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OBJECTIVES 

 

Wine composition and quality are the result of many different variables; some of 

them are microbiologically mediated. There is a need, then, to undestand and control 

the microorganisms that conduct the fermentation, as well as all the microorganisms 

that can be found at any stage during winemaking, ageing or storage.  

 

The Oenological Biotechnology Group of the Rovira i Virgili University focuses on 

the use of various methods to determine, quickly and efficiently, the microbial population 

during wine production. When I joined this Group, some studies had already been done 

to quantify and characterise wine microorganisms by using molecular methods instead 

of classical physiological techniques. These methods are faster, more reliable, more 

specific, more sensitive, etc. However, most of them still need the microorganisms to be 

cultived previously so only the culturable microorganisms were analyzed. The next step 

was to use culture-independent techniques to detect and quantify wine microorganisms, 

avoiding the bias associated with culturability, and then go on to use these culture-

independent techniques to detect and quantify only living cells (culturable cells, 

damaged cells, and viable but non culturable cells), not dead cells. 

 

The working hypothesis of the present study is that culture-independent 

techniques can detect microorganisms that have been overlooked by classical 

microbiological methods . To demonstrate this hypothesis our general aim was to 

adapt or develop a variety of culture-independent techniques to identify and quantify the 

microorganisms in winemaking, study the impact of different wine microorganisms on 

the fermentation, and finally use these culture-independent techniques to detect and 

quantify live cells and distinguish them from dead cells. This general objective can be 

divided into the following partial objectives: 
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1. To develop culture-independent molecular techniques to identify and quantify wine 

microorganisms 

1.1. Detection and enumeration of wine microorganisms by QPCR, DGGE and 

direct cloning of a ribosomal fragment 

One of the aims was to increase the information obtained with QPCR. Various 

primers had already been developed for quantifiing general yeast, Saccharomyces, 

Hanseniaspora, and lactic and acetic acid bacteria. However, other yeasts are also 

important in wine productuction. The development of new primers or sequences of 

relevant microorganisms would be a goal of the studies with this technique, in order to 

have a more accurate approach to the population dynamics of a given process. 

Nevertheless, one drawback of this technique is that it analyzes only one 

species (or group of species), but it is not appropiate for analysing the whole range of 

microbiota. Thus, complementary techniques will be applied: DGGE, as a robust 

technique that had been used previously, and direct cloning of the amplified 5.8S-ITS 

rDNA region of the yeast into E. coli. 

 

1.2. Improvement of the culture-independent techniques in order to differentiate 

between live and dead cells in wine fermentation 

The aim of this part was to prevent the microorganism population from being 

overestimated because of the dead microorganisms in the wine at different stages of 

fermentation. Some dead microorganisms maintain DNA for long periods of time and 

are counted when culture-independent techniques using DNA are applied. The 

fluorescence in situ hybridization (FISH) technique will be directly applied to wine 

samples. As the target is ribosomal RNA, the presence of this molecule could be 

directly related with a viable cell with metabolic activity. Another approach for evaluating 

viability is to use dyes that selectively bind to the DNA of dead cells, thus avoiding the 

amplification of this DNA, in conjunction with the QPCR technique. 

 

2. To validate the methodologies: Application of culture-independent molecular 

techniques to monitor different wine fermentations 

The aim was to validate these methods in vinification conditions. This application 

aimed to understanding the effect of different oenological practices on the microbial 

UNIVERSITAT ROVIRA I VIRGILI 
ADAPTATION AND DEVELOPMENT OF CULTURE-INDEPENDENT TECHNIQUES FOR THE INDENTIFICATION AND ENUMERATION 
OF MICROORGANISMS IN WINE FERMENTATIONS 
Immaculada Andorrà Solsona 
ISBN:978-84-693-8859-4/DL:T.1948-2010 



Objectives & Experimental design 

 

 

 17 

population and the contribution of different wine microorganisms to the final wine 

product.  

 

3. To study the effect of coinoculation of the main wine yeast species  

The objective of this part was to follow the yeast population and differentiate the 

effects of yeast species by fermenting with a single species and mixed inocula. This is 

an interesting oenological practice that can improve wine flavour. 

 

EXPERIMENTAL DESIGN 

 

To reach the objective proposed, we use the following experimental design: 

 

1. Development of culture-independent techniques (DGGE, QPCR and direct cloning of 

ribosomal fragments) to be applied on wine microorganisms 

The culture-independent methods adapted or developed were DGGE, QPCR and 

cloning of the amplified ribosomal fragment. The first one was adapted to study the 

microbial diversity of a complex matrix, such as wine. Ribosomal fragments were 

directly cloned to study the diversity of a sample, and its relative quantification. Finally 

QPCR is a good tool for quantifying different microorganisms, but it requires specific 

primers, which makes the technique very specific. We developed specific primers for C. 

zemplinina to quantify one of the main yeasts present in wine fermentations.  

The results are reported chapter 1 and 2. 

 

2. Validation of these techniques in wine fermentations  

The objective was to validate DGGE and QPCR techniques and understand the 

effect of yeast inoculation and SO2 on the microbial population when these culture-

independent methods are used. These oenological practices have proved to restrict the 

growth of non-Saccharomyces and bacterial species with culture-dependent methods.  

The results are presented in chapter 1. 

 

Furthermore, the validation of QPCR and direct cloning of ribosomal fragment 

were done and compared with DGGE and plating methods. These techniques were 

applied to analyse microorganisms in wine fermentations conducted at different 
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temperatures. A low fermentation temperature (13ºC) was compared with optimal 

temperature for yeast growth (25ºC).  

The results are shown in chapter 2.  

 

3. Effect of coinoculation of the main yeasts in fermentations 

Inoculating the main wine yeasts can have interesting effects on wine 

characteristics and population dynamics, and these effects were monitored by plating 

and QPCR. 

The results are reported in chapter 3 and 4.  

 

4. Development of other culture-independent techniques to differentiate viable yeast 

populations  

The development of the above mentioned techniques, however does not solve a 

key question relevant in oenology: the possibility that viable but non-culturable cells will 

spoil wines. Two techniques have been developed to monitor this viable population in 

wine fermentations. First the FISH technique (using probes against the rRNA) was used 

with fluorescence microscopy and flow cytometry. And second, the QPCR technique 

was combined with dyes (EMA and PMA) of different membrane permeabilities. 

The results are presented in chapter 5 and 6. 

 

5. Validation of the combination of dyes and QPCR in wine fermentations, storage and 

ageing wines 

The combined EMA-, PMA-QPCR technique was validated by monitoring a 

spontaneous wine fermentation, and applied to some ageing and stored wines.  

The results are shown in chapter 5. 
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1. Wine fermentation 

1.1. Wine fermentation process 

The winemaking process starts in the vineyard and the viticulture practices used. 

Of particular importance are the cultivar, soil quality, water management and the variety 

of Vitis vinifera. When the grapes are considered to have acquired optimal ripeness, 

they are collected. The way in which they are harvested may have an influence on the 

final product. Then, the wine fermentation starts, varying as a function of whether white, 

rosé or red wines are to be produced. The main steps in this process are represented in 

Figure 1. And, finally, the wine can be aged and/or stored.  

 
Figure 1. The main steps in winemaking (adapted from Pretorius, 2000) 

 

The must largely consists of sugars, mainly glucose and fructose. Organic acids 

are also important in must composition: in particular tartaric and malic acid, citric and 

lactic acid to a lesser extent, and also as traces of succinic and keto acids. Furthermore, 

it contains nitrogen compounds, other mineral salts and vitamins. Finally, phenolic 

compounds and aromas contribute to wine aroma, although they do not play an 
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essential role in fermentation kinetics. The concentrations of the compounds present in 

a standard must are listed in Table 1, although they can vary considerably. 

 

Table 1. Average chemical composition of grape must (Henschke & Jiranek, 1993) 

 

 
a Equimolar concentrations of glucose and fructose 

b Medium given contains 4,87g amino acids/l 

c Nitrogen content of source 

d Ammonium chloride may be used; typically 100mg/l (26,2 mg N/l) for grape juice. 

e Optional. 

 

The wine fermentation process transforms the must into wine. This 

biotransformation consists mainly of two fermentations. First, the alcoholic fermentation 

and then the malolactic fermentation. The alcoholic fermentation is conducted by yeasts 

and converts sugars into ethanol, carbon dioxide and other minor metabolites. And the 

malolactic fermentation converts malic acid into lactic acid and CO2 by lactic acid 

bacteria (LAB). However, the wine fermentation process is complex and sophisticated, 

and several pathways are involved in the fermentation.  
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Yeasts can degrade sugars by two metabolic pathways: fermentative and 

oxidative. Glycolysis is the common route for both these processes (Figure 2). The 

sugars in grape juice are metabolized to pyruvate by the enzymes of the glycolytic 

pathway. Afterwards, in the fermentative one, the pyruvate is decarboxylated to 

acetaldehyde, which is reduced to ethanol, whereas, in the respirative pathway, the 

pyruvate that arose from glycolysis undergoes an oxidative decarboxylation in the 

presence of coenzyme A inside the mitochondria. The respiration can take place at a 

low sugar concentration and in the presence of oxygen. However, for high glucose 

concentrations (above 9 g/l approximately), yeasts only metabolise sugars by the 

fermentative pathway. Even in the presence of oxygen, respiration is blocked. This 

phenomenon is known as the Crabtree effect, catabolic repression by glucose or the 

Pasteur contrary effect (Ribéreau-Gayon et al., 2006). The high sugar concentration of 

the grape must makes the fermentative pathway the main sugar catabolic route. In a 

standard fermentation, one molecule of sugar (glucose/fructose) yields two molecules of 

ethanol and carbon dioxide. However, only 90-95% of the sugar is converted into 

ethanol and carbon dioxide, 1-2% into cellular material and 4-9% into other secondary 

metabolites such as glycerol, succinic, lactic and acetic acids, fusel alcohols and esters 

(Boulton et al., 1996). Fermentation activity decreases under stressful fermentation 

conditions, such as nutrient limitation, low pH, lack of oxygen, extreme temperatures, 

and the presence of toxic substances. 

 

Figure 2. Glycolytic 

pathway in wine yeast 

(Pretorius, 2000) 
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Quantitatively, assimilable nitrogen is the second nutritive source in the grape 

must, after carbon, and it is essential for yeast development and fermentation activity. A 

common cause of poor fermentative performance and sluggish or stuck fermentations, 

then, are deficiencies in the assimilable nitrogen compounds. The ammonium and 

amino acid content of grape juice varies as a consequence of different viticultural 

practices, soil, grape variety, oenological practices, etc (Ribéreau-Gayon et al., 2006) 

and regions. Saccharomyces can use different nitrogen sources for growth, but not all of 

them support growth equally well. Good nitrogen sources are ammonium, glutamine 

and asparagine whereas alanine, arginine, proline and urea are poor ones. The 

presence of good nitrogen sources decreases the level of enzymes and permeases 

required for the utilization and uptake by poorer nitrogen sources, this phenomenon is 

known as nitrogen catabolite repression (NCR) (Magasanik et al., 1992). During wine 

fermentation, yeasts change their metabolism from a nitrogen repressed situation to a 

nitrogen derepressed situation, as a function of the availability of nitrogen compounds. 

The nitrogen repressed/derepressed conditions determine the different patterns of 

ammonium and amino acid consumption. Beltran et al. (2004) found that glutamine and 

tryptophan are the main amino acids consumed throughout the fermentation. Arginine, 

alanine, aspartate, glutamate and glycine are the amino acids that are most affected by 

the NCR, and these amino acids are hardly consumed when there is an excess of 

nitrogen. Amino acid consumption, then, depend on such factors as the amount of 

nitrogen, the winemaking practices used in the fermentation and fact that different wine 

yeasts have very different nitrogen requirements. The consequences of these factors 

affect the production of higher alcohols and their associated esters. The general 

representation of the degradation of nitrogenous compounds by wine yeast is shown in 

Figure 3.  
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1.2. Final composition of wine 

The chemical composition of the final product determines the sensory 

appreciation of the wine or wine flavour. The wine flavour includes varietal flavour 

(coming from the grapes), pre-fermentative flavour (which depends on the extraction 

operations and the conditioning of must), fermentative flavour (produced by yeasts and 

bacteria during alcoholic and malolactic fermentations) and post-fermentative flavour 

(which depends on the ageing process) (Schreier, 1979; Boulton et al., 1996; Rapp, 

1998). Thus, the quality of the wine is determined by several factors, including 

viticultural practices, winemaking techniques and the yeast strains used (Boulton et al., 

1996). So, the organoleptic profile is determined by the presence or absence of flavour 

compounds and metabolites.  

The main fermentative products are ethanol, carbon dioxide and glycerol. 

However, wine contains numerous volatile and non-volatile end-products that contribute 

to the aroma and flavour characteristics of the wine. The synthesis of these compounds 

is detailed in Figure 4 (Swiegers et al., 2005). Ethanol is the main volatile product of 

yeasts metabolism, followed by diols, higher alcohols and esters. Ethanol determines 

the viscosity of the wine and acts as a fixer of aroma. However, in some given 

conditions, where acetaldehyde is not available to be reduced to ethanol, the 

dihydroxyacetone, formed during glycolysis, is reduced to glycerol by glycerol-3-

Figure 3. A schematic 
representation of the 
degradation of nitrogenous 
compounds by wine yeast 
(Henschke & Jiranek, 1993) 
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phospate. Meanwhile, pyruvic acid participates in the formation of secondary products 

such as diacetyl, keto acids, succinic acid, butanediol, etc. (Ribéreau-Gayon et al., 

2006). Succinic acid and glycerol are two of the most important by-products affecting 

the “body” of the wine. The main non-volatile acids are similar to those in the must, but 

in different proportions because of the fermentation (Radler, 1993; Boulton et al., 1996). 

Among these non-volatile acids, tartaric acid varies little or not at all during 

fermentation. The concentration of malic acid, on the other hand, usually decreases 

initially as a consequence of yeast metabolism (limited decrease) but later, during the 

malolactic fermentation, as a consequence of LAB metabolism. Succinic acid is the 

main acid produced by yeasts and its formation is strain dependent (Radler, 1993; 

Coulter et al., 2004)  

 
Figure 4. A schematic representation of derivation and synthesis of flavour-active compounds 

from sugar, amino acids and sulfur metabolism by wine yeast (Swiegers et al., 2005) 

 

Of the volatile acids, acetic acid is the most important, this represents more than 

90% of the volatile acid of wine (Henschke & Jiranek, 1993; Radler, 1993) and it is one 

of the most important by-products that negatively affect the analytical profile of wine. It 

is synthetised by yeasts and acetic acid bacteria, its concentration limit in wine may not 

be higher than 1.0-1.5 g/l. The rest of the volatile acids, principally propionic and 

hexanoic acids, are produced as the result of fatty acid metabolism by yeast and 

bacteria (Swiegers et al., 2005). 
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Another important, but not always desirable, secondary compound of wine 

fermentation is acetaldehyde. This compound is the product of the decarboxylation of 

pyruvate during the alcoholic fermentation. Wines containing amounts of 500 mg/l are 

considered unmarketable (Romano et al., 2006).  

Higher alcohols represent another group of secondary products influencing the 

analytical profile of the wine. The concentrations of higher alcohols are influenced by 

such factors as the yeast strains, the concentration of amino acids (the precursors for 

higher alcohols), ethanol concentration, fermentation temperature, pH, composition of 

grape must, aeration, etc. (Swiegers et al., 2005). The first step in the synthesis of 

higher alcohols involves the synthesis of α-keto acids derived from branched-chain 

amino acids that are transaminated to the respective α-keto acids (leucine to α-

ketoisocaproic acid, valine to α- ketoisovaleric acid, and isoleucine to α-keto-β-

methylvaleric acid). The pyruvate decarboxylase converts the resulting α-keto acid to 

the corresponding branched-chain aldehyde with one carbon-less atom and the alcohol 

dehydrogenase catalyses the NADH-dependent reduction of this aldehyde to the 

corresponding fusel alcohol. Alternatively, the aldehyde might be oxidised to an acid 

(Derrick & Large, 1993). Higher alcohols are also important precursors for ester 

formation. Higher alcohols and their esters are associated with a pleasant aroma; 

although at high concentrations they can be undesirable. 

Apart from the many biosynthetic pathways of yeast, LAB are also involved in the 

formation of wine aroma. LAB development and aroma production is affected by such 

factors as the composition and pH of grape must and, of course, the fermentation 

temperature. LAB play an important role in winemaking and modulates the chemistry, 

aroma and flavour of wine by modifying its components and sensory properties (Figure 

5). LAB decrease the wine acidity with the decarboxylation of malic acid to lactic acid, 

this is the basis of malolactic fermentation, (Laurent et al., 1994; Bartowsky et al., 

2002). But LAB also contribute to the aroma of wine by metabolising other acids such 

as citric acid. The metabolisation of citric acid produces acetic acid and diacetyl, both of 

which have an important effect on wine flavour. Other metabolites affected by LAB 

metabolism and which have an impact on wine flavour, are alcohols such as glycerol 

and mannitol, or carbonyls as acetaldehyde and diacetyl. Finally, esters can also be 

modified for LAB species, esterase activity of wine-associated bacterial species is not 

well understood, although some researchers have observed the changes in ethyl ester 
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concentration after malolactic fermentation including ethyl acetate, ethyl hexanoate, 

ethyl lactate, and ethyl octanoate, as well as decreases in some esters (Laurent et al., 

1994; de Revel et al., 1999; Delaquis et al., 2000; Gambaro et al., 2001).  

 
Figure 5. Biosynthesis and modulation of flavour-active compounds by lactic acid bacteria 

(Swiegers et al., 2005) 

 

Meanwhile, acetic acid bacteria (AAB) are only spoilage microorganisms in 

winemaking, because they lead to the formation of such major oxidised products, as 

acetaldehyde, acetic acid and ethyl acetate (Drysdale & Fleet, 1989; Henick-kling, 1993; 

Bartowsky et al., 2002; Matthews et al., 2004).  

Some esters, higher alcohols and other aroma and flavour compounds commonly 

found in wines are listed in Table 2, which also shows the wide concentration range of 

these compounds in wine and their perception threshold.  
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Table 2. Esters, higher alcohols, other aroma and flavour compounds (Swiegers et al., 2005) 

 

 

 

1.3. Microorganisms associated with wine fermentation 

 The biotransformation of grape must is a complex ecological and biochemical 

process involving the sequential development of such microbial species as fungi, yeast, 

LAB and AAB.  

 

1.3.1. Yeasts 

 Yeasts are the most simple of eukaryotes. The yeast cell contains two cell 

envelopes: the cell wall and the membrane, separated by the periplasmic space. The 

cell wall essentially consists of polysaccharides, mainly β-glucans and mannoproteins. 

Its first function is to protect the cell. The plasma membrane is a highly selective barrier 

controlling exchanges between the living cell and its external environment. It is 

principally made up of lipids and proteins. The lipids of the membrane are essentially 

phospholipids and sterols; they are amphiphilic molecules (with a hydrophilic and a 

hydrophobic part). The principal phospholipids are phosphatidylethanolamine (PE), 

phosphatidylcholine (PC) and phosphatidylinositol (PI), and to a lesser extent, 

* 10% etanol, ** wine, *** red wine, **** beer, ***** synthetic wine, ****** water 
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phosphatidylserine (PS) and diphosphatidylglycerol (PG) or cardiolipin (CL). The 

subcellular compartmentalization of wine yeast is shown in Figure 6. 

 
Figure 6. Yeast cell (Ribéreau-Gayon et al., 2006)  

 

Yeasts are unicellular fungi and can be classified into two phylogenetic groups, 

teleomorphic and anamorphic ascomyceteous yeasts and teleomorphic and anamorphic 

basidiomycetous yeasts (Kurtzman & Fell, 1998). Yeasts can multiply either asexually 

by vegetative multiplication (budding or fission) or sexually by forming spores 

(sporulation). The absence of sexual spores during the life cycle means that this isolate 

is classified as an anamorph or asexual form (imperfect fungi). The presence of sexual 

spores indicates a teleomorph or sexual form (perfect fungi). The germination of the 

sexual spore produces a new vegetative cell, which may reproduce again by budding or 

fission. Yeasts belonging to the imperfect fungi can only reproduce by vegetative 

multiplication (Boekhout & Kurtzman, 1996).  

Yeasts are the most important group of microorganisms for winemakers. 

Saccharomyces is the main yeast responsible for the alcoholic fermentation, although 

there are other genera and species present during winemaking.  

The Saccharomyces genus is the most commonly used in industry. Species 

associated with industrial fermentation process are, S. bayanus, S. cerevisiae, and S. 

pastorianus and species isolated from natural habitats are, S. cariocanus, S. 
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Kudriavzevii, S. mikatae and S. paradoxus (Barrio et al., 2006). The Saccharomyces 

species cannot be well differentiated by physiological tests, only by their DNA 

sequences (Ribéreau-Gayon et al., 2006). Saccharomyces genera have a range of 

singular characteristics that are not found in other genera and their capacity to ferment 

sugars is considerable. This ability allows them to colonize sugar-rich media and 

compete with other yeasts, which are not so tolerant to alcohol (Barrio et al., 2006).  

Non-Saccharomyces yeast are commonly known as wild yeast, because they 

are mostly present in grapes and at the beginning of the fermentation (Fugelsang & 

Edwards, 2007). There are around 15 non-Saccharomyces genera involved in wine 

fermentation. These are: Dekkera (anamorph Brettanomyces), Candida, Cryptococcus, 

Debaryomyces, Hanseniaspora (anamorph Kloeckera), Kluyveromyces, Metschnikowia, 

Pichia, Rhodotorula, Saccharomycodes, Schizosaccharomyces, Torulaspora and 

Zygosaccharomyces (Pretorius et al., 1999). Most of the non-Saccharomyces wine-

related species have low fermentation activity and a low SO2 resistance (Ciani et al., 

2010). However, they play play an important role in the metabolic impact and aroma 

complexity of the final product and also contribute to the enzymatic activities described 

for some non-Saccharomyces species (protease, β-glucosidase, esterase, pectinase 

and lipase) (Esteve-Zarzoso et al., 1998).  

  

1.3.2. Bacteria 

The cellular structure of bacteria consists of a cell wall, a plasma membrane, the 

cytoplasm containing genetic material (chromosome and plasmids), ribosomes, and all 

the enzymatic equipment. The main differences between LAB and AAB are in the cell 

wall composition. Peptidoglycan is the principal constituent of Gram-positive cell walls 

(LAB), but it is less present in Gram-negative cells (AAB) in which the wall is composed 

of phospholipids, lipoproteins and lipopolysaccharides, like the plasma membrane.  

The cell wall provides protection and shape to the cells, the plasma membrane 

has the classical structure of a lipid bilayer, and their fluidity depends on lipid-protein 

interactions. The principal genome of bacteria consists of a single circular chromosome 

of double stranded DNA suspended in the cytoplasm without any separation. Different 

species have different sizes of chromosome. Furthermore, these cells have plasmids to 

conduct different functions.  
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1.3.2.1. Lactic acid bacteria 

LAB are Gram positive cells. This means that the cell wall is essentially 

composed of a peptidoglycan. The LAB cells tend to be round for cocci and elongated 

for bacilli. LAB are aerotoleant and mesophilics, and their optimal growth temperature is 

between 15-30ºC. The primary product of their glucose metabolism is lactic acid. The 

LAB of grape must and wine belong to the genera Lactobacillus, Leuconostoc, 

Oenococcus and Pediococcus (Ribéreau-Gayon et al., 2006). LAB can be 

homofermentative (producing exclusively lactic acid from glucose and/or fructose) and 

heterofermentative (producing carbon dioxide, ethanol, acetic acid and lactic acid from 

the same carbohydrates). O. oeni present a heterofermentative metabolism whereas P. 

pentosaceus and P. damnosus are homofermenative. L. casei and L. plantarum are 

described as facultative heterofermentative. Finally, L. brevis and L. hilgardii are strictly 

heterofermentative. O. oeni is the main LAB that conducts the malolactic fermentation 

(Ribéreau-Gayon et al., 2006). 

 

1.3.2.2. Acetic acid bacteria 

Generally AAB are catalase positive and Gram negative. They are very prevalent 

in nature and are well adapted to grow in sugar- and alcohol-rich media. They have an 

ellipsoidal or rod-like form, with small dimensions of 0.6-0.8 by 1-4 µm. They have 

locomotive organs that give them a mobility that is visible under the microscope. Their 

metabolism is strictly aerobic. Their principal property is that they oxidize ethanol into 

acetic acid. This is done in two steps: first to acetaldehyde and then to acetic acid.   

AAB belong to the Acetobacteraceae family. They are separated into the genera: 

Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, 

Swaminathania, Saccharibacter, Neoasaia, Granulibacter and Tanticharoenia (Yukphan 

et al., 2009). The genus Acetobacter comprises the main oenological species: A. aceti, 

A. pasterianus, A. malorum, A. pomorum, A. cerevisiae and A. oeni, these species have 

all been isolated at some point during the winemaking process. The only species of the 

genus Gluconobacter that is important in winemaking is G. oxydans. And the species of 

the Gluconacetobacter genus that have been described in wine are: Ga. liquefaciens, 

Ga. hansenii, Ga. xylinus, Ga. europaeus, Ga. oboediens and Ga. intermedius 

(Guillamón & Mas, 2009). 
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1.3.3. Fungi 

 A wide range of fungi can infect grapes prior to harvest: for example, species of 

Botryotinia, Uncinula, Alternaria, Plasmapara, Aspergillus, Penicillum, Rhizopus, Oidium 

and Cladosporum (Fugelsang, 1997; Fleet, 2001). Some studies found that Botryotinia 

fuckeliana (or its anamorph Botrytis cinerea), Aspergillus spp. and Penicillum spp. 

produce metabolites that retard the growth of yeasts during fermentation. Furthermore, 

fungal growth on grapes may contribute to the growth of some AAB on the grape 

surface (Ribéreau-Gayon et al., 2006). 

 

1.4. Population dynamics of wine microorganisms 

The microorganisms present in the berry surfaces are mainly yeasts. The 

microflora of grapes varies constantly in response to grape variety, climatic conditions, 

viticultural practices, stage of ripening, physical damage (caused by mould, insects and 

birds) and fungicides applied to vineyards (Pretorius et al., 1999). Although, grape must 

is relatively complete in nutrient content, the low pH and high sugar content leads to a 

selective media in which only a few bacteria and yeast species can grow. Furthermore, 

the addition of sulphur dioxide, a common winery technique, as an antioxidant and 

antimicrobial preservative imposes an additional selection, mainly against undesirable 

oxidative microbes. Another important factor is the restriction created by the anaerobic 

conditions when the fermentation starts (Henschke, 1997). The fermentation of grape 

juice to wine can be regarded as a heterogenous microbial process. The number of 

yeasts on the grape berry just before the harvest varies from 103 to 106 cells/ml 

(Romano et al., 2006) depending on different factors above mentioned. The 

predominant species on the surface of the grape berries are Candida, Hanseniaspora, 

Hansenula, Metschnikowia and Pichia. The population of the main wine yeasts 

Saccharomyces cerevisiae in grape juice is very low (Torija et al., 2001) (Figure 7). The 

non-Saccharomyces yeasts present in the grape juice could proliferate to final 

populations about 106-107 cells/ml, and started to decline by mid-fermentation. During 

the latter stages of natural wine fermentation the strongly fermentative strains of S. 

cerevisiae become predominant and complete the fermentation. S. cerevisiae species 

are the most alcohol tolerant yeast and can reach populations up to 107-108 cells/ml 

(Romano et al., 2006). Besides, some species of Brettanomyces, Kluyveromyces, 

Schizosaccharomyces, Torulaspora and Zygosaccharomyces may also be present 
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during fermentation and in wine. Some of these yeast species are spoilage 

microorganisms because they produce metabolites with an undesirable impact 

(Pretorius, 2000).  

 

 

 

Figure 7. Biodiversity of yeast species during two alcoholic fermentations (white and red 

wine) analysed as a function of the vinification type. BF: Beginning of fermentation, MF: Mid 

fermentation, FF: Final of fermentation (Torija et al., 2001) 

 

In the Candida genus Sipiczki (2004) described Candida zemplinina as a species 

that is very closely related to C. stellata. C. zemplinina grew much faster than the C. 

stellata strains at high sugar concentrations, at low temperatures and in the presence of 

ethanol, suggesting that they could easily overgrow C. stellata. Subsequently, Csoma & 

Sipiczki (2008) found that C. zemplinina was the most abundant species of the Candida 

genus in wine and must samples, although C. stellata has been mentioned in some 

studies (Torija et al., 2001; Di Maro et al., 2007; Xufre et al., 2006). According to Csoma 

& Sipiczki (2008), most of the wine yeasts identified and described in the literature as C. 

stellata might be C. zemplinina. The same authors proposed that response to 1% acetic 

acid is an easy physiological test that can be used in routine taxonomic differentiation of 

the strains of these species. Candida zemplinina grows in the presence of 1% acetic 

acid, which is inhibitory to C. stellata. However, their unequivocal identification requires 
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molecular techniques, either PCR-RFLP of the ITS-5.8 rRNA region or sequencing of 

the D1/D2 domain of the LSU rRNA gene. Csoma & Sipiczki (2008) proposed using the 

enzyme DraI to obtain different species-specific patterns with the PCR-RFLP of the ITS-

5.8 rRNA region. 

Different types of LAB have been described during wine fermentation. In grapes, 

the main LAB belong to the species Lactobacillus plantarum, L. hilgardii and L. casei. 

The species O. oeni, which dominates the malolactic fermentation, is rarely detected at 

the beginning of the fermentation. During the first stages of alcoholic fermentation, the 

most common LAB are: L. plantarum, L. casei, L. hilgardii, L. brevis, P. damnosus, P. 

pentosaceus, L. mesenteroides and O. oeni (Figure 8). Must, after crushing, generally 

contains LAB population of 102 to 104 CFU/ml. Their behaviour at this time depends on 

the pH of the medium and the concentration of the SO2 added to the must. The levels of 

sulphur dioxide used in winemaking do not completely inhibit the LAB growth but they 

do limit it. After the alcoholic fermentation, LAB remain in a latent phase for some time. 

The beginning of the malolactic fermentation depends on temperature, pH, ethanol, etc. 

The growth phase takes several days and increases the population to 107CFU/ml. As 

soon as the malic acid is completely transformed to lactic acid, the bacterial population 

begins to decline. If the wine is not sulphited after malolactic fermentation, the 

bacterium remain for months (Lonvaud-Funel, 1999).  

The AAB may also be present in winemaking. Gluconobacter oxydans, 

Acetobacter aceti and A. pasteurianus are mostly found in the course of winemaking 

and to a lesser extent Gluconacetobacter liquefaciens and Ga. hansenii (González et 

al., 2005). G. oxydans is present on grapes and disappears to give way to species of 

the genus Acetobacter, which subsists in wine (Lafon-Lafourcade & Joyeux, 1981).  
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Figure 8. Microorganism evolution during wine fermentation process and storage (Krieger, 

2005) 

 

1.5. Principal factors affecting the growth of wine microorganisms  

- pH 

The low pH of grape must and wine is one of the main restrictions on selecting 

the microorganisms present in these media. This pH can oscillate between 2.8 and 4.2 

(Heard & Fleet, 1988). This pH does not restrict wine yeasts growth. A pH below 2.8 

can raise some problems, because it increases the toxicity of ethanol and sulphur 

dioxide (Pampulha & Loureiro-Dias, 1989). LAB can conduct the malolactic fermentation 

at the normal low pHs of wines. In high pH wines (>3.5), Lactobacillus spp. dominates, 

whereas O. oeni is present in higher relative populations at lower pH (Henick-kling, 

1993). O. oeni is the most acid-tolerant LAB and it can survive and keep its metabolism 

at a pH as low as 2.9 (Bartowsky, 2005). The optimal pH for AAB is around 5.5-6.3 (Holt 

et al., 1994) although some AAB have been isolated at pH 3.0.  

- Sulphur dioxide  

Sulphur dioxide is usually used in winemaking because of its properties as an 

antimicrobial and antioxidant agent. SO2 inhibits the development of most 

microorganisms although wine microorganisms present a different degree of sensitivity 

to this compound. Moreover, its antioxidant characteristic protects the compounds 

responsible for wine colour (polyphenols) against oxidation (Ribéreau-Gayon et al., 

2006).  

Molecular SO2 is present in solution in a pH-dependent equilibrium with bisulphite 

(HSO3
-) and sulphite (SO3

2-) ions. Only the molecular SO2 has anti-microbial effects. 

The proportion of molecular SO2 is between 1% and 10% of the free form depending on 
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the pH of the wine. Therefore, the lower the pH is, the greater the proportion of 

molecular SO2 and the higher the anti-bacterial effect (Ribéreau-Gayon et al., 2006). In 

comparison with other species, Saccharomyces species are relatively resistant to SO2. 

Such non-Saccharomyces species as apiculate yeast are more sensitive to sulphur 

dioxide. For some species of LAB, 100 mg/l of total SO2 is needed to hinder their 

development (Ribéreau-Gayon et al., 2006) although the pH and the strain used might 

change the levels of SO2 required. The common levels of free SO2 (40-60 mg/l) do not 

completely inhibit the growth of some AAB (Du Toit et al., 2005). Wantanabe & Lino 

(1984) found that 100 mg/l of total SO2 was needed to inhibit the growth of Acetobacter 

species in grape must.  

- Ethanol 

Ethanol acts by modifying the cell active transport systems across the 

membrane, which reduces the assimilation of nitrogen and decreases yeast growth. It 

has been assumed that non-Saccharomyces die off earlier because they are more 

sensitive to ethanol than S. cerevisiae (Fleet & Heard, 1993; Boulton et al., 1996; 

Cocolin et al., 2000). However, some studies found that Hanseniaspora, Candida and 

Kluyveromyces species have ethanol tolerances similar to those of S. cerevisiae 

(Cocolin et al., 2001; Mills et al., 2002; Xufre et al., 2006; Nisiotou et al., 2007). LAB are 

increasingly inhibited at alcohol concentrations above 14%, and most strains tolerate 

the upper limit. Ethanol is sometimes the main energy source for AAB, although if the 

concentration is too high (more than 15%) it may inhibit the growth of AAB. It should be 

pointed out that it is difficult to generalise about the ethanol tolerance of the various 

bacteria or yeast species because it often varies among the strains of the same 

species. 

- Temperature 

The optimal temperature for S. cerevisiae is around 28ºC, although some usual 

wine non-Saccharomyces species have a lower optimal growth temperature of around 

25ºC (Heard & Fleet, 1988). Red wine is usually fermented at 25-30ºC, because it is 

better for the color and phenol extraction. White wine, however, is fermented at a lower 

temperature (15-20ºC) to avoid the loss of volatile compounds. The toxicity of ethanol, 

then, increases with temperature (Torija et al., 2003). The higher sensitivity to ethanol of 

some non-Saccharomyces species accounts for their survival at low temperatures at 

which Saccharomyces may have limited growth. Heard & Fleet (1988) showed that H. 
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uvarum and C. stellata retained high populations until the end of fermentations at low 

temperatures. These low temperatures may also enhance the aroma in the final wine 

because aroma compounds and the contribution of the non-Saccharomyces species 

increase throughout the process (Beltran et al., 2006). LAB are mesophyllic, with an 

optimal growth temperature between 15 and 30ºC. The rate of LAB growth and 

malolactic fermentation is strongly inhibited by low temperatures and generally warming 

up is required for the start of malolactic fermentation (Ribéreau-Gayon et al., 2006). The 

optimum growth temperature for AAB is around 25-30ºC, but AAB growth has been 

detected in wine conserved at 10 ºC (Joyeaux et al., 1984).  

- Oxygen  

Aeration is not detrimental to yeasts. However, this aeration accelerates yeasts 

growth because it does not limit the synthesis of unsaturated fatty acids and ergosterol. 

A lack of oxygen during the exponential phase of yeasts may produce sluggish or stuck 

fermentations (Bisson, 1999). LAB are defined as aerotolerant because oxygen does 

not limit their growth or can even stimulate it (Christensen et al., 1999). AAB, however, 

do require oxygen to growth. Their metabolism is strictly aerobic and oxygen limits their 

growth. Nevertheless, they can survive for prolonged periods under relatively anaerobic 

conditions in wine (Du Toit et al., 2005).  

 

1.6. Impact of microorganisms on wine fermentation 

Yeast modulates the wine flavour through the alcoholic fermentation, 

transforming grape components into flavour active components, producing new 

metabolites through autolysis, bioadsorbing components of grape juice and influencing 

the growth of LAB (Ciani et al., 2010).  

The fermentation process can be conducted by the flora present on the grapes 

and in the winery, or inoculated with a commercial strain mostly S. cerevisiae. 

Inoculation will minimize the influence of the grape’s microflora, although it is well 

known that the inoculation does not prevent the growth of the indigenous 

microorganisms (Fleet, 2008). The persistence of these non-Saccharomyces depends 

on such factors as fermentation temperature, nutrient availability, quantity of sulphur 

dioxide, etc (Constantí et al., 1998). Furthermore, other factors have been described 

that can also affect the persistence of non-Saccharomyces or the imposition of 

Saccharomyces species. Nissen et al. (2003) found that the death of two non-
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Saccharomyces yeast was caused by cell-cell interactions (T. delbrueckii and K. 

thermotolerans). Pérez-Nevado et al. (2006) hypothesized that S. cerevisiae produce 

some toxic compounds that may cause the death of one specific non-Saccharomyces 

yeast, H. guilliermondii. And recently, Albergaria et al. (2010) have postulated that these 

toxic compounds are antifungal peptides secreted by S. cerevisiae against non-

Saccharomyces species. 

All the commercial inocula available on the market are strains belonging to the 

Saccharomyces genus. It is currently postulated that mixed cultures of Saccharomyces 

and non-Saccharomyces species might improve fermentation kinetics and the analytical 

composition of wine, which may lead to a more complex aroma (Bisson & Kunkee, 

1993; Heard, 1999; Rojas et al., 2003; Romano et al., 2003; Ciani et al., 2006; Jolly et 

al., 2006). Non-Saccharomyces yeast produces such enzymes as esterases, 

glycosidases, proteases, etc, which can interact with grape precursor compounds to 

produce aroma active compounds. For this reason the non-Saccharomyces yeasts 

might play an important role in the aroma (Charoenchai, et al., 1997). However, the 

grape must and the fermentation process give an adaptative advantage to S. cerevisiae, 

the yeast with the most efficient fermentative catabolism (Swiegers et al., 2005). 

Several studies have shown that non-Saccharomyces wine yeast makes a 

positive contribution to wine flavour (Fleet, 2003) or have evaluated the biotechnological 

interest of their enzymatic activities (Charoenchai et al., 1997; Esteve-Zarzoso et al., 

1998; Fernandez et al., 1999). Several studies have analyzed the contributions of 

various microorganisms to wine flavour (Table 3). Bely et al. (2008) studied mixed 

culture fermentations and found that simultaneous mixed cultures with a ratio of 20:1 of 

T. delbrueckii-S. cerevisiae produced 53% and 60% reductions in volatile acidity and 

acetaldehyde, respectively. However, if the inoculation was sequential, first T. 

delbrueckii and later S. cerevisiae, had less effect on the reduction of these 

metabolities. Another author, Moreira et al. (2008) reported that the apiculate yeast 

enhanced the production of desirable compounds, such as esters, without increasing 

the undesirable heavy sulphur compounds. H. uvarum increased the proportion of 

isoamyl acetate whereas H. guilliermondii enhanced that of 2-phenylethyl acetate. 

Furthermore, the combined use of S. cerevisiae and non-Saccharomyces wine yeast 

has been proposed to enhance the glycerol content of wines (Ciani & Ferraro, 1996; 

Soden et al., 2000).  
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Table 3. Mixed fermentation processes that have been proposed in winemaking using S. 

cerevisiae and non-Saccharomyces yeast (Ciani et al., 2010) 

 

 

However, pure culture fermentations with non-Sacchromyces wine yeast 

generally increase metabolite contributions to noticeably negative levels and poor 

fermentation activities mean that they cannot be generally used as starter cultures. The 

most important spoilage metabolites produced by non-Saccharomyces yeast are acetic 

acid, acetaldehyde, acetoin and ethyl acetate (Ciani et al., 2010).  

LAB species also influence the quality of wine. Nowadays, there are a varitety of 

LAB inoculums although they are mainly different strains of O. oeni. Some species of 

Lactobacillus and Pediococcus are considered to decrease the quality of the wine. 

Pediococcus is undesirable due to the formation of excessive amounts of diacetyl, 

biogenic amines, degradation of glycerol, etc. And the growth of Lactobacillus in bottled 

wines may result in haze formation, sediment, excessive volatile acidity, etc. (Fugelsang 

& Edwards, 2007). Thus, the inoculation of O. oeni can also be used to prevent the 

development of these LAB species. 
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1.7. Spoilage microorganisms in winemaking 

In the wine industry, alcoholic fermentation is conducted by many 

microorganisms, and it is difficult to distinguish between beneficial fermenting activity 

and spoilage activity. Microorganisms can spoil wines at several stages during 

production. Any inappropriate growth of microorganisms may produce undesirable 

flavours. Wine that is exposed to air may develop oxidative yeasts on its surface, 

usually species of Candida and Pichia (Fleet, 2003). These species oxidise ethanol, 

glycerol and acids to give wines with unacceptably high levels of acetaldehyde, esters 

and acetic acid. Other wines can also be spoiled by fermentative species of 

Zygosaccharomcyes, Dekkera (anamorph Brettanomyces), Saccharomyces and 

Saccharomycodes. In addition to causing excessive carbonation, sediments, and haze, 

these species produce estery and acid off-flavours (Sponholz, 1993).  

The winemaker’s most feared spoilage yeast is Dekkera. This yeast produces off-

flavours as a result of the synthesis of tetrahydropyridines and volatile phenols (4-

ethylguaiacol and 4-ethylphenol) (Loureiro & Malfeito-Ferreira, 2003). Generally these 

phenolic off-odours are described by such descriptors as “barnyard-like, mousy, horsey, 

leather, pharmaceutical” (Grbin & Henschke, 2000; Du Toit & Pretorius, 2000). Among 

the species of this genus, Dekkera bruxellensis is the most representative in wines 

(Rodrigues et al., 2001). Other species have also been found to be able to produce 

volatile phenols. Among these, Pichia guilliermondii has the ability to produce 4-

ethylphenol with efficiencies as high as those observed in D. bruxellensis (Dias et al., 

2003).  

Pichia anomala, Metschnikowia pulcherrima and H. uvarum are known for 

producing high levels of ethyl acetate and acetic acid before and during initial 

fermentation steps, leading to serious wine deterioration (Romano et al., 1992; Plata et 

al., 2003). However, H. uvarum does not produce ethyl acetate when it is present during 

the fermentation with S. cerevisiae (Zohre & Erten, 2002).  

Spoilage species of LAB and AAB may grow at different stages of winemaking, 

during storage in the cellar and after bottling (Sponhoz, 1993; Fuselsang, 1997; Fleet, 

1998; Du Toit & Pretorius, 2000). LAB can spoil wine during winemaking or during 

maturation and bottle aging. In the first case, bacteria start performing malolactic 

fermentation too early, at the end of alcoholic fermentation, but before all the sugars 

have been consumed by yeasts. The fermentation of these carbohydrates by LAB leads 
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to the production of lactic acid as the major metabolite but acetic acid, ethanol and CO2 

are also produced. Ideally during wine aging, no yeasts or bacteria should survive in 

wine. Not all strains spoil wine, most depreciations and diseases are related to 

lactobacilli and pediococci, but they are normally destroyed during wine production. 

However, some strains demonstrate abnormal tolerance to the medium, and particularly 

to ethanol concentration. Other undesirable compounds that are consequence of LAB 

metabolism are biogenic amines and ethylcarbamate (Lonvaud-Funel, 1999). These 

metabolites have no impact on the aroma of wine, but they are considered as pernicious 

to the health of the wine consumer. 

AAB can also spoil wines at many stages during the winemaking process. 

Prevention of AAB proliferation and wine spoilage is based on an understanding that 

these bacteria are aerobic and require oxygen to grow. However, it is evident that these 

bacteria may survive and even multiply under semi-anaerobic conditions, such as wine 

stored in tanks and barrels (Bartowsky & Henschke, 2008). AAB are considered as 

spoilage organisms because their major metabolites result in disagreeable wine sensory 

characteristics. AAB produce acetic acid as the main product of ethanol metabolisation. 

However, acetaldehyde and ethyl acetate are also produced and have a similar 

negative influence on wine quality. Acetic acid is the main constituent of the volatile 

acidity of wine and, depending on wine type, it is considered to be undesirable at 

concentrations exceeding 0.5–1.5 g/L. Sensorially, acetic acid produces a sour flavour 

with a vinegar-like aroma. The intermediate metabolite, acetaldehyde, can also 

contribute to the sensory spoilage of wine with distinct aroma descriptors: sherry-like, 

bruised apple. The ethyl ester of acetic acid, ethyl acetate, has a pungent solvent-like 

aroma, reminiscent of nail polish remover or nuts (Bartowsky & Henschke, 2008). 

Finally, filamentous fungi can also impact on wine production at several stages: 

grapes spoilage in the vineyard, production of mycotoxins in grapes and their transfer to 

wines, production of metabolites that enhance or inhibit the growth of wine yeast and 

malolactic bacteria, and cause earthy, corky taints in wines after growth in grapes, corks 

and wine barrels (Fleet, 2003). 
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2. Characterization of wine yeast and bacteria species using traditional methods 

The traditional methods for detecting and quantifying different wine 

microorganisms are based on morphological tests supplemented with physiological 

tests. Besides, traditional methods require microorganisms to be previously isolated 

before they are identified or quantified.  

 

2.1. Traditional methods for identification 

Yeasts can be identified by conducting the tests and following the classification 

schemes described in Barnett et al. (2000). Numerous tests need to be conducted to 

reliably identify most yeasts at species level. Consequently, the work is time-consuming 

and accurate interpretation requires considerable expertise. Gram stain and catalase 

tests are routine analyses for distinguishing between LAB and AAB in wine although it is 

quite difficult to distinguish at species level and sometimes physiological tests are not 

enough. 

One of the first microbiological tests is to examine the morphology of the 

microorganisms using phase-contrast microscopy. This examination will yield 

information about the shape (cocci, rods, pointed ends, bowling pin, egg, ogival, 

elongated, lemon, needle-like, etc.), size (dimensions), and arrangements (single, pairs, 

tetrads, groups or chains) of the cells. This can lead to incorrect interpretations, 

because the appearance of the cells depends on age and culture conditions. As well as 

cell morphology the characteristics of the colonies created in a specific medium are also 

important. Such characteristics include shape (circular, irregular, or rhizoid), size 

(dimensions), topography (flat, raised, convex, concave, or umbonate), presence of 

pigments, opacity (transparent, translucent or opaque), surface (smooth, rough, dull or 

glistening), edge (entire, undulate, lobate, denate or rhizoid) or any changes to the agar 

(color or opacity changes due to indicators) (Fugelsang & Edwards, 2007). 

