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structive discussions, reviews and the abundant guidance over the many
years that contributed crucially to my thesis. A semester project under the
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Abstract
Biological cognition is thought to employ mechanisms like prediction,
anticipation and attention for solving complex tasks. These mechanisms
are suggested to be materialized through inter-layer cortical interactions
in mammals, whereas their manifestation in relatively simpler brains, like
the invertebrate brain, remains unclear. In artificial cognition, the nature
and interplay of the above mechanisms remain largely unquantified. Here
we propose a phylogenic, model-based approach to answer how these
cognitive mechanisms interplay. We start with a simple model of the in-
sect brain and demonstrate the necessity of the so-called forward models
to account for insect behavior in dynamic scenarios. We then propose the
PASAR framework to integrate and quantify the interplay of the above
components of cognition. We validate PASAR in robotic tasks and in a
human psychophysical experiment, proving PASAR as a valuable tool to
model and evaluate biological cognition and to construct artificial cogni-
tive systems.
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Resum
Es considera que la cognició biològica fa servir mecanismes com la pre-
dicció, l’anticipació i l’atenció per resoldre tasques complexes. S’ha sug-
gerit que aquests mecanismes es materialitzen en els mamı́fers a través
d’interaccions entre les capes corticals, mentre que la seva manifestació
en cervells relativament més simples, como el dels invertebrats, és enca-
ra poc clara. En la cognició artificial, la naturalesa i la interacció dels
mecanismes mencionats roman, en gran mesura, no quantificada. Aquı́
proposem un enfoc filogènic i basat en models per descobrir com interac-
tuen aquests mecanismes cognitius. Comencem amb el model simple del
cervell d’un insecte i demostrem la necessitat dels anomenats forward
models per explicar el comportament d’un insecte a escenaris dinàmics.
Llavors proposem el marc PASAR per integrar i quantificar la interacció
dels mencionats components de la cognició. Validem el PASAR en tas-
ques robòtiques i en un experiment psicofı́sic humà, demostrant que el
PASAR és una eina valuosa per modelar i avaluar la cognició biològica i
per construir sistemes cognitius artificials.

viii



Summary

List of figures xxvi

List of tables xxvii

1 INTRODUCTION 1
1.1 The minimal components of biological cognition . . . . 2
1.2 Do biological cognitive systems use forward-models? . . 3
1.3 The stepwise refinement approach for modeling cognition 4
1.4 The cognitive system as a largely feedforward mecha-

nism: strengths and limits of an insect model . . . . . . 5
1.5 Accommodating the forward-model for complex robotic

tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Signature and model of anticipatory biases in human vi-

sual processing . . . . . . . . . . . . . . . . . . . . . . 7

2 AN INSECT-BASED MODEL OF KNOWLEDGE REPRE-
SENTATION AND EXPLOITATION 9
2.1 Basic model and robot implementation for static environ-

ments . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.1 Experimental setup . . . . . . . . . . . . . . . . 13
2.1.2 Task . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Simple model for mapless landmark navigation in

static environments . . . . . . . . . . . . . . . . 15
2.1.4 Reactive behaviors . . . . . . . . . . . . . . . . 17
2.1.5 Landmark recognition . . . . . . . . . . . . . . 17

ix



2.1.6 Heading direction accumulation . . . . . . . . . 18
2.1.7 Short and long term memories . . . . . . . . . . 18
2.1.8 Results . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Extended model and comparison with the biological sys-
tem in dynamic environments . . . . . . . . . . . . . . . 28
2.2.1 Navigational task and the test environment . . . 29
2.2.2 The extended model for mapless landmark navi-

gation in dynamic environments . . . . . . . . . 32
2.2.3 Dynamic memory consolidation using expectations 34
2.2.4 Results . . . . . . . . . . . . . . . . . . . . . . 40

2.3 On the necessity of top-down cognitive influence on per-
ception . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 PASAR: AN INTEGRATED BOTTOM-UP AND TOP-DOWN
MODEL FOR ACTING IN DYNAMIC UNCERTAIN ENVI-
RONMENTS 49
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Research Question . . . . . . . . . . . . . . . . . . . . 52
3.3 The model and the components . . . . . . . . . . . . . . 53

3.3.1 World Model . . . . . . . . . . . . . . . . . . . 55
3.3.2 Prediction, Anticipation and Sensation . . . . . . 55
3.3.3 Top-Down and Bottom-Up Attention . . . . . . 59
3.3.4 Sensory Data Alignment . . . . . . . . . . . . . 60
3.3.5 Motor Response . . . . . . . . . . . . . . . . . 62

4 TESTING PASAR: CONTROLLING ARTEFACTS IN REAL-
WORLD DYNAMIC ENVIRONMENTS 65
4.1 eXperience Induction Machine (XIM) . . . . . . . . . . 66
4.2 Rescue Robot Simulation . . . . . . . . . . . . . . . . . 66
4.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 XIM . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.2 Rescue Robot Simulation . . . . . . . . . . . . . 70

4.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . 72
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

x



4.5.1 Mixed Reality Space XIM Testbed . . . . . . . . 72
4.5.2 Robot Rescue Simulation Testbed . . . . . . . . 80

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 82
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 TESTING PASAR: THE BOTTOM-UP AND TOP-DOWN
INFLUENCES IN HUMAN VISUAL PROCESSING 85
5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . 87
5.1.2 Displacement detection task . . . . . . . . . . . 92
5.1.3 Psychophysical reverse correlation . . . . . . . . 94

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 99

6 CONCLUSIONS 101

7 APPENDIX 107
7.1 MCMC Implementation for JPDA Event Probability Com-

putation . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Sensory MAP Alignment Learning in the XIM Mixed-

Reality Space . . . . . . . . . . . . . . . . . . . . . . . 108
7.3 Multi-robot Testbed Equations . . . . . . . . . . . . . . 111
7.4 Multi-Person Tracking Experiment in XIM . . . . . . . 113
7.5 Bottom-up and Top-Down Attention for Action Genera-

