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Abstract

The population and economical expansion of  our planet is based on the consumption of energy. 

However, the utilisation of fossil fuels and the environmental contamination derived from their  

usage are arriving nowadays to an unsustainable level. For this reason, the research of new 

renewable energy sources has generated great interest in the scientific community.

A large amount of  energy arrives to the surface of the Earth in the form of sunlight. Although solar 

cells which are able to convert sunlight into electricity have been commercialised, several research 

groups are still working on the development of more efficient and/or less expensive photovoltaic 

devices.

At present, one of  the most studied alternative devices are dye sensitised solar cells (DSSCs).  The 

operating principles of this class of electrochemical solar cell is  discussed in further detail in 

Chapter 1. To date, DSSCs utilising ruthenium polypyridyl complexes have shown the highest 

efficiencies reported for this class of photovoltaic device. This is due to the photophysical, 

photochemical and electrochemical properties of ruthenium based dyes, which are explained in 

Chapter 2.

Besides the intrinsic photosensitiser properties, the efficiencies achieved by dye sensitised solar 

cells are strongly dependent on the charge transfer reactions that take place in the cells: the 

injection of electrons into the conduction band of the semiconductor by the dye, the transport of 

electrons through the semiconductor to the working electrode, the dye regeneration by the redox 

pair present in the electrolyte and the recombination reactions between the photoinjected 

electrons into the semiconductor and the oxidised species of the dye and the electrolyte.

The different sections comprising the experimental part of this thesis (Chapter 3) are: (1) the 

design, synthesis,  purification and characterisation of a series of ruthenium complexes which 

contain polypyridyl ligands with different substituents (either electron-donating or electron- 

withdrawing groups); (2) the study of the photophysical and electrochemical properties of 

ruthenium complexes; (3) the introduction of the synthesised complexes, and other commercial 

dyes, in the preparation of photovoltaic molecular devices;  and (4) the characterisation of the 
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different parameters which allow a quantitative analysis of a solar cell efficiency, as well as the 

determination of the reaction kinetics.

This thesis has been focused on determining the influence of the dye molecular structure (Chapter 

4, articles A,  B and C) and the presence of a coadsorbent (Chapter 5,  article D) on solar cell 

efficiency. In particular, articles  A and B discuss how the electron-donating or electron- 

withdrawing properties  of different substituents in one of the polypyridyl ligands coordinated to 

the ruthenium metal center can affect the reactions that take place in a DSSC. Furthermore, the 

charge transfer processes of a solar cell sensitised with the most efficient dyes reported to date have 

been compared in article C. Finally, article D consists of a study of the effects of sensitising 

different dyes in the presence of a coadsorbent on the different parameters that quantify the 

efficiency of a solar cell.
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Resum

L’increment de població i  l’expansió econòmica al nostre planeta depenen estrictament de la 

consumició d’energia. Actualment, per això, el consum de combustibles fòssils i  la contaminació 

derivada del seu ús comencen a arribar a un nivell insostenible.  Per aquest motiu, la recerca de 

noves fonts d’energia renovables s’ha estès amb gran interès dins de la comunitat científica.

Una gran quantitat d’energia arriba diàriament a la superfície del nostre planeta en forma de llum 

solar. Tot i  que ja s’han comercialitzat alguns dispositius per a la conversió de llum en energia 

elèctrica, nombrosos grups de recerca treballen actualment en el desenvolupament d’uns 

dispositius més eficaços i/o menys costosos econòmicament. 

Una de les alternatives més estudiades actualment són les cel!les solars sensitivitzades amb un 

colorant (en anglès: DSSCs). El funcionament d’aquest tipus de cel!les electroquímiques es 

discuteix amb més detall al Capítol 1. Avui en dia, les cel!les solar sensitivitzades amb complexes 

polipiridílics de ruteni  han demostrat les eficiències més elevades per a aquests tipus de 

dispositius.  Aquest fet és degut a les propietats  fotofísiques, fotoquímiques i  electroquímiques dels 

colorants basats en ruteni, detallades al Capítol 2.

A més de les propietats intrínseques dels colorants utilitzats, l’eficiència assolida per les cel!les 

solars sensitivitzades amb un colorant està intensament determinada per les reaccions de 

transferència de càrrega que hi tenen lloc: la injecció d’electrons a la banda de conducció del 

semiconductor per part del colorant, el transport d’electrons a través del semiconductor fins a 

l’elèctrode de treball,  la regeneració del colorant per part de l’electròlit i  les reaccions de 

recombinació que tenen lloc entre els electrons injectats al semiconductor i  les espècies oxidades 

dels colorants i l’electròlit.

Les etapes principals de la part experimental d’aquesta tesi (Capítol 3) han sigut: (1) el disseny, la 

síntesi, la purificació i  la caracterització d’una sèrie de complexes de ruteni que contenen lligands 

polipiridílics amb diferents substituents (grups electro-donadors i electro-acceptors);  (2) l’estudi 

de les propietats fotofísiques i electroquímiques dels complexes de ruteni;  (3) la introducció dels 

colorants sintetitzats, així com altres complexes comercials, a la preparació de dispositius 
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fotovoltaics; i (4) la caracterització dels diferents paràmetres que permeten avaluar l’eficiència 

d’una cel!la solar, així com la determinació de les cinètiques de les reaccions que tenen lloc en 

aquests tipus de dispositius fotovoltaics.

Aquesta tesi s’ha focalitzat en la determinació de la influència de l’estructura molecular dels 

colorants (Capítol 4,  articles A, B i C) i la presència d’un coadsorbent (Capítol 5, article D) en 

l’eficiència de les cel!les solars.  Més concretament,  als articles A i B s’han estudiat com les 

propietats electro-donadores o electro-acceptores de diferents substituents en un dels lligands 

polipiridílics coordinats al ruteni poden afectar les reaccions ocorren en una cel!la solar. A més a 

més, els processos de transferència de càrrega que tenen lloc en una cel!la solar sensitivitzada amb 

els colorants més eficients publicats actualment s’han comparat a l’article C. Finalment, l’article D 

comprèn un estudi de l’efecte en els diferents paràmetres que quantifiquen l’eficiència de les cel!les 

solars degut a la cosensitivització d’un coadsorbent juntament amb dos colorants que tenen 

estructures moleculars diferents.
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Resumen

El incremento de la población y la expansión económica en nuestro planeta dependen 

estrictamente del consumo de energía. Actualmente, el consumo de combustibles fósiles y la 

contaminación derivada de su uso están llegando a una nivel insostenible. Por este motivo, la 

investigación de nuevas fuentes de energía renovables se ha extendido con gran interés dentro de la 

comunidad científica.

Una gran cantidad de energía llega diariamente a la superficie de nuestro planeta en forma de luz 

solar. Aunque ya se han comercializado algunos dispositivos para la conversión de luz en energía 

eléctrica, numerosos grupos de investigación trabajan en el desarrollo de unos dispositivos más 

eficaces y/o menos costosos económicamente.

Una de las alternativas más estudiadas actualmente son las celdas solares sensitivizadas con un 

colorante (en inglés:  DSSCs). El funcionamiento de este tipo de celdas electroquímicas se discute 

con más detalle en el Capítulo 1.  Actualmente, las celdas solares sensitivizadas con complejos 

polipiridílicos de rutenio han demostrado las eficiencias más elevadas para este tipo de 

dispositivos. Este hecho es debido a las propiedades fotofísicas, fotoquímicas y electroquímicas de 

los colorantes basados en rutenio, detalladas en el Capítulo 2.

Además de las propiedades intrínsecas de los colorantes usados, la eficiencia lograda por las celdas 

solares sensitivizadas con un colorante está intensamente determinada por las reacciones de 

transferencia de carga que tienen lugar entre sus componentes:  la inyección de electrones a la 

banda de conducción del semiconductor por parte del colorante,  el transporte de electrones a 

través del semiconductor hasta el electrodo de trabajo, la regeneración del colorante por parte del 

electrolito y las reacciones de recombinación que tienen lugar entre los electrones inyectados en el 

semiconductor y las especies oxidadas presentes en el colorante y el electrolito.

Las etapas principales de la parte experimental de esta tesis (Capítulo 3) han sido:  (1) el diseño, la 

síntesis, la purificación y la caracterización de una serie de complejos de rutenio que contienen 

ligandos polipiridílicos con distintos substituyentes (grupos electro-dadores y electro-aceptores); 

(2) el estudio de las propiedades fotofísicas y electroquímicas de los complejos de rutenio; (3) la 
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introducción de los colorantes sintetizados, así  como otros complejos comerciales, en la 

preparación de dispositivos fotovoltaicos; y (4) la caracterización de los distintos parámetros que 

permiten evaluar la eficiencia de una celda solar, así  como la determinación de las  cinéticas de las 

reacciones que tienen lugar en este tipo de dispositivos fotovoltaicos.

Esta tesis  se ha focalizado en la determinación de la influencia de la estructura molecular de los 

colorantes (Capítulo 4, artículos A, B y C) y en la presencia de un coadsorbente (Capítulo 5, 

artículo D) en la eficiencia de las celdas solares. Más concretamente, en los artículos A y B se ha 

estudiado como las propiedades electro-dadoras o electro-aceptoras de distintos substituyentes en 

uno de los ligandos polipiridílicos coordinados al rutenio pueden afectar las reacciones que tienen 

lugar en una celda solar.  Además, en el artículo C, los procesos de transferencia de carga que 

ocurren en una celda sensitivizada con los colorantes más eficientes publicados actualmente se han 

comparado. Finalmente, el artículo D comprende un estudio del efecto de los distintos parámetros 

que cuantifican la eficiencia de las celdas solares debido a la cosensitivización de un adsorbente 

juntamente con dos colorantes que tienen estructuras moleculares diferentes.
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Chapter 1. Dye sensitised solar cells

A brief introduction to photovoltaic devices based on molecular photosensitisers is presented in 

Chapter 1. The constituent materials are described and the principles of operation of complete 

functional devices are explained.
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1.1. Introduction

In 2006, world primary energy consumption was 4.98"1020 J,  and this is expected to increase in the 

future as a result of population and economic growth.1 The principal energy supply to meet the 

energy needs of our planet comes from liquid fuels, coal and natural gas.  However, the non-

renewable nature of fossil fuels, in addition to the high emissions of CO2 into the atmosphere when 

they are used has made them an important issue in the last two decades. For this reason, the search 

for a sustainable, clean and secure energy source has been extended to a wide range of possible 

alternatives including solar, wind and biomass. Since the Earth receives a huge amount of energy 

from sunlight (4.3"1020 J in 1 h), it seems perfectly logical to consider solar energy as the most likely 

possible renewable energy resource that could be exploited in the future.2

Nowadays, the majority of photovoltaic devices are based on semiconductor p-n junction solar 

cells, however many other systems and materials have been developed in order to improve the 

efficiency or reduce the total cost of photovoltaic converters.3 One of the most studied alternative 

systems is the dye sensitised solar cell (DSSC). Since the first publication regarding the principles 

of operation of this molecular photovoltaic device,4 the study and improvement of this  kind of 

energy converter has attracted the attention of numerous scientific groups. DSSCs are based on 

the absorption of light by photosensitisers, and the most used and efficient dyes are based on 

ruthenium polypyridyl complexes. The well known and easily tuneable photophysical, 

photochemical and electrochemical properties of these dyes make them excellent candidates for 

light harvesting systems and energy conversion devices.5
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1.2. Operating principles of dye sensitised solar 
cells

DSSCs are regenerative photoelectrochemical cells based on the sensitisation of a nanocrystalline 

semiconductor with a dye able to absorb a wide range of the solar spectrum.6 The most widely used 

semiconductor in the working electrode of a DSSC is TiO2,  which is supported onto a transparent 

fluorine-doped tin oxide (FTO) conducting glass.  The counter electrode consists of  a layer of 

platinum coated on FTO conducting glass. The two electrodes are sealed together with a polymer 

and the cell is completed with a redox electrolyte (Figure 1.1).

Figure 1.1. Schematic representation of the cross-section of a DSSC

Figure 1.2 shows a schematic representation of a DSSC. Upon absorption of sunlight, the 

photosensitiser promotes an electron from its  ground state to the excited state, corresponding to 

the metal to ligand charge transfer transition (MLCT) of the dye when Ru(II) polypyridyl dyes are 

used (Equation 1.1). This electron is subsequently injected into the conduction band of the 

semiconductor (Equation 1.2), which arrives at the back contact and flows through an external 

circuit to the counter electrode. At the counter electrode,  electrons are transferred to the redox 

pair present in the electrolyte. The most commonly used electrolyte contains the I-/I3
- redox 

couple, and at the counter electrode triiodide is regenerated to iodide (Equation 1.3). Finally, the 

cycle is completed with the regeneration of  the oxidised dye by electron donation from the 

electrolyte (Equation 1.4).

Photoexcitation: S + h! " S*! ! ! ! ! (Equation 1.1)

Electron injection: S* + TiO2 " S+ + e--TiO2! ! ! ! (Equation 1.2)
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Electrolyte regeneration: I3
- + 2 e--Pt" 3I-! ! ! ! (Equation 1.3)

Oxidised dye regeneration: 2 S+ + 3 I- " 2 S + I3
-! ! ! (Equation 1.4)

The regenerative cycle of dye sensitised solar cells is based on reversible reactions,  and the devices 

can convert sunlight into electricity without suffering permanent chemical transformations.

Figure 1.2. Scheme showing the operating principle and energy level diagram of a dye sensitised 
solar cell. S, S+, S* represent the photosensitiser in the ground, oxidised and excited state, 

respectively. (1) Photoexcitation of the dye, (2) electron injection from the excited dye to the 
semiconductor, (3) external circuit, (4) regeneration of the electrolyte, and (5) regeneration of the 

oxidised dye

However, this system has undesirable loss reactions, which decrease the total efficiency of the 

device (Figure 1.3).  The three main loss reactions observed are (1) deactivation of the dye excited 

state (Equation 1.5), (2) recombination of photoinjected electrons in the semiconductor with the 

oxidised photosensitiser (Equation 1.6), and (3) recombination of photoinjected electrons in the 

semiconductor with the oxidised form of the redox mediator (Equation 1.7). The latter 

recombination reaction is also called the “dark current”.

Dye excited state deactivation: S* " S! + heat/h!! ! ! (Equation 1.5)

Back electron transfer: e--TiO2 + S+ " TiO2 + S!! ! ! (Equation 1.6)
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Electron recombination with the redox couple: I3
- + 2 e--TiO2 " 3 I- + 2 TiO2!(Equation 1.7)

Figure 1.3. Scheme of the loss reactions occurring in a DSSC. (a) Dye excited state deactivation, (b) 
e--TiO2/S+ back electron transfer, and (c) e--TiO2/I3- recombination reaction

Despite the loss processes which occur in DSSC, the reason for the relatively high efficiencies 

observed in optimised devices is due to the rather favourably balanced kinetic competition which 

ensures forward electron transfer reactions dominate over the loss processes mentioned.  For most 

of the dyes,  loss reactions are several orders of magnitude slower than the forward processes when 

the devices are working under normal operating conditions, allowing efficient charge separation to 

occur (Table 1.1).7

Forward processes Loss processes

Electron injection from the excited dye into the 
semiconductor conduction band (10-12 - 10-9 s)

Excited state deactivation (> 10-9 s)

Dye regeneration by the redox electrolyte (10-9 - 10-6 s) Back electron transfer from the TiO2 to the oxidised dye 
(10-6 - 10-3 s)

Electron recombination between the TiO2  and the 
electrolyte (10-3 - 101 s)

Table 1.1. Timescales of forward and loss processes occurring in DSSC
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1.3. Quantitative parameters of solar cell 
performance

The performance of a dye sensitised solar cell can be quantified by several parameters:  the  

photovoltage and photocurrent generated by the solar cell, the incident photon to current 

conversion efficiency and the overall light to energy conversion efficiency.

1.3.1. Photocurrent and photovoltage

The photocurrent is the electrical flux through a device under light irradiation. When the cell is 

operated at short circuit, this is when the external circuit is closed and the voltage is zero, the 

maximum current flow is obtained. The short circuit current (Isc, A) increases with light intensity 

and is proportional to the area of the solar cell. The solar circuit current density (Jsc, mA"cm-2) is 

defined as in Equation 1.8, where Isc is  the short circuit photocurrent in A and the area of the cell is 

given in cm2.

J
sc
=

I
sc

Cell area

! ! ! ! ! ! ! (Equation 1.8)

The photovoltage is the electrical force generated upon radiation of light that can drive electrical 

current from one point to another one. Cell efficiency is measured under open circuit conditions, 

i.e. where the working and counter electrodes are not connected through an external circuit.  

Under such conditions the maximum voltage of a given cell is obtained when the Isc equals zero. In 

dye sensitised solar cells, the open circuit voltage (Voc) corresponds to the difference in energy 

between the quasi-Fermi level of the semiconductor under illumination and the redox potential of 

the mediator present in the electrolyte (Figure 1.4).8

However, the experimentally measured voltage in solar cells with most sensitisers  is often different 

from the difference between the Fermi  level and the redox potential, due to recombination 

processes.9 For this reason, the study of electron transfer reactions in DSSC, particularly the 

recombination processes and the mechanisms which underpin these reactions is very important in 

the development of efficient devices. Furthermore, the modifications of  the semiconductor surface 

or changes of the electrolyte redox couple have strong effects on the Voc.
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Figure 1.4. Energy level diagram of the working electrode and electrolyte of a DSSC

1.3.2. Incident Photon to Current Conversion Efficiency

The incident photon to current conversion efficiency (IPCE, %) is used to describe the number of 

electrons generated by the solar cell and detected in the external circuit, as a ratio of the number of 

incident photons which illuminate it for a given wavelength. It can be calculated from Equation 1.9, 

where Jsc is the short circuit photocurrent (mA"cm-2), # is the incident light wavelength (nm), Plamp 

is  the power of the incident light (W"m-2) and 1240 is the conversion factor of  the energy of 

photons.  The IPCE is strongly affected by (1) the light harvesting efficiency of the dye, which 

depends on the photophysical properties of the dye; (2) the yield of electron injection into the 

conduction band of  the semiconductor, which depends on both the redox potential and the  

injection kinetics of  the excited photosensitiser, and (3) the charge collection efficiency at the 

working electrode, which depends on the structure and morphology of the semiconductor film.

IPCE 
1240 ! Jsc

" !Plamp
!100

! ! ! ! ! ! (Equation 1.9)
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1.3.3. Overall efficiency

The overall conversion efficiency ($eff, %) of DSSCs depends on the photocurrent measured at 

short circuit (Jsc, mA"cm-2), the open circuit photovoltage (Voc, V), the fill factor of the cell (ff, %) 

and the power of the incident light (Plamp, W"m-2) (Equation 1.10).

!eff =
Jsc "VVoc " ff

Plamp
"100 ! ! ! ! ! ! (Equation 1.10)

The fill factor (%) is essentially an indicative measurement of the quality of a solar cell. It is 

obtained by dividing the maximum power density obtained by a solar cell (Pff, W"m-2) by the 

maximum theoretical power density (Pmax, W"m-2) (Equation 1.11). The power can be obtained as 

the product between the current and the voltage (Equation 1.12). The maximum theoretical power 

density of a solar cell is therefore the product of Voc (V) and Isc (A) (Figure 1.5).

ff =
Pff

P
max

=
Vff ! I ff

Voc ! Isc
!100 ! ! ! ! ! (Equation 1.11)

P = V ! I ! ! ! ! ! ! ! (Equation 1.12)

Figure 1.5. Current-voltage (I-V) and power-voltage (P-V) curves from a ruthenium polypyridyl dye 
(N719)

Dye sensitised solar cells! 25 

UNIVERSITAT ROVIRA I VIRGILI 
RUTHENIUM POLYPYRIDYL COMPLEXES AS PHOTOSENSITIZERS FOR MOLECULAR PHOTOVOLTAICDEVICES: 
INFLUENCE OF THE DYE STRUCTURE AND THE PRESENCE OF ADDITIVES TO THE DEVICE 
PERFORMANCE 
Anna Reynal Verdú 
ISBN:978-84-693-8863-1/DL:T.1944-2010 



1.4. Fundamental constituents of dye sensitised 
solar cells

DSSCs are devices composed of  multiple components, and their overall efficiency depends 

strongly on the individual properties of each constituent. Strong efforts have been spent on the 

optimisation of the materials used in the fabrication of solar cells, such as the semiconductor metal 

oxide, the photosensitiser, the electrolyte and the counter electrode.

1.4.1. Working electrode

In DSSCs, the semiconductor acts as a supporting material for dye adsorption and as an electron 

transport pathway. The TiO2 nanoparticles are deposited onto glass coated with a thin layer of a 

transparent conductive material. The most commonly used conductive material is fluorine doped 

tin oxide. Although other metal oxides such as tin-doped indium oxide (ITO) present higher 

conductivities,  its thermal instability strongly increases the resistance of the material when the glass 

is exposed to high temperatures during a long period of time.

Three important processes take place in the working electrode: light harvesting, charge separation 

and electron transport. Light harvesting is performed by the chromophoric agent,  which consists  of 

a photosensitiser. Charge separation occurs at the interface between the dye and the 

semiconductor, with electron travelling through the TiO2 and holes through the electrolyte. 

Electron recombination also take place at the interface between the surface of the semiconductor 

and the dye or the electrolyte.

! 1.4.1.1. Band theory of solids

The electronic properties of solid materials  are controlled by the nature and position of the valence 

and conduction bands. The band gap can be defined as the difference in energy between the 

valence band (VB) and the conduction band (CB).  For conducting materials, the two bands are 

overlapping and allow the free movement of electrons, while for semiconductors and insulators the 

two bands have different energy levels. Insulators have a large band gap where electrons cannot be 

promoted to the conduction band without applying extreme conditions. In semiconductors, 

electrons can be both thermally or optically excited to the conduction band, generating a hole in 

the valence band.  Electron-hole pairs, also called excitons, can be generated either by increasing 

the temperature or by the absorption of light.
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! 1.4.1.2. Characteristics of titanium dioxide

Although several semiconductors such as TiO2, ZnO, SnO2 or Nb2O5 have been explored for 

DSSCs, titanium dioxide is the most common metal oxide semiconductor,  since it is an abundant, 

inert, non-toxic, stable and cheap material.10 The three most common crystalline structures are 

rutile, anatase and brookite. Pure brookite nanoparticles are extremely difficult to prepare in the 

laboratory under mild conditions, therefore rutile and anatase are the most used crystalline forms.10 

Although rutile is the most thermodynamically stable crystalline form, anatase shows higher 

photocurrents in DSSCs due to its morphology, packing structure and electron transport. Anatase 

TiO2 has a larger surface area due to smaller particle size, which allows the anchoring of larger 

amounts of dye and the higher conductivity between the different nanoparticles  is associated with 

the better packing of the film.11 The larger band gap of anatase compared to rutile prevents light 

absorption in the near UV-region (350 - 400 nm), which can cause long term degradation of the 

cell due to the strong oxidation effect of the formation of holes in the valence band.12

! 1.4.1.3. Titanium dioxide as a semiconductor in dye sensitised solar cells

Semiconductors absorb light with an energy equal to the difference in energy between the valence 

and the conduction bands (Ebg, J) (Equation 1.13), where h is Planck’s constant (6.626"10-34 

m2"Kg"s-1) and c  is the light speed (3"108 m"s-1). For large band gap semiconductors such as anatase 

TiO2, the difference between the ground and excited state energy levels is of the order of 3 eV. 

Such an amount of energy to promote an electron from the valence band to the conduction band is 

provided by UV light (! < 400 nm). Therefore,  in order to use sunlight as a source of  energy, 

whose spectrum also includes visible and near IR, a dye able to “sensitise” TiO2 to these 

wavelengths,  and to inject electrons into the conduction band of the semiconductor is necessary 

(Figure 1.6).

! =
h " c

Ebg

! ! ! ! ! ! ! (Equation 1.13)
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Figure 1.6. Schematic representation of (a) the formation of an exciton in a semiconductor by the 

absorption of UV-light, and (b) electron injection into the conduction band of a semiconductor by the 
absorption of visible light by a photosensitiser

The semiconductor in DSSCs is deposited in the form of mesoporous crystalline nanoparticles. 

The most important characteristics for a TiO2 film that have to be optimised are the surface area, 

the porosity, the light scattering and the electron diffusion.13 The semiconductor must have a large 

surface area in order to anchor as much dye as possible, which is  obtained with the preparation of 

small TiO2 nanoparticles.  The size of the nanoparticles also affects the size of the pores and the 

light scattering properties of the nanoparticles.  The porosity of  the film has to be optimised in 

order to allow the electrolyte penetration through the thickness of  the film and ensure fast dye 

regeneration. Furthermore, the level of porosity has to be controlled in order to have enough 

interparticle connectivity so that electrons can diffuse through the film and reach the working 

electrode. The thickness of the film (d, cm) is also a key parameter to reach high conversion 

efficiencies, since charges at the back contact can only be collected if the thickness of the film is 

lower than the electron diffusion length (Ln, cm) (Equation 1.14). Ln is defined as  the distance that 

electron can travel before recombining with an electron acceptor,14 and it is dependant on the 

electron diffusion coefficient (De, cm2"s-1) and the lifetime of the electron (!e, s) (Equation 1.15).

L
n
> d ! ! ! ! ! ! ! ! (Equation 1.14)

L
n
= D

e
·!
e
! ! ! ! ! ! ! (Equation 1.15)
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The diameter of the nanoparticles is in the range of 10 - 25 nm, large enough in order to not exhibit 

quantum size effects. For this reason, the semiconductor film can be considered as a network 

composed of bulk nanocrystals. 

At first glance, the properties of mesoporous nanocrystalline films would seem disadvantageous 

compared to their compact single crystal analogues because (1) the electrolyte penetrates into the 

pores of the semiconductor producing a huge junction contact area, increasing the probability of 

electron recombination, (2) the inherent conductivity of the film is very low, (3) the multiple traps 

present in the film decrease the electron diffusion coefficient,15 and (4) the small size of the 

nanoparticles in contact with the electrolyte restricts the amount of electrical field a particle can 

support. However,  such disadvantages are offset by the optical transparency of the nanoparticles 

and the enormous surface area of the films, which allows an extremely large number of 

photosensitiser molecules to be adsorbed onto the surface of the semiconductor.

1.4.2. Molecular sensitiser

! 1.4.2.1. Characteristics of molecular sensitisers

The function of  the photosensitiser in DSSC is to absorb a wide range of the solar spectrum and to 

inject electrons into the conduction band of the semiconductor. For this reason, the design of  the 

dye has been tuned to fulfil several structural, photophysical and electrochemical requirements.16

The absorption spectra of the sensitisers should cover as wide as possible a range of the visible and 

near infrared regions and possess a high molar extinction coefficient, in order to maximise the 

absorption of the solar spectrum light (Figure 1.7). The solar radiation conditions are defined by 

the air mass (AM) value. Air mass zero (AM-0) corresponds to the radiation that a device receives in 

the absence of an atmosphere between the light source and the solar cell. However, the 

extraterrestrial solar spectrum is different from the sunlight spectrum that arrives at the surface of 

the Earth due to light scattering and absorption by H2O, H2, O2,  CO2, O3 and other species present 

in the atmosphere. Furthermore, the incident light falling on solar devices can be irradiated in the 

form of direct light,  which comes straight from the sun, or in a diffuse form, which is  light reflected 

off clouds, the ground or other objects. For this reason, AM-1.5G is defined as the corrected solar 

spectrum, including both direct and diffuse radiation, considering the sun at an angle of 48.19º. 

Although the solar flux is 982 W"m-2, it has been standardised to 1000 W"m-2.
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Figure 1.7. AM-0G solar spectra (-----), AM1.5G solar spectra17 (-----) and absorption spectra of cis-
dithiocyanato-bis-(4,4’-dicarboxy-2,2’-bipyridine)ruthenium(II) dye (-----)

The structure of the dye has to include one or more anchoring groups in order to bind strongly to 

the surface of the semiconductor and ensure a quantitatively efficient electron injection. 

Photosensitisers can interact with the surface of metal oxides through covalent bonds, hydrogen 

bonding, electrostatic interactions,  hydrophobic interaction, Van der Waals forces or entrapment 

inside the pores.18 However, the formation of covalent bonds between the hydroxyl groups present 

at the surface of the semiconductor nanoparticles and the different anchoring groups of the dyes 

increases the amount of  absorbed dye as well as the stability of the cell and the strength of the 

electronic coupling between the %* molecular orbital of the dye and the orbitals of the TiO2 

semiconductor, and decreases the rate of dye desorption.19 Although most of the sensitisers are 

linked to the semiconductor surface through carboxylic acid groups,  a variety of different groups 

such as phosphonic acid,20 boronic acid,21 sylanes22,  other derivatives or moieties have been used. 