Once isolated the unknown microorganisms can be characterized using 

physiological traits. These methods are based on different physiological parameters, 

such as the assimilation of carbon and nitrogen sources, fermentation of carbohydrates, 

demonstration of ascospores, the formation of carbon dioxide from sugars, Gram stain, 

Catalase, test, oxidation of ethanol, oxidation of lactate etc. Numerous tests need to be 

performed to correctly identify yeast or bacteria (Fugelsang & Edwards, 2007).  
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2.2. Traditional methods for quantification  

Estimating microbiological population density and diversity plays an important 

role in the winemaking process. Population densities can be measured using many 

methods, but the two that are most used by oenologists are counts under the 

microscope and direct plating. Microscope counting techniques are the quickest but 

require a minimal population of 104 cells/ml; lower populations need to be concentrated 

by filtration. For low population densities, direct plating methods are normally used. 

Membrane filtration, followed by direct plating is applied to those wines suspected of 

having a low viable population (<25 cells/ml).  

Microscope counting consists of quantification using a microscope counting 

chamber, such as the Neubauer chamber, the Thoma chamber or similar. By this 

procedure all the cells are quantified without distinction. The main drawback is the low 

detection limit and the fact that it counts viable, non-viable and dead cells. To make the 

distinction between viable and non-viable cells, various stains and dyes can be used. 

And to improve the limit detection, a specific volume of wine can be filtered by a 

membrane with a proper pore size to retain the microorganisms to be counted.  

Plate enumeration consists of growing different microorganisms in selected 

media and finally counting the colonies formed. Some non-selective media allow the 

growth of all yeasts associated with the fermentation. Although there is some limitation 

with samples of mixed species, the most prevalent species dominate on the plate and 

prevent species in lower quantities from being observed. To overcome these limitations, 

plating media need to be used that will selectively suppress the growth of undesirable or 

dormant species. Lysine agar is an example of a selective medium which prevents S. 

cerevisiae from growing because this yeast is unable to grow if lysine is the sole 

nitrogen source (Angelo & Siebert, 1987). This medium, then, is effective at isolating 

and enumerating non-Saccharomyces yeasts. An alternative to selective nutrients is to 

add of antibiotics to the growing media and inhibit particular microorganisms. Finally, 

some culture media are optimal for different types of microorganisms, such as MRS 

(Man, Rogosa Sharpe) for LAB or the glucose yeast extract-calcium carbonate-agar for 

AAB. This latter medium should also be considered as a differential medium because 

the calcium carbonate precipitates are dissolved by the acid produced by the acetic acid 

bacteria, forming a halo surrounding the AAB colony. Other factors than can convert a 

general medium into a selective one are the pH, temperature, anaerobiosis condition, 
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etc. Plate enumeration quantifies only the viable and culturable population. The results 

are represented by CFU/ml (colony-forming units per millilitre). The plating technique 

takes a long time to show the growth of different microorganisms, which may detract 

from its usefulness in industry. Yeasts usually need 48 hours to form a colony but LAB 

and AAB might need 5 to 10 days. 

These techniques present many drawbacks. The results are subjective, and 

depend on the growth capacity of the microorganisms and their physiological stage. 

They are also laborious and time consuming. Industry, then, needs to detect and 

quantify the microorganisms present at every stage of the process as soon as possible. 

Traditional methods, however, do no do this. 

 

3. Characterizing wine yeast and bacteria using molecular methods  

Molecular methods can genotype, identify and quantify the various wine 

microorganisms as a function of their variability in the genome. In comparison to 

traditional methods, these methods are generally faster, more specific, more sensitive 

and more accurate, making it possible to perform accurate studies of microbial 

populations and their diversity. They can use either RNA or DNA. The most general 

RNA used is ribosomal RNA (rRNA). DNA is a stable molecule that survives cell death 

and rRNA is a valid index of cell viability, as viable cells have high numbers of rRNA 

molecules (Giraffa & Carminati, 2008). Some methods can use the RNA directly and 

others need a previous retro transcription to obtain the cDNA, complementary to RNA. 

Depending on the purpose of the study one approach or the other can be used. Some 

of these molecular methods can be applied to characterize the sample directly while 

others need a previous cultivation. 

 

3.1. Culture-dependent techniques 

Culture-dependent techniques need first to culture the cells and then identify or 

quantify them with a molecular technique. These methods are more reliable than 

traditional methods, because the identification and/or quantification is more accurate. 

Nevertheless, they may often fail to characterize minor populations or microorganisms, 

for which selective enrichment is necessary, stressed or weakened cells often need 

specific culture conditions to recover and to become culturable, and all the 

microorganisms which are not culturable will not be detected.  
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3.2. Culture-independent techniques 

Culture-independent techniques use molecular techniques to identify and/or 

quantify wine microorganisms and do not require the microorganisms to be cultured 

previously (Rantsiou et al., 2005). Culture-independent methods provide better 

information about the population, because they are not biased by the microorganisms 

that do not grow or do not grow well in a plate. The presence of viable but non-

culturable microorganisms has been previously described in wine (Divol & Lonvaud-

Funel, 2005; Millet & Lonvaud-Funel, 2000).  

Millet & Lonvaud-Funel (2000) studied the behaviour of various wine 

microorganisms and found a viable population between 104-105 cells/ml with the DEFT 

(direct epifluorescence technique) but lower than 1 CFU/ml with colony counts. They 

also enumerated AAB in the absence of oxygen and nutrients in the medium and the 

differences between plate counting and DEFT were also clear. As soon as starvation 

ceased and the medium was aerated, the DEFT counts were the same as colony 

counts. This clearly indicates that the cells were not dead and that the stress situation 

prevented them from developing on a plate. This was also observed by Du Toit et al. 

(2005) who studied the survival of A. pasteurianus in wine under anaerobic conditions, 

and observed that the cell counts by plating were lower than epifluorescence counts. 

Cocolin & Mills (2003) also found that SO2 completely inhibited the growth of 

Hanseniaspora and Candida populations on culture media, although these species 

persisted for as long as 20 days with culture-independent techniques. Numerous other 

studies report the differences between culture-dependent and culture-independent 

techniques.  

 

3.3. Strain genotyping 

3.3.1. Amplified Fragment Length Polymorphism (AFLP-PCR) 

 The AFLP technique uses restriction enzymes to digest genomic DNA, and then 

ligates the adaptors to the sticky ends of the restriction fragments. A subset of the 

restriction fragments is then selected to be amplified by using primers complementary to 

the adaptor sequence, the restriction site sequence and a few nucleotides inside the 

restriction site fragments. Only restriction fragments in which the nucleotides flanking 

the restriction site match the selective nucleotides are amplified (Vos et al., 1995). The 
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amplified fragments are visualized on agarose or polyacrylamide gels, or with capillary 

electrophoresis using sequencing equipments.  

 The main advantage of this technique is that there is no need to know the 

genome of the microorganism. Its sensibility and reproducibility are also high. The main 

drawbacks are that it is is time consuming and the technology used is expensive and 

complicated.  

 Some authors have used this technique to genotype wine strains. De Barros 

Lopes et al. (1999) genotyped different Saccharomyces strains and other strains of 

different species such as D. bruxellensis, D. anomala, T. delbrueckii, I. orientalis, H. 

uvarum, H. guilliermondii, M. pulcherrima, P. fermentans and P. membranifaciens. 

Gallego et al. (2005) used this technique to genotype different strains of S. cerevisiae, 

isolated from spontenaous fermentations. More recently, Esteve-Zarzoso et al. (2010) 

simplified it and applied it to genotype various non-Saccharomyces strains during wine 

fermentation. In LAB, Capello et al. (2008) genotyped different species belonging to O. 

oeni. 

 

3.3.2. Amplification of repetitive elements of the genome 

These techniques are based on the presence of repetitive elements in the 

genomes of different microorganisms. Designing oligonucleotides homologous to these 

repeated sequences enable these regions to be amplified, and each species or strain 

has a specific banding pattern. Different techniques are used for genotyping yeast and 

bacteria. 

3.3.2.1. Repetitive extragenic palindromic (REPs) and 

enterobacterial repetitive intergenic consensus (ERICs)  

Both have been described as consensus sequences derived from highly 

conserved palindromic inverted repeat regions found in bacteria (Pooler et al., 1996). 

These sequences seem to be widely distributed in the genomes of various bacterial 

groups. These amplifications have generated DNA fingerprints of several bacteria, 

(Wieser & Busse, 2000; Guinebretier et al., 2001). 

González et al. (2004, 2005) used these techniques to genotype acetic acid 

bacteria in wines, grapes and alcoholic fermentations. Also Hierro et al. (2004) also 

used these techniques to genotype some yeast strains. The REPs were not useful for 

genotyping yeast strains and the ERICs technique was found to be able to genotype 
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some strains of the species C. boidini, C. stellata and I. terricola. However, these 

authors did not detect these bacteria repetitive sequences in yeasts and the banding 

pattern had to be the consequence of a random amplification.  

 

3.3.2.2. PCR microsatellites or SSR (simple sequence repeats) 

Microsatellites are tandem repeat units of short DNA sequences, 1-10 

nucleotides in eukaryotic cells. The number of these repeated sequences is extremely 

variable, which makes the differences highly polymorphic. This technique consists of 

amplifying the region genome that contains these microsatellites, which gives an 

amplification pattern that enables the strains to be differentiated. The common primers 

used are (GACA)4, (GAG)5, (GTG)5 and others. The ability of these primers to develop 

polymorphism among strains of S. cerevisiae was shown by Lieckfieldt et al. (1993). 

This technique has recently been used by Maqueda et al. (2010) to genotype different 

S. cerevisiae from spontaneous fermentations. They found a good reproducity detecting 

different strains, although found that the restriction analysis of the mitochondrial DNA 

(mtDNA) showed more variability.  

This technique using (GTG)5-PCR is a rapid, straightforward, and reproducible 

tool for differentiating a wide range of food-associated lactobacilli and other LAB 

species (Gevers et al., 2001). In bacteria, this technique is also known as rep-PCR. 

Nowadays, both ERIC-PCR and (GTG)5-PCR are extensively used to genotype AAB in 

wine vinegar production (Hidalgo et al., 2010; Vegas et al., 2010).  

Minisatellites also exist, the main difference being the size of the repeat 

sequences (in this case around 10 to 100 nucleotides) (Marinangeli et al., 2004). This 

technique was also applied to genotype S. cerevisiae species in palm wine, although 

greater strain diversity was detected using delta sequences (Stringini et al., 2009).  

 

3.3.2.3. Delta sequences amplification 

Delta elements are conserved sequences of 330 base pairs that flank 

transposable Ty elements. As the separation distance between these delta elements 

does not exceed 1-2kb, oligonoucleotides homologous to these δ-elements are used to 

amplify the region between them. The size of the bands of this amplification is used to 

genotype S. cerevisiae strains. This method was developed by Ness et al. (1993) and 

Masneuf & Dubourdieu (1994) to genotype strains of S. cerevisiae. Fernández-Espinar 
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(2001) used this technique to genotype different S. cerevisiae strains, although strain 

diversity was greater using the mtDNA restriction analysis. More recently, Stringini et al. 

(2009) successfully used this technique to genotype S. cerevisiae strains. 

 

3.3.3. Restriction analysis of mitochondrial DNA (mtDNA) 

This technique is mainly used to genotype S. cerevisiae strains. The 

mitochondrial DNA of S. cerevisiae is extremely polymorphic among different strains 

and very stable during vegetative multiplication.  

The basis of this technique is to use specific restriction endonucleases to 

fragment the DNA into specific sites, generating fragments of variable sizes. These 

fragments are separated on agarose gel and are pattern strain-specific.  

Aigle et al. (1984) was the first to apply this technique to brewer’s yeast and, 

since 1987, it has been used to characterize the oenological strains of S. cerevisiae 

(Dubourdieu et al., 1987). Querol et al. (1992) simplified this protocol, because the 

mtDNA has a high proportion of AT. Then, treating the total cell DNA with restriction 

enzymes with target sequences type GCAT, they will cut more frequently nuclear 

DNA, with few cuts in the the mtDNA. The different sizes of nuclear and mitochondrial 

fragments mean that they separate differently in an agarose gel. So far, this is the 

most used technique to genotype the strains of S. cerevisiae (Torija et al., 2001; 

Beltran et al., 2002; Nikolaou et al., 2007; Maqueda et al., 2010).  

This technique has been also applied to non-Saccharomyces genotyping such as 

different strains of D. bruxellensis (Ibeas et al., 1996) Zygosaccharomyces (Guillamón 

et al.,1997; Esteve-Zarzoso et al., 2003), C. stellata, M. pulcherrima, and T. 

delbrueckii (Pramateftaki et al., 2000) and P. guilliermondii (Martorell et al., 2006). 

 

3.3.4. Random Amplification of Polymorphic DNA (RAPD-PCR) 

This technique is based on the random amplification of genomic DNA with a 

single primer sequence 9 or 10 bases of long. Each strain presents amplification 

fragments that are different in size and number. The amplification is followed by 

agarose gel electrophoresis, which yields a band pattern that should be characteristic of 

a particular strain.  

This technique has been used to genotype Saccharomyces and non-

Saccharomyces yeasts (Cocolin et al., 2004; Capece et al., 2005; Martorell et al., 2006). 
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However, in some studies comparing different methods, Gallego et al. (2005) found the 

microsatellites and AFLP techniques were more polymorphic than the RAPD-PCR 

technique. This technique has also been used to genotype LAB strains of O. oeni 

(Cappello et al., 2008; Ruiz et al., 2010) and AAB strains (Bartowsky et al., 2003). 

 

3.3.5. Pulsed-Field Gel Electrophoresis (PFGE) 

 This technique consists of separating entire chromosomes by a special 

electrophoresis in which alternating electrical fields are applied. The chromosomes are 

forced to continually change their direction of migration and they avoid being retained in 

the lattice of the agarose gel and enable large fragments of DNA to be separated 

(Fernández-Espinar et al., 2006). The number and size of the chromosomes for 

different strains is very variable. This technique has been extensively used to genotype 

strains of S. cerevisiae (Guillamón et al., 1996; Martínez et al., 2004a). For non-

Saccharomyces, Esteve-Zarzoso et al. (2001, 2003) genotyped strains of different 

Hanseniaspora and Zygosaccharomyces species. Versavaud et al. (1993) used 

restriction endonucleases of low restriction frequency to cut the chromosomes and then 

separate the fragmented chromosomes with pulse field gel electrophoresis. A previous 

restriction has also been applied for genotyping different strains of D. bruxellensis 

(Oelofse et al. 2009). 

 This technique has also been used for bacterial genotyping. Rodas et al. (2005) 

used PFGE with restriction endonucleases to genotype different Lactobacillus strains, 

and Vigentini et al. (2009) used it to genotype O. oeni in wine fermentations.  

 

3.3.6. DNA array technology 

Perhaps the most promising advance towards intraspecific discrimination of wine 

yeast is the use of whole genome sequences. The number of available full genome 

sequences is increasing day by day. An increasingly common approach to examining 

strain evolution and differentiation is to use comparative genomic hybridization with 

whole or partial genomic arrays: microarray comparative genomic hybridization (array 

CGH) (Dunn et al., 2005). With this technique, specific oligonucleotides are immobilized 

on a solid support and hybridize with homologous labelled fragments of the genome. 

This strategy has proven to be successful for microbial identification, even when 

species can only be discriminated by a single nucleotide polymorphism. In addition, 
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since hybridization signals are proportional to the quantity of target DNA, this technique 

may also provide quantitative information (Justé et al., 2008). 

Arrays enable various sets of microbes to be simultaneously detected and 

discriminated and, with high throughput methods, would enable comprehensive 

microbial ecological analysis (Zhou, 2003; Gentry et al., 2006). Molenaar, et al. (2005) 

published a study using CGH and wine-related bacteria. Salinas et al. (2010) used CGH 

to demonstrate genome changes in the S. cerevisiae strains analyzed that allow them to 

be discriminated. Furthermore, molecular analysis by amplified fragment length 

polymorphism (AFLP) and RAPD-PCR was not able to distinguish between these 

strains. 

 

3.4. Species identification 

The ribosomal genes of yeasts are grouped in tandem forming transcription units 

that are repeated in the genome between 100 and 200 times (figure 9). In each 

transcription unit there are both internal transcriber spacers (ITS) and external ones 

(ETS), and the encoding units are separated by intergenic spacers (NTS). The gene 5S 

is adjacent to these tandem repetitions. The ribosomal genes are powerful tools for 

establishing the phylogenetic relationship and identifying species (Kurtzman & Robnett, 

1998).  

 
Figure 9. Structure of eukaryotic ribosomal genes (Fernández-Espinar et al., 2006) 

 

The ribosomal genes of LAB and AAB are also grouped in tandem. The 16S 

rRNA is the macromolecule that is most used to identify bacteria (Figure 10). 

 

 

 

Figure 10. Structure of prokaryotic ribosomal genes 

 

Using information from these regions, various methods have been developed to 

identify species of yeasts and bacteria.  

 

16S 5S 23S 
ITS ITS ETS ETS 
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3.4.1. rRNA Gene Sequencing Analysis 

This technique consists of amplifying specific ribosomal regions, followed by 

sequencing the amplified fragment. Then a comparison can be made between the 

unknown sequence and existing databases, and the species can be identified. 

Alignments with homologies equal to or higher than 99% are considered to belong to 

the same species (Kurztman & Robnett, 1998).   

To sequence ribosomal genes of yeast, the main regions are domains D1 and D2 

in the 26S gene (Kurtzman & Robnett, 1998). In the case of bacteria, the main gene 

used is 16S rRNA (Cole et al., 2005). These regions have been used to differentiate 

between yeast species (Montrocher et al., 1998; Egli & Henick-Kling, 2001; Belloch et 

al., 2002; Di Maro et al., 2007) and bacteria species (Le Jeune & Lonvaud-Funel, 1997) 

in wine.  

 

3.4.2. Restriction analysis of ribosomal genes (PCR-RFLPs) 

 An alternative to sequencing is to use PCR to amplify these or other ribosomal 

regions and then carry out further restriction analysis with specific endonucleases. Each 

restriction enzyme gives a specie-specific profile. The region most used for wine yeast 

identification by PCR-RFLPs is the region between the 18S and 26S rRNA genes, 

which includes the intergenic spacers (ITS1 and ITS2) and the 5.8S rRNA gene.  

 Guillamón et al. (1998) and Esteve-Zarzoso et al. (1999) identified different wine 

yeast species. Since then, several studies have used this technique (Torija et al., 2001; 

Beltran et al., 2002; Raspor et al., 2006), which has also been used to identify LAB 

(Rodas et al., 2005) and AAB (Poblet et al., 2000; Ruiz et al., 2000; González et al., 

2006; Gullo et al., 2006; Vegas et al., 2010) by amplifying the 16S rRNA gene. 

Additional species discrimination has been done in the 16S and 23S intergenic spacer 

region of AAB (Ruiz et al., 2000). 

 

3.4.3. Denaturing Gradient Gel Electrophoresis (PCR-DGGE) and 

Temperature Gradient Gel Electrophoresis (PCR-TGGE) 

Both techniques are based on the denaturing properties of DNA. The fragments 

of similar length but with different sequences can be separated by their melting 

properties. Double strain DNA is denatured by applying a denaturing gradient 
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temperature (PCR-TGGE) or denaturing chemical gradient, such as urea and 

formamide (PCR-DGGE). 

These techniques consist of amplifying of a conserved region of the genome, 

generally ribosomal genes. One of the primers has a GC clamp to prevent the fragment 

from completely denaturalizing. The next step is to run the amplicons in a denaturing 

gradient polyacrylamide gel (PCR-DGGE). Initially the melting process is only partial. 

Discrete domains become single stranded, which decreases the mobility of the DNA 

fragment through the gel. Eventually, strand separation stretches over the entire length 

of the amplicon, and only the GC clamp remains double stranded. Amplicons are all of 

the same size, mainly around 200-700pb. Different species have different base 

sequences (or rather a different proportion and distribution of GC bases) and these 

sequences determine their denaturing behaviours. Therefore, the amplicons from 

different species have different migration rates in the polyacrylamide gel. This method 

also has the theoretical potential to detect differences of as little as a few base pairs 

between species. It is recommendable to excise a band and confirm the identification by 

sequencing.  

Prakitchaiwattana et al. (2004) studied the detection limit of this technique and 

found that the lower limit of yeast detection was 100 cfu/ml. The detection limit of 

individual yeast species in mixed populations, however, was also determined by their 

relative populations. Species can be detected in the mixture when populations are equal 

or even when some populations are 10-100 fold less than others in the mixture. 

Detection is not possible, however, when this ratio exceeds 100-fold.  

These techniques show which species are present in a complex matrix like wine, 

and do not require to know the DNA sequence of the species to do so. These 

techniques, then, have been used to identify different bacteria (López et al., 2003; 

Renouf et al., 2006; De Vero et al., 2006; De Vero & Giudici, 2008; Ilabaca et al., 2008) 

and yeasts (Cocolin et al., 2004; Di Maro et al., 2007; Stringini et al., 2009). Possible 

problems associated with this technique are that different species might have identical 

electrophoresis mobility, which can lead to results being interpreted incorrectly.  

 

3.4.4. Analysis of clone libraries 

This technique consists of amplifying highly or poorly conserved gene regions 

and the directly cloned and sequenced amplicon, which enables the species of 
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individual community members to be identified. A major drawback of the use of this 

technique is the selective transformation due to amplicon size and sequence. 

Alternatively, direct digestion of the entire plasmid containing the yeast region may be 

helpful to initially screen the clone library and distinguish different restriction types which 

can then be sequenced (Lagacé et al., 2004; Kim & Chun, 2005). This technique was 

applied to study the evolution of AAB in vinegar fermentation (Ilabaca et al., 2008). 

 

3.4.5. Whole genome analysis 

Probably the most accurate way of identifying microorganisms is whole sequence 

analysis, although its high cost has limited its application. Nowadays, pyrosequencing 

allows high throughput, is relatively cheap and does not require cloning, which means 

that there are no aberrant recombinants and cloning-related artefacts. This method has 

the potential advantages of accuracy, flexibility, parallel processing, and can be easily 

automated. It also dispenses with the need for labelled primers, labelled nucleotides, 

and gel-electrophoresis. This technique has not been used for genome sequencing due 

to the limitation in the read length, but it has been employed for applications such as 

genotyping (Ronaghi, 2001). Currently, pyrosequencing is being used in the microbial 

community analysis of soils and mines (Justé et al., 2008). However, the price is still too 

high for routine analysis. 

 

3.4.6. Other techniques 

This section provides brief descriptions of other techniques used to identify 

different microorganisms but not widely applied to wine microorganisms (Giraffa & 

Carminati, 2008; Justé et al., 2008). 

- Single-strand conformation polymorphism (SSCP-PCR) electrophoretically 

separates PCR products on the basis of conformational differences in folded single-

stranded products. After denaturation, single-stranded DNA fragments are loaded on a 

non-denaturing polyacrylamide gel. Under non-denaturing conditions a stable 

secondary structure is formed which is mainly determined by the intramolecular 

interactions that depend on the nucleotide sequence. On the basis of the migration of 

these secondary structures in the gel, products of similar molecular weights can be 

separated and visualized. However, a major limitation is that several stable 

conformations are formed from one single-stranded DNA fragment, resulting in multiple 
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bands on gel. The discriminatory ability and reproducibility of SSCP-PCR analysis, 

which is generally most effective for fragments around 400 pb, also depends on the 

position of the sequence variations in the gene studied (Vaneechoutte, 1996). This 

technique has been used to study microbial communities in different matrices. So far, 

applications in food microbiology have been limited to cheese microbiota (Callon et al., 

2006; Delbès et al., 2007). 

- Terminal-Restriction Fragment Length Polymorphism (T-RFLP) is based on the 

restriction endonuclease digestion of fluorescent end-labelled PCR products. This 

digestion yields fluorescent fragments that are of different sizes for the different species. 

Depending on the species composition of the microbial community, different 

fluorescent-labelled fragments are detected. Very similar to this technique is the Length 

Heterogeneity-PCR (LH-PCR), which distinguishes different organisms on the basis of 

natural variations in the length of one gene (for example, the 16S rRNA gene). Both 

techniques have been applied to assess microbial dynamics in cheese (Rademaker et 

al., 2006; Fornasari et al., 2006).  

 

3.5. Quantification techniques 

To control the winemaking process, it is useful to know which species are present 

and in which quantities at each stage. The presence of some microorganisms can be 

quantified by DNA-based techniques, which correlate the amount of DNA to the amount 

of biomass.  

  

3.5.1. Direct Epifluorescence Technique (DEFT) 

This technique directly counts viable cells through a fluorescence microscope. 

Specific dyes react with organic material or are concentrated in specific subcellular 

organelles. This technique is more applicable to routine wine control, particularly since 

fluorescent dyes are now available. Toxic acridine orange was the first to be used 

(Froudière et al., 1990; Diaper & Edwards, 1994). Nowadays several different kits are 

available: LIVE/DEAD® BactLightTM Bacterial Viability Kit and LIVE/DEAD® Yeast 

Viability Kit. The LIVE/DEAD® BactLight Bacterial Viability assay uses mixtures of SYTO 

9 green fluorescent nucleic acid stain and red fluorescent nucleic acid stain propidium 

iodide. This kit can also be used to assess yeast viability (Zhang & Fang, 2004). The 

SYTO® 9 stains cells with both intact and damaged membranes. In contrast, propidium 
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iodide only penetrates cells with damaged membranes, which are considered to be 

dead cells. When mixed in the recommended proportions, live cells are coloured green 

(the SYTO® 9 stain) and dead cells are coloured red (the mixture of SYTO 9 and 

propidium iodide staining). The LIVE/DEAD® Yeast Viability Kit consists of two stains: 

FUN® 1 which generates red-fluorescent cylindrical intravacuolar structures (CIVS) only 

in the metabolically active cells, and Calcofluor White M2R which stains the cell wall 

with blue-fluorescence, regardless of the yeast metabolic state. The difference between 

viable and non-viable cells, then, is the presence of red-fluorescent CIVS in the cell 

cytoplasm for the metabolically active cells. However, it has been observed that the 

CIVS are not always clearly visible because of their small size, so viability can 

potentially be underestimated (van Zandycke, 2003). 

This is a rapid and reliable technique, which quantifies viable and non-viable 

cells, although it cannot distinguish between the different genera or species. It has been 

used to demonstrate significant non-culturable populations of both bacteria and yeast in 

ageing wines (Millet & Lonvaud-Funel, 2000; Du Toit et al., 2005; Divol & Lonvaud-

Funel, 2005).  

 

3.5.2. Fluorescence In Situ Hybridization (FISH) 

This technique consists of the direct hybridization of some labelled probes, 

mainly fluorescent, to DNA or RNA. First of all, a fixation step is required to maintain the 

integrity of the cell, usually with paraformaldehyde. Then, the membrane is 

permeabilized so that the probe can enter the cell. Generally these probes are 15 to 20 

nucleotides in length and are covalently labelled at the 5’ end with a fluorescent dye. 

Some washing steps are needed to eliminate the excess of non-hybridized probes and 

the detection is finally made using a fluorescence microscope. The probes need to be 

specifically designed, so a considerable amount of knowledge about each community 

must be available. One modality of FISH is multiplex FISH, which uses several probes 

labelled with different fluorochromes, thus detecting and quantifying different species in 

the same analysis (Giraffa & Carminati, 2008).  

Xufre et al. (2006) developed 26S rRNA gene probes for the identification of 

numerous wine-related yeast including S. cerevisiae, C. stellata, H. uvarum, H. 

guilliermondii, K. thermotolerans, K. marxianus, T. delbrueckii, P.membranifaciens and 

P. anomala. They have also been used to identity lactic acid bacteria (Sohier & 
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Lonvaud-Funel, 1998; Blasco et al., 2003) and acetic acid bacteria (Blasco, 2009: PhD 

Thesis). 

The technique combines the simplicity of microscopy and the specificity of 

DNA/RNA hybridization. In theory FISH could detect single cells, but in practice the 

detection limit is often 104 cells/ml. In general, it is less sensitive than PCR-based 

techniques (Hogardt et al., 2000; Moreno et al., 2003; Poppert et al., 2005). Another 

limitation is insufficient automation for high sample size throughput (Amann et al., 

2001).  

 

3.5.3. Flow Cytometry 

Flow cytometry simultaneously measures and then analyzes multiple physical 

characteristics of single particles, such as cells. These cells flow in a fluid stream 

through a beam of light. The properties measured include a particle’s relative size, 

relative granularity or internal complexity, and relative fluorescence intensity. These 

characteristics are determined using an optical-to-electronic coupling system that 

records how the cell or particle scatters incident laser light and emits fluorescence. The 

characteristics or parameters of each event are based on its light scattering and 

fluorescent properties. This data can be analyzed to provide information about 

subpopulations within the sample. 

Cell viability can also be directly assessed by using fluorescent dyes to view the 

metabolic state of yeast and bacteria in wine (Malacrino et al., 2001; Boyd et al., 2003; 

Chaney et al., 2006; Herrero et al., 2006). Flow cytometry can be combined with FISH 

to selectively enumerate mixed microbial populations and carry out a high resolution 

automated analysis (Amann et al., 1990). The main advantage of this technique is its 

sensitivity (it can detect one cell in a million). 

 

3.5.4. Impedance 

Impedance analysis is based on the modification of the medium’s conductivity, 

which is measured by applying an electric voltage to electrodes. The molecules in this 

medium (proteins, carbohydrates, etc.) are electrically neutral and less ionized. The 

microbial metabolism transformes these molecules into smaller molecules with a higher 

charge and electric mobility (amino acids, organic acids, etc). The technique can be 

used for direct (increase in conductivity) or indirect analysis. The indirect analysis 
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measures the decrease in the conductivity of the highly ionized medium (with KOH, for 

instance) that reacts with the CO2 produced by the microorganisms and decreases the 

conductivity of the medium.  

This technique is easy and rapid. The main problem is that it cannot individually 

quantify the different microorganisms in a sample. Martínez et al. (2004b) used it to 

quantify microorganisms in bottled wines. It can also be used to determine the vitality of 

wine yeast, as an indicator of fermentative capacity (Redón et al., 2008; Rodríguez-

Porrata et al., 2008). 

 

3.5.5. Real time or Quantitative PCR (Q-PCR) 

Quantitative PCR uses specific technology to continuously detect the PCR 

product after each reaction cycle. It detects and quantifies a fluorescent donor, the 

signal of which increases in direct proportion to the quantity of PCR product obtained. 

The fluorescence can be obtained through binding agents or probes. SYBR Green is 

the common binding agent which binds to double stranded DNA. The most used probes 

are TaqMan, which are characterized by having a donor photochrome together with an 

acceptor photochrome (quencher). When they are both bound in the probe, the 

acceptor quenches the fluorescence emitted by the donor. When the Taq polymerase 

releases the acceptor photochrome the donor fluorescence is emitted. This is the same 

rationale for such other probes as Beacon or Scorpio probes, which both make up a 

hairpin-forming oligonucleotide probe. Real-time PCR allows sensitive detection of the 

DNA product, ensures detection during the linear range of amplification, eliminates the 

need for post-PCR analysis, and incorporates specialized software to simplify data 

analysis. The information is represented as an amplification curve which provides the 

cycle number for which the intensity of the donor emission increases compared with the 

background noise. This cycle number is called the cycle threshold (Ct) and is inversely 

proportional to the number of copies of the sample. It is used to evaluate the initial 

quantity of DNA or cells. 

The technique has high specificity and sensibility, and is quick. Nevertheless, all 

these parameters strictly depend on the primer design. It has been widely used to 

detect and quantify different wine microorganisms, such as acetic acid bacteria 

(González et al., 2006; Torija et al., 2010), lactic acid bacteria (Neeley et al., 2005), and 

wine yeast (Martorell et al., 2005; Hierro et al., 2006). 
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4. “Viable but non-culturable” microorganisms 

4.1. Definition 

Microorganisms in the viable but non-culturable (VBNC) state are those which 

lose the ability to grow in a culture medium. This does not mean that the 

microorganisms are dead, as was previously believed. These microorganisms are alive 

although they are in a new state that prevents them from forming colonies in a culture 

medium. This VBNC state renews the microorganisms it they are allowed to recover in a 

medium in which the stress that causes the state is absent (Oliver, 2000b). The typical 

behaviour of VBNC microorganisms in response to stress is shown in figure 11. In this 

case, the colony counts showed the usual population dynamics (i.e. a growth phase 

followed by a stationary phase until day 10, and then a decline phase). From day 16 the 

population decreased more slowly in the red wine than in the same wine without 

phenolic compounds. Using DEFT, the results were of the same order at the beginning 

of the experiment (about 2–3 106 cells/ml). However, from day 13 to day 53, the viable 

population estimated by DEFT was 3 or 4 log units higher than the colonies recovered 

in the red wine. The samples were aerated at day 53 to dissolve the oxygen which is 

necessary for AAB metabolism and growth. Within the following 3 days, rapid growth 

occurred and the population able to form colonies was almost as numerous as the 

population enumerated by DEFT. 

   

 

4.2. What induces this state and why do microorganisms enter this state? 

The microorganisms enter this state in response to stress, which could otherwise 

be lethal. The natural stresses that induce this state are osmotic stress, high or low 

temperatures, starvation, oxygenation, or exposure to light (Oliver, 2000c). During this 

period, the VBNC microorganisms decrease their activity as the result of a reduction in 

nutrient transport, respiration rates, and macromolecular synthesis (Porter et al., 1995; 

Figure 11. Evolution of acetic acid 
bacteria determined by colony 
counts and by DEFT in a red wine 
(Wine A) and the same wine 
deprived of phenolic compounds 
(Wine B). Wine A, colony counts: 
♦, DEFT: ●, Wine B, colony counts: 
◊, DEFT: ○ (Millet & Lonvaud-
Funel, 2000) 
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Oliver 2000a). However, these microorganisms maintain the basal metabolism so that 

the main cellular functions keep active. Some studies have demonstrated continued 

gene expression by VBNC microorganisms (Lleò et al., 2000, 2001; Yaron & Matthews, 

2002). Heim et al. (2002) reported that microorganisms entering this state have quite a 

different protein profile. Furthermore, VBNC microorganisms presented modifications in 

the fatty acid composition of the plasma membranes; which are essential to enter in this 

state (Day & Oliver, 2004) and necessary for maintaining the membrane potential 

(Porter et al., 1995; Tholozan et al., 1999). Nevertheless, VBNC microorganisms have 

been reported to have a greater autolytic capacity than microorganisms in the 

exponential phase.  

 

4.3. Deviation in monitoring wine microorganisms 

First of all, it should be pointed out that live cells, dead cells, and damaged cells 

in VBNC state can be found in a culture medium. It was previously thought that all the 

microorganisms that could grow in an optimal medium were alive. Different 

microorganisms may have such requirements as specific nutrients in the media, growth 

temperature, growth rate, etc. The best medium for each microorganism and the 

selective medium for the growth of a given microorganism often have to be defined. 

However, this is not always the case because different stress conditions may produce 

the VBNC state. Several states can be defined among the live cells that can support 

growth and dead cells (Figure 12). The result in both cases will be the same: that is, the 

lack of growth in general or universal media. Then, a deviation in the determination of 

the microorganisms will appear when culture-dependent and independent techniques 

are used. Culture-dependent techniques may underestimate the population, because 

only the culturable microorganisms are analysed (Millet & Lonvaud-Funel, 2000). 

Culture-independent techniques, on the other hand, may overestimate the population 

because they detect of dead cells as live ones (Nocker & Camper, 2006). 
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4.4. Solutions  

One solution for differentiating between dead cells, VBNC cells and culturable 

live cells could be to use culture-independent techniques with some modifications to 

eliminate the DNA from dead cells or to use RNA. Several studies have used RNA 

instead of DNA for quantifying or detecting the viable population because it is rapidly 

degraded in the dead cells (Cocolin & Mills, 2003; Hierro et al., 2006). However, 

working with RNA can be complex because it is unstable and can be degraded during 

purification or analysis. Various authors have proposed an alternative to RNA (Rudi et 

al., 2005; Nocker & Camper, 2006), which consists of applying DNA binding dyes that 

penetrate only the dead cells (damaged membranes) and do not require the DNA to be 

amplified. First, Nogva et al. (2003) proposed using ethidium monoazide bromide (EMA) 

to detect the bacteria viable cells. Subsequently, Nocker et al. (2006) presented 

propidium monoazide bromide (PMA), a novel chemical that could enter the bacteria 

dead cells. Both chemical dyes penetrate only dead cells (or, to be more precise, those 

with compromised membrane integrity) not live cells with intact cell membranes. When 

they bind to the DNA of dead cells, the photo-inducible azide group allows these dyes to 

be covalently cross-linked by exposure to bright light. This process renders the DNA 

insoluble and it is lost during subsequent genomic DNA extraction (Nocker & Camper, 

2006; Nocker et al., 2006). Rudi et al. (2005) reported that the unstained DNA from 

viable cells was PCR amplified, while the DNA from dead cells with bound dyes was 

not. Thus, only the DNA from live cells is detected and quantified after treatment with 

the dyes. 

Nocker et al. (2006) observed that the application of EMA is hampered by the 

fact that the chemical can also penetrate the live cells of some bacterial species. 

Transport pumps actively export EMA out of metabolically active cells, but the remaining 

Figure 12: Functional 

criteria for determining 

different levels of cell 

viability and vitality (Diaz et 

al., 2010) 
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EMA level can lead to substantial loss of DNA. The fact that the PMA charge is higher 

might be the reason for the greater impermeability of intact cell membranes, which 

prevents this live cell from losing its DNA. 

Several studies have been made using this methodology in a variety of bacteria 

species, although none in wine microorganisms. Recently, this technique was adapted, 

first to detect Zygosaccharomyces bailii which was causing spoilage in fruit juices 

(Rawsthorne & Phister, 2009a) and, subsequently, to detect S. cerevisiae without 

detecting the DNA remaining from yeast extract (Rawsthorne & Phister, 2009b). 
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Abstract 

Sulphur dioxide (SO2) addition and yeast inoculation are well-established 

practices in winemaking for restricting the growth of indigenous yeasts and bacterial 

populations. The effect of these oenological practices on wine microbial populations has 

been evaluated using culture-independent methods. These are quantitative PCR 

(qPCR) for the enumeration of yeasts, lactic acid bacteria (LAB) and acetic acid bacteria 

(AAB), and PCR-DGGE to determine the yeast and bacteria species diversity. The 

PCR-DGGE method detected a low yeast and bacteria species diversity. On the 

contrary, the specificity of the primers designed for the qPCR allowed that minor 

microbial groups such as Hanseniaspora were accurately quantified regardless of a 

large presence of other microbial groups such as Saccharomyces. From an oenological 

point of view, inoculation increased the proportion of Saccharomyces vs. non-

Saccharomyces in a shorter time. Hanseniaspora increased during the first phase and 

decreased during the latter phases of the process, especially in the sulphited 

fermentations. Both yeast inoculation and SO2 kept the LAB populations at very low 

level, while the AAB populations were hardly affected by these two practices. 

Keywords: Wine; Acetobacter aceti; Gluconacetobacter hansenii; Candida zemplinina; 

Oenococcus oeni 
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1. Introduction 

The conversion of grape must to wine is a complex biochemical process involving 

interactions between yeasts, lactic acid bacteria (LAB) and acetic acid bacteria (AAB). 

The metabolism of these microorganisms contributes to the quality of the wine by 

releasing metabolites which contribute to the flavour and aroma of the wines (Swiegers 

et al., 2005). Yeasts and LAB are the main contributors to wine aroma-enrichment 

during the alcoholic and malolactic fermentation, respectively. Yeasts with low 

fermentation activity, such as Candida spp., Hanseniaspora spp., Kluyveromyces spp., 

Pichia spp., Rhodotorula spp. are predominant in grape musts and during the early 

stages of fermentation. Subsequently, Saccharomyces cerevisiae proliferates, 

dominating and completing the wine fermentation (Fleet and Heard, 1993; Beltran et al., 

2002). Oenococcus oeni is the major species during malolactic fermentation but other 

LAB genera such as Lactobacillus, Leuconostoc and Pediococcus can grow in the wine. 

LAB may enhance wine flavour and complexity but their growth has been also related 

with the production of off-flavours. Likewise, AAB growth generates off-flavours in the 

wine such as acetic acid and ethyl acetate, which have a negative effect on wine quality 

(Drysdale and Fleet, 1988). 

Most studies on wine microbial ecology have invariably been done after the 

culture of the different microorganisms in different media. Nowadays we are in a new 

era of microbiology due to the development of molecular biology techniques that allow 

us to identify and enumerate microorganisms using culture-independent methods. 

Avoiding the selective cultivation and isolation of microorganisms from natural samples 

is justified, considering the biases related to traditional culture-dependent methods 

(Rantsiou et al., 2005). The presence of viable but non-culturable microorganisms has 

been described in wine samples (Millet and Lonvaud-Funel, 2000; Divol and Lonvaud-

Funel, 2005). These microorganisms are unable to grow in a plate but may justify the 

differences reported by various authors between isolated and naturally occurring 

species in wine samples (Mills et al., 2002; Cocolin and Mills, 2003; Hierro et al., 

2006b). 

Wine microbiota is influenced by multiple factors, which can be grouped into 

viticultural and oenological practices. We have previously analysed the effect of two of 

the most common oenological practices (yeast inoculation and SO2 addition) on yeast 

(Constantí et al., 1998) and on AAB (González et al., 2005) populations. In these 
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previous studies, microbes were analysed using culture-dependent methods. Microbial 

counts were done by plating in different media and colonies were identified by different 

molecular methods (RFLPs of rDNA and mtDNA, ERIC-PCR, etc.). The aim of the 

present study was to analyse the microbial content in different wine fermentation 

conditions using only culture-independent techniques. PCR-DGGE and qPCR are two 

of the most widely used techniques for independent-culture microbial analysis. PCR-

DGGE has been widely used to study the ecology of wine fermentation (Di Maro et al., 

2007; Renouf et al., 2007; Mills et al., 2002; Cocolin et al., 2000) and qPCR assays 

have been developed to detect and enumerate bacteria and yeasts in wine (Phister and 

Mills, 2003; Delaherche et al., 2004; Pinzani et al., 2004; Martorell et al., 2005; 

González et al., 2006; Hierro et al., 2006a; Rawsthorne and Phister, 2006; Hierro et al., 

2007). Thus, we chose the real-time quantitative PCR (qPCR) to enumerate the main 

wine microbial groups: yeast, LAB and AAB. We also enumerated the two main wine 

yeast genera: Saccharomyces and Hanseniaspora. The diversity of yeast and bacteria 

species was monitored by PCR-DGGE throughout different wine fermentations. 

 

2. Materials and methods 

2.1. Reference strains 

The type and reference strains used in this study were obtained from CECT 

(Spanish Type Culture Collection), DSM (Deutsche Sammlung von Mikroorganismen 

und Zelkulturen) and LMG (Culture Collection of the Laboratorium voor Microbiologie, 

Gent). The yeasts used were: Candida boidinii CECT10029, Candida mesenterica 

CECT1025, Candida sake CECT10034, Candida stellata CECT11109, Dekkera 

anomala CECT11162T, Hanseniaspora guilliermondii CECT11029T, Hanseniaspora 

uvarum CECT11107, Issatchenkia terricola CECT11139 and CECT11176T, Torulaspora 

delbrueckii CECT1880 and CECT10558 and Zygosaccharomyces rouxii CECT1230 and 

CECT1232. We also used the Active Dry Wine Yeast (ADWY) commercial strain 

Saccharomyces cerevisiae QA23 (Lallemand, Inc. Canada). The LAB used were: 

Lactobacillus brevis CECT4121, Lactobacillus buchneri CECT4111T, Lactobacillus 

hilgardii CECT4786T, Lactobacillus plantarum CECT220, Leuconostoc mesenteroides 

CECT219, Oenococcus oeni CECT217T, Pediococcus parvulus CECT813 and 

Pediococcus pentosaceus CECT4695. AAB: Acetobacter aceti DSM2002 and 

DSM3508, Acetobacter oeni LMG21952T, Acetobacter pasterianus DSM3509 and 
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DSM46617, Gluconacetobacter hansenii LMG1529 and DSM5602, Gluconobacter 

oxydans DSM2343 and DSM7145. 

Yeasts were grown in YPD (2% glucose, 2% peptone, 1% yeast extract), LAB 

were grown in MRS (Oxoid, Hampshire, United Kingdom) and AAB were grown in GY 

(10% glucose, 10% yeast extract). 

2.2. Wine fermentations and sampling 

This study was done in the experimental cellar of the Faculty of Oenology in 

Tarragona (Spain) during the 2006 vintage. Cariñena was the grape variety we chose 

for the vinifications. The same grape must was separated into four 80-l tanks after 

destemming and crushing. When SO2 was added, the concentration was 60 mg l−1 and 

the inoculum used was the commercial strain S. cerevisiae QA23 added as rehydrated 

yeast at a final population of 2×106 cells ml−1. Fermentation tanks were identified as: 

+I+S (inoculum and SO2); +I−S (inoculum and no SO2), −I+S (no inoculum and SO2) 

and −I−S (no inoculum and no SO2). Temperature fermentation was controlled at 25–28 

°C. Samples were taken from grape must on day 0 and  on several fermentation days (1, 

2, 5, 8 and 12). Sugar consumption was daily monitored by measuring the density (g l−1) 

of the fermenting must. Fermentations were considered to be finished when the level of 

reducing sugars, measured by enzymatic assay (Roche Applied Science; Germany), 

was below 2 g l−1. 

2.3. DNA extraction 

DNA was isolated from cultures of all the reference strains and from fermentation 

samples (1 ml) as described by Hierro et al. (2006a). Yeast cell suspensions were 

washed with sterile water and the pellets were resuspended in 700 µl of AP1 buffer 

(DNeasy Plant minikit, Qiagen, Valencia, California) and transferred to a 2 ml conical-

bottom microcentrifuge tube containing 1 g of 0.5 mm diameter glass beads. The tubes 

were shaken in a mini bead-beater (Biospec Products Inc., Bartlesville, Oklahoma) for 3 

min at the maximum rate and then centrifuged at 10.000 rpm for 1 min. The DNA in the 

supernatant was transferred to a sterile microfuge tube and purified using the DNeasy 

Plant minikit (Qiagen, Valencia, California) according to the manufacturer's instructions. 

The same DNA extraction was used for both PCR-DGGE and qPCR analyses. 
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2.4. PCR-DGGE 

The primers we used to amplify the specific ribosomal region of each microbial 

group were: U1GC/U2 (Meroth et al., 2003a) for yeasts and L1GC/HDA2 (Meroth et al., 

2003b) for LAB (Table 1). So far, no specific primers for AAB have been reported, thus, 

we used the WBAC1GC/WBAC2 primer pair (Lopez et al., 2003) described for the 

common amplification of both LAB and AAB populations found in wines (Table 1). This 

primer pair has been already used to monitor AAB diversity in balsamic vinegar (De 

Vero et al., 2006). For LAB, the fragments of the 16S rRNA gene were amplified and 

separated by DGGE as described by Meroth et al. (2003a). For AAB, the PCR 

amplification was prepared as in Lopez et al. (2003), although the electrophoretic run 

was kept at a constant 170 V for 4 h at a constant temperature of 60 °C in TAE buffer 

0.5×, and in a denaturing gradient from 30% to 60% of urea and formamide. For the 

yeasts, amplification of the fragments and denaturing electrophoresis was done 

according to Meroth et al. (2003a). All PCR amplifications were done in a Gene Amp 

PCR System 2700 (Applied Biosystems, Fosters City, USA), using EcoTaq DNA 

Polimerase (Ecogen, Spain). The Dcode universal mutation detection system (Bio-Rad, 

Hercules, California) was used to run the PCR-DGGE analysis. 

