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Bayesian Networks and the Problem
of Unreliable Instruments™

Luc Bovens and Stephan Hartmannf#

University of Colorado at Boulder and University of Konstanz

We appeal to the theory of Bayesian Networks to model different strategies for ob-
taining confirmation for a hypothesis from experimental test results provided by less
than fully reliable instruments. In particular, we consider (i) repeated measurements of
a single test consequence of the hypothesis, (i) measurements of multiple test conse-
quences of the hypothesis, (iii) theoretical support for the reliability of the instrument,
and (iv) calibration procedures. We evaluate these strategies on their relative merits
under idealized conditions and show some surprising repercussions on the variety-of-
evidence thesis and the Duhem-Quine thesis.

1. Introduction. How can experimental test results from less than fully
reliable instruments (LTFR instruments) provide confirmation for a sci-
entific hypothesis? A range of strategies has been discussed in the litera-
ture, but only a few attempts have been made to give a Bayesian analysis
of these strategies (Franklin 1986, 165-191; Franklin and Howson 1988).
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30 LUC BOVENS AND STEPHAN HARTMANN

This is unfortunate, since such an analysis proves to be rewarding in many
respects. First, it enables us to construct a taxonomy of strategies. In sci-
entific practice, these strategies often occur in mixed forms. The models
permit us to isolate certain general strategies and to draw some perspic-
uous analytical distinctions within each genus. Second, it shows that under
certain constraints these strategies are indeed legitimate strategies: it is
possible for a hypothesis to receive strong confirmation, even when sci-
entific instruments to test them are less than fully reliable. Third, it yields
rather surprising claims about the conditions under which specific strate-
gies for dealing with LTFR instruments are more and less successful.

Why has there been so little interest within Bayesian circles in the status
of experimental reports from LTFR instruments? The task of modeling
even the simplest strategies is daunting. We need more powerful tools to
do the job: here is where Bayesian Networks come in handy. Over the last
two decades, the theory of Bayesian Networks has been developed in ar-
tificial intelligence on the dual pillars of graph theory and the theory of
conditional independence structures. Although the theory certainly has
some philosophical roots, philosophers of science have done little to har-
vest its fruits. This is what we intend to do in addressing the questions at
hand.

We will investigate the following types of strategies for obtaining a
respectable degree of confirmation with LTFR instruments by modeling
these strategies under certain idealizations:

 Strategy 1. Repeated measurements with a single LTFR instrument
or single measurements with multiple independent LTFR instru-
ments of a single test consequence of a hypothesis yielding the same
test results.

* Strategy 2. Repeated measurements with a single instrument or sin-
gle measurements with multiple independent LTFR instruments of
multiple test consequences of a hypothesis yielding coherent test re-
sults.

* Strategy 3. We find support for the LTFR instrument in an auxiliary
theory which may or may not be dependent on the hypothesis under
investigation.

* Strategy 4. The LTFR instrument is calibrated against the test re-
sults of a single or of multiple independent instruments that are
more reliable than the LTFR instrument.

2. Modeling Confirmation with a LTFR Instrument. Consider a very simple
scenario. Let there be a hypothesis, a test consequence of the hypothesis,
a LTFR instrument and a report from the LTFR instrument to the effect
that the test consequence holds or not. To model this scenario, we need
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BAYESIAN NETWORKS AND UNRELIABLE INSTRUMENTS 31

four propositional variables (written in italic script) and their values (writ-
ten in roman script):

* HYP can take on two values: HYP, i.e. the hypothesis is true and
HYP, i.e. the hypothesis is false;

e CON can take on two values: CON, i.e. the test consequence holds
and CON, i.e. the test consequence does not hold;

e REL can take on two values: REL, i.e. the instrument is reliable
and REL, i.e. the instrument is not reliable;

* REP can take on two values: REP, i.e. there is a positive report, or,
in other words, a report to the effect that the test consequence holds
and REP, i.c. there is a negative report, or, in other words, a report
to the effect that the test consequence does not hold.

A probability distribution over these variables contains 2* entries. The
number of entries will grow exponentially with the number of proposi-
tional variables. To represent the information in a more parsimonious
format, we construct a Bayesian Network.

A Bayesian Network organizes the variables into a Directed Acyclical
Graph (DAG), which encodes a range of (conditional) independences. A
DAG is a set of nodes and a set of arrows between the nodes under the
constraint that one does not run into a cycle by following the direction of
the arrows. Each node represents a propositional variable. Consider a
node at the tail of an arrow and a node at the head of an arrow. We say
that the node at the tail is the parent node of the node at the head and that
the node at the head is the child node of the node at the tail. There is a
certain heuristic that governs the construction of the graph: there is an
arrow between two nodes if the variable in the parent node has a direct
influence on the variable in the child node.

In the case at hand, whether the test consequence holds is directly in-
fluenced by and only by whether the hypothesis is true or not; whether
there is a report to the effect that the test consequence holds is directly
influenced by and only by whether the test consequence holds or not and
by whether the instrument is reliable or not. Hence, we construct the basic
graph in Figure 2.1 in which the node with the variable HYP is a parent
node to the node with the variable CON and the nodes with the variables
CON and REL are in turn parent nodes to the node with the variable
REP. Furthermore, root nodes are unparented nodes and descendant nodes
are child nodes, or child nodes of child nodes etc. E.g., HYP and REL are
root nodes and CON and REP are descendant nodes of HYP in our graph.

From DAG to Bayesian Network, one more step is required. We need
to stipulate a probability distribution for the variables in the root nodes
of the graph and a conditional probability distribution for the variables
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32 LUC BOVENS AND STEPHAN HARTMANN

P (HYP) #4

P (CON|HYP) p @ P (REL) #

P (CON [HYP )y

P (REP|CON,REL) =1
P (REP[CON ,REL) =0
P (REP|CONREL ) =
P(REP[ON ,REL )=

Figure 2.1 The basic model for testing with a LTFR instrument.

in the other nodes given any combination of values of the variables in their
respective parent nodes.

Let us turn to our example. First, we take care of the root nodes, i.e.
we assign a prior probability to the hypothesis and to the reliability of the
instrument:

P(HYP) = hwith0 </ < 1 (1)
P(REL) = rwith 0 < r < 1 ©)

Second, consider the node with the variable CON which is a child node
to the node with the variable HYP. We take a broad view of what con-
stitutes a test consequence, that is, we do not require that the truth of the
hypothesis is either a necessary or a sufficient condition for the truth of
the test consequence. Rather, a test consequence is to be understood as
follows: the probability of the consequence given that the hypothesis is
true is greater than the probability of the consequence given that the hy-
pothesis is false:

P(CONJHYP) = p > ¢ = P(CON[HYP) 3)
Third, consider the node with the variable REP, which is a child node to
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BAYESIAN NETWORKS AND UNRELIABLE INSTRUMENTS 33

the nodes with the variables CON and REL. How can we model the work-
ings of an unreliable instrument? Let us make an idealization: we suppose
that we do not know whether the instrument is reliable or not, but if it is
reliable, then it is fully reliable and if it is not reliable, then it is fully
unreliable. Let a fully reliable instrument be an instrument that provides
maximal information: it is an instrument that says of what is that it is,
and of what is not that it is not:

P(REP|REL, CON) = 1 “)
P(REP|REL, CON) = 0 (5)

Let a fully unreliable instrument be an instrument that provides minimal
information: it is an instrument that is no better than a randomizer:

P(REPREL, CON) = P(REP|REL, CON) = g with0 <a <1 (6)

Let us call a the randomization parameter. (Compare Bovens and Olsson
2000, 701-703 for this construction.) We can now construct the Bayesian
Network by adding the probability values to the graph in Figure 2.1.

The arrows in a Bayesian Network have a precise probabilistic mean-
ing: they carry information about the independence relations between the
variables in the Bayesian Network. This information is expressed by the
Parental Markov Condition:

(PMC) A variable represented by a node in the Bayesian Network is
independent of all variables represented by its non-descendant
nodes in the Bayesian Network, conditional on all variables
represented by its parent nodes.

Hence, our Bayesian Network is constructed on grounds of the following
(conditional) independences:

HYP 1 REL 7)
CON 1 RELHYP (8)
REP I HYP|REL, CON )

(7) says that if one does not know any values of the variables, then coming
to learn that the instrument is reliable or that the instrument is unreliable
does not alter the prior probability that the hypothesis is true. This is a
plausible assumption as long as one’s reasons for believing that the in-
strument is reliable are independent of the truth of the hypothesis. In
Section 5, we will investigate what happens when this assumption is vio-
lated. (8) says that if one knows no more than that the hypothesis is true
or that the hypothesis is false, then coming to learn in addition that the
instrument is reliable or that it is unreliable does not alter the probability
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34 LUC BOVENS AND STEPHAN HARTMANN

that the test consequence holds: as long as one does not know what report
the instrument provides, coming to learn about its reliability teaches us
nothing about the test consequence. (9) says that if one knows no more
than that some definite values of REL and CON are instantiated, then
coming to learn in addition that some definite value of HYP is instantiated
does not alter the probability of REP: the chance that the instrument will
yield a positive or a negative report is fully determined by whether the
instrument is reliable and whether the test consequence holds or not; once
this information is known, the truth or falsity of the hypothesis itself be-
comes irrelevant. The latter two assumptions seem beyond reproach.