The attachment of dyes through carboxylic acid groups is reversible, and the sensitisers can be 

desorbed from the films under basic conditions. Furthermore, several binding modes of a 

carboxylic acid group to the surface of a metal oxide are possible depending on the dye structure, 

the binding groups, the crystalline form of the metal oxide and the surface environment (Figure 

1.8).23, 24
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Figure 1.8. Possible binding modes of a carboxylic acid group to TiO2. (a) Ester linkage, (b) chelate 
binding, (c, d) bidentate bridges, (e, f) hydrogen bonding interactions, and (g) monodentate 

binding through the CO

The redox properties of the dye are also important for efficient charge separation: the LUMO 

energy level must be higher than the conduction band energy level of the semiconductor in order to 

be able to inject electrons into the TiO2, and the HOMO must be sufficiently low to permit fast 

electron regeneration by the electrolyte redox couple. The HOMO-LUMO band gap should be 

about 1.5 eV for optimum absorption of sunlight.  Furthermore, the spatial orientation of the 

HOMO and LUMO influences not only the electron injection of  the dye into the semiconductor 

conduction band and the photosensitiser regeneration but also the electron recombination 

between the photoinjected electrons in the TiO2 and the oxidised dye.25, 26 The LUMO should be in 

close contact with the semiconductor surface, while the dye cation should be separated from the 

electrode surface.

Another chemical aspect of photosensitisers  regards their solubility in organic solvents. The dye 

should be soluble in a volatile solvent to permit their adsorption onto the surface of the 

semiconductor, but should not be desorbed by the electrolyte solution. Finally, the redox reactions 

involving the dyes must be reversible and the photosensitisers should be stable enough to permit 

many oxidation/reduction cycles without decomposition of the molecules.

! 1.4.2.2. Classes of molecular sensitisers

Many different compounds have been investigated for solar cell applications. They can be divided 

in three major groups: metal containing complexes,27 organic dyes28, 29 and natural compounds30.

Mononuclear and polynuclear transition metal complexes have been widely studied as 

photosensitisers.31 Systematic optimisation of the dye components such as the introduction of 

different anchoring ligands or the insertion of different chromophoric groups has been tested in 

dyes based on different metal ions, such as Ru(II),32,  33 Os(II),34-36 Pt(II),37, 38 Re(I),39 Cu(I)40, 41 or Fe(II)42, 
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43 (Figure 1.9). However,  the most used compounds by far in DSSCs are ruthenium complexes. The 

easily tuneable redox and photophysical properties and the synthetic approach of these complexes, 

which allows the sequential introduction of different ligands, make these compounds excellent 

potential candidates for semiconductor sensitisation.

Figure 1.9. Molecular structures of metal based sensitisers. (a) Octahedral Ru(II) complex,44 (b) 
octahedral Os(II) complex,45 (c) square planar Pt(I) complex,37 (d) octahedral Re(I) complex,39 (e) 

tetrahedral Cu(II) complex,41 and (f) octahedral Fe(II) complex42

In addition to metal complex sensitisers, a wide range of organic dyes have been explored. This 

kind of dye offers several advantages compared to their metal containing analogues, such as higher 

molar extinction coefficients, cheap and relatively easy preparation and purification techniques, a 

large variety of different structures and chromophoric groups available, the accessibility of the 

reagents and the obvious fact that they do not contain precious metals  such as Ru or Pt. Organic 

dyes such as porphyrins,  phthalocyanines, perylenes, squaraines, conjugated donor-acceptor 

moieties, etc. have been explored (Figure 1.10).28, 29,  46 However, the efficiencies obtained with 

devices prepared from organic dyes are still lower than ruthenium based DSSCs. The main 

unfavourable characteristics of metal free dyes are the narrow absorption bands,  causing poorer 

sunlight harvesting, the tendency to form aggregates, which prevents  electron injection into the 

TiO2 conduction band, and a lower stability compared to metal complexes.
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Figure 1.10. Molecular structures of a series of organic dyes. (a) Donor-!-acceptor dye with a 
triphenyl amine donor moiety,47 (b) donor-!-acceptor dye with a coumarin donor moiety,48 (c) 

squaraine dye,49 (d) perylene dye,50 (e) porphyrin dye,51 and (f) phthalocyanine dye52

Figure 1.11. Molecular structures of natural dyes used in DSSCs. (a) Cyanin dye,30 (b) !-carotene 
dye,53 and (c) chlorophyll a dye54
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Natural photosensitisers can also be used as dyes in photovoltaic molecular devices. Natural dyes 

are pigments extracted from plants, flowers and fruits that have been used mainly for educational 

purposes, as a fast, low cost and environmentally friendly source for the preparation of DSSCs. The 

most studied dyes are anthocyanins, but the overall efficiencies of this kind of dye are generally 

much lower compared to organic or metal complex sensitisers (Figure 1.11).30, 54, 55

1.4.3. Electrolyte

The electrolyte is  the hole transporting material located between the surface of the semiconductor 

and the counter electrode of a DSSC. There are three different kinds of electrolytes employed in 

DSSC: liquid electrolytes (including electrolytes where the redox mediators are dissolved into 

organic solvents or electrolytes composed of  ionic liquids), quasi-solid state electrolytes and solid 

electrolytes.

However, in all these cases, the electrolyte must have a good contact between the counter and 

working electrodes as well as high conductivity to permit fast charge transport between the 

platinum counter electrode and the oxidised dye. The electrolyte should also be thermally, 

optically, chemically, and electrochemically stable and neither degrade nor desorb the dye from the 

metal oxide surface. Furthermore,  the redox mediator should have adequate redox potentials to 

allow efficient dye regeneration. Finally the electrolyte should not absorb in the visible region of 

the spectra, since it would reduce light absorption by the dye.

! 1.4.3.1. Organic solvent based electrolytes

Up to now, the most efficient DSSCs are based on organic solvent electrolytes because of their low 

viscosity, fast ion diffusion and high percolation into the pores of the semiconductor.56 This kind of 

electrolyte contains a redox couple, ionic liquid components and additives dissolved into an 

organic solvent. 

The most efficient redox couple for the regeneration of the oxidised dye is the iodide/triiodide 

couple. However, the two major problems regarding the use of I-/I3
- are the severe corrosion 

problems for the device sealing materials, causing difficulties in device sealing and stability. In 

addition, the triiodide shows partial absorption of  visible light.  Alternative redox mediators such as 

Br-/Br3
-,57 SCN-/(SCN)2,58, 59 SeCN/(SeCN)2, ferrocene+/ferrocene,60  Co(II)/Co(III) complexes,61, 

62 or Cu(I)/Cu(II) complexes63 have been tested in DSSC, however inferior device efficiencies have 
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been obtained. The most common counterions of the iodide/triiodide couple are imidazolium and 

lithium, which can also affect the performance of the solar cell. Small cations such as Mg2+,  Li+, Na+ 

or H+ can penetrate into the pores  of the nanoparticles forming an ambipolar ion+/e- with the 

photoinjected electrons of the conduction band, which increases the transport velocity of electrons 

in the TiO2 network.64 On the other hand, relatively large molecules such as  imidazolium cations 

can be adsorbed onto the surface of the semiconductor nanoparticles,  forming a Helmholz layer, 

which restricts the contact of triiodide with the electrons from the TiO2 conduction band.65

Ionic liquids can also be used as a source of iodide in organic solvent based electrolytes for DSSC. 

The addition of ionic liquids in organic solvent based electrolytes usually increases the ionic 

conductivity.66 Furthermore, the use of different additives has been extensively used in order to 

optimise the DSSC performance. Further discussion of  the effects of additives in solar cells is 

explained in Chapter 5.

! 1.4.3.2. Ionic liquid electrolytes

Room temperature ionic liquids are attractive candidates as non-volatile solvents for electrolytes.67 

They are formed from an aromatic or non-aromatic cation such as imidazolium, pyridinium or 

quaternary ammonium ions and different anions from the family of halides, pseudohalides, BF4
- or 

PF6
- (Figure 1.12).68 Ionic liquids posses good chemical and thermal stability, very low vapour 

pressure, non-flammability,  high ionic conductivity and wide electrochemical window, which are 

very useful properties for long-lived electrochemical devices.69 However, their high viscosity 

usually limits the transport of the redox shuttle components, which occurs by diffusion, and the dye 

regeneration is therefore not as good as for organic solvent based electrolytes.
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As well as  in solvent based electrolytes,  different additives are added to ionic liquid electrolytes in 

order to increase the photocurrent or the photovoltage of the devices.

! 1.4.3.3. Quasi-solid state electrolytes

Quasi-solid state electrolytes are gel based materials with dispersed amounts of  liquid electrolyte.70 

This kind of electrolyte has the cohesive property of a solid electrolyte and the high ion diffusion 

characteristics of a liquid electrolyte. Quasi-solid state electrolytes are prepared by physical or 

chemical polymerisation of a gel,  inorganic material or monomer which incorporates large amounts 

of liquid electrolyte. 

! 1.4.3.4. Solid-state electrolytes

Solid state electrolytes can be divided into either hole transport materials (HTM) or redox couple 

containing solid electrolytes. The first group require a layer of an organic or inorganic large 

bandgap HTM to be deposited from solution or by vacuum deposition. Inorganic HTMs such as 

CuI,  CuBr or CuSCN have shown low stability. One of the most used organic HTM is spiro-

OMeTAD (2,2’-7,7’-tetrakis(N,N-di-p-methoxyphenylamine)9,9’-spirobifluorene).  The solar cell 

mechanism using HTM is equivalent to liquid or solid electrolytes: the oxidised dye is  regenerated 

by the electrons from the HOMO energy level of the HTM instead of by the redox mediator from 

liquid electrolytes. At the same time, the HTM is reduced by the electrons that arrive at the counter 

electrode. However, the performance of DSSCs using solid electrolytes is reduced due to the low 

conductivity of HTMs, the increased charge recombination between the semiconductor and the 

HTM and the low interfacial contact surface between the dye molecules and the solid electrolyte 

due to incomplete percolation of electrolyte into the porous of the nanoparticles. Solid electrolytes 

can also incorporate in their polymeric structure a redox couple such as I-/I3
-. Although the 

efficiencies obtained with this kind of electrolyte are higher than with HTM based electrolytes, 

because of higher interfacial contact between the electrolyte and the oxidised dye and lower charge 

recombination reactions, they are not as high as the efficiencies obtained with liquid solvent-based 

DSSCs.

1.4.5. Counter electrode

The counter electrode reduces the oxidised species present in the electrolyte redox couple, or, 

from a different point of view, it collects the holes from the hole conducting material in a solid state 
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dye solar cell. For efficient DSSCs,  the counter electrode should posses low resistance and a high 

rate of reduction of the redox mediator present in the electrolyte.71

The material most widely used as the counter electrode is  the highly transparent FTO conductive 

glass with a thin layer of platinum (< 10 µm). Although different deposition techniques have been 

tested to create the molecular catalyst thin layer, thermal deposition of a Pt thin film shows more 

stability and a higher triiodide reduction rate.72 

Different materials have been used as low cost alternative materials to the platinum coated counter 

electrode. Metal substrates such as steel or Ni have been tested as molecular catalysts. However, 

the I-/I3
- redox species present in the electrolyte is highly corrosive towards these metals. Carbon 

materials such as graphite or black carbon have also been tested. High efficiencies have been 

obtained with thick layers of carbon, due to the high surface contact area with the redox mediator.73 

Conducting polymers have also been used as counter electrodes, allowing the preparation of 

flexible devices.

1.4.6. The effect of additives

The maximum open circuit voltage of a DSSC is the difference in energy between the quasi-Fermi 

level of the semiconductor when illuminated and the redox potential of  the electrolyte.8 The Voc is 

mainly affected by changes in the position of the conduction band edge of the semiconductor and 

by variations in the e--TiO2/electrolyte+ recombination rate.

The conduction band of the TiO2 can be shifted by the presence of additives either in the 

electrolyte74, 75 or as coadsorbents,76, 77 or by exposing the cell to sufficiently high light intensities.

The composition of the electrolyte strongly affects the performance of DSSCs. Two main kinds of 

additives, adsorptive cations and nitrogen containing molecules, can be intercalated between the 

TiO2 nanoparticles or adsorbed onto their surface. The presence of these additives can affect 

electron injection, the open circuit voltage, the electron diffusion kinetics and the dye regeneration 

rate. Cations such as Li+, Na+, Cs+, K+  or tetrabutylammonium+ (TBA+) charge the surface 

positively causing a downward shift of the conduction band position.78 This effect increases the 

driving force for electron injection (and therefore increases injection rate) and improves the 

photocurrent, although the open circuit voltage is reduced.65, 75 On the other hand, ammonia and 

other nitrogen containing heterocyclic molecules, such as 4-tertbutylpyridine (TBP),79 can be 

adsorbed onto the surface of the semiconductor increasing cell voltage by shifting the conduction 
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band of the TiO2 upwards due to deprotonation of  the TiO2 surface,  leading to a negatively charged 

surface.80 Nitrogen containing molecules can also decrease the electron recombination between 

the photoinjected electrons and the redox mediator by preventing the electrolyte from reaching the 

TiO2 surface.

Coadsorbents, such as chenodeoxycholic acid (Cheno),81, 82 are small molecules anchored onto the 

surface of the semiconductor together with the dye. They mostly consist of a hydrophobic chain 

and an anchoring group such as carboxylic acid or phosphonic acid,  that can block exposed areas  of 

TiO2 which are not covered by photosensitisers. In addition to the barrier effect for e--TiO2/

electrolyte+, coadsorbents can shift down the conduction band of the semiconductor by 

protonating the TiO2 surface. 

The intercalation of coadsorbents between photosensitiser molecules  can also prevent dye 

aggregation, an effect especially important in organic photosensitisers, which strongly reduces 

electron injection into the conduction band of the semiconductor.

38 ! Chapter 1

UNIVERSITAT ROVIRA I VIRGILI 
RUTHENIUM POLYPYRIDYL COMPLEXES AS PHOTOSENSITIZERS FOR MOLECULAR PHOTOVOLTAICDEVICES: 
INFLUENCE OF THE DYE STRUCTURE AND THE PRESENCE OF ADDITIVES TO THE DEVICE 
PERFORMANCE 
Anna Reynal Verdú 
ISBN:978-84-693-8863-1/DL:T.1944-2010 



1.5. Ph.D. Aims

To date, the highest efficiencies in dye sensitised solar cells  have been reported using ruthenium 

polypyridyl complexes.  Although this kind of device was reported by Grätzel and O’Regan in 1991,4 

many of the processes occurring between the different components  of these devices are still not 

well defined and even the best efficiencies reached by some photosensitisers remain exceptional 

and are not always easy to reproduce.

For this reason, the objective of this thesis  is the study of the influence of one of the fundamental 

constituents  of DSSCs, namely the dye sensitiser, on the overall efficiency of these devices. In 

particular, the relationship between the performance of DSSCs and molecular structure of the 

ruthenium dyes is investigated. Furthermore, the effect of the addition of coadsorbents on the 

function of ruthenium polypyridyl photosensitisers in DSSC is discussed.

A series of  novel ruthenium(II) polypyridyl complexes is designed, synthesised and characterised. 

The molecular structure of these ruthenium complexes is composed of a 4,4’-dicarboxy-2,2’-

bipyridine,  whose function is to attach the dye to the semiconductor surface, two thiocyanate 

groups, which shift the absorption spectra to the red and four different phenanthroline ligands with 

different substituent groups, both electron donating and electron accepting. These ruthenium 

complexes,  as well as other commercially available dyes,  were used in the preparation of DSSC 

solar cell devices. The performance of these solar cells was measured, as well as the kinetics of the 

forward electron transfer processes and the recombination reactions occurring at the TiO2/dye/

electrolyte interface.  This allows differences in solar cell performance to be directly correlated with 

the structure of each of the dyes under investigation.

The effect of the addition of different coadsorbents, such as chenodeoxycholic acid or citric acid,  

on the electron transfer kinetics in DSSCs was also measured. The aim of these additives is to 

decrease recombination between the photoinjected electrons in the conduction band of the 

semiconductor and the redox species present in the electrolyte.

!
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Chapter 2. Coordination chemistry of 
2,2’-bipyridines, 2,2’:6’,2”-terpyridines 
and 1,10-phenanthrolines with 
ruthenium

Despite the many different kinds of photosensitisers, ruthenium polypyridyl complexes are the 

most commonly used and well studied. Chapter 2 consists of an introduction to the synthetic 

methods, properties and main applications of polypyridyl ligands coordinated to ruthenium.
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2.1. Introduction to bipyridines, terpyridines and 
phenanthrolines

Pyridine is an important aromatic heterocyclic organic compound, and its structure is  present in 

many natural products and synthetic molecules.1 Pyridyl moieties are versatile building blocks for 

the preparation of polypyridyl ligands.2

Oligopyridines are molecules of  great importance due to their ability to form stable complexes with 

numerous metal centers.  The structure of  these ligands strongly affects their optical and 

electrochemical properties. The functionalisation of polypyridyl ligands with different groups 

allows their use in a wide range of applications, which exploit their photophysical, photochemical 

and redox properties.

Bipyridines and terpyridines are heterocyclic aromatic molecules based on 6-membered nitrogen 

containing rings, linked through a single bond between the different carbon positions of the pyridyl 

moieties. 

The most used and best studied bipyridine is the bidentate chelate 2,2’-bipyridine (bpy), due to its 

ability to form stable complexes with metals.3 However, six possible bipyridine regioisomers can be 

distinguished (Figure 2.1), from which three are symmetrical isomers (2,2’-, 3,3’- and 4,4’-),  while 

the other three are asymmetrical isomers (2,3’-, 2,’4’- and 3,4’-).4

Figure 2.1. Molecular structure of the 6 possible isomers of bipyridine

Similarly to bipyridines, there is a wide range of terpyridine isomers with variations on the 

interconnection between the pyridyl rings (Figure 2.2). Depending on the relative position of the 
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nitrogen atoms, these terpyridine ligands can bind metals  as tridentate, bidentate, monodentate or 

bridging ligands.  Specifically, 2,2’:6’,2”-terpyridine (tpy) is an important isomer due to its ability 

to act as a tridentate ligand in the formation of coordination compounds with a wide range of metal 

centers.5 This molecule contains three nitrogen atoms with the pyridyl rings attached through their 

ortho-positions.

Figure 2.2. Molecular structures of some of the possible terpyridine isomers

Numerous derivatives have been prepared from the basic bipyridine and terpyridine structures 

upon functionalisation with different groups (Figure 2.3). Synthetic approaches to polypyridyl 

derivatives include both the functionalisation with substituent groups at the different positions of 

the aromatic rings and the incorporation of fused aromatic or aliphatic rings.

Selective functionalisation of polypyridyl ligands with electron-donating or electron-withdrawing 

groups is often used to modify the redox and photophysical properties of  their coordination 

complexes,  as well as to anchor the ligands or the metal complexes to solid surfaces.6 However, the 

introduction of substituents at certain positions can break the symmetry of the ligand, leading to 

the formation of various isomers when coordinated to metals. The different isomers of  polypyridyl 
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metal complexes can show divergent photophysical, photochemical and electrochemical 

properties, as  well as having an isomer mixture can be a disadvantage for some applications such as 

biological labelling or some catalytic processes. It is worth pointing out that the introduction of 

different substituents at the 4’ position of the 2,2’:6’,2”-terpyridine ligand does not increase the 

number of isomers when coordinated to a metal center.7

One of the most important bipyridine derivatives are phenanthrolines,  whose structure contains a 

fused aromatic ring between the two pyridyl groups.8, 9

Figure 2.3. Polypyridyl bidentate and tridentate ligands derived from bipyridine and terpyridine 
units

Phenanthrolines are aromatic molecules composed of three fused benzene rings with two carbons 

replaced by two nitrogen atoms in a peripheral position in each of the two outer rings. 

Consequently, ten phenanthroline isomers can be found depending on the position of  the nitrogen 

atoms (Figure 2.4): 1,10-, 1,9-, 1,8-,  1,7-, 2,7-,  2,8-, 2,9-, 3,7-, 3,8-, 4,7-. However,  the most 

common phenanthroline is the 1,10- isomer (phen), also called o-phenanthroline.
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Figure 2.4. Molecular structure of the different regioisomers of phenanthroline

As shown before, there exists a wide range of derivatives and isomers for bipyridines, terpyridines 

and phenanthrolines depending on the nature and number of substituents, as well as on the relative 

position of their nitrogen atoms. From this enormous group of molecules, this thesis is focused on 

the study of 2,2’-bipyridine (bpy), 1,10-phenanthroline (phen) and 2,2’:6’,2”-terpyridine (tpy).

2.1.1. Coordination chemistry

The major application of nitrogen containing aromatic heterocycles involves the formation of 

complexes with numerous metal centers.3, 5, 10 Polypyridyl ligands interact with the d orbitals of 

transition metals through both !-donor and "-acceptor molecular orbitals located on the nitrogen 

atoms and the conjugated aromatic system, respectively. Furthermore,  the geometry and the angle 

between the different nitrogen donor atoms (bite angle) strongly affects the nature of the bond 

between the pyridine-based chelating ligands and the metal center.2
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The pyridyl moieties of non-coordinated 2,2’-bipyridine can rotate around the inter-ring C-C 

bond, and its torsional angle reaches a minimum in energy when the two pyridyl moieties are 

coplanar and with the nitrogens in a trans conformation.11 This planar spatial disposition is 

favourable due to the "-conjugation of the rings, while the repulsive interaction between the 

nitrogen lone electron pairs induces a twist of 180 º to the angle between the pyridyl rings. On the 

other hand, this molecule adopts a cis planar conformation when linked in a bidentate mode to a 

metal center, forming a stable five-membered ring (Figure 2.5).

Figure 2.5. Molecular conformation of 2,2’-bipyridine as free ligand (left) and coordinated to a 
metal ion (right)

The 2,2’:6’,2”-terpyridine molecule commonly acts as tridentate meridional ligand in the formation 

of coordination compounds with a wide range of  metal centers.5 Moreover, the mono- and 

bidentate species are thought to be intermediates in the formation of the complexes.

Figure 2.6. Molecular conformation of 2,2’:6’,2”-terpyridine as free ligand (left) or coordinated to a 
metal center (right)

Terpyridines, in the solid state, adopt a planar conformation with the nitrogen atoms in a trans, 

trans relative spatial disposition to one other, in order to minimise the repulsion of the nitrogen 

lone electron pairs. However,  when a terpyridine is coordinated to a metal center in a tridentate 

mode, the ligand adopts a planar cis,cis conformation, resulting in a change in the angle between 

the central and the terminal rings and in the bond lengths (Figure 2.6).12

Most of the phenanthrolines are solids, with a rigid structure due to the presence of the central 

ring. Therefore, the two nitrogen atoms are forced into a cis conformation allowing a faster 

complexation with metals.10, 13
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The chemistry of 2,2’-bipyridines, 2,2’:6’,2”-terpyridines, 1,10-phenanthrolines and their 

derivatives has been extensively studied.2 Numerous synthetic procedures involving coupling 

reactions, cycloadditions, condensations and other methods have been developed for the 

preparation of polypyridyl ligands and their deivatives.6, 14-16

2.1.2. Main characteristics and applications

Polypyridyl ligands, when non-coordinated to metals, exhibit intense absorption bands in the 

ultraviolet (UV) region. The absorption spectra is red shifted under acidic conditions, indicative of 

the protonation of the nitrogen atoms.17 

The presence of low lying !* molecular orbitals in most of the bipyridines, terpyridines and 

phenanthrolines allows for a non-radiative relaxation of the excited state through an intersystem 

crossing and/or internal conversion and, thus, the molecules are not fluorescent in organic 

solvents.18-20 However, the introduction of substituents, such as highly extended conjugated 

moieties or electron donor groups can increase the luminescence quantum yield.21

These optical properties of polypyridyl ligands, together with their ability to form coordination 

complexes with a variety of metal ions,  allows their application in analytical chemistry. The UV-

visible or the luminescence spectra of these ligands can change upon the recognition of a specific 

analyte, allowing the use of these molecules as fluorescent or colorimetric chemosensors (Figure 

2.7).22, 23

Figure 2.7. Observed luminescence quenching of 3,3’-dihydroxybipyridine upon the addition of   
10-3 M Cu2+. Source: 24

As previously mentioned, 2,2’-bipyridines,  2,2’:6’,2”-terpyridines and 1,10-phenanthrolines can 

interact through the nitrogen atoms as  bi- or tridentate chelate ligands with a large number of 

metals of different sizes and charges, with the formation of five membered rings.10 However, it must 
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be mentioned that other isomers of this group of molecules can act as a bridge between two metal 

centers or as monodentate ligands.25 This group of nitrogen containing heterocyclic molecules are 

neutral ligands that form charged complexes when coordinated to metal cations. Although this kind 

of ligand can stabilise a wide range of different oxidation states, the greater part of transition metal 

ions coordinated to nitrogen-containing heterocyclic ligands are found in the +2 or +3 oxidation 

states, acquiring an octahedral, tetrahedral or square planar geometry.5

The major application of polypyridyl ligands is due to the photophysical,  photochemical and 

electrochemical properties which are derived from their complexation with almost all the transition, 

alkaline, alkaline earth and lanthanide metals. Polypyridyl complexes have been extensively studied 

and used in a wide range of applications, such as supramolecular chemistry,26 solar light harvesting,

27 luminescence labelling of biological molecules,28 catalysis29 and light emitting devices30.

Special attention has  been paid during the last 30 years to the spectroscopic and redox properties 

of ruthenium polypyridyl complexes, which have been widely studied and used in many fields.31, 32 

The characteristics and main applications of ruthenium complexes is further discussed in the 

following section.
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2.2. Introduction to ruthenium polypyridyl 
complexes

Ruthenium was discovered in 1844 in Tartu, Estonia, by Karl Karlovitch Klaus, who named this new 

metal Ruthenia, the latin name for Russia.33 

Ruthenium, just like osmium, is a unique metal due to its ability to form complexes covering the 

widest range of oxidation states theoretically allowed for a transition metal: from 8 in [RuO4] to -2 

in [Ru(CO)4], the most common being Ru(II) and Ru(III) oxidation states.34 The kinetic stability of 

the ruthenium complexes formed in a broad range of oxidation states, the reversible nature of  most 

of their redox pairs and the wide range of well-known synthetic reactions for their preparation 

make these complexes very attractive for use in a wide range of studies. In this work, attention has 

been particularly focused on the study of Ru(II) complexes.

The bonding properties of ruthenium complexes can be explained by crystal field theory and 

molecular orbital theory. From the point of view of crystal field theory, the properties of ruthenium 

complexes arise from electrostatic interactions between the metal ion and chelating ligands,  which 

result in the splitting of d-orbital energies. From the molecular orbital theory point of view, the 

ruthenium properties can be explained from the charge transfer between the metal and chelating 

ligands due to the interaction between the s, p and d atomic orbitals of the metal center, which have 

appropriate geometry with the orbitals of the chelating ligands.

The coordination chemistry of ruthenium with oligopyridine ligands has been extensively studied. 

Due to the very many polypyridyl ligands available, ruthenium polypyridyl complexes are extremely 

versatile with wide ranging photophysical, photochemical and redox properties which can be 

optimised for a particular purpose.31 In addition to the many well known synthetic reactions for the 

preparation of ruthenium complexes,  the possibility of the functionalisation of these ligands with 

appropriate anchoring groups allows the attachment of these complexes onto a variety of surfaces.
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2.3. Properties of ruthenium complexes with 
polypyridyl ligands

2.3.1. Photophysical and photochemical properties

A photochemical or photophysical process takes place when a molecule absorbs a photon and 

promotes an electron from the ground state to the excited state.  This high energy state is unstable 

and thus, the molecule tends to undergo some type of deactivation process. Excited state 

deactivation can occur via (a) the emission of light (luminescence), (b) the liberation of the excess 

energy in form of heat (thermal deactivation), (c) the interaction with other molecules present in 

the local environment (quenching process) and (d) the formation of a new species (photochemical 

reaction).35

The photochemistry of ruthenium complexes coordinated to different polypyridyl ligands has been 

extensively investigated in the last few decades.36 Specifically, the prototype molecule [Ru(bpy)3]2+ 

has been one of the most studied molecules due to its high stability, strong and long-lived 

luminescence and ability to undergo redox reactions.

" 2.3.1.1. Absorption spectroscopy

Polypyridyl complexes of Ru(II) have a d6 electronic configuration and a preferred octahedral 

geometry. Surrounding the metal ion, polypyridine ligands interact with ruthenium through !-

donor orbitals located on the nitrogen atoms and !-donor and !*-acceptor molecular orbitals 

delocalised on the aromatic rings.37 The spectroscopical and electrochemical properties of 

ruthenium complexes are usually described through a simplified linear combination of atomic 

orbitals (Figure 2.8).38 Each molecular orbital is denominated as metal (M) or ligand (L) in 

agreement with its prevalent localisation.