 

Table 1. Primers used for qPCR and PCR-DGGE assays 

 

Technique 

Microbial 

group 
Primer Sequence 5’-3’ 

PCR product 

size (bp) 

 Total Yeasts YEASTF 

YEASTR 

GAGTCGAGTTGTTTGGGAATGC 

TCTCTTTCCAAAGTTCTTTTCATCTTT 

124 

 S. cerevisiae SCER-R 

CESP-F 

CGCAGAGAAACCTCTCTTTGGA 

ATCGAATTTTTGAACGCACATTG 

175 

q-PCR H. uvarum HUV-R 

CESP-F 

AACCCTGAGTATCGCCCACA 

ATCGAATTTTTGAACGCACATTG 

121 

 LAB1 WLAB1 

WLAB2 

TCCGGATTTATTGGGCGTAAAGCGA 

TCGAATTAAACCACATGCTCCA 

407 

 AAB2 AQ1F 

AQ2R 

TCAAGTCCTCATGGCCCTTATG 

CGCCATTGTAGCACGTGTGTA 

55 

 Total Yeasts U1GC* 

U2 

GTGAAATTGTTGAAAGGGAA 

GACTCCTTGGTCCGTGTT 

260 

PCR-

DGGE 

LAB1 L1GC* 

HDA2 

CAGCAGTAGGGAATCTTCC 

GTATTACCGCGGCTGCTGGCAC 

185 

 AAB2 WBAC1GC* 

WBAC2 

GTCGTCAGCTCGTGTCGTGAGA 

CCCGGGAACGTATTCACCGCG 

320 

 

LAB1: lactic acid bacteria; AAB2: acetic acid bacteria. 

* GC-rich sequence (5′-GCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCCCCGCCCC-3′). 
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The DNA fagments from the PCR-DGGE gels were excised and purified 

according to Omar and Ampe (2000). Each excised band was then transferred into 50 µl 

of sterile water and incubated overnight at 4 °C to  allow diffusion of the DNA. One 

microlitre of the eluted DNA was used for re-amplification with primers without the GC 

clamp. The PCR products were purified and sequenced by Macrogen Inc. facilities 

(Seoul, South Korea) using an ABI3730 XL automatic DNA sequencer. 

2.5. qPCR 

In all cases qPCR was done on an ABI Prism 5700 Sequence Detection System 

(Applied Biosystems). Power SyberGreen master mix was used according to the 

manufacturer's instructions (Applied Biosystems, California). An ABI PRISM 96 well 

optical plate was used for the reaction. The instrument automatically determined the CT. 

Samples and cultures for standard curves were analyzed in triplicate. 

We quantified the total yeast, Saccharomyces and Hanseniaspora using the 

primers YEASTF/YEASTR (Hierro et al., 2006a), CESP-F/SCER-R and CESP-F/HUV-R 

(Hierro et al., 2007), respectively (Table 1). We quantified the LAB using the primers 

WLAB1/WLAB2 (Neeley et al., 2005). The reaction mixture was made up of 5 µl of DNA 

template, 0.2 µM of primer, and 12.5 µl of PowerSybrGreen Master Mix (Applied 

Biosystems). The amplification programme was as follows: 50 °C for 2 min, 95 °C 10 

min, 40 cycles at 95 °C for 15 s and 60 °C for 1 mi n. To quantify the AAB we followed 

the protocol proposed by González et al. (2006) and used the primers AQ1F/AQ2R 

(Table 1). 

Standard curves were created by plotting de Ct (Cycle Threshold) values of the 

qPCR performed on dilution series of cells against the log input cells ml−1. Three of 

these curves were made for each type of microorganism. All of these curves were made 

from a fresh culture. 

 

3. Results 

3.1. Wine fermentations 

Four semi-industrial fermentations were done under different conditions of SO2 

addition (+S) and yeast inoculation (+I) (see Material and Methods, where the 

conditions are designated as +I+S, +I−S, −I+S and −I−S). Grape must (density=1095 g 

l−1) was divided into four tanks and then yeast inoculum and SO2 were added to the 

necessary fermentations. Slight differences were observed between the different 
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fermentation conditions (Fig. 1). Yeast inoculation slightly speeded up the beginning of 

the fermentations, especially when SO2 was absent. The fermentation without inoculum 

and without SO2 (−I−S) showed the slowest fermentation rate. In any case, all the 

fermentations finished in 12 days. 
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Fig. 1. Fermentation kinetics (as density g l−1) of the four experimental fermentations: +I+S 

(—X—), +I-S (—□—), −I+S (— —) and –I-S (—■—). 

3.2. Experimental set-up for microbial analysis 

We used qPCR to enumerate the following main wine microbial groups: total 

yeasts, Saccharomyces, Hanseniaspora, LAB and AAB. Standard curves were 

performed with each pair of primers and Table 2 shows the correlation coefficient (R2), 

slope and intercept for each of these standard curves. 

 

Table 2.Correlation coefficients, slopes and intercept of the standard curves conducted with 

the different microorganisms used 

 

Microrganisms Slope Intercept R
2 

 

Yeast 
-4,15±0,03 45,65±0,07 0,983±0,003 

 

Saccharomyces -2,59±0,05 32,57±0,30 0,98±0,006 

 

Hanseniaspora -2,87±0,04 36,37±0,25 0,99±0,003 

 

Acetic acid bacteria -2,77± 0,50 35,35±3 0,978±0,015 

 

Lactic acid bacteria -3,945±0,27 45,33±1,75 0,987±0,006 
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To identify or detect species diversity during wine fermentations, we used the 

PCR-DGGE technique. Reference strains of the most usual wine microbial species 

were amplified with their corresponding primers and were then DGGE-resolved to 

obtain the relative mobility for each species, and to construct internal markers (Fig. 2). 

However, we failed to obtain a unique migration distance for each species. In the yeast 

PCR-DGGE patterns, we were unable to separate S. cerevisiae, C. sake, D. anomala 

and Z. rouxii in the regular denaturing gradient used in this study (from 32.5% to 50% of 

urea and formamide) (Fig. 2A). A narrower denaturing gradient (from 40% to 45%) was 

needed to resolve these four species (data not shown). Similar problems were found 

when trying to separate Ac. aceti from Ac. pasteurianus in the regular denaturing 

gradient. The remaining AAB species were easily differentiated under these conditions 

(Fig. 2C). In the case of the LAB PCR-DGGE pattern, all the species used were clearly 

distinguished in these standard denaturing conditions (Fig. 2B). The PCR-DGGE 

patterns of these reference strains should allow the tentative identification of the 

unknown amplicons. To confirm correct identification, all the unknown amplicons were 

excised from the gel, reamplified using the same primers but without the GC clamp and 

identified by sequencing and blast against data bases. 

 

Fig. 2. DGGE patterns of yeasts, lactic and acetic acid 

bacteria used in this study. Patterns were constructed from 

pure cultures of different reference strains. (A) Yeasts, Lane 

RI: a, H. guilliermondii; b, C. stellata; c, T. delbrueckii; d, S. 

cerevisiae/C. sake/D. anomala/Z. rouxii; e, I. terricola. Lane 

RII: f, C. mesenterica; g, H. uvarum; h, C. boidinii; i, QA23 

(inoculated strain of S. cerevisiae). (B) Lactic acid bacteria, 

Lane RI: a, Lb. plantarum; b, O. oeni; c, Leu. mesenteroides; 

d, P. parvulus. Lane RII: b, O. oeni; e, Lb. brevis; f, P. 

pentosaceus; g, Lb. buchneri. (C) Acetic acid bacteria, Lane 

RI: a, G. oxydans; b, Ac. aceti/Ac. pasteurianus. Lane RII: c, 

G. oxydans; d, Ac. oeni; e, Ac. aceti; f, Ga. hansenii. 
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We determined the detection limit of yeasts by PCR-DGGE in a similar 

experiment to that performed by Prakitchaiwattana et al. (2004). The reference strains 

of S. cerevisiae, H. uvarum and C. stellata were serially diluted from 107 to 101 cells 

ml−1 to determine the minimum number of cells detected by PCR-DGGE. Since no 

bands were detected for populations lower than 103 cells ml−1, this was considered the 

lower limit of detection in a pure culture. However, we also examined the presence of a 

competitive target DNA, represented by the presence of 106 S. cerevisiae cells ml−1 in 

the dilutions and the presence of a non-target bacterial DNA, represented by the 

presence of 106 O. oeni cells ml−1 in the yeast dilutions. The presence of a large 

population of S. cerevisiae affected the detection threshold of C. stellata and H. uvarum 

because no bands were detected for populations lower than 104 cells ml−1. Conversely 

the presence of a non-target DNA did not modify the detection level. 

We also examined the minimum bacterial population detected using the total 

bacteria primers WBAC1GC/WBAC2 (Lopez et al., 2003). Serial dilutions of the 

reference strain of O. oeni, P. parvulus, Ac. aceti and G. oxydans were amplified in a 

pure culture and in the presence of a competitive target (represented by the presence of 

106 O. oeni cells ml−1 in all the dilutions) and a non-competitive target (represented by 

106 S. cerevisiae cells ml−1 in the dilutions). The results were very similar to those 

obtained with the yeasts. The detection threshold was around 103 cells ml−1 in a pure 

culture which increased to 104 cells ml−1 in the presence of a competitive target, but 

which was unaffected by the presence of a non-target DNA. Conversely, the L1GC/HDA2 

(Meroth et al., 2003a) showed a higher detection level because we only detected 

amplicons with a population of 106 O. oeni cells ml−1 in a pure culture. 

3.3. Enumeration and identification of yeasts 

The total yeast counts of the must were approximately 106 cells ml−1. Regardless 

of the fermentation condition, these populations peaked the fifth day of fermentation 

and, at the end of the process, the −I−S fermentation had the lowest population 

(approximately 5×107 cells ml−1) and the inoculated fermentations had the highest 

(approximately 108 cells ml−1) (Fig. 3A). 
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The counts of Saccharomyces and Hanseniaspora in the grape must were 

contrary to the usual distribution of these wine yeast groups. Hanseniaspora population 

(approximately 5×104 cells ml−1) was 10 times smaller than the Saccharomyces 

population (5×105 cells ml−1) (Fig. 3B and C). This is unexpected because fermentative 

species of Saccharomyces occur at very low numbers in musts and are rarely isolated 

(Fleet and Heard, 1993; Pretorius, 2000). 

Fig. 3. Evolution of (A) Total yeasts, (B) 
Saccharomyces and (C) 
Hanseniaspora analysed by qPCR 
during the four fermentations: +I+S (—
X—), +I−S (—□—), −I+S (— —) and 
−I−S (—■—) 
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In all the fermentations, Saccharomyces populations grew to around 108 cells 

ml−1. As expected, this growth was quicker in the inoculated fermentations. The lowest 

counts were mostly detected in the −I−S fermentation despite the fact that the 

fermentation rate was not substantially affected (Fig. 3B). The Hanseniaspora 

population increased to 107 cells ml−1 in the first 2 days and, later on, declines fairly 

sharply depending on the fermentation conditions (Fig. 3C). Therefore, significant 

differences in the Hanseniaspora population were detected at the end of the different 

fermentations. Sulphited fermentations showed the lowest population counts whereas 

those fermentations without yeast inoculum or SO2 showed higher values. 

PCR-DGGE analysis showed a common band in all samples with the same 

relative mobility as the S. cerevisiae reference strain (Table 3). Moreover, in the 

inoculated fermentations, this band co-migrated with another band (a doublet). We 

confirmed that this double band belonged to the inoculated strain by making a PCR-

DGGE analysis of a pure culture of this strain (Fig. 2A). We only detected more bands 

in the sample taken on day 1 from the non-inoculated fermentations. These bands were 

identified as H. uvarum, H. guilliermondii and C. zemplinina. This latter species showed 

a relative mobility similar to C. stellata, however, its sequence presented a higher 

homology with the C. zemplinina sequences deposited in the GenBank database (97% 

for C. zemplinina vs. 96% for C. stellata). 
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Table 3. Evolution of different yeast, lactic acid bacteria and acetic acid bacteria species 

during the four wine fermentations detected by PCR-DGGE 

 

 Fermentation conditions 

 Day  +I+S  +I-S  -I+S  -I-S 

S. cerevisiae S. cerevisiae S. cerevisiae S. cerevisiae 

Ga. hansenii Ga. hansenii Ga. hansenii Ga. hansenii 

0 

Ac. aceti Ac. aceti Ac. aceti Ac. aceti 

     

S. cerevisiae S. cerevisiae S. cerevisiae S. cerevisiae 

  H.uvarum  H.uvarum 

  H.guilliermondii C.zemplinina 

    C.zemplinina  

Ga. hansenii Ga. hansenii Ga. hansenii Ga. hansenii 

1 

Ac. aceti Ac. aceti Ac. aceti Ac. aceti 

     

S. cerevisiae S. cerevisiae S. cerevisiae S. cerevisiae 

Ga. hansenii Ga. hansenii Ga. hansenii Ga. hansenii 

2 

Ac. aceti Ac. aceti Ac. aceti Ac. aceti 

     

S. cerevisiae S. cerevisiae S. cerevisiae S. cerevisiae 

Ga. hansenii Ga. hansenii Ga. hansenii Ga. hansenii 

5 

Ac. aceti Ac. aceti Ac. aceti Ac. aceti 

     

S. cerevisiae S. cerevisiae S. cerevisiae S. cerevisiae 

Ga. hansenii Ga. hansenii Ga. hansenii Ga. hansenii 

8 

Ac. aceti Ac. aceti Ac. aceti Ac. aceti 

     

S. cerevisiae S. cerevisiae S. cerevisiae S. cerevisiae 

   O. oeni 

12 

Ga. hansenii Ga. hansenii Ga. hansenii Ga. hansenii 

 Ac. aceti Ac. aceti Ac. aceti Ac. aceti 

     
 

+I+S: inoculated and sulphited; +I−S: inoculated and non-sulphited; −I+S: non-inoculated and 

sulphited; −I−S: non-inoculated and non-sulphited. 
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3.4. Enumeration and identification of LAB 

Inoculation or SO2 (or both) were effective in maintaining low levels of LAB 

throughout fermentations (ranging from 101 to 102 cells ml−1) (Fig. 4A). Only the non-

inoculated and SO2-free fermentation (−I−S) showed an increase in the LAB population 

close to 104 cells ml−1 at the end of the alcoholic fermentation. In fact, L-malic acid 

analysis proved that malolactic fermentation had started during the −I−S fermentation 

(data not shown). 

 

 

Fig. 4. Evolution of (A) lactic acid bacteria and (B) acetic acid bacteria analysed by qPCR 

during the four fermentations: +I+S (—X—), +I−S (—□—), −I+S (— —) and −I−S (—■—). 
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Regarding PCR-DGGE analysis, we were not able to amplify any band with the 

LAB-specific primers L1GC/HDA2 (Meroth et al., 2003a). However, we detected a band 

belonging to O. oeni the last day of the −I−S fermentation with the primers 

WBAC1GC/WBAC2. As mentioned above, a population of 104 cells ml−1 was enumerated 

by qPCR which matched the minimum detection threshold established for PCR-DGGE 

primers. This result proved a lower detection threshold of the common primers for AAB 

and LAB (Lopez et al., 2003) than the specific LAB primers (Meroth et al., 2003a). 

3.5. Enumeration and identification of AAB 

In contrast to the LAB populations, AAB development was not affected by 

inoculation or SO2 addition (Fig. 4B). AAB counts in the must were higher than LAB 

population and these values decreased as fermentation proceeded, although this was 

regardless of the fermentation conditions. As fermentation rates were similar in all the 

fermentations, this anoxic environment, which impairs AAB development, was 

established at the same stage in all the fermentations. 

In the PCR-DGGE analysis, all the samples showed two bands regardless of the 

fermentation condition. These bands were identified as Ac. aceti and Ga. hansenii by 

their electrophoretic mobility and further confirmed by sequencing analysis (Fig. 5). 

 

Fig. 5. PCR-DGGE analysis of acetic acid bacteria throughout different wine fermentation 

conditions. RI is a standard pattern constructed from pure cultures of: G. oxydans and Ac. 

pasterianus/Ac. aceti from top to bottom. RII is a standard pattern constructed from pure 

cultures of: G. oxydans, Ac. oeni, Ac. aceti, and Ga. hansenii from top to bottom. 
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4. Discussion 

The aim of this study was to analyse the population evolution of wine 

microorganisms during different wine fermentations using only culture-independent 

methods. To achieve this, we have used qPCR and PCR-DGGE to enumerate and 

identify the main wine microbial groups: yeasts (total, Saccharomyces spp. and 

Hanseniaspora spp.), LAB and AAB. The primers used for the qPCR were described in 

previous studies by our group (González et al., 2006; Hierro et al., 2006a; Hierro et al., 

2007) or other groups (Neeley et al., 2005) and showed good specificity for the intended 

group of microorganisms. The results of these primers in terms of linearity and detection 

limit were very similar to those previously reported. PCR-DGGE has been used to study 

microbial diversity and evolution in wine (Cocolin et al., 2000; Mills et al., 2002; Renouf 

et al., 2007). These studies have already reported different problems of this technique 

to detect total diversity (species with different cell lysis or hybridization efficiencies, 

primer specificity, etc.). However, in our opinion, the main drawback of this technique is 

that minor species were hardly detected, especially when the best adapted species 

constituted an overwhelming majority (Renouf et al., 2007). Similar to other studies 

(Cocolin et al., 2000; Mills et al., 2002), we determined the detection limit for individual 

yeast species at 103 cells ml−1 in a pure culture. However, in a mixed culture, 

populations represented by less than 1% of the major species were not detected by 

PCR-DGGE (Muyzer and Smalla, 1998; Prakitchaiwattana et al., 2004). The limit on 

minor species detection was more relevant in the fermentation samples where 

populations which represented 10% of the total population were not detected. Some 

major compounds of wine, such as polyphenols, are known to inhibit the PCR, probably 

affecting the amplification of the numerically smaller species in the sample. This study 

also showed the high specificity of the primers WBAC1GC/WBAC2 (Lopez et al., 2003) 

which detected two AAB species in all the fermentation samples. The presence of a 

high yeast population (~108 cells ml−1) did not affect to the detection of these AAB 

populations, which ranged from 104 to 5×105 cells ml−1. The bacterial-specific primers 

WBAC1GC/WBAC2 also proved to be more sensitive than the LAB-specific primers 

L1GC/HDA2 (Meroth et al., 2003b) when amplifying LAB species. According to the qPCR 

results, a population of 104 O. oeni cells ml−1 was needed to be detected by PCR-

DGGE. 
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Sulphur dioxide (SO2) addition and yeast inoculation are both well established 

practices in winemaking for restricting the growth of indigenous yeasts and bacterial 

populations and so another aim of this study was to determine the effect of these 

oenological practices on wine microbial populations. Although grape must harboured an 

important population of indigenous Saccharomyces, inoculated fermentations showed a 

high Saccharomyces population from the beginning, which prevented the detection of 

other minor yeast species by PCR-DGGE. As mentioned before, the inoculated S. 

cerevisiae strain could be detected by the doublet. We confirmed that this doublet 

belonged to the inoculated strain by making a PCR-DGGE analysis of a pure culture of 

this strain whereas the other S. cerevisiae strains did not show the doublet. Obviously in 

this case we cannot rule out the presence of other S. cerevisiae strains as the lower 

band is common for the inoculated and the other strains. Both bands of the doublet 

were confirmed using sequencing as belonging to S. cerevisiae but with a divergence of 

2% between them. Therefore this result confirmed the presence of copies with different 

rDNA sequences in the same strain, as previously described by other authors (Meroth 

et al., 2003b; Rantsiou et al., 2005). 

Large populations of non-Saccharomyces yeasts were only detected in the first 

day of non-inoculated fermentations when the Saccharomyces population size was not 

so overwhelming. Regarding the H. uvarum population, this species had traditionally 

represented the major species together with C. stellata in the grape musts of this cellar 

(Constantí et al., 1998; Beltran et al., 2002; Hierro et al., 2006b). However, it was under-

represented in the present study. The evolution of Hanseniaspora population throughout 

fermentations showed a similar trend to these previous studies, which was an increase 

at the beginning of fermentation and a decline towards the end. However this decrease 

was faster in the sulphited fermentations. Other non-Saccharomyces species have been 

detected by PCR-DGGE such as H. guilliermondii and C. zemplinina. So far we had 

never before isolated these species, with C. stellata together with H. uvarum, being the 

most predominant non-Saccharomyces yeasts. Both Hanseniaspora species (H. 

uvarum and H. guilliermondii) are very closely phylogenetically related species with a 

very low number of nucleotide substitutions in the D1/D2 (Boekhout et al., 1994), an 

identical chromosomal profile (Esteve-Zarzoso et al., 2001) and similar ITS-RFLP 

patterns for most of the restriction enzymes used (Esteve-Zarzoso et al., 1999;Capece 

et al., 2005). We had mostly used these molecular markers to identify wine yeast 
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species and, therefore, assumed that we had not been able to separate both species. 

Similar conclusions could be drawn from the presence of C. zemplinina. This species 

was recently described by Sipiczki (2003) as a new species, closely related to C. 

stellata. Both species can be distinguished by a restriction analysis of the ITS-5.8S 

sequence with the endonucleases DraI and MboI (Sipiczki, 2004). 

The inoculum and SO2 affected differently the AAB and LAB populations, 

respectively. AAB population size was considerably higher than LAB population in the 

must. In all fermentative conditions, the production of carbon dioxide by yeasts during 

alcoholic fermentation substantially reduced the population of AAB. However, very 

limited differences were observed when SO2 or yeast inoculum were present. The 

anaerobic conditions, which arise during alcoholic fermentation are apparently the most 

important factor in reducing this AAB population. On the other hand, the presence of 

SO2 and inoculum kept the LAB population at very low level, proving that this population 

is much more sensitive to both oenological factors than the AAB population. 

Spontaneous and non-sulphited winemaking processes facilitated the beginning of the 

malolactic fermentation during alcoholic fermentation. Furthermore, inoculation and/or 

sulphite addition did not influence the AAB species distribution, being Ac. aceti and Ga. 

hansenii the predominant species throughout the fermentations regardless of the 

different conditions. 

In conclusion, the microbial analysis during different wine fermentations was 

completed using two culture-independent techniques, qPCR for enumerating the yeasts, 

LAB and AAB, and PCR-DGGE to determine the species diversity. In our opinion, PCR-

DGGE is ideal for detecting species diversity in a mixed population with similar relative 

proportions, although the massive presence of a species did decrease the chances of 

detecting other minor species. Conversely, the specificity of the primers designed for 

the qPCR allowed the accurate quantification of a minor microbial group as 

Hanseniaspora regardless of the major presence of other microbial groups such as 

Saccharomyces. From an oenological point of view, the effect of inoculation and SO2 on 

microbial populations confirmed most of the results previously obtained by culture-

dependent techniques (Constantí et al., 1998; González et al., 2005). Inoculation 

increased the proportion of Saccharomyces vs. non-Saccharomyces in a shorter time. 

Hanseniaspora increased in the first days, decreasing during the last phases of the 

process, especially in the sulphited fermentations. Both yeast inoculum and SO2 kept 
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the LAB populations at very low levels while AAB populations were relatively unaffected 

by these two widespread oenological practices. However, we also detected some 

controversial results regarding the widely described general trends of yeast evolution 

during wine fermentation. An interesting result is that Saccharomyces population was 

one order of magnitude higher than the Hanseniaspora population in the grape must. 

Therefore the most usual distribution of wine yeast species during alcoholic 

fermentation might be modified by different factors such as grape variety, climatic 

conditions and viticultural practices (Fleet and Heard, 1993). But, in our opinion, in this 

case, the most important determining factor is the high degree of contamination with 

Saccharomyces in the winery environment. We came up this conclusion because the 

grape variety was harvested and processed at the end of the vintage when equipments, 

tanks and environment were fully contaminated after several weeks of wine processing. 

During the same vintage and at the same winery, both populations in white grape must 

were also enumerated by qPCR and the Hanseniaspora population was 100 times 

higher than Saccharomyces population (Hierro et al., 2007). However, the grape variety 

used in our former study was one of the earliest harvested and fermented. 
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Abstract 

The population dynamics of micro-organisms during grape-must fermentation has 

been thoroughly studied. However, the main approach has relied on microbiological 

methods based on plating. This approach may overlook micro-organisms that (i) grow 

slowly or do not grow well on artificial media or (ii) whose population size is small 

enough to be detected by regular sampling. Culture-independent methods have been 

used and compared with the traditional plating method during wine fermentations 

performed at two different temperatures (13 °C and 25 °C). These methods include a 

qualitative technique, the DGGE; a semi-quantitative technique, the direct cloning of 

amplified DNA; and a quantitative technique, the QPCR. The biodiversity observed in 

the must and at the beginning of fermentation was much higher when DGGE or direct 

cloning were used. Quantification of the most frequent non-Saccharomyces yeast, 

Hanseniaspora uvarum and Candida zemplinina, showed that they survived throughout 

the fermentation process and, specifically, it revealed the quantitatively relevant 

presence of C. zemplinina until the end of fermentation. 

Keywords: DGGE; Cloning; QPCR; Wine; Grape; Acetobacter aceti 
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1. Introduction 

The conversion of grape-must to wine is a complex biochemical process 

involving interactions between yeasts, lactic acid bacteria (LAB) and acetic acid bacteria 

(AAB). The metabolism of these micro-organisms contributes to the quality of the wine 

by releasing metabolites which are constituents of the flavour and aroma (Swiegers, 

Bartowsky, & Henschke, 2005). Wine microbiota is influenced by multiple factors which 

can be grouped into viticultural and oenological practices (Pretorius, 1999). The 

temperature of fermentation is an oenological factor which influences the evolution of 

wine populations (Fleet, 2003): the lower the temperature of fermentation, the higher the 

chance of survival of the non-Saccharomyces yeasts during alcoholic fermentation 

(Heard & Fleet, 1988; Sharf & Margalith, 1983). Likewise, Ribéreau-Gayon, Dubourdieu, 

Donèche, and Lonvaud (2000) reported that low temperature notably reduced the 

growth of acetic and lactic acid bacteria. Low-temperature fermentations (below 15 °C) 

are considered to improve the wine’s aromatic profile. The increase in aroma may be 

related to a higher retention of volatile compounds. However, Beltran, Novo, Guillamón, 

Mas, and Rozès (2008) observed that this increase in flavour and aroma was not only 

related to primary aroma retention. The evolution of yeast and bacteria species and 

their metabolism may also be involved in this improvement in the organoleptical 

characteristic of wines fermented at low temperature. 

Most previous studies on wine microbial ecology have invariably been conducted 

after the culture of the different micro-organisms in different media. Today, new culture-

independent methods allow to identify and enumerate micro-organisms, avoiding the 

biases associated with traditional culture-dependent methods (Rantsiou et al., 2005). 

The presence of viable but non-culturable micro-organisms in wine samples has been 

described (Divol & Lonvaud-Funel, 2005; Millet & Lonvaud-Funel, 2000). These micro-

organisms are unable to grow on standard solid media within the laboratory but may 

justify the differences reported by various authors between isolated and naturally 

occurring species in wine samples (Cocolin & Mills, 2003; Hierro, Esteve-Zarzoso, 

González, Mas, & Guillamón, 2006; Mills, Johansen, & Cocolin, 2002). 

The aim of this study was to analyse the evolution of wine microbial population 

during the fermentation of the same grape-must at low (13 °C) and optimum 

temperature for wine yeasts during fermentation (25 °C). Microbial populations were 

evaluated by using three culture-independent techniques: a qualitative technique 
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(DGGE), a semi-quantitative technique (the direct cloning of amplified DNA) and a 

quantitative technique (the QPCR). DGGE and QPCR are two of the most widely used 

techniques for culture-independent microbial analysis. In a previous study (Andorrà, 

Landi, Mas, Guillamón, & Esteve-Zarzoso, 2008), we enumerated the main wine 

microbial groups (yeast, lactic acid bacteria and acetic acid bacteria) using QPCR. In 

addition, we employed specific primers for the enumeration of two of the main yeast 

genera, Saccharomyces and Hanseniaspora. In the present study, we have also 

designed a new pair of primers for the enumeration of what is probably the third main 

wine yeast Candida stellata, or its current classification as Candida zemplinina (Sipiczki, 

Ciani, & Csoma, 2005). Moreover, in parallel to the analysis of species diversity by 

DGGE, we have evaluated the richness in yeast species through a direct amplification 

of DNA purified from wine samples and further cloning and identification of the 

amplicons. This technique has the additional advantage of making it possible to detect 

the relative abundance of the different species. To our knowledge, this is the first time 

that yeast diversity has been analysed using this strategy, thus avoiding some of the 

problems of cultivability of wine micro-organisms. 

 

2. Materials and methods 

2.1. Reference strains and culture conditions 

The reference strains used in this study are listed in Table 1. Yeast were grown in 

YPD (2% glucose, 2% peptone, 1% yeast extract), lactic acid bacteria were grown in 

MRS (Oxoid, Hampshire, UK) and acetic acid bacteria were grown in Glucose media 

(5% glucose, 1% yeast extract). 
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Table 1. Reference strains used in this study. Sources of strains are abbreviated as: Spanish 

Type Culture Collection (CECT), Deutsche Sammlung von Mikroorganismen und Zelkulturen 

(DSM) and Culture Collection of the Laboratorium voor Microbiologie, Gent (LMG). 

Lactic Acid Bacteria  

Lactobacillus brevis CECT 4121 

Lactobacillus buchneri CECT 4111T 

Lactobacillus plantarum CECT 220 

Leuconostoc mesenteroides CECT 219 

Oenococcus oeni CECT 217T 

Pediococcus parvulus CECT 813 

Pediococcus pentosaceus  CECT 4695 

Acetic Acid Bacteria  

Acetobacter aceti  DSM 2002, DSM 3508 

Acetobacter oeni LMG 21952T 

Acetobacter pasteurianus DSM 3509, DSM 46617 

Gluconacetobacter hansenii  LMG 1529, DSM 5602 

Gluconobacter oxydans DSM 2343, DSM 7145 

Yeast  

Candida boidinii CECT 10029 

Candida mesenterica CECT 1025 

Candida sake CECT 10034 

Candida stellata CECT 11109 

Dekkera anomala  CECT 11162T 

Hanseniaspora guilliermondii CECT 11029T 

Hanseniaspora uvarum CECT 11107 

Issatchenkia terricola CECT 11139, CECT 11176T 

Saccharomyces cerevisiae  CECT 1942NT 

Torulaspora delbrueckii CECT 1880, CECT 10558 

Zygosaccharomyces rouxii CECT 1230, CECT 1232 

2.2. Wine fermentations and sampling 

This study was conducted in the experimental cellar of the Faculty of Oenology in 

Tarragona (Spain) during the 2007 vintage in semi-industrial conditions. Macabeo was 

the grape variety chosen for the vinifications. After destemming and crushing the 

grapes, SO2 was added (60 mg/L) and the must settled at 10 °C to separate the 

particles by density. Afterwards, the clear must was transferred to two 80-L tanks and 

fermented at 25 °C and at 13 °C. The fermentation t emperature was continuously 

monitored and refrigerated by circulating cool water in a double-jacket stainless steel 

vat. Both fermentations were conducted by spontaneous microbiota (without yeast 

inoculation). After settling, the must had 180 g/L reducing sugar concentration, 4.8 g/L 

of total acidity (expressed as tartaric acid) and a pH of 3.2. The final ethanol 

concentrations were 10.3 and 10.5 for the wines fermented at 25 °C and 13 °C 

respectively. 
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Samples were taken from the must and the settled must at the beginning of 

fermentation (density of 1080 g/L), middle fermentation (density of 1050 g/L), at the 

middle-late fermentation stage (density of 1020 g/L) and at the end of fermentation 

(density of 990 g/L). Must and settled must were common for both fermentations. 

Samples were taken after homogenization by pumping-over. Several dilutions of each 

sample were plated on YPD-agar medium. Fifty colonies from each fermentation point 

were randomly isolated and purified for further identification. 

2.3. DNA extraction 

DNA from reference strains or wine samples was extracted according to Hierro et 

al. (2006) and diluted to 1–50 ng/µL. The concentration and purity of DNA was 

determined using a GenQuant spectrophotometer (Pharmacia, Cambridge, UK). 

Sample DNA was extracted from 1 mL of must or wine. The same DNA was used for 

DGGE, QPCR and PCR amplification of the ribosomal region. 

2.4. PCR and restriction analysis 

The ITS region and the 5.8S rRNA gene were amplified as described previously 

(Guillamón, Sabaté, Barrio, Cano, & Querol, 1998). All the amplifications were 

performed in a GeneAmp PCR System 2700 (Applied Biosystems, Foster City, CA, 

USA). Five microliters of the ITS/5.8S rRNA gene amplified product were digested with 

the restriction endonuclease HinfI according to the supplier’s instructions. CfoI, DraI or 

HaeIII were also used for further identification when needed. All the restriction enzymes 

were from Roche Diagnostics GmBh (Mannheim, Germany). 

2.5. Direct cloning of ribosomal fragment of yeasts 

The amplicons of the ITS region and the 5.8S rRNA gene, which used the DNA 

extracted from wine samples as template, were cloned using pGEM®-T Easy Vector 

(Promega Corporation, Madison, WI) according to the manufacturer’s protocol. Fifty 

transformed Escherichia coli colonies from each sample were purified and their 

plasmids isolated. Standard procedures for bacterial transformation and plasmid 

isolation from E. coli were performed (Sambrook, Frisch, & Maniatis, 1989). Five 

microlitres of the isolated plasmid were digested with the restriction endonuclease 

HaeIII (Roche Diagnostics GmBh, Mannheim, Germany) according to the supplier’s 

instructions. 

 

UNIVERSITAT ROVIRA I VIRGILI 
ADAPTATION AND DEVELOPMENT OF CULTURE-INDEPENDENT TECHNIQUES FOR THE INDENTIFICATION AND ENUMERATION 
OF MICROORGANISMS IN WINE FERMENTATIONS 
Immaculada Andorrà Solsona 
ISBN:978-84-693-8859-4/DL:T.1948-2010 



Chapter 2 

 

 

 106 

2.6. DGGE 

The primers we used to amplify the specific ribosomal region of each microbial 

group were: U1GC/U2 (Meroth, Walter, Hertel, Brandt, & Hammes, 2003) for yeasts, 

L1GC/HDA2 (Meroth, Hammes, & Hertel, 2003) for LAB and WBAC1GC/WBAC2 (Lopez 

et al., 2003) for AAB. For lactic acid bacteria, a fragment of the 16S rRNA gene was 

amplified and separated by DGGE as described by Meroth, Walter, et al. (2003). For 

acetic acid bacteria, the PCR amplification was prepared as in Lopez et al. (2003) 

although the electrophoretic run was kept at a constant 170 V for 4 h at a constant 

temperature of 60 °C in TAE buffer 0.5 X, and in a denaturing gradient from 30% to 60% 

of urea and formamide. For yeasts, amplification of the fragments and denaturing 

electrophoresis was performed according to Meroth, Walter, et al. (2003). All PCR 

amplifications were performed in a Gene Amp PCR System 2700 (Applied Biosystems, 

Fosters City, USA), using EcoTaq DNA Polimerase (Ecogen, Spain). The Dcode 

universal mutation detection system (Bio-Rad, Hercules, Calif.) was used to run the 

DGGE analysis. 

2.7. Sequencing 

The DNA fragments from the DGGE gels were excised according to Omar and 

Ampe (2000). Each excised band was then transferred into 50 µL of sterile water and 

incubated overnight at 4 °C to allow diffusion of t he DNA. One microliter of the eluted 

DNA was used for re-amplification with primers without the GC clamp. The PCR 

products were purified and sequenced by Macrogen Inc. facilities (Seoul, South Korea) 

using an ABI3730 XL automatic DNA sequencer. The primers ITS1 and ITS4 were used 

for sequencing the ribosomal region inserted in the pGEM plasmid. The BLAST search 

(Basic Alignment Search Tool, Internet address: 

http://www.ebi.ac.uk/blastall/nucleotide.html) was used to compare the sequences 

obtained with databases of the European Molecular Biology Laboratory (EMBL). We 

considered identification to be correct when gene sequences showed identities of 98% 

or higher. 
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2.8. QPCR 

In all cases QPCR was performed on an ABI Prism 5700 Sequence Detection 

System (Applied Biosystems). Power SyberGreen master mix was used according to 

the manufacturer’s instructions (Applied Biosystems, CA). An ABI PRISM 96 well optical 

plate was used for the reaction. This instrument automatically determined the CT. 

Yeast and bacteria quantification was performed by using the primers: 

YEASTF/YEASTR (Hierro et al., 2006) for total yeast, CESP-F/SCER-R for 

Saccharomyces and CESP-F/HUV-R for Hanseniaspora (Hierro, Esteve-Zarzoso, Mas, 

& Guillamón, 2007), WLAB1/WLAB2 for lactic acid bacteria (Neeley, 2005) and 

AQ1F/AQ2R for acetic acid bacteria (González, 2006), as described by Andorrà et al. 

(2008). In the case of C. zemplinina, the new pair of primers, AF (5′-

CTAGCATTGACCTCATATAGG-3′) and 200R (5′-GCATTCCCAAACAACTCGACTC-3′), 

were designed from the D1/D2 domain of the 26S rRNA gene. AF primer is specific for 

C. zemplinina while the 200R primer is homologous to a conserved region for all the 

yeasts used for the alignment. Therefore, the specificity was determined by the AF 

primer. Standard curves were created by plotting the Ct (Cycle Threshold) values of the 

QPCR performed on dilution series of cells against the log input cells/mL. Samples and 

cultures for standard curves were analysed in triplicate. 

 

3. Results 

Microbial populations (yeast, lactic acid bacteria and acetic acid bacteria) were 

monitored by qualitative (DGGE), semi-quantitative (direct cloning of amplified 

ribosomal DNA) and quantitative (real-time PCR) culture-independent techniques. In 

order to evaluate the effect of the temperature of fermentation on the dynamics and 

diversity of these populations, the same grape-must was divided into two tanks and 

fermented at 25 °C (optimum temperature) and 13 °C (restrictive temperature). Both 

fermentations proceeded spontaneously (non-inoculated) and the low-temperature 

fermentation took longer (double time) to complete (Fig. 1). 
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Fig. 1. Evolution of the wine fermentations at 25 °C (—) and 13 °C (- -) measured as density 

(g/L). 

 

3.1. Species detection by DGGE 

The application of this technique to the different samples taken throughout both 

wine fermentations allowed us to detect the species of filamentous fungi Aspergillus 

niger and Botriotinya fuckeliana (teleomorph of Botrytis cinerea), the species of yeasts 

C. zemplinina, Hanseniaspora uvarum and Saccharomyces cerevisiae, and the species 

of acetic acid bacteria Acetobacter aceti. No species of lactic acid bacteria were 

detected at any point of the fermentations. The correct identification of these species 

was confirmed by excision from the gel, purification and sequencing of the different 

bands. The distribution of these species in the different fermentation stages is shown in 

Table 2. Filamentous fungi were only detected in the grape-must and they quickly 

disappeared with the fermentation process. H. uvarum was also detected in the grape-

must and at the beginning of the alcoholic fermentation. However, C. zemplinina and S. 

cerevisiae were detected in all the samples analysed. Likewise, the species A. aceti 

was also ubiquitous throughout the process. The fermentation temperature did not 

modify the diversity and presence of these species during the alcoholic fermentation. 

The only difference can be attributed to a faster disappearance of H. uvarum in the 

control fermentation (25 °C). 
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Table 2. Microbial population analysed using DGGE during alcoholic fermentation at both 

temperatures (13 °C and 25 °C). A.: Aspergillus, B.: Botriotinya, C.: Candida, H.: 

Hanseniaspora, S.: Saccharomyces, Ac.: Acetobacter. 

 13 ºC 25 ºC 
Must A. niger 

B. fuckeliana 
C. zemplinina 

H. uvarum 
S. cerevisiae 

Ac. aceti 
 

Settled must A. niger 
B. fuckeliana 
C. zemplinina 

H. uvarum 
S. cerevisiae 

Ac. aceti 
 

Beginning C. zemplinina 
H. uvarum 

S. cerevisiae 
Ac. aceti 

 

C. zemplinina 
S. cerevisiae 

 
Ac. aceti 

Middle C. zemplinina 
S. cerevisiae 

Ac. aceti 

C. zemplinina 
S. cerevisiae 

Ac. aceti 
 

Middle-late C. zemplinina 
S. cerevisiae 

Ac. aceti 

C. zemplinina 
S. cerevisiae 

Ac. aceti 
 

End C. zemplinina 
S. cerevisiae 

Ac. aceti 

C. zemplinina 
S. cerevisiae 

Ac. aceti 
 

3.2. Species identification by direct cloning of amplified ribosomal DNA 

The ribosomal region, which spans the 5.8S gene and the ITS region, was 

amplified by using as template the DNA directly extracted from must and wine samples. 

The PCR product was ligated into a plasmid and cloned in an E. coli strain. Fifty E. coli 

colonies per sample were analysed by plasmid purification and restriction analysis of 

this plasmid. We had cloned the same PCR product of C. zemplinina, H. uvarum and S. 

cerevisiae reference strains, as the major species found in the process, and obtained 

the restriction pattern of the plasmid with ribosomal region inserted. Only clones giving 

restriction patterns different from those of the major species were identified by 

sequencing. We also cultured the must and wine samples in a plate and the same 

number of yeast colonies were randomly analysed by amplification and restriction of the 

same ribosomal region (Esteve-Zarzoso, Belloch, Uruburu, & Querol, 1999; Guillamón 

et al., 1998). The percentage of the different yeast species detected throughout 
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fermentations by both culture-independent and culture-dependent methods is shown in 

Table 3. 

 

Table 3. Microbial population analysed using cloning and plating techniques during alcoholic 

fermentation at both temperatures (13 and 25 °C). V alues indicate the % of the colonies 

analysed on each fermentation point. A.: Aspergillus, C.: Candida, H.: Hanseniaspora, S.: 

Saccharomyces, Smycopsis.: Saccharomycopsis, Z.: Zygosaccharomyces. 

   Must Settled Must Beginning Middle Middle-late End 
13 ºC A. niger Plate - - - - - - 
  Cloning 2 2 - - - - 
 C. zemplinina Plate 94 96 96 12 2 - 
  Cloning 68 66 52 22 24 32 
 H. uvarum Plate - 4 4 2 - - 
  Cloning 6 4 8  - - 
 H. vineae Plate - - - - - - 
  Cloning 2 - 2 4 - - 
 S. cerevisiae Plate 6 - - 86 98 100 
  Cloning 16 28 38 74 76 68 
 Smycopsis. vini Plate - - - - - - 
  Cloning 4 - - - - - 
  Plate - - - - - - 
 Z. bailii Cloning 2 - - - - - 
25 ºC A. niger Plate - - - - - - 
  Cloning 2 2 - - - - 
 C. zemplinina Plate 94 96 78 34 8 - 
  Cloning 68 66 82 30 16 18 
 H. osmophila Plate - - 10 - - - 
  Cloning - - - - - - 
 H. uvarum Plate - 4 2 - - - 
  Cloning 6 4 - - - - 
 H. vineae Plate - - - - - - 
  Cloning 2 - - - - - 
 S. cerevisiae Plate 6 - 10 66 92 100 
  Cloning 16 28 18 70 84 82 
 Smycopsis. vini Plate - - - - - - 
  Cloning 4 - - - - - 
 Z. bailii Plate - - - - - - 
  Cloning 2 - - - - - 

 

Yeast diversity detected by direct cloning of the PCR product was higher than by 

the DGGE technique. Seven different species were identified: A. niger, C. zemplinina, 

H. uvarum, Hanseniaspora vineae, S. cerevisiae, Saccharomycopsis vini and 

Zygosaccharomyces bailii. However, the total of C. zemplinina and S. cerevisiae 

represented 95% of the colonies analysed. Moreover, the remaining species were only 

isolated in the grape-must samples. Regarding the two major species, as the 

fermentation progressed the percentage of S. cerevisiae increased and C. zemplinina 

decreased. However, this latter species was still present to a significant degree at the 

end of the fermentation. Again, the fermentation temperature hardly influenced the 

species distribution. The same species and similar percentages were detected in both 
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fermentations. It should be noted that the grape-must samples, which showed the 

highest diversity, were common for both fermentations. 

Of particular interest is the comparison of the direct cloning with the random 

identification of yeast colonies. The culture of the must and wine samples increased the 

percentages of the major species and decreased the number of species detected (only 

H. uvarum and H. osmophila were identified from the minor species). Furthermore, C. 

zemplinina showed an absolute predominance at the beginning of the process while all 

the colonies analysed at the end of the process belonged to S. cerevisiae. The only 

noteworthy differences between the yeast colonies identified in the fermentations at 13 

°C and 25 °C are that C. zemplinina disappeared more rapidly at low temperature and 

H. osmophila was only isolated in the 25 °C fermentation. 

3.3. Enumeration of yeast by real-time quantitative PCR (QPCR) 

We used QPCR to enumerate the following main wine yeast groups: total yeasts, 

Saccharomyces, Hanseniaspora and C. zemplinina. The pair of primers for the 

quantification of C. zemplinina was designed from the D1/D2 region of the 26S rDNA. 

Due to the high degree of phylogenetic relationship (and the low number of nucleotide 

substitutions) between the species C. stellata and C. zemplinina, it was impossible to 

design completely specific primers for one of these species. However, Sipiczki et al. 

(2005) showed that most of the wine strains preserved in culture collections or 

described in recent publications as C. stellata were indeed C. zemplinina. Likewise we 

also isolated C. zemplinina by DGGE and direct cloning but we never detected the 

presence of C. stellata. Therefore we can assume that these primers are useful to 

enumerate C. zemplinina in wines. The tests of specificity and sensitivity of this pair of 

primers were satisfactory (correlation coefficient 0.995, slope 3.207 and intercept 39.64) 

and comparable with the values obtained for the other primers (Hierro, Esteve-Zarzoso, 

Mas, & Guillamón, 2007; Hierro et al., 2006). A population size of approximately 107 

cells/mL was quantified in the grape-must (Table 4). The settling of this must produced 

a decrease of approximately 50% (5 × 106 cells/mL) and the population grew to ca. 5 × 

107 cells/mL during the fermentation. The maximum population size remained constant 

throughout the whole process at 13 °C whereas it de creased in the latter stages at 25 

°C. 
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Table 4. Quantification (cells/mL) of yeast population by QPCR during fermentations at both 

temperatures (13 °C and 25 °C). Total yeast, Hanseniaspora, Candida stellata/zemplinina 

and Saccharomyces yeasts were evaluated. 