The Bayesian Network also represents a series of other conditional
independences, e.g. REP 1L HYP|CON. These independences can be de-
rived by means of the semi-graphoid axioms, which are a set of axioms of
conditional independence, from the conditional independences that can be
read off the diagram by applying the (PMC). There is also a convenient
criterion, viz. the d-separation criterion, which permits us to read these
same conditional independences directly off of the graph. For the details,
we refer to the relevant literature.!

What’s so great about Bayesian Networks? A Bayesian Network con-
tains information about the independence relations between the variables,
prior probability assignments for each root node and conditional proba-
bility assignments for each child node given its parent nodes. A central
theorem in the theory of Bayesian Networks states that a joint probability
distribution over any combination of values of the variables in the network
is equal to the product of the prior probabilities and conditional proba-
bilities for these values as expressed in the network (Neapolitan 1990, 162—
164). For example, suppose we are interested in the joint probability of
HYP, CON, REP and REL. We can read the joint probability directly off
Figure 2.1:

P(HYP,CON, REP, REL) = (10)
P(HYP)P(REL)P(CON|HYP)P(REP|CON, REL) = h(1 — r)(1 — p)a

Standard probability calculus teaches us how to construct marginal dis-
tributions out of joint distributions and subsequently conditional distri-
butions out of marginal distributions.

We are interested in the probability of the hypothesis given that there
is a report from a LTFR instrument that the test consequence holds. This
probability is P*(HYP) = P(HYP|REP) = P(HYP, REP)/P(REP). For
ease of representation, we will abbreviate (1 — x) as X.

1. The axioms for semi-graphoids are presented in Pearl (1988, 82-90). They first occur
in Dawid (1979) and Spohn (1980). For details on the d-separation criterion, see Pearl
(1988, 117-118), Neapolitan (1990, 202-207) and Jensen (1996, 12-14).
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BAYESIAN NETWORKS AND UNRELIABLE INSTRUMENTS 35

P*(HYP) = (1)
> P(HYP)P(REL)P(CON|HYP)P(REP|CON,REL)

CON,REL

> P(HYP)P(REL)P(CON|HYP)P(REP|CON, REL)

HYP,CON,REL

_ h(pr + ar)
(hp + hgyr + ari

We measure the degree of confirmation that the hypothesis receives from
a positive report by the difference:

hh(p — q)r
(hp + hgyr + aF

Note that P*(HYP) — P(HYP) > 0 iff p>¢. To have some numerical
data,leth = r = a = 1/2 and let p = 3/4 and ¢ = 1/4. Then P*(HYP)
= 5/8 and P¥*(HYP) — P(HYP) = 1/8.

We know now how to model the degree of confirmation that a hypoth-
esis receives from a single positive report concerning a single test conse-
quence of the hypothesis by means of a single LTFR instrument. This
basic model will be the paradigm for modelling complex strategies to im-
prove the degree of confirmation that can be obtained from LTFR instru-
ments.

P*(HYP) — P(HYP) = (12)

3. Same Test Results. Suppose that we have tested a single test consequence
of the hypothesis by means of a single LTFR instrument. We have received
a positive report, but we want to have additional confirmation for our
hypothesis. We might want to run more tests of the very same test con-
sequence. Now there are two possibilities. Either we can take our old
LTFR instrument and run the test a couple more times. Or we can choose
new and independent LTFR instruments and test the very same test con-
sequence with these new instruments. First, we will show that both of these
substrategies can be successful: if we receive more reports to the effect that
the test consequence holds, either from our old instrument or from new
and independent instruments, then the hypothesis does indeed receive ad-
ditional confirmation. Second, we are curious to know which substrategy
is the better strategy assuming that we do indeed receive more reports to
the effect that the test consequence holds. In other words, which substra-
tegy yields a higher degree of confirmation? Is there an univocal answer
to this question, or is one substrategy more successful under certain con-
ditions, while the other strategy is more successful under other conditions?
To keep things simple, we will present our analysis for one additional test
report, either from the same or from different LTFR instruments.

Let us first model the degree of confirmation that the hypothesis re-
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36 LUC BOVENS AND STEPHAN HARTMANN

ceives from an additional positive report from the same LTFR instrument.
In Figure 3.1, we add a node to our basic graph to represent the binary
variable REP2 and substitute REPI for REP. Just like REPI, REP? is
directly influenced by REL and CON and so two more arrows are drawn
in. We impose a condition of symmetry on the probability distribution P
for this graph and also require, for this second report, that the instrument
is either fully reliable or it is fully unreliable with the same randomization
parameter a.

Secondly, we model the degree of confirmation that the hypothesis re-
ceives from an additional confirming report from a second independent
LTFR instrument. In Figure 3.2, we add a node to our basic graph for
the variable REL2 which expresses whether the second instrument is re-
liable or not and add a node for the variable REP2 which expresses
whether the second instrument provides a report to the effect that the test
consequence holds or not. REP?2 is directly influenced by REL2 and CON:
we draw in two more arrows. To keep matters simple, we impose a con-
dition of symmetry on the probability distribution P’ for this graph: there
is an equal chance r that both instruments are reliable and if the instru-
ments are unreliable then they randomize at the same level a. To compare
the scenario with one instrument to the scenario with two instruments we
need to impose a ceteris paribus condition: for this reason we postulate
the same values 4, p, ¢, r and a for the probability distributions P and P’.

The instruments are independent of one another. What this means is

that

Figure 3.1 Multiple measurements with a single instrument of a single consequence.
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BAYESIAN NETWORKS AND UNRELIABLE INSTRUMENTS 37

HYP

CON

Figure 3.2 Measurements with multiple instruments of a single consequence.

REPi 1L REPJJCON Vij = 1,2 and i#j. (13)

Suppose that we know that the consequence holds or we know that the
consequence does not hold. Then there is a certain chance that we will
receive a report to the effect that the consequence holds. Now whether we
receive another report to this effect or not, does not affect this chance. An
independent instrument may not always provide us with an accurate re-
port, but it is not influenced by what other instruments report. It can be
shown that (13) is a conditional independence that can be read off from
the graph in Figure 3.2.

Are these strategies successful? The strategy of searching out an addi-
tional report from the same LTFR instrument about the same test con-
sequence always provides additional confirmation to the hypothesis:

Theorem 1. AP = P(HYP|REPI,REP2) — P(HYP|REP1) > 0.

(All theorems are proven in the appendix.) The strategy of searching out
an additional report from a different LTFR instrument about the same
test consequence always provides additional confirmation to the hypoth-
esis:

Theorem 2. AP = P'(HYPREP1,REP2) — P'(HYP|REPI) > 0.

We turn to the question whether, ceteris paribus, the hypothesis receives
more confirmation from a second positive report from one and the same
LTFR instrument or from independent LTFR instruments. We show in
the appendix that
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38 LUC BOVENS AND STEPHAN HARTMANN

Theorem 3. AP = P'(HYP|REPI,REP2) — P(HYP|REPI,REP2) iff
1 — 247 > 0.

The graph in Figure 3.3 represents this inequality. For values of (a,r)
above the phase curve, AP > 0, i.e. it is better to receive reports from two
instruments; for values of (4,r) on the phase curve, AP = 0, i.e. it does
not make any difference whether we receive reports from one or two in-
struments; for values of (a,r) below the phase curve, AP < 0, i.e. it is better
to receive reports from one instrument than from two instruments.

Do these results seem plausible at an intuitive level? There are two
conflicting intuitions at work here. On the one hand, we are tempted to
say that confirming results from two instruments is the better way to go,

0.8

0.6

r AP=0

0.4

AP<0

00 02 04 06 08 :
a

Figure 3.3 AP > 0 iff positive reports from two instruments testing the same consequence
yield more confirmation to the hypothesis than from a single instrument.
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BAYESIAN NETWORKS AND UNRELIABLE INSTRUMENTS 39

since independence is a good thing. On the other hand, if we receive con-
sistent positive reports from a single instrument, then we feel more con-
fident that the instrument is not a randomizer and this increase in confi-
dence in the reliability of the instrument supports the confirmation of the
hypothesis. For higher values of r, the former consideration becomes more
weighty than the latter: there is not much gain to be made anymore in our
confidence in the reliability of the instrument(s) and we might as well enjoy
the benefits of independence. For lower values of g, the latter considera-
tion becomes more weighty: if we are working with an instrument which,
if unreliable, has a low chance of providing positive reports, then consis-
tent positive reports constitute a substantial gain in our confidence in its
reliability, which in turn supports the confirmation of the hypothesis.