tion in XIM . . . . . . . . . . . . . . . . . . . . . . . . 114

xi





List of Figures

2.1 (A) The artificial forager SyntheticAnt. The robot is
equipped with a wireless color camera for visual cue recog-
nition, a chemosensor array for odor detection, a wind
sensor for wind direction computation and three LEDs
for head direction computation using an overhead track-
ing system. The camera image is transmitted using a 2.4
GHz analogue wireless link. The exchange of motor com-
mands and sensor readings with the robot are realized via
a serial port over Bluetooth. (B) Wind tunnel arena. At
the back of the wind tunnel there are exhaust ventilators
that create a controlled wind flow inside the tunnel. Vi-
sual cues are placed on the floor and an overhead vision
based tracking system (AnTS) is used to reconstruct the
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cells as a sinusoidal function of the angular difference
from the cell’s preferred angle. (B) HDA-set activation
for a group of 36 HDA cells (of 10◦ resolution each) for a
movement indicated by the arrow. Blue and red lines rep-
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An example of a foraging run from nest to feeder travers-
ing some landmarks indicated by the colored shapes. (D)
HDA cell activities at the end of each landmark to land-
mark path. Y axis represents the cell activity and corre-
lates with the distance traveled in the preferred angle of
each cell, i.e. distance coded as firing rate. The X axis
stands for the accumulator cells 1 to 36. The red vertical
line with the corresponding number at the X axis shows
the accumulator cell with the highest activity. (E) During
the foraging runs from the nest to the feeder, the encoun-
tered landmarks are chained in the DAC contextual layer
short-term memory (STM) together with the HDA set.
Upon feeder detection, the contents of the STM are trans-
ferred into the LTM and the HDA-set is reset. (F) During
the recall phase, the HDA-sets starting from the recalled
segment to the goal segment are combined to compute the
optimal route to the feeder. . . . . . . . . . . . . . . . . 16
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2.3 SyntheticAnt Foraging Model: The reactive layer per-
forms reflex actions like collision avoidance, chemical
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performs landmark recognition, feature extraction, HDA
computation and constructs memory segments for each
observed landmark. A segment, as shown on the top right,
contains the extracted landmark features and an HDA-
set. These segments are sequenced temporarily in the
short-term memory (STM) of the contextual layer until
feeder detection, when the contents of the STM are trans-
ferred into the long-term-memory (LTM). During the re-
call phase (homing, landmark navigation), the LTM is
matched against the current sensory events and an opti-
mal trajectory is computed from recalled LTM segments. 19
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track shows the homing behavior of the robot after feeder
detection. (B) Nest to feeder trajectories. SyntheticAnt
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able landmarks. (C) Generalization of homing. Af-
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memorize its routes. Middle) After several foraging runs,
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original constellation of the landmarks is restored and the
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2.10 (A) DAC Contextual Layer A segment contains the ex-
tracted landmark features, an HDA-set and the segment
weight. Segments are sequenced temporarily in the short-
term memory (STM) whenever a landmark is encoun-
tered. Upon feeder detection, the contents of the STM
are transferred into the long-term-memory (LTM). Dur-
ing recall phase (homing, landmark navigation), the LTM
is matched against the current sensory events and an opti-
mal trajectory is computed from recalled LTM segments.
(B) Sequencing: During the foraging runs from the nest
to the feeder, encountered landmarks are chained in the
DAC contextual layer short-term memory (STM) together
with the HDA set. Each LTM sequence has a retention
time t owing to the transiency of memory and each seg-
ment has a weight w. (C) Recall: During the recall phase,
the HDA-sets starting from the recalled segment to the
goal segment are combined to compute the optimal hom-
ing vector. When the recalled segment and the goal seg-
ment are on different LTM sequences, the segments from
the recalled segment to the nest on one sequence, and the
nest to the goal segment on the other are combined (such
a combination is called path). Paths are weighted accord-
ing to the retention time of the sequence and the mean
relevance weights of the segments of the recalled LTM
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A) Ant trajectory in the 21st foraging run. B) Ant trajec-
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ulated at the indicated positions. C) In the next run (23)
all the visual landmarks are again placed in the positions
as in runs 1 to 21. D) The density plot of trajectory after
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3.1 PASAR proposes a three-layered distributed architecture:
reactive, adaptive and contextual (as in [113]). The reac-
tive layer contains the physical sensors and the feature
extraction mechanisms. The adaptive layer contains the
data alignment, the data association and saliency com-
putation mechanisms. The contextual layer contains the
world-model and the goals of the system. The arrows in-
dicate information flow, and the colored arrows indicate
sensation and bottom-up attention (red), prediction and
anticipation (blue) and top-down attention (green). The
motor response is a result of the integration of the bottom-
up and top-down saliency maps. . . . . . . . . . . . . . 54

3.2 Schematic of world-model and selective attention gener-
ation for a dynamic scenario. Left panel: A dynamic
scene as perceived by an autonomous system. Four en-
circled objects are perceived as closed entities by the au-
tonomous system. Middle Panel: Four concepts (mem-
ory representation of real-world objects) in n = 3 feature
space with hue, weight and height as example features.
The ellipsoids represent the covariance of the concepts.
Right Panel: The top-down attention mechanism initi-
ates an action that might have an immediate effect on the
world model (arrow 3) as the sensory input is changed by
the performed action. . . . . . . . . . . . . . . . . . . . 56

3.3 Saliency computation from multimodal sensory input:
The multimodal sensory input (A) is associated to exist-
ing targets by means of the anticipatory fields of JPDA
(B). The top-down biasing of the anticipatory fields using
the world-model is applied before data association. The
bottom-up and top-down saliency maps are combined us-
ing a common neural group onto which both the above
saliencies are mapped (C). A winner-take-all WTA neu-
ral network computes a single winner from this map (D)
and an appropriate action is triggered. . . . . . . . . . . 61
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overhead and pan-tilt cameras (gazers), movable lights
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Chapter 1

INTRODUCTION

More than a decade ago, Allen Newell argued that a model of a cogni-
tive system should be capable of explaining how intelligent organisms
flexibly react to stimuli from the environment, how they predict future
events, how they exhibit goal-directed rational behavior, how they repre-
sent knowledge, and how they learn [81]. Newell also defines the term
cognition to include perception and motor control. Despite intense re-
search in cognitive sciences, it still remains unclear how these specific
mechanisms such as prediction, anticipation, sensation, attention, mem-
ory or behavior contribute to the general process of cognition and how
they interplay in autonomous systems acting in dynamic uncertain en-
vironments [129]. On the one hand this question has been the starting
point for several behavioral and neuroscientific studies, with the goal of
understanding the biological brain. On the other hand, this question has
also been of immense interest to roboticists building artificial cognitive
systems acting in real-world environments. This is because even simpler
biological systems, such as insects, far outperform the most advanced
robotic systems in solving real-world cognitive tasks. Modeling and con-
structing artificial cognitive systems, besides being a source of inspiration
to roboticists, enables better understanding of the capabilities and limita-
tions of biological cognition. In the scope of this dissertation we address
the problem of cognition from a biological perspective rather than from
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that of traditional artificial intelligence point of view. We model the min-
imal components of cognition, aiming to capture the key ingredients of
cognition and their interplay.