 
 
 

13º C 

Must 
 
 

Settled must 
 
 

Beginning 
 
 

Middle 
 
 

Middle-late 
 
 

End 
 
 

Total yeast 1,28±0,41 x 107 4,48±1,91 x 106 1,43±0,34 x 107 3,41±0,92 x 107 4,92±0,19 x 107 4,46±2,16 x 107 

Candida 1,82±0,08 x 107 9,05±1,70 x 105 2,08±0,41 x 107 1,18±0,14 x 107 1,75±0,08 x 107 6,62±0,58 x 106 

Hanseniaspora 2,54±0,85 x 106 5,51±0,22 x 105 1,42±0,13 x 106 3,00±1,79 x 105 2,69±0,62 x 105 1,77±0,22 x 105 

Saccharomyces 1,10±0,14 x 104 8,49±0,43 x 103 1,83±0,18 x 106 1,63±0,07 x 107 1,19±0,11 x 107 9,82±1,35 x 106 

C+H+S* 2,08 x 107 1,46 x 106 2,41 x 107 2,84 x 107 2,97 x 107 1,66 x 107 

25 ºC       

Total yeast 1,28±0,41 x 107 4,48±1,91 x 106 3,29±0,35 x 107 3,55±0,81 x 107 4,35±0,44 x 107 1,70±0,14 x 107 

Candida 1,82±0,08 x 107 9,05±1,70 x 105 2,79±0,39 x 107 1,77±0,66 x 107 4,45±0,62 x 107 2,92±1,20 x 106 

Hanseniaspora 2,54±0,85 x 106 5,51±0,22 x 105 1,48±0,69 x 106 1,40±0,27 x 105 1,62±0,43 x 105 1,29±0,22 x 105 

Saccharomyces 1,10±0,14 x 104 8,49±0,43 x 103 6,64±0,25 x 106 2,25±0,25 x 107 1,93±0,22 x 107 6,28±0,27 x 106 

C+H+S* 2,08 x 107 1,46 x 106 3,6 x 107 4,03 x 107 6,39 x 107 9,33 x 106 
 

* Represents the addition of the yeast population of the Candida, Hanseniaspora and 

Saccharomyces yeasts. 

 

C. zemplinina and Hanseniaspora were the major species in the grape-must, the 

number of Saccharomyces being much lower (~1 × 104 cells/mL). At the beginning of 

fermentation, all the groups of species grew. The group with the highest counts was C. 

zemplinina (~2 × 107 cells/mL) which represented the majority of the total population. 

Saccharomyces (1.8 × 106 cells/mL at 13 °C and 6.6 × 10 6 cells/mL at 25 °C) and 

Hanseniaspora (~1.5 × 106 cells/mL) populations were one log unit lower. This latter 

species decreased its population size during the process to 105 cells/mL. The 

population of C. zemplinina did not increase after the first day of fermentation, but it was 

constant during the process and only decreased at the end of fermentation. The most 

important increase in yeast population was registered by the Saccharomyces group, 

which increased more than two orders of magnitude (or 2 log units) the first day and 

reached a maximum value of 1–2 × 107 cells/mL. However, the percentage of 

Saccharomyces barely reached 50% of the total population in the different days 

analysed, showing similar percentages to C. zemplinina. 

Also of interest was the fact that the total of the three groups of species analysed 

represented more than 80% of the whole population during the process, appearing once 

again as the major species of the wine-making process. However, these species only 

represented 33% of the total yeast population in the grape-must, indicating that other 

species are present, as we have detected with the other techniques used. 
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3.4. Enumeration of acetic acid bacteria (AAB) and lactic acid bacteria 

(LAB) 

The two main bacterial groups of wine were also counted by QPCR (Fig. 2), using 

the specific primers described for AAB (González, Hierro, Poblet, Mas, & Guillamón, 

2006) and LAB (Neeley, Phister, & Mills, 2005). LAB population showed a very low 

count in the grape-must (102 cells/mL). This population ranged from 102 to 103 cells/mL 

throughout the process, regardless of the temperature of fermentation. The counts of 

AAB (approximately 5 × 105 cells/mL) were higher than LAB in the grape-must. The 

beginning of the fermentation produced a decrease in the AAB population of 

approximately 2 log units. These populations did not change during the fermentation, 

with the exception of the last day of fermentation at 13 °C. 

 
Fig. 2. Evolution of Acetic Acid Bacteria and Lactic Acid Bacteria analysed by QPCR during 

two fermentations: Lactic Acid Bacteria 25 °C (— —) and 13 °C (- - ∆- -). Acetic Acid 

Bacteria 25 °C (— ■—) and 13 °C (- - □- -). 

 

4. Discussion 

Traditional methods of micro-organism quantification and identification rely on 

culturing the sample, counting and identifying colonies. These studies based on culture-

dependent tools are likely to produce biased results based on unrepresentative 

cultivation conditions (Renouf, Strehaiano, & Lonvaud-Funel, 2007). Minor populations 

and stressed or weakened cells, which need specific culture conditions, may not be 

recovered on a plate. These limitations, associated with traditional culture-based 

methods, have driven microbiologists to develop alternative culture-independent 
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techniques which are primarily based on the analysis of nucleic acids (Justé, Thomma, 

& Lievens, 2008). 

DGGE has been reported as a powerful technique for the study of the ecology of wine 

(Cocolin, Bisson, & Mills, 2000; Mills et al., 2002). However, as also reported in previous 

studies (Andorrà et al., 2008; Renouf et al., 2007), the main drawback of this technique 

is its low sensitivity. Minor species were barely detected, especially when the best 

adapted species constituted an overwhelming majority. Consequently, we were only 

able to detect a high diversity of minor species by DGGE in the grape-must samples in 

which no species showed a clear predominance. During wine fermentation the 

predominant species, C. zemplinina and S. cerevisiae, were the only species detected. 

We also used the direct cloning of an amplified ribosomal region of yeasts and 

the analysis of the clones by restriction analysis or sequencing. This technique detected 

higher yeast species diversity than DGGE and also permitted the calculation of the 

percentage or preponderance of the different species. However, it should be taken into 

account that only a small fraction of the population is being analysed and thus only 

semi-quantitative or qualitative conclusions should be drawn. Due to the simplicity of 

current cloning systems, this is an affordable, easy and reliable technique for the study 

of microbial diversity which avoids the problems associated with the cultivability of 

micro-organisms. Nevertheless, certain short comings may be attributed to this 

technique such as the presence of inhibitors in the matrix which interfere with the PCR 

reactions or differential efficiency in the DNA purification and amplification of the 

different species. In addition, inter-specific differences such as variation in the copy 

number of the ITS region may also produce biased results. 

Comparing the results of direct cloning with those obtained from yeast isolated 

colonies, the former also detected more species and the presence of predominant 

species did not prevent the detection of others present in low quantities. For example, 

from the middle to the end of the fermentation, few of the colonies analysed were 

identified as C. zemplinina whereas this species was detected in significant percentages 

in the same samples by direct cloning. The greater detection of this species by cloning 

may be explained by the inability of these species to grow under the culture conditions 

used or that with the direct cloning we are amplifying DNA from dead cells. This latter 

problem may be overcome by cloning cDNA instead of genomic DNA, since RNA is less 

stable than DNA after cellular death. 
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The third technique used was the real-time quantitative PCR (QPCR). The DNA 

extracted from grape-must and wine samples was used with the specific primers and 

conditions designed in our previous works (Hierro et al., 2006, 2007), with the exception 

of the primers for the quantification of C. zemplinina, which were specifically designed 

for this study. In our opinion, the main advantage of this technique is that, regardless of 

the overwhelming presence of a major species, the specificity of the primers designed 

permits the detection of minor species. Thus, we were able to detect Saccharomyces in 

the grape-must samples and Hanseniaspora at the end of the fermentation, even 

though they each only represented less than 1% of the total population. This sensitivity 

is inconceivable with the other techniques used. However, there is a possible drawback 

of the technique such as we used it. The use as template of a very stable molecule such 

as DNA may inflate the counts by amplifying DNA from dead cells. We are currently 

assaying the use of a DNA-intercalating dye such as ethidium monoazide bromide, 

which penetrates only dead cells, avoiding its DNA amplification (Nocker & Camper, 

2006). However, the correlation between quantification by plating (data not shown) and 

quantification by QPCR was satisfactory with some divergences. The total yeast counts 

of the must and settled-must samples were higher with QPCR than with plating (YPD-

agar). As already reported Hierro et al. (2006), the total-yeast primers also amplify other 

fungal DNA; therefore, the presence of DNA from filamentous fungi, as detected by 

DGGE and cloning, would increase the values of the population. Our results clearly 

showed the significant loss of yeast population with the settling of the must (50% 

reduction). As previously reported (Torija, Rozès, Poblet, Guillamón, & Mas, 2001), 

Saccharomyces strains were the most competitive ones in the process, increasing their 

population by three orders of magnitude in a few days. However, in this case, the 

imposition of Saccharomyces was not absolute. C. zemplinina presented similar values 

to Saccharomyces throughout the fermentation, to the extent that it could be concluded 

that the grape-must was co-fermented by both groups of species. Regarding the 

evolution of bacteria population, LAB were practically unaffected by the process, with a 

constant low population from the beginning. AAB population size was considerably 

higher than LAB population in the must. The production of carbon dioxide by yeast 

during alcoholic fermentation substantially reduced the population of AAB. 

The idea that temperature may affect the ecology of wine fermentation has been 

previously reported. Sharf and Margalith (1983) suggested that H. uvarum had better 

UNIVERSITAT ROVIRA I VIRGILI 
ADAPTATION AND DEVELOPMENT OF CULTURE-INDEPENDENT TECHNIQUES FOR THE INDENTIFICATION AND ENUMERATION 
OF MICROORGANISMS IN WINE FERMENTATIONS 
Immaculada Andorrà Solsona 
ISBN:978-84-693-8859-4/DL:T.1948-2010 



Chapter 2 

 

 

 116 

ability than S. cerevisiae to grow at lower temperatures and Heard and Fleet (1988) 

showed that H. uvarum and C. stellata retained high populations until the end of 

fermentations at low temperatures. Likewise, Ribéreau-Gayon et al. (2000) reported that 

the low temperature notably reduced the growth of acetic and lactic acid bacteria. 

However, in our fermentation conditions, the temperature of fermentation was not a 

determining factor in the yeast species development. The most notable differences are 

a rapid disappearance of Hanseniaspora at 25 °C and a high number of AAB at 13 °C, 

possibly as a consequence of the sluggish fermentation rate during the last days of 

fermentation at low temperature. 

In conclusion, DGGE and direct cloning of amplified DNA allowed us to detect 

higher species diversity compared with plating. Cloning was more sensitive in detecting 

minor species. The specificity of the primers designed for the QPCR allowed the 

enumeration of minor microbial groups in spite of the major presence of other species. 

The results of this study mostly confirmed the importance and distribution during the 

process of the major yeast species, widely reported in numerous studies. However, the 

use of these culture-independent techniques evidenced a higher presence and 

permanence of the non-Saccharomyces species and their contribution is not only limited 

to the first days of fermentation. Also noteworthy is the ubiquitous presence of a 

significant population of AAB throughout the process. Despite the anaerobic conditions 

established during fermentation, this population can survive under these circumstances 

(Bartowsky & Henschke, 2008; Millet & Lonvaud-Funel, 2000). It should be reminded 

that the fermentations proceeded spontaneously and the lack of inoculation prevented a 

rapid dominance of S. cerevisiae, the most powerful fermentative species. This 

circumstance might explain these high levels of AAB. Finally, in our working conditions, 

the temperature of fermentation showed a limited influence on the diversity and 

distribution of the different wine micro-organisms. 
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Abstract 

Mixed inoculation of non-Saccharomyces yeasts and S. cerevisiae is of interest 

for the wine industry for technological and sensory reasons. We have analysed how 

mixed inocula of the main non-Saccharomyces yeasts and S. cerevisiae affect 

fermentation performance, nitrogen consumption and volatile compound production in a 

natural Macabeo grape must. Sterile must was fermented in triplicates and under the 

following six conditions: three pure cultures of S. cerevisiae, Hanseniaspora uvarum 

and Candida zemplinina and the mixtures of H. uvarum:S. cerevisiae (90:10), C. 

zemplinina:S. cerevisiae (90:10) and H. uvarum:C. zemplinina:S. cerevisiae (45:45:10). 

The presence of non-Saccharomyces yeasts slowed down the fermentations and 

produced higher levels of glycerol and acetic acid. Only the pure H. uvarum 

fermentations were unable to finish. Mixed fermentations consumed more of the 

available amino acids and were more complex and thus better able to synthesise 

volatile compounds. However, the amount of acetic acid was well above the admissible 

levels and compromises the immediate application of mixed cultures. 

 

Keywords:  Saccharomyces, Candida, Hanseniaspora, Wine fermentation, Volatile 

compounds, Amino acids. 
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1. Introduction 

The fermentation of grape juice into wine is a complex microbial reaction 

involving the sequential development of various species of yeast. Traditionally, wine has 

been produced by the natural fermentation of grape juice by yeasts that originate from 

grapes and winery equipment [1]. Yeasts with low fermentation activity, such as 

Candida spp., Hanseniaspora spp., Kluyveromyces spp., Pichia spp. and Rhodotorula 

spp., are predominant in grape musts and during the early stages of fermentation. 

Subsequently, S. cerevisiae proliferates, dominating and completing the wine 

fermentation [2, 3]. Generally, these non-Saccharomyces species were considered to 

be of secondary significance or undesirable to the process. However this trend is 

changing. In a recent review, Fleet [4] discussed the possibilities of using yeasts other 

than those from the Saccharomyces genus for future wine fermentations and the 

commercial viability of mixed cultures. These species have great potential to introduce 

appealing characteristics to wine which may improve its organoleptic quality.  

The major non-Saccharomyces yeasts present during alcoholic fermentation are 

Candida stellata, currently classified as Candida zemplinina [5], and Hanseniaspora 

uvarum (anamorph Kloeckera apiculata). Although the population size of these species 

reduced throughout the wine fermentations, several quantitative ecological studies have 

indicated that their growth was not completely suppressed, either in spontaneous or in 

inoculated fermentations [2, 6-8]. Similar studies have shown their capacities to improve 

wine flavour [9-11] or have evaluated the biotechnological nature of their enzymatic 

activities [12, 13]. Candida stellata is frequently associated with overripe and botrytized 

grape berries [14-18]. The most interesting oenological characteristic of this species is 

that it is highly fructophilic [14]. Ciani and Ferraro [19] demonstrated that mixed 

fermentations containing C. stellata and S. cerevisiae consumed sugars more 

completely and postulated that this was due to the preferential use of fructose by C. 

stellata. This yeast may be used in mixed cultures with S. cerevisiae for stuck 

fermentations, where the proportion of fructose is usually higher than glucose. However, 

more controversial results have been reported about this species’ contribution to wine 

aroma. Some authors have reported the production of high levels of acetic acid [20, 21], 

glycerol [20, 22] and succinic acid [23] whereas others have found low acetic acid 

production [24] and low glycerol production [16]. Csoma and Sipiczki [25] asserted that 

these contradictory results were because C. stellata is easily confused with other yeast 
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species that colonize the same substrates. This hypothesis is supported by the recent 

finding that the strain DBVPG 3827, frequently used to investigate the oenological 

properties of C. stellata, belongs to Starmerella bombicola [5] and by the description of 

a new species, Candida zemplinina that was previously considered C. stellata [5, 26, 

27]. Such findings raise doubts about the precise taxonomic position of the oenological 

C. stellata strains described in the literature [25]. Hanseniaspora species have been 

considered great producers of esters, most of them contributing to the flowery and fruity 

aroma of wines. However, the main ester is ethyl acetate, which in high concentrations 

produces an unpleasant aroma of glue, solvent, etc. Another characteristic of the 

excessive growth of Hanseniaspora during wine fermentation is the increase in volatile 

acidity as a result of the synthesis of acetic acid and ethyl acetate. Ciani et al. [28] have 

recently confirmed the unacceptable increase in ethyl acetate content in a mixed culture 

of H. uvarum/S. cerevisiae. H. uvarum strains also possess enzymatic characteristics of 

interest to winemaking because of their technological effects and their contribution to 

aroma formation. Pectinases, proteases and glycosidases are some of the enzymes 

secreted by H. uvarum which improve the clarification, stabilisation and aroma of wines. 

Moreira et al. [29] analysed the production of alcohols, esters and heavy sulphur 

compounds by pure and mixed cultures of apiculate wine yeasts. H. guilliermondii 

produced high levels of 2-phenylethyl acetate, 2-phenylethanol, acetic-acid-3-

(methylthio)propyl ester (cooked potatoes aroma) and 3-methylthiopropionic acid. 

Concentrations of heavy sulphur compounds were also higher in a pure culture of H. 

uvarum than in a pure culture of S. cerevisiae.  

Consequently, the impact of non-Saccharomyces yeasts on wine fermentation 

cannot be ignored. They introduce an element of ecological diversity to the process that 

goes beyond Saccharomyces species and they require specific research and 

understanding to prevent any unwanted consequences from their use and to exploit 

their beneficial contributions [4]. In this study we report the impact of pure and mixed 

populations of C. zemplinina, H. uvarum and S. cerevisiae on fermentation behaviour, 

nitrogen consumption and aroma production.  
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2. Material and methods 

2.1. Experimental fermentations  

Fermentations were conducted using several combinations of the commercial 

strain of Saccharomyces cerevisiae QA23 (Lallemand, Inc. Canada) and the strains 

Candida zemplinina CszB4 and Hanseniaspora uvarum HuB10 previously isolated from 

wine fermentations. Both strains were selected on the basis of a preliminary experiment 

which consisted of a multiple co-inoculation of several strains of the same species in 

grape must. The strains selected were those with a higher presence at the end of 

fermentation (data not shown).  

Fermentations were conducted on Macabeo must coming from the experimental 

cellar of the Faculty of Oenology in Tarragona (Spain) during 2007 vintage. This must 

was sterilised by the addition of 250 mg l-1 of dimethyldicarbonate (Sigma-Aldrich, 

Steinheim, Germany). After settling, 400 ml of must was put in 500 ml bottles. This must 

contained 180 g l-1 of sugar content, which corresponded to 10 % of the probable 

alcohol degree, a pH of 3.1 and 4.8 g l-1 of total acidity of tartaric acid. A total 114.57 mg 

N l-1 of Yeast Assimilable Nitrogen (YAN) was found, 57.16 mg of which was in organic 

form (amino acids) and 57.41 mg was ammonium. All experiments were done in 

triplicate fermentations at a controlled temperature of 20 ºC and 150 rpm of stirring on 

an orbital shaker. Sugar consumption was monitored daily by measuring the density (g l-

1) of the fermenting must and by enzymatic assay (Roche Applied Science; Germany). 

Fermentations were considered to be finished when the level of reducing sugars was 

below 2 g l-1. 

The musts were inoculated with 106 cells ml-1 in all cases. The inocula were S. 

cerevisiae (S), C. zemplinina (C), H. uvarum (H), C. zemplinina/S. cerevisiae (CS), H. 

uvarum/S. cerevisiae (HS) and C. zemplinina/H. uvarum/S. cerevisiae (CHS) always at 

the ratio of 9:1 for non-Saccharomyces vs. Saccharomyces (4.5:4.5:1 for the triple 

culture). The total yeast populations were enumerated on plates with YPD medium (2% 

glucose, 2% Bacto peptone, 1% yeast extract, 2% agar, W/v; Cultimed, Barcelona, 

Spain). The selective lysine-agar medium (Oxoid, Barcelona, Spain), which is unable to 

support the growth of S. cerevisiae [30], was used to enumerate non-Saccharomyces 

populations. 
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2.2. Nitrogen content analysis 

YAN was analysed by the formol index method [31], and the ammonium content 

was quantified using an enzymatic method (Roche Diagnostics, Germany). The 

individual amino and imino acids were analysed by OPA and FMOC derivatizations, 

respectively, using the Agilent 1100 Series HPLC as described by Beltran et al. [32]. 

Several dilutions of each sample were analysed and averaged using the analysis 

software. The concentration of each amino acid was calculated using external and 

internal standards and expressed as mg l-1. The software used was Agilent 

ChemStation Plus (Agilent Technologies, Germany).  

 

2.3. Volatile compound analysis  

The concentrations of the different volatile compounds were analyzed at the end 

of each fermentation. The protocol followed by Ortega et al. [33] was modified to 

determine volatile fatty acids, ethyl esters of fatty acids, higher alcohol acetates and 

other volatile compounds. The following were added to 15-ml screw-capped tubes: 1.5 

ml of wine, 3.5 ml of (NH4)2SO4 (45%, w/v), 20 µl of internal standard (4-methyl-2-

pentanol (176 µg ml-1), 1-nonanol (160 µg ml-1), heptanoic acid (150 µg ml-1) in ethanol 

and 200 µl of dichloromethane. The tube was shaken for 30s (3x) and then centrifuged 

at 4000 rpm for 10 min. Once the phases were separated, the bottom phase 

(dichloromethane) was transferred to a glass vial insert. The extract (2 µl) was injected 

in split mode (10:1, 30 ml min-1) into an HP-FFAP (Agilent Technologies, Böblingen, 

Germany) column of 30 m x 0.25 mm, 0.25 µm phase thickness. The temperature 

program was as follows: 35ºC for 5 min, then raised at 3ºC min-1 up to 200ºC and then 

at 8ºC min-1 up to 220ºC. Injector and detector (FID) temperatures were 180ºC and 

280ºC, respectively. The carrier gas was helium at 3 ml min-1. Volatile compounds were 

identified and quantified by comparison with standards. 

 

2.4. Organic acid analysis  

The values of different organic acids were analyzed at the end of the 

fermentations of the wine samples. Organic acids were determined by HPLC using an 

Agilent 1100 Series connected to an Agilent multiple wavelength detector (Agilent 

Technologies, Wilmington, DE). The samples (450 µl) were mixed with 50 µl of formic 

acid (Internal Standard, 46.84 g l-1) and 50 µl were injected into a 300 mm x 7.8 mm 
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AMINEX HPX-87H columm (BioRad, Hercules, CA). The solvent used was sulphuric 

acid 2.5 mM at 0.5 ml min-1. The analysis temperature was 70ºC. The concentration of 

each metabolite was calculated using external and internal standards. 

 

2.5. Oenological parameters 

The glucose, fructose, glycerol and ethanol content of the wines were analyzed 

using commercial enzymatic kits (Roche Diagnostics, Germany). Acetic and succinic 

acids were determined by HPLC as described above. The pH was determined by using 

a pH-meter Crison MicropH 2000 (Crison, Barcelona, Spain). 

 

2.6. Statistical treatment 

The data were analyzed with SPSS 15.0 software for Windows (SPSS Inc., 

Chicago, IL). Analysis of variance was carried out by an ANOVA Tukey test to 

determine significant differences between the samples. The statistical level of 

significance was set at P≤ 0.05.  

 

3. Results 

3.1. Kinetics and main fermentation products 

As expected, the fastest fermentation was with the pure culture of S. cerevisiae, 

considered as control, whereas the slowest fermentations were those inoculated either 

with a pure culture of Hanseniaspora uvarum or Candida zemplinina (Figure 1).  

 

 
Figure 1. Fermentation kinetics (as density g l-1) of the six experimental fermentations: C. 

zemplinina (–♦–), H. uvarum (–□–), S. cerevisiae (–▲–), C. zemplinina-S. cerevisiae (--X--), 

H. uvarum –S. cerevisiae (-----), C. zemplinina-H. uvarum- S. cerevisiae (--●--). Each point is 

expressed as the mean ± standard deviation. 
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The pure H. uvarum culture was the only condition that did not finish the 

fermentation (20 g l-1 of glucose left in the medium) (Table 1). All the fermentations 

reached a similar ethanol concentration (around 9.5-10%) with the exception of the H. 

uvarum pure culture, which only reached 4%. Regarding other oenological parameters, 

the greatest differences among the different cultures were detected in the glycerol and 

acetic acid concentrations. All the fermentations showed a higher concentration of 

glycerol and acetic acid than the control S. cerevisiae fermentation, with the exception 

of the unfinished H. uvarum fermentation, which produced less glycerol but much more 

acetic acid.  

 

Table 1. Principal oenological parameters at the end of the different fermentations. 

Fermentations with Saccharomyces inoculum (S) were taken as the control. All values are 

expressed as g l-1, with the exception of the pH values, and are the mean ± standard 

deviation of triplicate fermentations. 

 

  Glycerol  Succinic acid  Acetic acid  pH Glucose Fructose 

S 4.56  ± 0.19  1.52 ± 0.04  0.49 ± 0.03  2.94 ± 0.06  - 0.87 ±0.04 

C 5.91 ± 0.21*  1.05 ± 0.02* 0.80 ± 0.05* 2.97 ± 0.02  0.60 ± 0.15 1.49 ±0.07 

H 3.37 ± 0.23* 0.50 ± 0.02* 37.50 ± 0.09* 2.95 ± 0.02 20 ± 0.80 - 
CS 5.79 ± 0.49*  1.82 ± 0.06*  1.76 ± 0.19*  2.96 ± 0.05  0.40 ± 0.06 0.12 ± 0.05 
HS 5.31 ± 0.65 1.48 ± 0.05  1.58 ± 0.06* 3.05 ± 0.03*  - 0.55 ± 0.12 

CHS 5.41 ± 0.49  1.48 ± 0.02  1.53 ± 0.11* 3.01 ± 0.03  0.05 ± 0.03 0.05 ± 0.02 

- Not detected 
 

3.2. Microbial populations 

Total yeast population was very similar in all fermentations and reached a 

population around 108 cfu ml-1 (Fig 2). This population level was reached after 72 hours, 

except in the case of H. uvarum pure culture which reached this maximum population 

on the fifth day of fermentation. The presence of S. cerevisiae in the mixed cultures 

meant that the maximum total yeast populations were quickly reached. These maximum 

populations were kept stable during the process, that is, there was no decline phase in 

last stages of fermentation, and even the population of C. zemplinina increased steadily 

throughout the fermentation. The only exception was the pure H. uvarum culture which 

showed a clear decline during the last stages in accordance with its stuck fermentation. 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
ADAPTATION AND DEVELOPMENT OF CULTURE-INDEPENDENT TECHNIQUES FOR THE INDENTIFICATION AND ENUMERATION 
OF MICROORGANISMS IN WINE FERMENTATIONS 
Immaculada Andorrà Solsona 
ISBN:978-84-693-8859-4/DL:T.1948-2010 



Chapter 3 

 

 

 130 

 

Figure 2. Evolution of yeast population in two different plates, YPD and lysine-agar (LYS) 

medium, in the different fermentations: C. zemplinina (–♦–), H. uvarum (–□–), S. cerevisiae (–

▲–), C. zemplinina-S. cerevisiae (--X--), H. uvarum–S. cerevisiae (-----), C. zemplinina-H. 

uvarum-S. cerevisiae (--●--). Standard deviation was calculated on each case, and was never 

higher than 20%. 

 

The non-Saccharomyces counts were similar to the total yeast populations (the 

same order of magnitude) at the beginning of fermentation. However, in the mixed 

fermentations, these numbers decreased as fermentation proceeded. The comparison 

between the counts obtained in both culture media (non-selective YPD and selective 

lysine-agar) clearly proved that most of the yeast population was non-Saccharomyces 

at the beginning of the process but that Saccharomyces population took over the 

process in the middle and at the end of the fermentation. Non-Saccharomyces yeasts 

represented less than 1% of total yeast population at the end of the fermentation. 

The counts of the pure non-Saccharomyces cultures (C and H) should have been 

the same in YPD and lysine-agar. This was the case with C. zemplinina; however, H. 

uvarum counts were smaller in lysine-agar than in YPD in some samples. This result 

could be because YPD is a richer medium which supports better growth than lysine-

agar, especially when cells are stressed by the presence of ethanol. 

 

3.3. Ammonium and amino acid consumption 

We analysed the ammonium and amino acid content in the media at different 

stages of the fermentation. We detected the maximum consumption in the middle of the 

fermentation because nitrogen release, as consequence of yeast autolysis, was 

observed in the final phases of the fermentation. This maximum consumption of both 

individual amino acids and ammonium is shown in the Table 2.  
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Table 2. Amino acids and ammonium consumed in the middle of the different fermentations. 

All values are expressed as mg l-1 and are the mean ± standard deviation of triplicate 

fermentations. Fermentations with Saccharomyces inoculum (S) were taken as the control. 

 

Unfortunately, the low concentration of assimilable nitrogen (YAN) in the grape 

must meant that the differences in nitrogen consumption were not as remarkable as 

expected. Ammonium was completely consumed in all the conditions. The mixed 

cultures consumed more amino acids than the pure cultures. Moreover, these mixed 

Group AA Must S C H HS CS CHS 

Acids & 
amides Asp 51.77 ± 1.06 41.98 ± 1.41 41.24 ± 1.13 44.8 ± 0.85 48.76 ± 0.09* 48.23 ± 0.78* 47.64 ± 1.95* 
 

Glu 59.39 ± 1.52 49.67 ± 1.13 55.65 ± 2.12 56.53 ± 1.41* 57.94 ± 0.06* 55.21 ± 3.01 58.37 ± 0.67* 
 

Asn 13.71 ± 0.1 13.71 ± 0.0 13.71 ± 0.0 13.71 ± 0.0 13.71 ± 0.0 13.71 ± 0.0 13.71 ± 0.0 
 

Gln 166.35 ± 1.06 158.49 ± 7.55 158.57 ± 9.89 131.72 ± 9.20* 156.47 ± 7.36 153.95 ± 7.56 154.49 ± 2.72 
 Total acids & 

amides 291.22 ± 3.74 263.84 ± 10.09 269.177 ± 13.15 246.76 ± 11.46 276.888 ± 7.35 271.1 ± 11.08 274.21 ± 5.24 
Aliphatic 

Gly 3.07 ± 0.08 2.30 ± 0.10 1.53 ± 0.14* 2.21 ± 0.13 2.8 ± 0.11* 2.73 ± 0.18* 2.74 ± 0.03* 
 

β-ala 1.75 ± 0.11 1.38 ± 0.13 1.45 ± 0.14 1.07 ± 0.08 1.45 ± 0.06 1.5 ± 0.12 1.22 ± 0.57 
 

α-ala 40.45 ± 0.51 36.94 ± 0.42 37.35 ± 0.28 36.79 ± 0.71 39.11 ± 0.76* 39.46 ± 0.32* 39.31 ± 0.19* 
 

Val 10.45 ± 0.53 9.26 ± 0.47 7.83 ± 0.54 9.02 ± 0.62 9.78 ± 0.35 9.35 ± 0.88 9.58 ± 0.37 
 

Ile 6.07 ± 0.85 5 ± 1.13 2.06 ± 0.48 3.32 ± 0.85 5.04 ± 0.74 4.22 ± 1.06 3.82 ± 0.59 
 

Leu 9.33 ± 0.54 3.77 ± 0.71 1.34 ± 0.58* 6.68 ± 0.48* 8.09 ± 0.48* 7.8 ± 0.41* 7.61 ± 0.67* 
 

Total aliphatic 71.12 ± 2.62 58.66 ± 2.95 51.56 ± 2.16 59.09 ± 2.87 66.26 ± 1.97* 65.03 ± 1.36 64.29 ± 1.42 
Aromatic 

Tyr 5.15 ± 0.84 1.45 ± 0.57 3.99 ± 0.51 3.75 ± 0.97 4.2 ± 0.61 3.65 ± 1.69 4.03 ± 0.47 
 

Trp 9.65 ± 0.95 5.13 ± 1.10 2.63 ± 0.41* 4.15 ± 0.78 8.32 ± 0.53* 6.55 ± 0.92 6.79 ± 0.32 
 

Phe 15.93 ± 1.25 7.91 ± 1.42 4.33 ± 1.41 7.4 ± 0.99 14.63 ± 0.71* 13.22 ± 1.84* 14.1 ± 1.37* 
 Total 

aromatic 30.73 ± 3.04 14.49 ± 3.72 10.96 ± 2.33 15.3 ± 2.74 27.14 ± 0.91* 23.42 ± 2.61* 24.96 ± 1.18* 
Hydroxyl 

Ser 21.96 ± 0.52 21.08 ± 0.71 19.8 ± 0.56 21.96 ± 0.84 21.78 ± 0.31 21.54 ± 0.71 21.96 ± 0.0 
 

Thr 14.97 ± 0.09 14.95 ± 0.17 14.95 ± 0.11 14.89 ± 0.07 14.69 ± 0.04 14.77 ± 0.19 14.94 ± 0.01 
 Total 

hydroxyl 36.93 ± 0.61 36.04 ± 0.88 34.75 ± 0.68 36.85 ± 0.92 36.46 ± 0.28 36.311 ± 0.90 36.9 ± 0.01 
Sulphur 

Met 3.01 ± 0.18 1.89 ± 0.25 3.01 ± 0.28* 0.8 ± 0.21* 1.13 ± 0.15* 1.97 ± 0.30 0.54 ± 0.08* 
 

Cyst 2.15 ± 0.25 2.15 ± 0.33 2.15 ± 0.26 1.05 ± 0.31* 1.75 ± 0.26 1.36 ± 0.13* 0.91 ± 0.18* 
 

Total sulphur 5.16 ± 0.43 4.03 ± 0.59 5.16 ± 0.55 1.85 ± 0.52* 2.88 ± 0.09* 3.33 ± 0.17 1.53 ± 0.04* 
Basic 

His 6.24 ± 0.26 4.53 ± 0.41 3.91 ± 0.44 3.64 ± 0.37 4.69 ± 0.76 4.99 ± 0.34 5.55 ± 0.19 
 

Arg 120.06 ± 2.42 112.17 ± 2.39 111.39 ± 2.80 110.75 ± 2.21 116.9 ± 2.86 116.68 ± 0.54 114.61 ± 2.27 
 

Lys 7.77 ± 0.65 6.93 ± 0.85 7.08 ± 0.42 6.97 ± 0.28 7.43 ± 0.85 5.88 ± 1.56 7.35 ± 0.21 
 

Total basic 134.07 ± 3.33 123.63 ± 3.65 122.38 ± 3.66 121.36 ± 2.85 129.02 ± 2.91 127.55 ± 1.92 127.51 ± 2.12 
 

Pro 127.38 ± 0.97 113.95 ± 0.74 114.96 ± 1.32 113.58 ± 0.86 105.21 ± 0.98 124.83 ± 1.64 124.55 ± 0.47 
 

NH4+ 221.47 ± 1.73 209.69 ± 1.58 209.14 ± 2.03 210.03 ± 1.85 214.94 ± 2.25 217.85 ± 1.84 216.87 ± 0.48 
 

Total aas 696.91 ± 4.07 614.64 ± 22.58 608.94 ± 23.25 594.79 ± 22.04 643.85 ± 4.00 651.57 ± 18.62 653.95 ± 8.23 
 

Total N 154.07 ± 1.49 141.58 ± 2.94 140.54 ± 3.03 136.40 ± 2.87 147.04 ± 1.47 146.05 ± 2.43 145.64 ± 1.43 
 

N org 96.12 ± 1.09 86.71 ± 2.36 85.81 ± 2.43 81.44 ± 2.31 90.79 ± 1.07 89.05 ± 1.95 88.89 ± 1.37 
 

N inorg 57.95 ± 0.48 54.87 ± 1.01 54.73 ± 1.04 54.96 ± 0.99 56.25 ± 0.48 57.01 ± 0.84 56.75 ± 0.12 
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cultures consumed more of certain groups (aliphatic and aromatic amino acids) than the 

pure yeasts culture. They also consumed more glutamic acid, aspartic acid, glycine, 

alanine, leucine and phenylalanine. However, the converse also happened, the mixed 

cultures consumed fewer sulphur amino acids than the pure S. cerevisiae and C. 

zemplinina cultures. 

 

3.4. Volatile compounds 

The most important aroma forming compounds were analysed in the final wines 

(Table 3).  

 

Table 3. Volatile compounds at the end of the different fermentations. All values are 

expressed as mg l-1 and are the mean ± standard deviation of triplicate fermentations. 

Fermentations with Saccharomyces inoculum (S) were taken as the control. 

 

Group Compound S C CS HS CHS 

Higher Alcohols 
1-Propanol 9.55 ± 1.26 30.58 ± 0.96* 16.94 ± 4.38 11.47 ± 0.30 21 ± 1.40* 

 
2-Methyl-1-propanol 24.51 ± 1.53 468.86 ± 74.83* 93.46 ± 0.73 55.39 ± 0.75 77.4 ± 1.77 

 
Isoamyl alcohol 167.52 ± 4.33 334.63 ± 29.45* 213.13 ± 17.41 202.95 ± 15.50 199.86 ± 6.63 

 
β-Phenylethanol 30.63 ± 4.91 227.9 ± 15.26* 118.15 ± 3.00* 42.72 ± 2.69 61.22 ± 0.02* 

 
Total higher alcohols  232.21 ± 9.51 1061.98 ± 29.15* 441.68 ± 18.06* 312.53 ± 12.35* 359.49 ± 9.82* 

Fatty acid ethyl 
esters Ethyl hexanoate 0.03 ± 0.01 0.12 ± 0.01 0.09 ± 0.02 0.22 ± 0.11 0.1 ± 0.01 
 

Ethyl octanoate 0.22 ± 0.04 3.6 ± 0.06* 0.61 ± 0.19* 0.21 ± 0.02 0.25 ± 0.03 
 

Ethyl lactate 0.34 ± 0.04 0.89 ± 0.11 1.27 ± 0.22* 2.27 ± 0.05* 2.54 ± 0.28* 
 Total Fatty acid ethyl 

esters 0.6 ± 0.09 4.61 ± 0.05* 1.97 ± 0.39* 2.71 ± 0.04* 2.89 ± 0.23* 
Higher alcohol 
Acetates Isoamyl acetate 0.25 ± 0.08 0.15 ± 0.15 0.14 ± 0.01 0.70 ± 0.01* 0.2 ± 0.01 
 

Hexyl acetate 6.81 ± 0.17 13.98 ± 0.68 14.34 ± 0.95 23.22 ± 4.30* 9.47 ± 2.09 
 

2-Phenylethyl acetate 2.99 ± 0.14 1.09 ± 0.01* 2.79 ± 0.16 4.23 ± 0.34* 3.31 ± 0.07 
 

Total acetates 10.06 ± 0.39 15.22 ± 0.55 17.27 ± 1.10 28.15 ± 3.97* 12.99 ± 2.01 
SCFA 

Isobutyric acid 1.77 ± 0.01 29.08 ± 2.38* 12.66 ± 1.26* 6.13 ± 0.47 4.35 ± 0.13 
 

Isovaleric acid 1.97 ± 0.13 1.01 ± 0.16* 2.48 ± 0.38 1.52 ± 0.07 1.64 ± 0.19 
 

Butyric acid 0.64 ± 0.02 0.34 ± 0.09 0.75 ± 0.20 0.77 ± 0.04 0.64 ± 0.12 
 

Total SCFA 4.37 ± 0.14 30.32 ± 2.44* 15.89 ± 0.68* 8.42 ± 0.58 6.64 ± 0.06 
MCFA 

Hexanoic acid 3.42 ± 0.46 0.31 ± 0.05* 2.89 ± 0.38 1.83 ± 0.19* 1.74 ± 0.01* 
 

Octanoic acid 2.62 ± 0.45 0.23 ± 0.07* 1.88 ± 0.04 0.92 ± 0.11* 1.62 ± 0.22* 
 

Decanoic acid 1.59 ± 0.32 0.12 ± 0.01* 0.84 ± 0.11* 0.69 ± 0.17* 0.56 ± 0.08* 
 

Dodecanoic acid 0.18 ± 0.05 1.2 ± 0.18* 0.56 ± 0.24 1.3 ± 0.09* 0.17 ± 0.01 
 

Total MCFA 7.82 ± 0.26 1.86 ± 0.19* 6.18 ± 0.55* 4.74 ± 0.35* 4.09 ± 0.15* 

Italic values represent the sum of related compounds SCFA short-chain fatty acids, MCFA medium-chain 
fatty acids. * Means statistically different from the control, P ≤ 0.05 
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The pure H. uvarum culture fermentation was not analysed because it did not 

finish fermenting and its high concentration of acetic acid and ethyl acetate made the 

analysis of other compounds very difficult. S. cerevisiae had the lowest production of 

higher alcohols whereas C. zemplinina had the highest. The mixed fermentations 

produced higher alcohols at levels between those of the pure S. cerevisiae and C. 

zemplinina, although levels were closer to those of S. cerevisiae. The strong difference 

between C. zemplinina and S. cerevisiae was due to a significant increase in each 

detected compound, whereas the differences between mixed fermentations were mostly 

due to the increases in 2 phenylethanol and 2 methyl-1-propanol. 

The production of ethyl esters is also significantly higher in the presence of non-

Saccharomyces yeasts and especially in the pure cultures of C. zemplinina. In this 

case, the difference was mostly due to the increase in ethyl octanoate, whereas in the 

mixed fermentations it was related to the increases in ethyl lactate. 

Although all the fermentations produced more acetate esters than the pure S. 

cerevisiae culture, the only significant difference was in the mixed H. uvarum and S. 

cerevisiae culture. 

The production of short chain fatty acids (SCFA) was also higher in all the 

fermentations than in the S. cerevisiae fermentation. This increase was higher in 

fermentations which contained C. zemplinina, especially when it fermented alone. The 

main contributor to this difference was isobutyric acid, which was highly synthesised by 

C. zemplinina. On the other hand, medium chain fatty acids (MCFA) concentrations in 

the S. cerevisiae fermentations were always higher than in the other wines, except for 

dodecanoic acid, which was produced in higher quantities by the non-Saccharomyces 

yeasts.   

 

4. Discussion 

The aim of this study was to analyze the effect of mixed Saccharomyces and 

non-Saccharomyces cultures on amino acid consumption and aroma production in 

natural grape must, and to determine the interactions among the different 

microorganisms involved. These fermentations were inoculated with a Saccharomyces 

strain together with a C. zemplinina strain and/or a H. uvarum strain that was selected 

according to its fermentation performance. So far, the wine industry has only paid 

attention to the S. cerevisiae strains as fermentative agents, and has ignored the 
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possibility of using other yeasts during fermentations. However, interest is growing in 

the possible contributions of non-Saccharomyces yeasts to the fermentation process. 

Non-Saccharomyces species can contribute to the aromatic properties and chemical 

composition of the resulting wine because they produce more secondary metabolites 

which contribute to the taste and flavour of the wines [20]. Some authors have even 

reported that these yeasts produce extracellular enzymes that may provide the wine 

with properties that are unique to the region where it is produced [13]. In our opinion, 

however, further research is needed into how individual non-Saccharomyces species 

and strains contribute to wine quality and into the synergy or antagonism between 

Saccharomyces and non-Saccharomyces species in the final resulting wines. 

It is well-known that non-Saccharomyces yeast predominates in the first stages 

of fermentation before disappearing in favour of S. cerevisiae, which has the highest 

fermentative capacity. This phenomenon is generally ascribed to Saccharomyces’ 

higher capacity to withstand increasing concentrations of ethanol and organic acids, 

decreasing pH and nutritional depletion [34]. However the predominant role of these 

classic selective pressures is currently being questioned and other, as yet undefined, 

microbe–microbe interactions are being put forward as potentially significant in 

influencing yeast successions [10, 35, 36]. Our results clearly proved that S. cerevisiae 

has an antagonistic effect upon C. zemplinina and H. uvarum strains. The presence of 

S. cerevisiae strongly reduced the other species in the mixed cultures. To date, there 

have been only a few thorough studies into the causes and the mechanisms underlying 

this antagonistic phenomenon [36-39]. On one hand, Nissen et al. [37] concluded that 

the early death of two wine-related yeasts (Kluyveromyces thermotolerans and 

Torulaspora delbrueckii) during mixed fermentations with S. cerevisiae was not due to 

the presence of ethanol or any other toxic compound but instead to a cell–cell contact-

mediated mechanism. On the other hand, Pérez-Nevado et al. [39] have studied the 

mechanism involved in the cellular death of two Hanseniaspora wine strains (H. 

guilliermondii and H. uvarum) during mixed fermentations with S. cerevisiae under 

oenological growth conditions. When S. cerevisiae reached cell densities of around 107 

CFU ml–1, a strong reduction in the Hanseniaspora population was observed regardless 

of the ethanol concentration. The authors hypothesised that one or more toxic 

compounds produced by S. cerevisiae triggers the early death of the Hanseniaspora 

cells, though it has not yet been possible to identify the nature of these compounds. 
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These yeast interactions had a clear impact on the fermentation kinetics. The 

presence of S. cerevisiae guaranteed a fast fermentation. However, the fermentative 

behaviour was very different between the pure culture of C. zemplinina and H. uvarum. 

Whereas C. zemplinina ended the fermentation with a slight delay compared with the S. 

cerevisae fermentations, the H. uvarum pure culture was unable to finish it. We did not 

expect this strain to have such a poor fermentative capacity because in a previous 

experiment, it was selected on the basis of predominance in synthetic grape must 

fermentation in competition with other H. uvarum strains isolated from wine. This mixed 

culture of different H. uvarum strains was able to consume all the sugars of the 

synthetic must (data not shown). This controversial result might again be the result of 

interactions between the yeasts, because a mixture of H. uvarum strains was able to 

end fermentation whereas the predominant strain was unable to finish the fermentation 

when it was alone.  

The dominance of one species over the others may mean that it is better at using 

the nutrients of the medium. In grape must, nitrogen is considered the main limiting 

nutrient for optimized growth and good fermentation performance [40]. Several positive 

and negative interactions have been reported regarding nutrient availability and nutrient 

limitation [10]. Non-Saccharomyces species growing early in the fermentation could 

strip the medium of amino acids and vitamins, limiting the subsequent growth of 

Saccharomyces [40]. The proteolytic activity of some non-Saccharomyces together with 

the early death and autolysis of these non-Saccharomyces could again enrich the 

medium of nitrogen compounds [41]. In contrast to previous studies [28, 42], we 

detected a higher consumption of amino acids in the mixed cultures than in the pure 

cultures. H. uvarum pure culture presented the lowest consumption of assimilable 

nitrogen but it should be taken into account that this yeast was unable to finish the 

fermentation. However, the most remarkable result was the preferential use of some 

groups of amino acids in the mixed fermentations compared with the pure cultures. The 

presence of several yeast species might improve the uptake or consumption of some 

amino acids by some kind of synergistic mechanism. The metabolism of these three 

groups of amino acids with differential consumption (aliphatic, aromatic and sulphur 

amino acids) has a great impact in the synthesis of aroma compounds [43, 44]. 

Most of the studies with co-inoculation or sequential inoculation of non-

Saccharomyces/Saccharomyces species have highlighted the differences in the 
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aromatic profiles obtained in these wines compared with monocultures of S. cerevisiae. 