4. Coherent Test Results. The second strategy to raise the degree of con-
firmation for a hypothesis is to identify a range of test consequences which
can all be assessed by a single or by multiple independent LTFR instru-
ments. Let us draw the graphs for two test consequences. Following our
heuristic, the hypothesis (H YP) directly influences the test consequences
(CONi for i = 1,2). Figure 4.1 represents the scenario in which there is a
single instrument: each test consequence (CONi) conjoint with the reli-
ability of the single instrument (REL) directly influences the report about
the consequence in question (REPi). Figure 4.2 represents the scenario in
which there are two independent instruments: each test consequence

Figure 4.1 Measurements with a single instrument of multiple consequences.
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h 4 y
REP 1 REP 2

Figure 4.2 Measurements with multiple instruments of multiple consequences.

(CONi) conjoint with the reliability of the instrument that tests this con-
sequence (RELI) directly influences the report about the consequence in
question (REPi). We define a probability distribution P for the DAG in
Figure 4.1 and a probability distribution P’ for the DAG in Figure 4.2.
We impose the symmetry condition within each distribution and the ceteris
paribus condition between distributions for all the relevant parameters.

We can now check whether our strategies are successful. It turns out
that the strategy is always successful with multiple instruments:

Theorem 4. AP = P'(HYP|REPI1, REP2) — P'(HYP|REPI) > 0.
But with a single instrument, the strategy is not always successful:

Theorem 5. AP = P(HYP|REP1, REP2) — P(HYP|REP1) > 0 iff pgr +
ar(p + q — a) > 0.

In Figure 4.3, we fix ¢ = .5 and construct phase curves for high, medium
and low range values of the reliability parameter r. In Figure 4.4, we fix r
= .5 and construct phase curves for high, medium and low range values
of the randomization parameter a. Since we have stipulated that p > ¢,
we are only interested in the areas below the straight line for p = ¢ in
both figures.

The areas in these graphs in which AP < 0 are certainly curious: for
certain values of p, ¢, @ and r, we test a first consequence of a hypothesis,
receive a positive report and are more confident that the hypothesis is true;
then we test a second consequence of the hypothesis with the very same
instrument, receive once again a positive report . . . but this time around
our degree of confidence in the hypothesis drops! How can we interpret
these results? Notice that the effect is most widespread for (i) lower values
of r, (ii) higher values of @ and (iii) lower values of p. To get a feeling for
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1
084
064
q
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00 0.2 0.4 06 0.8 1

[

Figure 4.3 AP > 0 iff two positive reports from a single instrument testing two conse-
quences yield more confirmation to the hypothesis than one positive report testing a single
consequence for a = .5. The relevant region is the region where p > ¢.

the magic of the numbers, let us look at this range of values, where the
effect occurs par excellence. Hence, let us consider instruments which are
not likely to be reliable, and, if unreliable, have a high chance of providing
a positive report, and test consequences which are unlikely to occur when
the hypothesis is true (though of course the test consequences are still more
likely to occur than when the hypothesis is false). Considering (i), we do
not have much trust in the instrument to begin with. Now it gives us
nothing but positive reports: considering (ii), the instrument is likely to be
a randomizer and so we become even more confident that the instrument
is unreliable. But should this not be offset by the fact that we receive
coherent test results in support of our hypothesis? No, since considering
(iii), our tests are rather weak and these coherence effects count for little.
Hence, when we get a second positive report, we become very confident
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0.8

0.24

Figure 44 AP > 0 iff two positive reports from a single instrument testing two conse-
quences yield more confirmation to the hypothesis than one positive report testing a single
consequence for r = .5. The relevant region is the region where p > ¢.

that the instrument is unreliable and consequently our confidence in the
hypothesis drops.

We turn to the question whether, ceteris paribus, the hypothesis receives
more confirmation from a second positive report from one and the same
LTFR instrument or from independent LTFR instruments. We have
shown that

Theorem 6. AP = P'(HYP|REP1,REP2) — P(HYP|REP1,REP2) > 0 iff
2a—p—qa—2a—pla—qr>02

2. Note that by introducing scaled parameters, p’ = p/a and ¢’ = g/a, the parameter
a can be eliminated from theorems 5 and 6.
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To evaluate this expression, we assume that the tests are reasonably strong
by fixing p = .9 and ¢ = .1 and construct a phase curve for values of (a,r)
in Figure 4.5. If the randomization parameter and the reliability parameter
are set low, then one instrument tends to do better than two. Subsequently
we assume mid-range values for the randomization and the reliability pa-
rameters (¢ = .5 and r = .5) and construct a phase curve for values of
(p.q) in Figure 4.6. We are interested in the area below the straight line
where p > ¢. If the g-value is set high, i.e. if the test consequences occur
frequently also when the hypothesis is false, then one instrument tends to
do better than two.

1 AP=0

0.24 AP<0

0o 0.2 0.4 ‘06 08 1

Figure 4.5 AP > 0iff positive reports from two instruments testing two consequences yield
more confirmation to the hypothesis than positive reports from a single instrument testing
two consequences for p = .9 and ¢ = .1.
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Figure 4.6 AP > 0 iff positive reports from two instruments testing two consequences yield
more confirmation to the hypothesis than positive reports from a single instrument testing
two consequences for a = .5 and r = .5. The relevant region is the region where p > ¢.

In the previous section, we explained why the consideration that our
confidence in the reliability of a single instrument is boosted by coherent
positive reports outweighs the consideration of the independence of mul-
tiple instruments for lower values of a and r. The same explanation can
be repeated here. But why is this effect amplified for higher ¢g-values? The
higher the g-values, the more likely the test consequences will hold true
and so coherent positive reports will boost our confidence in the reliability
of a single instrument even more. Hence higher ¢g-values tend to favor a
single over multiple instruments.

It is one of the textbook Bayesian success stories that an account can
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be provided of why variety of evidence is a good thing: it is shown that
the increment of confirmation that the hypothesis receives from confirming
test results becomes smaller and smaller as we run the same old test over
and again. (E.g. Earman 1992, 77-79 and Howson and Urbach 1993, 119-
123.) But what does it mean to run the same old test over and over again?
We could take it to mean that we check the same old test consequences
rather than checking independent test consequences of the hypothesis. Or
we could take it to mean that we do our testing with the same old instru-
ment rather than with independent instruments. Presumably variety of
evidence refers to multiple consequences as well as to multiple instruments.

We have in effect tested the variety-of-evidence thesis under this par-
ticular interpretation. There are two sets of evidence, one containing a less
varied pair and one containing a more varied pair of positive test reports.
To respect the ceteris paribus clause, we assume that each item of evidence
1 = 1,2 within these sets j = 1,2 has the same evidential strength, as
expressed by the likelihood ratio P(REP#HYP)/P(REP#HYP). This
ceteris paribus clause can be justified by means of the following analogy.
Suppose one wants to test the claim that a varied set of investments prom-
ises a greater yield than a non-varied set. Then it would clearly be wrong
to compare a varied set of investments that each have a high rating and a
non-varied set of investments that each have a low rating, or vice versa:
the ceteris paribus clause require that each investment within the respective
sets has the same rating. Similarly, the ceteris paribus clause in this context
requires that each item of evidence within the respective sets has the same
evidential strength.?® Given this the variety-of-evidence thesis implies that
a hypothesis receives more confirmation from a more varied set of evi-
dence than a less varied set of evidence, ceteris paribus, in which more
varied evidence is taken to mean evidence that is obtained from multiple
instruments rather than a single instrument or evidence that reports on
multiple consequences rather than a single consequence.

However, our investigation permits us to impose the following caveats
concerning this interpretation of the thesis. We argued in Section 3 that,

(1) if we are testing a single consequence, it is sometimes more bene-
ficial for the confirmation of the hypothesis to receive positive re-
ports from the same instrument than from different instruments,
ceteris paribus.

What we have seen in this section is that,

(i) if we are testing different consequences, it is sometimes more ben-

3. It is easy to prove that the ceteris paribus clause is respected in (i), (ii) and (iii) below.
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eficial for the confirmation of the hypothesis to receive positive
reports from the same instrument than from different instruments,
ceteris paribus.

And there is still another conclusion to be drawn from our results. We
saw in the previous section that it is always a good thing for the confir-
mation of the hypothesis to receive a second positive report from the same
instrument about the same test consequence. In this section, we saw that
our confidence in the hypothesis may decrease as we receive a second
positive report from the same instrument about a different test conse-
quence. Hence, we can add a third caveat:

(iii) If we are testing with a single instrument, it is sometimes more
beneficial for the confirmation of the hypothesis to receive posi-
tive reports about the same consequence rather than about dif-
ferent consequences, ceteris paribus.