1.1 The minimal components of biological cog-
nition

We first address the question of what minimal set of mechanisms are
necessary for a cognitive system. Unveiling these minimal components
serves as the starting point of our investigation about the interplay among
them. One such mechanism, namely the one that predicts the future state
of a system given the current state and the control signals, is increasingly
thought to play an important role in neuroscientific explanations of motor
control, goal oriented behavior and cognition [128]. The existence of such
a mechanism, known conventionally as the forward model, means that bi-
ological systems should be able to predict the sensory consequences of
their actions in order to have robust adaptive behavior. In this context,
the distinction between vertebrate and invertebrate nervous systems be-
comes crucial as the cognitive capabilities of animals from the two ani-
mal groups largely vary. In vertebrate neuroscience, there is substantial
interest in interpreting the function of various brain areas in these terms
(e.g. the cerebellum [76]). Besides, several authors have suggested that
forward modeling could be a unifying framework for understanding the
brain circuitry that underlies cognition [27, 11, 31]. The components of a
forward model not only include sensory input, sensory processing, motor
command and motor output, but also a prediction mechanism of future
stimuli [120, 60]. In this context, the notions of top-down and bottom-up
information flows are commonly used. Top-down information flows are
modulatory inputs from higher-level cognitive areas to lower-level sen-
sory areas. This supports the notion of a forward model as they are used
to modulate bottom-up sensory information to fit expectations based on
past events [60]. Also, growing evidence from physiology suggests that
higher cortical areas of the brain are involved in a top-down and bottom-
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up dialogue with lower areas (midbrain and superior colliculus) to solve
low-level tasks like multisensory integration [101]. In the context of this
dissertation we take a phylogenic approach to model a modular cogni-
tive system, starting with a simple model and then incorporating forward
models to account for observed insect navigational behavior in dynamic
scenarios. We then generalize and test our model in complex real-world
and simulated robotic tasks and in human visual processing.

1.2 Do biological cognitive systems use forward-
models?

Despite the fact that many authors suggest the use of forward models
for a unifying framework for understanding brain circuitry, the question
whether all biological cognitive systems use forward models is still rel-
evant [120]. The distinction between the vertebrate and the invertebrate
brain is of special interest in this discussion. It can be argued that the ver-
tebrate brain employs higher level cognitive mechanisms like prediction
and anticipation which require the brain to possess forward models [60].
The question if the invertebrate brain possesses such capabilities is subject
of ongoing debate [120]. We restrict the present work to ants as a proto-
typical invertebrate insect and to humans as a prototype of mammalian
vertebrates. Most behaviors observed in insects and other invertebrates
can be accounted for using the specialized layout and peripheral process-
ing characters of invertebrate sensors and simple bottom-up models with-
out the use of explicit forward models [121]. Nevertheless, some stud-
ies suggest the existence of forward models even in insect cognition (see
[120] for review). At the same time, it can be argued that the mammalian
brain needs to possess higher level mechanisms like prediction and antic-
ipation as the action space of mammals are much larger that the action
space of invertebrates, given that the difference in the available sensory
space is not that large [36]. Besides that, the mammalian cerebral cortex
is widely considered to be the seat of higher level cognitive capabilities
like prediction, symbolic processing, attention etc. [95]. Nevertheless, it

3



is not evident that the invertebrate kingdom does not posses such capabili-
ties, e.g. insects have brain structures called the mushroom bodies, which
might have comparable functions [53]. Evolution is yet another argument
that speaks for unique higher cognitive capabilities in higher animals, as
adapting to more complex habitats should have given rise to more com-
plex cognitive capabilities [36]. At the anatomical level, the difference in
cognitive capabilities is remarkable, materialized in the number of neu-
rons and synapses and in the complexity of brain layer structuring [106].
In summary, there is a general consensus that higher animals like mam-
mals use forward mechanisms like prediction or anticipation to achieve
adaptive behavior in uncertain environments. Nevertheless, the question
whether invertebrates do the same or if their task solving behavior can be
explained with relatively simpler models, without explicit use of forward
models, is still subject of debate.

1.3 The stepwise refinement approach for mod-
eling cognition

To contribute to the above discussion, in this dissertation we model the
key components of cognition with the aim of understanding their inter-
play while solving complex tasks in uncertain environments. We base our
model on a wide range of behavioral and neuroscientific studies in mam-
mals that suggest the existence of cognitive mechanisms like attention,
prediction and anticipation (in the scope of this dissertation we consider
only these three higher level brain mechanisms) and strong vertical in-
teractions between different hierarchichal layers of the brain during tasks
such as sensory data processing, object recognition, navigation, mem-
ory acquisition and recall etc. [27, 11, 31, 101]. Thereby our approach
is twofold: 1) we conduct experiments in biological systems (adhering
to other relevant literature in the field) and intend to model the minimal
cognitive framework that should be at work to account for the observed
behavior, 2) we test our model in real-world artefacts in solving similar
cognitive tasks and quantify the strengths and weaknesses of the model.
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We follow the principle of stepwise refinement in modeling the key cog-
nitive components. We start with the relatively simpler nervous system
of the ant and investigate the behavior of the ant in navigation tasks and
we finish with a model that integrates prediction, anticipation, sensation,
attention and motor response.

1.4 The cognitive system as a largely feedfor-
ward mechanism: strengths and limits of
an insect model

It is unclear if insect task solving skills require a high-level forward-
model or they can be explained using low-level properties of the insect
brain [120, 49]. We first consider that the rather simple insect brain does
not posses any of the higher level cognitive mechanisms like attention,
prediction and anticipation (no forward model for predicting future stim-
uli). We investigate this hypothesis in the context of navigation (foraging)
tasks by comparing real ant behavior to our basic model. We show how
our model can explain ant behavior in static environments and we also
replicate those results on an indoor mobile robot for mapless landmark
navigation. Nevertheless, the navigational behavior of the ant in dynamic
environments seem to show some evidence for the existence of a forward-
model, that predicts the positions of known landmarks. We find that our
simple model, without explicit usage of forward models, soon reaches its
limits to account for behavior in dynamic environments even in the case
of the ant. We therefore incorporate forward models and replicate ant
foraging behavior in highly dynamic environments on a simulated robot.
Our approach thereby proposes a biologically plausible alternative to the
solution of the SLAM problem in robotic navigation [99]. The crucial dif-
ference to the conventional SLAM solution is the replacement of a map
with graph structures and the reformulation of localization as a question
of relative distances and directions to landmarks.
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1.5 Accommodating the forward-model for com-
plex robotic tasks

We update our model to accommodate higher-level cognitive mechanisms
like prediction, anticipation and attention and test the refined model for
solving complex robotic tasks. Our model is inspired by the immense
efforts invested over the past two decades in discovering the brain mech-
anisms involved in the interplay between prediction, anticipation, percep-
tion, memory and action [66]. Scrutinizing the highly hierarchichal struc-
ture of the brain has been a starting point for various studies investigating
these subcomponents of cognition. The interdisciplinary research of cog-
nitive brain and robotics research has profited from the above findings
about the key hierarchical and vertical mechanisms involved in biological
cognition.