Thus, C. stellata (currently C. zemplinina) was associated with a higher production of 

glycerol, which was confirmed by our data. Moreover, we detected that this strain of C. 

zemplinina produced a huge amount of higher alcohols (approximately 5 times more 

than the S. cerevisiae strain). These compounds can have both a positive and negative 

impact on the aroma and flavour of a wine depending on the final concentration [44]. It 

has been reported that concentrations below 300 mg l-1 add a desirable level of 

complexity to wine, whereas concentrations that exceed 400 mg l-1 can have a 

detrimental effect [45]. The monoculture of C. zemplinina clearly exceeded this 

concentration; however, the mixed culture fermentations had a level which can impact 

positively on the aroma, especially if it is taken into account that the most significant 

increases were yielded in the β-phenylethanol, which contributes to a desirable floral 

(rose) aroma [44]. This strain also significantly increased the synthesis of ethyl esters 

which impart fruity flavours to wine. This increase correlated well with an important 

increase in short chain fatty acids, the substrate for the synthesis of ethyl esters. To 

date, this high production of higher alcohols and ethyl esters has not been described for 

strains of this species, in contrast to H. uvarum strains, which have been widely 

described as great producers of esters [28, 29, 46]. However, this high production of 

esters goes together with a high volatile acidity production, which makes the wines 

unacceptable. This was the case with the H. uvarum monoculture, which produced such 

a large amount of acetic acid and ethyl acetate that was impossible to analyze the other 

minor compounds. All the mixed fermentations with H. uvarum presented a desirable 

increase in esters (especially the acetate esters), however the high production of acetic 

acid by this strain could jeopardise its use at industrial level. In any case, it should be 

tested at industrial or semi-industrial volumes because Beltran et al. [47] have already 

reported a higher production of acetate in small volumes and in less anaerobic 

fermentations.  

 

5. Conclusions 

The potential of using mixed cultures in industrial wine production is currently 

under scrutiny. However, detrimental results such as the production of acetic acid above 

acceptable levels counteract the benefits of high ester production, as observed in the 

present study. These benefits could justify the selection of appropriate non-
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Saccharomyces yeasts whose production of detrimental products is low and that they 

interact correctly with S. cerevisiae. Furthermore, a better understanding of the nutrient 

consumption in these mixed fermentations is required for industrial environments as our 

results suggest that these cultures use amino acids differently.  

 

 Acknowledgements 

The present work has been financed by the projects AGL2007-66417-C02-02/ALI 

and AGL2007-65498-C02-02/ALI of the Spanish Ministry of Education and Science. The 

authors thank the Language Service of the Rovira i Virgili University for revising the 

manuscript. 

 

References  

1. Ribereau-Gayon P, Dubourdieu D, Donèche B, Lonvaud A (2000) (eds) Cytology, Taxonomy and 

Ecology of Grape and Wine Yeast. In Handbook of Enology (vol. 1), John Wiley and Sons, West 

Sussex (England), pp 1–49 

2. Fleet GH, Heard GM (1993). Yeasts growth during fermentation. In Fleet GH (ed) Wine 

Microbiology and Biotechnology. Harwood Academic Publishers, Chur (Switzerland), pp 27–54 

3. Beltran G, Torija MJ, Novo M, Ferrer N, Poblet M, Guillamón JM, Rozès N, Mas A (2002) 

Analysis of yeast populations during alcoholic fermentation: a six year follow-up study. Syst Appl 

Microbiol 25:287–293 

4. Fleet GH (2008) Wine yeast for the future. FEMS Yeast Res 8:979-995 

5. Sipiczki M, Ciani M, Csoma H (2005) Taxonomic reclassification of Candida stellata DBVPG 

3827. Folia Microbiol 50:494–498 

6. Hierro N, González A, Mas A, Guillamón JM (2006) Diversity and evolution of non-

Saccharomyces yeast populations during wine fermentations: effect of grape ripeness and cold 

maceration. FEMS Yeast Res 6:102–111 

7. Hierro N, Esteve-Zarzoso B, Mas A, Guillamón, JM (2007) Monitoring of Saccharomyces and 

Hanseniaspora populations during alcoholic fermentation by real-time quantitative PCR. FEMS 

Yeast Res 7:1340-1349 

8. Andorrà I, Landi S, Mas A, Guillamón JM, Esteve-Zarzoso B (2008) Effect of oenological 

practices on microbial population using culture-independent techniques. Food Microbiol 25:849-

856 

9. Esteve-Zarzoso B, Gostíncar A, Bobet R, Uruburu F, Querol A (2000) Selection and molecular 

characterization of wine yeasts isolates from the “El Penedès” area (Spain). Food Microbiol 

17:553-562 

10. Fleet GH (2003) Yeast interaction and wine flavour. Int J Food Microbiol 86:87-99 

UNIVERSITAT ROVIRA I VIRGILI 
ADAPTATION AND DEVELOPMENT OF CULTURE-INDEPENDENT TECHNIQUES FOR THE INDENTIFICATION AND ENUMERATION 
OF MICROORGANISMS IN WINE FERMENTATIONS 
Immaculada Andorrà Solsona 
ISBN:978-84-693-8859-4/DL:T.1948-2010 



Chapter 3 

 

 

 138 

11. Viana F, Gil JV, Genovés S, Vallés S, Manzanares P (2008) Rational selection of non-

Saccharomyces wine yeast for mixed starters based on ester formation and enological traits. 

Food Microbiol 25:778-785 

12. Fernandez MT, Ubeda JF, Briones AI (1999) Comparative study of non-Saccharomyces 

microflora of musts in fermentation, by physiological and molecular methods. FEMS Microbiol Lett 

173:223-229 

13. Charoenchai C, Fleet GH, Henschke PA, Todd BEN (1997) Screening of non–Saccharomyces 

wine yeasts for the presence of extracellular hydrolytic enzymes. Aust J Grape Wine Res 3:2–8 

14. Mills DA, Johannsen EA, Cocolin L (2002) Yeast diversity and persistence in botrytis-affected 

wine fermentations. Appl Environ Microbiol 68:4884–4893 

15. Antunovics Z, Csoma H, Sipiczki M (2003) Molecular and genetic analysis of the yeast flora of 

botrytized Tokaj wines. Bull OIV 76:380–397 

16. Clemente-Jimenez JM, Mingronance-Cazorla L, Martínez-Rodríguez S, Las Heras-Vázquez FJ, 

Rodríguez-Vico F (2004) Molecular characterization and oneological properties of wine yeasts 

isolated during spontaneous fermentation of six varieties of grape must. Food Microbiol 21:149-

155 

17. Divol B, Lonvaud-Funel A (2005) Evidence for viable but nonculturable yeasts in botrytis-affected 

wine. J Appl Microbiol 99:85–93 

18. Hierro N, Esteve-Zarzoso B, González A, Mas A, Guillamón JM (2006) Real-time quantitative 

PCR (QPCR) and reverse transcription-QPCR for detection and enumeration of total yeasts in 

wine. Appl Environ Microbiol 72:7148–7155 

19. Ciani M, Ferraro L (1998) Combined use of immobilized Candida stellata cells and 

Saccharomyces cerevisiae to improve the quality of wines. J Appl Microbiol 85:247-254 

20. Soden A, Francis IL, Oakey H, Henschke PA (2000) Effects of co-fermentation with Candida 

stellata and Saccharomyces cerevisiae on the aroma and composition of Chardonnay wine. Aust 

J Grape Wine Res 6:21-20 

21. Llauradó JM, Rozés N, Bobet R, Mas A, Constantí M (2002) Low temperature alcoholic 

fermentation in high sugar concentration grape must. J Food Sci 67:268-273 

22. Ciani M, Ferraro L (1996) Enhanced glycerol content in wines made with immobilized Candida 

stellata cells. Appl Environ Microbiol 62:128–32 

23. Ciani M, Maccarelli F (1998) Oenological properties of non-Saccharomyces yeasts associated 

with winemaking. World J Microbiol Biotechnol 14:199–203 

24. Jemec KP, Raspor P (2005) Initial Saccharomyces cerevisiae concentration in single or 

composite cultures dictates bioprocess kinetics. Food Microbiol 22:293-300 

25. Csoma H, Sipiczki M (2008) Taxonomic reclassification of Candida stellata strains reveals 

frequent occurrence of Candida zemplinina in wine fermentation. FEMS Yeast Res 8:328–336 

26. Sipiczki M (2003) Candida zemplinina sp. Nov., an osmotolerant and psychrotolerant yeast that 

ferments sweet botrytied wines. Int J Syst Evol Microbiol 53:2079-2083 

27. Sipiczki M (2004) Species identification and comparative molecular and physiological analysis of 

Candida zemplinina and Candida stellata. J Basic Microb 44:471–479 

UNIVERSITAT ROVIRA I VIRGILI 
ADAPTATION AND DEVELOPMENT OF CULTURE-INDEPENDENT TECHNIQUES FOR THE INDENTIFICATION AND ENUMERATION 
OF MICROORGANISMS IN WINE FERMENTATIONS 
Immaculada Andorrà Solsona 
ISBN:978-84-693-8859-4/DL:T.1948-2010 



Chapter 3 

 

 

 139 

28. Ciani M, Beco L, Comitini F (2006) Fermentation behaviour and metabolic interactions of 

multistarter wine yeast fermentations. Int J Food Microbiol 108:239-245 

29. Moreira N, Mendes F, Hogg T, Vasconcelos I (2005) Alcohols, esters and heavy sulphur 

compounds production by pure and mixed cultures of apiculate wine yeast. Int J Food Microbiol 

103:285-294 

30. Angelo J, Siebert KJ (1987) A new medium for the detection of wild strains in brewing culture 

yeast. J Am Soc Brew Chem 45:135-140 

31. Aerny J (1996) Composés azotés des moûts et vins. Rev Suisse Vitic Arboric Hortic 28:161–165 

32. Beltran G, Novo M, Rozès N, Mas A, Guillamón JM (2004) Nitrogen catabolite repression in 

Saccharomyces cerevisiae during wine fermentations. FEMS Yeast Res 4:625-632 

33. Ortega C, López R, Cacho J, Ferreira V (2001) Fast analysis of important wine volatile 

compounds development and validation of a new method based on gas chromatographic-flame 

ionisation detection analysis of dichloromethane microextracts. J Chromatogr A 923:205-214 

34. Pretorius I (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient 

art of winemaking. Yeast 16:675–729 

35. Ciani M, Pepe V (2002) The influence of pre-fermentative practices on the dominance of 

inoculated yeast starter under industrial conditions. J Sci Food Agr 82:573–578. 

36. Nissen P, Arneborg N (2003) Characterization of early deaths of non-Saccharomyces yeasts in 

mixed cultures with Saccharomyces cerevisiae. Arch Microbiol 180:257-263 

37. Nissen P, Nielsen D, Arneborg N (2003) Saccharomyces cerevisiae cells at high concentrations 

cause early growth arrest of non-Saccharomyces yeasts in mixed cultures by a cell-cell contact-

mediated mechanism. Yeast 20:331-341 

38. Arneborg N, Siegumfeldt H, Andersen G, Nissen P, Daria V, Rodrigo P, Glückstad J (2005) 

Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast. 

FEMS Microbiol Lett 245:155-159 

39. Pérez-Nevado F, Albergaria H, Hogg T, Girio F (2006) Cellular death of two non-Saccharomyces 

wine-related yeasts during mixed fermentation with Saccharomyces cerevisiae. Int J Food 

Microbiol 108:336-345 

40. Bisson LF (1999) Stuck and sluggish fermentations. Am J Enol Vitic 50:107-119 

41. Hernawan T, Fleet GH (1995) Chemical and cytological changes during the autolysis of yeasts. J 

Ind Microbiol 14:440-450 

42. Mendoza LM, Manca de Nadra MC, Farías ME (2007) Kinetics and metabolic behavior of a 

composite culture of Kloeckera apiculata and Saccharomyces cerevisiae wine related strains. 

Biotechnol Lett 29:1057-1063 

43. Beltran G, Esteve-Zarzoso B, Rozès N, Mas A, Guillamón JM (2005) Influence on the timing of 

nitrogen additions during synthetic grape must fermentations on fermentation kinetics and 

nitrogen consumption. J Agric Food Chem 53:996-1002 

44. Swiegers JH, Bartowsky EJ, Henschke PA, Pretorius IS (2005) Yeast and bacterial modulation of 

wine aroma and flavour. Aust J Grape Wine Res 11:127-138 

UNIVERSITAT ROVIRA I VIRGILI 
ADAPTATION AND DEVELOPMENT OF CULTURE-INDEPENDENT TECHNIQUES FOR THE INDENTIFICATION AND ENUMERATION 
OF MICROORGANISMS IN WINE FERMENTATIONS 
Immaculada Andorrà Solsona 
ISBN:978-84-693-8859-4/DL:T.1948-2010 



Chapter 3 

 

 

 140 

45. Rapp A, Versini G (1991) Influence of nitrogen compounds in grapes on aroma compounds of 

wine. In Seattle WA, Rantz J (eds) Proceedings of the International Symposium on Nitrogen in 

Grapes and Wines,. American Society for Enology and Viticulture, (Davis, California) pp. 156-

164. 

46. Capece A, Fiore C, Maraz A, Romano P (2005) Molecular and technological approaches to 

evaluate strain biodiversity in Hanseniaspora uvarum of wine origin. J Appl Microbiol 98:136–144 

47. Beltran G, Novo M, Guillamón JM, Mas A, Rozès N (2008) Effect of fermentation temperature 

and culture media on the yeast lipid composition and wine volatile compounds. Int J Food 

Microbiol 121:169-177 

UNIVERSITAT ROVIRA I VIRGILI 
ADAPTATION AND DEVELOPMENT OF CULTURE-INDEPENDENT TECHNIQUES FOR THE INDENTIFICATION AND ENUMERATION 
OF MICROORGANISMS IN WINE FERMENTATIONS 
Immaculada Andorrà Solsona 
ISBN:978-84-693-8859-4/DL:T.1948-2010 



 

 

Chapter 4 

 

 

 

 

Effect of mixed culture fermentations on yeast 

populations and aroma profile 

 

 

Imma Andorrà 1#, María Berradre 2#, Albert Mas 1, Braulio Esteve-Zarzoso 1 and Jose 

M. Guillamón 1,3 . 

 

 

 

 

1 Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili. Marcel.lí 

Domingo s/n, 43007, Tarragona, Spain. 

2   Laboratorio de Alimentos, Departamento de Química, Facultad Experimental de Ciencias, Universidad 

del Zulia, Estado Zulia, Venezuela. 
3  Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos 

(CSIC), P.O. Box 73, E-46100 Burjassot, València, Spain. 

 
# Both authors contributed equally to this work 

 

 

 

 

 

 

Submitted to LWT – Food Science and Technology 

UNIVERSITAT ROVIRA I VIRGILI 
ADAPTATION AND DEVELOPMENT OF CULTURE-INDEPENDENT TECHNIQUES FOR THE INDENTIFICATION AND ENUMERATION 
OF MICROORGANISMS IN WINE FERMENTATIONS 
Immaculada Andorrà Solsona 
ISBN:978-84-693-8859-4/DL:T.1948-2010 



 

UNIVERSITAT ROVIRA I VIRGILI 
ADAPTATION AND DEVELOPMENT OF CULTURE-INDEPENDENT TECHNIQUES FOR THE INDENTIFICATION AND ENUMERATION 
OF MICROORGANISMS IN WINE FERMENTATIONS 
Immaculada Andorrà Solsona 
ISBN:978-84-693-8859-4/DL:T.1948-2010 



Chapter 4 

 

 

 143 

 

Abstract 

The effect of pure and mixed inocula on synthetic grape must fermentation has 

been determined on the fermentation rate and the main characteristics of the wine 

produced, the volatile profile, amino acid consumption and yeast population dynamics. 

Three yeast species were assayed: Saccharomyces cerevisiae, Hanseniaspora uvarum 

and Candida zemplinina. The proportion of mixed cultures was 90:10 between Non-

Saccharomyces and S. cerevisiae. The population dynamics was followed by plating, 

microscope counting and QPCR. The aromatic profile was determined by GC, whereas 

amino acid consumption was determined by HPLC. All the fermentations in which S. 

cerevisiae was present were faster and were conducted by this species. S. cerevisiae 

was also the most effective at converting amino acid consumption into biomass. This 

efectiveness could be a mechanism for taking over other species during alcoholic 

fermentation. However, it produced the lowest levels of aromatic compounds. 

 

Keywords: Wine flavour, Saccharomyces, Candida, Hanseniaspora, amino acid 

consumption 
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1. Introduction 

Grape juice fermentation is characterised by the metabolisation of sugars, mostly 

into ethanol and carbon dioxide. However, sugars are also converted into a wide range 

of volatile and non-volatile end-products, which influence and determine the aroma and 

flavour of the wine. The major volatile products of this microbial metabolism, ethanol 

and carbon dioxide, make a relatively small contribution to wine flavour. Organic acids, 

higher alcohols and esters, however, are the main group of compounds that form the 

fermentation bouquet (Romano, Fiore, Paraggio, Caruso & Capece, 2003). During the 

biochemical transformation, yeasts transform the flavour-inactive compounds present in 

grape must into flavour-active components in wine. Although these compounds are 

present in only small quantities, their impact on wine aroma and flavour is detectable 

and facilitates the expression of grape varietal character (Fleet, 2008). 

Of the yeasts that appear at the beginning of wine fermentation, those belonging 

to Non-Saccharomyces genera are predominant. Candida and Hanseniaspora are the 

main genera present in the first stages of wine fermentation, while Saccharomyces 

cerevisiae strains are dominant because of their greater sugar consumption and higher 

ethanol tolerance during the latter stages (Fleet & Heard, 1993; Pretorius, 2000). All the 

starters on the market belong to the Saccharomyces genus. The inoculation of these 

selected starters is expected to overwhelm the growth of Non-Saccharomyces yeasts. 

However, several quantitative ecological studies have indicated that they were not 

completely suppressed in either spontaneous or inoculated fermentations (Hierro, 

Esteve-Zarzoso, González, Mas, & Guillamón, 2006; Hierro, Esteve-Zarzoso, Mas, & 

Guillamón, 2007; Andorrà, Landi, Mas, Guillamón, & Esteve-Zarzoso, 2008). Therefore, 

Non-Saccharomyces species contribute to the chemical composition and aroma 

properties of the resulting wine because more secondary metabolites are produced 

which contribute to the taste and flavour of the wines (Granchi, Ganucci, Messini, & 

Vicenzini, 2002; Capece, Fiore, Maraz, & Romano, 2005; Garde-Cerdán & Ancín-

Azpilicueta, 2006; Moreira, Mendes, Guedes de Pinho, Hogg, & Vasconcelos 2008; 

Bely, Stoeckle, Masneuf-Pomarède, & Dubourdieu, 2008). In this context, it has been 

proposed that selected Non-Saccharomyces wine yeasts, together with Saccharomyces 

strains as part of mixed and multistarter cultures, should be included to improve the 

chemical composition and sensory properties of wine, and avoid the unwanted 
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compounds that these species can also produce (Ciani, Comitini, Mannazzu, & 

Dominizio, 2010).  

The causes underlying yeast interactions during wine fermentation are not fully 

understood. The predominance of S. cerevisiae during fermentation may be attributed 

to the fact that viable cells of this yeast at a high density arrest the growth of Non-

Saccharomyces yeast species in mixed cultures (Nissen & Arneborg; 2003; Nissen, 

Nielsen, & Arneborg, 2003; Arneborg et al., 2005). These authors postulated that the 

early death of two wine-related yeasts (K. thermotolerans and T. delbrueckii) during 

mixed fermentations with S. cerevisiae was due not to the presence of ethanol or other 

toxic compounds but to a cell–cell contact-mediated mechanism. Pérez-Nevado, 

Albergaria, Hogg, & Girio (2006) studied the mechanism involved in the cell death of 

two Hanseniaspora wine species (H. guilliermondii and H. uvarum) during mixed 

fermentations with S. cerevisiae under oenological conditions. When S. cerevisiae 

reached cell densities of around 107 cfu ml–1, the Hanseniaspora population decreased 

considerably regardless of the ethanol concentration. The authors hypothesized that 

one or more toxic compounds produced by S. cerevisiae triggers the early death of the 

Hanseniaspora cells. Recently, Albergaria, Francisco, Gori, Arneborg, & Gírio (2010) 

postulated that these toxic compounds are antifungal peptides secreted by S. cerevisiae 

against Non-Saccharomyces species. 

The use of culture-independent methods to identify and quantify yeasts is an 

ideal tool for studying yeast species interaction. Environmental and microbial 

interactions might produce stressed cells which limit the yeast’s ability to grow in a solid 

culture medium. Most of these methods rely on the direct amplification of yeast DNA 

from wine by PCR. Phister & Mills (2003) highlighted two main advantages of the direct 

characterization of microorganisms over yeast enrichment and plating: first, regardless 

of their capacity to grow in a plate, all the yeast populations are detected; and, second, 

analysis is fast. Because of its specificity and sensitivity, one of the most promising PCR 

techniques in food control is the real-time quantitative PCR (QPCR) (Bleve, Rizzotti, 

Dellaglio, & Torriani, 2003). In the past we developed several protocols to detect 

microorganisms in wine (González, Hierro, Poblet, Mas, & Guillamón, 2006; Hierro et 

al., 2006; Andorrà et al., 2008; Andorrà, Landi, Mas, Esteve-Zarzoso, & Guillamón, 

2010b). We now aim to study the interactions among the three main yeast species—S. 

cerevisiae, H. uvarum and C. zemplinina—by monitoring pure and mixed cultures 
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inoculated in a synthetic grape-must by QPCR. We also analyse the impact of these 

mixed cultures on nitrogen consumption and aroma production. Due to the presence of 

aroma precursors in the natural grape must and in order to analyse the effect of yeast 

metabolism, we perform these fermentations on synthetic must, where no precursors 

were available.  

 

2. Material and methods 

2.1 Wine fermentations  

Fermentations were carried out in synthetic grape must (pH 3.3) as described by 

Riou, Nicoud, Barre, & Gaillardin (1997), but with some modifications. The final 

concentration of sugars was 170 g/l (85 g/l glucose and 85 g/l fructose), available 

nitrogen was 400 mg/l and anaerobic factors were not added. A total of 400 ml of this 

synthetic must was dispensed in 500 ml fermentors at a controlled temperature of 20ºC 

and a stirring rate of 150 rpm in an orbital shaker. All the fermentations were inoculated 

to a final concentration of 106 cells/ml. The yeasts used in this study were: the 

commercial strain of S. cerevisiae QA23 (Lallemand, Inc. Canada) and the strains 

CszB4 and HuB10 from Candida zemplinina and Hanseniaspora uvarum isolated in a 

previous study (Esteve-Zarzoso, Hierro, Mas, & Guillamón, 2010). The inocula were S. 

cerevisiae (Sc), C. zemplinina (Cz), H. uvarum (Hu), C. zemplinina/S. cerevisiae (CS), 

H. uvarum/S. cerevisiae (HS) and C. zemplinina/H. uvarum/S. cerevisiae (CHS) always 

at a Non-Saccharomyces vs. Saccharomyces ratio of 90:10 (45:45:10 for the triple 

culture). All the fermentations were performed in triplicate.  

The fermentations were monitored by glucose and fructose analysis using an 

enzymatic kit (Roche Diagnostics). Samples for plating and QPCR were taken in the 

middle and at the end of fermentation (the middle was regarded as the point at which 

the total sugar content was about half of the initial content). For total yeast counts, 

samples were plated on YPD medium and for Non-Saccharomyces yeast on Lysine 

Agar medium, which is unable to support the growth of S. cerevisiae (Angelo & Siebert, 

1987). 

 

2.2. Quantification by real time-PCR 

Yeast DNA was extracted from pelleted cells using the method described in 

Hierro et al. (2006) and 1-50 ng DNA was used for quantification in an Applied 
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Bisystems 7300 Fast Real-Time PCR System (Applied Byosistems). Total yeast, C. 

zemplinina, H. uvarum and S. cerevisiae were quantified and standard curves made 

according to Andorrà et al. (2010b). All the reagents were from Applied Biosystems and 

the primers used were from Invitrogen (Germany). 

 

2.3. Nitrogen content analysis 

The amino acids and ammonium ions were simultaneously analyzed by DEEMM 

derivatizations using the Agilent 1100 Series HPLC (Agilent Technologies, Germany). 

Nitrogen compound separation was carried out using a 4.6 x 250 mm, 5 µm ACE C18-

HL column (Symta, Madrid, Spain) with a guard column (ACE5 C18-HL) through a 

binary gradient at a flow of 0.9 ml/min (Gómez-Alonso, Hermosín-Gutiérrez, & García-

Romero, 2007). 

Several dilutions of each sample were analysed and averaged using the analysis 

software. The concentration of each amino acid was calculated using external and 

internal standards and expressed as mg l-1. The software used was Agilent 

ChemStation Plus (Agilent Technologies, Germany). The ratio between the 

consumption of nitrogen sources (expressed as mg) and the microorganism population 

was calculated by dividing the consumption of each amino acid group by their 

population estimated by QPCR and expressed as mg/107 cells.  

 

2.4. Volatile compound analysis 

The concentrations of the different volatile compounds were analyzed at the end 

of each fermentation. The protocol followed by Ortega, López, Cacho, & Ferreira (2001) 

was modified to determine volatile fatty acids, ethyl esters of fatty acids, higher alcohol 

acetates and other volatile compounds. The following were placed in 15-ml screw-

capped tubes: 1.5 ml of wine, 3.5 ml of (NH4)2SO4 (45%, w/v), 20 µl of internal standard 

(4-methyl-2-pentanol (176 µg ml-1), 1-nonanol (160 µg ml-1), heptanoic acid (150 µg ml-

1) in ethanol and 200 µl of dichloromethane. The tube was shaken for 30s (3x) and then 

centrifuged at 4000 rpm for 10 min. Once the phases had separated, the bottom phase 

(dichloromethane) was transferred to a glass vial insert. The extract (2 µl) was injected 

in split mode (10:1, 30 ml min-1) into an HP-FFAP (Agilent Technologies, Böblingen, 

Germany) column of 30 m x 0.25 mm, 0.25 µm phase thickness. The temperature 

program was: 35ºC for 5 min, which was raised at 3ºC min-1 to 200ºC and then at 8ºC 

UNIVERSITAT ROVIRA I VIRGILI 
ADAPTATION AND DEVELOPMENT OF CULTURE-INDEPENDENT TECHNIQUES FOR THE INDENTIFICATION AND ENUMERATION 
OF MICROORGANISMS IN WINE FERMENTATIONS 
Immaculada Andorrà Solsona 
ISBN:978-84-693-8859-4/DL:T.1948-2010 



Chapter 4 

 

 

 148 

min-1 to 220ºC. Injector and detector (FID) temperatures were 180ºC and 280ºC, 

respectively. The carrier gas was helium at 3 ml min-1. Volatile compounds were 

identified and quantified by comparison with standards.  

 

2.5. Organic acid analysis 

The values of different organic acids were analyzed at the end of the wine 

sample fermentations. Organic acids were determined by HPLC using an Agilent 1100 

Series connected to an Agilent multiple wavelength detector (Agilent Technologies, 

Wilmington, DE). The samples (450 µl) were mixed with 50 µl of formic acid (Internal 

Standard, 46.84 g l-1) and 50 µl was injected into a 300 mm x 7.8 mm AMINEX HPX-

87H columm (BioRad, Hercules, CA). The solvent used was sulphuric acid (2.5 mM) at 

0.5 ml min-1. The analysis temperature was 70ºC. The concentration of each metabolite 

was calculated using external and internal standards. 

 

2.6. Oenological parameters 

The glucose, fructose, glycerol and ethanol contents of the wines were analyzed 

using commercial enzymatic kits (Roche Diagnostics, Germany). Acetic and succinic 

acids were determined by HPLC as described above. The pH was determined by using 

a Crison MicropH 2000 pH-meter (Crison, Barcelona, Spain). 

 

2.7. Statistical treatment 

The data were analyzed with SPSS 15.0 software for Windows (SPSS Inc., 

Chicago, IL). Analysis of variance was carried out by an ANOVA Tukey test to 

determine significant differences between the samples. The statistical level of 

significance was set at P≤ 0.05. PCA analysis was performed with the same software. 

 

3. Results 

The Sc fermentations needed seven days to finish (residual sugars below 2 g/l), 

while fermentations conducted by Non-Saccharomyces species pure cultures were 

stuck, as in the case of Hu, or needed fourteen days to finish, as in the case of Cz. The 

mixed culture fermentations needed approximately ten days to consume all sugars, 

except for CS fermentation, which was as fast as the Sc fermentation. There were no 

significant differences in the production of ethanol, acetic acid or pH values. The ethanol 
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concentrations at the end of fermentation ranged between 8.5 and 9.5 %. The acetic 

acid concentration was high, around 1.5-2 g/l, and the pH was the same in all the 

fermentations (3.3). There were, however significant differences in the production of 

glycerol and succinic acid. The glycerol content was 4.7 g/l for Sc fermentation and 

reached a maximum (5.8-6 g/l) in those fermentations in which C. zemplinina was 

present as a pure or mixed culture. C. zemplinina also produced more succinic acid 

than S. cerevisiae (0.9 g/l vs 0.5 g/l). 

 

3.1. Microbial populations 

The microbial population was estimated in the middle and at the end of 

fermentation by microscope counting, plating on YPD and Lysine media, and QPCR 

(Table 1). Overall, at all the sampling points, yeast population was around 108 cells/ml 

or CFU/ml. The pure cultures showed good agreement between the enumeration by the 

three methods (microscope, plating and QPCR). The general trend was to detect 

slightly higher counts under the microscope than on plates and QPCR. There was also 

good agreement between the growth in Lysine media and the population of Non-

Saccharomyces species by QPCR.  

 

Table 1.  Microbial population analysis. Analyses were made in the middle and at the end of 

each fermentation. Results were obtained using optical microscopy, plate culture media (YPD 

and LYS) and QPCR for total yeast, Saccharomyces, Candida and Hanseniaspora.  

 

nd:  non detected 

sf:  stuck fermentation 

  Microscope YPD LYS Total yeast Saccharomyces Candida Hanseniaspora 

middle 3.00±0.23E+08 8.52±0.85E+07 nd 3.97 ± 0.35E+08 2.17 ± 0.21E+08 nd nd Sc 

end 3.10±0.50E+08 1.18±0.38E+08 nd 3.02 ± 0.07E+08 2.98 ± 0.15E+08 nd nd 

middle 3.25±0.19E+08 1.31±0.68E+08 1.16±0.27E+08 1.94 ± 0.27E+08 nd 1.14 ± 0.61E+08 nd Cz 

end 5.50±0.42E+08 1.69±1.00E+08 1.21±0.23E+08 1.27 ± 0.09E+08 nd 8.16 ± 0.69E+07 nd 

middle 2.20±0.36E+08 6.13±0.54E+07 5.77±0.75E+07 8.43 ± 0.02E+07 nd nd 1.58 ± 0.38E+08 Hu 

end sf sf sf sf sf sf sf 

middle 1.58±0.04E+08 8.47±0.96E+07 6.38±0.48E+07 1.86 ± 0.29E+08 1.27 ± 0.26E+08 1.24 ± 0.19E+08 nd CS 

end 2.40±0.42E+08 1.31±0.05E+08 3.09±0.93E+07 2.45 ± 0.91E+08 1.91 ± 0.38E+08 6.92 ± 0.14E+07 nd 

middle 2.00±0.35E+08 1.28±0.09E+08 7.23±0.45E+07 7.06 ± 0.16E+07 4.13 ± 0.65E+07 nd 1.50 ± 0.33E+08 HS 

end 3.48±0.03E+08 1.37±0.43E+08 3.47±0.88E+07 1.43 ± 0.55E+08 1.06 ± 0.26E+08 nd 3.84 ± 0.39E+06 

middle 1.30±0.15E+08 1.26±0.54E+08 7.22±0.27E+07 7.22 ± 0.25E+07 4.13 ± 0.23E+07 1.70 ± 0.97E+07 8.62 ± 0.62E+07 CHS 

end 2.95±0.21E+08 1.32±1.77E+08 3.88±0.85E+07 2.57 ± 0.23E+08 1.07 ± 0.84E+08 8.31 ± 0.87E+07 5.18 ± 0.83E+06 
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In the mixed fermentations, the enumeration of total yeast (microscope, growth in 

YPD and QPCR) again showed very good concordance. The analysis of the growth in 

Lysine again matched the enumeration by QPCR, with the exception of the mixed HS 

fermentations in which the plate counts were one order of magnitude higher than the 

QPCR enumeration. In the middle of the mixed culture fermentations, the Non-

Saccharomyces presented counts that were similar to or higher than S. cerevisiae. 

However, at the end of fermentations, S. cerevisiae proved to be the main species, 

especially in comparison with H. uvarum, which seemed to be less competitive at this 

fermentation stage and presented counts two orders of magnitude lower than S. 

cerevisiae. H. uvarum was also unable to finish the fermentation when it was inoculated 

as a pure culture.  

 

3.2. Consumption of nitrogenous compounds 

The synthetic must was prepared so that it contained 400 mg N/l of available 

nitrogen (100 mg N/l as ammonium chloride and 300 mg N /l as amino acids). Although 

we analysed the samples from the middle and the end of the fermentation, Table 2 

shows only the values in the middle because this was the point of maximum 

consumption. Ammonium was rapidly consumed in all the fermentations, except when 

H. uvarum was present, either as a pure or mixed culture. 

S. cerevisiae took up almost all the amino acids except proline and the sulfur 

containing amino acids in which the uptake was between half and two-thirds of the total 

available. The Non-Saccharomyces species are less effective than S. cerevisiae in 

taking up amino acids, leaving considerable amounts of the main amino acids—

glutamine, glutamate and threonine (C. zemplinina)—and methionine, histidine, 

aliphatic, and aromatic amino acids (C. zemplinina and H. uvarum).  

 

Table 2. Ammonium and amino acid analysis in the middle of fermentation. The values are 

for the consumption (in mg/l) of each amino acid, the percentage of the consumption of each 

group of amino acids, and the ratio between the total consumption of each group of amino 

acids and their population estimated by QPCR and expressed as mg/107 cells. 
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 Must Saccharomyces Candida Hanseniaspora 
Candida-

Saccharomyces 
Hanseniaspora-
Saccharomyces 

Candida-
Hanseniaspora-
Saccharomyces 

NH4Cl 360.47±18.73 358.37±10.45 352.16±18.94 228.77±11.69* 357.79±1.38 280.53±14.26 340.28±26.45 

Ratio - 9.10±1.11 18.55±3.84* 27.12±1.11* 19.79±4.41* 39.71±1.58* 47.06±2.89* 

Ammonium  

% 
total - 99.42±0.23 97.69±1.76 63.46±1.48* 99.25±0.07 77.82±2.89* 94.40±5.19 

Asp 65.59±7.35 55.28±4.09 37.14±6.75 49.09±8.05 34.85 ± 16.82 30.55±1.05 29.55±5.37 

Glu 499.06±9.12 493.40±6.92 452.83±4.05* 490.44±2.06 473.82 ± 1.70 471.48±1.64 469.32±10.92 

Gln 400.81±5,89 388.24±3.05 301.86±2.96* 393.25±3.54 337.31 ± 8.18 351.11±4.09 321.07±21.05* 

Ratio - 23.77±2.70 41.59±7.32* 110.67±1.20* 46.88±11.21* 120.89±3.24* 113.83±10.72* 

Acids & 
amides 

% 
total - 97.05±1.23 82.02±3.15* 96.62±0.78 94.31±4.73 88.37±0.34 84.93±2.73 

Gly 19.55±1.56 16.29±1.54 11.48±1.76 13.72±2.03 12.47±4.07 15.76±0.27 14.51±1.50 

α-ala 139.83±0.47 138.59±0.22 135.44±0.14 137.95±0.43 138.82±0.78 59.02±1.71* 137.86±0.87 

Val 42.57±0.55 40.57±0.59 34.18±0.43* 36.98±0.60* 40.98±0.57 41.52±0.39 41.64±0.51 

Ile 29.83±0.99 27.38±1.33 24.75±2.46 25.85±1.78 27.06±3.22 29.31±0.12 29.48±0.02 

Leu 45.68±1.24 42.55±1.05 40.79±0.27 39.93±0.13* 42.86±1.55 44.56±0.08 44.67±0.06 

Ratio - 6.73±0.68 12.95±2.22 30.18±0.12* 14.51±3.28* 26.96±1.09* 37.20±2.23* 

Aliphatic 

% 
total - 95.65±0.65 88.90±0.38* 91.71±0.22* 94.51±0.13 68.54±0.39* 96.65±0.76 

Tyr 19.82±1.64 19.26±1.58 5.28±0.50* 8.69±1.21* 16.84±0.50 14.54±0.79 18.46±1.75 

Trp 130.68±6.78 128.75±1.34 113.62±0.84 104.07±5.98* 103.59 ± 6.75* 96.38±2.94* 111.19±4.74 

Phe 38.7±1.88 30.96±0.09 23.46±0.15* 21.62±0.18* 37.62±0.10* 36.98±0.01* 37.15±0.24* 

Ratio - 4.54±0.51 7.48±1.39 15.93±0.73* 8.81±2.54* 20.95±0.14* 23.14±1.51* 

Aromatic 

% 
total - 94.6±1.74 75.24±1.18* 71.02±0.98* 83.02±2.86* 78.17±1.40* 88.16±1.03 

Ser 73.19±3.79 70.99±1.43 59.99±2.75 66.30±3.23 54.74 ± 19.90 72.09±0.17 62.91±4.91 

Thr 72.85±2.24 72.03±0.80 43.98±2.97* 72.31±1.57 69.59±1.83 68.06±0.64 67.69±3.33 

Ratio - 3.63±0.38 5.43±0.67 16.44±0.29* 6.69±0.09* 19.86±0.57* 18.14±2.03* 

Hydroxyl 

% 
total - 97.94±1.45 71.20±0.86* 94.92±2.13 96.02±0.32 95.06±0.23 89.43±3.99* 

Met 15.38±0.27 12.57±0.41 8.94±0.54* 4.70±0.50* 8.23±0.01* 5.90±0.49* 9.13±0.49* 

Cys 16.44±1.35 8.98±0.93 7.13±0.67 7.25±0.86 8.39 ± 0.65 1.28±0.39* 4.32±1.04* 

Ratio - 0.54±0.02 0.84±0.08* 1.41±0.18* 0.91±0.16* 1.02±0.16* 1.87±0.17* 

Sulfur 
containing 

% 
total - 67.72±2.03 50.51±3.49 37.54±1.61* 62.44±8.76 22.57±1.96* 42.29±1.22* 

His  30.95±1.01 29.47±1.41 17.82±0.97* 21.34±0.84* 29.25 ± 0.74 15.22±1.47* 27.61±0.95 

Arg 339.39±19.27 317.71±15.78 272.86±23.54 214.82±7.94 156.82 ± 62.21* 48.55±9.89* 110.25±30.65* 

Lys  16.9±0.79 15.10±1.03 13.98±0.76 13.96±0.45 14.99 ± 0.82 15.67±0.03 15.64±0.34 

Ratio - 9.16±0.53 15.85±1.33 29.66±0.61* 10.56±2.46 11.28±1.97 21.39±5.37*  

Basic 

% 
total - 93.55±3.01 78.67±4.76 64.59±2.54 81.35±17.50 20.51±2.07* 39.64±5.71* 

 
Pro 433.09±11.38 243.74±17.45 317.36±9.67 227.15±22.96 220.75±0.57 91.28±27.34* 163.21±27.55 

 
Ratio - 6.15±0.15 16.64±2.63 26.90±3.00  12.21±2.75 13.00±4.29 22.54±2.72 

 % 
total - 56.28±4.03 73.28±2.23 52.45±5.31 50.97±0.13 21.08±6.31 37.68±6.36 

Total 
amino 
acids  2863,56±95.15 2151.87±74.88 1922.83±87.93 1949.44±90.99 1828.99±102.44* 1509.29±32.20* 1715.69±55.56* 
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The uptake of amino acids was also reduced in the mixed fermentations, where 

much larger amounts of amino acids are left than when S. cerevisiae is used. The 

presence of C. zemplinina with S. cerevisiae reduces the consumption of aliphatic 

amino acids (especially tryptophan) and arginine, which is the third most concentrated 

amino acid in the synthetic must. The presence of H. uvarum with S. cerevisiae 

considerably reduced the uptake of alanine which accounted for the significant 

reduction in the consumption of aliphatic amino acids. The consumption of aromatic 

amino acids was also reduced mostly due to tryptophan and a large amount of proline, 

arginine and both sulfur amino acids which were left in the medium in this mixed 

fermentation. The triple mixed fermentation left higher amounts of glutamine, arginine 

and both sulfur aminoacids in the medium, confirming that the mixed fermentations 

generally reduced the uptake of some amino acids quite considerably. 

When the ratio of amino acid consumption to yeast cell population is analyzed, it 

becomes more evident that the yield of the Non-Saccharomyces species is much lower 

than that of S. cerevisiae. This lower efficiency is also observed in the mixed 

fermentations where more nitrogen is needed to reach the same population. In fact, the 

consumption ratio in these mixed fermentations is similar to that of the species that 

need more nitrogen. In this term, we can see a clear separation of three consumption 

groups: Sc fermentation; Cz and CS fermentations; and finally the three fermentations 

that include H. uvarum (Hu, HS and HCS). 

 

3.3. Volatile compounds 

The most important volatile compounds of the different fermentations are listed in 

Table 3. C. zemplinina proved to be a strong producer of higher alcohols, yet this 

difference is accounted for the high production of 2-methyl-1-propanol. While the pure 

cultures showed similar levels of isoamyl alcohol, the mixed cultures showed 

significantly lower levels.  

The acetate esters are more affected by the presence of Non-Saccharomyces 

species. Hexyl acetate is highly produced in Cz fermentations and also in the CHS 

fermentation. A higher production of isoamyl acetate is linked to the presence of H. 

uvarum as it is significantly increased in the mixed fermentations where this species is 

present. 2-phenylethanol acetate is the only acetate ester that is highly produced by S. 

cerevisiae as in the presence of Non-Saccharomyces its concentration is significantly 
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reduced. However, only Cz fermentations increased the overall amount of acetate 

esters produced. The concentrations of ethyl esters of fatty acids are higher in the 

mixed culture fermentations, and particularly in the CHS fermentation. The main 

components of these increases are ethyl lactate and ethyl caprylate, and are largely 

related to the presence of C. zemplinina and H. uvarum. The concentration of fatty acids 

(FA) increased considerably in the presence of Non-Saccharomyces species. This was 

accounted for by the fact that butyric acid increases between 7 and 10 times in the 

presence of Non-Saccharomyces species.  

 

Table 3.  Volatile compounds at the end of fermentations. Volatile compounds were clustered 

according to their chemical structure. All values are expressed as mg l-1 and are the mean ± 

SD of triplicate fermentations. Fermentations with Saccharomyces inoculum Sc were taken 

as the control 

 

  Sc Cz CS HS CHS 

propanol 44.23 ± 2.11 32.48 ± 5.45 46.02  ± 4.29 74.06 ± 7.77 67.64 ± 26.94 

2-methyl-1-propanol 14.47 ± 2.05 101.64 ± 6.83* 20.66 ± 4.40 19.17 ± 2.61 17.05 ± 0.74 

Isoamyl alcohol 41.74 ± 0.52 44.69 ± 1.20 26.18 ± 2.17* 30.99 ± 2.31* 29.11 ± 5.27* 

phe-2-ethanol 12.53 ± 3.52 15.40 ± 0.15 12.24 ± 1.09 9.57 ± 0.91 10.63 ± 1.18 
Higher 

alcohols Total 112.97 ± 2.16 194.22 ± 0.23* 105.10 ± 8.45 133.79 ± 9.61 124.43 ± 24.14 

Ac isoamyl 3.11 ± 0.02 3.26 ± 0.08 4.14 ± 0.10 5.09 ± 0.05* 5.25 ± 0.35* 

Ac hexyl 8.22 ± 0.60 25.66 ± 2.98* 7.68 ± 0.24 14.95 ± 1.42 17.79 ± 2.84* 

Ac phe-2-ethanol 5.06 ± 0.47 1.52 ± 0.14* 3.42 ± 0.27* 3.42 ± 0.18* 1.29 ± 0.02* 
Higher alcohol 

acetates Total 16.4 ± 0.73 30.43 ± 2.26* 15.25 ± 0.92 23.45 ± 1.10 24.33 ± 2.27 

Ethyl hexanoate 0.78 ± 0.04 0.82 ± 0.22 1.02 ± 0.02 1.13 ± 0.04 1.21 ± 0.03* 

Ethyl lactate 14.94 ± 1.07 9.77 ± 2.01 16.31 ± 3.03 16.27 ± 0.65 23.79 ± 0.43* 

Ethyl caproate 0.5 ± 0.09 <dl 1.45 ± 0.05 0.83 ± 0.08 0.81 ± 0.08 

Ethyl caprylate 0.78 ± 0.15 2.96 ± 0.26* 1.56 ± 0.12 1.36 ± 0.02 0.98 ± 0.03 
Ethyl ester of 

fatty acids Total 17.01 ± 0.74 13.55 ± 1.77 20.51 ± 2.24 19.59 ± 0.42 28.80 ± 0.29* 

Caprilic acid 1.66 ± 0.39 <dl 1.24 ± 0.11 1.25 ± 0.44 <dl 

isobutiric acid 11.57 ± 0.17 9.42 ± 1.69 12.88 ± 2.44 17.30 ± 0.36* 19.68 ± 1.15* 

butiric acid 4.13 ± 0.37 46.82 ± 5.21* 33.88 ± 2.11* 28.29 ± 0.98* 29.47 ± 9.97* 

isovaleric acid 0.91 ± 0.08 <dl 2.10 ± 0.14* 2.56 ± 0.01* 1.35 ± 0.02* 

valeric acid 5.72 ± 1.07 1.37 ± 0.06* 5.05 ± 0.40 7.66 ± 1.15 8.74 ± 0.04* 

Fatty acids Total 23.99 ± 0.32 57.62 ± 4.93* 55.15 ± 2.83* 57.07 ± 1.75* 59.25 ± 7.82* 

* Means statistical differently, P≤0.05   <dl: below detection limit 
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3.4. Principal component analysis (PCA) 

A PCA model with two PCs explains 90% of the variability shown in the 

fermentations studied. PC2, which is mostly formed by the total higher alcohols and 

acetates (Figure 1), allowed us to differentiate between those fermentations conducted 

by S. cerevisiae and those that were not. PC1 differentiates between the three species, 

and the Non-Saccharomyces species prevail in the mixed cultures. A clear orderly 

disposition of S. cerevisiae, C. zemplinina and H. uvarum is seen, with the triple mixed 

culture separated at the end of the scale. PC1 axis represents the ratio of the amides, 

the aliphatic, aromatic and sulfur-containing amino acids, and ammonium, as well as the 

production of total ethyl esters of fatty acids. These results, then, seem to confirm 

considerable differences between pure and mixed cultures in the production of volatile 

compounds and the consumption of amino acids. 

 

Figure 1. Distribution of the different fermentations according to PCA analysis. In the score 

plot for the first two principal components, PC1, explains 63.3% of the variation while PC2 

explains 26.7%. The main components for PC1 were the ratio of percentage of consumption 

by their population of amino acids acid and amides (0.941), aliphatic (0.988), aromatic 

(0.974), sulfur-containing amino acids (0.910), ammonium (0,955) and total fatty acid ethyl 

esther produced (0.660). Total higher alcohols (0.935) and total acetates (0.880) contributed 

to PC2. 

