemàticament aquest perfil de fluorescència és una matriu de dades i per això 
s’anomena matriu d’excitació-emissió de fluorescència. Aquest tipus de dades es 
coneix amb el nom de dades de segon ordre. Tot i que hi ha aplicacions de 
l’espectroscòpia de fluorescència d’excitació-emissió (EFEE) a l’anàlisi d’olis 
d’oliva, aquest camp està poc estudiat i l’ús d’aquesta tècnica no està difós en els 
laboratoris de control de qualitat dels olis. 

Els mètodes quimiomètrics que s’apliquen a les dades de segon ordre reben el nom 
de mètodes de tres vies perquè les dades estan disposades en una estructura 
tridimensional. En el cas de l’EFEE, quan es mesuren diverses mostres, les matrius 
de fluorescència es poden disposar en un cub de dimensions (mostres×nombre de 
longituds d’ona d’emissió×nombre de longituds d’ona d’excitació). Els mètodes 
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de tres vies han estat àmpliament emprats en anàlisi exploratòria i en anàlisi 
quantitativa. Tanmateix, els mètodes de classificació de tres vies estan poc 
desenvolupats. 

En aquesta tesi s’estudien les possibilitats de l’EFEE i els mètodes de tres vies per a 
la caracterització d’olis d’oliva. Els resultats obtinguts estan recollits en articles 
publicats, els quals són l’eix central dels capítols de la tesi.  
 
El capítol 1 conté la introducció i els objectius de la tesi. En aquest capítol 
s’expliquen les principals característiques dels olis d’oliva i es fa un recull de les 
tècniques analítiques emprades habitualment en l’anàlisi dels olis. Finalment, es 
plantegen els objectius que s’han pretès assolir en aquesta tesi. 
 
El capítol 2 conté les bases teòriques necessàries per entendre la tesi. En aquest 
capítol s’explica el fonament de la fluorescència, s’introdueixen els conceptes 
relacionats amb les estructures de tres vies i es presenten els mètodes 
quimiomètrics utilitzats en els treballs de la tesi. Aquests mètodes es poden dividir 
en mètodes d’anàlisi exploratòria i de classificació. 
 
En el capítol 3 s’estudien els avantatges de treballar amb dades de fluorescència de 
segon ordre respecte a utilitzar dades multivariants (un sol espectre de 
fluorescència). Posteriorment s’apliquen i es comparen diversos mètodes d’anàlisi 
exploratòria a les matrius de fluorescència d’olis comercials (verges, purs i de sansa 
d’oliva). Aquests mètodes són l’anàlisi de components principals sobre la matriu 
desplegada (unfold-PCA), anàlisi paral·lela de factors (PARAFAC) i anàlisi 
d’agrupacions jerarquitzada (HCA). Per tal d’aplicar aquests mètodes, s’estudien 
diversos rangs espectrals i mètodes de processament de dades. Es comenten els 
problemes que comporta incloure les clorofil·les en els models (el pic que apareix 
entre λem = 650-695 nm), degut a la gran intensitat d’aquest pic en comparació amb 
la resta.  
 
En aquest capítol es mostra que l’EFEE és capaç de detectar diferències de 
composició entre diversos tipus d’olis. L’ús dels mètodes unfold-PCA i PARAFAC 
permet obtenir informació sobre les espècies fluorescents responsables de la 
diferenciació dels olis, ja que els factors obtinguts a partir dels models es poden 
relacionar amb les espècies fluorescents contingudes en els olis. L’aplicació de 
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PARAFAC té l’avantatge addicional que permet extreure els espectres subjacents 
de les principals famílies de compostos fluorescents. 
 
El capítol 4 inclou un estudi sobre la viabilitat de l’EFEE per a l’avaluació de la 
qualitat d’olis d’oliva. En aquest estudi es van correlacionar les matrius de 
fluorescència d’un conjunt d’olis de la mateixa collita amb alguns paràmetres de 
qualitat mesurats mitjançant mètodes oficials d’anàlisi. La correlació es va estudiar 
emprant mètodes de tres vies, concretament PARAFAC i regressió per mínims 
quadrats parcials multi-via (N-PLS). El mètode N-PLS va proporcionar ajustos 
millors i errors de predicció més petits. Es va veure que els espectres de 
fluorescència dels olis es poden correlacionar amb l’índex de peròxids i amb 
l’absorbància a 270 nm. Aquests paràmetres estan directament relacionats amb 
substàncies que es formen en els olis degut a la seva degradació. També es va 
mostrar que l’EFEE permet detectar olis altament degradats de manera ràpida, ja 
que aquests presenten una elevada intensitat de fluorescència per sota dels 500 nm. 
 