There are two Bayesian approaches to the problem of the variety of
evidence present in the literature (Wayne 1995). On the correlation ap-
proach, the items of evidence E,, . . ., E, are less varied the greater the
rate of increase in the probability values P(E,), P(E,|E,), . . ., P(E,|E,,

.,E,_,) (Howson and Urbach 1993, 119-123; Earman 1992, 77-79). On
the eliminative approach, a set of evidence E in support of the hypothesis
H; is more varied, the lower the likelihoods P(E[H;) forj = 1,...,i—1,
i+1, ..., n: varied evidence is evidence that permits us to exclude more
competing hypotheses (Horwich 1982, 118-122 and Wayne 1995, 116).
Each of these approaches starts from a particular pretheoretical intuition
about diversity. Our approach does no less: the pretheoretical intuition
that we start with is that evidence that proceeds from multiple instruments
and that addresses multiple test consequences is more varied than evidence
that proceeds from a single instrument or that addresses a single test con-
sequence.

How does our analysis compare to the correlation approach? It can
easily be shown that P(REP1) = P'(REP1) in all of our comparative cases.
Hence, a set of evidence is the less varied on the correlation approach, the
more P(REP2|REP1) exceeds P(REP2) for P = P, P', which is indeed the
case for single (as opposed to multiple) instruments and for single (as
opposed to multiple) test consequences. However, what our analysis shows
is that this is no guarantee that the confirmation that the hypothesis re-
ceives will be smaller. For instance, consider the cases that are modeled
by the Figures 3.1 and 3.2.Seth = 5,p = 9,¢q = .1,a = 2andr = .2
in both distributions. Then the prior probability P(REP1) = P'(REP2)
= .26 is the same, but there is a stricter correlation and hence less variety
of evidence when the reports come from a single instrument than from

This content downloaded from 158.143.197.56 on Wed, 8 May 2013 12:12:38 PM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

BAYESIAN NETWORKS AND UNRELIABLE INSTRUMENTS 47

two independent instruments, viz. P(REP2|REP1) =~ .51 > .30 =~
P'(REP2|REP1). However, the hypothesis receives more confirmation
when the reports come from a single rather than from one instrument, viz.
P(HYPREP1,REP2) ~ .80 > .77 ~ P'(HYP|REP1,REP2). Then how is
it that formal results were established in the correlation approach? This
approach makes the assumption that the evidence is strictly entailed by
the hypothesis, viz. P(E|[H) = 1. This is a restrictive constraint on the
notion of evidence and quite unrealistic in many contexts, e.g. in the con-
text of the diagnosis of disease. What our examples show is that less varied
evidence may indeed provide more confirmation to the hypothesis, if we
work with a looser notion of evidence and relax the assumption to P(E[H)
= p > q = P(E|H).

Let us turn to the eliminative approach. Fitelson (1996, 654-656) argues
that the eliminative approach requires the additional ceteris paribus as-
sumption that the likelihoods of both sets of evidence on the hypothesis i
must be identical. What is the import of the eliminative approach when
there are only two hypotheses, viz. H and H, as is the case in our examples?
Suppose that we want to ascertain whether a patient in a hospital has
Lyme disease (H). One set of evidence E contains vomiting, fever, . . .
Another set of evidence E’ contains a recent tick bite, a characteristic rash,
... It is plausible to set P(E|H) = P(E'|H) and P(E|H) > P(E'[H). Then
on the eliminative approach, E’ is more varied than E. Fitelson’s ceteris
paribus condition is not satisfied, since P(REPI,REP2JHYP) #
P'(REP1,REP2|HYP) in any of the cases that we are comparing. We do
not find this disconcerting, since the eliminative notion of variety of evi-
dence is really a stretch of the ordinary notion. Certainly E’ has more
diagnostic value than E, but is this due to it being more diverse? Note
that, on the eliminative approach, a single item of evidence could be more
varied than some other single item of evidence, which seems somewhat
odd. What the eliminative approach seems to capture is how ‘diversifying’
the evidence is, i.e. what its capability is to distinguish between competing
hypotheses. Furthermore, even if a case can be made that this notion
corresponds to an intuitively plausible notion of variety of evidence, the
notion we are trying to capture is still very different from the notion that
is sought after in the eliminative approach.*

5. Auxiliary Theories. Let us return to our basic model from Section 2. In
this model, the variable REL is a root node and we have assigned a prob-
ability value r which expresses the chance that the instrument is reliable.

4. We are grateful to Patrick Maher (2001) for forcing us to spell out our notion of
variety of evidence in comparison to the eliminative approach and to lay out the ceteris
paribus clause that needs to be respected on our approach.
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It is a common theme in contemporary philosophy of science that the
workings of the instrument are themselves supported by an auxiliary the-
ory of the instrument. If this is the case, then we should not model REL
as a root node: whether the instrument is reliable or not is directly influ-
enced by whether the auxiliary theory (4UX) holds or not. Just as we
assigned a prior probability to the hypothesis, we also assign a prior prob-
ability ¢ to the auxiliary theory. To keep matters simple, let us assume in
this section that the instrument is reliable just in case the auxiliary theory
is correct and that the test consequence holds just in case the hypothesis
is true. Our basic model is then expanded to the Bayesian Network in
Figure 5.1. In this Bayesian Network, 4 UX and H Y P are still independent.
This may or may not be a realistic assumption. Sometimes the auxiliary
theory has no relation whatsoever to the hypothesis under test. But some-
times they are quite closely tied to each other: for instance, they may both
be parts of a broader theory. We can model this positive relevance between
AUX and HYP by connecting both variables in the Bayesian Network and
by setting P'(AUX|HYP) = ¢, > ; = P'(AUX|HYP) as in Figure 5.2.
Here are some questions:

(1) Ceteris paribus, does the hypothesis receive more or less confir-
mation if the auxiliary theory that supports the reliability of the

HYP
P (AUX) =

P (CON |HYP) =1
P (CON HYP )=0

P (REL | AUX) =1
P(RELAUX )=0

Figure 5.1 The reliability of the instrument is supported by an independent auxiliary theory.
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P’ (AUX | HYP) 4,

P’ (AUX |HYP ) =5

(CON | HYP) =1

P
P’ (CON [HYP ) =0
(REL | AUX) =1

p
P’ (RELAUX ) =0

Figure 5.2 The reliability of the instrument is supported by a positively relevant auxiliary
theory.

instrument is independent rather than positively relevant to the
hypothesis under test?

(i1) Suppose that we receive a report from a LTFR instrument which
provides confirmation for the hypothesis. We now appeal to an
auxiliary theory which provides support for the reliability of the
instruments, i.e. by bringing in an auxiliary theory we succeed in
raising the reliability parameter . Our question is the following:
is this, ceteris paribus, a successful strategy for increasing the de-
gree of confirmation of the hypothesis,

(a) if the auxiliary theory is independent of the hypothesis;
(b) if the auxiliary thesis is positively relevant to the hypothesis?

Let us first take up question (i). To respect the ceteris paribus clause
we must make sure that the randomization parameter, the reliability pa-
rameter and the prior probability of the hypothesis are fixed across both
scenarios. To fix the reliability parameter, we must make sure t = ¢,i1 +
t,h, since the instrument is reliable just in case the auxiliary theory is true.
We have shown that:
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Theorem 7. AP = P(HYP|REP) — P'(HYPREP) > 0iff h + a(ht, + ht;
—1)>0.

To evaluate this expression, we construct two graphs: in Figure 5.3, we
set t, = .8 and #; = .2 and construct a phase curve for (¢,4); in Figure
5.4, weseta = 1/3 and 4 = 1/3 and construct a phase curve for (z,,%;).
What we see in Figure 5.3 is that a positively relevant auxiliary theory
provides more of a boost to the degree of confirmation that the hypothesis
receives from a positive test report than an independent auxiliary theory
for lower prior probability values of the hypothesis and for lower values
of the randomization parameter. In Figure 5.4 we are only interested in

AP=0

0.21 AP<D

00 0.2 0.4 06 08 1
a
Figure 5.3 AP > 0 iff the hypothesis receives additional confirmation when the reliability

of the instrument is supported by an independent rather than a positively relevant auxiliary
theory with 7, = .8 and #; = .2.

This content downloaded from 158.143.197.56 on Wed, 8 May 2013 12:12:38 PM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

BAYESIAN NETWORKS AND UNRELIABLE INSTRUMENTS 51

0.61 AP=0

0.4

AP<0
0.24

0p 02 04 t 06 08 1
h

Figure 5.4 AP > 0 iff the hypothesis receives more confirmation when the reliability of the
instrument is supported by an independent rather than a positively relevant auxiliary theory
with ¢ = 1/3 and & = 1/3. The relevant region is the region where 7,> ¢;.

the area below the line where ¢, > £;. What we see is that for 7, < 1/2, a
positively relevant auxiliary theory always provides more of a boost to the
degree of confirmation of the hypothesis, while for 7, > 1/2, a positively
relevant auxiliary theory provides more of a boost for and only for values
of t; that are sufficiently smaller than ¢#,, in other words, for a theory that
is sufficiently positively relevant to the hypothesis.