PC1 

PC2 
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4. Discussion 

It is well established that the growth of Non-Saccharomyces yeast at the 

beginning of wine fermentation increases secondary metabolites, thus contributing to 

the taste and flavour of wines (Romano et al., 2003). But it also produces extracellular 

enzymes which can interact with grape precursor compounds and enhance the varietal 

aroma. In our opinion, however, further research is needed into the contribution of 

individual Non-Saccharomyces species and strains to wine quality and the synergy or 

antagonism between Saccharomyces and Non-Saccharomyces species in the final 

resulting wines. In a recent study with a design that was similar to the present one 

(Andorrà, Berradre, Rozès, Mas, Guillamón, & Esteve-Zarzoso, 2010a), we studied how 

pure and mixed inocula affected fermentation performance, nitrogen consumption and 

volatile compound production in a natural Macabeo grape must. In the present study, 

we aimed to analyse yeast interactions in mixed cultures by using a culture-independent 

technique such as QPCR. We also analysed nitrogen consumption and aroma 

production. However, we decided to use a synthetic grape must because natural grape 

must has some varietal compounds and precursors, which would be transformed by 

yeasts and would therefore be present in the final wine composition. The synthetic 

must, then, allowed us to be sure that all the aroma compounds are produced by the 

yeast metabolism and not the grape precursors. 

There are some similarities but also some discrepancies between our previous 

study (Andorrà et al., 2010a) and the current one. It is confirmed that a low proportion of 

S. cerevisiae in the initial inoculum made the fermentation slower and that when it was 

absent it was slower still. As expected, the Hu fermentation was also unable to finish. It 

is also confirmed that C. zemplinina has a great capacity to produce glycerol (Ciani & 

Ferraro, 1996), regardless of the type of grape must used (synthetic or natural). A 

noteworthy difference in the oenological characteristics of the wines obtained by natural 

or synthetic grape must was the volatile acidity. The amount of acetic acid was clearly 

higher in all the fermentations with synthetic grape must. This result had already been 

observed by Beltran, Novo, Guillamón, Mas, & Rozès (2008). The presence of natural 

grape must components such as unsaturated fatty acids (Thurston, Taylor, & 

Ahvenaien, 1981) and ß-sitosterol (Luparia, Soubeyrand, Berges, Julien, & Salmon, 

2004), and oenological techniques such as the light clarification of must (Delfini & 
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Costa, 1993; Moruno, Delfini, Pessione, & Giunta, 1993) and the presence of lees 

(Guilloux-Benatier & Feuillat, 1993) reduce the volatile acidity. 

The yeast population dynamics during wine fermentation has been studied in 

depth. It is well-known that S. cerevisiae has a high capacity to take over the process, 

even when it is a minor species at the beginning. However, the underlying mechanism 

that makes S. cerevisiae the most competitive species in this environment is far from 

clear.  

We have already mentioned that the greater competitiveness of S. cerevisiae has 

been attributed to cell-to-cell contact (Nissen et al., 2003), the secretion of toxic 

compounds (Pérez-Nevado et al., 2006; Albergaria et al., 2010) or transient 

modifications in the medium due to temperature increases (Goddard, 2008). However, 

all these yeast interaction studies have relied on microbiological methods based on 

plating, so the presence of viable but non-culturable microorganisms in wine samples 

(Divol & Lonvaud-Funel, 2005; Millet & Lonvaud-Funel, 2000) may have a special effect 

on the Non-Saccharomyces strains (which are under greater stress or weaker) and give 

the false idea that they disappear from the fermentation. In the past we used the 

culture-independent QPCR technique to analyse yeast dynamics during wine 

fermentations (Hierro et al., 2006; Hierro et al., 2007; Andorrà et al., 2008; Andorrà et 

al., 2010b). In this study, the counts obtained with this technique were compared with 

plating in a non-selective YPD medium and in a selective medium for Non-

Saccharomyces. In general, the correlation between quantification by plating and by 

QPCR was quite good. In the mixed fermentations, the higher proportion of the Non-

Saccharomyces in the inocula (90:10) was changed to similar values of both species in 

the middle of the fermentation and clearly dominated by S. cerevisiae at the end. 

However, this proportion of S. cerevisiae at the end of the fermentation depended on 

the Non-Saccharomyces species. In the case of the CS fermentation, the S. cerevisiae 

population was one log unit higher, whereas in the HS fermentation, the difference was 

two log units. These results prove once again, then, that S. cerevisiae has a competitive 

advantage over the major Non-Saccharomyces species. However, our results also 

pointed out to a better fitness of C. zemplinina than H. uvarum in the conditions studied. 

In any case, with the inocula designed, the Non-Saccharomyces were not completely 

taken over and they definitely contributed to the quality of the final wine. 
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S. cerevisiae may also dominate Non-Saccharomyces species because it is 

better at using the nutrients in the medium. For this reason we analysed the nitrogen 

consumption in the different fermentations because assimilable nitrogen is the main 

limiting nutrient for optimised growth and good fermentation performance (Bisson, 

1999). We also analysed this consumption in our previous study on natural must 

(Andorrà et al., 2010a). However, the Macabeo grape must presented a low 

concentration of nitrogen (114.57 mg N l-1), and practically no differences were detected 

in nitrogen consumption. In this study, the synthetic must was prepared with four times 

more nitrogen than the natural must in our former study so that possible differences in 

nitrogen use could be detected between species in pure culture and mixed 

fermentations. In these conditions, it is clear that the presence of Non-Saccharomyces 

species considerably increases the use of amino acids for biomass production. Of the 

two species tested, H. uvarum is also the least efficient at producing biomass, because 

it needs to consume more nitrogen to produce the same amount of biomass. In the 

mixed fermentations, although S. cerevisiae takes over the fermentation, the greater 

need of nitrogen for biomass production in Non-Saccharomyces species prevails. The 

fact that S. cerevisiae uses nitrogen more quickly and more efficiently may also account 

for the better fermentation performance of this species and its capacity to overtake other 

yeast species.  

Ammonium and glutamine are the most interesting nitrogen sources and are 

primarily consumed by S. cerevisiae (Beltran, Novo, Rozès, Mas, & Guillamón, 2004). 

However, H. uvarum and C. zemplinina seem to be poor consumers of ammonium and 

glutamine, respectively. Moreover, their presence in the initial inocula impaired the 

uptake of these nitrogen sources by S. cerevisiae. Also noteworthy is the decrease in 

arginine and alanine in the CS and HS fermentations, respectively. The uptake of both 

amino acids is strongly repressed by the mechanism of Nitrogen Catabolite Repression 

(NCR) (Magasanik, 1992). A higher concentration of good nitrogen sources in the 

media, such as glutamine and ammonium, might decrease the assimilation of these 

NCR amino acids (Beltran et al., 2004). The general reduction in the consumption of 

aliphatic, aromatic and sulphur amino acids in the mixed cultures may have 

considerable impact on the synthesis of aroma compounds (Beltran, Esteve-Zarzoso, 

Rozès, Mas, & Guillamón, 2005; Swiegers, Bartowsky, Henschke, & Pretorius, 2005). 
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This study confirms that the C. zemplinina strain produces higher alcohols as it 

did in the Macabeo grape must fermentation. However, production in the synthetic must 

was five times lower than in the natural grape must. This is clearly related to the 

differences in nitrogen concentration. The less nitrogen there is available in the 

fermentation medium, the higher alcohols are produced (Beltran et al., 2005). Moreover, 

in this study, the 2-phenylethanol, which is the fusel alcohol with the most pleasant 

aroma (floral, rose), hardly increased. However, there are also clear discrepancies 

between the two studies. In both cases C. zemplinina increased the ester production, 

but this increase was accounted for by the increase in acetate esters in the synthetic 

must while only the ethyl esters increased in the fermentation with natural must 

(Andorrà et al., 2010a). The acetate esters also increased in the fermentations with Hu 

in both the synthetic and natural must. The greater production of acetic acid in the 

synthetic must fermentations may account for this high production of acetate esters, as 

it is well known that yeast activates acetyl-transferases as a mechanism for reducing 

acetic acid toxicity (Plata, Mauricio, Millán, & Ortega, 2005). 

In conclusion, the metabolites produced by the yeasts that make up the flavour 

and aroma of a wine are the result of complex interactions between the different species 

and strains and the constitution of the fermentation medium (grape must). In this study 

we have focused on the involvement of the yeast metabolism in the production of 

flavour active compounds without the participation of the substrate (grape must). The 

interactions of the main yeasts are clear and, as reflected by PCA, the characteristics 

due to each species can be detected in the final product. Furthermore, the nutritional 

requirements of species are very evident: S. cerevisiae, for example, is highly efficient 

at converting nutritional sources into biomass, which could be one of the keys to its 

success in industrial fermentations, especially those that use grape must in which 

nitrogen is a clear limiting factor. The mixed fermentations resulted in greater production 

of most of the volatile compounds and, as other authors have also suggested, may be 

one way of increasing wine complexity. Thus, the benefits of Saccharomyces/Non-

Saccharomyces mixed cultures should be tested in different grape musts, with different 

nutritional characteristics and limitations, as they may help modify the expression of the 

species present in the fermentation. 
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Abstract 

The detection and quantification of wine yeast can be misleading due to under or 

over estimation of these microorganisms. Underestimation may be caused by variable 

growing rates of different microorganisms in culture media or the presence of viable but 

non cultivable microorganisms. Overestimation may be caused by the lack of 

discrimination between live and dead microorganisms if quantitative PCR is used to 

quantify with DNA as the template. However, culture-independent methods have been 

described that use dyes to remove the DNA from dead cells and then quantify the live 

microorganisms. Two dyes have been studied in this paper: ethidium monoazide 

bromide (EMA) and propidium monoazide bromide (PMA). The technique was applied 

to grape must fermentation and ageing wines. Both dyes presented similar results on 

yeast monitoring. Membrane cell recovery was necessary when yeasts were originated 

from ethanol-containing media. When applied to grape must fermentation, differences of 

up to 1 log unit were seen between the QPCR estimation with or without the dye during 

the stationary phase. In ageing wines, good agreement was found between plating 

tecniques and QPCR, except for Z. bailii and D. bruxellensis where much higher counts 

were occasionally detected by QPCR. The presence of excess dead cells did not 

interfere with the quantification of live cells with either of the dyes. 

 

Keywords: EMA, PMA, spoilage yeast, Saccharomyces, Candida, Brettanomyces, 

Hanseniaspora, Zygosaccharomyces 
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1. Introduction 

The detection and quantification of the yeast involved in the wine production 

process has been widely studied. Most of the methods used focus on the yeasts 

responsible for the process and the spoilage yeasts, which can alter the taste and 

aroma of the final wine. Traditional methods based on culturability on solid media are 

the most commonly used in wineries. They often cause confusion because they are 

heavily dependent on the microorganisms’ physiological status and capacity to grow. 

Furthermore, the presence of viable but non-culturable microorganisms in wine samples 

has also been described (Millet and Lonvaud-Funel, 2000; Divol and Lonvaud-Funel, 

2005). The traditional methods are also time-consuming and this could be inappropriate 

for decision taking during alcoholic fermentation. Some spoilage species usually grow 

slower than other microorganisms in general-purpose culture media and, therefore, they 

tend to be underestimated in contaminated samples (Loureiro et al., 2004). Attemps 

have been made to develop and use culture-independent techniques for detecting and 

quantifying wine yeast species, thus avoiding the problems associated with the 

traditional culture methods (Cocolin et al., 2000; Mills et al., 2002; Phister and Mills, 

2003; Hierro et al., 2006; Andorrà et al., 2008, 2010). Most of these techniques are 

based on DNA detection and quantification, which avoids the previous step of 

cultivation. DNA is known to be stable in dead cells, so these DNA techniques may 

overestimate the population of microorganisms, as the dead population could be 

included. The use of RNA as an alternative has been proposed, as it is more unstable 

and easily degraded (Cocolin and Mills, 2003; Hierro et al., 2006). However, as some of 

the techniques use ribosomal RNA, it has to be considered that ribosomes are also 

rather stable, although not as much as DNA (Hierro et al., 2006). Furthermore, working 

with RNA is more demanding and it is prone to contamination with RNA-degrading 

enzymes, resulting in problems of reproducibility. Moreover, the RNA expression level 

depends on the physiological status of the cell, which makes it difficult to accurately 

estimate the size of microorganism population (Nocker and Camper, 2006). Other 

solutions could be the use of chemicals that can differentiate between live and dead 

cells (which are generally those that the live cells can either exclude or prevent from 

entering). Ethidium monoazide bromide (EMA) or propidium monoazide bromide (PMA) 

are fluorescent photoaffinity labels that bind covalently to nucleic acid after 

photoactivation. They only enter cells with compromised cell walls and cell membranes. 
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Once inside the dead cells, the dyes bind to the double stranded DNA, which is 

covalently bound after photoactivation. The DNA that is covalently bound to these dyes 

cannot be PCR amplified (Rudi et al., 2004; Nocker et al., 2006). However, Nocker and 

Camper (2006) proved that the DNA from live cells was selected mainly during DNA 

extraction and only to a lesser extent during PCR. Signal reduction may be partly due to 

PCR inhibition but it is also due, more importantly, to a selective loss of genomic DNA 

from dead cells during the extraction procedure. Thus, only DNA from viable cells-that is 

to say, cells with membrane integrity-can be detected. Despite being one of the most 

promising techniques for enumerating microorganisms, QPCR only detects known 

microorganisms as it requires specific primers. Although both dyes have similar 

structures and, therefore, similar results might be expected, Pan and Breidt (2007) 

found differences between them; PMA gave better results than EMA when analysing 

Lysteria monocytogenes. Among the yeasts that have been reported in wine, only S. 

cerevisiae and Zygosaccharomyces bailii have been determined by EMA-QPCR 

(Rawsthorne and Phister, 2009a,b). To the best of our knowledge, no studies have 

been performed with this method during wine fermentation or using other wine 

microorganisms.  

Although the wine fermentation process is mainly conducted by Saccharomyces 

yeasts, in the initial stages of grape must many Non-Saccharomyces yeasts are 

predominant. Candida and Hanseniaspora are two of the most common Non-

Saccharomyces yeasts. Although all these Non-Saccharomyces species are normally 

overgrown by Saccharomyces, some of them can survive the alcoholic fermentation and 

end up spoiling wines by producing unacceptable flavours (Pretorius, 2000; Ribéreau-

Gayon et al., 2006). This wine spoilage is especially critical during bulk storage of wines 

in tanks and barrels prior to packaging. Wine that is exposed to air, as in incompletely 

filled tanks or barrels, quickly develops a surface flora of weakly fermentative or 

oxidative yeasts, usually species of Candida and Pichia. These species oxidise ethanol, 

glycerol and acids, giving wines unacceptably high levels of acetaldehyde, esters and 

acetic acid (Ciani et al., 2010). Bulk wines, as well as bottled wines, are also spoiled by 

fermentative species of Zygosaccharomyces, Dekkera, Saccharomyces and 

Saccharomycodes (Fleet, 2003). The yeast species regarded as the most dangerous to 

wines are the genus Dekkera (Anamorph Brettanomyces) and Zygosaccharomyces 

bailii (Loureiro and Malfeito-Ferreira, 2003). Species of Dekkera are associated with the 

production of unpleasant mousy and medicinal taints described as “barnyard-like” or 

UNIVERSITAT ROVIRA I VIRGILI 
ADAPTATION AND DEVELOPMENT OF CULTURE-INDEPENDENT TECHNIQUES FOR THE INDENTIFICATION AND ENUMERATION 
OF MICROORGANISMS IN WINE FERMENTATIONS 
Immaculada Andorrà Solsona 
ISBN:978-84-693-8859-4/DL:T.1948-2010 



Chapter 5 

 

 

 168 

“horsey”, because they can form tetrahydropyridines and volatile phenolic substances 

such as 4-ethylguaiacol and 4-ethyl phenol (Grbin and Henschke, 2000; Du Toit and 

Pretorius, 2000). Zygosaccharomyces bailii may cause spoilage by forming gas, 

sediment and/or cloudiness, and synthesizing other compounds such as succinic, acetic 

and lactic acid and acetaldehyde and glycerol (Fugelsang and Edwards, 2007). Some of 

these spoiling yeasts are slow growers so they are difficult to detect on general culture 

media (Loureiro and Malfeito-Ferreira, 2003).  

The aim of this work is to develop a methodology to differentiate live and dead 

yeasts by using QPCR and apply it to winemaking conditions. We have used both dyes 

and compared them with the use of non-dye QPCR and plating or microscope counting. 

As the physiological status of yeast is very different during winemaking processes we 

have analysed two sets of different populations: during alcoholic fermentations and 

during ageing. In both cases the yeast populations are very different both in size 

(around 108 vs. 104) and species diversity. As the main limitation is primers availability, 

the yeast populations analysed by QPCR were total yeast, Saccharomyces cerevisiae, 

Candida zemplinina, Hanseniaspora sp, Dekkera bruxellensis and Zygosaccharomyces 

bailii. 

 

2. Materials and Methods 

2.1. Yeast strains and culture conditions 

The yeasts used were: C. zemplinina CszB4 and H. uvarum HuB10 isolated on 

previous studies (Esteve-Zarzoso et al., 2010), the Active Dry Wine Yeast (ADWY) 

commercial strain Saccharomyces cerevisiae QA23 (Lallemand, Inc. Canada) and two 

of the main wine spoilage microorganisms, D. bruxellensis CECT 1009 and Z. bailii 

CECT 11042, from Spanish Type Culture Collection (CECT). Yeasts were grown in 

YPD (2% glucose, 2% peptone, 1% yeast extract, W/v; Cultimed, Barcelona, Spain). 

Plating was done in YPD (supplemented with 2% of agar) and Lysine agar (LYS) 

(Oxoid, Barcelona, Spain), which is unable to support the growth of S. cerevisiae 

(Angelo and Siebert, 1987). 
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2.2. Optimization of the binding of dyes to DNA of wine yeast 

EMA (Molecular Probes Inc. USA) was resuspended in water (5 mg/ml) whereas 

PMA (Biotium, Inc.USA) was resuspended in 20% DMSO (1 mg/ml). Both solutions 

were stored in the dark at -20ºC. The light source was a 650-W halogen lamp (Philips). 

A closed box was constructed with refractory walls and the halogen lamp was placed 20 

cm from the sample tubes. Incubation times with the dyes were 5, 10, 15, 20 and 30 

minutes and they were tested in the dark. Two different light treatments were studied: in 

the first the samples were exposed twice to the light for 30 seconds with an interval of 1 

minute in ice, and in the second the samples were kept on ice with their lids off, and 

were then exposed for 5 minutes to light. Different dye concentrations were analysed: 

for EMA 240, 120, 60, 24 and 12 µM and for PMA 50, 24, 12, 6 and 3 µM. All these 

parameters were tested against viable and dead cells, with and without dye treatment. 

Dead cells were obtained from 24h cultures washed with the same volume of distilled 

water and heated at 65ºC for 20 minutes. The lack of cell viability was confirmed by 

plating with YPD and LYS media. Cells not treated with EMA/PMA or light exposure 

were used as controls to evaluate the effect of both dyes. 

 

2.3. Use of LIVE/DEAD kits for differentiating live and dead yeast 

The effect of ethanol on the reliability of live/dead cell kits was evaluated during 

the exponential growth of S. cerevisiae. After washing the same quantity of cells (106 

cells) was placed in YPD liquid medium with 0, 1 and 5 % ethanol (v/v), and the same 

quantity of dead cells (killed by heating) was placed in a medium without ethanol. The 

cells were stained using the LIVE/DEAD® BactLigthTM Bacterial Viability Kit (Molecular 

Probes Inc, USA) or LIVE/DEAD® Yeast Viability Kit (Invitrogen, USA) and counted 

using a fluorescence microscope (Leica DM 4000B). To help membrane recovery the 

same cells were centrifuged, resuspended in fresh YPD and stored for 2 hours at 13ºC. 

Then, they were stained and counted in the same way. Appropriate controls were used 

to prevent yeast growth during these 2 hours. Wine samples were analysed either 

directly or after recovery in YPD medium at 13ºC. Populations were enumerated by 

plating, microscope counting, QPCR and EMA- or PMA-QPCR.  

 

2.4. DNA extraction and QPCR 

DNA was extracted from reference strains or wine samples according to Hierro et 

al. (2006a) and diluted to 1–50 ng/µL. The concentration and purity of DNA was 
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determined using a Gen-Quant spectrophotometer (Pharmacia, Cambridge, UK). In all 

cases QPCR was performed in an Applied Biosystems 7300 Fast Real-Time PCR 

System (Applied Biosystems). Power SyberGreen PCR Master Mix was used according 

to the manufacturer’s instructions (Applied Biosystems, CA). An ABI PRISM 96 well 

optical plate was used for the reaction. This instrument automatically determined the Ct. 

Yeast quantification was performed by using the primers YEASTF/YEASTR for total 

yeast (Hierro et al., 2006a), CESPF/SCERR for Saccharomyces cerevisiaie, generic 

CESPF/HUVR for the Hanseniaspora genus (Hierro et al., 2007), AF/200R for C. 

zemplinina (Andorrà et al., 2010), DBRUXF/DBRUXR for D. bruxellensis (Phister and 

Mills, 2003) and ZBF1/ZBR1 for Z. bailii (Rawsthorne and Phister, 2006). All the primers 

anneal the ribosomal gene region. Standard curves were calculated for each type of 

microorganism in triplicate samples using both cell and purified DNA dilution with or 

without dye. Furthermore, the interference of dead cells was tested by adding a 

constant population of 106 dead cells/ml to concentrations of viable cells that ranged 

from 103 to 107 and recalculating the standard curves. 

 

2.5. Natural wine fermentation and sampling 

Macabeo grapes from the experimental cellar of the Faculty of Oenology in 

Tarragona (Spain) were used. After destemming and crushing, SO2 was added (60 

mg/l) and the must was settled at 10ºC to separate the particles by density. The clear 

grape must was transferred to 80 l tank, and the fermentation was conducted 

spontaneously without yeast inoculation at a controlled temperature of 13 ºC. The 

alcoholic fermentation was monitored by daily density analysis. Samples were taken 

from the fermenting must until the end of fermentation, which was considered to be over 

when the residual sugar concentration was below 2 g/l. Samples were kept in ice and 

analysed a few hours after sampling. 

 

2.6. Analysis of ageing wines 

Five different wines were taken from the experimental cellar of the Oenology 

Faculty in Tarragona (Spain). They had all been aged for different times. Sample A was 

in the first year of ageing in an oak barrel. Samples B and C were in their second year 

of ageing in oak barrels. Samples D and E were taken from spoiled wines. In these 

samples, to increase the detection limit, the wine was analysed either directly or 
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concentrated 10- or 50-fold. The same sample was analysed at the three different 

concentrations to test for the possible presence of inhibitors of the PCR reactions.  

 

3. Results 

3.1. Optimization of the dye treatments  

The optimal conditions for QPCR after both dyes had been used were 

determined using live, dead and a mix of live/dead cells. In all cases the yeast 

population ranged from 103-107 cells/ml. The optimum EMA and PMA concentrations 

were 24µM and 6µM, respectively. Higher concentrations had inhibitory effects on 

viable cells and lower concentrations could not reliably distinguish the dead cells (data 

not shown). With these parameters the differences between the enumeration of viable 

cells in the samples treated with or without dyes were not significant as only dead or live 

cells were in each sample. Dye treatment was optimal after 10 minutes incubation in the 

dark, followed by two 30 second exposures to light with an interval of 1 minute in ice to 

prevent the samples from overheating. Using these parameters, standard curves were 

calculated using viable or dead cells (Fig. 1A). EMA- and PMA-QPCR with dead cells 

produced Ct close to 35, similar to the values obtained with the Non-Template Control 

(NTC). This value decreased only slightly when the population of dead cells was high. In 

all cases, the differences between the Ct of dead and viable cells were between 5 and 

10 Ct. Viable cells, on the other hand, showed similar curves with both dyes, with slopes 

ranging from 3.1 to 3.7. The presence of 106 dead cells did not interfere with the 

quantification of viable cells yielding curves with similar slopes (Fig 1B). 

 

 

 

Figure 1. A) Differentiation between live and dead cells after EMA- or PMA-PCR treatments. 

(■ live cells, ● dead cells, continuous lines use EMA and broken line use PMA). B) Effect of 

the presence of 106 dead cells/ml on the enumeration of live cells by PMA -QPCR (-□- 

Presence of 106 dead cells/ml; -●-without dead cells). 
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3.2. Analysis of ethanol interference  

Because fermentation and wine samples contain varying amounts of ethanol, we 

decided to analyse the effect ethanol has on the dyes. When wine samples are directly 

treated with EMA or PMA and enumerated with QPCR, recovery is poor in contrast to 

high colony population on plates. To test the extent to which ethanol affects membrane 

permeabilizaty to dyes, two different LIVE/DEAD kits for fluorescence microscopy 

counting were used. It was confirmed that all direct wine samples contained “dead 

cells”, that is to say cells with compromised membrane permeability (data not shown). 

YPD medium containing ethanol was used to test membrane permeabilitiy to dyes on a 

population of 106 cells/ml. Yeast populations in 1 or 5% ethanol yielded different 

amounts of dead cells. However, after recovery for 2 hours at 13 ºC in YPD, most of 

them were accounted for as alive (Table 1). The YPD recovery was analysed in natural 

wine samples by enumerating the population with EMA- or PMA-QPCR for total yeast. 

An unknown sample was plated on YPD: 1.7 x 106 CFU/ml was recovered and a 

population of 2.2 106 cell/ml was counted under the microscope. Enumeration with 

EMA-QPCR estimated a population of 5 104 cells/ml. However, the value was 106 

cells/ml after two hours of YPD recovery at 13ºC. This, then, was the general protocol 

used to enumerate wine-related samples. Once the appropriate conditions had been 

set, the standard curves were calculated and used to estimate viability (Table 2). Good 

correlations and curve values (slope and intersection) were obtained and the linearity 

was set for populations between 103 and 107 cells/ml.  

 

Table 1. Analysis of different microscope viability kits for analysing cell membrane 

permeability in the absence or presence of ethanol. Green is associated with live yeast, while 

red is considered with dead yeast. Cilindrycal Intravacuolar Structures are considered to be 

indicators of metabolic activity of the yeast. 

 Directly After 2 hours at 13ºC in a YPD medium 
 Bacterial Viability kit Yeast Viability kit Bacterial Viability kit Yeast Viability kit 
 N cel/ml N cel/ml N cel/ml N cel/ml 

green 7,00E+05   +  1,80E+05 green 5,00E+05 
  

+  8,70E+05 
YPD red 2,00E+05  - 3,10E+04 red 0,00E+00  - 0,00E+00 

green 1,50E+05  + 1,50E+05 green 6,50E+05  + 1,50E+06 YPD + 1% 
Ethanol red 1,15E+06  - 0,00E+00 red 1,00E+05  - 0,00E+00 

green 3,00E+05  + 0,00E+00 green 8,50E+05  + 9,30E+05 YPD + 5% 
Ethanol red 8,00E+05  - 2,80E+05 red 0,00E+00  - 0,00E+00 

green 0,00E+00  + 0,00E+00 green 0,00E+00  + 0,00E+00 
YPD * red 5,50E+05  - 3,10E+05 red 8,00E+05  - 2,50E+05 
* Dead cells 
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Table 2. The Slope, intersection and correlation coefficient (R2) of standard curves from 

serial dilution of yeasts S. cerevisiae, H. uvarum, C. zemplinina, Z. bailii, and D. bruxellensis 

cells calculated by QPCR, and with or without the dyes. 

slope intercept R2
slope intercept R2

slope intercept R2

Total yeast  -3,69 ± 0,07 41,47 ± 1,65 0,986 ± 0,01  -3,75 ± 0,65 42,31 ± 1,21 0,994 ± 0,00  -4,01 ± 0,31 44,69 ± 0,57 0,968 ± 0,02
S. cerevisiae  -3,12 ± 38,18 ± 0,989 ±  -3,19 ± 0,22 38,17 ± 1,35 0,997 ± 0,00  -3,76 ± 0,05 43,65 ± 0,25 0,982 ± 0,01
H. uvarum  -3,48 ± 0,14 39,05 ± 0,76 0,999 ± 0,00  -2,95 ± 0,04 38,75 ± 0,39 0,992 ± 0,00  -3,37 ± 0,11 40,60 ± 0,92 0,992 ± 0,00

C. zemplinina  -3,21 ± 0,02 39,64 ± 0,18 0,995 ± 0,00  -3,36 ± 0,03 40,84 ± 0,39 0,988 ± 0,00  -3,40 ± 0,11 40,81 ± 0,91 0,992 ± 0,00
D. bruxellensis  -3,39 ± 0,22 37,40 ± 0,98 0,999 ± 0,00  -3,47 ± 0,06 38,56 ± 0,38 0,999 ± 0,00  -3,50 ± 0,08 39,02 ± 0,05 0,998 ± 0,00

Z. bailii  -3,64 ± 0,05 39,09 ± 0,22 0,999 ± 0,00  -4,04 ± 0,06 42,62 ± 0,51 0,974 ± 0,00  -3,58 ± 0,01 39,00 ± 0,13 0,993 ± 0,00

QPCR EMA-QPCR PMA-QPCR

 

 

3.3. Analysis of an alcoholic fermentation 

During an alcoholic fermentation of Macabeo grape must at 13ºC in semi-

industrial conditions (80 l), samples were taken and analysed by plating, microscope 

counting and QPCR with or without the dyes (Figure 2). The fermentation took 21 days 

to finish (residual sugars below 2g/l). The QPCR analysis was used to evaluate the 

main yeast during the alcoholic fermentation: total yeast, S. cerevisiae, Hanseniaspora 

and C. zemplinina. The first fermentation sample was taken before settling and the 

second after settling. Between the must and the settled must the number of cells 

decreased from 106 to 105 cells/ml. The values for total recovered yeast in plates and 

the estimation by QPCR were similar throughout the fermentation except at the last 

point (20 days), at which values obtained by plating, and EMA- and PMA-QPCR were 

one log unit lower than those obtained by QPCR without dye treatment (Fig 2A). This 

observation was extended to the values obtained with the S. cerevisiae primers and 

compared with plating in YPD (Fig 2B). The difference between viable counting (both 

plating and dye-QPCR) and QPCR started only at mid fermentation (8 days) and it was 

already one log unit lower after 12 days. These differences were higher in some cases 

with Non-Saccahromyces species. The culturable population of Non-Saccharomyces 

was recovered in LYS medium. The QPCR values for Hanseniaspora were slightly 

higher than those obtained by LYS plating, starting at 106 cells/ml and declining to about 

105 cells/ml, staying at a similar level throughout the fermentation (Fig 2C). However, 

the viability values with both EMA- and PMA-QPCR were very similar to one another but 

much lower than those recovered by plating during the second phase of fermentation. 

The values obtained for C. zemplinina were very similar throughout the fermentation 

with values between 105 and 104 at the end of fermentation without a clear decline at 

the end. After the initial fermentation samples when the difference between all the 

QPCR for C. zemplinina and LYS plating were very different, during the rest of the 
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fermentation similar C. zemplinina QPCR enumeration and LYS plating were obtained. 

Thus, Hanseniaspora seemed to make a considerable contribution to the colonies 

recovered with LYS plating at the beginning of fermentation whereas C. zemplinina 

seem to be the main contributor during most of the fermentation and at the end. 

However, it should be emphasized that other species not included in this study may also 

be present in the colonies recovered in LYS medium.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Yeast monitoring during spontaneous Macabeo fermentation. The techniques used 

were plating (YPD and Lysine Agar) and qPCR analysis, with or without the dyes. Total yeast 

(A), Saccharomyces (B), Hanseniaspora (C), Candida zemplinina (D) yeasts were evaluated. 

(••• YPD plates; -•- LYS plates; -◊- QPCR; -■- EMA-QPCR; -▲- PMA-QPCR). 

 

3.4. Detection of viable yeast in ageing wine  

Matrix interference was tested by direct wine analysis (1 ml), or 10- and 50-fold 

concentrated samples. The results of enumeration were similar to those of the initial 

samples (data not shown). However, as the direct and 10-fold concentrated samples 

were very close to the detection limit, we used the 50-fold concentration for the ageing 

wine analysis. In general, the populations detected by the three QPCR methods were 

very similar and always within the same range (Table 3). S. cerevisiae and D. 

bruxellensis were present in all the wines, although in very low quantities (except for D. 

bruxellensis in spoiled wines, all the others were 102 cells/ml or lower) and only H. 

uvarum was not detected in any samples (data not shown). C. zemplinina was only 
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found in wine D in very low counts whereas Z. bailii was present in all the ageing wines 

but not in the spoiled ones. As expected, spoiled wines had a notable presence of D. 

bruxellensis because they presented the typical “Brett” character. Only in wine D was 

the plate recovery much lower than the counts obtained by QPCR enumeration (by two 

orders of magnitude).  

 

Table 3. Microorganism enumeration in different ageing and storage wines analysed by 

QPCR with or without the dyes, and compared to CFU recovered in YPD and LYS plating. 

    Wine A Wine B Wine C Wine D Wine E 

YPD plates Culturable yeast 2,07 ± 1,68 x 102 9,15 ± 2,62 x 102  2,00 ± 0,0 x 102 2,23 ± 0,41 x 103 2,65 ± 0,92 x 102  
LYS plates Culturable non-Sacch 4,00 ± 5,66 x 101 - 8,30  ± 5,23 x 101  2,39 ± 0,55 x 103 - 

Total yeast 4,91 ± 0,19 x 102 4,77 ± 1,71 x 102 1,68 ± 0,17 x 102 5,28 ± 0,08 x 103 4,65 ± 0,25 x 104 

S. cerevisiae 1,08 ± 0,24 x 101 9,57 ± 3,83 x 100 1,34 ± 0,43 x 101 9,23 ± 2,09 x 103 2,06 ± 0,67 x 102 

C. zemplinina - - - 4,46 ± 0,84 x 101 - 

D. bruxellensis 2,17 ± 0,15 x 101 2,09 ± 0,06 x 102 2,07 ± 0,12x 101 2,02 ± 0,24 x 102 2,18 ± 0,12 x 104 

QPCR 

Z. bailii 1,23 ± 0,12 x 103 3,44 ± 0,01 x 100 1,78 ± 0,19 x 102 - - 

Total yeast 1,96 ± 0,32 x 102 4,63 ± 0,54 x 102 6,98 ± 0,70 x 101 2,01 ± 0,28 x 103 5,95 ± 0,32 x 104 

S. cerevisiae 1,05 ± 0,28 x 101 8,68 ± 1,18 x 100 8,53 ± 0,82 x 100 3,05 ± 0,70 x 103 7,38 ± 0,91 x 102 

C. zemplinina - - - 3,86 ± 3,45 x 101 - 

D. bruxellensis 1,99 ± 0,01 x 101 2,03 ± 0,16 x 102 7,96 ± 1,05x 100 2,01 ± 0,35 x 102 2,98 ± 0,17 x 104 

EMA-QPCR 

Z. bailii 7,56 ± 0,13 x 102 5,48 ± 1,03 x 100 9,95 ± 1,74 x 101 - - 

Total yeast 3,21 ± 0,87 x 102 2,38 ± 0,40 x 102 7,26 ± 1,46 x 101 2,15 ± 0,26 x 103 5,88 ± 0,23 x 104 

S. cerevisiae 1,37 ± 0,32 x 102 1,38 ± 0,17 x 101 4,40 ± 1,20 x 101 4,71 ± 2,96 x 103 1,08 ± 0,03 x 103 

C. zemplinina - - - 1,23 ± 0,85 x 101 - 

D. bruxellensis 2,42 ± 0,15 x 101 1,24 ± 0,04 x 102 1,64 ± 0,22x 101 6,10 ± 0,22 x 102 2,35 ± 0,20 x 104 

PMA-QPCR 

Z. bailii 5,93 ± 0,01 x 102 1,61 ± 0,17 x 100 9,27 ± 0,44 x 101 - - 
 

- means non-detectable 

 

4. Discussion 

The use of different monoazide dyes (EMA and PMA) that bind to the DNA to 

differentiate live from dead cells was described 7 years ago (Nogva et al., 2003). 

However, they were mostly used on bacterial cells in which PMA showed better results 

than EMA (Pan and Breidt, 2007; Nocker et al., 2006). Because of their limited 

application in yeast (Rawsthorne and Phister, 2009a,b) and to differences found in the 

optimal conditions of use (Nocker and Camper, 2006; Rudi et al., 2004; Lee and Levin, 

2006), we focused on determining how these dies could be used for optimal effect in 

yeast and alcoholic fermentation. It is well known that they can enter cells which have 

compromised membrane/cell wall system (Rudi et al., 2004), yet little is known about 

the possible effects of ethanol on their entering cells. Ethanol has clear effects on 

membrane permeability (Mishra and Prasad, 1988; Alexandre et al., 1994; Ding et al., 

2009) and the increase in ethanol is the main characteristic of alcoholic fermentation. 
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Thus, the effect of ethanol had to be controlled first as concentrations increased during 

alcoholic fermentation and second during the analysis of the final wines when ethanol 

levels are high. An initial estimation by EMA- and PMA-QPCR showed that the direct 

analysis of wine samples yielded fewer cells than those that were culturable and, thus, 

we considered that the membrane was permeable to both dyes. Cells were recovered 

by removing them from ethanol and allowing them to recover in YPD medium in 

conditions in which no growth is possible (2 h at 13º C). We had previously observed 

cell membrane recovery in compromised cells by contact in optimal yeast medium such 

as YPD (Redón et al., 2008). 

Once we had set the best conditions for using EMA and PMA, we analysed the 

differences between them and compared with the results obtained with the non-dye 

QPCR. We observed no differences between the two dyes either with live and viable 

cells or in the presence of dead cells. The presence of dead cells did not interfere with 

the total estimation of viable cells because high counts (106) did not affect the method 

linearity between 103 and 107 cells/ml. These results agree with those of Rawsthorne 

and Phister (2009a) who detected population of 13 cells/ml in matrixes of 105 dead 

cells/ml. The non-dye QPCR could not differentiate between dead and live cells and, 

accounted for all of them. When it was used in controlled conditions (different 

combinations of cells killed by heating and live cells), agreement was always good 

between the enumeration of the colonies recovered on plates, counts under the 

microscope with LIVE/DEAD kits and the enumeration with EMA- or PMA-QPCR. The 

standard curves obtained also showed good slopes with all the primers tested. 

We tested the use of both dyes to alcoholic fermentation in two different sets of 

samples. On the one hand, we analysed an alcoholic fermentation and, on the other, 

some ageing wines. During alcoholic fermentation, alcohol increases and the yeast 

population changes. To enforce the yeast variability and to have samples for a longer 

period of time with more variables, we performed a low fermentation temperature 

without selected yeast inoculation. The fermentation took 20 days and was led by S. 

cerevisiae, as usual, also at low temperature (Hierro et al., 2007; Andorrà et al., 2010). 

With the exception of the first samples taken (before and after settling) for which the 

total yeast counts made by the three QPCR methods and plate recovery were one log 

unit higher than S. cerevisiae, the values were always very similar and showed that S. 

cerevisiae was the main yeast recovered and fully viable. Only at the end of 
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fermentation did the non-dye QPCR show very high counts, whereas plate and dye-

QPCR showed a decline in viability. At the first points, the two major Non-

Saccharomyces yeast, C. zemplinina and Hanseniaspora sp accounted for the 

difference between the total yeast counts and S. cerevisiae as in previous studies in the 

same winery (Constantí et al., 1997; Beltran et al., 2002; Hierro et al., 2007). Whereas 

the primers for C. zemplinina and S. cerevisiae are species-specific, the ones for 

Hanseniaspora are genus specific (Hierro et al., 2007). Although H. uvarum was the 

most frequently isolated species in this cellar, H. osmophila and H. guilliermondii have 

also been found (Hierro et al., 2006b; Andorrà et al., 2010), so this methodology does 

not discriminate among them. Later, during the fermentation, these species survive: 

Hanseniaspora sp is the main species at the beginning of the fermentation and C. 

zemplinina survives in higher alcohol concentrations at low temperature, as observed by 

Llauradó et al. (2002). In all the samples taken from this alcoholic fermentation we 

found very good agreement between the QPCR dyes and plate recovery, both with YPD 

for total yeast and with LYS medium for Non-Saccharomyces yeasts.  

During wine ageing the yeast population is several orders of magnitude lower 

than during alcoholic fermentation, which is a new challenge for low population 

estimation. In this situation, and even after sample concentration, counting under the 

microscope, gave a poor estimation as not enough yeasts were seen to be considered 

reliable. However, we recovered a significant population in both YPD and LYS media 

and also detected reliable amounts in the three QPCRs. It was disappointing to find that 

all the methods used recovered low populations in all the ageing wines. Most of the 

viable cells were also culturable and no differences were observed with the methods. 

Only in one of the spoiled wines (Wine E) did we find a discrepancy between the 

culturable yeast and the recoveries with QPCR. The high levels of D. bruxellensis were 

undetected by plates yet identified by all three QPCRs, which gave very similar values. 

In this case, we detected viable but not culturable cells. In fact, the slow growth of these 

species may account for this lack of culturability (Loureiro and Malfeito-Ferreira, 2003). 

In conclusion, we believe that we now have a new culture-independent 

methodology for determining microbial diversity in winemaking. Most of the present 

knowledge on food microbiology has been acquired from the microorganisms that have 

been recovered on culture media. For many years the limitations of the protocols used 

were evident and, to overcome them, culture-independent methods have been 

proposed. We had already worked with some of these culture-independent 
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methodologies, despite being aware of the limitations of working with DNA due to its 

high stability and the impossibility of distinguishing between live and dead cells. We now 

believe that we have circumvented this problem by using two dyes coupled with QPCR 

to differentiate between live and dead cells in several situations with high alcohol 

concentrations and even low yeast populations. However, the main handicap of this 

technology is the availability of species-specific primers for detecting the different 

species. Our laboratory is now working on increasing the availability of primers 

addressed to more yeast species of interest in oenology.  
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Abstract 

Traditionally, it was assumed that non-Saccharomyces (NS) yeasts could only 

survive in the early stages of alcoholic fermentations. However, recent studies have 

shown the persistence of NS populations throughout the fermentation process by 

applying culture-independent methods. The aim of the present work was to analyse and 

quantify Saccharomyces cerevisiae (Sc) and Hanseniaspora guilliermondii (Hg) 

populations during alcoholic fermentations by using classical and culture-independent 

methods, such as fluorescence in situ hybridisation (FISH), quantitative PCR (QPCR) 

and flow cytometry. Species-specific FISH probes labeled with fluorescein (FITC) were 

used to directly hybridise Sc and Hg cells from single and mixed cultures. The results 

obtained by both culture-independent methods (FISH and QPCR) showed in general 

good agreement, revealing the presence of high populations (ranging 107-108 cells/ml) 

of both yeasts throughout fermentations. When fermentations were performed in pure 

cultures there was also a good agreement with plating for both species. However, 

during mixed fermentations Hg lost its ability to grow on plates after 4 to 6 days, while 

enumeration by FISH and QPCR showed the persistence of high Hg populations (about 

108 cells/ml) that remained constant along the complete fermentation (as long as 10 

days). The rRNA levels of cells during the course of mixed fermentations was also 

analysed by using flow cytometry in combination with FISH probes. The fluorescence 

intensity conferred by the species-specific FISH probes was considerably lower for Hg 

than for Sc. Moreover, when the effect of boiling the cells was analysed by flow 

cytometry the stability of the rRNA content of cells showed species-dependence, being 

more sensitive for Sc than for Hg species. 

 

Keywords:  wine, culture-independent methods, RNA stability.  
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1. Introduction 

The transformation of grape must into wine involves the coexistence and 

succession of different yeast species. The microorganisms present in the berry surfaces 

are composed mainly by non-Saccharomyces (NS) yeasts which predominate during 

the early stages of the alcoholic fermentation. These are soon overtaken by the growth 

of Saccharomyces cerevisiae (Sc) that dominates the mid to final stages of the 

fermentation (Fleet & Heard, 1993; Fleet, 2003). Despite this typical growth pattern has 

long been accepted, it was established mainly by plating methods. Indeed, more recent 

studies have questioned this pattern by using molecular methods that revealed the 

persistence of NS populations throughout the fermentation process (Fernandez et al., 

1999; Cocolin et al., 2000; Andorrà et al., 2010; Zott et al., 2010). The early 

displacement of NS wine yeasts is quite controversial. Previously, it was thought that 

this was mainly due to the lower tolerance of NS species towards the increasingly 

adverse conditions established in the medium (low pH values, high levels of ethanol and 

organic acids, nutrient depletion, etc.) as the fermentation progresses (Fleet & Heard, 

1993). More recently, the dominance of Sc has been attributed to other factors, such as 

growth arrest mediated by cell-to-cell contact mechanisms (Nissen et al., 2003), and the 

secretion of toxic compounds (Pérez-Nevado et al., 2006; Albergaria et al., 2010). 

However, most of these studies has been carried out by using classical plating methods 

which are laborious, time-consuming and somewhat unreliable (Giraffa, 2004) and only 

detect culturable populations. 

Molecular techniques have been developed and applied to control microbial 

growth and to characterise the microflora of different processes and environments. 

These methods are generally faster, more specific, more sensitive and more accurate, 

allowing the precise study of the microbial populations and their diversity (Justé et al., 

2008). Molecular techniques can be used to identify or genotype microorganisms 

previously grown on a culture media (commonly known as a culture-dependent 

techniques), or applying them directly to a sample (known as a culture-independent 

techniques) (Rantsiou et al., 2005). The application of culture-independent methods 

gives a better knowledge of the true microbial diversity, avoiding the biases that growth 

and isolation by enrichment platting might introduce. Furthermore, culture-dependent 

techniques can underestimate the size and diversity of a given population since they do 

not account for non-culturable populations, such as sublethally injured and/or viable but 
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non-culturable (VBNC) cells, which may fail to grow on plates and are common in wine 

(Millet & Lonvaud-Funel, 2000). Underestimating VBNC and/or injured populations can 

be important since these are still metabolically active (Oliver, 2005; Mills et al., 2008). 

Several culture-independent techniques have been develop and used for detecting and 

quantifying wine yeast species (Cocolin et al., 2000; Mills et al., 2002; Phister & Mills, 

2003; Hierro et al., 2006, 2007; Andorrà et al., 2008, 2010).  

One of the most promising methods, due to its simplicity and rapidity, is the 

fluorescence in situ hybridisation technique (FISH). This technique combines the 

simplicity of microscopic observation with the specificity of DNA/RNA analysis. 

Furthermore, most of the molecular techniques do not provide information regarding the 

morphology of cells, their number and spatial distribution within a given environment. In 

theory, FISH technique can detect single cells but in practice, however, the detection 

limit is often 104 cells/ml, since enumeration is usually carried out by hemocytometry. 

This limitation can be overcome by concentrating the samples prior to hybridisation and 

counting (Blasco et al., 2003). Another limitation of using FISH by hemocytometry is the 

insufficient automation which is required for high throughput sample analysis (Amann et 

al., 2001). This can be solved by using flow cytometry (FC) in combination with FISH for 

a selective enumeration of mixed microbial populations, which allows a high resolution 

and highly automated analysis (Amann et al., 1990). The main advantage of this 

technique is its sensitivity, which can detect a cell in a million. FC in combination with 

FISH probes has been used to identify and analyze mixed microbial populations 

(Amann et al., 1990; Wallner et al., 1993; Rigottier-Gois et al., 2003). 