The molecular orbital diagram for an octahedral complex of a transition metal such as Ru(II) 

indicates that different transitions between the different chelating ligands and metal orbitals can 

take place upon the absorption of light. These transitions can be classified as (a) metal-centered 

transitions (MC), also called d-d transitions, when the electrons are promoted from a !M metal 

orbital to a !*M orbital;  (b) ligand-centered (LC) or !-!* ligand to ligand transitions, for 

transitions mainly localised on the chelating ligands, and (c) transitions between molecular orbitals 
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with different localisation:  metal-to-ligand charge transfer (MLCT), or ligand-to-metal charge 

transfer transitions (LMCT). Electronic transitions that occur to a lesser extent are those from a 

metal-centered orbital to solvent (charge transfer to solvent, CTTS).38 

The light absorption processes are only allowed for transitions in which the ground and the excited 

state have the same spin value. These transitions can be observed as intense bands in the absorption 

spectra of the molecules. On the other hand, transitions from the ground state to excited states with 

different spin values are considered forbidden and can rarely be observed in absorption spectra.

Figure 2.8. Simplified molecular orbital diagram for a transition metal complex in an octahedral 
geometry showing different electronic transitions

The MC, MLCT and LC transitions of an octahedral transition metal complex are related to the 

ligand field strength,  the redox potential of the metal complex and the intrinsic properties of the 

ligands, respectively.39 For this reason, changes in the molecular structure of the ligands attached 

to the ruthenium metal ion can vary dramatically the relative energy positions of the excited states, 

with the consequent change in their photophysical properties.40

" 2.3.1.2. Emission spectroscopy

The behaviour of excited species is usually represented in a Jablonski diagram (Figure 2.9). In most 

of the ruthenium polypyridyl complexes, three states are involved in the photochemical activation 

process: a singlet ground state and a singlet and triplet excited state.

The multiplicity of the ground state for most ruthenium (II) polypyridyl complexes is a singlet (S0) 

and the absorption of a photon leads to the promotion of  an electron from an occupied orbital to a 
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higher energy unoccupied orbital with the same spin multiplicity (S1). However, the lowest excited 

state is often a triplet (T1) and, although it cannot be populated with excited electrons directly by 

light absorption, it can be so through the deactivation of higher excited states. The S1 state rapidly 

decays via intersystem crossing to the T1 due to the strong spin-orbital coupling in metal 

complexes.31 The quantum yield for the formation of the lowest triplet excited state is often equal to 

100 %, yielding a short-lived fluorescence. The photo-excited state deactivation occurs though 

both a radiative (phosphorescence) and a non-radiative way. 

Figure 2.9. Jablonski diagram for ruthenium polypyridyl complexes

Most ruthenium bipyridyl complexes show a lowest excited state as a triplet T1,  whose deactivation 

results in an intense long-lived luminescence. However, at high temperatures,  radiationless 

deactivation can take place via thermally activated T2 metal centered excited state.

The behaviour of ruthenium terpyridyl complexes is completely different from their bipyridyl 

analogues.41 No emission is detected at room temperature in ruthenium terpyridyl complexes due 

to a non-radiative relaxation of the excited state (T1) via a transition by a T2 metal centered excited 

state to the ground state. However, when the temperature decreases, the transition is less efficient 

and some luminescence can be observed. Furthermore, the optical properties of these complexes 

can be modified by the introduction of substituents on the ligands, allowing improvements in the 

luminescence quantum efficiency and/or lifetime.42

The observed excited state lifetime (#) of the ruthenium polypyridyl complexes depends on the rate 

constants for radiative (kr) and non-radiative (knr) decays to the ground state. The emission lifetime 
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which can be described by the Arrhenius equation (where kt is the pre-factor for the thermally 

activated process and Ea is  the activation energy barrier to the T2 state) (Equation 2.1).43 The 

relationship between the emission quantum yield ($) and kr is given by Equation 2.2 (%isc is the 

efficiency of intersystem crossing, normally considered unity).

1
!
= k

r
+ k

nr
+ k

t

Ea
R"T( )

" " " " " " (Equation 2.1)

! ="
isc
# k

r
#$ & & & & & & & (Equation 2.2)

The thermal population of the short-lived metal centered states has an important effect on the 

excited state lifetime of the molecules. Some ruthenium bis(tridentate) complexes show fast 

emission decays due to the non-radiative deactivation of the lowest excited state T1 via thermal 

population of the metal centered orbital T2. For this  reason, an increase of the energy gap between 

the T1 and the T2 excited states it is a good approach for increasing the excited state lifetime.44

2.3.2. Redox properties

Ru2+ polypyridyl complexes are octahedral and diamagnetic, with a t2g
6 configuration. However, 

due to their high number of stable oxidation states, ruthenium polypyridyl complexes serve as  both 

electron acceptor and electron donors.45

The oxidation of a d6 Ru2+ polypyridine complex involves removal of an electron from the highest 

energy occupied molecular orbital (HOMO), usually a !M (t2g) metal centered orbital, with the 

formation of paramagnetic low spin d5 Ru3+ complexes, which are inert to ligand substitution 

(Equation 2.3).

[RuII(NN)3]2+ ' [RuII(NN)3]3+ + e-" " " " " (Equation 2.3)

On the other hand, the reduction of a Ru(II) polypyridyl complex may involve the introduction of 

one electron into the lowest unoccupied molecular orbital (LUMO), located either into a metal-

centered (!*M) or into a ligand-centered orbital (!*L), depending on their relative energy level 

arrangement.  Generally, polypyridine ligands coordinated to ruthenium metal ions are easily 

reduced, and the reduction takes place on the ligand (Equation 2.4). In this case, ruthenium metal 

ions maintain their d6 low spin configuration. These species are usually inert and the reduction 
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reaction is reversible. However, when the lowest energy empty orbital is a metal centered orbital, 

the electron is  added to the metal centered orbital.  The reduction of these complexes produce an 

unstable low spin d7 electronic configuration which leads to a rapid ligand dissociation, which 

makes the reaction irreversible (Equation 2.5).

[RuII(NN)3]2+ + e- ' [RuII(NN)2(NN-)]2+" " " " (Equation 2.4)

[RuII(NN)3]2+ + e- ' [RuI(NN)3]+ ' [RuI(NN)2]+ + NN" " " (Equation 2.5)

The electrochemical behaviour of polypyridyl ruthenium complexes depends on the nature of the 

ligands surrounding the metal ion.  The redox potentials  of a metal couple can be predicted by using 

the ligand electrochemical parameters (EL) described by Lever in 1990.46 EL is  a function of the ! 

and ! donor and acceptor properties of the ligand and is independent to the metal in which the 

ligand is bound.47

2.3.3. Tuning of spectro-and electrochemical properties

The structure of  the polypyridyl ligand determines the redox and spectroscopical properties of the 

ruthenium complex,  which can be modified by the introduction of appropriate chelating ligands.48 

Generally, two strategies are used to tune these properties: (a) the modification of the LUMO 

energy level by introducing a ligand with a low-lying !*molecular orbital involved in the MLCT or 

(b) by destabilisation of the t2g metal orbital (HOMO energy level), which is affected by the donor 

or acceptor properties of the ligands.49

The modification of the HOMO and LUMO energy levels has a direct effect over the MLCT 

transitions of the ruthenium complexes, and consequently induces a change in the absorption 

spectra of  the molecule.  Controllable adjustments of the excited state energy levels  can be 

performed with an appropriate selection of  the ligands involved in the MLCT (e.g. [Ru(2,2’-

bipyridine)3]2+ and [Ru(2,2’-bipyridine)2(2,2’-biquinoline)]2+). However, smaller changes in the 

LUMO energy levels are done by the simply introduction of substituents in the aromatic rings of 

the ligands (e.g. [Ru(2,2’-bipyridine)3]2+ and [Ru(4,4’-dimethyl-2,2’-bipyridine)3]2+).  Furthermore, 

considerable changes in the spectral properties of the ruthenium complexes  can be achieved upon 

substitution of a ligand not involved in the MLCT transition by a non-chromophoric donor ligand, 

which destabilises the metal t2g orbitals (e.g. [Ru(2,2’-bipyridine)(2,2’-biquinoline)2]2+ and 

[Ru(2,2’-biquinoline)2(CN)2]) (Figure 2.10).31
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Figure 2.10. Tuning of HOMO (t2g) and LUMO (!*) orbital energy in various ruthenium polypyridyl 
complexes
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2.4. Stereochemistry of ruthenium polypyridyl 
complexes

Another characteristic of octahedral metal complexes such as Ru(II) with bidentate ligands is their 

stereoisomerism.50 For homoleptic tris(bidentate) complexes with symmetrical ligands (NN),  two 

enantiomers are possible, called # and " (Figure 2.11a). Two geometrical isomers (facial (fac) and 

meridional (mer)) are possible for complexes with non-symmetrical bidentate chelate ligands (R-

NN) (Figure 2.11b). However, the number of isomers increases to four and eight, respectively, 

when two [Ru(R1-NN1)(R2-NN2)(NN)] or three [Ru(R1-NN1)(R2-NN2)(R3-NN3)] unsymmetrical 

substituted ligands are linked to the ruthenium metal center (R1-NN1,  R2-NN2 and R3-NN3 are 

different unsymmetrical nitrogen containing bidentate chelate ligands). For bis(bidentate) 

complexes two geometrical isomers can be formed (cis/trans) as well as  two enantiomers of the cis 

form (Figure 2.11c). Furthermore,  the number of possible isomers increases exponentially with the 

number of metal ions in the synthesis of polynuclear complexes.

Figure 2.11. (a) ! and " geometrical isomers of Ru(II) symmetrical tris(bidentate) complexes, (b) fac 
and mer isomers of Ru(II) tris(bidentate) complexes containing an unsymmetrical ligand, and (c) trans 

and two cis isomers of bis(bidentate) ruthenium complexes
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In order to avoid stereochemical problems, several approaches have been used in the 

enantioselective synthesis of ruthenium complexes, such as the use of tridentate instead of 

bidentate ligands,51 the utilisation of chiral building blocks to synthesise complexes with a 

predetermined stereochemistry,52 and the light-induced isomerism in ruthenium complexes.53

The stereochemical problems are solved when tridentate ligands such as tpy are used, which are 

coordinated to the ruthenium metal center in a meridional form creating an achiral center. 

Furthermore,  the introduction of a substituent in the 4’ position of the terpyridine does not 

increase the number of geometrical isomers (Figure 2.12).54

Figure 2.12. Ruthenium tris(bidentate) polypyridyl complexes without, with one, and with two 
substituents in the 4’ position (from left to right)
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2.5. Synthesis of ruthenium polypyridyl complexes

Ruthenium polypyridyl complexes have an extensive and well-known synthetic chemistry.55 Their 

compounds show high stability and flexibility with a wide range of mono-, bi-,  tri- and tetradentate 

ligands. Furthermore, ligands can be exchanged sequentially, removing some of them while 

maintaining the presence of others as well as the stereochemical integrity.

One of the most common synthetic precursor for ruthenium mononuclear polypyridyl complexes is 

the commercially available RuCl3$xH2O. Some important intermediates in the synthesis of homo- 

and heteroleptic complexes such as [Ru(CO)2Cl2]n,56 Ru(dimethylsulfoxide)4Cl2 (Ru(DMSO)4Cl2),

57 [Ru(%6-arene)Cl2]2,58 [Ru(1,5-cyclooctadiene)Cl2]n ([Ru(COD)Cl2]n)59 can be synthesised in one 

step from RuCl3$xH2O. Several synthetic routes for the synthesis of homoleptic and heteroleptic 

polypyridyl ruthenium complexes are detailed below.

2.5.1. Synthesis of tris(bidentate) ruthenium complexes

The ruthenium (II) metal ion can accommodate three nitrogen-containing bidentate chelate ligands 

(NN), resulting in the possibility of the formation of homoleptic complexes ([Ru(NN1)3]2+),  bis-

heteroleptic complexes ([Ru(NN1)2(NN2)]2+ and tris-heteroleptic complexes ([Ru(NN1)(NN2)

(NN3)]2+).

" 2.5.1.1. Synthesis of ruthenium homoleptic complexes

The first synthesis of an homoleptic ruthenium compound reported in 1936 corresponds to the 

complex [Ru(bpy)3]Cl2.60 Refluxing RuCl3$xH2O with an excess of a bipyridyl compound (NN1) 

results in the formation of ruthenium homoleptic tris(bidentate) ligand. This synthesis was 

extended to the incorporation of a wide range of bidentate ligands with the addition of a reducing 

agent such as phosphinic acid or hydroxylamine hydrochloride to the reaction mixture.61,62

Although the most simple reaction to obtain ruthenium tris-bipyridyl complexes is based on 

ruthenium (III) chloride,  homoleptic compounds can also be prepared from other precursors such 

as [Ru(#6-arene)Cl2]2,58 [Ru(CO)2Cl2]n,63 Ru(DMSO)4Cl2
64 or [Ru(COD)Cl2]n

65
 involving a two-

step reaction (Figure 2.13).
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Figure 2.13. Synthetic routes of homoleptic ruthenium complexes containing three bidentate ligands. 
(NN1) is a bidentate chelate ligand

An interesting alternative to the previous synthetic routes, which offers a reduction in the reaction 

time, consists of the microwave assisted reaction of different precursors such as RuCl3$xH2O66 or 

[Ru(p-cymene)Cl2]2
67.

" 2.5.1.2. Synthesis of ruthenium bis-heteroleptic complexes

In some cases,  the coordination of different chelate ligands to the metal ion is necessary in order to 

modify the spectroscopic and electrochemical properties  of the ruthenium complex for a specific 

application. Synthetic routes for ruthenium complexes of type [Ru(NN1)2(NN2)]2+  are based on the 

sequential introduction of ligands to a ruthenium precursor.

A widely used synthetic approach involves the introduction of  two chelate ligands by the direct 

reaction of RuCl3$xH2O with two equivalents of  the bidentate ligand, obtaining a [Ru(NN1)2Cl2] 

complex. Other precursors used in the synthesis of such complexes are Ru(COD)Cl2
68 and 

Ru(DMSO)4Cl2
69, with the disadvantage of involving more than one synthetic steps. Subsequent 

introduction of  a third diimine to the [Ru(NN1)2Cl2] complex in an appropriate medium results in 

the formation of [Ru(NN1)2(NN2)]2+ (Figure 2.14).70 

Another synthetic method to obtain ruthenium bis-homoleptic complexes is based on the 

sequential introduction of three chelate ligands to the [Ru(CO)2Cl2]n oligomer.71
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Figure 2.14. Synthetic routes of bis-heteroleptic ruthenium complexes containing three bidentate 
ligands. (NN1) and (NN2) are different bidentate chelate ligands

" 2.5.1.3. Synthesis of ruthenium tris-heteroleptic complexes

Several synthetic methodologies have been developed for the preparation of ruthenium tris-

heteroleptic complexes. All of these synthetic routes are based on the sequential introduction of 

chelate ligands by substitution of labile ligands.

Two synthetic routes for the synthesis of [Ru(NN1)(NN2)(NN3)]2+ complexes using [Ru(CO)2Cl2]n 

as starting material have been extensively studied (Figure 2.15). The first step in both 

methodologies is the introduction of one chelate ligand. The subsequent decarbonylation steps 

differ. In the first method the labile CO ligands are substituted by the application of heat,72 while in 

the second decarbonylation takes place by irradiation with UV light.73
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Figure 2.15. Synthetic routes of tris-heteroleptic ruthenium complexes containing three bidentate 
ligands using carbonyl complexes as a precursor. (NN1), (NN2) and (NN3) are different bidentate 

chelate ligands

Other widely studied synthetic routes are based on synthesising Ru(NN1)(NN2)Cl2 intermediates, 

using different precursors such as RuCl3$xH2O,70 Ru(DMSO)4Cl2
74 or [Ru(%6-arene)Cl2]2

58 as 

starting material and subsequent sequential introduction of chelate ligands under different reaction 

conditions (Figure 2.16).
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Figure 2.16. Synthetic routes of tris-heteroleptic ruthenium complexes containing three bidentate 
ligands using different precursors. (NN1), (NN2) and (NN3) are different bidentate chelate ligands

2.5.2. Synthesis of bis(tridentate) ruthenium complexes

Complexation of ruthenium metal ions with two tridentate ligands leads to the formation of a 

complex with a distorted octahedral geometry.54 Synthetic routes involve a two-step sequence, with 

the sequential introduction of two equal or different tridentate ligands. 

The most widely used synthetic method uses RuCl3$3H2O as a precursor. The introduction of the 

first ligand results  in the formation of Ru(NNN1)Cl3, where (NNN) is a nitrogen containing 

tridentate ligand. A reducing agent for the Ru(III) ' Ru(II) conversion is necessary when the second 

ligand is  coordinated to the metal ion.42 This  synthetic approach allows the synthesis  of both 

homoleptic and heteroleptic ruthenium complexes by applying the same ligand twice or two 

different ligands. Furthermore, this synthesis can be carried out within a microwave, saving an 

enormous amount of time (Figure 2.17).75

An alternative procedure for ligands that can easily decompose is the synthesis under mild 

conditions of bis(tridentate) ruthenium complexes using Ru(DMSO)4Cl2 as starting material.76
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A third synthetic strategy is available for obtaining symmetric bis(tridentate) complexes by reacting 

[Ru(%6-arene)Cl2]2 with two equivalents of the ligand.77

Figure 2.17. Synthetic routes of tris-heteroleptic ruthenium complexes containing three bidentate 
ligands using different precursors. (NNN1) and (NNN2) are different tridentate chelate ligands
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2.6. Main uses and applications of ruthenium 
polypyridyl complexes

Ruthenium polypyridyl complexes have a wide range of applications in different areas due to their  

unique spectroscopical and electrochemical properties.32 The popularity of  these compounds 

arises from the ability to tune their properties by the introduction of  different substituents, 

enabling the rational design of ruthenium complexes with the desired properties.  Furthermore, 

chemical manipulation of the substituents allows the anchoring of these complexes onto a variety of 

surfaces.

2.6.1. Solar energy conversion

The potential of ruthenium polypyridyl complexes to act as photosensitisers in the conversion of 

solar energy into electrical energy has become an attractive subject of  study.27,48,78 Through 

appropriate molecular design, ruthenium polypyridyl complexes can exhibit a wide range of 

colours absorbing in different regions of the UV-visible spectrum, as well as having very different  

redox properties.

The breakthrough was achieved in 1991 with the first paper published by O’Regan and Grätzel, 

reporting a new type of solar cell based on the sensitisation of a wide band gap mesoporous 

semicondutor.79 Since then, dye sensitised solar cells have been extensively investigated.

The application of ruthenium polypyridyl complexes as photosensitisers is  discussed in further 

detail in Chapter 3.

2.6.2. Water splitting and CO2 reduction

The goal of artificial photosynthesis is to mimic the conversion of water and sunlight carried out by 

plants and other photosynthetic organisms to obtain environmentally friendly energy sources.80 An 

interesting reaction which results in the formation of carbon free fuels (H2) is the splitting of water.

Light induced homogeneous (or partially homogeneous) water splitting devices at a molecular level 

involve at least three essential components: a photosensitiser,  a water oxidant catalyst and a 
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hydrogen reduction catalyst.81 Ruthenium complexes play an important role when used as water 

oxidation catalysts and dyes due to their ease of characterisation.82 To date, dimeric and 

monomeric ruthenium aqua polypyridyl complexes are the most well studied and characterised 

oxidation catalysts due to their capacity to lose and gain electrons and protons and their high 

number of stable oxidation states.83-85 On the other hand, ruthenium photosensitisers are 

polypyridyl complexes able to absorb visible light with an oxidation potential higher than the 

oxidation potential of the oxidation catalyst.

An interesting approach for the conversion of water into hydrogen and oxygen is the incorporation 

of this catalytic system into a complete functional device called a solar fuel cell or dye sensitised 

photoelectrochemical cell (DSPEC) (Figure 2.18).86 This device is based on a modification of the 

dye sensitised solar cell, where the oxidation and reduction reactions take place at the cathode and 

anode electrodes of an electrochemical cell.

Figure 2.18. Schematic diagram for a DSPEC cell for water oxidation

The reduction of CO2 can be carried out through a light-driven reaction,  with electrons and 

protons derived from the water oxidation reaction. The reduction reaction of  CO2 into more 

complex chemicals  can also be integrated into complete functional devices in a similar schematic 

diagram to that used for DSPECs. A ruthenium hydride complex able to insert CO2 molecules into 

the metal-hydride bond can be used as a CO2 reduction catalyst.87
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2.6.3. Light driven molecular devices and machines

A molecular device is an assembly of  molecular components designed to perform a particular 

function,  while a molecular machine is a particular type of molecular device able to transform an 

external stimulation into mechanical-like movement. The energy supply for molecular devices and 

machines can arise from chemical,  photochemical or electrochemical stimuli. However, stimulation 

by light is  one of the most interesting way to power systems of  this type since the system is not 

altered by the addition of chemical reagents.88 For this reason, luminescence or photo-redox active 

metal complexes have been used as essential components for the construction of molecular devices 

and machines.30

Examples of  molecular devices are molecular wires, molecular switches and molecular antenna 

receptors.  Molecular wires are molecular-based devices which allow the electron or charge 

transfers between a donor and an acceptor units  over long distances and in a determined direction.

89 Molecular switches can allow or prohibit the electron or energy transfer between two 

components  of the molecular device, an acceptor and a donor unit, by reversible modifications on 

the structure or conformation of the linker.90 In these two types of molecular devices, the 

ruthenium polypyridyl complexes are used as chromophoric agents able to transfer an electron to 

the acceptor moiety of the molecular device when they are irradiated with light. On the other hand, 

dendrimers are organised systems in which several chromophoric components absorb the incident 

light and direct the excitation energy towards a common acceptor component.91,92 In this type of 

devices, ruthenium complexes can act as the chromophoric agent, transferring the energy to 

another metal center; or as the core energy trap,  where several aromatic units of the dendrimer 

absorb UV light and transfer the energy to the ruthenium metal center.

Molecular machines transform an external energy into a large displacement of some components of 

the system.93 The most important movements performed by molecular machines for practical 

applications are lineal and rotary movements, changes in their molecular structure,  translocation of 

components  and contractions and extensions. Particularly interesting molecular machines are 

those where the ruthenium complexes can be used as photosensitisers able to impulse motions 

through electron or charge transfers to the acceptor moieties of the molecular machines.94
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2.6.4. Light emitting devices

Organometallic complexes possessing a heavy transition metal element are strong phosphorescent 

emitters, making them suitable for their employment in light emitting devices.95 These kind of 

devices are very interesting for display and lighting applications.

Organic light emitting diodes (OLEDs) are based on an emissive aromatic organic layer between 

two electrodes. When an electric potential is applied, the organic layer is oxidised at the anode and 

reduced at the cathode, and the recombination between the electrons and holes at the organic layer 

generates an exciton with an energy similar to the difference between the HOMO and LUMO of the 

organic molecules.

Ruthenium complexes, such as the tris-(bidentate) [Ru(NN)3]2+  can be used in light emitting 

devices in the form of a single emitting layer,96, 97 polymerised,98 or incorporated into an inert solid 

matrix99. However, the emission of light is due to the recombination reaction between the oxidised 

[Ru(NN)3]3+ and the reduced [Ru(NN)3]+ forms of the ruthenium complex.100

2.6.5. Optical molecular chemosensors

Chemosensors are molecules which display a specific response to a particular analyte species.  

Optical chemosensors  offer a variation in their absorption or emission spectra,  intensity or lifetime 

in the presence of specific species. 

Ruthenium polypyridyl complexes have been extensively used for the detection of O2, since 

diatomic oxygen is a well known luminescence quencher.101 In addition, these compounds can be 

functionalised with specific groups capable of recognising selective anions (halogens, CH3COO-, 

H2PO4
-), cations (H+, metal ions),  small molecules (CO2, NH3) and biomolecules making them 

suitable for the optical detection of analytes.102 Furthermore, ruthenium complexes can be 

immobilised onto a permeable solid matrix (e.g. zeolites, polymers, sol-gel type supports,  etc.) 

through covalent or non-covalent bonds. The anchorage of a chemosensor onto a solid surface 

allows the preparation and commercialisation of portable devices.

2.6.6. Interaction with biomolecules

Transition metal complexes which are stable, inert and water-soluble are extensively used in 

chemotherapy and in the development of highly sensitive diagnostic agents.103 Specifically, 
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ruthenium complexes show a long-lived luminescence in the visible region of the spectra, which 

enables them to be used in detection and imaging studies. Furthermore, the sensitivity of their 

absorption and emission spectra, intensity and lifetime to different biomolecule 

microenvironments such as DNA or proteins make these complexes attractive candidates for 

biomolecule sensing.104

By changing the ligands of the ruthenium complex, the nature and the strength of binding with 

biomolecules can be modified. For this reason, ruthenium polypyridyl complexes used as 

chemosensors can interact with biomolecules trough covalent or non-covalent bonds.

“Probe” is the name assigned to those complexes that bind the biomolecules through non-covalent 

interactions, such as electrostatic attraction between the cationic metal complexes and polyanionic 

nucleic acids, hydrophobic interactions between the ligands and the biomolecules  or intercalation 

of the ruthenium complexes containing an extended aromatic planar ligand into the biomolecules. 

On the other hand, ruthenium complexes that interact with biomolecules through covalent bonds 

are called “labels”. These metal complexes can be introduced as a luminescence linkers between 

two different biomolecule moieties, or can be functionalised with a specific reactive group to bind 

the biomolecules.
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Chapter 3. Experimental methods

The general device preparation steps, reagents  and equipment used in the work presented in this 

thesis are explained in this section. However, specific characteristics of  the particular experimental 

conditions and fabrication procedures of each sample are further commented in the corresponding 

article.
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3.1. Dye synthesis and characterisation

3.1.1. General reagents and solvents

All of  the chemical products were purchased from Sigma-Aldrich without further purification 

unless otherwise stated.  N719 and the Black Dye were purchased from Solaronix. The C101 

complex was received as a courtesy from the FP7-EU project (ROBUST). Commonly used solvents 

were purchased from SdS.

3.1.2. General instrumentation

Proton and carbon NMR spectra, NOESY and COSY experiments were measured on a Bruker 

Avance 400 Ultrashield NMR spectrometer. The deuterated solvents are indicated and the 

chemical shifts (!) are given in ppm, referenced to the solvent residual peak. Coupling constants 

(J) are given in Hz.

A Waters LCT Premier liquid chromatograph coupled to a time-of-flight mass spectrometer 

(HPLC/MS-TOF) with electrospray ionisation (ESI) was used to measure the mass spectra of the 

samples. 

Fourier transform infrared spectra (FTIR) were obtained with an FTIR ThermoNicolet 5700 

spectrometer, with a spectral range from 4000 to 400 cm-1. UV-visible and fluorescence spectra 

were recorded in 1 cm path length quartz cell in a Shimadzu UV spectrophotometer 1700 and 

Aminco-Bowman Series 2 luminescence spectrometer, respectively. The absorption spectra of 

sensitised films were measured by directly attaching the films to the cuvette holder. 

The electrochemical data were obtained by employing a conventional three-electrode cell 

connected to a CH Instruments 660c potentiostat-galvanostat. For cyclic voltammetry, a platinum 

working electrode, a calomel reference electrode (saturated calomel electrode, SCE), and a 

platinum wire as the auxiliary electrode were used. During cyclic voltammetry of most ruthenium 

polypyridyl complexes,  the metal is oxidised and one ligand is  reduced. A reversible oxidation wave 

which involves a metal centered orbital, and various reduction waves localised on the ligands can be 

observed. However, since the reduction of the ligands occurs in the far negative potential range, 

the oxidation potentials of the excited state (E1/2RuII/III*,  V) can be approximated to the oxidation 

potentials of the ground state (E1/2RuII/III, V) and to the excited state zero-zero energies (E0,0,  J) 
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using Equation 3.1,  where q is the elementary charge (C) and the 0-0 energy calculated from the 

highest energy side of the emission band.