Can an intuitive account be given of these results? Why does a positively
relevant auxiliary yield a higher degree of confirmation for an implausible
hypothesis than an independent auxiliary, as we can read off of Figure
5.3?If i is low, say & = .1, then a positively relevant auxiliary has a low
prior probability ¢ = (.8)(.1) + (.2)(.9) = .26. The ceteris paribus clause
requires that we set the prior probability of an independent auxiliary at
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.26 as well. Since the hypothesis is improbable, it is likely that a positive
report is due to the unreliability of the instrument and hence the falsity of
the auxiliary: e.g. for @ = .5, the posterior probability of the auxiliary
slides below .26. However, the blame falls much more heavily on the in-
dependent auxiliary than on the positively relevant auxiliary, because the
probability of the latter is tied to the probability of the hypothesis: actu-
ally, the posterior probability of the independent auxiliary goes into free
fall to ~.07 while the posterior probability of the positively relevant aux-
iliary remains at a respectable .17. With this distrust in the auxiliary and
hence in the instrument it is understandable that the hypothesis will receive
less confirmation from a positive report when the instrument is supported
by an independent auxiliary than when it is supported by a positively
relevant auxiliary: actually, the posterior probability of the hypothesis is
.20 with a positively relevant auxiliary as opposed to ~.16 with an inde-
pendent auxiliary. Furthermore, this argument will take effect when the
auxiliary is sufficiently positively relevant to the hypothesis, which we can
read off Figure 5.4.

Let us now turn to our next question (ii.a). We have received a report
from a LTFR instrument to the effect that some test consequence is true.
Subsequently, we increase our confidence in the reliability of the instru-
ment by appealing to an auxiliary theory that is independent of the hy-
pothesis under test. Is this a successful strategy for increasing the degree
of confirmation of our hypothesis?

It is easy to see that the answer to this question is univocally positive.
Our basic model in Figure 2.1 captures the situation before some auxiliary
theory in support of our hypothesis has been spotted. The model in Figure
5.1 captures the situation after some auxiliary theory has been spotted.
We specify a probability distribution P for the Bayesian Network in Fig-
ure 2.1 and P’ for the Bayesian Network in Figure 5.1. To respect the
ceteris paribus clause, we specify the same values g, &, p, and ¢ for both
distributions, but we choose r for P and ¢ for P’ so that P(REL) <
P'(REL). Then the following theorem holds:

Theorem 8. AP = P'(HYP|REP) — P(HYP|REP) > 0.

Matters are not as simple when we turn our attention to the last question
(ii.b). What happens if we increase our confidence in the reliability of the
instrument by appealing to an auxiliary theory and the auxiliary theory
and the hypothesis are positively relevant to one another? To investigate
this question, we raise the reliability of the instrument by bringing in a
positively relevant auxiliary theory: we construct a probability distribution
P for our basic model in Figure 2.1 and a probability distribution P’ for
the Bayesian Network in Figure 5.2, carefully picking r, ¢, and #;, so that
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r = P(REL) < P'(REL) = r* and, to respect the ceteris paribus clause,
so that (ii)) P(HYP) = P'(HYP). We have shown that:

Theorem 9. AP = P'(HYP|REP) — P(HYP|REP) > 0 iff (a7 — h)t, +
(a + ar)r* — hr > 0.

In Figure 5.5, we set the values at 7 = .5, a = .4 and ¢, = .8 and construct
a phase curve for values of (r, r*). The part of the graph that interests us
is the area above the line where r* > r. In the area above the phase curve
a positively relevant auxiliary theory increases the degree of confirmation
for the hypothesis. In the area underneath the phase curve a positively
relevant auxiliary theory decreases the degree of confirmation for the hy-

0.8¢

AP=0
0.6+

r* ] AP<0

0.2¢

0o 0.2 0.4 06 0.8 ‘
v
Figure 5.5 AP > 0 iff the hypothesis receives more confirmation when we increase the

reliability of the instrument by means of a positively relevant auxiliary theory. The relevant
region is ther region where r* > r.
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pothesis. Notice that there exists a region underneath the phase curve
where r* > r. This is curious. Here is how the story goes for this region.
We are about to test a hypothesis, but are not confident about the reli-
ability of our instrument: we realize that our confidence in the hypothesis
would not increase drastically even if we were to receive a positive report.
We try to boost our confidence in the reliability of the instrument and
consult an expert. The expert provides us with an auxiliary theory. The
auxiliary theory is uncertain, but still boosts our confidence in the reli-
ability of the instrument. It is positively relevant to the hypothesis, but
the relevant probability values are such that the prior probability of the
hypothesis remains unaffected. It turns out that we will now be less con-
fident that the hypothesis is true after a positive test report comes in than
had we not consulted the expert!

The phenomenon is definitely curious, but a moment’s reflection will
show that it was to be expected given our discussion of question (i) and
question (ii.a). Suppose that we have no theoretical support for the reli-
ability of our instrument and that the reliability parameter is set at r.
Clearly, the hypothesis receives precisely the same degree of confirmation
when the reliability parameter has the same value r but rests on the support
of some independent auxiliary theory. From our discussion of question
(1), we also know that support from an independent as opposed to a de-
pendent auxiliary theory can be better or worse for the degree of confir-
mation of a hypothesis, depending on the values of 4, a, ¢, and #; So let
us assume that an independent auxiliary theory raises the reliability pa-
rameter from r to r + ¢, for some small €. From our discussion of question
(ii.a) we know that this increase will slightly raise the degree of confir-
mation for the hypothesis. But it is to be expected that this small raise
would have been offset, if support had been sought from a dependent
auxiliary theory yielding a reliability value of r + g, at least for particular
values of the relevant parameters. Hence, finding support in a dependent
auxiliary theory for the reliability of the instrument may lower the degree
of confirmation for the hypothesis.

The Duhem-Quine thesis notoriously states that if our experimental
results are not in accordance with the hypothesis under investigation, there
is no compelling reason to reject the hypothesis, since the blame could just
as well fall on the auxiliary theories. One virtue of our model is that it
gives a precise Bayesian account of how experimental results affect our
confidence in the hypothesis and our confidence in the auxiliary theory.
But there is also a more important lesson to be learned. In discussing the
Duhem-Quine thesis, Bayesians typically assume that the auxiliary theory
and the hypothesis are independent (cf. Howson and Urbach 1993, 139),
although there is some cursory discussion of dependence between the hy-
pothesis and the auxiliary theory in Dorling (1996). The assumption of
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independence certainly makes the calculations more manageable, but it
does not square with the holism that is the inspiration for the Duhem-
Quine thesis. Not only are experimental results determined by a hypothesis
and auxiliary theories, they are determined by a hypothesis and auxiliary
theories that are often hopelessly interconnected with each other. And
these interconnections raise havoc in assessing the value of experimental
results in testing hypotheses. There is always the fear that the hypothesis
and the auxiliary theory really come out of the same deceitful family and
that the lies of one reinforce the lies of the others. What our results show
is that this fear is not entirely ungrounded: for hypotheses with a high
prior probability, it is definitely better that the reliability of the instrument
be supported by an independent auxiliary theory. But on the other hand,
for hypotheses with a low prior probability, we should cast off such fears:
hypotheses and auxiliary theories from the same family are very welcome,
since positive test reports provide stronger confirmation of the hypothesis
under consideration.

6. Calibration. To raise the degree of confirmation of the hypothesis that
a particular test result from a LTFR instrument has provided, we can try
to increase our confidence in the LTFR instrument by calibrating it. Con-
sider an example: we have a test result in our hands from a LTFR tech-
nique for dating artifacts in archeology. A simple form of calibration is
to set the technique to work on some artifacts that have their dates chiseled
into them (by a reliable stone mason) and to check whether the technique
indeed provides the correct output. If so, then we can feel more confident
that the technique is indeed reliable and subsequently that the test result
and the hypothesis are correct. Let us model this simple form of calibration
in a Bayesian Network before moving on to the more complex form in
which the LTFR instrument is calibrated against test results from other
LTFR instruments.

Suppose that we have a single report from a LTFR instrument and that
the content of this report is a test consequence of some hypothesis. This
set up is captured by our basic model in Section 2. Subsequently, we iden-
tify a series of data that are roughly of the same nature as the test con-
sequence in question but which we are confident are true. The LTFR
instrument is then calibrated by examining whether it yields correct values
for these data. To keep things simple, we will model a case with two data
(DATI and DAT?2). Following our heuristic, the reports about these data
(REPDATI and REPDAT?2) are directly influenced by the reliability of
the instrument in question and by whether the data are true or not. This
yields the graph in Figure 6.1.

We assign a probability value of 1 to DAT1 and DAT?2 in line with our
stipulation that we have chosen certain data. Nothing would prevent us
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HYP

REPDATI

REPDAT2

Figure 6.1 Calibrating the instrument against certain data.

of course from inserting lower degrees of confidence into our model. The
graph displays a series of independences. One such independence is worth
focusing on, since it does reflect a substantial simplification:

DATi I CON, DATjVij = 12 and i#j (14)

The data are independent of the test consequence and are independent of
one another. This is a plausible assumption for artifacts that are suffi-
ciently heterogeneous: say, if they are not found on the same site, are not
similar in style etc.