Xufre et al. (2006) developed 26S rRNA gene probes for identification of 

numerous wine-related yeast species, including Sc, Candida stellata, H. uvarum, H. 

guilliermondii (Hg), Kluyveromyces thermotolerans, K. marxianus, Torulaspora 

delbrueckii, Pichia membranifaciens and P. anomala. Stender et al. (2001) detected the 

slow growing yeast Dekkera bruxellensis. These authors, however, used cultivation and 

isolation steps prior to application of the FISH technique and thus the identification of 

those samples did not account the overall cell population but just the culturable cells. 

 The aim of this work was to analyse Sc and Hg populations by using plating and 

culture-independent methods based on RNA (FISH) and DNA (QPCR). These 

methodologies were used for direct quantification and identification of Sc and Hg 

populations in single cultures and mixed fermentations performed on synthetic media 

and on a simulated wine. FC in combination with FISH probes was used to quantify 
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fluorescence intensity of hybridised cells of Sc and Hg during mixed fermentation and 

also to determine the stability of the rRNA content of the cells. 

 

2. Materials and Methods 

2.1. Yeasts strains, inoculum cultures and growth media  

The yeasts strains used were Sc CCMI 885 (Culture Collection of Industrial 

Microorganisms, LNEG, Lisbon) and Hg NCYC 2380 (National Collection of Yeast 

Cultures, Norwich, UK). Both strains were first isolated from Portuguese wines, Sc from 

Alentejo and Hg from Douro wine regions. Yeasts were maintained on YMPD-agar 

slants (1% dextrose, 0.5% peptone, 0.3% malt extract, 0.3% yeast extract, 2% agar, 

w/v) and stored at 4ºC.  

Inocula of Hg and Sc were prepared by transferring biomass of one YMPD-agar 

slant (pre-grown for 48 h at 30 ºC) into 50 ml of YMPD medium in 100 ml flasks that 

were incubated for 16 h at 30 ºC and 150 rpm.  

Single cultures of Sc and Hg were performed on YMPD media and mixed 

fermentations on synthetic grape juice (SGJ), prepared as described by Pérez-Nevado 

et al. (2006).  

 

2.2 Single cultures on YMPD medium 

Single cultures of Sc and Hg were carried out in 500 ml flasks filled with 250 ml of 

YMPD medium. Each flask was inoculated with 1×104 cells/ml of the respective yeast 

strain and incubated without agitation at a constant temperature of 20ºC. Both 

fermentations were performed in duplicate and monitored by plate counting and by 

direct application of the FISH technique, using species-specific FITC-labelled probes 

and DAPI staining. Hybridised cells were enumerated in a Neubauer chamber using an 

epifluorescence microscope (Olympus BX-60, Tokyo, Japan). 

 

2.3 Alcoholic fermentations  

Two mixed fermentations (shaken and static) were performed in duplicate in 500 

ml flasks filled with 250 ml of SGJ and inoculated with 1×105 cells/ml of each yeast 

strain (Hg and Sc). Shaken fermentations were conducted under constant agitation of 

100 rpm in an orbital shaker (Unitron, Infors, Switzerland). All the experiments were 

conducted at controlled temperature of 20ºC. The monitoring of fermentations was 
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made by daily samplings for cellular density quantification and determination of sugar 

consumption and production of ethanol. The yeast population was determined by the 

classical plating method and also by FISH and QPCR. 

To simulate the second part of the alcoholic fermentations, a commercial red 

wine was diluted with sterile distilled water till ethanol concentration reached 30 g/l. The 

medium was supplemented with glucose and fructose to attain a final concentration of 

55 g/l for each sugar and 3 g/l of yeast extract in order to simulate the average sugar 

concentration of a middle wine fermentation. This medium was then inoculated with 106 

cells/ml of each strain (Sc and Hg) with inocula previously grown (for 16 h at 30ºC) on 

YMPD broth. The fermentations were conducted in duplicates with constant agitation 

(100 rpm) at a controlled temperature of 20ºC. Sugar consumption was monitored daily 

by both density measures and by HPLC. Samples were taken each 24 hours until the 

end of fermentation (sugars below 2 g/l). Yeasts were monitored by using plating 

counts, and by direct application of the FISH (with species-specific probes and DAPI) 

and QPCR techniques. 

 

2.4 Fluorescence  in situ hybridization (FISH) 

2.4.1 Oligonucleotide FISH probes 

Oligonucleotides ranging from 15 to 20 nucleotides and targeted to the D1/D2 

domain of 26S rRNA of the yeasts species Sc and Hg were synthesized and labelled 

with the fluorochrome Fluorescein IsoThioCyanate (FITC) at the 5′-end. The species-

specific FISH probes used in this work were those previously designed and validated by 

Xufre et al. (2006) with the following sequences for Hg and Sc, respectively: 5’-

CAATCCCAGCTAGCAGTAT-3’ and 5’-TGACTTACGTCGCAGTCC-3’. Furthermore, a 

universal eukaryote FISH probe (EUK 516 5’-ACCAGACTTGCCCTCC-3’) was also 

used as a positive permeabilisation control. 

 

2.4.2 FISH procedure 

The FISH procedure used the protocol described in Xufre et al. (2006) and 

adapting it to the direct use from fermenting samples. The adaptation involved the 

permeabilisation and the hybridization steps. Briefly, several permeabilization 

treatments were tested as different concentrations of lysozyme, zymoliase, ultrasounds, 

triton and ethanol. And two different concentrations of hybridization solution at different 
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reaction time were also studied. Thus, the detailed protocol for direct analysis resulted 

as follows: 

One ml of fermentation samples were centrifuged for 5 min at 5,000 g, the cells 

were washed once with 1x phosphate-buffered saline (PBS - 130 mM sodium chloride, 

10 mM sodium phosphate buffer, pH 7.2) and incubated with 4% (v/v) of 

paraformaldehyde for at least 3 h at 4 ºC and strong agitation. Fixed cells were 

thereafter centrifuged for 2 min at 10,000 g and resuspended in 1volume per volume of 

1x PBS buffer and ethanol (98%) and kept at -20ºC until required. Approximately 106 

fixed cell samples were prior to hybridisation centrifuged discard the supernatant and 

then hybridised in 40 µl hybridisation buffer (0.9 M sodium chloride, 0.01 % w/v sodium 

dodecyl sulphate, 20 mM Tris-HCl and 0.025 % v/v formamide) and 10 µl of FITC-

labelled probe (50 ng/µl) and incubated at 46 ºC for at least 3 h. After centrifugation, 

cells were resuspended in 100 µl of washing buffer (25 mM Tris/HCl and 0.5 M NaCl) 

and incubated for 30 min at 48 ºC. Before enumeration, the previous suspensions were 

centrifuged, resuspended in 100 µl of 1x PBS and doubled stained with DAPI (1 µg/ml) 

(4,6-diamidino-2-phenylindole), a fluorescent dye that stains the double stranded-DNA, 

by incubation for 1 min at room temperature. Approximately 5 µl of cell suspension was 

mixed with 5 µl of Vecta Shield (an anti-fading agent, Vector Laboratories, USA), 

spotted onto a Neubauer chamber and enumerated by epifluorescence microscopy 

(Olympus BX-60, Tokyo, Japan). Total cells were enumerated using a NU-MWB filter 

(wavelength for DAPI) and Hg and Sc hybridised cells using a U-MWB filter (wavelength 

for FITC). 

 

2.5 DNA extraction and QPCR 

DNA was extracted according to Hierro et al. (2006). QPCR was performed in an 

Applied Biosystems 7300 Fast Real-Time PCR System (Applied Biosystems). Power 

SyberGreen master mix was used according to the manufacturer’s instructions (Applied 

Biosystems, CA). An ABI Prism 96 well optical plate (Applied Biosystems) was used for 

the reaction. The instrument automatically determined the Ct. Yeast quantification was 

performed using the primers, YESTF/YESTR (Hierro et al., 2006) for total yeasts, 

CESPF/SCERR for Saccharomyces and CESPF/HUVR for Hanseniaspora (Hierro et 

al., 2007). Standard curves were done for each type of microorganisms in triplicate.  
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2.6. Flow Cytometry 

Cells from single and shaken mixed fermentation of Hg and Sc were hybridised 

with the respective FISH-probes and analysed by FC. Fluorescence of the hybridised 

cells was quantified with a FAC-Scan FC (Biosciences). The argon ion laser was tuned 

to an output of 15 mW at 488 nm. Forward-angle light scatter (FSC) and side-angle light 

scatter were detected with a 530 (±30) nm band pass filter and fluorescence (FL1) was 

detected with a 530 (±30 nm) nm band pass filter. FITC-probes were measured with 

deionised filtered (0.2 µm Millipore membranes) water as sheath fluid. The FC 

automatically stabilised the optical alignment and standardised the fluorescence 

intensities of the hybridised cells.  

Data acquisition and processing: The parameters FSC, SSC and FL1 were 

recorded and for each measure 20,000 events were stored in list modes. The WinMDI 

software (v.2.8) was used for subsequent analysis. Probe-conferred fluorescence was 

determined as the mean (geometric) of the fluorescence values emitted by single 

hybridised-cells (of Sc and Hg) measured in the FL1 detector and recorded on a gate 

that was first defined in a FSC-versus-SSC density plot. This mean value was then 

divided by the mean value of the fluorescence emitted by non-hybridised cells. Samples 

from mixed fermentation were first analysed without hybridisation in a FSC-versus-SSC 

density plot. Due to the considerably different size of Sc and Hg cells it was possible to 

obtain separated gates containing the entire cell population of each yeast species. 

Mixed samples were hybridised in separate with each species-specific probe and 

analysed with and without probe. FISH experiments were performed in triplicate for 

each sample (6 replicates for mixed samples) in independent hybridisation assays and 

fluorescence values measured on the FC at various time intervals (30 min, 1h, 2 h and 

4 h) after application of the FISH procedure. No significant loss of fluorescence was 

detected for at least 4 h. The stability of the cells rRNA was analysed by FC, measuring 

the fluorescence intensity emitted by hybridised cells after boiling (10 min at 100ºC) and 

also after RNase treatment (10 µl of RNase solution (0.2 mg/ml) added to 100 µl of 

sample for 10 min at 65ºC). 

 

2.7 Analytical methods 

Glucose and fructose consumption and ethanol production were determined by 

HPLC (Merck, Darmstadt, Germany) using a Sugar-PakTM column (Waters, Milford, 

USA) and a refractive index detector. The samples were eluted at 90ºC using a 
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degassed aqueous mobile phase containing 50 mg/l Ca-EDTA, at a flow rate of 0.5 

ml/min. All samples were analysed in triplicate.  

 

2.8 Plating counts 

Quantification of Hg and Sc populations during mixed fermentations was 

performed by the classical plating method. Samples, taken aseptically throughout 

fermentations, were inoculated onto YMPD-agar plates after appropriate dilution in 

sterile water. In the mixed fermentations, CFU counting of Hg was determined on 

YMPD-agar plates containing 0.01% of cycloheximide, a selective medium where Sc is 

unable to grow. CFU counting of Sc was calculated as the difference of the total CFU 

counts obtained on YMPD-agar plates (without cycloheximide) and the CFU counts of 

Hg. All plates were incubated at 30ºC for 2-4 days and CFUs enumerated after no 

increase of colonies was observed on plates. 

 

3. Results 

3.1. Validation of direct application of FISH 

In order to validate the direct application of FISH, thus avoiding previous 

cultivation on enriched media, single cultures of Sc and Hg were performed on YMPD 

medium. Samples from those cultures were directly hybridised with the respective FISH 

probes, stained with DAPI and enumerated on a Neubauer chamber by epifluorescence 

microscopy. The cell population of those fermentations was also followed by plating. 

FISH technique correlated well with plating counts for both yeasts along cultivation 

(Fig.1). Besides, results showed that under single cultivation both strains were able to 

grow on YMPD-agar plates long after sugar exhaustion, which occurred within 24 h, 

although a slight decrease was observed in the cellular density of Hg after 72 h of 

cultivation (by both methods). This means that cells kept their culturability even after 

long periods of starvation.  

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
ADAPTATION AND DEVELOPMENT OF CULTURE-INDEPENDENT TECHNIQUES FOR THE INDENTIFICATION AND ENUMERATION 
OF MICROORGANISMS IN WINE FERMENTATIONS 
Immaculada Andorrà Solsona 
ISBN:978-84-693-8859-4/DL:T.1948-2010 



Chapter 6 

 191 

 

 

 

 

 

 

 

Figure 1: Yeast population evolution during single Sc (A) and Hg (B) fermentations carried 

out on YMPD medium, as determined by FISH and plating (-●-, Sc-FISH; -○-, Sc-CFU; -♦-, 

Hg-FISH; -◊-, Hg-CFU;-∆-, total cells-DAPI). (mean values ± SD). 

 

The FISH procedure was applied directly to samples from mixed fermentations 

and microscopic observation of the hybridised cells (Fig.2) confirmed the species-

specificity of the FISH probes. In addition, hybridised cells of Hg (Fig.2-A) and Sc (Fig.2-

C) compared well with total cells counts (Fig.2-B,D) measured by DAPI staining, thus 

confirming and validating the effectiveness of the FISH procedure and the 

reproducibility of enumeration by hemocytometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Microscope visualisation of fluorescence signals emitted by Sc and Hg cells of 

mixed fermentation samples hybridised with FITC-labelled FISH-probes and stained with 

DAPI. Images of cells hybridised with Hg-FISH probe captured on the filter for FITC (A) and 

on the filter for DAPI (B). Images of cells hybridised with Sc-FISH probe captured on the filter 

for FITC (C) and on the filter for DAPI (D). 
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3.2. Monitoring of mixed fermentations on SGJ 

Sugar consumption and ethanol production during shaken and static fermentations 

are represented in Fig.3-A and A’, respectively. The time required to consume sugars 

present on the SGJ was 6 and 10 days for shaken and static fermentation, respectively. 

In both cases, the glucose consumption rates were higher than those of fructose and 

residual sugars present on final wine was less than 2 g/l of fructose. Both fermentations 

produced similar amounts of ethanol with final concentrations of about 100 g/l. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Sugar consumption and ethanol production in shaken (A) and static fermentation 

(A’) (-▲-, ethanol; -■-, fructose; -♦-, glucose). Evolution of total yeasts (B, B’), S. cerevisiae 

(C, C’) and H. guilliermondii (D, D’) species in shaken and static mixed fermentation analysed 

by FISH (-∆-), QPCR (-▲-) and plating (-□-).  
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The cell density evolution during shaken and static fermentations is represented in 

Fig. 3 for total yeast (B, B’), Sc (C, C’) and Hg (D, D’) populations, as determined by 

plating, FISH and QPCR methods. Results showed that in both fermentations yeasts 

raised their initial cell populations from 105 cells/ml to 107-108 cells/ml (Fig.3-B, B’) 

within 24 to 48 h. During the stationary phase growth the cell density profiles of Hg 

(Fig.3-D, D’) and Sc (Fig.3-C, C’) significantly diverged by plating but were quite similar 

when determined by FISH and QPCR. Using both culture-independent techniques 

(FISH and QPCR), Hg maintained its population around 1×108 cells/ml for 100 h in the 

shaken fermentation, although a 10-fold decrease was observed after that time by 

QPCR, whereas Sc kept a constant cellular density of about 6×107 cells/ml. However, 

after 200 h of cultivation in the static fermentation the cell population of both yeast 

species slightly decreased. During all fermentation the results showed that the yeast 

populations in the shaken fermentations were slightly higher than the static ones. 

Independently of method used (culture-dependent or not), no major decline was 

observed on the cell population of Sc in all fermentations for at least 200 h, while Hg 

totally lost its ability to form colonies when plated after 4 days and 6 days in shaken and 

static fermentations, respectively.  

 

3.3. Monitoring of mixed fermentation on simulated wine  

In the simulated wine fermentation yeasts showed similar fermentation pattern than 

that of SGJ consuming glucose faster than fructose (Fig. 4A). The initial ethanol of the 

media was 30 g/l and after 96 h of fermentation the residual sugars were lower than 2 

g/l and ethanol achieved a final concentration of 80 g/l. Total yeast and Sc population 

increased up to 108 cells/ml in the first 24h, maintaining these cell density throughout 

the process, as measured by both culture-independent methods (FISH and QPCR) (Fig. 

4 B, C). Meanwhile, Hg began to loose its cultivability on YMPD-agar plates after 24 h 

and did not grow at all on plates after 96 h. When analyzed by culture-independent 

methods (FISH and QPCR), Hg population did not increase its population and was 

constant during all the fermentation slightly over 106 cells/ml. In this case, no change 

was observed by QPCR, which enumerated always higher population than FISH. 
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Figure 4. Sugar consumption and ethanol production in simulated wine fermentation (A) (-▲-, 

ethanol; -■-, fructose; -♦-, glucose). Evolution of total yeasts (B), S. cerevisiae (C) and H. 

guilliermondii (D) species in simulated wine fermentation analysed by FISH (-∆-), QPCR (-▲-) 

and plating (-□-).   

 

3.4. FC in combination with FISH probes 

In order to evaluate changes in the rRNA content of cells during the fermentations 

and to avoid the subjectivity of operator microscope counting, FISH procedure was used 

in combination with FC. Furthermore, the RNA stability towards boiling or/and RNase 

cell treatments was also analysed. Cells from pure and mixed cultures hybridised with 

the respective FISH probes were analysed by FC and data for cell size (FSC), internal 

heterogeneity (SSC) and fluorescence (FL1) acquired. Initially, pure cells suspensions 

of Hg and Sc were analysed by FC for non-hybridised cells and cells hybridised with the 

respective species-specific FISH probes (data not shown). Results showed that due to 

the higher cell size of Sc by comparison to Hg cells it was possible to design, in a SSC-

versus-FSC density plot, different gates for each yeast species. Autofluorescence of Hg 

and Sc yeasts was 1.21 for Hg and of 3.5 for Sc, as determined by the relative 

fluorescence intensity (FL1 signals in a LOG scale) emitted by non-hybridised cells of 

each species. The specific fluorescence intensity conferred by each FISH probe to the 

respective yeasts cells (Hg and Sc) was determined dividing the relative fluorescence 

intensity of hybridised cells by the respective autofluorescence value.  
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Similar quantification and analysis was done for samples of the mixed fermentation (at 

times 24, 48, 96, 144 and 192 h) with cells hybridised with either Hg or Sc species-

specific FISH probes (in independent essays for each probe) and analysed by FC 

(Fig.5). Results showed that Sc population exhibited much higher heterogeneity along 

the fermentation than Hg population, as exemplified in Fig.5-A and D, originating two 

subpopulations within the same sample, which probably depends on whether cells are 

budding or not (Fig.5-A). The number of Hg and Sc cells within a given sample and the 

respective fluorescence intensity conferred by each FISH probe was determined along 

the mixed fermentation (Table 1).  
 

Figure 5. Density plots (A,B,D,E) and histograms (C,F) obtained by FC analysis (20,000 

events recorded) of a 144 h mixed fermentation sample with cells hybridised with the species-

specific FISH probes for Hg (A,B,C) and for Sc (D,E, F). Histograms represent the distribution 

among the entire population analysed of the relative fluorescence intensity emitted by 

hybridised cells of Hg (C) and Sc (F) within the respective gates, as defined in the SSC-

versus-FSC density plots. Mn, is the mean value of the relative fluorescence intensity of the 

entire cell population within the respective gate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results showed that the relative fluorescence intensity emitted by Hg-hybridised 

cells was always lower than that of Sc cells. Moreover, Sc cells exhibited 10 times 

higher fluorescence during the exponential phase than the stationary phase, conversely 

to what happened to Hg cells that only slightly decreased their relative fluorescence 

intensity (Table 1). 
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Table 1. Flow cytometry analysis of hybridised cells of Hg and Sc during the shaken mixed 

fermentation and also of cells that were hybridised after boiling or RNase treatment at the 

end of fermentation. The values represent the mean value (20,000 events recorded per 

analysis) of at least 3 independent experiments performed for each FISH-probe.  

Time-sampling 

(h) 

number of Hg cells 

mean±SD 

number of Sc cells 

mean±SD 

fluorescence of Hg cells 

mean±SD 

fluorescence of Sc cells 

mean±SD 

24 17658 ± 774 774 ± 72 14.66 ± 0.97 132.41 ± 8.20 

48 15460 ± 620 2914 ± 495 15.94 ± 1.75 121.78 ± 8.71 

96 12824 ± 228 6690 ± 258 14.49 ± 1.09 20.74 ± 1.88 

144 13826 ± 338 5848 ± 459 12.61 ± 0.54 27.55 ± 2.33 

196 11703 ± 456 7725 ± 458 9.49 ± 0.52 17.05 ± 1.16 

Boiled cells  

for 10 min at 100 ºC 

0 h  

24 h 

96 h 

10.23 ± 0.26 

8.33 ± 0.25 

10.02 ± 0.01 

13.08 ± 0.05 

1.25 ± 0.01 

nd 

 

Sample 196 h 

 

 Rnase treated cells 0 h 1.14 ± 0.10 1.91 ± 0.43  
nd: not determined 

The stability of the rRNA of these yeasts was analysed by measuring the 

fluorescence intensity emitted by dead cells that were boiled (10 min at 100 ºC) and/or 

treated with RNase and thereafter hybridised with the respective FISH-probes. Results 

showed the disappearance of RNA immediately after RNase treatment for both yeast 

species, but not for death by boiling. In the later case, 24 hours were needed to reduce 

the levels of the RNA content of Sc cells, while in Hg the levels of RNA were kept rather 

constant even after 96 hours following boiling (Table 1).  

 

4. Discussion 

During spontaneous wine fermentations there is a typical growth pattern where 

the NS yeasts, belonging to the natural microflora of grape musts, grow during the early 

stages of alcoholic fermentation (4-5% v/v ethanol) and then begin to die off, leaving 

way to Sc strains to dominate and complete the fermentation process (Fleet & Heard, 

1993; Fleet, 2003). However, recent studies have challenged these yeast population 

dynamics and revealed the presence of NS populations throughout the fermentation 

process (Andorrà et al., 2010; Zott et al., 2010). These results have been obtained 

mainly due to the use of culture-independent techniques that allow detecting non-

culturable yeast cells during alcoholic fermentations (Millet & Lonvaud-Funel, 2000). In 
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the present study, the evolution of Sc and Hg populations during single and mixed 

fermentations was analysed by using FISH in combination with epifluorescence 

microscopy and FC and also QPCR. The cell density profiles obtained for both yeast 

species with these molecular methods were compared with those obtained by classical 

plating on YMPD-agar medium. 

We used QPCR which was previously developed and used during alcoholic 

fermentations (Hierro et al. 2007; Andorrà et al., 2008, 2010) and it targets DNA, which 

due to its stability it is presumed to detect total non-autolysed yeast population (Hierro 

et al., 2006). Indeed, a good correlation was found for both yeasts between QPCR and 

FISH results, which seem to confirm that both techniques measure cells in similar 

physiological states. Application of FISH technique to identify different yeast colonies 

obtained at various stages of wine fermentations was first applied by Xufre et al. (2006) 

and the species-specific probes designed and validated on that work to identify Sc and 

Hg were used in the present work. The permeabilization and hybridization procedure of 

FISH was optimized to be applied directly on samples during alcoholic fermentations, 

avoiding previous plate cultivation. Results obtained confirmed the species-specificity of 

both probes, since no cross-species hybridization was detected. In addition, hybridised 

cells of Hg and Sc compared well with total cells counts obtained with DAPI staining, 

revealing the effectiveness of the FISH procedure and microscopic enumeration. Thus, 

FISH proved to be a consistent and reproducible method for direct quantification of Sc 

and Hg populations during mixed fermentations and single cultures. Furthermore, FISH 

technique only detects intact cells and since the target was rRNA, it is generally 

assumed that quantification yields viable, active populations (Giraffa & Carminati, 2008).  

The cell densities profiles of Sc and Hg as determined by platting were totally 

consistent with the ones previously found by Pérez-Nevado et al. (2006) and Albergaria 

et al. (2010) for the same strains in mixed fermentations performed on SGJ. Indeed, Sc 

maintained its cultivability for at least 10 days in both mixed fermentations, while Hg lost 

the ability to form colonies after 4 and 6 days in shaken and static fermentations, 

respectively. However, as measured by both culture independent methods, QPCR 

(DNA) and FISH (rRNA), the Hg population remained at high levels (up to 107 cells/ml) 

during the entire fermentation process. However, this species population declined one 

order of magnitude when enumerated by QPCR during the second half of the 

fermentation, which did not occur by FISH analysis. The QPCR was targeted to the 

DNA and was previously developed and applied to monitor the yeast population during 
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alcoholic fermentations (Hierro et al. 2007; Andorrà et al., 2008, 2010). In the case of Sc 

the enumeration by the different methods yielded always similar results, even in the 

simulated wine fermentation that started with a certain concentration of ethanol (Fig. 4). 

In the later case, Hg cell population did not increase either by FISH or by the agar-

plating method, even in the first days of fermentation.  

Our results are similar to those found by Cocolin & Mills (2003) which studied the 

changes in the yeast population within wine fermentations as a response to sulphur 

dioxide additions by using PCR-DGGE target to DNA and rRNA. Furthermore, they also 

found that NS population could maintain high levels of DNA or RNA almost after 20 

days of being uncultivable like our results in which Hg lost its ability to form colonies 

although maintain their DNA/RNA for almost 240 hours. Those authors concluded that 

NS yeasts may persist in a non-culturable state within standard wine fermentations and 

that platting alone is insufficient to monitor the various yeast populations. Indeed, the 

use of direct molecular methods for characterising microbial environments often reveals 

different populations than observed by plating analysis. This can be due to several 

factors, including the existence of VBNC populations, injured populations and/or dead 

populations in which the cellular DNA or RNA is protected from degradation. For this 

reason, Cocolin & Mills (2003) stated that future work is required in order to discriminate 

between VBNC, injured and dead populations within wine. 

No growth of Hg could be observed on agar plates after 4-6 days in both mixed 

fermentations performed on SGJ; while FISH counts revealed the existence of up to 108 

cells/ml of Hg during the fermentation containing enough RNA to hybridise with the 

FISH probes and emit a fluorescence signal. The lack of growth of Hg when added to 

wine at mid fermentation occurred after 48 h. The levels of ethanol when Hg stopped 

growing in plates were completely different, and thus, this factor can be ruled out as the 

main cause for the loss of culturability by this species. However, under single cultivation 

Hg was able to grow on YMPD-agar plates long after sugar exhaustion, which occurred 

within 24 h. This means that Hg cells kept their culturability even after long periods of 

starvation, at least during 136 hours. Moreover, previous work carried out with the same 

yeast strain also showed that under single fermentation Hg was able to keep its 

culturability for long time (up to 15-20 days) while under mixed fermentations Hg cells 

began to loose its ability to grow on YMPD-agar plates after 1-3 days of fermentation 

depending on the initial Sc/Hg ratio (Pérez-Nevado et al., 2006, Albergaria, 2007). In 
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the present work, by applying molecular methods (either FISH or QPCR), high Hg 

populations (up to 108 cells/ml) were present throughout the mixed fermentations. Put 

together, all these findings raise the question to know both how many of these cells are 

metabolically active and how these metabolically active Hg populations would influence 

the final wines. In addition, it remains to be determined if these populations correspond 

to VBNC, injured and/or dead cells.  

The yeast population during mixed fermentations was analyzed by FC using cells 

hybridized with the respective species-specific FITC-labeled probes. The use of FISH 

combined with FC can be used for the analysis of the different physiological states, by 

determining the levels of rRNA during the different stages of winemaking. Quantification 

of the number of Sc and Hg cells along the mixed fermentation by FC compared well 

with results from FISH microscopic enumeration. The fluorescence intensity of Sc cells 

was much higher (up to 10 times) during the exponential phase than in stationary 

phase, whereas for Hg cells only a slight decrease of fluorescence was observed.  

The observed results have to be put in relation with the kinetics and main 

physiological changes of the microbial population during alcoholic fermentation. Yeasts 

during winemaking are found in different growth stages (lag, exponential and stationary 

phases) and variable rRNA copy number was found with differences up 4-fold lower 

(corresponding to 2 Ct when estimated by QPCR) in the stationary phase samples than 

in the lag and exponential phase (Hierro et al., 2006). Thus, the decrease in 

fluorescence by Sc hybridised cells after the exponential phase indicated higher protein 

synthesis during this phase. Since the number of intact ribosomes approximately 

reflects the rates of protein synthesis, rRNA has been proposed as a more 

representative target for assessing cell viability and as a general good marker of 

metabolic activity (Ward et al., 1992; Vardervliet et al., 1994; Felske et al., 2000). 

However, RNA is easily degraded by RNase enzymes, which is avoided in FISH 

technique since there is no need for previous extraction and manipulation of RNA thus 

the degradation of RNA is prevented. The stability of the rRNA was evaluated for both 

yeasts by either boiling cells (10 min at 100 ºC) or treating cells with RNases (10 min at 

65ºC) revealing that Hg boiled cells maintained similar amounts of rRNA for at least 96 

h, while Sc boiled cells lost all rRNA within 24 h after boiling. RNase treatments 

completely destroyed the rRNA content of cells in both yeast species. Moreover, boiled 

cells of Hg hybridised after RNase treatment didn’t show any fluorescence, this 

confirmed that there wasn’t any non-specific hybridisation between FISH-probe and 
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other cell structures. Thus, the fluorescence emitted by the hybridised cells should be 

attributed entirely to hybridisation of FISH probes with the respective rRNA target-

sequence for yeast species. These results allow concluding that the fluorescence 

intensity conferred by these FISH-probes can be taken as an indirect measure of the 

cellular rRNA content. However, it should be emphasized that there is a significant 

presence of Hg rRNA after boiling, which could be due to two main reasons, survival to 

boiling by Hg or maintenance of ribosomal structure for long after cell death. 

The effect of the viable but non culturable microorganisms during the alcoholic 

fermentation is not clear enough. Microorganisms can be present in changing 

physiological states during the different stages of winemaking. These physiological 

states could change from fully alive to almost dead, with different metabolic activities 

that could alter easily the fragile status of a wine by a release of metabolites. There is a 

strong need for doing research in these “late-live” statuses that could be really relevant 

in the last phases of the wine maturation, ageing, bottling and storing prior the 

consumption. Although in the present work we have used different culture-independent 

methodologies for estimating the viability of the cells. However, this viability has to be 

put in terms of metabolic activity and, still, this concept has to be further defined and 

oriented according the aims of the determination. Thus, in winemaking, for instance, the 

concept of metabolic activity related to non-Saccharomyces yeasts should be measured 

according to the production or release of unwanted metabolites (or in other words, 

spoilage potential) and thus the methods used should incorporate this potential for an 

appropriate estimation of “metabolic activity” of non culturable cells. 
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GE�ERAL DISCUSSIO� 

 

- Culture-independent methods 

The study of microbial population dynamics during wine fermentation has 

traditionally been conducted using culture-dependent methods. Nevertheless, these 

methods fail to characterize the microorganisms that grow slowly or do not grow well on 

a plate, or whose population size is too small to be detected by regular sampling. 

Several factors influence the ability of cells to reproduce, and the detection of cells in 

samples by culturing (Lloyd & Hayes, 1995). It is well known that starvation and other 

multiple stresses underlying bioprocesses and natural environments induce cells to 

adopt non-culturable states to withstand stress and survive (Tonon & Lonvaud-Funel, 

2000; Ganesan et al., 2007). In such states, microorganisms lose their ability to grow on 

nutrient non-selective media that normally support their growth, but exhibit metabolic 

activity to various extents. Responses to stress vary according to the species and the 

type of stress, and there are numerous specific stress-resistant forms (Oliver, 2005). 

Resistance to different stress forms, like chemical or heat shock, osmotic stress and 

dehydration, etc. has been attributed to entry into VBNC.  

Nowadays, then, there is a clear interest in developing more efficient and rapid 

methods for assessing the presence of microorganisms. Molecular culture-independent 

techniques identify and quantify microorganisms regardless of their ability to grow or 

form colonies, because they do not require microorganisms to be previously cultured. 

The presence of these states has led to the introduction of several culture-independent 

techniques so that these different states of viability can be characterized and quantified 

as well as the diversity of microorganisms (Justé et al., 2008). In this study a variety of 

culture-independent techniques have been adapted and developed: QPCR, DGGE and 

direct cloning of amplified DNA. These techniques are also quicker than culture-

dependent techniques. 

DGGE is a good tool for studying the diversity of an unknown sample; it is both 

reliable and rapid. The main advantage is that an exhaustive knowledge of the microbial 

genomes is not required because universally conserved regions are used for the 

amplification. The main drawback is that it has difficulty in detecting minor species, 

especially when the best adapted species are an overwhelming majority (Renouf et al., 

2007). Its detection limit in a pure culture is 103 cells/ml. However, in a mixed culture, it 

is higher. In fact, populations lower than 1% of the major species are not detected 
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(Prakitchaiwattana et al., 2004). In the work reported here the detection limit was similar 

to those reported by other authors (Cocolin et al., 2001; Prakitchaiwattana et al., 2004). 

In wine fermentation, when the S. cerevisiae population rose to 108 cells/ml, none of the 

yeasts with population sizes lower than 106 cells/ml were detected. However, the 

detection limit for bacteria species was around 103 cells/ml because no competitive 

DNA from other bacterial groups was present in these wine samples. Thus, DGGE is 

ideal for detecting species diversity in a mixed population with similar relative 

proportions, although the massive presence of a given species decreased the chances 

of detecting the minor species. One possible solution could be to design specific 

primers for some groups of microorganisms of interest. These primers would not amplify 

the main groups, and the technique would still be used as a tool for studying 

microorganism diversity.  

Direct cloning of the amplified ribosomal region of yeasts is another culture-

independent technique that has been developed for studying wine yeast diversity. This 

technique can detect a greater diversity of species than DGGE and their relative 

quantification. The main problem of this technique is that it analyzes only a small 

fraction of the population, as the number of colonies analyzed is limited, and the results 

are therefore only semi-quantitative or qualitative. It is a straightforward and reliable 

technique, although it is time-consuming and tedious. 

The QPCR technique accurately quantifies minor microbial groups, regardless of 

an overwhelming presence of other microbial groups. Its detection limit is very low, 

around 102 cells/ml, and can even be lowered further by concentrating the sample. 

Reproducibility is good and it is rapid. The only limitation is that the DNA sequence of 

the microorganisms studied needs to be known. It is therefore more useful for studying 

the changes of known microorganisms during a process such as alcoholic fermentation, 

than for studying microbial diversity. The development of new primers or sequences of 

important microorganisms could be one of the goals of the studies carried out with this 

technique, so that the approach to the population dynamics of a particular process 

would be more accurate. In this thesis, a new pair of primers has been designed for C. 

zemplinina from the D1/D2 domain of the 26S rRNA gene. The specificity and sensitivity 

of these primers are satisfactory, and comparable to those of the other primers used in 

the study.  
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One possible drawback of the culture-independent techniques is the use of the 

very stable molecule DNA as template in the PCR reaction. This may overestimate the 

counts by amplifying the DNA from dead cells. One way round this problem would be to 

use RNA or dyes to eliminate the amplification of DNA from dead cells (Nocker & 

Camper, 2006). Taking these problems into account, two culture-independent methods 

were developed to differentiate between live and dead cells; FISH and the EMA-, PMA-

QPCR technique. The former uses the rRNA as a target and the latter uses a dye 

treatment to differentiate between live and dead cells after DNA extraction. 

FISH proved to be a good tool to be applied directly for identifying and 

quantifying a variety of viable yeast species. The target used in this study is rRNA which 

has long been reported to be a good representative target for viability (Vandervliet et al., 

1994). Felske et al. (2000) used rRNA as a marker for general metabolic activity, 

because the number of ribosomes reflects the rates of protein synthesis. Hierro et al. 

(2006) also used rRNA to quantify yeast, but the fact that the gene expression depends 

on the physiological state of the cell might be a drawback. Yeasts in wines are found in 

different growth stages (lag, exponential and stationary phases) and the rRNA copy 

number was up to two cycle thresholds (Ct) lower in the stationary phase samples than 

in the lag and exponential phases (Hierro et al., 2006). An alternative to rRNA could be 

messenger RNA, which has also been chosen for viability studies; however, variable 

half-lives and expression patterns can make mRNA less attractive (Sheridan et al., 

1998). FISH technique does not require the RNA to be previously extracted and 

manipulated, which prevents the RNA from degrading.  

Some studies have compared the results obtained with RNA or DNA. Cocolin & 

Mills (2003) studied the changes in yeast population as a response to sulphur dioxide 

additions using DGGE with DNA and rRNA. These authors reported that cells could 

maintain high levels of DNA or RNA almost after 20 days of being unculturable. In 

agreement with our results, the changes of different yeast species using DNA or RNA 

did not present significant differences. Furthermore, in this study, dead cells were 

analysed after boiling and/or RNase treatment. The results showed that RNA 

disappeared when RNase was used, but that for S. cerevisiae it took 24 hours to reduce 

RNA when the cells were killed by boiling. The same results were obtained by Hierro et 

al. (2006). In the present thesis, we detected that RNA levels were the same 96 hours 

after a culture of H. guilliermondii had been boiled. This may be due to the fact that 

some cell structures were maintained after boiling in Hanseniaspora species, which lose 
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their ability to form colonies and keep the same levels of rRNA. However, the ribosome 

can be a rather stable organelle and depending on the species, the structure and the 

associated rRNA can survive for different lengths of time before they show any 

significant reduction in number. 

FISH proved to be a good technique for analysing populations in which various 

microorganisms coexist. In fact, several microorganisms can be detected 

simultaneously using different probes stained with specific fluorochromes. Finally, the 

use of FISH combined with flow cytometry enables the method to be automated and 

different microorganisms to be quantified in the same analysis in a short time. This 

technique has the added value that it reduces the subjectivity of microscope counting. 

Flow cytometry can quantify fluorescence intensity, which was much higher during the 

exponential phase of S. cerevisiae than the rest of the stationary phase and all the 

growth phases of H. guilliermondii. FISH targeting rRNA seemed to be useful for 

detecting and quantifying microorganisms, and it can also be a good tool for studying 

the viability of yeast species. Furthermore, FISH combined with flow cytometry can be 

used to analyse the different physiological states, by determining the rRNA levels during 

the different stages of winemaking.  

The second technique used for differentiating dead and live cells was QPCR with 

a previous dye treatment with EMA or PMA, which enter the dead cells and prevent 

their DNA from being detected (Rudi et al., 2005; Nocker & Camper, 2006; Nocker et 

al., 2006). The QPCR technique with the previous dye treatment allows a rapid 

quantification of viable cells.This technique showed a good correlation between EMA-, 

PMA-QPCR and cell plating in an exponential phase. The direct analysis of wine 

samples had to be modified to correct the effect of ethanol on yeast membrane 

permeability. When the dyes were applied directly to wine yeasts, the enumeration was 

much lower than on agar plates. To confirm that this underestimation in the dye-treated 

samples was the result of the higher permeability of the plasma membrane of cells 

exposed to ethanol, two different commercial kits were used to test yeast viability (Van 

Zandycke, 2003; Zhang & Fang, 2004). The use of these kits also showed that the 

viability of cells directly from wine samples with high ethanol content was not as high as 

the culturable population. Only a cell recovery step for two hours at 13ºC provided a 

good correlation between plates and “live cells”. In further studies, this procedure of 

removing DNA from dead cells should also be applied to DGGE and direct cloning of 
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the amplified ribosomal region to prevent the amplification of the DNA of dead cells. In 

this quantification, the detection limits of EMA- and PMA-QPCR decreased to 1 cell/ml 

by sample concentration. Interference of the matrix was tested, but it did not have any 

effect. Both techniques should also be applied to the detection and quantification of 

different wine bacteria species so as to provide more in-depth knowledge of the 

microbial aspects of the process. 

Finally, it is important to underline that all the culture-independent techniques 

which use amplification may have associated biases. Firstly, wine contains such 

inhibitors as phenols, polysaccharides and pigments and their presence has been 

reported as interfering the PCR process. This could reduce the effectiveness of the 

amplification (Tessonniere et al., 2009). Although Hierro et al. (2006) showed small 

differences in the standard curves obtained by using culture media or wine, our results 

showed that these compounds did not interfere at all, even when samples concentrated 

50-fold were used. Secondly, the efficiency in the DNA purification and amplification of 

the different species may not be the same. And finally, inter-specific genomic 

differences such as variations in the copy number of the ribosomal region may produce 

errors. To prevent them, it is recommendable to have electrophoretic patterns (for the 

DGGE technique) or standard curves (for the QPCR) with the same media in which the 

analysed species are likely to be found. 

 

- Oenological applications 

One of the main objectives of this thesis was to use these methods to analyse 

the population dynamics of microbiota during winemaking. DGGE and QPCR 

techniques were used to monitor a variety of wine fermentations, and the effect of 

various oenological practices, such as the addition of sulphur dioxide and yeast 

inoculation, was studied. In the same winery, other members of our group, Constantí et 

al. (1998) and González et al. (2005), studied the effect of these practices upon yeast 

and AAB population dynamics, respectively, although they used culture-dependent 

techniques. Their results showed that these practices restricted the growth of 

indigenous yeasts and bacterial populations. Our results, however, were obtained with 

culture-independent techniques and did not show the same population dynamics: non-

Saccharomyces species and AAB were not suppressed by these practices, their growth 

was merely restricted. Sulphur dioxide, then, modified the physiology and/or the state of 

the microorganisms but it did not kill them. This was also observed by Cocolin & Mills 
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(2003) when they studied the effect of sulphur dioxide using DGGE with DNA and RNA 

as a target for yeast species. Both yeast inoculation and sulphur dioxide kept the lactic 

acid bacteria populations at very low levels. Meanwhile, acetic acid bacteria were only 

slightly affected by these two practices, as indicated by QPCR and DGGE. The former 

showed that the population was between 104-105 cells/ml, and the latter that two 

species of AAB were present throughout the process. A good correlation between both 

techniques was obtained for AAB detection. The same cannot be said of yeasts; 

whereas S. cerevisiae was present throughout the process with both techniques, 

Hanseniaspora was only detected with QPCR, and DGGE only detected Hanseniaspora 

the first day of fermentation, when S. cerevisiae did not reach the maximum population, 

according to QPCR.  

Direct cloning of the amplified ribosomal region of yeasts was applied together 

with DGGE and QPCR to study the population dynamics of different microorganisms 

during fermentations at different temperatures (low and standard temperatures). The 

results were also compared with those of culture-dependent techniques. The 

fermentation temperature has been reported to affect the ecology of wine fermentation. 

Sharf & Margalith (1983) suggested that H. uvarum was more capable than S. 

cerevisiae of growing at lower temperatures, and Heard & Fleet (1988) showed that H. 

uvarum and C. stellata retained high populations until the end of fermentations 

conducted at low temperatures. Finally, Ribéreau-Gayon et al. (2006) reported that LAB 

and AAB populations were reduced by low-temperature fermentations. However, our 

results did not show the same population dynamics when we used culture-independent 

techniques. In this case, the population of Hanseniaspora was as expected: it 

decreased throughout the process and at lower temperatures numbers were higher. At 

the end of both fermentations, Hanseniaspora reached population sizes around 105 

cells/ml. Meanwhile, the population of C. zemplinina stayed constant and only 

decreased at the end of fermentation, achieving populations higher than 106 cells/ml. C. 

zemplinina presented the highest populations in the fermentation conducted at 25ºC 

throughout the process, while at low fermentation temperatures the population was 

highest at the end. However, C. zemplinina seems to be well adapted to the must 

fermentation medium, as is S. cerevisiae.  

The use of culture-independent techniques showed a high presence and 

permanence of non-Saccharomyces yeasts and bacteria species throughout the wine 
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fermentation, not only in the first days of fermentation. We found a permanent 

population of AAB species, despite the anaerobic conditions of the alcoholic 

fermentation. Our results agree with those obtained by Millet & Lonvaud-Funel (2000) 

and Bartowsky & Henschke (2008). 

These techniques have also been applied to analyse yeast dynamics in media 

that had been inoculated with a mix of different yeasts. Mixed yeast inoculation has 

been proposed as an oenological practice to increase the complexity of wines (Ciani et 

al., 2010), although questions about the survival of the different species and the control 

of the population dynamics still need to be answered (Mills et al., 2008). It has always 

been assumed that S. cerevisiae takes over the fermentation soon after it starts, so the 

survival of the non-Saccharomyces yeasts is restricted in the very early phases of the 

fermentation (Fleet, 2003). However, our previous results contradicted these 

expectations and several fermentations were set up to analyse the population dynamics 

of different yeast species used as inocula in both pure and mixed fermentations. One 

fermentation was conducted with natural must and the other with synthetic must. The 

former contained the grape precursors and low nitrogen sources; the latter was a 

standard medium. The fermentation capacity of the different species studied was very 

different. C. zemplinina ended the fermentation with a slight delay compared with S. 

cerevisiae, but the H. uvarum pure culture was unable to finish it. The mixed 

fermentations also had different characteristics. In all cases, the non-Saccharomcyes 

were not completely taken over and it must be assumed that they were present 

throughout the fermentations and definitely contributed to the quality of the final wine. 

When EMA- or PMA-QPCR techniques were applied to monitor wine 

fermentations, the results were different from those obtained without these dyes 

treatment, showing that not all the cells present during the alcoholic fermentation were 

alive. Thus, the results mentioned above should be revised. Meanwhile, the evolution of 

H. guilliermondii and S. cerevisiae in a synthetic medium followed by FISH, QPCR and 

plating showed that H. guilliermondii lose their ability to form colonies despite the 

continuing high levels of RNA and DNA. Quantification by QPCR and FISH showed no 

significant differences. Finally, EMA- and PMA-QPCR techniques were also applied to 

quantify different wine yeast species in ageing and stored wines; in this case the results 

showed the same population of yeasts quantified by QPCR with or without the dye 

treatment, indicating that all the cells were alive, although not all of them could form a 
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colony. As far as we know this was the first time that this technique had been applied to 

monitor different wine microorganisms during alcoholic fermentation.  

- Impact of wine microorganisms conducting the fermentation 

Wine is the result of the interaction of different yeast species, in particular the 

interaction of non-Saccharomyces yeasts and Saccharomyces spp. Romano et al. 

(2003) postulated that it is advantageous to formulate and use mixed starter cultures. In 

our study, we concluded that C. zemplinina produce higher glycerol content than S. 

cerevisiae, as previously described (Ciani & Ferraro, 1996, 1998; Ferraro et al., 2000). 

That was not the only change, because also the production of 2-methyl-1-propanol was 

higher and of phenylethyl acetate lower. Instead, H. uvarum produced higher quantities 

of isoamyl acetate (Moreira et al., 2008). In the present study we found that, in general, 

non-Saccharomyces species increased the production of higher alcohols, their acetates 

and fatty acids. Pure non-Saccharomyces either do not ferment well or produce an 

excess of some volatile compounds, but mixed cultures presented good fermentation 

rates and lower concentrations of volatile compounds. Although more experiments are 

needed, particularly on an industrial scale, the present study shows that mixed 

fermentations are an alternative for conducting alcoholic fermentations. Furthermore, 

the initial must seems to be very important in the production of volatile compounds. 