E
1
2

(Ru
II / III*

) = E
1
2

(Ru
II / III

) !
E
0,0

q
! ! ! ! (Equation 3.1)

3.1.3. Synthesis of organic ligands

! 3.1.3.1. Synthesis of 4,4’-dicarboxy-2,2’-bipyridine

The ligand 4,4’-dicarboxy-bipyridine was synthesised as previously reported. 4,4’-dimethyl-2,2’-

bipyridine (0.5 g, 3 mmol) was dissolved in 27 mL of H2SO4 4 M. The solution was cooled to -5 ºC 

in an ice-salt bath.  KMnO4 (1.07 g, 6.8 mmol) was added in six portions  while stirring. After half an 

hour another KMnO4 portion (1.07 g, 6.8 mmol) was added in a similar form. The reaction mixture 

was heated in a silicon oil bath and refluxed for 18 h.  The mixture was cooled to room temperature 

and was filtered with a buchner funnel. The white precipitate was dissolved in 30 mL of 1 M 

Na2CO3. The insoluble part was removed by filtration at atmospheric pressure. A 4 M 1:1 solution of 

HNO3 and HCl was added to lower the pH of  the filtered solution to pH 2. A white precipitate 

appeared and was collected by filtration with a sintered glass funnel. Yield: 75%.  1H-NMR (400 

MHz, D2O/NaOD) !: 7.49 (d, J =5.1 Hz, 2H), 7.99 (s, 2H), 8.39 (d, J =5.1 Hz, 2H).

3.1.4. Synthesis of the ruthenium polypyridyl complexes

The synthesis of  all complexes was carried out in a one-pot reaction following the procedure 

published in the literature by Kasuga et al. (Figure 3.1).1

Ruthenium polypyridyl complexes were purified by size exclusion chromatography. The reaction 

crude (50 mg) was dissolved in 2.5 mL of methanol (MeOH) and 2 eq of tetrabutylammonium 

hydroxide (40 % wt in MeOH) were added. The solution was filtered through a 45 µm filter and 

purified through a Sephadex LH-20 column (2.5 x 30 cm) using methanol as the mobile phase. The 

main red band was collected and the solvent was evaporated under vacuum. Small aliquots of  0.01 

M HNO3 were added until a brown precipitate appeared, which was collected by filtration. 

Ruthenium diastereoisomers were separated by reverse phase C18 semipreparative HPLC (Waters 

Delta 600 pump),  using a mixture of H2O (0.1 % trifluoroacetic acid, TFA)/acetonitrile (0.1 % 

TFA) (1:1).
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Figure 3.1. Synthetic route of the preparation of heteroleptic ruthenium complexes

3.2. Theoretical calculations

The theoretical calculations of the different photosensitisers used in this thesis were performed by 

Prof. Anton Vidal.  The geometries of the different complexes were calculated with Gaussian 03, 

revision C.02,2 using the B3LYP functional. 6-31(d) basis sets  were used for sulfur, nitrogen, 

carbon and hydrogen atoms, whereas the Stuttgart-Dresden effective core potential (ECP)3 and 

corresponding basis set were used for ruthenium. HOMO and LUMO orbitals were calculated from 

the optimised geometries.

N N

Ru Ru

Cl

Cl

Cl

Cl

+

Ru

Cl

N

N

N N

HO OH

OO

Ru

Cl

Cl

N

N

N

N

OH

OH

O

O

DMF

 80˚C, 4h, Ar

DMF, 160˚C, 4h, Ar, dark

NH4NCS, DMF

150ºC, 5h, Ar

X

X

X

Y
Y

Y

Ru

N

N NCS

NCS

N

N

CO2H

HO2C

Ru

N

N NCS

NCS

N

N

CO2H

HO2C

X

Ru

N

N NCS

NCS

N

N

CO2H

HO2C

Y

Ru

N

N NCS

NCS

N

N

CO2H

HO2C

X

Y

AR24a: X = H, Y = NH2

AR24b: X = NH2, Y =H

AR27a: X = H, Y = NO2

AR27b: X = NO2, Y =H

AR20 AR25

Experimental methods! 87 

UNIVERSITAT ROVIRA I VIRGILI 
RUTHENIUM POLYPYRIDYL COMPLEXES AS PHOTOSENSITIZERS FOR MOLECULAR PHOTOVOLTAICDEVICES: 
INFLUENCE OF THE DYE STRUCTURE AND THE PRESENCE OF ADDITIVES TO THE DEVICE 
PERFORMANCE 
Anna Reynal Verdú 
ISBN:978-84-693-8863-1/DL:T.1944-2010 



3.3. Device preparation

3.3.1. Nanoparticle synthesis and film preparation

The synthesis of highly transparent 20 nm TiO2 nanoparticles is based on the hydrolysis of a 

titanium alkoxide precursor, followed by peptisation under acidic conditions and autoclaving at 

high temperature. The TiO2 nanoparticles used in this thesis  work were synthesized in the 

laboratory of Prof. Emilio Palomares by Dr. Eugenia Martínez, Amparo Forneli and Antonio 

Sánchez following the procedure detailed by Palomares and coworkers.4 Titanium isopropoxide 

(40 mL, 0.13 mol) was added to glacial acetic acid (9.12 g) under argon atmosphere while stirring. 

The reaction mixture was cooled in an ice-bath and 0.1 M nitric acid (240 mL) was added with 

vigourous stirring. The mixture was heated in an oil bath at 80 ºC for 8 h and,  after cooling, was 

filtered through a 0.45 µm syringe filter.  The resulting product was diluted to 5 % weight of TiO2 

by adding water and was then autoclaved at 220 ºC for 12 h. The aqueous phase was removed by 

centrifugation and the solid nanoparticles were isolated and rinsed two times with ethanol.  An 

ultrasonic horn was used to break the aggregates and the solvent was removed under vacuum. The 

solid nanoparticles  were diluted to 15 % TiO2 weight, using ethyl cellulose and terpineol, and the 

paste was homogenised using a ball mill. This  procedure results in the preparation of highly 

transparent approximately 20 nm partially anatase nanoparticles.

The Al2O3 paste was prepared by Josep Albero from commercially available aqueous solution of 20 

nm Al2O3 nanoparticles (Alfa Aesar).

 Furthermore, for highly efficient devices, TiO2 pastes with a nanoparticle diameter of 20 and 400 

nm were purchased from Dyesol.

In the present work, three different types of nanocrystalline films were used: (1) films for the 

spectroscopical measurements of  the dye anchored onto the TiO2 surface, (2) films used for 

measuring the photophysical properties of cell devices, and (3) films used for efficiency 

measurements of solar cells  (Film 3). All of the glass slides were rinsed in the same way prior to use, 

in order to guarantee good contact with the semiconductor nanoparticles. The cleaning process 

involved the sequential sonication of the glass slides for 15 min in detergent solution,  distilled water 

and ethanol, followed by calcination at 500 ºC. Finally the slides are exposed to ozone in a UV-O3  

cleaning system (UVOCS Inc. T10X10/OES/E) for 20 min.
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! 3.3.1.1. Films used for the spectroscopical characterisation of dyes (Film 1)

For the measurements focused on the optical characteristics of dyes, the glass substrate used was 

transparent non-conductive glass  (cover slide) of 7.5 cm x 2.5 cm size.  The deposition of TiO2 or 

Al2O3 nanoparticles onto the glass substrates for the preparation of films used in the measurement 

of the spectroscopical properties of the dye and the photophysical characteristics of the devices was 

performed by the “Doctor Blade” technique (Figure 3.2).  This  technique consists of the spreading 

of the TiO2 or Al2O3 paste onto the glass surface by using a glass rod,  with both edges protected by 

strips of tape. The number of tape layers define the thickness of  the film but, typically, for 

spectroscopical measurements  the films had a thickness of about 4 µm, which is provided by one 

layer of tape. After deposition of the nanoparticles, the tape was carefully removed and the films 

were heated for 10 min at 120 ºC. Then, the homogeneous layers were gradually heated to 500 ºC 

to obtain the desired anatase crystalline form and remove water and organic molecules present in 

the TiO2 or Al2O3 pastes. The thickness of the films were corroborated with a profilometer (Ambios 

Technology XP-1). Finally,  the film was  cut in small pieces of 2.5 cm x 1.5 cm in order to be 

sensitised with a dye.

Figure 3.2. Scheme of the different steps of the Doctor Blade technique for the preparation of TiO2 
films for photophysical measurements

! 3.3.1.2. Films used for the photophysical characterisation of complete 

devices (Film 2)

For the experimental measurements of the photophysical properties of complete devices,  4 µm 

thick transparent films were prepared. The TiO2 or Al2O3 nanoparticles were deposited onto the 
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conductive side of the FTO glass (Hartford Glass Inc. with "#15 cm-2 resistance) of 7.5 cm x 2.5 cm 

size using the same procedure as for non-conductive glasses.

! 3.3.1.3. Films used for the characterisation of complete functional devices 

(Film 3)

The preparation of TiO2 thin films for highly efficient DSSC differ from the other procedures 

explained above. Firstly, the FTO conductive glass (Nippon Sheet Glass Co, with a resistance of 10 

"#cm-2 and Hartford Glass Inc. with 15 "#cm-2 resistance) was cut into pieces of 2.5 cm x 1.5 cm and 

then rinsed using the same procedure as for the other glass slides.  After the cleaning process,  the 

glass slides were introduced into a 40 mM TiCl4 solution and heated for 15 min at 70 ºC. The 

introduction of a dense TiO2 layer by thermal treatment of FTO with TiCl4 (thickness 100 - 200 

nm) prevents the electrolyte from reaching the back contact of the conductive glass surface and so 

reduces electron recombination. The TiO2 nanoparticles were deposited onto the conductive side 

of the glasses through the “Doctor Blade” technique using a tape which contained a round hole 

with a surface area of 0.152 cm2 (Figure 3.3). After removing the tape, the films were heated at 120 

ºC for 10 min and then gradually heated to 500 ºC.

Figure 3.3. Scheme of the different steps of the Doctor Blade technique for the preparation of TiO2 
films for device preparation

The thickness of the films were measured with a profilometer and the processes of TiO2 deposition 

and calcination were repeated until a$transparent layer with a thickness of between 8 and 12 µm was 

obtained. A 4 µm layer of 400 nm TiO2 nanoparticles was then applied on top of the film using the 

same deposition technique and heated to 500 ºC. This layer of white nanoparticles acts as an 

internal light scattering reflector. After this process, the films were introduced into a 40 mM TiCl4 

solution and heated at 70 ºC for 15 min.Finally the films were heated to 500 ºC for 30 min and then 
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cooled to room temperature. The films were used immediately or stored under anhydrous 

conditions.

! 3.3.1.4. Characterisation of mesoporous nanocrystalline films

Mesoporous nanocrystalline titanium dioxide films were characterised by microscopy and 

elemental analysis  techniques (Figure 3.4). Surface characterisation measurements were performed 

by Amparo Forneli, Josep Albero and myself.

Figure 3.4. (a) Front view SEM, (b) cross view SEM, (c) AFM and (d) TEM images of mesoporous 

nanocrystalline TiO2 films

The topography, thickness of the film and dispersion of the nanoparticles onto the film were 

determined by scanning electron microscopy (SEM) (JEOL JSM 6400 microscope). TiO2 

nanocrystalline films were covered with a thin layer of gold to make the sample conducting.  Atomic 

force microscopy (AFM) (Imaging Pico SPMII) and transmission electron microscopy (TEM) 

(JEOL 1011 microscope) were used to confirm the size of TiO2 nanoparticles on the film. X-ray 

powder diffraction measurements (Bruker-Siemens Smart CCD diffractometer) were used to 
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ascertain the crystalline form and the size of the TiO2 nanoparticles. X-ray diffraction peaks 

corresponded to the standard peaks of anatase form, with a nanoparticle diameter of 19 nm. BET 

analysis (Autosorb 1-MP Quatachrome apparatus) showed a surface area of 100 m2#g-1 and an 

average pore size of 13 nm.

3.3.2. Dye sensitisation

Dye sensitisation was carried out by introducing the films into the different dye solutions and 

leaving them in the dark for a period of time. Although different solvents and additives were used 

for each photosensitiser in order to optimise the preparation of the sensitised films, the procedure 

is very similar for all the samples prepared.

The dye solutions were prepared by dissolving the necessary amount of dye to obtain a 

concentration of between 10-3 and 10-4 M in an appropriate solvent such as acetonitrile (MeCN), 

tert-butanol (tBuOH), ethanol (EtOH) or dimethylformamide (DMF).  In some samples, a 

concentration of between 3#10-4 and 3#10-3 M of a coadsorbent such as chenodeoxycholic acid or 

citric acid was added to the dye solutions. 

Figure 3.5. Scheme of (a) a dye sensitised film for spectroscopical measurements of the dye (Film 1), 
(b) 1 cm2 dye sensitised film for photophysical measurements of the devices (Film 2), and (b) 0.152 

cm2 dye sensitised film for highly efficient solar cell (Film 3)

For the preparation of films used in spectroscopical measurements of the dye (Film 1) (Figure 3.5a) 

and for the measurement of photophysical properties of the devices (Film 2) (Figure 3.5b), the time 

of sensitisation was adjusted to obtain an absorbance at the maximum of the metal to ligand charge 

transfer band of the dye corresponding to 0.6 arbitrary units. However, after the anchoring 

process, the surface of the films used in the preparation of devices for photophysical experiments  of 

complete devices was adjusted to 1 cm2 by scratching away the excess film. For the preparation of 

efficient devices,  the films were immersed overnight into the dye solutions (Film 3) (Figure 3.5c). 
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After dye sensitising,  the films were rinsed with the same solvent as that used in the sensitisation 

solution in order to remove any unanchored dye molecules from the surface of the nanocrystalline 

films. The films were air dried and used immediately.

3.3.3. Preparation of the counter electrode

The counter electrodes were prepared with FTO conductive glass with a resistance of 15 "#cm-2 cut 

in small pieces  of 2.5  cm x 1.5 cm size. For highly efficient solar cells,  a hole was made in the 

counter electrode with a drill, while for 1 cm2 devices prepared for photophysical measurements 

two holes were made in the same slide. Then, the small pieces of glass were rinsed following the 

same procedure as explained for the working electrode in section 3.3.1.  A drop of a 5#10-3 M 

H2PtCl6 anhydrous solution in ethanol was spread with a Pasteur pipette on the conductive FTO 

side and the electrodes were heated to 390 ºC for 30 minutes. Once the glasses were cooled at 

room temperature, they were used instantly or placed in a desiccator.

3.3.4. Preparation of the electrolyte

The composition of the electrolyte solution differs depending on the measurements being 

performed on the devices.  Electrolytes used in the photophysical properties of the devices did not 

contain tert-butylpyridine (TBP), while the high efficient devices contained electrolytes with TBP. 

The electrolyte solutions were prepared by dissolving the necessary amount of reagents in a 

acetonitrile/valeronitrile (85:15) solution.

3.3.5. Assembly and sealing of the dye sensitised solar cell

Once the electrodes were prepared, the working and the counter electrodes were assembled in a 

sandwich form. In between the two electrodes a frame of a polymer that melts at 100 ºC (Surlyn) 

was placed around the nanocrystalline film (Figure 3.6a). The two electrodes were sealed by 

applying high temperature and pressure (Figure 3.6b). Then the electrolyte was introduced into 

the device through the hole previously made at the counter electrode with a syringe (Figure 3.6c). 

For 1 cm2 solar cells, the electrolyte entered through one of the holes,  while the second hole 

allowed the air to escape. However,  for devices that only had one hole,  the electrolyte was 

introduced by applying vacuum. The holes were sealed by melting a small piece of Surlyn and a 

cover slide. Finally, silver paint was applied to the cell contacts in order to reduce the resistance to 

the current flow (Figure 3.6d).
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Figure 3.6. Scheme showing the assembly process of a dye sensitised solar cell

The measurements of the photophysical and efficiency properties were performed immediately 

after sealing. However, the cells remained stable for a few months. 
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3.4. Device characterisation

3.4.2. Time correlated-single photon counting measurements

Time correlated single photon counting (TC-SPC) is an optical technique which allows the study of 

the luminescence decay times of  radiative materials. The operational basis  is the detection of single 

photons as a function of time.5 The lifetime of the excited state is the average time that the molecule 

takes to come back to the ground state from its excited state.  The picosecond to microsecond 

emission lifetime measurements were carried out with a Lifespec-red picosecond to microsecond 

fluorescence lifetime spectrometer from Edinburgh Instruments.  As excitation sources, two pulsed 

diode lasers, with 405 or 635 nm nominal wavelengths, were used. The instrument response 

measured at the FWHM (full-width at half-maximum) was below 350 ps. 

With this technique, the lifetime of the photosensitiser can be measured both in solution or 

anchored onto the surface of a mesoporous nanocrystalline film such as Al2O3 or TiO2. 

Furthermore,  the comparison of the lifetime decay of a dye in a complete device and the decay of 

the photosensitiser attached to the surface of an insulator allows the estimation of the electron 

injection yield.

The TC-SPC decay can be fitted to an exponential decay (Equation 3.2),  where I(t) is the time-

dependent luminescence intensity,  An values are pre-exponential factors, t  is the time and ! is the 

lifetime. The slow component of the lifetime in ruthenium complexes is thought to be due to the 

decay of the dye excited state from the triplet state. 

I(t) = A
0
+ A

i

i=1

i=n

! " e
# t

$
i ! ! ! ! ! ! (Equation 3.2)

3.4.3. Laser-transient absorption spectroscopy

Laser-transient absorbance spectroscopy (L-TAS) provides information about the lifetime and 

decay dynamics of short life transient species. With this technique, the absorbance of a sample is 

measured after excitation by a pulse of light and measured as a function of time, giving information 

about its decay kinetics over a wide time scale (from µs to s).
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Nanosecond to microsecond transient absorption spectroscopy measurements were carried out 

with a home-built system as reported before.6 The L-TAS equipment was assembled by Dr. Javier 

Pérez-Hernández. 

The sample was irradiated with a short intense pulse of light generated by a nitrogen laser pumped 

dye laser. The nitrogen laser excitation source provided a pulse width of 1 ns  at 337 nm with a pulse 

energy of 1.45 mJ at a frequency of 1 Hz (GL-3300 nitrogen laser from Microbeam, TG330 function 

generation from Thurlby Thandar). An appropriate dye laser was connected to the nitrogen laser to 

provide different wavelength excitation sources (360 - 750 nm) (Figure 3.7). 

Figure 3.7. Emission spectra of the laser dyes used in the L-TAS system. Abbreviatures: BPBD:           
2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazol, DPS: 4,4’-diphenylstilbene, Coumarin 120:     

7-amino-4-methylcoumarin, Coumarin 102: 2,3,5,6-1H,4H-tetrahydro-8-methylquinolizino-[9,9a,1-gh] 
coumarin, Coumarin 153: 2,3,5,6-1H,4H-tetrahydro-8-trifluormethylquinolizino-[9,9a,1-gh]coumarin, 

Rhodamine 6G: ethyl 2-[6-(ethylamino)-3-(ethylimino)-2,7-dimethyl-3H-xanthen-9-yl]benzoate 
hydrochloride, Rhodamine B: 2-[6-(diethylamino)-3-(diethylimino)-3H-xanthen-9-yl]benzoic acid, 

DCM: 4-dicyanmethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran, Pyridine 1: 1-ethyl-               
2-(4-(p-dimethylamonophenyl)-1,3-butadienyl)-pyridinium perchlorate

A second less intense light source provided by an halogen lamp (150 W), known as the probe, 

passes through the sample. An appropriate set of lenses and monochromators were used to focus 

and control the irradiation wavelength of the halogen lamp. The change in optical density (!O.D.) 

of the probe source was determined in order to monitor the change in the absorption spectra of the 

sample. The optical detector was a silicon photodiode equipped with a set of filters (Costronics) 

and coupled to an oscilloscope (Tecktronics TDS 2022) (Figure 3.8).
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Figure 3.8. Scheme of the laser-transient absorption spectroscopy system

Two different types of  measurements were performed using the L-TAS system. The first 

experiment involved the measurement of the recombination dynamics between the photoinjected 

electrons in the conduction band of the photosensitiser and the oxidised dye on the nanoparticle 

surface. Following the measurement of the transient absorption spectrum of the sensitised TiO2 

film (by measuring signal sizes of the sample at a given time at approximately 20 nm intervals over 

the absorption range 400 - 1000 nm) the change in the optical density of the dye cation at its 

maximum absorption wavelength was recorded as  a function of time. The second experiment 

involved the measurement of complete devices, which gives an idea of both the regeneration of the 

dye cation by the redox couple and also the recombination kinetics between the photoinjected 

electrons in the conduction band of the semiconductor and the oxidised form of the redox couple 

present in the electrolyte. The latter measurement was performed by monitoring the change in 

optical density as a function of time at a probe wavelength fixed at 1000 nm using the 

monochromators.

Transient decays can be fitted to an stretched exponential function (Equation 3.3), where A0 and A1 

are constants, t is time (s), ! is the relaxation time (s) and " is a value between 0 and 1 called the 

stretching parameter.7
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!O.D. = A
0
+ A

1
" e

# t
$( )

%

! ! ! ! ! ! (Equation 3.3)

3.4.4. Charge extraction measurements

Charge extraction is a technique that provides information about the electron transport, trapping 

and recombination reactions in DSSCs under operating conditions.8, 9 With this technique, 

electrons are accumulated in the semiconductor upon photoexcitation of the dye at open circuit. 

The extraction of these electrons by short-circuiting the cell is then measured as a function of time.

Charge extraction measurements were carried out using a home-built system (Figure 3.9). This 

equipment was assembled by Dr. Brian O’Regan, Dr. Javier Pérez-Hernández and Antonio 

Sánchez-Díaz. 

Figure 3.9. Scheme of the charge extraction system

The charge extraction data were acquired after a 4 s pulse generated by an array of white LEDs 

(Luxeon Lumileds). The trigger (TGP110 from Thurlby Thandar Instruments) is used to generate a 
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pulse, which controls the LEDs, the switch which changes the short/open circuit regime of the cell 

and the oscilloscope. Upon illumination at open circuit, the photoexcited dye injects electrons into 

the semiconductor. The charges are accumulated in the TiO2 and the voltage of the cell reaches its 

maximum value at the imposed white light conditions. After the pulse,  the LEDs are turned off in 

300 ps and the cell is switched from open to short circuit simultaneously.  At short circuit,  the 

accumulated charges at the TiO2 are extracted, while the photovoltage decreases (Figure 3.10).  

Different light intensities were applied to achieve different open circuit voltages of  the cell. The 

photovoltage decay between a resistance of 6.8 " was monitored using a Tektronics oscilloscope 

TDS 2022 and recorded using the Tektronics data acquisition software.

Figure 3.10. Behavior of the voltage, current and charge during the charge extraction experiments

The accumulated charge Q (C) can be calculated from the photovoltage decay experimental points 

as shown in Equation 3.4, where R (") is the resistance, V(t) is the measured voltage as function of 

time expressed in volts and I (A) is the photocurrent intensity as function of time.

Q =
1

R
V (t)dt =

t=0

t= t

! I(t)dt
t=0

t= t

! ! ! ! ! ! (Equation 3.4)

The electron density (e-
density, e-/cm3) is used to define the amount of  electrons accumulated in the 

semiconductor. It can be calculated from Equation 3.5, where Q is the accumulated charge 

calculated previously (C), qe  is the charge of one electron (1.609#10-19 C/e-), d is  the film thickness 

(cm), A is the surface area of  the film (cm2) and p is the porosity of the TiO2 film. The porosity was 

calculated from BET theory,10 obtaining a value of 0.6, expressed on a per unit basis.
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e
!

density  =
Q

qe "d " A " (1! p)

! ! ! ! ! ! (Equation 3.5)

The electron density at the different open circuit voltage values of a cell can be then represented in 

a plot. The experimental points can be fitted to an exponential curve,  as detailed in Equation 3.6. 

A0 and A1 are constants and k is a parameter which defines the curvature of the distribution.11

e
!

density  = A
0
+ A

1
" e

k "V ! ! ! ! ! ! (Equation 3.6)

3.4.5. Transient photovoltage measurements

Transient photovoltage measurements (TPV), also known as Voc decay, is a technique which 

provides information about the electron recombination between the photoinjected electrons in the 

TiO2 conduction band and the redox couple present in the electrolyte under operating conditions.

12 With this technique, the voltage of the cell is  measured as function of time while it is illuminated 

by constant white light diodes and a short pulse generated by red-emitting diodes.

TPV measurements were carried out using a home-built system (Figure 3.11),  which were 

assembled by Dr. Brian O’Regan, Dr. Javier Pérez-Hernández and Antonio Sánchez-Díaz.

Photovoltage transients are measured by applying a constant light bias using white LEDs (Luxeon 

Lumileds) to an open-circuited solar cell followed by shorter pulses from red LEDs. The Voc decays 

are strongly dependant upon the charge density in the semiconductor. For this reason, in order to 

obtain a correct comparison in a study,  photovoltage transient data of  different devices is  not 

compared at the same voltage, rather it is compared where similar charge densities are present in 

the films and this is done by changing the light intensity of the white LEDs. The charge density of 

the films is measured with the charge extraction technique explained in section 3.4.4.

Upon photoexcitation of the dye using 8 white LEDs under open circuit conditions, the rate of 

electron injection into the TiO2 reaches an equilibrium with the recombination processes (e--

TiO2/electrolyte+ and e--TiO2/dye+). However, when a 100 µs pulse of red light provided by 4 red 

LEDs is applied, injection of electrons into the conduction band of the semiconductor increases. 

This short pulse is  modulated to cause a small increase in cell voltage of 10 mV, which is only a 

minor deviation from the ‘equilibrium’ conditions imposed by the white LEDs.  The extra electrons 

in the TiO2 recombine with the redox couple present in the electrolyte,  and the resulting 
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photovoltage transient is recorded. These transients can be recorded at several voltages in order to 

investigate their lifetime as a function of applied bias to the DSSC and thereby electron occupancy 

within the TiO2 film.  The photovoltage decay kinetics are measured with an oscilloscope (TDS 

2022 Tecktronics).

Figure 3.11. Scheme representing the transient photovoltage measurement system

The data obtained with this technique can be fitted to an exponential equation (Equation 3.7), 

where the voltage (V) is plotted as  a function of time. Voc (V) is the voltage at open circuit, V1 (V) is 

the voltage generated by the pulse and ! (s) is the recombination lifetime.

V (t) = V
oc
+V

1
! e

" t
#( )
! ! ! ! ! ! (Equation 3.7)

The lifetime ! (s) of the e--TiO2 recombination reaction is usually plotted in a logarithmic scale, 

using a Power-law function as fitting equation, where A and k are constants (Equation 3.8).
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density( )
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      (Equation 3.8)

3.4.6. Incident photon to current efficiency

As explained in section 1.3.2, IPCE measures the performance of a DSSC giving the percentage of 

electrons generated in the cell following illumination with a given number of  incident photons at a 

particular wavelength. The IPCE equipment consists of  an Oriel 150 W xenon lamp as the light 

source and the wavelength is automatically changed with a PTIM-101 monochromator. A 4 inch 

integrating sphere was incorporated into the system to allow homogenous light irradiation over the 

entire surface of the cell. A Keithley 2400 monitored the photocurrent generated by the cell.

3.4.7. Photocurrent vs photovoltage curves

The overall efficiency of a cell is determined by the measurement of the photocurrent vs 

photovoltage curve (Figure 3.12). This technique consists of the measurement of  the photocurrent 

generated by a solar cell under light irradiation when a gradually increasing photovoltage is applied 

to the cell. The device is illuminated by a solar simulator, which is a light source able to reproduce 

the solar spectrum. Appropriate filters are used to achieve AM 1.5 spectral illumination. 

Figure 3.12. Current-voltage (I-V) and power-voltage (P-V) curves from a DSSC device made using 
the N719 dye
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Chapter 4. Relationship between dye 
molecular structure and DSSC 
performance

The aim of this Chapter is to investigate the influence of dye sensitiser structure on the 

performance of dye sensitised solar cells. The first two studies included in Chapter 4 detail the 

synthesis, electrochemical and photochemical properties of novel polypyridyl complexes 

containing different electron donating and electron withdrawing groups. Their performance in 

DSSC devices is  also studied. The third study from this Chapter involves  a thorough comparison of 

DSSC devices made using the most efficient dyes reported up to now.

This Chapter is based on the following publications:

Reynal, A., Forneli, A., Martínez-Ferrero, E., Sánchez-Díaz, A., Vidal-Ferran, A., Palomares, E., Eur. 
J. Inorg. Chem., 2008, 1955-1958.

Reynal, A., Forneli, A., Martínez-Ferrero, E., Sánchez-Díaz, A., Vidal-Ferran, A., O’Regan, B., 
Palomares, E., J. Am. Chem. Soc., 2008, 130, 13558-13567.

Reynal, A., Forneli, A., Palomares, E., Energy Env. Sci., 2010, 3(6), 805-812.
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4.1. Introduction

The role of the photosensitiser in molecular photovoltaic devices is to act as a light harvesting 

antenna and to inject photoexcited electrons into the conduction band of  the semiconductor. 