El capítol 5 es basa en l’aplicació de mètodes de classificació de tres vies per a 
discriminar conjunts d’olis a partir de les seves matrius de fluorescència. Els 
resultats es presenten en tres articles. En el primer d’ells, s’estudia la possibilitat de 
detectar adulteracions d’oli de sansa en olis d’oliva  verge extra a baixes 
concentracions (5% pes/pes). Per dur a terme aquest estudi, es va utilitzar un 
conjunt d’olis d’oliva verge extra de la denominació d’origen protegida (DOP) 
“Siurana” i es van preparar mescles d’aquests olis amb olis sansa d’oliva adquirits 
en diversos centres comercials. Posteriorment, es va comparar l’habilitat de 
diversos mètodes quimiomètrics per a discriminar entre les mostres no adulterades 
i les adulterades. En un primer estadi, es van aplicar els estadístics de Hotelling T2 i 
Q sobre les puntuacions (scores) d’unfold-PCA com a mètode ràpid de cribatge. 
Després es va aplicar anàlisi discriminant lineal de Fisher (Fisher’s LDA) per a 
millorar la discriminació. Aquest mètode va permetre obtenir una habilitat de 
predicció d’un 85% per a mostres no adulterades i d’un 98% per a mostres 
adulterades. Aquests resultats es van superar emprant regressió per mínims 
quadrats parcials multi-via discriminant (DN-PLSR), que va permetre obtenir un 
100% de classificació correcta en ambdues classes. N-PLS també va permetre 
quantificar el nivell d’adulteració amb relativament poc error per al conjunt de 
validació (1.2%). 
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En el segon article del capítol 5 es fa un estudi dels olis d’oliva verge extra de la 
DOP “Siurana” per fluorescència. La zona de producció DOP “Siurana” es pot 
dividir en dues regions, anomenades Camp de Tarragona i Montsant, amb diferent 
orografia, característiques de sòl i condicions climàtiques. Això implica que els olis 
procedents d’aquestes regions tinguin diferències en la seva composició, la qual 
cosa influeix en la seva estabilitat enfront a l’oxidació. En aquest treball es mostra 
que els olis procedents de les dues regions “Siurana” es poden distingir mitjançant 
l’EFEE i mètodes tres vies. Concretament es van comparar els mètodes regressió 
per mínims quadrats parcials discriminant sobre la matriu desplegada (DU-PLSR) i 
DN-PLSR per a discriminar entre els dos tipus d’olis. Ambdós mètodes van 
proporcionar bones classificacions, però els resultats van ser lleugerament millors 
amb DU-PLSR (94% per als olis de la zona del Camp de Tarragona i 100% per als 
de la zona Montsant).  
 
El tercer article del capítol 5 conté un treball sobre l’aplicació de l’algorisme 
factorització de matrius no negativa (NMF) sobre les matrius de fluorescència de 
tres conjunts d’olis diferents. En aquest estudi es mostra que aquest mètode és 
capaç de descomposar les MEE dels olis en parts positives que es poden relacionar 
amb  algunes de les espècies fluorescents dels olis d’oliva. Es comenten els 
principals avantatges d’emprar aquest mètode respecte a altres mètodes de 
descomposició, com PCA, que admeten solucions negatives. En aquest article 
també es proposa NMF combinat amb Fisher’s LDA com a mètode de classificació. 
Per tal d’estudiar la viabilitat d’aquest mètode, es van plantejar tres situacions 
diferents: discriminació entre tipus d’olis (verges, purs i de sansa), detecció 
d’adulteracions en olis d’oliva verge extra i discriminació entre olis de les dues 
zones “Siurana”. En tots els casos es van obtenir molt bones classificacions (90-
100%). 
 
 
 



 

 

 



 

 

 



 

 

 