Based on the above mentioned empirical (anatomical, physiological
and behavioral) evidence that supports the notion of layered hierarchichal
control systems, many interesting theories have been proposed until to-
day. These theories propose a multi-layered framework of the brain,
that has strong top-down and bottom-up information flows (see [91] for
review). Furthermore, many of those models have been also designed
with the aim of building novel artificial systems. Among others, the Dis-
tributed Adaptive Control (DAC) framework has been proposed to accom-
modate perceptual and behavioral learning in artificial systems in a single
framework [113] (see [66] for review). Although most of the current pro-
posals have been highly influential in cognitive sciences and robotics re-
search, none of them has a framework that integrates prediction, anticipa-
tion, sensation, attention and response. We believe that such a framework
is necessary to test the interplay between the different subcomponents
and the contribution of each subcomponent to the whole artificial sys-
tem in realistic tasks such as the ones performed by biological systems.
In this context we propose PASAR, a concise and modular framework
for integrating prediction, anticipation, sensation, attention and response.
PASAR builds on the DAC architecture to structure perceptual and be-
havioral learning in three layers of control: reactive, adaptive and con-
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textual [113]. In our simulation and real-world robotic experiments, we
address the question of how each sub-component of PASAR contributes
to the overall performance in the given task and what insights we can gain
about robotic control and cognitive mechanisms in general. By perform-
ing these experiments we want to gain deeper insights into the interplay
of the different cognitive subsystems involved in solving complex tasks.
In order to test the hypothesis posed by our model about the specific inter-
play of attention, prediction and anticipation, we perform a psychophys-
ical experiment with humans, thereby validating the model in biological
cognition.

1.6 Signature and model of anticipatory biases
in human visual processing

Besides the evaluation of our model to solve robotic tasks, we also test
our model in a psychophysical experiment in humans to investigate the
existence of the hypothesized forward models in PASAR. We thereby
propose a psychophysical experimental paradigm to measure the inter-
play of top down, bottom up processes and the generation of saccades. In
addition, we formulate a probabilistic computational model of data asso-
ciation in predictable dynamic scenarios. Our model integrates top down,
bottom up processes and saccade generation, and proposes the existence
of an anticipatory field that predicts and anticipates future stimuli in a
spatiotemporally constrained fashion, and suggests the violation of antic-
ipations as a trigger for attention. Our psychophysical results support the
notion of top down prediction of visual stimuli revealing the existence
of an anticipatory field. We find that humans rely more on predictions
when working under higher cognitive loads. Our results clearly suggest
the existence of a forward model mechanism in human visual processing
involving prediction, anticipation and attention mechanisms. Moreover,
we propose a concrete signature and model for anticipatory biases in hu-
man visual processing. Many earlier studies have addressed the so-called
prediction hypothesis in human visual processing [94, 119, 61]. Also,
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some studies support the prediction hypothesis in multiple object track-
ing [110, 119, 61], but others doubt its validity [61]. Here we not only
provide a signature of an anticipatory gate, supporting the existence of
predictive mechanisms, in human visual processing, but also propose a
model for the same.
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Chapter 2

AN INSECT-BASED MODEL
OF KNOWLEDGE
REPRESENTATION AND
EXPLOITATION

The question of knowledge representation and exploitation is a key ele-
ment for cognitive systems and is crucial for solving the specific prob-
lem of autonomous navigation in a priori unknown and dynamic envi-
ronments [13]. This problem of autonomous navigation, despite massive
advances in computing power and classical branches of robotics, remains
a challenge especially when not using global positioning information and
heavy sensory and computational resources [6, 97]. Insects like ants, de-
spite having relatively limited cognitive and sensory resources, display
remarkable navigational skills over hundreds of meters in very dynamic
environments [122]. It is therefore interesting to the robotics commu-
nity to understand the parsimonious navigational strategies employed by
small-brained insects like ants. Also, navigation (among other phenom-
ena) serves as reflection of the cognitive capabilities of the ant [29, 124].
In this chapter we therefore investigate and model the behavior of ants
when solving visual landmark navigation tasks. Thereby, we use land-
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mark navigation as a benchmark task to understand the basic cognitive
principles employed by ants.

Ants have been investigated widely for their remarkable navigational
capabilites. Ants, like a wide range of other animals, are foragers and
robust navigation skills are crucial to survival for foraging successfully in
unknown environments [103, 122, 127, 29]. Some remarkable behaviors
such as landmark navigation, homing, path integration (PI) and learning
are in many occasions required to perform successful foraging. Many
ant species, like the desert ant (Cataglyphis Fortis), are known to forage
successfully in very dynamic environments and find their way back to
the nest, speaking for their robust navigational skills in changing envi-
ronmental conditions. Also, ants are a particularly interesting preparation
since the navigation of ants in dynamic environments can be tested in
a controlled manner in indoor ant arenas. We design a minimal cogni-
tive model that can capture ant behavior and implement it in a real-world
robotic platform to navigate using the same model.

This initial minimal cognitive model does not contain any forward
models but finds strong support in earlier ant navigational studies that
try to explain ant navigation using vector-like memory representations of
landmark to landmark routes [123, 124]. In the first section, we argue
that knowledge representation and exploitation in static environments in
the context of landmark navigation does not require higher level cognitive
mechanisms like attention or prediction. We also propose and implement
a model of mapless landmark navigation on an indoor robotic platform
based on ant navigational behavior. In the second section we extend the
navigation problem to include dynamic landmarks. There we test real ants
in landmark manipulation tasks to understand and model their behavior.
We test our model on a simulated robot to navigate in highly dynamic
environments, demonstrating the feasibility of our model for robotic nav-
igation . Our results suggest the necessity of a forward model for solving
the landmark navigation task in highly dynamic environments.
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2.1 Basic model and robot implementation for
static environments

Our initial navigational model is inspired by the discussion about the pres-
ence or absence of a cognitive map in the insect brain. The concept of
cognitive map for navigation, carried out mainly by Tolman [105], was
fuelled by the discovery of the so-called place cells in the hippocampus of
the rat and has widely increased our understanding of cognitive navigation
mechanisms [84, 85]. It spawned early research on navigational strategies
in cognitive neuroscience based on hippocampal representations of space
[86, 22, 77]. While mammals are assumed to learn a place/map-like rep-
resentation for foraging [84, 85], this does not seem the case in insects.