Besides the numerous chromophoric molecules studied, the most efficient sensitisers used so far in 

DSSCs are ruthenium polypyridyl complexes.1

The first papers published in the field of dye sensitised solar cells based on nanocrystalline TiO2 

used a trinuclear ruthenium complex as photosensitiser (Figure 4.1).2, 3 However,  considerable 

improvements in the overall performance of the devices has been achieved in recent years by 

successive modifications to the dye structure.4

Figure 4.1. Molecular structure of the first trinuclear ruthenium complex used in DSSCs

The molecular structure of the dye affects not only their absorption, photophysical and redox  

properties, but also the electron transfer processes occurring at the TiO2/dye/electrolyte surface. 

These parameters strongly determine the overall efficiency of the device.

The use of photosensitisers such as Ru(II) polypyridyl complexes with low molar extinction 

coefficients requires  that DSSC devices have thicker TiO2 films in order to have enough dye 

present to capture as many as possible of  the incident photons. However,  this results in a decreased 

Voc due to an enhancement of the surface area, which provides additional e--TiO2/electrolyte+ 

recombination sites.5,  6 For this  reason, some developments in the design of new ruthenium 

polypyridyl photosensitizers have arisen from efforts aimed at improving their optical absorption. 

One of the best routes to improve the light harvesting capability of ruthenium complexes is through 

the extension of the pyridyl ligands with the introduction of !-conjugated donor or acceptor 

systems (Figure 4.2).7-13
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Figure 4.2. Molecular structure of highly !-conjugated ruthenium polypyridyl complexes. a In some 
of the publications regarding DSSCs, dyes are referred to by codes. These codes will also be used in 

this thesis

Ideally, the photosensitiser absorption spectrum should overlap as far as possible with that of the 

solar spectrum. Sequential tuning of  the HOMO and LUMO energy levels through the 

incorporation of strong !-electron donor or low-lying !* groups can be performed in order to 

extend the absorption spectrum of the dye to the near IR region (Figure 4.3).14 These modifications 

involve a decrease in the band gap, but the position of the HOMO and LUMO energy levels of the 

dye have to be such as  to maintain sufficient driving force to allow for both efficient electron 

injection into the TiO2 and dye regeneration by the iodide/triiodide redox couple. 

Figure 4.3. Molecular structure of ruthenium polypyridyl complexes containing ligands which are 
able to shift absorption spectra towards the near IR

One of the most commonly used approaches to produce a red-shift to the absorption spectra of 

Ru(II) polypyridyl complexes is through the destabilisation of the HOMO energy level with the 

introduction of thiocyanate ancillary ligands,15 or,  more recently,  using cyclometalated ligands.16-18 
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Another way to decrease the HOMO-LUMO gap has been achieved with the introduction of 

ligands containing low-lying !*orbitals.19

An important issue for molecular photovoltaics is to achieve fast and efficient electron injection 

into the metal oxide. This can be obtained by a strong attachment of the dye onto the surface of the 

semiconductor, as well as by a sufficiently high LUMO energy level of  the photosensitiser. In 

addition, the LUMO energy level should be located in the ligands containing the groups anchored 

onto the TiO2 surface, in order to obtain an effective coupling between the dye and the metal oxide 

orbitals. Covalent bonds between the anchoring groups of the ruthenium polypyridyl complex and 

the hydroxyl groups present on the surface of the TiO2 nanoparticles allow for strong electron 

coupling between the photosensitiser and the semiconductor.20 Different anchoring groups have 

been tested,  but the most common anchoring group in ruthenium complexes are carboxylic acids 

(Figure 4.4).  Carboxylic acid groups can be easily hydrolysed in the presence of water or basic 

media resulting in dye desorption from the TiO2 surface. A strategy to prevent the hydrolysation of 

the link between the dye and the TiO2 is the substitution of carboxylic acid groups by more stable 

linkers such as phosphonic acid .21, 22 

Figure 4.4. Molecular structure of ruthenium polypyridyl complexes containing different anchoring 
groups

Furthermore,  dyes attached to the surface of metal oxides can be desorbed by the presence of water 

in the electrolyte, which is obviously a concern for the long term stability of DSSCs. The 

incorporation of  hydrophobic alkyl chains to the pyridyl ligand can decrease dye desorption and 

increase cell stability by preventing the accumulation of water molecules near the TiO2 surface 

(Figure 4.5).23-25
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Figure 4.5. Molecular structure of two amphiphilic ruthenium polypyridyl complexes

The spatial charge separation between the oxidised dye and the surface of the semiconductor has an 

important effect on the charge recombination dynamics between the photoinjected electrons in the 

conduction band of  the TiO2 and the oxidised dye.26 Increasing this distance and minimising 

recombination can be achieved by the attachment of electron donor groups 27,  28 or rigid spacers 29 

to the polypyridyl ligands able to locate the cationic charges at long distances from the TiO2 surface 

(Figure 4.6).

Figure 4.6. Ruthenium polypyridyl complexes which increase the distance between dye cation and 
TiO2 surface by the introduction of electron-donor groups or rigid spacers into dye structure
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The recombination reaction between the photoinjected electrons and the oxidised electrolyte 

strongly affects the Voc of the device and, thus, the final overall efficiency. The incorporation of 

long alkyl chains and the degree of protonation of the ruthenium photosensitisers are key factors  in 

the reduction of the e--TiO2/electrolyte+ recombination reaction. Amphiphilic dyes can block the 

approach of the oxidised electrolyte to the semiconductor surface, while the control of the degree 

of protonation of  the acid anchoring groups prevents the downward shift of the semiconductor 

conduction band edge caused by surface protonation. The protons of ruthenium polypyridyl 

sensitisers can be substituted by tetrabutylammonium cations (TBA), sodium cations or other 

counter ions (Figure 4.7).30, 31 

Figure 4.7. Ruthenium polypyridyl complexes with various counter ions

The Voc in DSSCs seems strongly related to the dye molecular structure. Small changes in certain 

atoms or substituent groups of the dye molecular structure have shown strong effects on the Voc.32, 

33 The role of the structure of the dye in this context is still not clear. For this reason, several studies 

were performed by introducing small modifications to a ruthenium polypyridyl complex (Articles A 

and B). Furthermore, the quantitative parameters of  the cells sensitised with the most efficient dyes 

published to date were measured (Article C).

Relationship between dye molecular structure and DSSC performance! 113

UNIVERSITAT ROVIRA I VIRGILI 
RUTHENIUM POLYPYRIDYL COMPLEXES AS PHOTOSENSITIZERS FOR MOLECULAR PHOTOVOLTAICDEVICES: 
INFLUENCE OF THE DYE STRUCTURE AND THE PRESENCE OF ADDITIVES TO THE DEVICE 
PERFORMANCE 
Anna Reynal Verdú 
ISBN:978-84-693-8863-1/DL:T.1944-2010 



4.2. Article A. A phenanthroline heteroleptic 
ruthenium complex and its application to dye 
sensitised solar cells
Eur. J. Inorg. Chem. 2008, 1955

Anna Reynal,a Amparo Forneli,a Eugenia Martínez-Ferrero,a Antonio Sánchez-Díaz,a Anton 

Vidal-Ferran,a,b Emilio Palomares*a,b

a Institute of Chemical Research of Catalonia (ICIQ), Avda. Països Catalans, 16. Tarragona. 43007 (Spain). 
Fax: +34 977920241, e-mail address: epalomares@iciq.es, b ICREA

Keywords: Dyes / Solar cells / Ruthenium / Heteroleptic complexes / Charge recombination / Electron 
transfer

4.2.1. Abstract

We report here the synthesis and characterisation of a new heteroleptic ruthenium(II) complex and 

its applications as efficient light-harvesting sensitiser in functional dye sensitised solar cells. The 

relation between the interfacial charge-transfer processes that govern the device performance and 

the cell efficiency under illumination are also discussed.

4.2.2. Introduction

Bis(bipyridine)ruthenium complexes have been widely studied as efficient light-harvesting 

molecules when adsorbed onto the surface of mesoporous semiconductor thin films, which are 

used as working electrodes on dye-sensitised solar cells.4 Despite the low molecular extinction 

coefficient and the lack of absorbance in the near infrared region of the solar spectrum when 

compared to, for example, phthalocyanines, they have the best light-to-energy conversion 

efficiencies to date. During the last 10 years the molecule known as  N719 [chemical name: 

bis(tetrabutylammonium) cis-bis(isothiocyanato)bis(2,2’-bipyridyl-4,4’-dicarboxilato)ru-

thenium(II)] has been the paradigm of  a molecular dye because of  its high solar-to-electricity 

efficiency achieved when used as sensitiser in DSSC.34 Hence, an interesting challenge for many 

researchers has  been the design and synthesis of new ruthenium(II) complexes with enhanced 

properties such as slow back-electron transfer from the photoinjected electrons at the mesoporous 

semiconductor either with the oxidised dye or the electrolyte35 as well as the dye long-term stability 

under device operation.13 To this end, a successful strategy has been the design and synthesis  of 

ruthenium(II) heteroleptic compounds where one of the 4,4’-dicarboxy-2,2’-bipyridines has been 
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replaced by a more appropriate ligand. As an example, Nazeeruddin et al. showed that the presence 

of a bipyridine on the ruthenium(II) complex bearing long alkyl chains (common name:  Z907, 

chemical name: cis-[bis(2,2’-bipyridyl-4,4’-dicarboxylic acid)(4,4’-dinonyl-2,2’-bipyridyl)bis(iso-

thiocyanato)ruthenium(II)]) improves not only the device stability but also its  performance under 

illumination at full sun light (100 mW"cm-2 1.5 AM G).23 The same strategy has been applied by 

Zakeeruddin and co-workers with K77 dye ([cis-{4,4-bis[2-(4-tert-butoxyphenyl)ethenyl]-2,2’-

bipyridyl}bis(2,2’-bipyridyl-4,4’-dicarboxylic acid)bis(isothiocyanato)ruthenium(II)]) which, in 

combination with a non-volatile electrolyte, exhibits a unique performance by combining high 

efficiency and stability.36 Thelakkat and co-workers have also reported the use of 

tris(phenylamine)-substituted bipyridines in RuII complexes as efficient sensitisers for solid-state 

DSSC when using an organic hole conductor as a solid electrolyte.37

In this communication we would like to report the synthesis and characterisation of  a new 

heteroleptic ruthenium(II) complex with one of the bipyridine ligands replaced by a more 

conjugated ligand such as the 5,6-dimethyl-1,10-phenanthroline. Scheme 4.1 illustrates the 

molecular structure of the ruthenium(II) heteroleptic complex. Moreover, we have also carried out 

a study of the interfacial charge-transfer kinetics  of the molecule when anchored onto the surface of 

nanocrystalline TiO2 semiconductor particles.

Scheme 4.1. Molecular structure of AR25 (chemical name: cis-bis(2,2’-bipyridyl-4,4’-dicarboxylic 
acid)(5,6-dimethyl-1,10-phenanthroline)bis(isothiocyanato)ruthenium(II))

4.2.3. Results and discussion

The AR25 shows a typical UV/Vis spectrum with a metal-to-ligand charge transfer band centred at 

" = 518 nm with a molecular extinction coefficient of 6578 dm3"M-1"cm-1. Figure 4.8 illustrates the 

absorption spectra of the complex in solution and adsorbed onto a transparent mesoporous TiO2 
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or negligible presence of dye molecular aggregates. Moreover, in solution, after excitation at the 

maximum of the MLCT band, a broad emission band can be observed with a maximum at " = 746 

nm. The large Stokes shift is due to the nature of the excited state, which –as  reported before for 

other ruthenium(II) complexes38– is a triplet energy state. It is worthy to note that the AR25 

emission is  strongly quenched when its molecules are anchored to nanocrystalline TiO2 particles 

(Figure 4.9). Hence, we can conclude that the electron injection process from the excited state into 

the semiconductor conduction band is responsible for the immediate disappearance of 

luminescence upon light excitation. Furthermore, the excited-state emission lifetime for the 

complex is strongly shortened when anchored to the mesoporous TiO2 film. The emission lifetime 

for AR25 in solution (we used dimethylformamide as solvent) gives in our hands a decay that was 

fitted to two kinetic components, #1 = 9.57 ns (18.9 %) and #2 = 56.67 ns (81.1 %) whereas for the 

AR25/TiO2 samples #1 = 2.23 ns (48.5 %) and #2 = 12.61 ns (51.5 %).

Figure 4.8. UV/Vis spectra of AR25 in DMF (1·10-4M, -----) and adsorbed onto a 4 !m thick 
transparent TiO2 film (-----)

The electrochemical properties of the ruthenium(II) complex AR25 were also analysed using cyclic 

voltammetry in dry DMF as solvent with 0.1 M tetrabutylammonium hexafluorophosphate as 

electrolyte.  The CV allowed the observation of a quasi-reversible couple at 0.79 V vs SCE assigned 

to the RuII/III redox couple.
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Figure 4.9. Emission decay kinetics measured using time correlated-single photon counting under 
normal conditions for AR25 in DMF (10-4 M) and adsorbed onto a 4 !m thick transparent TiO2 film. 
Dashed lines correspond to the adjusted fit decay. The excitation wavelength was "ex = 405 nm, and 

the emission was monitored at "em = 745 nm

Figure 4.10. Transient absorption decay kinetics for a 4 !m thick transparent mesoporous film 
sensitised with AR25. The solid line corresponds to the fitting to a stretched exponential function: 

!O.D. = e
" t

#( )$
%

&
'

(

. The excitation wavelength was "ex = 535 nm and the probe wavelength was "pr = 
800 nm

Once the electrochemical and the emission properties of the ruthenium complex were measured, 

we turned to the light induced charge transfer kinetics between the sensitiser and the 

semiconductor nanocrystalline TiO2 particles. As we have reported before,39 we have utilised laser-

transient absorption spectroscopy to investigate the electron-recombination dynamics. Figure 4.10 
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shows typical decay kinetics for the AR25/TiO2 samples. We assigned the transient decay signal to 

the recombination of the photoinjected electrons, upon laser excitation, into the semiconductor 

conduction band and the oxidised dye species. The recorded excited spectra show a broad 

absorption band with a maximum centered at 800 nm, which has previously been assigned to the 

cation species of similar ruthenium(II) complexes such as the above-mentioned N719 molecule.40 

The measurement of the electron-recombination lifetime at the half maximum of the signal is 35 µs.

Finally,  we carried out measurements on complete functional devices. We measured the incident 

photon-to-current conversion efficiency spectra for devices sensitised with AR25 using as 

electrolyte a solution containing the redox couple iodine/iodide. Figure 4.11 illustrates the IPCE 

spectra for an AR25/DSSC.

Figure 4.11. IPCE spectra for DSSC sensitised using AR25 and the homoleptic dye N719

In our hands, the IPCE spectrum for AR25 devices showed higher intensity at the maximum 

absorption wavelength at " = 550 nm when irradiated with simulated sunlight. The corresponding 

photocurrent vs voltage characteristic curves were also measured to give an overall efficiency of 2.6 

% under irradiation at 1 sun (100 mW"cm-2) with simulated AM-1.5G solar spectrum (Figure 4.12). 

Under the same conditions, we examined DSSC sensitised with the N719 dye, and the overall 

efficiency was 3.6 %. The main difference between both devices was in the open circuit voltage. 

While for the former ruthenium(II) complex a Voc = 0.69 V was obtained, for the latter a Voc = 0.78 

V was  observed. We also noted that the devices made using AR25 as sensitiser usually showed 

lower fill factors when compared to devices made using the N719 complex (38.5 % and 47.6 %, 

respectively). We believe that the higher recombination on AR25 devices limits the photocurrent 
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and the overall performance of the solar cell. Further work focussed on the control of such wasteful 

reactions is being carried out.

Figure 4.12. Photocurrent vs voltage curve (I-V curve) for a 1 cm2 AR25 DSSC (circles) and N719 
DSSC (squares). Measurements were performed at 1 sun (full signal) and dark conditions (empty 

signal)

4.2.4. Conclusions

We presented a new ruthenium(II) heteroleptic complex which shows the appropriated redox 

electrochemistry to be used as sensitiser in dye-sensitised solar cells.  Furthermore, we have 

characterised the charge transfer processes occurring at the interface between the AR25 dye and 

the nanocrystalline TiO2 nanoparticles  showing that the photo-induced electron injection is 

particularly efficient despite the low-lying !* level character of the phenanthroline moiety as 

coordinating ligand,41 and the electron recombination processes is at least one order of magnitude 

slower than the regeneration reactions,  which normally occur on the nanosecond time scale; this 

makes feasible the possibility to optimise the devices and achieve higher light-to-energy 

efficiencies in the same order of magnitude than the most popular dye,  N719.  The high 

photocurrent observed using AR25 makes the dye an interesting candidate for “molecular 

cocktails” where several dyes with light absorptions in different regions of the solar spectrum are 

combined to achieve the desired panchromatic sensitisation of DSSC.
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4.2.5. Experimental section

# 4.2.5.1. Synthesis of AR25

The synthesis of cis-bis(2,2’-bipyridyl-4,4’-dicarboxylic acid)(5,6-dimethyl-1,10-phenanthro-

line)bis(isothiocyanato)ruthenium(II) [Ru(dcbpy)(dmphen)(NCS)2] (AR25) was carried out 

according to that reported by Kasuga et al.,42 but by adding 5,6-dimethyl-1,10-phenantroline (81.6 

mg, 0.4 mmol) instead of 1,10-phenantroline. Yield:  56.6 %. 1H-RMN (400 MHz, DMF-d7) $:  9.75 

(d, J  = 5,8 Hz, 1H), 9.68 (d, J = 5.3 Hz, 1H), 9.26 (d, J = 1.3 Hz,  1H), 9.06 (d, J = 1.3 Hz, 1H), 9.04 

(d, J = 8.5 Hz, 1H), 8.66 (d, J = 8.6 Hz, 1H),  8.44 (dd, J = 5.8, 1.3 Hz, 1H), 8.35 (dd, J = 8.5, 5.3 Hz, 

1H), 8.11 (d, J = 5.3 Hz,  1H), 7.92 (d, J = 5.9 Hz, 1H), 7.63 (dd, J = 8.5, 5.3 Hz, 1H),  7.56 (dd, J = 

5.9, 1.3 Hz, 1H), 2.92 (s, 3H), 2.81 (s, 3H). ESI-MS: m/z 670 (M + H).

# 4.2.5.2. Optical, electrochemical and spectroscopical measurements

The UV/Vis and fluorescence spectra were recorded using a 1 cm pathlength quartz cell with a 

Shimadzu UV spectrophotometer 1700 and an Aminco–Bowman series 2 luminescence 

spectrometer with temperature controller. The electrochemical data was obtained employing a 

conventional three-electrode cell connected to a CH Instruments 660c potentiostat-galvanostat. 

For the cyclic voltammetry, we used a platinum working electrode, a calomel reference electrode  

and a platinum wire as auxiliary electrode. The picoseconds to microseconds emission lifetime 

measurements were carried out with a Lifespec picosecond fluorescence lifetime spectrometer 

from Edinburgh Instruments. As excitation source, the diode laser with 405 nm nominal 

wavelength was used. The instrument response measurement at the half width a high maximum was 

below 350 ps.  Laser-transient absorption measurements were carried out with a home-built system 

as reported before.43 1H and 13C NMR spectra, NOESY and COSY experiments were measured 

with a Bruker 400 MHz spectrometer.  A Waters  LCT Premier liquid chromatograph coupled to a 

time-of-flight mass spectrometer with electrospray ionisation was used to measure mass spectra. 

The FTIR spectra were obtained with an FTIR ThermoNicolet 5700 spectrometer.

# 4.2.5.3. Nanoparticle synthesis and film preparation

The nanocrystalline TiO2 particles were synthesised as reported before.44 In brief:  Titanium 

isopropoxide (40 mL, 0.13 mol) was added to glacial acetic acid (9.12 g) under argon while stirring. 

The reaction mixture was cooled in an ice-bath, and 0.1 M nitric acid (240 mL) was added while 
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vigourously stirring. The mixture was heated in an oil bath at 80 °C during 8 h. and, after cooling, 

was filtered through a 0.45 µm syringe filter. The resulting product was diluted to 5 wt % of TiO2 by 

adding water and then autoclaved at 220 °C for 12 h. The aqueous phase was removed by 

centrifugation, and the solid nanoparticles were isolated and rinsed twice with ethanol. An 

ultrasonic horn was used to break the aggregates, and the solvent was  removed under vacuum. The 

solid nanoparticles were diluted to 15 wt % in TiO2, using ethyl cellulose and terpineol, and the 

paste was homogenised by using a ball mill.

# 4.2.5.4. Device preparation and characterisation

DSSCs were made using 4 µm thin films consisting of 20 nm TiO2 nanoparticles deposited onto a 

conducting glass substrate (Hafford Glass Inc., 15 $"cm-2 resistance) by using the well-known 

doctor-blade technique. The active area was 0.152 cm2. The prepared electrodes were gradually 

heated under airflow at 325 ºC for 5 min,  375 ºC for 5 min, 450 ºC for 15 min, and 500 ºC for 15 

min. Then, they were submerged into 40"10-3 M TiCl4 aqueous solution at 70 ºC for 15 min,  washed 

with ethanol, heated again at 500 ºC for 30 min, and cooled to 50 ºC before soaking the films in a 

5"10-4 M AR25 solution in acetonitrile/tert-butyl alcohol (1:1) overnight. The counter electrodes 

were prepared by spreading a solution of H2PtCl6 in ethanol onto a conducting glass substrate with 

a small hole to allow the introduction of the liquid electrolyte, under vacuum. The liquid electrolyte 

was prepared by using 0.6 M DMPII (1-propyl- 2,3-dimethylimidazolium iodide), 0.05 M I2, and 

0.1 M LiI in acetonitrile/valeronitrile (85:15). The photovoltaic measurements were carried out 

with a 150 W xenon lamp from Oriel Instruments with the appropriated set of filters for the correct 

simulation of the AM-1.5G solar spectrum. The incident light power was calibrated by using a 

silicon photodiode previously calibrated at 1000 W"m-2 at AM-1.5G.
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4.3. Article B. Interfacial charge recombination 
between e--TiO2 and the I-/I3

- electrolyte in 
ruthenium heteroleptic complexes: dye molecular 
structure-open circuit voltage relationship
J. Am. Chem. Soc. 2008, 130, 13558

Anna Reynal,a Amparo Forneli,a Eugenia Martínez-Ferrero,a Antonio Sánchez-Díaz,a Anton 

Vidal-Ferran,a,b Brian O’Regan,c Emilio Palomares*a,b

a Institute of Chemical Research of Catalonia (ICIQ), Avda. Països Catalans, 16, Tarragona, Spain. E-mail: 
epalomares@iciq.es, b ICREA, c Imperial College of London, Chemistry Department, South Kensington, 
Exhibition Road, SW7 2AZ London, United Kingdom.

4.3.1. Abstract

A series of heteroleptic ruthenium(II) polypyridyl complexes containing phenanthroline ligands 

have been designed, synthesised, and characterised. The spectroscopic and electrochemical 

properties of the complexes have been studied in solution and adsorbed onto semiconductor 

nanocrystalline metal oxide particles. The results show that for two of the ruthenium complexes, 

bearing electron-donating (-NH2) or electron-withdrawing (-NO2) groups,  the presence of the 

redox-active I-/I3
- electrolyte produces important changes in the interfacial charge transfer 

processes that limit the device performance. For example, those dyes enhanced the electron 

recombination reaction between the photoinjected electrons at TiO2 and the oxidised redox 

electrolyte.  In an effort to understand the details of such striking observations,  we have monitored 

the charge transfer reactions taking place at the different interfaces of the devices using time 

resolved single photon counting, laser transient spectroscopy, and light-induced photovoltage 

measurements.

4.3.2. Introduction

Ruthenium(II) polypyridyl complexes have been widely investigated as efficient light harvesting 

molecules in dye sensitised solar cells.4,  34, 45 In fact, devices made using as the sensitiser the 

complex cis-bis(isothiocyanato)bis(2,2’-bipyridyl-4,4’-dicarboxylato)ruthenium(II) bis(tetra-

butylammonium), also known as N719 (Scheme 4.2), have achieved certified efficiencies for light-

to-energy conversion of  11 % under illumination at 1 sun (100 mW"cm-2).46 Several groups have 
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designed and synthesised a wide range of ruthenium(II) complexes, but still bis(2,2’-bipyridyl-4,4’-

dicarboxylato)-based ruthenium complexes or their derivates have superior performance when 

compared in similar conditions, although a few exceptions have been demonstrated in recent years.
47-49 However, although it has been possible to achieve a higher photocurrent for devices  made 

using those alternative dyes (for example, the “Black Dye”,49 chemical name 

tris(isothiocyanato)ruthenium(II) 2,2’:6’,2”-terpyridine-4,4’,4”-tricarboxylic acid, tris(tetra-

butylammonium) salt, usually a decrease in the cell open circuit voltage has been observed.

Scheme 4.2. Charge transfer reactions taking place at the different interfaces of a DSSC and the 
molecular structure of N719. The numbers in parentheses are the energy gap for TiO2 and the N719 
dye, and the gray shadow represents the density of electron states. Values in parentheses are the 

energy versus vacuum level as calculated using reference 50. Reaction 1: light absorption and 
formation of the dye excited state (solid black arrow). Reaction 2: photoinduced electron injection 
from the excited dye to the TiO2 conduction band. Reaction 3: luminescence emission from the dye 
excited state. Reaction 4: electron recombination between photoinjected electrons at TiO2 and the 
oxidised dye. Reaction 5: electron recombination between photoinjected electrons at TiO2 and the 

oxidised electrolyte. Reaction 6: dye ground-state regeneration by the electrolyte

A detailed study of the charge transfer reactions taking place at the different interfaces of a DSSC 

sensitised with N719 shows that electron transfer reactions are very much optimised.35,  40, 51-53 For 

example, in a typical DSSC using an iodine/iodide liquid electrolyte, upon light absorption 

(Scheme 4.2, reaction 1) electron injection occurs in < 1 ps to hundreds of picoseconds (Scheme 

4.2, reaction 2). This is usually much faster than the nanosecond scale lifetime of excited ruthenium 

complexes in pure solution (Scheme 4.2,  reaction 3). This normally gives an electron injection 

yield higher than 90 %. Similarly, the oxidised dye is regenerated by the iodine/iodide electrolyte 
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in 0.1 - 10 µs (Scheme 4.2, reaction 6), well before the back electron transfer reaction between the 

photoinjected electrons and the oxidised dye, which takes place in the range of hundreds of 

microseconds or even a few milliseconds (Scheme 4.2, reaction 4).

Several authors have studied the different causes that affect the Voc of the DSSC.54-64 Most of the 

results are based on the well-established knowledge of the Nernstian behaviour63-67 of the TiO2 

semiconductor in the presence of surface dipoles. For example, the use of tert-butylpyridine,  a 

base, provokes a positive shift of the TiO2 conduction band and, therefore, an increase in the cell 

open circuit voltage.63, 68, 69 On the contrary,  the presence of acid dipoles has the inverse effect. 

Moreover, using conformal coatings on the surface of the nanocrystalline TiO2 particles with 

different basic or acidic metal oxides also influences the cell voltage70, 71 and,  thus, the overall 

device efficiency. Furthermore, systematic work has been carried out on controlling the number of 

protons in the dye molecules to tune the photocurrent and the voltage of the cell too, and, for 

example, the mentioned N179 has its more acidic version, with four protons, named N3, that shows 

upon illumination at a higher photocurrent but a lower Voc.30 Only recently, it has been 

demonstrated that several dyes,  which show poor light-to-energy conversion performance, when 

employed as  sensitisers in a DSSC, do increase the rate of electron recombination between the 

photoinjected electrons and the oxidised electrolyte, affecting not only the photocurrent but also 

the cell voltage.72 As  a matter of fact, the molecular structures of those dyes have in common the 

presence of extended !-conjugated systems which lie close to the nanoparticle metal oxide surface 

when anchored.73 Several authors have previously studied either homoleptic or heteroleptic 

phenanthroline-based ruthenium(II) complexes and have observed modest light-to-electricity 

conversion efficiencies when compared to those of devices made using N719 as  a sensitiser 

although the generated photocurrent was comparable to that of the devices made using N719.31, 42, 

74-78 Several hypotheses have been proposed, which are mainly related to a shift of the energy levels 

of the dye lowest unoccupied molecular orbital or the highest occupied molecular orbital due to the 

introduction of a lower energy !* molecular orbital and, therefore, inefficient photoinduced 

electron transfer from the dye excited state to the semiconductor conduction band (Scheme 4.2, 

reaction 2) or inefficient regeneration of the dye ground state by the electrolyte, respectively, or 

both (Scheme 4.2, reaction 6).77, 79 However, there is still an ongoing discussion about the 

influence of those extended !-conjugated systems on the interfacial electron transfer reactions at 

the device. For example, Arakawa and co-workers observed in Ru(II) complexes bearing 4,4’-

dicarboxy-2,2’-biquinoline ligands an increase in the dark current (e--TiO2/electrolyte+) (Scheme 

4.2, reaction 5) when compared to that of the standard N719 DSSC.74, 80 Moreover,  Thummel et al. 
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have recently reported the synthesis  of new homoleptic 1,8-naphthyridine-based Ru(II) complexes 

that show modest incident photon-to-current efficiencies, and they have assigned those results to 

the low yield of photoinduced electron injection of the complexes into the semiconductor.81 

Furthermore,  it has  been postulated that some organic dyes based on thiophene groups show a 

clear dependence between their structure and the Voc; increasing the number or thiophene bridge 

units on the organic dye increases drastically the dark current.82,  83 Hence, it seems there is a 

general trend between extending the !-conjugated ligand and the cell voltage.