We can now turn to a more complex form of calibration which pre-
serves the independences of Figure 6.1. Quite often there are no clean data
available against which to calibrate our instruments. Rather, we can do
no better than calibrate our instrument against reports from a single or
from multiple LTFR instruments about uncertain data. Let the LTFR
instrument that is to be calibrated be the calibratee and the single or mul-
tiple LTFR instruments against whose reports the calibration takes place
be the calibrator(s). If the calibratee yields the same reports as the cali-
brator(s) about these uncertain data, then we may be more confident that
the calibratee is reliable and consequently that the test consequence and
the hypothesis is correct. We will model this more complex form of cali-
bration for two uncertain data DATI and DAT2. We receive test reports
about these uncertain data from the calibratee (REPEEDATI and RE-
PEEDAT?2) and from the calibrator(s) (REPORDATI and REPOR-
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DAT?2). Now we draw the following distinction: either we calibrate against
the reports from a single calibrator, or we calibrate against the reports
from multiple calibrators, one for each datum. In accordance with this
distinction, we can draw two graphs. The variable RELCAL expresses the
reliability of the single calibrator in the graph in Figure 6.2, while the
variables RELCALI and RELCAL?2 express the reliability of the respec-
tive calibrators in the graph in Figure 6.3.

We can read off a series of independences from these graphs. As before,
we have made the simplifying assumption that all the instruments are
independent:

REPEEDATi I REPORDATi\DATifori = 1,2 (15)

We define a probability distribution over each graph and impose our usual
symmetry conditions (within each distribution) and ceteris paribus con-
ditions (between distributions). We assume that the calibrators are either
fully reliable or fully unreliable; if they are fully unreliable, then they all
are no better than randomizers with a common parameter ¢, which equals
the parameter of the instrument to be tested. Let us also assume that we
have the same degree of confidence in all the calibrators and the same
degree of confidence in the data. P is the probability distribution for the
graph in Figure 6.2 and P’ is the probability distribution for the graph in
Figure 6.3. Then, fori = 1,2

P(REPORDATIRELCAL, DATi) = 1 and
P(REPORDATIRELCAL, DATi) = 0
P(REPORDATIRELCAL, DATi) = a for both values of DATi
P (REPORDATIRELCALI, DATi) = 1 (16)
and P'(REPORDATIIRELCAL, DATi) = 0
P (REPORDATIIRELCALIi, DATi) = a for both values of DATi
P(REPEEDATI|REL, DATi) = 1
and P(REPDATIRELCAL, DATi) = O for P = P, P’
P(REPEEDATI|REL, DATi) = a for both values of DATi
and for P = P, P’
P(RELCAL) = P'(RELCALI) = s
P(DATi) = P'(DATI) = f.

It is reasonable to assume that if we are out to calibrate a LTFR instru-
ment, then we will pick calibrators that we take to be more reliable than
the calibratee, i.e. P(REL) = P'(REL) = r <.

What needs to be investigated is under what conditions the strategy of
calibrating against data from a single more reliable instrument as well as
the strategy of calibrating against data from multiple more reliable instru-
ments are successful strategies. We consider the point in time at which the
hypothesis has received confirmation from a report about the test conse-
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60 LUC BOVENS AND STEPHAN HARTMANN

quence from the calibratee. Subsequently, we receive the additional infor-
mation that the calibrator(s) provided the same reports about both data
as the calibratee. Theorem 10 shows under what conditions the additional
information from a single calibrator raises the degree of confirmation for
the hypothesis:

Theorem 10. AP = P(HYPREP,REPEEDATI,REPEEDAT2,
REPORDATI,REPORDAT?2) — P(HYP|REP) > 0 iff & — a?)5 +
(1 = a&)fs>0.

and Theorem 11 shows under what conditions the additional information
from multiple calibrators raises the degree of confirmation for the hy-
pothesis:

Theorem 11. AP = P'(HYPREP,REPEEDATI,REPEEDAT?2,
REPORDATI,REPORDAT2) — P'(HYPREP) > 0 iff a(f — a)§ +
afs > 0.

We plot phase curves for different values of the randomization param-
eter in the single-calibrator case in Figure 6.4. What is going on here?
Focus on the area where the data are improbable (i.e. where f'is low) and
the reliability parameter for the calibrator is low (i.e. where s is low): in
this area AP < 0, i.e. calibration decreases the degree of confirmation that
the hypothesis receives. This is to be expected: when we get calibration
results from a calibrator that is likely to be unreliable and that in addition
provides positive reports about implausible data, then we become even
more suspicuous of the calibratee, since it yields the same odd results as
the calibrator that is likely to be unreliable. And the more suspicuous we
are of the calibratee, the less confirmation the hypothesis receives. Fur-
thermore the higher we set the randomization parameter a, the stronger
this effect will become, since positive reports are the more likely to come
for unreliable instruments. Figure 6.5 presents the phase curves for the
case of multiple calibrators. The interpretation is similar to the case for a
single calibrator.

Subsequently, we are curious to know whether, ceteris paribus, the hy-
pothesis receives more or less confirmation if we calibrate against data
from a single rather than from multiple calibrators. Is there a general
answer, or are there specific conditions under which it is better to calibrate
against a single instrument and under which it is better to calibrate against
multiple instruments? We have shown that,

Theorem 12. AP = PHYPREP,REPEEDATI,REPEEDAT?2,
REPORDATI,REPORDAT?2) — P'(HYPREP,REPEEDATI,
REPEEDAT2,REPORDATI1,REPORDAT?2) > 0 iff (2as + a)(f — a)
+ aa > 0.
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Figure 6.4 AP > 0 iff the hypothesis receives additional confirmation from matching re-
ports from a single calibrating instrument.

We plot phase curves for different values of the randomization parameter
in Figure 6.6. For all the values of s and f above these curves, AP > 0 and
for all values of s and funderneath these curves, AP < 0. We see that for
lower f, higher s and higher ¢, it is better to calibrate against two rather
than one calibrator. In other words, as the data become less likely, as the
calibrator(s) are more likely to be reliable and as the randomization pa-
rameter grows, it is better to calibrate against two rather than one cali-
brator.

How are we to interpret these results? There are two conflicting con-
siderations at work in determining whether it is better to calibrate against
a single as opposed to against multiple calibrators. On the one hand, we
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Figure 6.5 AP > 0 iff the hypothesis receives additional confirmation from matching re-
ports from two calibrating instruments.

like to raise the probability that the calibrator is reliable by getting co-
herent reports from a single instrument. This effect will assert itself when
we can assess highly plausible data, when the prior probability that the
calibrator is reliable is still low, so that there is much to be gained from
the coherence of the reports, and when the randomization parameter is
low, so that positive reports are unlikely to come from unreliable instru-
ments. On the other hand, there is something to be gained from having
independent calibrators to improve the reliability of the calibratee. This
latter consideration gains the upper hand as the conditions which were
favorable to the former consideration wear off: coherent positive reports
about implausible facts do not do much to boost the reliability of a single
calibrator; if the single calibrator is already very likely to be reliable, then

This content downloaded from 158.143.197.56 on Wed, 8 May 2013 12:12:38 PM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

BAYESIAN NETWORKS AND UNRELIABLE INSTRUMENTS 63

1
a=.9
0.8
0.64 AP>0 \
AP<0
, N
0.44
a=.5
0.2
1 a=.1 |
_‘-ﬁ— + - v -
0p 0.2 0.4 06 0.8 1
-

Figure 6.6 AP > 0 iff the hypothesis receives more confirmation from matching reports
from a single calibrating instrument than from two calibrating instruments.

there is little to be gained anymore from coherent positive reports; and if
the randomization parameter is set high, then coherent positive reports do
not do much to convince us that the single calibrator is reliable, since they
are likely to come from unreliable instruments. At this point more is to
be gained from receiving independent reports from multiple calibrators.
Compare Figures 3.3, 4.5 and 4.6 on the one hand with Figure 6.6 on
the other hand. In the former figures we compared whether it was better
for the confirmation of the hypothesis to receive positive reports from one
or from two instruments. Two instruments do better than a single instru-
ment for run-of-the-mill values, suchasa = r = .5, p = .8and ¢ = .2.
In the latter figure we compared whether it was better for the confirmation
of the hypothesis to obtain agreement between the test instrument and a
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single or multiple calibrators. One calibrator does better than two cali-
brators for run-of-the-mill values such as ¢ = f = .5 and s = .8 (which
exceeds r), one calibrator does better than two calibrators. In modeling
strategies to receive confirmation from unreliable instruments with Bayes-
ian Networks, it was this curious difference that first sparked our interest.