Insect navigation has been studied for more than a century [117, 28,
122, 98]. Interestingly, a wide range of findings suggests that insects
do not rely on a map for solving foraging tasks [123, 28]. Recent studies
suggest that rather than using map-like representations, insects make opti-
mal use of proprioception, landmark recognition and memory to navigate
[29]. In particular, desert ants use sun position and visual panorama for
heading direction computation [122, 4]. Complex allocentric navigational
behaviors using mainly ego-centric cues can be seen both in mammals
like rodents but also in insects like ants and bees, which have consider-
ably lower computational resources with only hundreds of thousands of
neurons. Therefore, insect navigation studies are useful in that they reveal
essential components for an efficient mapless navigation strategy. This is
especially relevant for robotic implementations of autonomous systems
and artificial foragers.

Despite massive advances in computing power and classical branches
of robotics [13, 6, 97], robotic autonomous navigation, even with the use
of global positioning information, remains a challenge. Until today a
number of neurobiologically plausible models of navigation paradigms
have been proposed for mobile robots [42, 7]. In the wake of neurobi-
ological studies of place-cells, biomimetic robotic models of map-based
navigation have recently seen great interest [7, 45]. The above mentioned
models explain navigation from place to place only in very restricted fa-
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miliar environments like mazes and small enclosures [64]. Navigators
using such map based models of navigation are required to learn those
place representations [50, 131]. Moreover, only a few of those models
have been tested with real robots [46, 45].

As map based navigation strategies suffered from an inability to tra-
verse unvisited regions of space, newer theories have incorporated path
integration and head direction signals [107]. Even more recent versions
also include cortical grid cells but still concentrate on the self-localization
aspect of navigation rather than navigation between places [51, 75]. At
the same time, the parsimonious navigation strategies of insects offer a
guideline for computationally cheaper and eventually simpler navigation
methods for mobile robots. A number of models exploit and reproduce
some of the capabilities required during foraging [15, 16, 93]. However,
many are biologically unrealistic and only deal with a very limited forag-
ing task.

This section describes a comprehensive mapless biologically based
model, including chemical search, PI and landmark navigation, of in-
sect navigation strategies that is implemented in the framework of the
Distributed Adaptive Control (DAC) architecture [113, 111]. The orga-
nization of behavior and optimal use of landmark recognition, proprio-
ceptive information, heading direction information and memory usage is
controlled by DAC and tested on an artificial foraging ant robot. Our
results show a successful integration of a number of biologically based
models and behaviors that give rise to realistic foraging. Moreover, our
model explains the generalization process as a probabilistic use of mem-
ory, which generates allothetic behavior from a limited set of idiothetic
cues in static environments.

This initial model serves as a novel biomimetic approach to mapless
autonomous navigation based on insect neuroethology. Our model unifies
different aspects of insect navigation and foraging including landmark
recognition, chemical search, path integration and optimal memory us-
age. We test our model using a mobile robot performing a foraging task.
While foraging for chemical sources in a wind tunnel, the robot mem-
orizes the followed trajectories, using information from landmarks and
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heading direction accumulators. After foraging, landmark navigation is
tested with the odor source turned off. Our results show stability against
robot kidnapping and generalization of homing behavior to stable map-
less landmark navigation. This demonstrates that allocentric and efficient
goal-oriented navigation strategies can be generated by relying on purely
local information. Furthermore, we argue that ant brain does not need
to possess any forward model to achieve stable landmark navigation in
static environments. Consistent with recent findings the model supports
navigation using heading direction information, thus precluding the use
of global information [123, 124].

2.1.1 Experimental setup

The experimental scenario consists of a robot forager called SyntheticAnt,
which is tested in a controlled indoor environment (figure 2.1). The test
environment consists of a wind tunnel used by SyntheticAnt to localize
the feeder tracking an odor plume. The wind tunnel floor contains a set
of visual cues (landmarks) for SyntheticAnt to learn its way through the
environment. A vision based overhead tracking system (AnTS) is used to
localize the robot and compute its heading direction within the test arena,
allowing for an analysis of the behavior of the robot.

2.1.2 Task

The task of the SyntheticAnt is to perform foraging using chemical sens-
ing to localize food (odor source), and vision to learn to navigate through
the environment, followed by successful homing. SyntheticAnt leaves its
nest (marked by a unique visual cue) embarking on a foraging task to
find a food source by following an odor plume up to its source (marked
by another visual cue). On this outgoing route, the robot detects visual
cues placed on the floor while performing foraging. Meanwhile collision
avoidance has to be performed using proximity sensors. Upon feeder de-
tection, it has to return to the nest using path integration information and
restart foraging again. After foraging, landmark memorization is tested by
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Figure 2.1: (A) The artificial forager SyntheticAnt. The robot is
equipped with a wireless color camera for visual cue recognition, a
chemosensor array for odor detection, a wind sensor for wind direction
computation and three LEDs for head direction computation using an
overhead tracking system. The camera image is transmitted using a 2.4
GHz analogue wireless link. The exchange of motor commands and sen-
sor readings with the robot are realized via a serial port over Bluetooth.
(B) Wind tunnel arena. At the back of the wind tunnel there are exhaust
ventilators that create a controlled wind flow inside the tunnel. Visual
cues are placed on the floor and an overhead vision based tracking system
(AnTS) is used to reconstruct the position and heading direction of the
robot.
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placing the robot in an arbitrary location in the absence of the odor plume.
Hence, in order to achieve this, SyntheticAnt has to recall the memorized
landmarks and be able to navigate to other landmarks, including the nest
and the feeder.

In figure 2.2A), each HD accumulator cell stores the value d × cosθ
where d is the distance indicated by the movement arrow and θ the devi-
ation angle of the movement from the preferred angle of the accumulator
cell. The slope of activation falls as a sinusoidal function of angular devia-
tion from the actuated direction, being 0 at 90◦. In figure 2.2C), Individual
paths from landmark to landmark are indicated by numbers 1..4. In fig-
ure 2.2E), after several foraging runs, the LTM contains several segment
sequences (a segment is defined as a combined representation contain-
ing the landmark features of one landmark and a HDA set) of different
lengths since in each foraging run only a subset of available landmarks
are visited. In figure 2.2C), Note that the recalled segment and the goal
segment can be on different LTM sequences, in which case the segments
from the current landmark to the nest on one sequence, and the nest to the
goal landmark on the other have to be combined.