Taking into account all these observations mentioned above, we have designed a series of 

heteroleptic ruthenium(II) complexes where one of the 4,4’-dicarboxy-2,2’-bipyridine ligands has 

been substituted by a phenanthroline moiety (Figure 4.13) with the aim to achieve high 

photocurrents and study the effect of the dye molecular structure on the cell voltage. Moreover, the 

phenanthroline ligand has been modified with the introduction of electron-donating or electron-

withdrawing groups to achieve the desired control over the molecular orbitals. While electron-

donating groups should decrease the energy gap (HOMO-LUMO gap), the introduction of 

electron-withdrawing groups should have the opposite effect, and thus, we expect a variation in the 

DSSC performance.

Figure 4.13. Molecular structures for the Ru(II) complexes utilised in the present study

4.3.3. Experimental section

# The syntheses of all complexes were carried out following the procedure in a previous 

paper published in the literature by Kasuga et al. 42All the chemical products were purchased from 

Sigma-Aldrich and used without further purification if not otherwise stated.
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# 4.3.3.1. Synthesis of cis-(4,4’-dicarboxy-2,2’-bipyridine) (1,10-

phenantroline)dithiocyanate ruthenium (II) ([Ru(dcbpy)(phen)(NCS)2]) (AR20)

Dichloro(p-cymene)ruthenium(II) dimer (120 mg, 0.2 mmol) was dissolved in 30 mL of 

dimethylformamide in a three-necked round bottomed flask completely covered with aluminium 

foil. The flask was purged with argon during 15 minutes. 1,10-phenanthroline (70.6 mg, 0.4 mmol) 

was added while stirring. The reaction mixture was heated at 60 ºC for 4 h. After this time 4,4’-

dicarboxy-2,2’-bipyridine (95.62 mg, 0.4 mmol) was added,  and the reaction mixture was heated at 

160 ºC for 4 h under argon and in absence of light to avoid cis to trans isomerisation. Then, 

ammonium thiocyanate (0.99 g, 13 mmol) was added and the reaction mixture was maintained at 

150 ºC for 5 h. After the reaction crude was kept cold at room temperature, the solvent was 

removed under vacuum. Then 5 mL of milli-Q water were added to remove the ammonium 

thiocyanate excess. A brown precipitate appeared, and it was collected by filtration with a sintered 

glass crucible. The product was washed three times with water and diethyl ether and dried under 

vacuum. Then, the product was dissolved in a mixture of 2.5 mL of methanol and 0.5 mL of 

tetrabutylammonium hydroxide (40 % weight) in order to form the tetrabutylammonium salt of the 

ruthenium complex. This solution was purified by size exclusion chromatography using a LH-20 

Sephadex column (2,5 x 30 cm) and methanol as the mobile phase. The main red band was 

collected and the solvent was evaporated under vacuum. A few drops of 0.01 HNO3 were added to 

the resulting semi-solid product until a brown precipitate appeared. It was collected with a sintered 

glass crucible and dried under vacuum. Yield: 81.5 %. 

1H-NMR (400 MHz, DMF-d7) $: 9.94 (d, J = 5.8 Hz, 1H), 9.92 (d, J = 5.3 Hz, 1H), 9.43 (s, 1H), 

9.24 (s, 1H), 9.15 (d, J = 8.3 Hz, 1H), 8.78 (d, J = 7.3 Hz, 1H), 8.63 (d, J = 5.8 Hz, 1H), 8.61 (d, J = 

8.8 Hz, 1H), 8.56 (dd,  J = 8.3, 5.3 Hz, 1H), 8.49 (d, J = 8.8 Hz, 1H), 8.38 (d,  J = 5.3 Hz, 1H),  8.14 (d, 

J = 5.9 Hz, 1H), 7.85 (dd, J = 8.3, 5.3 Hz, 1H), 7.75 (d, J = 5.9 Hz, 1H). ESI-MS: m/z 643 (M+H).

# 4.3.3.2. Synthesis of cis-(4,4’-dicarboxy-2,2’-bipyridine)(5-amino-1,10-

phenantroline)dithiocyanate ruthenium (II) ([Ru(dcbpy)(aphen)(NCS)2] (AR24)

The synthesis of [Ru(dcbpy)(aphen)(NCS)2] was carried following a procedure like that of 

compound AR20 except that 5-amino-1,10-phenanthroline (83 mg, 0.4 mmol) was added instead 

of 1,10-phenanthroline. The solid obtained was analysed by 1H and COSY NMR spectroscopy, and 

two diastereoisomers were observed in a 1:1 proportion.  Yield: 54.6 %.  The different products were 
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separated by reverse phase C18 semipreparative HPLC, using a mixture of H2O (0.1 % TFA)/MeCN 

(0.1 % TFA) (73:23) as the mobile phase. Two compounds were isolated with a retention time (tR) 

of 16.36 and 18.8 min, respectively, and finally, the solvent was removed under vacuum. Yield: 

46.67 %. 

Compound AR24a (tR: 16.36 min): 1H-RMN (400 MHz, MeOD) $: 9.72 (d,  J = 5.3 Hz, 1H),  9.56 

(d,  J = 5.9 Hz, 1H), 9.00 (s, 1H), 8.91 (d, J = 8.6 Hz 1H), 8.81 (s, 1H), 8.22 (d,  J = 5.7 Hz, 1H),  8.14 

(dd,  J = 8.6,  5.3 Hz, 1H), 7.97 (d, J = 8.3 Hz, 1H), 7.46 (d,  J = 5.3 Hz, 1H), 7.45 (m, 2H), 7.29 (dd, J 

= 8.3, 5.3 Hz, 1H), 7.07 (s, 1H). ESI-MS: m/z 658 (M+H).  Compound AR24b (tR:  18.8 min): 1H-

RMN (400 MHz, MeOD) $:  9.74 (d,  J = 5.6 Hz, 1H), 9.32 (d,  J = 5.1 Hz,  1H), 9.01 (s, 1H),  8.88 (s, 

1H), 8.54 (d, J = 8.5 Hz, 1H), 8.32 (m, 1H),  8.31 (d,  J = 8.3 Hz, 1H), 7.92 (dd, J = 8.3, 5.1 Hz, 1H), 

7.86 (d, J = 5.2 Hz, 1H), 7.71 (d,  J = 5.9 Hz, 1H), 7.54 (d, J = 5.9 Hz,  1H),  7.45 (dd, J = 8.5, 5.3 Hz, 

1H), 7.15 (s, 1H). ESI-MS: m/z 658 (M+H).

# 4.3.3.3. Synthesis of cis-(4,4’-dicarboxy-2,2’-bipyridine)(5,6-

dimethyl-1,10-phenantroline)dithiocyanate ruthenium (II) [Ru(dcbpy)(dmphen)

(NCS)2] (AR25)

The synthesis of AR25 was carried following the procedure as detailed for the synthesis of 

compound AR20,  adding 5,6-dimethyl-1,10-phenantroline (81.6 mg, 0.4 mmol) instead of 1,10-

phenantroline. Yield: 56.6 %.

1H-RMN (400 MHz, DMF-d7) $: 9.75 (d, J = 5,8 Hz, 1H), 9.68 (d, J = 5.3 Hz,  1H), 9.26 (d,  J = 1.3 

Hz, 1H), 9.06 (d,  J = 1.3 Hz, 1H), 9.04 (d, J = 8.5 Hz, 1H), 8.66 (d, J = 8.6 Hz, 1H), 8.44 (dd, J = 

5.8, 1.3 Hz, 1H), 8.35 (dd, J = 8.5, 5.3 Hz, 1H), 8.11 (d, J = 5.3 Hz, 1H), 7.92 (d,  J = 5.9 Hz, 1H), 7.63 

(dd,  J = 8.5, 5.3 Hz, 1H), 7.56 (dd, J = 5.9,  1.3 Hz, 1H), 2.92 (s, 3H), 2.81 (s, 3H). ESI-MS: m/z 670 

(M + H).

# 4.3.3.4. Synthesis of cis-(4,4’-dicarboxy-2,2’-bipyridine)(5-nitro-1,10-

phenantroline)dithiocyanate ruthenium (II) [Ru(dcbpy)(nophen)(NCS)2] (AR27)

 The synthesis of AR27 was carried following the procedure as detailed for the synthesis of 

compound AR20, adding 5-nitro-1,10-phenantroline (81.6 mg, 0.4 mmol) instead of 1,10-

phenantroline. Two stereoisomers were observed by proton and COSY NMR experiments in 1:1 
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HPLC, using MeCN (0.1 % TFA)/H2O (0.1 % TFA) (70:30) as the eluent. Two compounds were 

isolated with a retention time of 16.03 and 18.47 min, respectively. Yield: 55.8 %. 

Compound AR27a (tR = 16.03 min): 1H-RMN (400 MHz, MeOD) $: 9.16 (dd, J = 5.3, 1.0 Hz, 1H), 

8.96 (d, J = 5.6 Hz, 1H), 8.86 (s, 1H), 8.59 (s, 1H),  8.57 (dd, J = 8.3,  1.0 Hz, 1H), 8.41 (s, 1H), 8.34 

(dd,  J = 8.6, 0.7 Hz,  1H), 7.91 (dd, J = 8.3, 5.3 Hz, 1H), 7.54 (d, J = 5.6 Hz, 1H), 7.18 (m,  2H), 6.91 

(d,  J = 5.6 Hz, 1H). ESI-MS: m/z 688 (M + H). Compound AR27b (tR = 18.47 min): 1H-RMN (400 

MHz, MeOD) $: 9.26 (dd, J = 5.3, 1.2 Hz, 1H), 9.10 (d,  J = 5.8 Hz, 1H), 8.73 (d, J = 8.7,  1.1 Hz, 1H), 

8.59 (s, 1H), 8.51 (d, J = 1.1 Hz, 1H), 8.33 (d, J = 1.3 Hz 1H), 8.08 (dd, J = 8.2,  1.2 Hz, 1H), 7.83 (dd, 

J = 8.7, 5.3 Hz, 1H), 7.81 (dd, J = 5.8, 1.1 Hz, 1H), 7.54 (dd, J = 5.3, 1.1 Hz, 1H), 7.18 (d, J = 5.8 Hz, 

1H), 7.07 (dd, J = 8.2, 5.4 Hz, 1H), 6.91 (dd, J = 5.8, 1.3 Hz, 1H). ESI-MS: m/z 688 (M + H).

# 4.3.3.5. Optical, electrochemical and spectroscopic measurements

The UV-vis and fluorescence spectra were recorded using a 1 cm path length quartz cell on a 

Shimadzu UV spectrophotometer 1700 and an Aminco-Bowman series 2 luminescence 

spectrometer with a temperature controller, respectively. The electrochemical data were obtained 

employing a conventional three-electrode cell connected to a CH Instruments 660c potentiostat-

galvanostat. For cyclic voltammetry, we used a platinum working electrode, a calomel reference 

electrode (saturated calomel electrode),  and a platinum wire as the auxiliary electrode. The 

picosecond to microsecond emission lifetime measurements were carried out with a Lifespec 

picosecond fluorescence lifetime spectrometer from Edinburgh Instruments.  As excitation sources 

two diode lasers, with 405 and 635 nm nominal wavelengths, were used. The instrument response 

measured at the full-width at half-maximum was below 350 ps. Laser transient absorption 

spectroscopy measurements were carried out with a home-built system as reported before.43

Charge extraction and photovoltage measurements were carried out using a home-built system. In 

brief,  the charge extraction data were acquired using a pulse generated by an array of white LEDs. 

The decay was monitored using a Tektronics oscilloscope TDS 2022 and recorded using the 

Tektronics data acquisition software. We applied different light intensities to achieve different 

open circuit voltages of the cell, and immediately after the light pulse the device was short-circuited 

to extract the charge, which was controlled with a switch.  For the photovoltage transients, the pulse 

was generated with red-emitting diodes while the cell was illuminated with the same array of white 

light diodes. Proton NMR spectra,  NOESY and COSY experiments,  were measured on a Bruker 
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400 MHz spectrometer. A Waters LCT Premier liquid chromatograph coupled with a time-of-

flight mass spectrometer with electrospray ionisation was used to measure the mass spectra.

# 4.3.3.6. Nanoparticle synthesis and film preparation

The nanocrystalline TiO2 particles were synthesised as reported before.44 In brief, titanium 

isopropoxide (40 mL, 0.13 mol) was added to glacial acetic acid (9.12 g) under an argon 

atmosphere with stirring.  The reaction mixture was cooled in an ice bath, and 0.1 M nitric acid (240 

mL) was added with vigourous stirring. The mixture was heated in an oil bath at 80 ºC for 8 h and, 

after cooling, was filtered through a 0.45 µm syringe filter. The resulting product was diluted to 5 

% by weight of TiO2 by adding water and then was autoclaved at 220 ºC for 12 h. The aqueous 

phase was removed by centrifugation, and the solid nanoparticles were isolated and rinsed twice 

with ethanol. An ultrasonic horn was used to break the aggregates, and the solvent was removed 

under vacuum. The solid nanoparticles were diluted to 15 % by TiO2 weight, using ethyl cellulose 

and terpineol, and the paste was homogenised by ball milling. The Al2O3 mesoporous films were 

synthesised using commercially available Al2O3 nanoparticles.

# 4.3.3.7. Device preparation and characterisation

In the present work we have utilised two different types of devices due to their characterisation. 

Highly transparent thin film devices were utilised for time-correlated single photon counting and 

L-TAS experiments.  These devices were made using 4 µm thick films and sensitised with the 

ruthenium complexes until the absorbance at the metal-to-ligand charge transfer band of the 

sensitised film was 0.6 absorption unit. On the other hand, for optimised efficiencies all the devices 

studied during this work were made using 16 µm thick films consisting of a layer of 12 µm of 19 nm 

TiO2 nanoparticles and a layer of 4 µm of 300 nm TiO2 nanoparticles  (scatter layer). In both cases, 

the films were deposited onto a conducting glass substrate (Hafford Glass Inc., with 15 $"cm-2 

resistance) using the well-known doctor blade technique. For the thin film devices the area was 1 

cm2, while in the case of the thick film DSSC the active area was 0.152 cm2. The counter electrodes 

were made by spreading a solution of H2PtCl6 in ethanol onto a conducting glass substrate with a 

small hole to allow the introduction of the liquid electrolyte using a vacuum. Two liquid electrolytes 

were used depending on the measurements;  AF19 is composed of 0.6 M DMPII, 0.04 M I2, and 

0.025 M LiI in MeCN/valeronitrile (85:15), and AF4 was made using 0.6 M DMPII ,  0.04 M I2, 

0.025 M LiI and 0.28 M TBP in MeCN/valeronitrile (85:15). The photovoltaic measurements were 

carried out with a 150 W xenon lamp from Oriel Instruments with the appropriate set of filters for 
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the correct simulation of the AM 1.5-G solar spectrum. The incident light power was calibrated 

using a silicon photodiode previously calibrated at 1000 W"m-2 at AM 1.5-G.

# 4.3.3.8. Theoretical calculations

The geometries of the different complexes were calculated with Gaussian 03, revision C.02,84 

using the B3LYP functional. 6-31G(d) basis sets were used for sulfur, oxygen,  nitrogen, carbon, 

and hydrogen atoms, whereas the Stuttgart-Dresden effective core potential (ECP)85 and 

corresponding basis set were used for ruthenium. HOMO and LUMO orbitals were calculated from 

the optimised geometries.

4.3.4. Results and discussion

# 4.3.4.1. Spectroscopic properties. UV-vis absorption spectra and 

photoluminescence measurements

Figure 4.14 illustrates the UV-vis spectra of AR20, AR24a, AR24b, AR25,  AR27a, AR27b and 

N719 in dimethylformamide. The absorption band in the visible region has been previously 

assigned to the MLCT in ruthenium(II) complexes.38

Figure 4.14. UV-Vis absorption spectra if all the Ru(II) complexes described above in DMF (left) and 
adsorbed onto a 4 !m thick TiO2 transparent mesoporous film (right). The sensitisation was 30 min 

at 50 ºC (the concentration of the dye solution was 1·10-4 M)
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Table 4.1 shows the most important parameters for all the ruthenium complexes. As can be 

observed, in the case of AR24 and AR27 the amino and the nitro groups on the phenanthroline 

induce a red shift of the maximum. It is  worth noting that the visible spectra of the dyes adsorbed 

onto TiO2 transparent thin mesoporous films retain the red shift as in solution (Figure 4.14, right). 

However, we note that the lower energy of the visible transition for the AR24 dye appears to be in 

contradiction to the expected increase in the optical gap.38

Ruthenium complex "-"* (#) MLCT (#)

AR20 415 (7830)a 522 (11360)

AR24a 420 (11500) 546 (9242)

AR24b 415 (10441) 545 (9312)

AR25 415 (8820) 531 (8606)

AR27a 403 (5220) 538 (6984)

AR27b 400 (4938) 535 (6560)

N719 378 (11852) 527 (11360)

Table 4.1. UV-Vis absorption parameters (nm) for the ruthenium(II) complexes described above.       
a The numbers in parentheses correspond to the molecular extinction coefficient (dm3·mol-1·cm-1)

Figure 4.15. Photoluminescence spectra of AR20-sensitised films recorded under normal conditions 
("ex = 500 nm). The asterisks indicate optical artifacts from the luminescence spectrophotometer
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The photoluminescence properties of the dyes in solution and adsorbed onto transparent 

mesoporous thin films have also been measured.  The emission of the dye sensitised films is 

dramatically quenched for the TiO2 samples when compared to that of Al2O3-sensitised films, 

which, in principle, suggests the existence of efficient light-induced electron injection from the dye 

excited state into the TiO2 semiconductor conduction band. Absorption of the dye to an oxide 

surface could in principle reduce the emission without the presence of electron injection. For this 

reason it is better to compare the luminescence of  the dye on TiO2 to the luminescence on another 

substrate such as Al2O3, where the conduction band edge is  above the LUMO of the molecule. The 

results indicate that dye-sensitised Al2O3 films show typical photoluminescence at room 

temperature when excited at the MLCT band as in solution. Figure 4.15 illustrates, as an example, 

the AR20/Al2O3 emission spectra, and the most relevant photoluminescence properties for all 

dyes are listed in Table 4.2. In the case of AR27 we were only able to measure the emission kinetics 

in solution since we could not resolve the decay on either TiO2 or Al2O3 as it was faster than our 

instrument response. This observation can be understood, if we take into account that the AR27 

complex fulfills the band gap law. In brief,  the smaller the energy gap, the lower the complex 

emission quantum yield and the faster its emission decay dynamics.

Complex Emission 
("max, 
nm)

E0,0
a 

(eV)
Solution 
lifetimeb 

(ns)

Al2O3 film 
emission 
lifetimed 

(ns)

DSSC 
emission 
lifetime 

(ns)

Estimated 
electron 

injection yield 
(%)

AR20 724 193 3.82 (3)
51.92 (97)

11.90 (10)
34.49 (90)

1.44 (40.3)
7.70 (56.7)

85

AR24a 777 189 10.05 (33.2)
47.65 (66.8)

11.16 (40.2)
36.86 (59.8)

2.34 (50.6)
12.53 (49.4)

70

AR24b 774 19 11.03 (38.3)
54.03 (61.6)

11.56 (43.2)
32.97 (56.8)

2.51 (41.6)
20.98 (58.4)

70

AR25 746 192 9.57 (18.9)
56.67 (81.1)

11.96 (20.6)
37.36 (79.4)

2.23 (48.5)
12.61 (51.5)

90

AR27a 760 1.52c 3.41 (7.76)
12.8 (92.2)

AR27b 760 1.53c 1.57 (6.3)
12.95 (93.7)

Table 4.2. Photophysical parameters for the ruthenium(II) complexes described above in DMF 
solution. a The 0-0 energy was calculated using the tangent from the higher energy side of the 

emission band except for AR27. b The number in parentheses are the percentage for each 
parameter. c Estimated from the electrochemical data. d The emission lifetime for the AR27 complex 

is shorter than the instrument response of our TC-SPC system (Instrument response = 350 ps)
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To determine the photoinduced electron transfer yield of those dyes into TiO2, we have carried out 

further experiments to study the dyes in complete devices. It has been previously shown that 

TCSPC is a convenient technique that can be used to estimate not only the yield of the electron 

injection in a qualitative way, but also the rate of electron injection dynamics in the DSSC.86, 87 

However, it is necessary, as a control, to determine the native excited lifetime (!) of  the molecules 

adsorbed onto the nanoparticle surface. Thus, as explained before, we employed Al2O3 

mesoporous sensitised films as a control.

Figure 4.16. Photoluminescence emission decays for (a) AR20/Al2O3, (b) AR20/DSSC, (c) AR24b/
Al2O3, (d) AR24b/DSSC, (e) AR25/Al2O3, (f) AR25/DSSC

As detailed in Table 4.2, in the absence of electrolyte, either in solution or adsorbed onto Al2O3 

thin films, the emission%kinetics were fitted to a biexponential decay, and a slow component was 

observed in all decays. Several authors have reported that the slow component of the dye excited 
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lifetime decay arises from the nature of the dye’s triplet excited state.38, 88 More interesting is the 

difference in emission decay amplitude when the dye-sensitised Al2O3 films are compared with the 

photovoltaic devices. For a fixed acquisition time of 900 s we can observe (Figure 4.16) faster 

emission decay kinetics for complete devices and a decrease in the signal amplitude and the area 

under the curve. In fact,  we evaluate the electron injection yield by comparison of the decay curves 

between both sets of samples (Al2O3 vs DSSC). As can be observed in Figure%4.16, in all cases the 

photoinduced electron injection is efficient,  and in the case of AR25, the yield is near 90 %. Those 

values are similar to those previously reported for N719. Furthermore, using the same 

mathematical procedure as published by Koops et al.,86 we have estimated that the photoinduced 

electron injection reaction takes place faster than in 175 ps, which is in good agreement with 

previously published data for ruthenium(II) complexes used in a complete DSSC.89, 90

# 4.3.4.2. L-TAS and electrochemical measurements

Transient absorbance measurements were performed either on dye sensitised 4 µm thick trans-

parent mesoporous TiO2 or in complete functional devices and are shown in Figures 4.17 and 4.18. 

Figure 4.17. Absorbance transient for 4 !m thick transparent dye-sensitised TiO2 films (MLCT "abs = 
0.3). The excitation wavelength was 620 nm, and the probe wavelength was 800 nm. The solid lines 

correspond to the stretched exponential fit. The inset illustrates the AR20 cation spectra after 
excitation at 535 nm

Consistent with previous reports, we associated the decay of the dye-TiO2 sample with the 

photoinduced electron recombination kinetics between the electrons at TiO2 and the oxidised dye 

at the nanoparticle surface (Scheme 4.2, reaction 4).91, 92 Moreover, in good agreement with 
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previous papers, the electron recombination kinetics can be fitted to a classic stretched exponential 

which is consistent with the presence of a large distribution of recombination sites within the 

mesoporous film with different energetic characteristics.  These differences in the local 

environment not only lead to a variation of the recombination kinetics but also have been observed 

for the electron injection dynamics.35, 51, 52,  91 Back electron transfer half-times (! 1/2), measured at 

full width at half-maximum, for the heteroleptic Ru(II) complexes are summarised in Table 4.3.

Figure 4.18. Electron recombination dynamics for a 4 !m thick transparent film: (left) AR24a/DSSC 
and (right) AR25/DSSC. Both cells have the same absorption (MLCT "abs = 0.6). The excitation 

wavelength was 620 nm. The electrolyte was AF19

The L-TAS study of complete functional devices (Figure 4.18) reveals  that,  in the presence of I-/I3
-, 

the amplitude of the initial signal is  strongly reduced for AR24 relative to AR25. Note that Figure 

4.16 indicates the same degree of luminescence quenching for both dyes. This indicates that either 

the photoinduced electron injection is strongly reduced when I-/I3
- is  present in AR24/DSSC (the 

same behaviour is observed for AR27/DSSC) or the oxidised dye is removed by a very fast 

recombination with the injected electron, or both. For efficient devices based on homo- or 

heteroleptic ruthenium(II) complexes, in the presence of redox-active electrolyte the L-TAS 

recombination dynamics always appears associated with the appearance of long-lived transient 

decays assigned previously by Montanari et al. to the electrons at TiO2.72,  93 In our case, when we 

measured the dynamics of AR24/DSSC (Figure 4.18 left, "probe = 1000 nm), the amplitude of this 

slow decay component on the L-TAS recombination kinetics was remarkably low. In fact, the 

comparison of the yield of photoinduced electrons at TiO2 between AR24/DSSC and AR25/

DSSC shows that for AR25/DSSC the yield of electrons is  8 times higher than for AR24/DSSC. It 
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clear that the differences in the molecular structure of both dyes are playing a major role in the 

interfacial charge transfer reactions at the devices.

Sample Half-time 
recombination 

decay ($1/2, ms)

%a E1/2 (RuII/III) (V) in 
MeCN vs SCE 

electrode at 25 ºCb

E1/2 (RuII/III*) (V) in 
MeCN vs SCE electrode 

at 25 ºC

AR20 0.045 0.27 0.73 -1.2

AR24a 0.015 0.16 0.75 -1.14

AR24b 0.015 0.16 0.75 -1.15

AR25 0.026 0.27 0.74 -1.19

AR27a 0.052 0.2 0.72 -0.8

AR27b 0.052 0.2 0.72 -0.81

N719 0.44 0.26 0.73 -1.2

Table 4.3. Charge recombination and electrochemical potentials for the heteroleptic Ru(II) 
complexes. a % corresponds to the parameter obtained from the curve fitting of the decay 

experimental points using the stretched exponential function I ! e
" t

#( )
$

. b The solutions (3 mM) 
were purged with argon for 5 min

Moreover, these differences cannot be explained in terms of different energy levels of the molecular 

orbitals since the analysis  of  the cyclic voltammetry reveals that AR24 and AR25 show almost 

identical reduction potentials as confirmed by the theoretical study below.

4.3.4.3. Computational study

We have performed theoretical calculations using the software package Gaussian 03 as described 

in the Experimental Section. Figure 4.19 illustrates the graphical representation of the HOMO and 

LUMO orbitals  of the heteroleptic Ru(II) complexes.  In all cases the electrons on the HOMO are 

centered on the axial thiocyanate ligands and,  within those, on the sulfur atoms. On the other hand, 

the electrons on the LUMO are localised on the bipyridine ligand for the AR20,  AR24, and AR25 

complexes in good agreement with previous theoretical calculations.42 In fact, these computational 

results also support the hypothesis of efficient electron injection in these complexes since the 

electronic coupling between the 3d Ti orbitals and the LUMO of the Ru(II) complexes must be very 

strong. However, in the case of the AR27 complex, the electrons on the LUMO orbital are 
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delocalised on the phenanthroline ligand, and thus, this could be one of  the reasons for the low 

device performance.

Figure 4.19. Molecular orbitals and energy gaps of AR20, AR24a, AR25 and AR27a (DFT/6-31H(d), 
isodensitiy value 0.02)

In fact, we point out that although it was impossible to observe the luminescence dynamics in the 

case of the AR27/TiO2 or the AR27/Al2O3 sample, due to the time response of our TCSPC 

measurement system, the signal at the TAS measurements (Figure 4.17) reveals that the injection 

kinetics are not as efficient as for AR20 and AR25 sensitised TiO2 samples. Thus, we can expect a 

low photocurrent on devices made using AR27. Furthermore, the computational study reveals that 

the HOMO-LUMO energy gaps for the AR20, AR24, and AR25 dyes show little difference. On 

the other hand, in the case of the AR27 complex, with the electron-withdrawing nitro group, the 

HOMO-LUMO energy gap is noticeably smaller. It is worth noting, too,  that the theoretical model 

also predicts small differences between the different AR24 and AR27 diastereoisomers as has been 

observed in the experimental results.  Taking into account that in all cases the binding of the Ru(II) 

complexes onto the nanoparticles occurs through the bipyridine carboxylic groups, we can assume 

that the distance between the semiconductor nanoparticle surface and the HOMO orbital for all 

complexes is almost the same. We have estimated that the distance is about 8 Å. It has been 

previously reported that, for N719 and other Ru(II) complexes, there is a clear correlation between 

the HOMO/TiO2 distance and the e--TiO2/dye+ electron recombination kinetics.26 In our hands all 

decay kinetics were faster than those of the standard molecule N719 under the same experimental 

conditions.
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# 4.3.4.4. Photovoltaic device characterisation

After the spectroscopic characterisation of all the ruthenium(II) complexes described above, we 

focused on the measurement and analysis of the photoelectrochemical characteristics of the solar 

cell devices. The IPCE reveals  that in the case of devices made using AR20 and AR25 Ru(II) 

complexes the photon-to-electron conversion efficiency is similar to that reported for N719. 