7. Concluding Remarks and Future Directions. Let us list some of the more
striking results of our investigation:

(M)

(i)

(iif)

(iv)

The standard strategies to deal with unreliable instruments are
not always successful: for specific values of the relevant param-
eters, the degree of confirmation will drop rather than rise when
we obtain (a) a positive report about an additional test con-
sequence from the same LTFR instrument, (b) support for our
LTFR instrument from a dependent auxiliary theory, or
(c) matching reports from the LTFR instrument and the cali-
brating instrument(s).

The variety-of-evidence thesis is not sacrosanct on a plausible
reading of this thesis: positive reports from single rather than
from multiple LTFR instruments and positive reports about a
single rather than about multiple consequences will for certain
values of the relevant parameters provide more confirmation to
a hypothesis, ceteris paribus. These results play havoc with the
correlation approach to the variety-of-evidence thesis.

The Duhem-Quine thesis is no reason to despair about confir-
mation. An appeal to an auxiliary theory in support of a LTFR
instrument can improve the degree of confirmation for the hy-
pothesis and the interdependency between the auxiliary theory
and the hypothesis tends to favor the confirmation of initially less
plausible hypotheses.

For run-of-the-mill values, positive reports from multiple instru-
ments raise the degree of confirmation more than similar reports
from a single instrument in repeated testing, while matching re-
ports from a single calibrating instrument raise the degree of con-
firmation more than equivalent reports from multiple calibrating
instruments.

We have taken the first steps in developing a new approach to thinking
about confirmation and unreliable instruments. There are many directions
to be explored. We conclude with some open questions and suggestions
for further research.

@

We have made a range of idealizations that may strike one as
unrealistic. At the same time, the networks often point out the
way to relax these idealizations: by importing additional param-
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eters, one can break through the symmetry and ceteris paribus
assumptions; by adding additional arrows to the network, one
can model relaxing certain independencies. In particular, we
grant that the idealization that the instrument is either fully re-
liable or a randomizer is indeed somewhat implausible.® Here
are some thoughts on the subject. First, in the spirit of our earlier
remarks, the framework is there to lay out alternative charac-
terizations in the model: e.g. J. McKenzie Alexander (2001) has
investigated how robust the results are in Figure 5.5, by setting
P(REP|CON,REL) = x and P(REP|CON, REL) = y for 0 <
y < x < 1. Or alternatively, we could relax the randomization
assumption by setting 1 > P(REP|[CON,REL) = 4’ > a =
P(REP|CON, REL) > 0.° Second, we have restricted our atten-
tion to discrete binary variables, and since scientific experimen-
tation more often than not deals with continuous variables, re-
laxations of our idealization will involve constructing networks
with continuous variables. In assessing the nature of the instru-
ment’s unreliability we need to construct prior probability func-
tions for the bias and for the variance of the instrument. Dy-
namic Belief Networks in sensor theory (e.g. Nicholson and
Brady 1994 and Dodier 1999, Ch. 6) operate with structures that
contain continuous variables and that explicitly model the re-
ported values of a variable as a function of the true values of
the variable and the reliability of the instrument in a diachronic
setting.” Third, we grant that there is a common scenario that
violates the independence assumptions in our models for re-
peated testing with the same test instrument: the coherence of
test results counts for nothing when the instrument is less than
fully reliable in the sense that it provides accurate measurements
of other features than the features it is supposed to measure.

(IT) We have restricted our attention to two reports in our discussion
of strategy 1 and 2. Similarly we have restricted our attention to
two calibrating reports on data in strategy 4. How does a series
of positive reports from single versus multiple LTFR instru-
ments affect the confirmation of the hypothesis? How does a
series of matching reports from single versus multiple calibrators
affect the confirmation of the hypothesis? Do we reach conver-
gence and can a general characterization be given of the paths
that lead towards convergence?® We have made some progress
towards this question in Hartmann and Bovens (2001).

5. This was pointed out by Kent Staley.

6. We owe this suggestion to Richard Scheines.
7. We owe this suggestion to Robert Dodier.
8. We owe this suggestion to Frantisek Matus and Theo Kuipers.
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(IIT) In highly developed fields of science, there is often an intricate

av)

V)

relationship between the hypothesis under investigation and the
auxiliary theories. Consider the recent discovery of the top
quark. This fundamental particle is suggested by the Standard
Model of particle physics. But certain elements of this model
also come in in the methods that were used to analyze the data
collected by the instruments. These interrelationships are ex-
tremely complex and our model in strategy 3 is highly idealized.
A case study in which a Bayesian Network is constructed that
models the scientific process would lend support to our analysis.’
There are a range of measures for the degree of confirmation
(Eells and Fitelson 2001; Fitelson 1999 and 2001; Kyburg 1983).
In effect, we are using the difference measure, i.e. P*(H) — P(H)
with P*(H) = P(H|E), to measure the degree of confirmation.
It can be shown that our results remain unaffected when using
the log-ratio-measure (or any ordinally equivalent measure), or
when using the log-likelihood-ratio (or any ordinally equivalent
measure), but are affected when using the Carnap measure or
the Christensen measure. A proof of this statement is contained
in the appendix. Whether they will be affected in interesting ways
remains an open question.!?

We have investigated how positive reports from LTFR instru-
ments affect the degree of confirmation for the hypothesis under
various strategies. But of course, at the beginning of the day, a
researcher does not know whether positive or negative reports
will be forthcoming.!' Even so, our approach can be turned into
a decision procedure as to what strategy is to be preferred in a
particular context. Consider a hypothesis which states that a
patient has a particular disease and a policy that treatment will
be started just in case the posterior probability of the hypothesis
exceeds some critical value. We specify the utility values of treat-
ment and abstention from treatment when the patient actually
does and does not have the disease. We can then calculate the
expected utility of a particular strategy of dealing with LTFR
instruments at the beginning of the day and make recommen-
dations accordingly. Leaning on decision-theoretic work in the
theory of Bayesian Networks (e.g. Jensen 2001), a systematic

9. This case is discussed in an error-statistical framework in Staly (1996, 2000).

10. We owe the suggestion to investigate different measures of confirmation to Branden
Fitelson.

11. We owe this suggestion to David R. Cox.
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study in a particular context may give rise to genuine practical
applications.

Appendix

A. Proof of Theorem 1

We will follow the standard procedure laid out in Section 2. Let P, be the prob-
ability distribution for the Bayesian Network in Figure 2.1. We can write Pj(HYP)
= P,(HYP|REP) in formula (11) more concisely:

PyHyp) = M A

cr + ar

with ¢, = P(CON) = hp + hq.
Let P, be the probability distribution for the Bayesian Network in Figure 3.1. We
calculate:

hpr + @
P{(HYP) := P(HYPREPI, REP2) — "&" *+ @)
cr + @i
Since P,(HYP[REP1) = PJ(HYP), AP = P(HYP) — P,(HYP)is

_ adhhri(p — q)
(e;r + a*)(cer + aF)’
Since 0 < a,h,r < 1 and p > ¢, the expression is clearly greater than 0.

B. Proof of Theorem 2

Let P, be the probability distribution for the Bayesian Network in Figure 3.2. We
calculate:
hp(r + ar)* + pa?)
c(r + ary? + c¢a%r*
Since P,(HYP|REPI1) = Py(HYP), AP = P;(HYP) — P,(HYP) is
AP — adhhri(ai + NP — q)

(c(r + arp? + éa*P)(cr + ar)

Since 0 < a,h,r < 1 and p > ¢, the expression is clearly greater than 0.

Py(HYP) := P,(HYP|REPI,REP2) =

C. Proof of Theorem 3
With the results of the last two appendices, we can calculate the difference AP =
P5(HYP) — P(HYP):
AP - ahhri(p — @)1 — 24aF)
(e;r + @)\ (r + af)? + ¢,a*?)
Since 0 < a,h,r < 1and p > g, AP > 0iff | — 2aF > 0.

D. Proof of Theorem 4

Let P, be the probability distribution for the Bayesian Network in Figure 4.2. We
calculate:
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h(pr + ar)?
Py(HYP) := P,(HYPREPI,REP2) = .
i ) 2 | ) P + 2aci + c,r?
Since P,(HYP|REP1) = P;(HYP), AP = P;(HYP) — P;(HYP) is

AP — h/;r(p — q)rp + ai)rq + ar)
T (@R + 2acrF + ) e + ai)
Since 0 < a,h,r < 1 and p > ¢, the expression is clearly greater than 0.

E. Proof of Theorem 5

Let P, be the probability distribution for the Bayesian Network in Figure 4.1. We
calculate:
h(pr + a*r)

P,(HYP) := P,(HYPREPI,REP2) = —
cr + @i

s

with ¢, = P(CON1, CON2) = hp> + hg.
Since P,(HYP|REPI1) = Py(HYP), AP = P,(HYP) — P,(HYP)is
hh(p — @) [pgr + af(p + q — a)]

(cor + a¥)(c,r + ar) '
Since 0 < g,hr <1land p > ¢, AP > 0iff pgr + a7 (p + ¢ — a) > 0. Note that
p + ¢ > ais a sufficient condition for AP > 0.