2.1.3 Simple model for mapless landmark navigation in
static environments

SyntheticAnt is based on the Distributed Adaptive Control (DAC) archi-
tecture [113, 112] for the integration of a number of biologically based
models and behaviors that give rise to a realistic foraging behavior. DAC
consists of three, tightly coupled, layers for behavioral control; the re-
active, adaptive and contextual layers (figure2.3). The reactive control
layer provides the behaving system with a pre-wired repertoire of reflexes
such as collision avoidance, chemosearch, homing etc. The adaptive layer
provides the mechanisms for the processing and classification of sensory
events. The sensor and motor representations formed at the level of the
adaptive layer provide the input to the contextual layer, which acquires,
retains, and expresses sequential representations by means of short-term
and long-term memories. These representations are used to plan ongoing
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Figure 2.2: Contextual learning of landmarks:(A) Activation of HDA
cells as a sinusoidal function of the angular difference from the cell’s pre-
ferred angle. (B) HDA-set activation for a group of 36 HDA cells (of
10◦ resolution each) for a movement indicated by the arrow. Blue and
red lines represent positive and negative activations respectively. (C) An
example of a foraging run from nest to feeder traversing some landmarks
indicated by the colored shapes. (D) HDA cell activities at the end of
each landmark to landmark path. Y axis represents the cell activity and
correlates with the distance traveled in the preferred angle of each cell,
i.e. distance coded as firing rate. The X axis stands for the accumulator
cells 1 to 36. The red vertical line with the corresponding number at the
X axis shows the accumulator cell with the highest activity. (E) During
the foraging runs from the nest to the feeder, the encountered landmarks
are chained in the DAC contextual layer short-term memory (STM) to-
gether with the HDA set. Upon feeder detection, the contents of the STM
are transferred into the LTM and the HDA-set is reset. (F) During the
recall phase, the HDA-sets starting from the recalled segment to the goal
segment are combined to compute the optimal route to the feeder.
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behavior, and have been shown to be compatible with formal Bayesian
models of decision making [112]. All computations are implemented us-
ing the neural simulation tool IQR [17].

2.1.4 Reactive behaviors

The reactive layer of SyntheticAnt implements a set of reactive behaviors
including:

• Chemical search: SyntheticAnt implements a model based on the
best studied case of chemotactic behavior, moth chemotaxis (as in [93]).
It consists of an upwind movement (surge) whenever the animal perceives
the odor stimulus and otherwise an oscillatory crosswind search (cast) un-
til the odor plume is found again. The implementation of this behavior
was done using the IQR neural simulator [17].
• Collision avoidance: Virtual proximity sensors, derived from the track-
ing system (figure 2.1), are used to avoid immediate collisions.
• Feeder detection: After finding the feeder (odor source) SyntheticAnt
returns to the nest using a computed home vector by means of path inte-
gration, further referred to as homing.
In the absence of the odor plume SyntheticAnt’s surge-and-cast reactive
behavior simplifies to a simple cast, which enables SyntheticAnt to ex-
plore the environment until a memorized landmark is encountered. In
the absence of the odor plume a stochastic behavior is employed to avoid
getting stuck.

2.1.5 Landmark recognition

Landmark recognition is implemented using a neural network that ex-
tracts prominent hue and edge features of visited landmarks using a neural
network for extracting salient landmark features from the camera image
using the neural simulation tool IQR [17]. See table 2.1 for the neural
network parameters.
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2.1.6 Heading direction accumulation
Path integration (PI) uses self-motion cues to compute the vector between
the navigator’s current position and the starting point, i.e. home base. In
our model we make use of heading direction and proprioceptive infor-
mation to acquire PI. We propose the use of head direction accumulators
(HDA), as postulated in [64]. A HDA is a neuron that fires only when the
navigator heads in a particular direction. Furthermore, the firing rate of
such a neuron correlates with the distance covered in that direction (fig-
ure 2.2, B). HDAs are assumed to integrate sensory information such as
optic flow, polarized photoreceptors, sun position and proprioceptive in-
formation until reset [64]. Hence, a group of HDA neurons each of which
is tuned to a different angle at equal intervals covering 0 to 360 degrees
encodes the direction and distance from the previous position at which
the HDA-set was reset. The activation of an HDA-set is governed by a
cosine function as shown in figure 2.2. The slope of the activation rate is
highest when the navigator moves in the HDA cell’s preferred direction
and falls according to the cosine function with angular deviation, consis-
tent with [64] [100]. During foraging, whenever SyntheticAnt encounters
a landmark, the set of detected landmark features and the current HDA
information is passed to the STM of the contextual layer of DAC, as dis-
cussed in the next subsection. After that, the HDA-set is reset and the
foraging continues.

2.1.7 Short and long term memories
The contextual layer supports the formation of more complex representa-
tions of perception and events (processed by the adaptive layer) express-
ing their relationship in time. In the case of the SyntheticAnt, pairs of
visual cues and HDA information form basic memory elements, called
memory segments. During the acquisition phase (foraging) salient events
(cue detections) are first stored in short-term memory (STM) together
with the current HDA. When the goal state is reached, the content of
the STM is stored in the long-term memory (LTM) as a sequence (figure
2.3). During the recall phase (landmark navigation), the LTM is matched
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Figure 2.3: SyntheticAnt Foraging Model: The reactive layer performs
reflex actions like collision avoidance, chemical search, homing, etc. Dur-
ing foraging, the adaptive layer performs landmark recognition, feature
extraction, HDA computation and constructs memory segments for each
observed landmark. A segment, as shown on the top right, contains the ex-
tracted landmark features and an HDA-set. These segments are sequenced
temporarily in the short-term memory (STM) of the contextual layer until
feeder detection, when the contents of the STM are transferred into the
long-term-memory (LTM). During the recall phase (homing, landmark
navigation), the LTM is matched against the current sensory events and
an optimal trajectory is computed from recalled LTM segments.
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against the current sensory events. Goal cue is defined as a the feature set
characterizing a specific landmark. Matching LTM sequences containing
both current sensory perception and goal cues are recalled to compute the
optimal route from the current position to the goal landmark. Matching is
accomplished by the following distance function:

d(a, b) =
1

K

∑
i

| ai
max(a)

− bi
max(b)

| (2.1)

a where a and b are vectors in RK and a is the current activity of the cue
information and b is the stored cue information. A segment is selected
when the distance 1 − d(a, b) is higher than a predefined threshold. The
selected segment and segments stored in the same sequence together con-
tain the accumulated PI information (HDA) to the goal.

To compute the optimal route from the currently perceived landmark
to an arbitrary landmark, we consider the scenario where the currently
selected segment (landmark) and the goal segment (landmark) are on dif-
ferent LTM sequences. To do this, we first compute the homing vector by
summing and inverting the sequence of HDA-sets stored in all segments
from the currently selected segment until nest on the first sequence. To
this we add the sum of the HDA-s from nest to the goal segment (land-
mark) on the second sequence. This allows computing optimal routes be-
tween any two landmarks represented in arbitrary segments in the whole
LTM.