However, for the AR24 complex the conversion efficiency is much lower, in good agreement with 

the low electron injection yield observed in the results above. Nonetheless, the lower photovoltage 

observed (Table 4.4) for those cells (Voc = 0.48 V) when compared with that of AR20 (Voc = 0.67 

V) or AR25 (Voc = 0.67 V) cells was also surprising. The origin of such an effect on the 

photovoltage will be discussed in the next section.

Cell Isc (mA) Voc (V) ff & (%)

AR20 1.91 0.67 46.93 3.98

AR25 2.05 0.67 50.20 4.56

AR24a 0.22 0.48 31.45 0.22

AR24b 0.15 0.46 30.72 0.14

AR27a 0.8 0.44 34.21 0.8

AR27b 0.12 0.44 35.23 0.13

N719 1.5 0.46 68.32 4.45

Table 4.4. Device parameters when irradiated with stimulated sunlight (100 mW·cm-2, 1.5 AM G). 
The cell area was 0.152 cm2 and the AF4 electrolyte

We focus now on AR27/DSSC, as can be seen in Figure 4.20 the IPCE was very low for these 

devices too. This  could be expected from the kinetic measurements and the theoretical calculations 

that predict a low-lying LUMO level unable to achieve high electron injection yields. On the other 

hand, the IPCE results for AR24/DSSC cannot be explained like those for AR27, since for AR24 

the experimental and the theoretical results predict a high LUMO energy level and, therefore, 

enough driving force for electron injection onto the TiO2 conduction band.  We believe that the 

results obtained for AR24/DSSC can be explained either in terms of inefficient electron 

regeneration from the liquid electrolyte due to an increase in the electron recombination kinetics 

between the photoinjected electrons and the electrolyte or the low yield of electron injection due to 

the quenching of the dye excited state by the redox electrolyte. To seek further information on 
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these two hypotheses, we have also studied the photocurrent vs voltage device characteristics of the 

DSSC under standard illumination conditions (100 mW"cm-2). The results are shown in Table 4.4. 

We observed that for the solar cells the photocurrent was in good agreement with the measured 

IPCE.

Figure 4.20. Incident photon to current efficiency curves for 12 + 4 !m thick DSSC using the AF4 
electrolyte

Figure 4.21. I-V curves measured for the indicated devices in the dark. The electrolyte was AF19

Moreover, as we mentioned before, it was very interesting to note that the voltage and hence the 

dark current curves (Figure 4.21) were much different between the different cells despite the fact 
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that all heteroleptic Ru(II) complexes in this study have almost identical energy gaps (except, of 

course, AR27). Thus, the inefficient performance of  these heteroleptic ruthenium dyes must be 

related to the charge recombination kinetics between the photoinjected electrons and the oxidised 

redox couple.

Figure 4.22. Charge extraction measurements for all devices. The DSSC active area is 1 cm2. The 
cells were made using a transparent 4 !m thick TiO2 film sensitised with the Ru(II) complexes and 

AF19 electrolyte. The asterisk indicates the voltage at which all the devices have the same charge

For a more detailed study on this issue, we carried out photovoltage transient experiments. 

Recently,  we have employed those measurements, also known as Voc decays, to evaluate the 

electron recombination dynamics between the photoinjected electrons at TiO2 and the oxidised 

electrolyte in porphyrin sensitised solar cells.94 It is worth noting that Voc decays are measurements 

strongly dependent on the accumulated charge at the semiconductor (charge density), and hence, 

to obtain a fair comparison of the e--TiO2/electrolyte+ recombination dynamics between different 

devices, the charge densities on both cells must be equal.  As illustrated in Figure 4.22,  in our case, 

this condition can be achieved when the cell voltage is 475 mV. As indicated in Table 4.4 the 

different solar cells  have different Voc values when illuminated at 1 sun. The differences  in the 

voltage can be due to (a) a shift of the TiO2 conduction band with respect to the electrolyte 

potential or (b) differences in the e--TiO2/electrolyte+ recombination reaction. The former 

hypothesis  can be discarded due to the fact that a change in the TiO2 conduction band position 

implies also a shift in the cell charge density as demonstrated previously by other authors.94-97 As 

can be seen in Figure 4.22 for all DSSCs the experimental points emerge along the same curve. 

Thus, in our case, the differences in voltage must be due to an increase in the e--TiO2/electrolyte+ 

recombination reaction in devices made using AR24.
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Figure 4.23. Photovoltage transient decays of the DSSC. The inset shows the decay recombination 
dynamics for AR20/DSSC and AR25/DSSC at longer time scales. The electrolyte was AF19

The electron recombination dynamics between the photoinjected electrons at TiO2 and the 

oxidised electrolyte are illustrated in Figure 4.23. As can be seen the kinetics are 2 orders of 

magnitude faster for devices made using either AR24 and AR27.

It is obvious that the presence of the electron donor group at the phenanthroline is responsible for 

the extraordinarily fast electron recombination kinetics between the electrons injected at the 

semiconductor upon light excitation of the AR24 molecules and the oxidised electrolyte. The 

origin of such an effect remains unclear,  but interestingly, on this series of Ru(II) complexes the 

presence of a nitrogen-containing group (either the amino or the nitro) affected not only the 

photoinduced electron injection from the dye excited state into the TiO2 conduction band,  but also 

the charge transfer reaction between the electrons at the semiconductor film and the iodine/iodide 

electrolyte.

4.3.5. Conclusions

We have demonstrated that for the design and synthesis of heteroleptic Ru(II) complexes the 

presence of substituents on one of the aromatic ligands coordinated to the ruthenium atom has a 

strong influence not only on the molecule spectroscopic and electrochemical properties but also on 

the device performance. In fact, we have demonstrated that in the case of the ruthenium complex 

bearing an amino moiety or a nitro group the molecule affects dramatically the open circuit voltage 
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of the cell. Although a more detailed study is probably needed to find the mechanisms that are 

deactivating the electron injection on these devices too, we have shown that the low device 

performance is influenced by the acceleration of the electron transfer dynamics between the 

photoinjected electrons and the oxidised electrolyte.  For devices made using the phenanthroline 

substituted heteroleptic Ru(II) complexes  the reaction is  2 orders of magnitude faster when 

compared to that of N719 (data not shown) and AR20 or AR25.

We believe that the results presented in this paper have important implications for the future 

design of new ruthenium heteroleptic complexes that attempt to achieve higher open circuit 

voltages in the DSSC without reducing the photocurrent, using electron-donating or -withdrawing 

groups to control the photophysical properties of the molecules. However, those modifications, as 

in our case, could lead instead to a poor device performance by the enhancement of undesirable 

interfacial transfer reactions.
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4.4. Article C. Dye structure-charge transfer 
process relationship in efficient ruthenium-dye 
based dye sensitised solar cell
Energy Env. Sci., 2010, 3(6), 805
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a Institute of Chemical Research of Catalonia (ICIQ), Avda. Països Catalans, 16, 43007, Tarragona. E-mail 
address: epalomares@iciq.es, fax:+34 977 920 241, tel: +34 977 920 200, b Institució Catalana de Recerca i 
Estudia Avançats (ICREA), Avda. Lluís Companys, 25, 08040, Barcelona, Spain.

4.4.1. Abstract

The characterisation of the interfacial charge transfer processes taking place in dye solar cells made 

using the most efficient ruthenium complexes, namely cis-bis(isothiocyanato)bis(2,2’-

bipyridyl-4,4’-dicarboxylato)-ruthenium(II)bis-tetrabutylammonium (N719),  tris(isothiocyanato)-

ruthenium(II)-2,2’:6’,2”-terpyridine-4,4’,4”-tricarboxylic acid tris-tertrabutylammonium salt 

(Black Dye) and cis-bis(isothiocanate)(4,4’-bis(5-hexylthiophene-2-yl)-2,2’-bipyridine)(4-

carboxylic acid-4’-carboxylate-2,2’-bipyridine)ruthenium(II) sodium (C101), has been carried out. 

The comparison between these devices shows that devices made using N719 have the slowest 

recombination dynamics between the photo-injected electrons and the oxidised electrolyte. 

Moreover, for devices made using Black Dye,  the dye ground state regeneration dynamics are 

faster than for C101 and N719. The implications for future ruthenium dyes are discussed.

4.4.2. Introduction

In the last five years rapid progress towards stable and efficient dye sensitised solar cells (DSSC) 

have been possible thanks to the development of  new ruthenium polypyridyl dyes.23,  42, 98-104 Such 

dyes, when covalently attached to nanocrystalline TiO2 nanoparticles and irradiated with light, are 

capable of generating large photocurrents, which are nowadays in the order of twenty milliamps per 

square centimetre. A wide range of ruthenium dyes have been designed, but only a few have been 

able to reach solar-to-energy conversion efficiencies as high as 10–11 %46,  105 due to different 

reasons ranging from inappropriate dye oxidation potential,106 low energy level of the dye excited 

state80 and secondary reactions still not well defined between the dye and the red/ox electrolyte.
107-110 Certainly, of all the organic ligands used to coordinate the ruthenium centre, the use of 2,2’-

Relationship between dye molecular structure and DSSC performance! 143

UNIVERSITAT ROVIRA I VIRGILI 
RUTHENIUM POLYPYRIDYL COMPLEXES AS PHOTOSENSITIZERS FOR MOLECULAR PHOTOVOLTAICDEVICES: 
INFLUENCE OF THE DYE STRUCTURE AND THE PRESENCE OF ADDITIVES TO THE DEVICE 
PERFORMANCE 
Anna Reynal Verdú 
ISBN:978-84-693-8863-1/DL:T.1944-2010 

mailto:epalomares@iciq.es
mailto:epalomares@iciq.es


thiocyanate ligands,  giving hexa-coordinated ruthenium(II) complexes absorbing almost in the 

near IR region of the solar spectrum (" = 700 nm).112 Nowadays, a new ruthenium polypyridyl 

complex named C10110 that contains the above mentioned features has been used to achieve 

efficiencies above 11 % in a reproducible manner under standard conditions (100 mW"cm-2, 1.5 AM 

G solar spectrum). Indeed, the study of the relationship between the dye structure and their light-

to-electrical current conversion performance is of utmost interest, since it will help to understand 

the parameters to design efficient and robust sensitisers for DSSC, as well as to determine the 

reactions occurring at the molecular level between the different cell components that limit the 

device performance.

In this paper, we aim to study in detail the three most efficient dyes  reported so far in the DSSC 

literature (Figure 4.24) using liquid electrolyte composed by the red/ox pair I2/I- and TiO2 as 

electron transport mesoporous material.  Moreover, we will monitor the interfacial charge transfer 

reactions taking place at the interface of these devices and observe the differences between electron 

injection, back electron transfer from the photo-injected electrons at the TiO2 and the oxidised 

species at the device (either dye or electrolyte) and the regeneration process between the 

electrolyte and the oxidised dye. Although for N719 there is a wide range of studies available30,  40, 

113-115 and, surely, this is also the case for the complex named Black Dye (BD),49,  116-119 neither the 

former nor the latter have been previously measured and compared under the same conditions, 

which is, in our opinion, an important factor to take into account when the researchers  look for 

clear dye structure–device function correlation. In addition to these two widely known sensitisers, 

we have included in our study the new paradigm, the ruthenium complex C101, and analysed its 

performance too.
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Figure 4.24. Chemical structure of the molecules N719, Black Dye and C101. TBA stands for 
tetrabutylammonium cation
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4.4.3. Experimental section

# 4.4.3.1. Materials

The solvents, and other reagents or products used were purchased from Sigma-Aldrich and used 

without further purification. The N719 and Black Dye were purchased from Solaronix. The C101 

complex was received as a courtesy from the group of Professor Grätzel at EPFL (Lausanne, 

Switzerland).

# 4.4.3.2. Optical, electrochemical and spectroscopic measurements

The UV-visible and emission spectra were recorded using a 1 cm path length quartz cell on a 

Shimadzu UV spectrophotometer 1700 and an Aminco-Bowman series 2 luminescence 

spectrometer with a temperature controller, respectively. The electrochemical data was obtained 

employing a conventional three-electrode cell connected to a CH Instruments 660c potentiostat-

galvanostat. For cyclic voltammetry, we used a platinum foil as working electrode, a calomel 

reference electrode and a platinum wire as the auxiliary electrode. The picoseconds to microsecond 

emission lifetime measurements were carried out with a Lifespec picosecond fluorescence lifetime 

spectrometer from Edinburgh Instruments. As excitation source, a fast diode laser,  with 405 nm 

nominal wavelength, was used. The instrument response measured at the full-width at half 

maximum was shorter than 360 ps. Laser transient absorption spectroscopy measurements were 

carried out with a home-built system as reported before.43
 Charge extraction and photovoltage 

measurements were carried out using a home-built system. In brief, the charge extraction data were 

acquired using a pulse generated by an array of white LEDs. The decay was monitored using a 

Tektronics oscilloscope TDS 2022 and recorded using the Tektronics data acquisition software. 

We applied different light intensities to achieve different open circuit voltages of the cell, and 

straight after the light pulse the device was short-circuited to extract the charge. All electronic 

processes to short-circuit the photovoltaic cell were controlled with a home-made electronic 

switch. For the photovoltage transients,  the pulse was generated with red-emitting diodes while the 

cell was illuminated with the same array of white light diodes.

# 4.4.3.3. Nanoparticle synthesis and film preparation

The nanocrystalline TiO2 particles were synthesised as reported before.44
 In brief: titanium 

isopropoxide (40 mL, 0.13 mol) was added to glacial acetic acid (9.12 g) under argon atmosphere 

while stirring. The reaction mixture was cooled into an ice bath and 0.1 M  nitric acid (240 mL) was 
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added while vigourously stirring. The mixture was heated in an oil bath at 80 ºC for 8 h and, after 

cooling, was filtered through a 0.45 µm syringe filter.  The resulting product was diluted to 5 % in 

weight of TiO2 by adding water and was then was autoclaved at 220 ºC for 12 h. The aqueous phase 

was removed by centrifugation and the solid nanoparticles were isolated and rinsed twice with 

ethanol. An ultrasonic horn was used to break the aggregates and the solvent was removed under 

vacuum. The solid nanoparticles were diluted to 15 % in TiO2 weight using ethyl cellulose and 

terpineol and the paste was homogenised by ball milling.

The Al2O3 mesoporous films were synthesised using commercially available Al2O3 nanoparticles.

# 4.4.3.4. Device preparation and characterisation

In the present work, we have utilised and characterised two different types of device.  Highly 

transparent thin film devices were utilised for time-correlated single photon counting and L-TAS 

experiments. These devices were made using 4 µm thick films and sensitised with the ruthenium 

complexes until the absorbance at the metal-to-ligand charge transfer band of the sensitised film 

was 0.6 absorption units. On the other hand, for optimised efficiencies, all the devices studied 

during this work were made using 16 µm thick films consisting of a layer of between 8–12 µm of 20 

nm TiO2 nanoparticles and a layer of 4 µm of 400 nm TiO2 nanoparticles (scatter layer). In both 

cases,  the films were deposited onto a conducting glass substrate (Nippon Sheet Glass Co. with 10 

$"cm-2 resistance) using the manual doctor blade technique. For the thin film devices,  the area was 

1 cm2 while in the case of the thick film DSSC, the active area was between 0.14 and 0.15 cm2. The 

counter electrodes were made by spreading a 5 "10-3 M solution of H2PtCl6 in ethanol onto a 

conducting glass substrate with a small drilled hole to allow the introduction of the liquid 

electrolyte using low vacuum pressure. Two liquid electrolytes were used depending on the 

measurements; electrolyte A, which does not contain tert-butylpyridine, is composed of 1 M BMII 

(1-butyl-3-methylimidazolium iodide), 0.03 M I2, 0.05 M LiI and 0.1 M GuNCS (guanidinium 

thiocyanate) in acetonitrile/valeronitrile 85:15, and electrolyte B, which contains tert-

butylpyridine, was made using 1 M BMII, 0.03 M I2,  0.05 M LiI, 0.1 M GuSCN and 0.5 M tert-

butylpyridine in acetonitrile/valeronitrile (85:15). The photovoltaic measurements were carried out 

with a 150 W xenon lamp from ABET Instruments with the appropriate filter for the correct 

simulation of  the 1.5  AM G solar spectrum. The incident light power was calibrated using a silicon 

photodiode previously calibrated at 1000 W"m-2 at 1.5 AM G.
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4.4.4. Results and discussion

# 4.4.4.1. Spectroscopic properties: UV-visible absorption spectra and 

photoluminescence measurements

The absorbance spectra of the three different dyes anchored onto 4 µm thick Al2O3 and TiO2 

mesoporous films were measured.

The films were immersed into a 10-3 M solution of each dye using as solvent a mixture of 

acetonitrile: tert-butanol (1:1) for N719 and C101, while in the case of the Black Dye, we used 

ethanol. The lowest absorption energy band was centered at " = 523 nm for N719 and " = 533 nm 

for C101.  The absorption bands were assigned to the metal to ligand charge transfer process 

between the ruthenium atom and the polypyridyl ligands. In the case of the Black Dye, two MLCT 

transition bands were observed centered at " = 414 nm, assigned to a spin-allowed Ru # 

terpyridine ligand charge transfer transition and at " = 617 nm, assigned to a medium intensity 

singlet-singlet spin-allowed MLCT transition.117  The absorption bands at " = 388 nm (N719), " = 

396 nm (C101) and " = 335 nm (Black Dye) were assigned to the !–!* electronic transitions.

Figure 4.25. UV-Visible absorption spectra of N719, C101 and Black Dye when anchored onto a 4 
&m thick Al2O3 film

As can be seen in Figure 4.25, the Black Dye is red shifted compared to the N719 or C101 dyes. 

This bathochromic shift is  due to the favoured stabilisation of the excited state by the electro 
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action of  the thiocyanato anionic ligands as well as the conjugated terpyridine ligand anchored to 

the ruthenium.116

The absorbance spectra of C101 and the Black Dye were also measured when chenodeoxycholic 

acid was present in the film, as  a co-adsorbent to prevent possible dye aggregation processes, as 

reported in the literature for efficient device performance.62 Either the Al2O3 or the TiO2 films 

were immersed into a 300 M chenodeoxycholic acid acetonitrile: tert-butanol (1:1) solution and into 

a 200 M Black Dye and 20 mM chenodeoxycholic acid ethanol solution.

The use of the chenodeoxycholic acid as co-adsorbent may also shift the semiconductor conduction 

band and, in the case of the Black Dye,  it may act as a buffer by changing the dye protonation 

degree onto the surface of the nanoparticles  and,  thus, changing the maximum of the dye 

absorbance towards the blue.120 However, in our case, the absorbance spectra of the Black Dye and 

the C101 in cheno/TiO2 films present a smaller amount of  adsorbed dye than expected,  but no shift 

at the absorbance maximum was observed.

Using the same Al2O3 sensitised films, the luminescence spectra of the different dyes were 

measured (figure not shown). The maximum luminescence wavelength was found to be "em = 731 

nm for N719 and "em = 759 nm for C101. In the case of the Black Dye we were unable to measure 

the complete emission spectrum due to the limits of our system but it is worthwhile to notice that 

the emission peak was estimated to be near 900 nm. For the samples with the cheno co-adsorbed 

molecule, no shift was observed for C101 or the Black Dye emission spectrum.

The emission decay kinetics of  the excited state were measured for the three dyes too, either in 

Al2O3 or in TiO2 films. As illustrated in Figure 4.26, the amplitude of the different emission decays 

for the TiO2 sensitised samples is  quenched when compared with the Al2O3 sensitised films under 

the same conditions. The quenching is assigned to the efficient photo-induced electron injection 

process from the dye-excited state into the semiconductor conduction band. In the case of  the 

Al2O3 films, the dye excited state is below the conduction band of the metal oxide, which prevents 

the electron injection reaction. From Figure 4.26,  we can already estimated that the C101 dye has 

the highest photo-induced electron injection yield.

148 ! Chapter 4

UNIVERSITAT ROVIRA I VIRGILI 
RUTHENIUM POLYPYRIDYL COMPLEXES AS PHOTOSENSITIZERS FOR MOLECULAR PHOTOVOLTAICDEVICES: 
INFLUENCE OF THE DYE STRUCTURE AND THE PRESENCE OF ADDITIVES TO THE DEVICE 
PERFORMANCE 
Anna Reynal Verdú 
ISBN:978-84-693-8863-1/DL:T.1944-2010 



Figure 4.26. Emission decays for N719, C101 and Black Dye when anchored onto Al2O3 and TiO2 4 
!m thick films without electrolyte, under air conditions

In previous work, we have shown that the presence of active red/ox electrolyte induced changes on 

the emission decay dynamics of  polypyridyl ruthenium complexes.107 The reasons for those changes 

are still under active debate, but several authors have already proved the interaction between the 

dye and the red/ox active species at the iodine/iodide liquid electrolyte.108-110 In order to shed 

some light onto this topic, we have prepared non-functional devices using, as mesoporous material, 

Al2O3 sensitised films with liquid red/ox active iodine/iodide electrolyte. The results of our 

TCSPC measurements for the different set of dyes anchored onto Al2O3 and TiO2 films measured 

under air conditions and in complete devices are listed in Table 4.5.
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Dye Surface Electrolyte lem (nm) Lifetime (ns)

Black Dye Al2O3 No electrolyte 805 20.5

C101 Al2O3 No electrolyte 760 19.9

N719 Al2O3 No electrolyte 730 19.7

Black Dye Al2O3 A 805 14.6

C101 Al2O3 A 760 12.2

N719 Al2O3 A 730 21.8

Black Dye TiO2 No electrolyte 805 5.5

C101 TiO2 No electrolyte 760 8.5

N719 TiO2 No electrolyte 730 10.2

Table 4.5. TC-SPC parameters of C101, N719 and the Black Dye measured in Al2O3 and TiO2 4 !m 
thick films under air conditions and in complete non-functional Al2O3 cells using electrolyte A

The measured lifetime of all the dyes is around 20 ns when anchored onto mesoporous Al2O3 films. 

Chenodeoxycholic acid was used as coadsorbent for the C101  and Black Dye cells. Afterwards, 

complete devices were prepared using these films and the lifetime of the cells were measured at 

equal acquisition time and experimental parameters. In all the cases, the luminescence amplitude is 

not quenched in the presence of electrolyte. However, the emission decay kinetics in the case of 

C101 and Black Dye devices are faster, in clear contrast with the non-functional cells sensitised 

with N719.

On the other hand, the luminescence decays of C101 and Black Dye non-functional devices were 

also measured without the cheno molecule as co-adsorbent.  The presence of the cheno molecule 

does not affect the signal amplitude, however, the emission decay dynamics of the Black Dye 

sample are slower (Figure 4.27). This behaviour is probably due to the fact that chenodeoxycholic 

acid avoids some dye-dye interactions which occur in the absence of it.121
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Figure 4.27. Emission luminescence decays for the C101 and the Black Dye samples in Al2O3 and 
TiO2 4 !m films measured under air conditions with and without chenodeoxycholic acid as 

coadsorbent

# 4.4.5.2. Electron recombination measurements. L-TAS experiments

Laser transient absorption spectroscopy measurements were carried on dye-sensitised 4 µm thick 

TiO2 mesoporous nanocrystalline films and in complete devices too. For the complete cells, we 

used different electrolytes as mentioned in the experimental section: electrolyte A and electrolyte 

B. Since each sample has a different absorption maximum, we used the appropriate excitation 

wavelength to keep the laser pulse energy invariable.  The most relevant data for the electron 

recombination process between the photo-injected electrons at the TiO2 and the oxidised dye     

(dye+/e--TiO2) are listed in Table 4.6.

Dye !
1
2

(s) ! (s) !

Black Dye 0.0011 0.0012 0.34

C101 0.00027 0.00064 0.28

N719 0.0016 0.0027 0.28

Table 4.6. Dye+/e--TiO2 electron recombination decay lifetimes for the N719, C101 and Black Dye

As can be seen in Figure 4.28, the presence of the electrolyte induces a decrease in the signal 

amplitude and faster decay dynamics,  which we assign to the efficient regeneration of  the dye 

cations by the electrolyte which occurs much faster (on a nanosecond time scale) than the back 
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electron transfer from the TiO2 to the oxidised dyes.  Furthermore,  the transient decay shows a slow 

phase that we have previously assigned to electrons at the TiO2 or new species formed due to the 

presence of the iodine/iodide liquid electrolyte. On the other hand, it seems important to notice 

that in the case of the devices made using the Black Dye,  the yield (amplitude of the transient signal 

at "probe = 1000 nm) is much less, suggesting that either the species are not formed or the 

regeneration process occurs much more efficiently and the dye cation species disappear faster than 

the time scale used in our experiments.

Figure 4.28. L-TAS decay of N719, C101 and Black Dye anchored onto a 4 !m thick TiO2 film and in 
complete device using electrolyte A. The laser excitation wavelength was 353 nm for N719 and 

C101 and 640 nm for Black Dye sensitised films
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# 4.4.5.3. Electrochemistry

The electrochemical properties of the ruthenium complexes were analysed by cyclic voltammetry in 

acetonitrile (N719 and C101) and in ethanol (Black Dye) using a 10-3 M solution of each dye with 

0.1 M of tetrabutylammonium hexafluorophosphate (TBAPF6).

The LUMO energy levels can be obtained using Equation 4.1, where q  is the elementary charge and 

E0,0 is the excited-state zero-zero energy,  measured from the intersection between the absorption 

and emission spectra of the dyes.

E
1
2

(Ruox ) = E1
2

(Rured ) +
E
0,0

q
# # # # (Equation 4.1)

Dye Eox (V) vs SCE E0,0 (V)a Ered (V)

N719 0.73 1.64 -1.39

C101 0.71 1.85 -1.14

Black Dye 0.79 ---b -1.09c

Table 4.7. Electrochemical properties of N719, C101 and Black Dye sensitizers in solution. a E0,0 was 
measured from the intersection between the absorption and emission spectra. b Due to the 

experimental characteristics of our luminescence spectrophotometer, we could not measure the 
entire luminescence emission of the Black Dye sensitiser. c Experimental result taken from a previous 

article published in the literature48

As listed in Table 4.7,  we observed for the N719 dye an oxidation potential of 0.73 V vs SCE. The 

electrochemical wave was irreversible, in good agreement with previous results published in the 

scientific literature.105 In the case of the C101  dye,  we obtained a quasi-reversible wave at 0.71 V vs 

SCE. That was also the case for the Black Dye.  All the waves were assigned to the formation of the 

Ru II/III redox couple.#

# 4.4.5.4. Light-to-energy conversion measurements

Once we analysed all the photo-physical and electrochemical properties of the ruthenium dyes, we 

carried out our measurements and analysis of the photo-electrochemical properties of the complete 

solar cells.  Complete devices  were prepared as described below, co-sensitising the films with the 

cheno molecules in the case of C101 and Black Dye and using Electrolyte B in all cases.
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The incident photon to current efficiencies for all the DSSC were higher than 70 %, with C101 

being the most efficient dye, with a maximum conversion efficiency of 96 % at " = 530 nm (Figure 

4.29), which is in good agreement with the electron injection data measured using TCSPC. In the 

case of the Black Dye, we obtained proficient photon-to-current conversions near to the IR region. 

For example,  the conversion efficiency at " = 755 nm was 35 %, while for C101  and N719 it was only 

7 % and 3 %, respectively.

Figure 4.29. IPCE of DSSC using N719, C101 and the Black Dye. The electrolyte used was the 
electrolyte B

As can be seen in Table 4.8, the photo-current obtained for the DSC under standard conditions of 

simulated sun light (100 mW"cm-2, 1.5 AM G) are in good agreement with the IPCE values. The 

devices made using the C101 dye have not only the highest current, but also the highest light-to-

energy conversion efficiency.