AP = PJHYP) — P (HYP) =

F. Proof of Theorem 6
With the results of the last two appendices, we can calculate the difference AP =
Py(HYP) — P,(HYP):
ahh(p — @)F [2a — p — q)a — 2(a — p)a — qr]
(@ + cr)(@P + 2aci + c,r?)
Since 0 < a,h,r <1and p > q,AP > 0iff 2a — p — q¢)a — 2(a — p)a — q)r > 0.

AP =

G. Proof of Theorem 7

Let P; be the probability distribution for the Bayesian Network in Figure 5.1. Add
an arrow from HYP to AUX and define a new probability distribution P* over
this new Bayesian Network. Since AUX is no longer a root node, we delete
P(AUX) = t and fill in PHAUX|HYP) = ¢, = ¢t and PA(AUXHYP)= 1; = .
For all other probability values in the Bayesian Network, P, = P*. It is easy to
show that this adapted Bayesian Network expresses precisely the same probability
distribution as the Bayesian Network in Figure 5.1. We follow the standard pro-
cedure for the adapted Bayesian Network and calculate P#(HYP|REP) which is
equal to P(HYP|REP). Subsequently we follow the standard procedure for the
Bayesian Network in Figure 5.2 and calculate P'(HYP|REP). We now construct
the difference AP = P(HYP|REP) — P'(HYP|REP):

B ahi(t, — 1) [h + atht, + ht; — 1))
(aht; + aht, + af)a + (h — a)(ht, + hty)
Since 0 < a,h < land ¢, > t, AP > 0iff h + a(ht, + htz — 1) > 0.
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H. Proof of Theorem 8

For any probability distribution P for the Bayesian Network in Figure 5.1 and P,
for the Bayesian Network in Figure 2.1 with the same parameters a,/4,p,q and
P(AUX) = P,(REL), note that P*(HYP) = P;(HYP). Hence to prove the theo-
rem, it is sufficient to show that P;(HYP) is a positively increasing function of r.
Differentiating equation (11) with respect to r yields:

ahh(p — ¢q)

Since 0 < a,h < 1 and p > ¢, this expression is greater than 0 and hence Py(HYP)
is a positively increasing function of r.

d
— Py(HYP) =
ar

1. Proof of Theorem 9

By our standard procedure, we calculate P;(HYP) for the Bayesian Network in
Figure 2.1 and P(HYP|REP) for the Bayesian Network in Figure 5.2. Since r, =
1 and r, = 0, r* = ht, + ht;. Hence we can replace t; by (r* — ht)/h in
Py(HYP|REP). We calculate AP = P(HYP|REP) — Py(HYP):
ah [(@GF — ht, + (@ + aryr* — hr]

(ai + hr)(ai* + ht)
Since 0 < a,h,r,r* < 1, AP > 0iff (aGF — h)t, + (a + aryr* — hr > 0.

AP =

J. Proof of Theorem 10

Let P, be the probability distribution for the Bayesian Network in Figure 6.2.
We calculate P;(HYP) := P,(HYPREP,REPEEDATI1,REPEEDAT?2,
REPORDATI1,REPORDAT?2):

PHYP) = h(frs + a*f Zr:v' + &f 2;’_5 + a5f_§_)

h( f2rs + &fr8) + &f *fs + a5
Since P,(HYP|REP) = P,(HYP), AP = P;(HYP) — Py(HYP) is
ahbri [@(f2 — a5 + (1 — a?)f %]

(hr + ai)(h( fors + @*f 5) + &*f s + a’Fs)
Since 0 < a,f,h,r,s < 1and p > g, AP > 0 iff a*(f>* —a*)5 + (1—-a?)f’s > 0.
Note that a < f'is a sufficient condition for AP > 0.

AP =

K. Proof of Theorem 11

Let P; be the probability distribution for the Bayesian Network in Figure 6.3.
We calculate Py(HYP) := P(HYPREP,REPEEDATI,REPEEDAT?2,
REPORDATI1,REPORDAT?2):
h( f2r(s + asP? + &F( fs + as)?)
hf2r(s + as)> + a&f( fs + as)?
Since P(HYP|REP) = Py(HYP), AP = Py(HYP) — Py(HYP) is
AP — ahhri(@®s + af + f)a( f — a)s + afs]
(hr + ai)(hf (s + as)* + &F( fs + as)?)
Since 0 < a,f,hr,s < 1,AP > 0 iff a( f — a)§ + afs > 0. Note that a < f'is a
sufficient condition for AP > 0.

P(HYP) =
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L. Proof of Theorem 12

With the results of the last two appendices, we can calculate the difference AP =
Py(HYP) — P,(HYP):

a*f fhhriss [2as + a)l f — a) + ad]
(h( frrs + afr3) + a&f s + a&FS)(hf 2r(s + a5 + @@F( fs + as)?)
Since 0 < a,f,h,r,s <1, AP > 0 iff 2as + a) (f — a) + aa > 0. Note that a < f'is
a sufficient condition for AP > 0.

AP =

M. Different Measures of Confirmation

The phase curves we constructed in this paper separate a two-dimensional subspace
of the parameter space into two parts. Above the phase curve in the corresponding
diagram, AP = P(H|E) — P’'(HJE) is larger than zero, below the phase curve AP
is smaller than zero.! This analysis is compatible with invoking the difference mea-
sure d(H,E) = , P(H|E) — P(H) as a measure for the degree of confirmation. The
following theorem holds:
P(H[E) = P'(H|E) iff d(H|E) = d'(H|E)
Proof:
dH.E) — d'(H,E) = (P(H[E) — P(H)) — (P'(HE) — P'H))
= P(H[E) — (P'(HIE)
The last line follows since we assume throughout this section the ceteris paribus
clause P(H) = P'(H) = h.
The difference measure is not the only confirmation measure discussed in the lit-
erature. There is the log-ratio measure r, the log-likelihood ratio measure I, Car-
nap’s relevance measure v, and Christensen’s measure s. These measures are de-
fined as follows:?

r(H, E) =, log [P(HlE)]

P(H)
P(E[H)
H.E) =, log [P(E|H)]
v(H, E) =, P(H,E) — P(H)P(E)
= P(E)d(H,E)
s(H, E) =, P(H|E) — P(HIE)
= d(H,E)/P(E)

The following theorems hold:
P(H|E) = P'(H|E) iff r(H,E) = r'(H,E)
P(H|E) = P'(H|E) iff (H,E) = I'(H,E)
Proof: Let’s start with the log-ratio measure:

1. In this appendix, we use the short-hand notation H for HYP and E for the evidence
represented by the (conjunction of) report variable(s).

2. We follow the list of measures presented in Eells and Fitelson (2001) and Fitelson
(1999, 2001).
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. _ P(HIE) P'(HIE)
r(H,E) — r"(H,E) = log [ P(H)} — log [W]
P(HIE)
[P’(HIE)}
Hence,
r(H,E) = r'(H,E) iff log [%
Similarly, for the log-likelihood-ratio measure, one obtains:
_P(EIH)] ~ log [P’(EIH)]
LP(E[H) P'(E[H)
’P(EIH)P’(EIH)]
LP'(E[H)P(E[H)
*P(H|E)P(E)P'(FI|E)P’(E)P(H)P’(H)]
L P(H)P'(H)P(H|E)P(E)P'(H[E)P'(E)
’P(HIE)P’(HIE)]
LP'(H|E)P(H|E)
[PHIE)(1 — P’(HIE))]
LP'(HIE)(1 — P(HIE))]’
using Bayes’ theorem in the third line.
Hence,

} = 0 iff P(H|E) = P'(H|E).

IH,E) — I'(HLE) = log

log

log

= log

= log

PHIE)(1 — P'(HIE)) _
P'(HIE)(1 — P(HIE))
This can be shown to be equivalent to
I(H,E) = I'(H,E) iff P(H|E) = P'(H|E).
Similar theorems do not hold for the measure r and s. It can be shown that
t(H,E) — v'(H,E) = P(E)dH,E) — d'(H,E)) + (P(E) — P'(E))d'(H,E)
S(H.E) — s'(H.E) = PE)dHE) — d (H,E)_) + EP(E) — P'(E))d(H,E) .
P(E)P'(E)
It is evident from these equations (which also hold if P(H) # P’'(H)) that d(H,E)
= d'(H,E) (i.e. P(H|E) = P'(H|E)) does not imply r(H,E) = r'(H,E) and s(H,E)
= s'(H,E). d(H.,E) = d'(H|E) implies v(H,E) = v(H,E) and s(H,E) = s'(H,E) iff
P(E) = P'(E) or dH.,E) = d'(H,E) = 0. We leave open the exploration of the
phase curves corresponding to these measures.

I(H,E) = I'(H,E) iff .
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