After multiple foraging runs, SyntheticAnt might encounter landmarks,
that had been seen in different foraging runs. This fact will select seg-
ments of different sequences in the LTM during recall. In this case, each
selected segment will return a homing vector, which have to be merged
optimally. This generalizes from homing to landmark navigation if the
goal landmark is not the nest. In general we refer to the decoded heading
direction and distance as action (or action HDA-set). Assuming a white
noise error, this decoded heading direction and distance to the goal can be
formulated as a 2D Gaussian probability distribution:

X̄ ∼ N(µ̄, σ2) (2.2)
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where X̄ = [α, δ]T . α is the angle and δ the distance coded by the ac-
tion HDA-set. The action HDA-set, X̄ , can be formulated as a Gaus-
sian distribution with mean µ̄ and variance σ2. The variance σ2 grows
with the total distance dist covered during the heading direction accu-
mulation. This can generally formulated as a function: σ2 = f(dist).
Given this Gaussian distribution for each recalled segment action, we use
Bayesian inference to compute the best action. If n actions are recalled,
the best action a is the action with the highest conditional probability:
P (a|X̄1, X̄2, ..., X̄n). And using Bayes theorem., the probability of the
optimal action is computed:

P (a|X̄1, X̄2, ..., X̄n) =
P (a)P (X̄1, X̄2, ..., X̄n|a)

P (X̄1, X̄2, ..., X̄n)
(2.3)

where the numerator P (a)P (X̄1, X̄2, ..., X̄n|a) is the joint distribution
P (a, X̄1, X̄2, ..., X̄n) and the denominator P (X̄1, X̄2, ..., X̄n) is a constant
without effect.

Using conditional independence of memory sequences, the above equa-
tion can be reformulated as:

P (a|X̄1, X̄2, ..., X̄n) ∝ P (a)
n∏
i

P (X̄i|a) (2.4)

P (a) is uniformly distributed in an a priori unknown environment.
Therefore, the computation of P (a) in equation 2.4 can be reduced to
the product of Gaussians X̄1, X̄2, ..., X̄n. The resulting action with the
highest probability is optimal in the Bayesian sense.

SyntheticAnt runs on an Intel(R) Core(TM)2 Duo CPU 2.66GHz ma-
chine with GNU/Linux Suse10.3 operating system at about 35 Hz. The
parameters of the neural simulation using the IQR toolkit [17] is summa-
rized in table 2.1.

2.1.8 Results
SyntheticAnt was exposed to a number of tests in the arena shown in fig-
ure 2.1, where it had to forage starting from the nest and to find the feeder
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Figure 2.4: Foraging to landmark navigation: All plots are superim-
posed on the tracking camera image. The vertical bar in the middle of
the image belongs to the wooden structure of the wind tunnel and does
not interfere with the movement freedom of SyntheticAnt. (A) Foraging
and homing. The red dots indicate robot positions during foraging from
nest to feeder. The green circles indicate encountered landmarks. The
white arrows indicate the corresponding HDA sets from the DAC contex-
tual layer. The blue square on the right is the feeder. The yellow arrow
corresponds to the computed homing HDA. The yellow track shows the
homing behavior of the robot after feeder detection. (B) Nest to feeder
trajectories. SyntheticAnt is guided through two different trajectories
from nest to feeder (indicated as run 1 and run 2, leading through avail-
able landmarks. (C) Generalization of homing. After the runs shown
in B, SyntheticAnt is kidnapped and placed in an arbitrary position in the
arena. Upon landmark detection SyntheticAnt recalls all possible straight
routes to other landmarks including the nest and feeder, indicated by the
white arrows. (D) Route execution. After recall, SyntheticAnt traverses
recalled routes. 22



# total neurons 62771
# total neuron groups 252

# integrate and fire 29
# linear threshold 202
# random spike 21
# total synapses 103872

# cells in HDA set 72
# cells in landmark features 2 × 4

processes 16

Table 2.1: Neural simulation parameters

placed at the upwind end of the wind tunnel. Upon feeder detection it
had to compute the homing vector and return to nest. After foraging runs,
the chemical cue was switched off and SyntheticAnt was kidnapped and
placed in an arbitrary position in the arena. At this point, it had to find a
landmark and reach other landmarks and the feeder by generating optimal
routes.
An overhead camera is used to track the position of the robot for data
analysis, together with the logged data from the neural simulation of the
model. Figure 2.4 A, shows a foraging run through landmarks and homing
behavior on a straight line to the nest from the feeder. Encountered land-
marks during the foraging run are shown as green circles in figure 2.4, A.
The nest is indicated by the blue rectangle. After a foraging run, when the
feeder is found, the homing vector is recalled automatically and the DAC
reactive layer of SyntheticAnt initiates the homing behavior. SyntheticAnt
is also able to generalize homing to landmark navigation and can traverse
unknown paths to go from a given landmark to another landmark encoun-
tered during a different foraging run (figure 2.4 B,C,D). The homing path
shows a zig-zag movement as the robot tries to correct its current heading
direction using the difference between the accumulated HDA starting at
the feeder and the contextual memory response HDA. Such a correction
is equivalent of the general proportional controller

Memorized and computed HDA sets are direction vectors leading from
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one landmark to another (shown as arrows in figure 2.4). Decoding of an
HDA neuron group into the direction α is done as following:

α =
360

N
∗ I

where N is the number of neurons in the HDA set and I the index of the
neuron with highest activity in the set. The distance D is coded directly
by the activity rate of the neuron I . See also figure 2.2 A,B,C,D for HDA
coding.

Figure 2.5 is the density plot of tracking data and summarizes the
typical behavior of SyntheticAnt during 5 foraging runs. The landmark
regions get very high density as landmark recognition stops the robot for
some time to ensure precise feature extraction of the landmark. The robot
stops to avoid collisions when at the periphery of the field and this results
in some high density spots along the periphery.

The use of overhead tracking for the computation of the heading di-
rection and proprioception of the SyntheticAnt gives highly precise HDA-
sets. This is very useful for testing the feasibility of our insect model
and also to conduct tests inside a wind tunnel. However, in real world
experiments these computations will be erroneous due to sensor errors.
Therefore in future work the overhead tracking will be replaced by odom-
etry sensors (e.g. using optic flow) and heading direction sensors (e.g.
using solar compass). This means that the precision of HDA computation
will fall since such sensors have intrinsic errors. While error in head-
ing direction and path integration accumulates with the distance traveled,
the precision of the computed HDA falls. To evaluate the performance
of our system when using such imperfect information, we conducted the
following experiment. From three foraging runs of SyntheticAnt going
through different landmarks, we evaluated the error in the computation of
the homing vector when using one, two or three recalled DAC LTM se-
quences. Noise in the HDA sets for each path-segment in each sequence
(from one landmark to the next), was modeled as linearly correlated with
the distance traveled. Specifically a white noise of mean zero and a vari-
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able variance (SNR) proportional to the distance traveled was induced on
each HDA set. After this, the homing vector was computed in three dif-
ferent ways: using each of the three sequences individually, by combining
just two of the three and by combining all three together. The fusion of
different sequences was done using the DAC Bayesian fusion algorithm
described earlier (equation 2.4). We assessed the robustness of the sys-
tem by measuring the error when varying the signal to noise ratio (SNR)
from 0.1 to 100. Results show that the error falls with the number of se-
quences used to compute the homing vector (number of runs/experience
of the forager) for all ranges of the SNR values of sensors, see figure 2.6.
This not only justifies the Bayesian merging of LTM responses but also,
it indicates the validity of the proposed insect-model also when using real
odometry and heading direction sensors. The error in homing vector com-
putation (or in landmark to landmark route recall in general) is negatively
correlated with the SNR of the HDA computation. For low SNRs (i.e.
low precision sensors) the error rises drastically whereas for high SNRs
(high precision sensors) it falls, see figure 2.6.