Amino acids in the must are the precursors of higher alcohols. Hernandez-Orte et al. 

(2002) demonstrated that there is a close relationship between the amino acid 

composition of must and the final content of important volatile compounds in wine. 

Finally, the consumption of amino acids depends on their availability in the 

medium and the yeast species conducting the fermentation. S. cerevisiae are known to 

consume a variety of nitrogen sources (Magasanik & Kaiser, 2002; Beltran et al., 2004). 

A particularly important observation of the present study was the dramatic difference 

between S. cerevisiae and the other non-Saccharomyces species in the use of nitrogen 

sources. S. cerevisiae was very efficient at using nitrogen, whereas the non-

Saccharomyces species needed larger amounts of nitrogen to build the same biomass. 

In mixed cultures, and because of the greater presence of non-Saccharomyces species, 

the nitrogen/biomass efficiency was also lower than that of S. cerevisiae. Because 

nitrogen is limited in natural grape musts, the competition of the different species for the 

nitrogen available could be an additional factor that explains the prevalence of S. 

cerevisiae in natural alcoholic fermentations. 
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- Impact of viable but non-culturable microorganisms in wine 

It is not clear what effect these viable but non-culturable microorganisms have on 

alcoholic fermentation. Microorganisms can be present in different physiological states 

during the different stages of winemaking. These physiological states can vary from fully 

alive to almost dead, and their different metabolic activities could easily alter the fragile 

status of a wine by releasing uncontrolled metabolites. There is a strong need to carry 

out research in these “late-live” statuses, which can play an important role in the last 

phases of wine maturation, ageing, bottling and storing prior the consumption. This 

research could focus on cell state and how to determine the state in different phases, in 

order to understand the impact the cells might have on the final product. In the last part 

of this study, in which a mixed fermentation of H. guilliermondii and S. cerevisiae was 

analysed, FISH showed that the population of H. guilliermondii was a little higher than 

S. cerevisiae throughout the fermentation.  

To sum up, culture-independent techniques need to be developed to control the 

microbiota associated to wine production. If the microorganisms are not previously 

cultured, results are obtained faster and the microbial population can be better 

understood. EMA- or PMA-QPCR applied to wines and wine fermentations may prevent 

the DNA from dead cells from being included as live cells. A combination of EMA- or 

PMA-QPCR, FISH and flow cytometry, then, may be the best options for simultaneously 

analysing and quantifying a given population. Nevertheless, culture-independent 

techniques, and especially those that can determine the cell physiological status, are 

useful for diversity studies. One possible solution could be to combine some of the 

modifications mentioned above (EMA, PMA) with DGGE. This technique can be 

improved also by designing primers to prevent the exclusive amplification of the 

dominant species, like S. cerevisiae.  

New techniques to differentiate between live and dead microorganisms have 

been developed or adapted so that they can be used to better control the wine 

production process. Further research is under way, not only to understand the identity of 

the species responsible for wine spoilage or wine character, but also to quantify their 

spoiling or production capacity. Identifying the species or strains present in a wine 

fermentation, then, and also the presence or absence of a particular enzyme can be 

good tools for controlling the quality of wine. This could be done at different levels: 

enzyme activity, gene presence or gene expression. Perhaps the best level is gene 
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expression which can easily be quantified by QPCR. Other new technologies such as 

pyrosequencing, metagenomics, etc. might be applied in winemaking to have better 

microbiological control of the overall process. 
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GENERAL CONCLUSIONS 

 

BIOTECHNOLOGICAL CONCLUSIONS 

 

1. Culture-independent techniques enable different wine yeasts and bacteria 

species to be rapidly detected and quantified without the selectivity of growing 

cells in a culture medium.  

 

2. The main advantage of QPCR is the identification and quantification with a high 

specificity and sensibility. Its main limitation is the availability of specific primers. 

If it is combined with the DNA binding dyes EMA or PMA viable yeasts species 

can be rapidly identified and quantified. 

 

3. DGGE is a good tool for carrying out diversity studies for yeasts, and acetic and 

lactic acid bacteria. The main problem is the detection limit of minor species in 

mixed populations. This could be overcome by designing specific primers that 

exclude the majority species. 

 

4. The direct cloning of amplified ribosomal genes of yeasts shows a greater 

diversity of species than DGGE with a semi-quantitative estimation. The main 

drawback is that it is time consuming. 

 

5. FISH was successfully applied for S. cerevisiae and H. guilliermondii. In 

combination with Flow Cytometry different microorganisms can be quantified in 

the same analysis in a short time and the different physiological states of wine 

yeasts can be determined. 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
ADAPTATION AND DEVELOPMENT OF CULTURE-INDEPENDENT TECHNIQUES FOR THE INDENTIFICATION AND ENUMERATION 
OF MICROORGANISMS IN WINE FERMENTATIONS 
Immaculada Andorrà Solsona 
ISBN:978-84-693-8859-4/DL:T.1948-2010 



General Conclusions 

 

 

 220 

OENOLOGICAL CONCLUSIONS 

 

1. Culture-independent techniques showed a higher presence and permanence of 

non-Saccharomyces species and acetic acid bacteria during the fermentation.  

 

2. Inoculation and the addition of sulphur dioxide did not suppress the growth of 

non-Saccharomyces yeasts species or acetic acid bacteria. Only lactic acid 

bacteria were affected by these practices.  

 

3. The consumption of different nitrogen sources is affected by the presence of 

different species. S. cerevisiae is extremely efficient at using nitrogen to develop 

high populations and this could be critical in taking over the alcoholic 

fermentation.  
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ANNEX 1 

 

1. Culture media 

1.1. YPD 

Yeast Extract Peptone Dextrose. General medium to grown yeast  

 Glucose   20 g/L   distilled water 

 Peptone   20 g/L 

 Yeast Extract 10 g/L 

This medium could be liquid or solid adding 20 g/L of agar  

Autoclave at 121ºC for 15 min.  

 

1.2. LYS (Angelo & Siebert, 1987) 

This medium supports the growing of non-Saccharomyces yeast. Saccharomyces yeast 

could not grow in a medium which unique source of Nitrogen is Lysine. Then, this is 

fairly used to distinguish between Saccharomyces and non-Saccharomyces yeast.  

 Lysine medium  66 g/L  distilled water 

 Lactate potassium  4 ml/L 

Bring to boil this medium with constant agitation, to avoid any overheating. 

When the medium is around 50ºC add 1 ml lactic acid 10% to adjust the pH at 5. 

Proceed to distribute in plates, around 20 ml per plate. 

 

 Lactate potassium  18 ml lactic acid 85% 

    14 g KOH 

 

1.3. MRS 

This is the general medium to grow lactic acid bacteria.  

 MRS medium  55 g/L  distilled water 

 DL-Malic  6 g/L 

 Fructose  5 g/L 

 Cysteine  0,5 g/L 

This medium could be liquid or solid (adding 20 g/L of agar). 

Autoclave at 121ºC for 15 min. 
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1.4. GY 

Glucose media. This is general to grow acetic acid bacteria. 

 Glucose  10 g/L  distilled water 

 Yeast Extract  10 g/L 

3% Calcium carbonate can be added to be able to diferentiate the acid production for 

AAB forming a halo surrounding the AAB colony. 

This medium could be liquid or solid (adding 20 g/L of agar). 

Autoclave at 121ºC for 15 min. 

 

2. Synthetic must 

 Glucose   100 g/L  distilled water 

 Fructose  100 g/L 

 DL-malic acid     5 g/L 

 Citric acid   0.5 g/L 

 Tartaric acid      3 g/L 

 KH2PO4          0.75 g/L 

 K2SO4             0.5 g/L 

 MgSO4 7H2O        0.25 g/L 

 CaCl2 2H2O          0.16 g/L 

 NaCl   0.2 g/L 

 NH4Cl           0.47 g/L 

Autoclaved at 121ºC for 15 min, once autoclaved add the next solution previous 

sterilized; 

 Amino acid solution  13.09 ml/L 

 Oligoelements solution        1 ml/L 

 Vitamines solution       10 ml/L 

 Anaerobiosi factors         1 ml/L 

Adjust pH 3.3 (with NaOH 10 M) 

 

 - Amino acid solution 

  Tyrosine (Tyr)    1.5 g/L  (heat at 100ºC) 

  Tryptophan (Trp)  13.4 g/L        (70ºC) 

  Isoleucine (Ile)    2.5 g/L        (70ºC) 

UNIVERSITAT ROVIRA I VIRGILI 
ADAPTATION AND DEVELOPMENT OF CULTURE-INDEPENDENT TECHNIQUES FOR THE INDENTIFICATION AND ENUMERATION 
OF MICROORGANISMS IN WINE FERMENTATIONS 
Immaculada Andorrà Solsona 
ISBN:978-84-693-8859-4/DL:T.1948-2010 



Annexes 

 227 

  Aspartic acid (Asp)    3.4 g/L  (degas CO2) 

  Glutamic acid (Glu)    9.2 g/L  (degas CO2) 

  Arginine (Arg)  28.3 g/L 

  Leucine (Leu)    3.7 g/L 

  Threonine (Thr)    5.8 g/L 

  Glycine (Gly)     1.4 g/L 

  Glutamine (Gln)  38.4 g/L 

  Alanine (Ala)   11.2 g/L 

  Valine (Val)     3.4 g/L 

  Methionine (Met)    2.4 g/L 

  Phenylalanine (Phe)   2.9 g/L 

  Serine (Ser)     6.0 g/L 

  Histidine (His)    2.6 g/L 

  Lysine (Lys)     1.3 g/L 

  Cysteine (Cys)    1.5 g/L 

  Proline (Pro)   46.1 g/L 

Sterilization by filtration, divided into aliquota and keep at -20ºC. 

 

 - Oligoelements solution 

  MnSO4 H2O  4 g/L 

  ZnSO4 7H2O  4 g/L 

  CuSO4 5H2O  1 g/L 

  KI   1 g/L 

  CoCl2 6H2O         0.4 g/L 

  H3BO3   1 g/L 

  (NH4)6Mo7O24 1 g/L 

   Sterilization by filtration, divided into aliquota and keep at 4ºC. 

 

- Vitamines solution 

  Myo-inositol          2 g/L 

  Pantothenate calcium   0.15 g/L 

  Thiamine hydrochloride 0.025 g/L 

  Nicotinic acid       0.2 g/L 

  Pyridoxine   0.025 g/L 
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  Biotine   3 ml/L from 100 mg/ml 

   Sterilization by filtration, divided into aliquota and keep at -20ºC. 

 

- Anaerobiosis factors  

  Ergosterol    1.5 g 

  Oleic acid  0.5 ml 

  Tween 80   50 ml 

  Ethanol  up to 100 ml 

   Heat the solution at 70ºC to dissolve 

   Maintain this solution at 4ºC in aliquots. 

 

3. Monitoring wine fermentations 

3.1. Density 

During wine fermentation yeasts metabolize sugars; the decrease of sugars is directly 

proportional to the decrease of density. This is the method most used to follow the 

alcoholic fermentation, because of the simplicity of this technique. There are different 

methods to measure the density, using manual or automatized densimeters.  

 manual          automatized 

 

3.2. Optical density 

The spectophotometer measure the absorbance at 600 nm. This absorbance is directly 

proportional to the biomass formed by microorganisms. The cells in a medium have the 

capability to disperse the light, this make to the medium change their turbidity, being 

more turbid. The absorbance can be directly related to the biomass although standard 

curves have to be created for each microorganism.  
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3.3. Plate counting 

Different microorganisms will plated in a medium and incubated during specific time and 

conditions, after this incubation time each cell will form a colony and counting the 

colonies will be obtained the number of colony form units (UFC/ml).  

For plating, in this thesis, was used a Whitley Automatic Spiral Plating (AES 

Laboratoire, France), and for counting the colonies was used and automatic colony 

counter ProtoCol HR (Microbiology international, USA).  
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3.4. Microscope counting 

The number of total microorganisms can be determined counting the cells with a 

microscope and a Neubauer chamber. Following there is a representation of a 

Neubauer chamber, with the different squares which can be used to count the cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. DNA Extraction of wine microorganism by mini plant kit (Qiagen) (Hierro et al., 

2006) 

1.  Collect 1ml of a homogeneous cell solution. Centrifuge 10 minuts at 12000 rpm. 

2.  Wash the pellet with 1000 ml of distilled water. Centrifuge 10 minuts at 12000 rpm. 

3. Cells are resuspended in lysis Buffer AP1. The solution is transferred into a 

microcentrifuge tube of 2 ml with 1 g of glass bits with 0.5 mm of diameter.  

4. The wall of yeasts is broken with a high agitation in the mini bead-beater (Biospec 

Products Inc., Bartlesville, Okla.), this agitation is conducted during 1 minut a max. 

velocity then 1 minut in ice, and this is repeated 3 times, to avoid an overheating of 

the sample.  

5. Centrifugate for 1 min at 10000 rpm.  

6. Transfer the solution (cells disrupted + Buffer AP1) to an eppendorf (aprox. 400 µl) 

and 4 µl RNasa A. Vortex and incubate for 10 min at 65ºC. Invert tube 2-3 times 

during incubation. 

7. Add 130 µl Buffer AP2. Mix and incubate for 5 min on ice. 

8. Centrifugate the lysate for 5 min at 14000 rpm at 4ºC. 

A

B C

A

B C

Relation among different squares, 
A = 16 B 
B = 25 C 

Profundity = 0.1 mm 
 
Volume A = 1 x 1 x 0.1 = 0.1 mm3 = 10-4 ml 
Volume B = 0.25 x 0.25 x 0.1 x 10-3 = 6.25 10-6 ml 
Volume C = 0.05 x 0.05 x 0.1 x 10-3 = 2.5 10-7 ml 

Equation 

(Cells number) / (Square number x Square volume 

x dilution) = number of cells/ml 
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9. Pipet the lysate into a QIAshredder Mini spin column in a 2 ml collection tube. 

Centrifugate for 2 min at 14000 rpm.  

10. Transfer the flow-through fraction (450 µl aprox.) into a new tube without disturbing 

the pellet. Add 675 µl of Buffer AP3/E and mix by pipetting.  

11. Transfer 650 µl of the mixture into a DNeasy Mini spin column in a 2 ml collection 

tube. Centrifuge for 1 min at 10000 rpm. Discard the flow-through. Repeat this step 

with the remaining sample. 

12. Place the spin column into a new 2 ml collection tube. Add 500 µl Buffer AW, and 

centrifuge for 1 min at 10000 rpm. Discard flow-through.  

13. Add another 500 µl Buffer AW. Centrifuge for 2 min at 14000 rpm.  

14. Transfer the spin column to a new 1.5 ml microcentrifuge tube, and add 100 µl 

Buffer AE for elution. Incubate for 5 min at room temperature. Centrifuge for 1 min at 

10000 rpm.  

 

5. Electrophoresis 

5.1. Solutions 

Buffer TBE 10 X   Tris base  108 g/L 

Boric acid    55 g/L 

EDTA    7.5 g/L 

Adjust the pH at 8 with NaOH 

 

Loading buffer  0.10 % (p/v) bromophenol blue 

50 % (v/v) glycerol 

10% (v/v) TBE 10 X 

40 % (v/v) distilled water 

Agarosa MP (Boehringer Mannheim)  

Etidium Bromide (Fluka, Sigma) 

Molecular ladder normaly used 100 pb DNA (Invitrogen) 

 

5.2. Procedure 

Measure the agarose to create the gel, higher the agarose concentration higher the 

retention of the fragments. Normally we use 1% p/v and to increase the separation 

between different bands we use 2-3 % p/v. 

UNIVERSITAT ROVIRA I VIRGILI 
ADAPTATION AND DEVELOPMENT OF CULTURE-INDEPENDENT TECHNIQUES FOR THE INDENTIFICATION AND ENUMERATION 
OF MICROORGANISMS IN WINE FERMENTATIONS 
Immaculada Andorrà Solsona 
ISBN:978-84-693-8859-4/DL:T.1948-2010 



Annexes 

 

 

 232 

Dissolve the agarose in buffer TBE 1 X by heating. Carefully bring the solution just to 

the boil to dissolve the agarose. Let the solution cool down to about 60 °C. Add etidium 

bromide to a final concentration of 0.4 µg/ml, and pour the solution it into the gel rack. 

Insert the comb at one side of the gel, about 5-10 mm from the end of the gel. When the 

gel has cooled down and become solid, carefully remove the comb. The holes that 

remain in the gel are the wells or slots. Put the gel, together with the rack, into a tank 

with TBE 1 X. The gel must be completely covered with TBE 1 X, with the slots at the 

end electrode that will have the negative current. Then the sample and the DNA ladder 

have to be injected, first the sample has to be mixed with 2-4 µl of charge buffer. Then 

the voltage is adjusted, normally between 60-90 V and finally the gel is observed 

through a transiluminator UV system. The image was captured using MiniBis Pro (DNR 

Bio-Imaging Systems Ltd., Israel). 

 

6. Molecular techniques 

6.1. RFLP rDNA (Guillamón et al., 1998) 

This technique was applied to identify yeasts species. Consist first in an amplification of 

the region comprised between the 18S and 26S rDNA gene. And latter a digestion with 

several restriction enzymes.  

The first stage of this technique is the amplification, the primers used are,  

 

 

 

 

 

 

 

ITS1  5’- TCCGTACGTGAACCTGCGG - 3’ 

ITS4  5’- TCCTCCGCTTATTGATATGC - 3’ 
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The mix for the amplification is done in 50 µl of total volume containing,  

 

 

 

  

 

 

 

 

 

The PCR conditions are,  

 

 

 

 

 

 

Once obtained the amplified fragment, the fragment can be tested using a gel 

electrophoresis (1% p/v), after it is done the digestion. This can use different restriction 

enzymes. In this work was used, CfoI, HaeIII, HinfI, DraI (Roche Diagnostics). The mix 

used to conduct the digestion is in 20 µl of total volume.  

  

 

 

 

 

This reaction was conducted overnight at 37ºC. Finally the product is carried in an 

eletrophoresis gel (3% p/v) to conduct the separation of the digestion bands. To 

characterize each species every gel need a molecular weight marker (MWM), normally 

we used 100 pb. Each species is characterized by the digestion bands and the 

amplified bands comparing with a known amplified and restriction bands belonging to 

specific species. The restriction patterns to conduct the identification were listed in 

Guillamón et al. (1998) and Esteve-Zarzoso et al. (1999). 

 

Primer ITS1 (10 µM)      1 µl 

Primer ITS4 (10 µM)      1 µl 

dNTPs (40 mM)       4 µl 

MgCl2 (50 mM) (Ecogen)      3 µl 

Buffer Taq 10x without Mg. (Ecogen)    5 µl 

Taq DNA polymerasa (Ecotaq, Ecogen) (5 U/ µl)     0.5 µl 

H2O milli-Q                33 µl 

DNA                2.5 µl 

Enzyme          1 µl 

Specific buffer for each enzyme      2 µl 

H2O milli-Q         9 µl 

Amplified DNA       8 µl 

95ºC 95ºC

52ºC
72ºC 72ºC

5 min

1 min

1 min 7 min

30 sec

95ºC 95ºC

52ºC
72ºC 72ºC

5 min

1 min

1 min 7 min

30 sec

35 cycles 
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6.2. Sequencing of the region D1/D2 from rDNA (Kurtzman & Robnett, 1998) 

This technique was used to identify species.This technique consists in an amplification 

and sequencing. The primer used for the amplification was,  

 

 

The mix of the amplification contains in 50 µl of total volume, 

 

 

 

 

 

 

 

 

 

The PCR programmed was, 

 

 

 

 

Finally this amplified is sent to purified and sequencing by Macrogen Inc. facilities 

(Seoul, Korea) using an ABI3730 XL automatic DNA sequencer. The result sequence is 

compared with the data base sequences European Molecular Biology Laboratory 

(EMBL) by BLAST (Basic Local Aligment Search Tool). 

 

6.3. Q-PCR 

This technique is used to quantify exactly the population of different yeasts species and 

lactic and acetic acid bacteria. The primers designed for this technique were, 

 

 

 

NL-1   5’- GCATATCAATAAGCGGAGGAAAAG - 3’ 

NL-4   5’- GGTCCGTGTTTCAAGACGG – 3’ 

 

95ºC 95ºC

52ºC
72ºC 72ºC

3 min

2 min

2 min 5 min

1 min

95ºC 95ºC

52ºC
72ºC 72ºC

3 min

2 min

2 min 5 min

1 min

Primer NL-1 (10 µM)      1 µl 

Primer NL-4 (10 µM)      1 µl 

dNTPs (40 mM)       1 µl 

MgCl2 (50 mM) (Ecogen)             2.5 µl 

Buffer Taq 10x, without Mg. (Ecogen)    5 µl 

Taq DNA polymerasa (Ecotag, Ecogen) (5 U/µl)      0.5 µl 

H2O milli-Q                37 µl 

DNA         2 µl 

36 cycles 
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-The primers for general yeasts were designed in the region D1/D2 26S gene 

(Hierro et al., 2006) 

 

 

 

The amplicon obtained is 124 pb 

 

 - The primers for S. cerevisiae were designed in the region ITS2 and 5,8S gene 

(Hierro et al., 2007) 

 

 

 

   The amplicon obtained is 175 pb 

 

- The primers for Hanseniaspora were designed in the region ITS2 and 5,8S gene 

(Hierro et al., 2007) 

 

 

 

The amplicon obtained is 121 pb 

 

- The primers for C. zemplinina were designed in the region D1/D2 of the 26S 

gene (Andorrà et al., 2010) 

 

 

 

The amplicon obtained is 60 pb 

 

- The primers for D. bruxellensis were designed in the region D1/D2 of the 26S 

gene (Phister & Mills, 2003) 

 

 

 

The amplicon obtained is 79 pb 

YEAST-F 5’-GAGTCGAGTTGTTTGGGAATGC-3’ 

YEAST-R 5’-TCTCTTTCCAAAGTTCTTTTCATCTTT-3’ 

CESP-F  5’-ATCGAATTTTTGAACGCACATTG-3’ 

SCER-R  5’-CGCAGAGAAACCTCTCTTTGGA-3’ 

CESP-F  5’-ATCGAATTTTTGAACGCACATTG-3’ 

HUV-R  5’-AACCCTGAGTATCGCCCACA -3’ 

A-F  5’-CTAGCATTGACCTCATATAGG-3’ 

200-R  5’-GCATTCCCAAACAACTCGACTC-3’ 

DBRUX-F 5’-GGATGGGTGCACCTGGTTTACAC-3’ 

DBRUX-R 5’-GAAGGGCCACA TTCACGAACCCCG-3’ 
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- The primers for Z. bailii were designed in the region D1/D2 of the 26S gene 

(Rawsthorne & Phister, 2006) 

 

 

 

The amplicon obtained is 122 pb 

 

- The primers for lactic acid bacteria were designed in the region 16S V4 and V5 

(López et al.,2003) 

 

 

 

The amplicon obtained is 400 pb 

 

- The primers for acetic acid bacteria were designed in the region 16S rDNA 

(Gonzalez et al., 2006) 

 

 

 

The amplicon obtained is 55 pb 

 

The PCR reaction is done in a total volume of 25 µl with,  

 

 

 

 

 

 

The QPCR conditions are, 
 

 

 

 

 

WLAB1   5’-TTCGGATTTATTGGGTATTCACCGCG-3’ 

WLAB2   5’-TCGAATTAAACCACATGCTCCA-3’ 

QA1-F   5’-TCAAGTCCTCATGGCCCTTATG-3’ 

QA2-R   5’-CGCCATTGTAGCACGTGTGTA-3’ 

Power SybrGreen Master Mix  12.5 µl 

Forward primer (7 µM)   0.75 µl 

Reverse primer (7 µM)   0.75 µl 

DNA           5 µl 

Distilled water         6 µl 

95ºC 95ºC

60ºC
72ºC 72ºC

10 min

1 min

30 s 5 min

15 s

95ºC 95ºC

60ºC
72ºC 72ºC

10 min

1 min

30 s 5 min

15 s

95ºC 95ºC

60ºC
72ºC 72ºC

10 min

1 min

30 s 5 min

15 s

40 cycles 

ZBF1   5′-CATGGTGTTTTGCGCC-3′ 

ZBR1   5′-CGTCCGCCACGAAGTGGTAGA-3′ 
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In this thesis Power SyberGreen (Applied Biosystems, USA) was used as a binding 

agent, this binds to the double-chained DNA. The QPCR measure the fluorescence 

signal emited by Power SyberGreen at the end of each cycle. The information obtained 

is represented as an amplification curve that provides the cycle number for which the 

intensity of donor emission increases compared with the background noise. This cycle 

number is called the cycle threshold (Ct) and is inversely proportional to the number of 

copies of the sample, thus it can be used to evaluate the initial quantity of sample 

numerically (DNA or cells) with great precision.  

 

 
 
To determine the number of cells or DNA is necessary to create standard curves by 

plotting the Ct versus the concentration of the cells or DNA, this is made with some 

dilutions of the cells with a known DNA concentration or number of cells. For each 

concentration of DNA or number of cells the QPCR gives a Ct, this value will be used to 

create the standard curves for each pair of primers. 

 
 
 
 
 
 
 
 
 
 
 

6.3.1. EMA/PMA QPCR 

Before the DNA extraction was done the binding of dyes to the DNA from dead cells to 

avoid the quantification of this DNA using the QPCR. The procedure was, 

1. Collect 1 ml of a homogeneous cell solution 
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2. Centrifuge 10 min at 12000 rpm. Discard the supernatant and add 1 ml of sterile 

distilled water. 

3. Add EMA (final concentration 24 µM) or PMA (6 µM) and maintain the solution in dark 

during 10 min.  

4. Two exposures for 30 seconds on the light (650 W halogen lamp at 20 cm from the 

samples), with an interval of 1 minut in ice were used for photolysis. 

5. Centrifuge 10 min at 12000 rpm. Discard the supernatant to carcinogenic 

compounds. Add 1 ml of sterile distilled water to eliminate the excess of the dyes 

unbound.  

6. Centrifuge 10 min at 12000 rpm. Discard the supernatant to carcinogenic 

compounds.  

7.  Extract the DNA directly by mini plant kit Qiagen and procede with the QPCR. 

 

6.4. DGGE 

In DGGE fragments of the same length but with different sequences can be separated. 

Separation of the DNA amplicons is based on the decreased electrophoretic mobility of 

a partially melted double-stranded DNA molecule in polyacrilamide gels containing a 

linear gradient of DNA denaturants.  

During the first step was made an amplification with a suitable primers, one of them 

must have a GC clamp (underlined sequence on the primers). The primers used in this 

thesis were: 

- The primers for general yeasts were designed in the 28S rRNA gene. (Meroth et 

al., 2003a). 

 

 

 

 

The PCR conditions are; 

 

 

 

 

The amplicon obtained is around 300 pb. 

 94ºC 94ºC

57ºC
72ºC 72ºC

4 min

1 min

1 min 7 min

30 sec

94ºC 94ºC

57ºC
72ºC 72ºC

4 min

1 min

1 min 7 min

30 sec

35 cycles 

U1GC
 5’-GCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCC 

CCGCCCCGTGAAATTGTTGAAAGGGAA-3’ 

U2    5’-GACTCCTTGGTCCGTGTT-3’ 
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- The primers for lactic acid bacteria were designed in the 16S rRNA gene (V3 

region) (Meroth et al., 2003b) 

 

 

 

 

 

The PCR conditions are; 

 

 

 

 

 

The amplicon obtained is around 185 pb. 

 

- The primers for acetic and lactic acid bacteria were designed in the 16S rRNA 

gene (V7 and V8 region) (Lopéz et al., 2003). 

 

 

 

 

 

The PCR conditions are; 

 

 

 

 

 

 

The amplicon obtained is around 320 pb. 

 

 

 

 

95ºC 94ºC

66ºC
68ºC 68ºC

2 min

30 sec

1 min 7 min

30 sec

95ºC 94ºC

66ºC
68ºC 68ºC

2 min

30 sec

1 min 7 min

30 sec

 

95ºC 95ºC

67ºC
72ºC 72ºC

5 min

30 sec

1 min 5 min

1 min

95ºC 95ºC

67ºC
72ºC 72ºC

5 min

30 sec

1 min 5 min

1 min

 

30 cycles 

30 cycles 

L1GC
 5’-GCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCC 

CCGCCCCCAGCAGTAGGGAATCTTCC -3’ 

HDA2   5’- GTATTACCGCGGCTGCTGGCAC -3’ 

WBAC1GC
 5’- GCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCC 

CCGCCCCGTCGTCAGCTCGTGTCGTGAGA -3’ 

WBAC2 5’- CCCGGGAACGTATTCACCGCG -3’ 
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The mix for the amplification is done in 50 µl of total volume containing, 

 

 

 

 

 

 

 

 

Once obtained the amplicons the next step is to construct and run the denaturing 

gradient gel electrophoresis.  

 

6.4.1. Solutions for DGGE 

 TAE 50 X   Trizma base    242 g/L  distilled water 

     Acetic acid glacial  57.1 g/L 

     EDTA 0.5 M (pH8)           100 ml/L 

      Autoclave 121ºC during 15 min 

 

 EDTA 0.5 M pH 8  EDTA 186.12 g/L  distilled water 

     Adjust the pH at 8 with NaOH 

      Autoclave 121ºC during 15 min 

  

 Dye solution     bromophenol blue   0.05g 

      xylene cyanol  0.05g 

      Buffer TAE 1 X  10 ml 

 

 Gel loading dye   dye solution   2.5ml 

      glycerol      7 ml 

 

 0% denaturing solution  40% Acrylamide/BisAcrylamide  10 ml 

      50X TAE      1 ml 

      dH20           to 50 ml 

 

Primer with GC clamp (5 µM)     1.5 µl 

Primer without GC clamp (5 µM)     1.5 µl 

dNTPs (40 mM)       0.1 µl 

MgCl2 (50 mM) (Ecogen)         1 µl 

Buffer Taq 10x, without Mg. (Ecogen)       5 µl 

Taq DNA polymerasa (Ecotag, Ecogen) (5 U/µl)       0.25 µl 

H2O milli-Q              39.65 µl 

DNA            1 µl 
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 100% denaturing solution  urea        21 g 

      formamide    20 ml 

      40% Acrylamide/BisAcrylamide 10 ml 

      50X TAE      1 ml 

      dH20           to 50 ml 

 10% Ammonium persulphate (APS). Keep aliquoted and frozen 

  0.1 g ammonium persulphate in 1 ml dH20 

 TEMED (N,N,N,N’-tetra-methyl-ethylenediamine) 

 

6.4.2. Building the gel assembly 

First clean glass plates with ethanol and distilled water. Assemble the gel sandwich by 

placing the small glass plate on top of the large plate, being sure to correctly place a 1 

mm spacer along each edge of the plate assembly. Attach the plate clamps (tight 

enough to hold everything together) and place the entire assembly into the rear slot of 

the pouring stand. Loosen the clamps slightly and use the spacing card to assure the 

proper spacer alignment. Tighten the plate clamps (snug, as if you were trying to 

prevent “leakage”) and remove the plate assembly from the pouring stand. Inspect the 

plate assembly to ensure that the two glass plates and the spacers form a flush surface 

across bottom of the assembly. Place a foam gasket into one of the two front slots of 

pouring stand, insert the plate assembly, and clamp into place. Place the well comb 

firmly in between the plates. 

 

The acrilamide gel is created with a mixer gradient pump. Both solutions 0 and 100% 

denaturing solutions are needed, around 20 ml of each solution keep in ice during the 

gel is built. In each 20 ml solution is added 20 µl TEMED and 200 µl APS. In the 100% 
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denaturing solution can be added 50 µl of dye solution to see the denaturing gradient 

when it is created. The gradients pump programme used was:  

 

 

 

 

 

 

 

 

This denaturing gradient from 30% to 60% was optimitzate to separate different AAB. 

For LAB and yeasts species the better denaturing gradient was from 32.5% to 50%. 

Leave the gel for at least 1 hour to polymerize.  

 

6.4.3. Run the gel 

Add fresh 0.5 x TAE buffer to the buffer tank to the mark “Fill”. Switch on the DCode™ 

Universal Mutation Detection System (Bio-Rad) at least 60 minutes before 

electrophoresis, so that the buffer can heat up to 60°C. After polymerisation remove the 

comb carefully. Rinse the slots to remove non-polymerized gel with 0.5 x TAE buffer by 

using a syringe and needle. Click the sandwich in the sandwich-holder. There should 

always be a sandwich (gel or dummy) at the other side to get a closed upper buffer 

compartment. A dummy consists of a large and small glass plate stuck together with no 

spacers in between. Load the samples and the marker in the wells, both have to be 

mixed with the gel loading dye. In each hole can be charged a total volume of 30 µl, 

 

 

Take the super-sandwich and let it slide into the buffer tank, with the red dot of the 

kathode at the right side (buffer tank is positioned with the Bio-Rad mark towards you). 

The electrophoretic run was keep at a constant 170 V for 4 hours at a constant 

temperature of 60ºC in TAE buffer 0.5 X. 

V= 10 ml/min 

B solution 100% 

A solution 0% 

T 0 sec
60 % B T 30 sec

60% B

T 3 min
30% B

T 3.5 min
30% B

T 0 sec
60 % B T 30 sec

60% B

T 3 min
30% B

T 3.5 min
30% B

20 µl DNA 
10 µl gel loading dye 
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6.4.4. Staining the gel and observation  

Once the electrophoretic run is done, the gel is taken out of the tank and the sandwich. 

The acryamide gel is putted on a tank with ethidium monoazide solution for 15 min. 

Later on, the gel is visualized on a transilluminator UV and a picture was taken using a 

MiniBis Pro (DNR Bio-Imaging Systems Ltd.). The bands can be excised using a cutter. 

Each excised band was then transferred into 50 µl of sterile water and incubated 

overnight at 4ºC to allow diffusion of the DNA. Then, one microlitre of the eluted DNA 

can be re-amplified with the same primers although without the GC clamp. The PCR 

products were purified and sequenced by Macrogen Inc. facilities (Seoul, South Korea) 

using an ABI3730 XL automatic DNA sequencer. 

 

6.5. Cloning 5.8S rDNA 

6.5.1. Solutions 

L- Broth tryptone           10 g/L  distilled water 

  yeast extract   5 g/L 

  NaCl    5 g/L 

   Autoclave 121ºC during 15 min 

LB-Agar plates containing ampicillin, X-gal and IPTG 

Prepare the L-broth plus 1.5 % agar and autoclave. 

Cool the bottle before add per 200 ml of LB-agar 

200 µl of 3% X-gal in DMF (0.15 g in 5 ml DMF, store at -20ºC) 

20 µl of 100 mM IPTG (0.12 g in 5 ml sterile distilled water) 

200 µl of 100 mg/ml ampicillin (0.5 g in 5 ml sterile distilled water) 

Dissolve and filter sterilize. Store aliquots at -20ºC. 
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 SOC media   tryptone     20 g/L  distilled water 

     yeast extract       5 g/L 

     NaCl     0.5 g/L 

     KCl 1 M  2.5 ml/L 

Adjust pH to 7 with NaOH 10M. Autoclave to sterilize, add 20 ml of sterile 

1 M glucose, 10 ml of 1 M MgSO4 and 10 ml of 1 M MgCl2 immediately 

before use. 

 

6.5.2. Transformation E. coli 

The plasmid used was PGEM-T Easy Vector (Promega Corporation, Madison, WI). 

 

The pGEM®-T Easy Vector has been purchased linearized at base 60 with EcoRV and 

a T added to both 3´-ends. Then the amplicon have to be done with a Polymerase 

which generate fragments with 3´A-tailed fragments as the Ecotaq polymerase.  

Binding the amplicon and the plasmid 

  5 µl binding buffer (2 x) (Promega) 

  1 µl PGEM vector (Promega) 

  1 µl T4 DNA ligase (Promega) 

  3 µl amplicon 

Maintain 1 hour at room temperature  

The amplicons are obtained from PCR amplification, this consist in the primers ITS1-

ITS4 and the same procedure than RFLP rDNA. Then, a DNA library is formed 

containing different amplicons form all the microorganisms present in the sample or 

from a known DNA.  
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Previous to the electroporation 

 Transformate E. coli in electrocompetents 

  1. Inoculate 1ml E. coli in 200 ml LB. Growth until DO 0.5-0.6 

  2. Keep on ice during 15 min 

  3. Transfer to falcons of 50 ml. Centrifuge 10 min at 5400 rpm 2-4ºC 

  4. Discard the supernatant and resuspend the pellet in 2 ml of cold H2O 

  5. Centrifuge 10 min at 5400 rpm 4ºC. Discard the supernatant 

  6. Repeat the steps 4 and 5 

  7. Resuspend the pellet in 10 ml of cold glycerol 10%  

  8. Centrifuge 10 min at 54000 rpm 4ºC 

  9. Add the same volume of the glycerol 10% than the pellet, around 350 µl 

  10. Aliquota 45 µl of E. coli in eppendorfs  

  11. Frozen in N2 liquid and maintain at -80ºC 

 Sterilize the cuvettes 5 min in the UV and maintain in ice until use 

 Maintain the SOC media in ice 

 

Transformation the plasmid inside the E.coli through electroporation 

 Add 2-3 µl of the plasmid plus the insert into E. coli electrocompetents 

 Electroporate with an Electroporator 2510 (Eppendorf, USA) 

  Conditions: 1700 Volts for 4 seconds 

 Resuspend the E.coli with 500 µl of SOC medium. Maintain 45 minuts at 37ºC. 

 Plate the solution into LB-ampicillin-IPTG-Xgal plates  
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6.5.3. Plasmid extraction (Sambrook et al., 1989) 

  6.5.3.1. Solutions 

 - Lysis buffer   Glucose 0.45 g/50 ml distilled water 

     Tris-clorhidric 0.197 g/50 ml  

     EDTA (0.5 M) 1 ml/50 ml 

      Adjust the pH at 8 with NaOH 

 

 -0.2 M NaOH/1% SDS  NaOH 0.4 g/50 ml distilled water 

      SDS (10 %) 5 ml/50 ml 

   

 - 3 M KAc pH 5.5   KAc 14.721 g/50 ml distilled water 

 

 - 70% ethanol 

Except the ethanol solution, autoclave 121ºC during 15 min. 

 

   6.5.3.2. Procedure 

1. Inoculate 3 ml of LB (in a tube of 12 ml) with an isolate blue colony and incubate at 

37ºC with shaking of 200 rmp 

2. Centrifugate 1.5 ml of this cultura at 12000 rpm 5 minuts 

3. Discard the supernatant and resuspend the pellet with 100  µl of lysis buffer by vortex 

4. Add 200 µl of 0.2 M NaOH/1% SDS, mixture by inversion 

5. Add 150 µl of 3 M KAc pH 5.5, mixture by inversion  

6. Centrifugate at 12000 rpm during 15 min at 4ºC. 

7. Precipitate the supernatant with 250 µl of isopropanol (-20ºC) and mixture 

8. Centrifugate at 12000 rpm during 15 min at 4ºC. 

9. Discard the supernatant and wash the pellet with 500 µl of etanol 70% (-20ºC) 

10. Centrifugate at 12000 rpm during 15 min at 4ºC 

11 Discard the supernatant and dry the pellet on the Speedy Vac 

12. Resuspend the pellet in 40 µl of TE 
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6.6. FISH 

This technique consists in the direct hybridization of fluorescent labeled probes to RNA. 

First of all is done a fixation step, then a permeabilization, hybridization, some washing 

steps to remove the probes unbound and finally visualization using a fluorescence 

microscope.  

 

 

6.6.1. Solutions 

PBS 10 X  Na2HPO4    1.424 g/100 ml distilled water 

KH2PO4     0.204 g/100 ml 

NaCl        8.03 g/100 ml 

KCl      0.201 g/100 ml 

Adjust the pH to 7.2 

 

Paraformaldehide 4 % (TOXIC)  paraformaldehide 8 g/190 ml MiliQ water 

Add 2 drops of NaOH 1 M (the solution become transparent) 

Add 10 ml of PBS 10 X 

Filtrate with sterile filters of 0.2 µm 

Keep aliquots of 15 ml frozen 
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Hibridization buffer   Formamide     50 µl 

NaCl 5 M    180 µl 

Tris-HCl 1M pH 8     20 µl 

SDS 10 %        1 µl 

dH20    749 µl  

Keep the buffer frozen 

 

Wash buffer   NaCl 1 M    500 µl 

Tris-HCl 50 mM pH 8  500 µl 

 

Probes    concentration stock 500 ng/µl  

solution work 50 ng/µl 

Hg   5’-CAATCCCAGCTAGCAGTAT-3’ 

Sc  5’-TGACTTACGTCGCAGTCC-3’ 

EUK 516   5’-ACCAGACTTGCCCTCC-3’ 

 

DAPI     concentration stock 1mg/ml 

    solution work 10 µg/ml 

 

6.6.2. Procedure 

1. Collect 1 ml of a homogenous sample 

2. Fixation  

- Centrifuge 5 minuts at 10000rpm. Discard the supernatant and add 100 µl of 

PBS 1 X 

- Add 300 µl paraformaldehid 4% and incubate minimum 4 hours at 4ºC with hard 

agitation 

 - Centrifuge 2 minuts at 10000 rpm, discard the supernatant  

- Add 400 µl PBS 1 X and 400 µl ethanol (to maintain the sample and avoid the 

cellular permeabilitzation) 

3. Hibridization  

- 100 µl of the step before, or dilution adequate to obtain around 106 cells/ml 

 - Centrifuge 5 minuts at 10000rpm, discard the supernatant 

 - Add 50 µl of a solution with the probe and hibridization buffer in a ratio 1:4 
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 - Incubate at 46ºC during 3 hours keep the sample out of the light 

 - centrifuge 5 minuts at 10000rpm, discard the supernatant 

 - resuspend the pellet with 100 µl of PBS 1X 

 - at this point can be added 10 µl of DAPI to colorate the nucleous DNA 

4. Observation and quantification 

 - Mix 5 µl of Vecta Shield (Vector Laboratories, USA) with 5 µl of the sample 

 - Put the solution onto Neubauer Chamber 

 - Count the fluorescent cells using a fluorescence microscope. 

 

7. Analysis of wine fermentation 

7.1. Sugars consumption 

During all the fermentation the sugars consumption was analysed by the density 

measure. Only at the end of fermentation the sugars was analysed by enzymatic assay 

(Roche Diagnostics, Germany).  

 

7.2. Glycerol production 

The glycerol content was analysed using commercial enzymatic kits (Roche 

Diagnostics, Germany) 

 

7.3. Ethanol production 

The ethanol production was analysed using commercial enzymatic kits (Roche 

Diagnostics, Germany). 

 

7.4. Amino acids evolution  

The simultaneous analysis of biogenic amines, amino acids and ammonium ion was 

determined by the method of Gómez-Alonso et al. (2007). Briefly, samples (400 µl) was 

derivatized by 15 µl of diethylethoxymethylenemalonate (Fluka, Steinhein, Germany) in 

presence of 700 µl of borate buffer 1 M (pH 9), 300 µl of methanol and 10 µl of L-2-

aminoadipic acid (Internal Standard, 1 g/l) over 30 minuts in an ultrasound bath. Then 

the sample was treated at 80ºC for 2 hours. The analyses were performed on a Agilent 

1100 Series HPLC (Agilent Technologies, Böblingen, Germany) comprising a 

quarternary pump, an autosampler and a multiple wavelength detector at 269, 280 and 

300 nm. Nitrogen compound separation of sample (50 µl) was carried out using a 4.6 x 

250 mm, 5 µm ACE C18-HL column (Symta, Madrid, Spain) with a guard column (ACE5 
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C18-HL) through a binary gradient (Gómez-Alonso et al., 2007) at a flow of 0.9 ml/min. 

The target nitrogen compounds were identified according to the retention time of 

corresponding standards and were quantified using the internal standard method. 

 

7.5. Organic acids 

Organic acids were determined by HPLC using an Agilent 1100 Series connected to an 

Agilent multiple wavelength detector (Agilent Technologies, Wilmington, DE). Sample 

(450 µl) was mixed with 50 µl of formic acid (Internal Standard, 46.84 g/L) and 50 µl was 

injected into a 300 mm x 7.8 mm AMINEX HPX-87H columm (BioRad, Hercules, CA). 

The solvent used was sulfuric acid 2.5 mM at 0.5 ml/min. The analysis temperature was 

70 ºC. The concentration of each metabolite was calculated using external and internal 

standards. 

 

7.6. Aromas  

A modified protocol of Ortega et al. (2001) was used to determine volatile fatty acids, 

ethyl esters of fatty acids, higher alcohol acetates and other volatile compounds. In 15-

ml screw-capped tubes, 1.5 ml of wine, 3.5 ml of (NH4)2SO4 (45% w/v), 20 µl of internal 

standard (4-methyl-2-pentanol (176 µg/ml), 1-nonanol (160 µg/ml) and heptanoic acid 

(150 µg/ml) in ethanol) and 200 µl of dichloromethane were added. The tube was 

shaken for 30 seconds (3x) and then centrifuged at 4000 rpm for 10 min. Once the 

phases were separated, the bottom phase (dichloromethane) was transferred to a glass 

vial insert. The extract (3 µl) was injected in split mode (10:1, 30 ml/min) into an Agilent 

6850 equipped with a flame ionisation detector (Agilent Technologies, Böblingen, 

Germany). The extract (2 µl) was injected (split, 1 min) into an. The column (30 m x 0.25 

mm, 0.25 µm phase thickness) was a HP-FFAP(Agilent) and the temperature program 

was as follows: 35ºC for 5 min, then raised at 3ºC/min up to 200 ºC and then at 8º C/min 

up to 220 ºC. Injector and detector temperatures were 180ºC and 280ºC. The carrier 

gas was helium at 3 ml/min. Volatile compounds were identified and quantified by 

comparison with standards. 
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8. Online sources 

8.1. Search nucleotide sequences  

This tool was used to search the interest sequences for some species of yeasts, lactic 

and acetic acid bacteria 

http://www.ncbi.nlm.nih.gov/nucleotide/ 

 

 8.2. Aligment of specific regions on database 

The Basic Local Alignment Search Tool (BLAST) finds regions of local similarity 

between sequences. This was used to compare the sequences obtained with 

databases. 

http://blast.ncbi.nlm.nih.gov/ 

http://www.ebi.ac.uk/blastall/nucleotide.html 

 

 8.3. Sequence aligment  

This tool is used to compare sequences. 

http://www.ebi.ac.uk/Tools/emboss/align/ 

 

 8.4. PCR in silico 

This tool is used to simulate an amplification of a known fragment.  

http://insilico.ehu.es/user_seqs/ 

 

General web for in silico simulations, 

http://insilico.ehu.es/ 

 

 8.5. Digestion in silico 

This tood is used to simulate and digestion of a known fragment. 

http://tools.neb.com/NEBcutter2/ 

 

 8.6. Primers design  

The primer design was done with the Primer Express 3.0 software (Applied Biosystems, 

USA). 
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