Cell Isc (mA) Voc (mV) ff & (%)

N719 16.91 700 70.83 8.26

C101 19.95 670 68.96 9.21

Black Dye 18.25 680 68.01 8.51

Table 4.8. DSSC measured using a mask (0.2 cm2) under standard conditions
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The I–V curves for N719, C101 and Black Dye measured at different light intensities are depicted 

in Figure 4.30.  As can be seen, the highest efficiency in all cases were recorded when they were 

irradiated using sun simulated light with an intensity of  50 mW"cm-2. For the devices made using 

N719, we have always obtained higher photo-voltages than for the devices made using C101 or the 

Black Dye. These results confirm published work on the difference between homoleptic and 

heteroleptic ruthenium dyes.33

Figure 4.30. Photocurrent vs voltage plot for N719, C101 and Black Dye cells measured at different 
light intensities

This observation is rather interesting since the oxidation potentials between C101 and N719 are 

not much different. On the other hand, C101  and the Black Dye have different organic ligands 

coordinated to the ruthenium center than N719. In the former case, the heteroleptic complex has a 
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moiety that contains sulfur atoms in its structure, while in the later case the ligand is more 

conjugated than the bipyridine ligands present in either N719 or C101. Recently, it has been 

described that the presence of a high degree of conjugation on the organic ligand can induce faster 

recombination dynamics between the photo-injected electrons at the semiconductor and the 

oxidised electrolyte.122

The use of light-induced photovoltage and charge extraction techniques has been very useful to 

elucidate the nature of such loss in voltage and the catalytic process involved in the electron/

electrolyte recombination reaction.

Figure 4.31 illustrates the charge density vs voltage plot for the different DSSC. All the measured 

experimental points for the charge extraction experiment lie more or less under the same 

exponential curve and can be fitted to Equation 4.2.

e
!

density
e
!

cm
3( ) = A0 ! A1 " ek "V # # # # # (Equation 4.2)

Figure 4.31. Electron density vs voltage plots for the different DSSC

These results indicate that none of the dyes shifts the TiO2 conduction band energy level with 

respect to the electrolyte to such a degree that could justify the differences in voltage. Notice that 

the dyes have a different number of protons (2 in the case of N719, 1 for C101 and Black Dye), and 

the absorption mode of  N719 can cause an up-shift of the conduction band. However, this 

behaviour is masked by the effect of the counteracting proton-induced down shift of the conduction 
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band energy. Thus, we measured the electron lifetimes for the different DSSC plotted vs the 

electron density (Figure 4.32) and we observed that at higher electron density, corresponding to 

the maximum Voc on the DSSC, the recombination lifetime for N719 is slower when compared with 

the C101 or the Black Dye.  The increase of recombination dynamics can explain the lower Voc 

observed for devices using C101 and the Black Dye,  which has also been observed in other 

ruthenium dyes bearing more conjugated ligands, such as phenanthroline.42, 123 etc.

Figure 4.32. Recombination lifetimes for N719, C101 and Black Dye devices vs electron density. All 
cells were made using Electrolyte B

4.4.6. Conclusions

We have evaluated, using identical conditions, the different charge transfer reactions that limit the 

light-to-energy conversion performance on the most efficient sensitisers known nowadays in dye 

sensitised solar cells.  We demonstrated that the dye C101 has the highest electron injection yield, 

which is in good agreement with the IPCE and the photocurrent measured in complete devices. 

Interestingly, the presence of typical iodine/iodide redox electrolyte (Electrolyte A) induces faster 

emission kinetics for C101 and Black Dye DSSC while in the case of N719 the luminescence decay 

process is almost unaffected.  We assigned the emission quenching dynamics  to the interaction of 

the electrolyte with the dyes bearing more conjugated organic ligands coordinating the ruthenium 

metal centre. In addition, in the case of the Black Dye, using the cheno molecules, to avoid the 

formation of molecular aggregates on the TiO2 surface, we also observed faster emission decay 

dynamics. On the other hand, the photo-induced electron recombination dynamics for all dyes 
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showed typical stretched exponential decays. However, the analysis of the results obtained in 

complete devices shows that Black Dye DSSC have very efficient regeneration dynamics since no 

signal was detected for dye cations in the presence of iodine/iodide electrolyte.

Finally,  light-induced photovoltage transient spectroscopy was employed to investigate the origin 

of the lower voltages on C101 and Black Dye DSSC when compared to N719 cells. The results 

show that, for the above mentioned dyes, at the same charge density they do have higher 

recombination dynamics than the N719 DSSC. This observation implies that for the design of new 

and efficient ruthenium complexes, we ought to block the interactions between the organic ligands, 

used in the complex to increase the dye absorbance in the red region of the solar spectrum, and the 

red/ox active species at the iodine/iodide electrolyte.
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Chapter 5. Effect of coadsorbents on 
solar cell performance

This Chapter is based on the study of the influence of coadsorbents  on photosensitiser function in 

DSSC and ultimately on solar cell efficiency. In this work, coadsorbents are used to reduce the 

electron recombination between photoinjected electrons in the conduction band of the 

semiconductor and the oxidised species present in the electrolyte.

This chapter is based on the following publication:

Reynal, A., Palomares, E., Energy Env. Sci., 2009, 2, 1078-1081
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5.1. Introduction

In DSSCs there are two possible recombination reactions which can take place at the TiO2/dye/

redox couple interface: recombination between photoinjected electrons in the TiO2 conduction 

band with either the dye+ or the electrolyte+. 

For efficient DSSCs, the recombination reaction of the electrons injected into the conduction band 

of the semiconductor with the oxidised dye does not influence significantly the device performance, 

mainly because this reaction is inherently slow resulting in efficient regeneration by the I-/I3
- redox 

couple present in the electrolyte.1 Although this is still under debate, the slow recombination rates 

are thought to be due to the large distance between the photoinjected electrons in the TiO2 and the 

dye cation on the TiO2 surface which results in weak electronic coupling between these two 

species.

Therefore the most important recombination reaction in DSSCs is  the recombination of 

photoinjected electrons in the TiO2 with the electrolyte. This recombination reaction is also known 

as the “dark current”. The control of this back electron transfer reaction is key to the development 

of efficient DSSC devices, since it strongly influences cell Voc.

Several strategies have been employed in order to reduce the e--TiO2/electrolyte+ recombination 

reaction, such as the use of dyes with long alkyl chains or bulky groups,2 or the introduction of an 

insulating Al2O3 blocking layer between the TiO2 surface and the dye sensitiser.3 However, one of 

the most efficient ways to decrease the dark current is through the attachment of coadsorbent 

molecules to the TiO2 semiconductor nanoparticles.4 Coadsorbents are small molecules consisting 

of an anchoring group and a carbon skeleton.  The function of this class of additives in DSSCs is to 

act as a barrier to prevent the approach of the electrolyte to the TiO2 surface,  especially towards 

areas not covered by the photosensitiser.

Different types of coadsorbents  have been used in molecular photovoltaic devices, such as 

chenodeoxycholic acid,5 1-decylphosphonic acid,6 4-guanidinobutyric acid7 or hexadecylmalonic 

acid8 (Figure 5.1).
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Figure 5.1. Molecular structures of chenodeoxycholic acid (a), 1-decylphosphonic acid (b),              
4-guanidinobutyric acid (c) and hexadecylmalonic acid (d)

The blocking effect achieved by a packed monolayer of dye and coadsorbent molecules decreases 

the e--TiO2/electrolyte+ recombination rate. For this reason, the photovoltage of  devices usually 

increases by using coadsorbents.  On the other hand, the use of coadsorbents can reduce the 

number of  adsorbed dye molecules on the semiconductor film, which obviously reduces the 

number of electrons injected into the conduction band of the semiconductor.  However, studies 

indicate that this does not affect significantly the photocurrent generated by the cell.5

The presence of  dye aggregates is a very important issue in DSSCs, especially for devices made 

using organic photosensitisers, as they strongly reduce electron injection into the conduction band 

of the semiconductor. However,  the intercalation of coadsorbents between the dye molecules 

prevents their aggregation. This behaviour usually results in an increase of the photocurrent.

The effects of coadsorbents on the Isc and Voc values of DSSCs can vary with the nature of the dye 

and the coadsorbent, as well as with other external conditions, such as the composition of the 

electrolyte.  In this Chapter, the behaviour of the DSSCs sensitised with two different ruthenium 

dyes was studied when citric acid was used as the coadsorbent (Article D).

170 ! Chapter 5

UNIVERSITAT ROVIRA I VIRGILI 
RUTHENIUM POLYPYRIDYL COMPLEXES AS PHOTOSENSITIZERS FOR MOLECULAR PHOTOVOLTAICDEVICES: 
INFLUENCE OF THE DYE STRUCTURE AND THE PRESENCE OF ADDITIVES TO THE DEVICE 
PERFORMANCE 
Anna Reynal Verdú 
ISBN:978-84-693-8863-1/DL:T.1944-2010 



5.2. Article D. Increasing the performance of cis-
dithiocyanato(4,4’-dicarboxy-2,2’-bipyridine)
(1,10-phenanthroline)ruthenium(II) based DSC 
using citric acid as co-adsorbent
Energy Env. Sci., 2009, 2, 1078

Anna Reynal, Emilio Palomares*

We describe the use of citric acid as co-adsorbent in dye solar cells. As we demonstrate herein, it is 

possible to increase the photocurrent of DSSC without loosing photovoltage when we employed 

cis-dithiocyanato(4,4’-dicarboxy-2,2’-bipyridine)(1,10-phenanthroline)ruthenium(II) (AR20). 

Moreover, we show that the molecular structure of the coadsorbent also plays a major role due to its 

interaction with the sensitiser.

The basic research to improve DSSC stability power conversion efficiency stems from the need to 

reach commercial applications in the next five to six years. Although there is not yet a clear niche 

application for DSSC, it is widely accepted that DSSC represents a low-cost alternative to 

traditional single gap semiconductor crystalline devices.1, 9-12

The research strategies used to increase DSSC efficiency have traditionally focused on the 

composition,13, 14 size15-17 and shape18-20 of  the semiconductor nanoparticles, the adsorption of dyes 

with broad absorption band and high molar extinction coefficient21-24 in the visible–near IR of the 

solar spectrum, the composition of the electrolyte,25-28 and the use of coadsorbents.29-31 Regarding 

the latter strategy,  several kinds of additives such as deoxycholic acid,32
 hexadecylmalonic acid,8

 

guanidinium thiocyanante,33
 tert-butylpyridine34

 have been added to dye sensitised solar cells in 

order to improve the short circuit photocurrent or the open circuit photovoltage of  the solar cells. 

In this communication we have focused on the study of a new co-adsorbent and its effect on the 

DSSC using two different ruthenium dyes (cis-dithiocyanato(4,4’-dicarboxy-2,2’-bipyridine)(1,10-

phenanthroline) ruthenium (II) (AR20) and cis-bis(isothiocyanato) bis-(4,4’-dicarboxylato-2,2’-

bipyridine) bis-(tetrabutylammonium)ruthenium(II),  also known as N719 (Figure 5.2).The AR20 

dye was chosen due to the structural differences from the dye paradigm in DSSC, the N719 

sensitiser.  The more conjugated ligand in AR20, a phenanthroline, gives AR20 different 

molecular electronic properties compared to N719 and it also interacts with the electrolyte 

differently, as we have recently demonstrated.35
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Figure 5.2. Molecular structure of the molecules AR20, N719 and citric acid

Citric acid is a tri-protic weak organic acid with a pKa  of 6.4.  The presence of three carboxylate 

groups on its molecular structure ensures anchoring of this acid onto the TiO2 surface, and it can 

act as a buffer on the surface of the semiconductor nanoparticles.

The UV–visible absorption spectra of ruthenium-sensitised 4 µm TiO2 films were measured 

(Figure 5.3). The films were immersed into a 300 µM solution of either AR20 or N719 sensitisers 

containing different concentrations of citric acid in acetonitrile/tert-butanol (1 :  1) solution. Firstly, 

it is important to note that a decrease of 20 % and 30 % of the total dye adsorption is observed for 

AR20 and of 40 % and 60 % in the case of N719, when we use citric acid concentrations of 150 and 

300 µM, respectively. Secondly, in the N719 dye, the maximum absorbance wavelength when 

adsorbed onto a TiO2 film was red shifted when citric acid was present. 

Figure 5.3. The absorption spectra of N719/TiO2 and AR20/TiO2 (film thickness 4 !m) at different 
concentrations of citric acid as co-adsorbent
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This batochromic shift of 9 nm may be due to the interaction between the dye and the citric acid 

due to a change on the TiO2 surface pH. Interestingly, the absorption spectrum of the AR20 

sensitiser is  not shifted. Different groups have already reported that the treatment of the TiO2  

surface with different organic molecules can cause shifts in the conduction band edge, by positively 

or negatively charging the TiO2 surface and, thus, it is possible to increase or decrease the device 

photocurrent, respectively.4,  36
 Hence, to further prove this hypothesis,  we carried out photo-

induced charge extraction measurements to register the shift of the semiconductor band edge.

The DSSCs were prepared using 8 µm thick TiO2 films (20 nm particle diameter) plus 4 µm TiO2 

scatter layer (400 nm particle diameter).  The electrolyte composition used was, 1 M BMII,  0.03 M 

I2, 0.05 M LiI, 0.1 M GuNCS and 0.5 M tert-butylpyridine in acetonitrile/valeronitrile 85:15. 

Figure 5.4 illustrates the measured experimental points  at different light bias for the two different 

devices.

Figure 5.4. Charge extraction measurements for N719 and AR20 dye solar cells at different citric 
acid concentrations

As we see, at equal photo-induced charge density, the photovoltage of the cell with the dye and the 

co-adsorbed citric acid (300 µM) is about 60 mV and 70 mV lower for AR20 and N719, 

respectively. These results indicate that the addition of citric acid (300 µM) shifts the conduction 

band edge downwards in both cases. Thus, an increase in short circuit photocurrent or a decrease 

in open circuit voltage must be observed.

As listed in Table 5.1, DSSC based on the sensitisation of TiO2 using AR20 shows a high increase 

in power conversion efficiency but, this is  not only due to the increase in photocurrent but also in 

photovoltage and fill factor. This was unexpected since as mentioned above,  and based on Figure 
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5.4, we expected an increase only in photocurrent. Moreover, taking the N719 as  a blank (standard 

DSSC using N719 gave us above 7.7 % power conversion efficiencies under standard measurement 

conditions) we observed an important decrease in device efficiency due to the decrease in 

photocurrent, photovoltage and fill factor. Therefore, the presence of citric acid not only affects/

interacts with the TiO2 and shifts  the conduction band edge position but also interacts with the 

anchored dye.

Dye Citric acid concentration (10-6 M) Isc (mA) Voc (V) ff "a (%)

AR20 0 1.83 0.61 48.5 2.8

AR20 150 2.88 0.65 63.4 6.1

AR20 300 2.36 0.64 63.2 4.8

N719 0 3.65 0.72 57.6 7.7

N719 150 3.27 0.69 49.8 5.8

N719 300 2.54 0.64 30.3 2.5

Table 5.1. Photovoltaic characteristics of DSSC (cell area 0.196 cm2) sensitised with N719 and AR20 
with different amounts of citric acid. a Power conversion efficiency at 1 sun (100 mW·cm-2)

To shed some light on these results  we carried out light-induced photovoltage transient 

spectroscopy, a technique that is used to measure the recombination rate between the photo-

injected electrons and the oxidised electrolyte.37-39 Figure 5.5 shows the measured electron 

lifetimes at each light bias. As can be seen, for AR20 DSSC the presence of citric acid induces slow 

recombination dynamics at each bias, including light bias equal to Voc. On the contrary for N719 

DSSC, although at low light intensities (low induced Voc) it shows similar recombination lifetimes, 

at light bias equal to Voc the recombination is much faster when in the presence of citric acid.

The results in Figure 5.5 clearly show that one of the major reasons for the increase in power 

conversion efficiency for AR20 based DSSC is the slower recombination dynamics due to the 

presence of citric acid as an additive in combination with the AR20 sensitiser.
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Figure 5.5. Recombination lifetime vs cell Voc for AR20 and N719 DSSC with different concentrations 
of citric acid

In conclusion, the results confirm that the use of citric acid in DSSC sensitised with AR20 results 

in slower recombination dynamics and an important increase in power conversion efficiency from 

2.76 % to 6.08 %. However, while in the case of AR20, with phenanthroline, citric acid slows the 

interfacial charge transfer recombination dynamics; for N719,  with bipyridine bearing carboxylic 

acids as the ligand, it accelerates the process.  Further experiments to uncover the molecular 

mechanism of this unprecedented interaction between citric acid and the dye are being carried out 

to increase the device efficiency further.
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Chapter 6. General conclusions and 
future work

This thesis has focused mainly on how dye sensitiser structure influences cell performance in TiO2 

dye sensitised solar cells. Different ruthenium photosensitisers were employed, containing 

different electron donor or electron acceptor groups, which modulate redox, absorption and 

luminescence properties, while also strongly affecting the DSSC electron transfer processes. In 

addition, the influence of the coadsorbent citric acid on cell performance was investigated.
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In this work, special attention was paid to the properties and synthesis  of heteroleptic ruthenium 

polypyridyl complexes containing bidentate and tridentate chelating ligands. More precisely, the 

ligands 2,2’-bipyridine, 2,2’:6’,2”-terpyridine and 1,10-phenanthroline ligands were chosen due to 

their high stability under light, humidity and oxygen conditions, allowing ease of preparation and 

storage.  Furthermore, functionalisation at the different positions of the pyridine ring was studied 

in depth.

In the articles A and B, a series of ruthenium complexes were studied containing a bipyridine, two 

thiocyanates and a phenanthroline moiety.  Electron donor and electron withdrawing groups were 

used in the functionalisation of polypyridyl ligands in order to tune their electrochemical, 

photophysical and photochemical properties. These ruthenium complexes were then used as 

photosensitisers in dye sensitised solar cells and compared to devices made using the well-known 

commercial dye N719. Their cell performances as well as  the kinetics  of the reactions occurring in 

these photovoltaic devices were correlated to the molecular structure of the photosensitisers.

Indeed, it was observed that the introduction of substituents on the polypyridyl ligands coordinated 

to the ruthenium metal center strongly influences the spectroscopical and electrochemical 

properties of  the complexes. Furthermore, these modifications in the structure of the ruthenium 

complexes strongly affect the performance of the solar cells. Such direct structure-device function 

relationship is crucial in the preparation of highly efficient devices.

The key results in this study can be summarised as follows:!

! - Despite the presence of a "* low-lying molecular orbital localised on the phenanthroline 

moiety of the ruthenium(II) heteroleptic complex, efficient light induced electron injection into the 

TiO2 conduction band (> 70 %) is estimated from TC-SPC measurements for AR20, AR25 and 

AR24. Although the luminescence decay of AR27 could not be measured because it was faster than 

the instrument response, the theoretical calculations of the molecular orbitals of this ruthenium 

complex predict a low-lying LUMO energy level, resulting in minimal electron injection into the 

semiconductor conduction band.

! - Theoretical calculations show that HOMO is  centered on the thiocyanate ligands for all of the 

ruthenium complexes. On the other hand, the LUMO is localised on the bipyridines for AR20, 

AR24 and AR25.  However, the presence of the strong electron acceptor (-NO2) present in the 

AR27 molecular structure, localises the LUMO on the phenanthroline moiety.
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 ! - The L-TAS decays of sensitised TiO2 films can be fitted to a classic stretched exponential. 

However, the measurement of complete devices, in the presence of the I-/I3
- redox couple exhibits 

a strongly reduced signal for AR24 and AR27 compared to AR20 or AR25.  The behavior of AR27  

can be explained in terms of inefficient electron injection due to the presence of a low-lying 

molecular orbital, as well as  an inadequate localisation of the LUMO far away from the TiO2 

surface. The reduced signal in the case of cells containing AR24 is discussed below.

! - The Voc decay measurements of the DSSCs reveal a much faster e--TiO2/electrolyte+ 

recombination reaction when the AR24 and AR27 ruthenium complexes are employed as 

photosensitisers. This back electron transfer strongly reduces the open circuit voltage of the cell, 

and thus the overall performance of the solar cell.

! - As expected, the IPCE and overall efficiency values for AR20 and AR25 are similar to that 

reported for N719.  On the other hand, the efficiency parameters for AR27 and AR24 are much 

lower. As explained above, the poor results were expected for devices prepared with AR27, 

whereas those prepared with AR24,  which show efficient electron injection into TiO2, are more 

difficult to explain (see below).

! - The low efficiencies of the AR24 solar cell can be explained due to inefficient electron 

injection in the presence of I-/I3
-, or to a fast disappearance of the oxidised dye by a very fast 

recombination with the injected electrons, or both. Although the former hypothesis is still under 

debate, several authors have shown evidence of the interaction between the dye and the I-/I3
- redox 

pair present in the electrolyte. Further experiments to study the interaction between the dye and 

the redox couple should be carried out in the future in order to understand the interaction between 

both components and to increase the efficiency of the devices.

The introduction of electron donating and electron withdrawing groups to the molecular structure 

of the ruthenium complexes is a strategy often used to tune their photophysical and 

electrochemical properties.  However, as shown above,  the presence of these substituents can also 

strongly influence photoinduced electron injection from the dye excited state into the conduction 

band of the TiO2 and the recombination reaction between the photoinjected electrons and the 

redox couple present in the electrolyte. Both of these electron transfer reactions have a direct effect 

on the overall device performance.
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The ruthenium polypyridyl complexes N719,  Black Dye and C101 have shown the highest 

efficiencies reported to date when used as photosensitisers in dye sensitised solar cells. In 

particular, N719 and Black Dye have been utilised in DSSC for a long time and their measurements 

have been used as control samples in many papers and reports. 

However, to the best of our knowledge, comparison of the device parameters of  these three dyes 

under the same conditions had not been reported before. The overall efficiency of the DSSCs 

prepared with these ruthenium polypyridyl complexes was measured and correlated to their 

molecular structure.

The key results in this study can be summarised as follows:!

! - The photophysical and redox properties of the ruthenium photosensitisers is strongly 

dependent on the nature of their ligands, therefore the absorption spectrum of Black Dye is red-

shifted compared to that for N719 and C101 due to the electron-donating effect of  the three 

thiocyanate ligands and the terpyridine ligand coordinated to the ruthenium metal ion.

! - Although the light induced electron injection yield estimated from the TC-SPC measurements 

is  higher than 70 % for all dyes, C101 shows the highest yield. The luminescence decay kinetics of 

an Al2O3 film sensitised with Black Dye and Cheno is slower than without Cheno. This behavior is 

attributed to the obstruction of the formation of Black Dye aggregates.

! - L-TAS measurements carried out on sensitised TiO2 films exhibit a decay of  the order of 

microseconds which fits  to a classic stretched exponential decay for the three dyes.  On the other 

hand, the measurement of complete devices shows a decrease in the signal amplitude associated 

with the efficient regeneration of the dye by the redox couple. Of special emphasis is the strongly 

reduced signal of Black Dye when measured in complete devices, suggesting a extremely fast dye 

regeneration.

!  - The IPCE spectra of all the dyes in DSSC devices have a maximum value higher than 70 %. 

Nevertheless, C101 shows the maximum conversion efficiency reported for these three dyes (96 % 

at !=530 nm).  On the other hand, the IPCE spectrum of  Black Dye is  broader than the spectra of 

their analogues, in good agreement with its absorption spectra.
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! - The devices prepared with C101 as the photosensitiser exhibit the highest photocurrent, as 

well as the highest overall efficiency. These results are in good agreement with the high electron 

injection yield reported from the luminescence decay measurements.

! - Although charge extraction experiments do not show a shift in the TiO2 conduction band for 

any of the three dyes,  N719 DSSC shows the highest open circuit photovoltage. The Voc value is 

related to the e--TiO2/electrolyte+ back electron transfer, which is much slower for N719 than for 

C101 and Black Dye devices as transient photovoltage measurements indicate. Moreover, in good 

agreement with other dyes incorporating conjugated units into their structure, the more 

conjugated structure of the ligands coordinated to the ruthenium metal ion in C101 and Black Dye 

induce faster recombination dynamics between the photoinjected electrons and the oxidised 

electrolyte, decreasing the open circuit voltage of the cell, and thus, the device efficiency.

! - Highly conjugated ligands are introduced into dye structure in order to increase he molar 

extinction coefficient and shift the absorption spectra to the near-IR. However, it is  important to 

minimise the interaction between these organic ligands and the oxidised species present in the 

electrolyte which can severely limit device Voc.

The sensitisation of nanocrystalline TiO2 with ruthenium polypyridyl complexes using different 

coadsorbents can increase the photocurrent and photovoltage of DSSC devices. However, the 

overall device efficiency strongly depends on the molecular structure of both the photosensitiser 

and the coadsorbent, as well as on the interaction of  the coadsorbent with the surface of the 

semiconductor.

The key results in this study can be summarised as follows:

- The amount of photosensitiser anchored onto a TiO2 film is reduced when citric acid is used 

as coadsorbent. A decrease of 20 % and 30 % for AR20, and of 40 % and 60 % for N719 is 

observed when the ruthenium complexes are co-sensitised with a concentration of citric acid of  150 

µM and a 300 µM, respectively. Furthermore, the absorption spectra of TiO2 film sensitised with 

N719 is red shifted when citric acid is coadsorbed. This shift is attributed to the interaction of citric 

acid with N719 due to a change in the pH. On the other hand, however, no shift is observed in the 

absorption spectra of AR20.

! - Charge extraction measurements reveal a downward shift in the semiconductor conduction 

band for both dyes as a result of the TiO2 surface protonation.
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! - The use of  citric acid as coadsorbent in DSSC devices sensitised with AR20 increases both 

photocurrent and photovoltage. The high photocurrent is attributed to the shift in the TiO2 

conduction band. On the other hand, the increase in photovoltage was found to be due to a 

reduction in the e--TiO2/electrolyte+ recombination reaction as indicated by transient 

photovoltage measurements.

! - The co-sensitisation of N719 and citric acid results in a decrease in both photocurrent and 

photovoltage for these devices. The transient photovoltage decay measurements exhibit a faster 

recombination reaction between the photoinjected electrons and the oxidised species present in 

the electrolyte.  This phenomena explains the low efficiency yields obtained by N719 DSSCs co-

sensitised with citric acid.

! - The use of citric acid with AR20 results in an increase in overall device efficiency, from 2.76 

% to 6.08 %. On the other hand, the use of citric acid with N719 has the reverse effect. These 

results show that the presence of citric acid not only affects the semiconductor, but also interacts 

with the anchored dye.
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Annex II: Glossary of terms and 
abbreviations

(NN) Bidentate chelate nitrogen containing ligand

(NNN) Tridentate chelate nitrogen containing ligand

a. u. Arbitrary units

AFM Atomic force microscopy

BMII 1-butyl-3-methylimidazolium iodide

bpy 2,2-bipyridine

CB Conduction band

Cheno Chenodeoxycholic acid

COD 1,5-cyclooctadiene

CTTS Charge transfer to solvent

CV Cyclic voltammetry

DMF Dimethylformamide

DMPII 1-propyl-2,3-dimethylimidazolium iodide

DMSO Dimethylsulfoxide

DSPEC Dye sensitised photoelectrochemical cell

DSSC Dye sensitised solar cell

E0,0 Excited state 0,0 energy

EtOH Ethanol

fac Facial

ff Fill factor

FT-IR Fourier transform-infrared spectroscopy

FTO Fluorine doped tin oxide

GuNCS Guanidinium thiocyanate

HOMO Highest occupied molecular orbital

HTM Hole transporting material

IPCE Incident photon to current conversion efficiency

IR Infrared

Isc Short circuit current
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ITO Tin-doped indium oxide

J (in NMR) Coupling constant

Jsc Short circuit density of current

L Ligand

L-TAS Laser-transient absorbance spectroscopy

LC Ligand centered transition

LMCT Ligand to metal charge transfer

LUMO Lowest unoccupied molecular orbital

M Metal

m/z Mass-to-charge ratio

MeCN Acetonitrile

mer Meridional

MLCT Metal to ligand charge transfer

NMR Nuclear magnetic resonance

Oh Octahedral geometry

OLED Organic light emitting diode

phen 1,10-phenanthroline

Plamp Power of the incident light 

SEM Scanning electron microscopy

TBA+ Tetrabutylammonium

TBAPF6 Tetrabutylammonium hexafluorophosphate

TBP Tert-butylpyridine
tBuOH Tert-butanol

TC-SPC Time correlated-single photon counting 

Td Tetrahedral geometry

TEM Transmission electron microscopy

TFA Trifluoroacetic acid

TPV Transient photovoltage measurements

tpy 2,2’:6’,2”-terpyridine

tR Retention time

UV Ultraviolet

VB Valence band

Voc Open circuit voltage

! (in NMR) Chemical shift (in ppm)

"eff Overall efficiency
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