A remarkable property of the three coupled control layers of DAC is
the emergence of useful behavioral properties. One of them is maneu-
vering in a dynamically changing world. To test this behavior we placed
obstacles in the arena as SyntheticAnt was performing landmark naviga-
tion or homing. The collision avoidance reactive behavior then had to
compete with the previously active behavior mode (e.g. homing or surge-
and-cast) to maneuver around the obstacle. Thereby the desired heading
direction has to be corrected for the movement of the robot. A typical
example of such a maneuver is shown in figure 2.7.

We note that our results were achieved in static environments with
just the use of a memory sequencing mechanism and recall. There was no
explicit forward model at use. Our model provides a concise explanation
to the supposedly mapless landmark navigation mechanism employed by
insects like ants. Next we investigate how the model can be extended
to solve the problem of landmark navigation in highly dynamic environ-
ments.
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Figure 2.5: Foraging behavior as density plot: Position data from five
foraging runs of SyntheticAnt were used. The high density areas are near
landmarks, the nest (leftmost high density circle) and feeder (rightmost
high density circle). Also some peripheral areas have relatively high den-
sities due to the fact that SyntheticAnt stops to avoid collisions. The plot
illustrates the typical behavior of the robot during foraging. The color-
bar indicates the number of occurrences of the robot at a given position.
A numerical interpolation was applied to smoothen the tracked position
data.
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Figure 2.6: Bayesian merging of LTM sequences: The error in homing
vector computation (or in landmark to landmark route recall in general)
as a function of the SNR of the HDA computation. The errors when using
one, two or three LTM sequences in combination are shown. The colored
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Figure 2.7: Acting in a dynamic world: SyntheticAnt was exposed to
virtual obstacles (filled circle) placed on its route during homing or land-
mark navigation. The tracked positions of the robot are indicated by the
yellow dots.
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2.2 Extended model and comparison with the
biological system in dynamic environments

In the previous section we described a comprehensive mapless model,
including chemical search, PI and landmark navigation, of insect navi-
gation strategies [74]. That navigational strategy was based on the so
called heading direction accumulation mechanism, which was recently
hypothesized to be used by insects for navigational purposes [64]. How-
ever, the problem of information gathering, representation and usage was
not addressed in the context of dynamic environments. This becomes
highly relevant as the autonomous navigator has to act in a dynamic world
with non-static landmarks, where previously acquired knowledge has to
be exploited and adapted at the same time. We address here the ques-
tion whether insects like ants use forward models to do the address the
above problem for landmark navigation in dynamic environments. We
analyze navigational behavior of the Formica Cunicularia1 ant species in
controlled landmark manipulation experiments and we observe that ants
do use expectations about the relative direction and distance of landmarks
from other landmarks and they adapt their expectations to match their
current perceptions, speaking for the existence of a forward model. We
enhance our simple model to accommodate for the more complex behav-
ior.

To this end we propose an autonomous navigation method in dynamic
environments based on recent views from cognitive psychology [79] and
insect neuroethology and physiology, which suggest that insects expect
future events based on past experiences [44]. We propose an expectation
reinforcement paradigm to adapt the confidence of the artificial forager in
encountered landmarks. We also propose a variant of an insect-like proba-
bilistic search strategy suggested earlier to be used by insects upon expec-
tation violation [116, 96]. As the initial simpler model, our current model
is also based on the Distributed Adaptive Control (DAC) framework that
organizes behavior in three levels of adaptive control [113, 111]. We im-

1a mining ant of the Formica fusca group, commonly seen in southern England
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plement the model using the large-scale neural simulator IQR [17] and
test it in a simulated robot. In our experiments we first evaluate the capa-
bility of our model to solve a complex navigational task in an unknown
dynamic environment. We further carry our experiments with real ants
to compare their behavior with the robot model in the same navigational
task. Our results show a successful autonomous navigation strategy in
dynamic unknown environments and striking similarity to insect behav-
ior. Moreover, our model explains autonomous navigation as a dynamic
process of memory reconsolidation, which harnesses expectations that are
readily available from past explorations.

2.2.1 Navigational task and the test environment
Task

Both the real ant and the artificial forager called SyntheticAnt are made to
forage for the feeder (food location) in an initially unknown environment
starting from its nest. The environment contains many visual landmarks
which could be used by the forager for navigation. After many foraging
runs, some landmarks are displaced or removed. The forager is then made
to forage in this manipulated environment. In the next foraging runs, the
original landmark constellation is restored. This task allows to study and
compare three key issues of autonomous navigation:
• learning landmark navigation in a dynamic environment
• behavior upon detection of landmark manipulation
• confidence adaptation depending on the reliability of the landmarks af-
ter restoration.

See figure 2.9 for an illustration.

Real ant experiments in dynamic environments

We perform real ant foraging experiments as described above using the
desert ant (genus Cataglyphis). Landmark manipulation tasks are per-
formed using several colored ants and the ant trajectories of the foraging
runs are recorded using the AnTS overhead camera tracking system. It
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Figure 2.8: Insect behavioral analysis, modeling and testing on robots:
A) Real-world ant experimental studies are performed and the behavior of
the ant is recorded using a tracking camera. Controlled manipulations of
visual landmarks in the ant arena are made in order to analyze the ant
behavior. B) We first model the ant behavior based on the understanding
of the underlying neural principles. The ant experimental data is analyzed
and fed into the SyntheticAnt simulation of the navigational model. This
simulation is used to tune the parameters of our navigational model on
a simulated robot. C) The real-world robot SyntheticAnt is tested with
analogous manipulations of visual landmarks in the arena, allowing direct
comparisons of the behaviors of real ant and the robot. The results of this
is again used to design new ant experiments.
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Figure 2.9: Autonomous Navigation Task: Left) In the training ses-
sion (also called foraging) the navigator leaves its nest to forage for food,
traversing an arena with visual landmarks. These visual cues are used by
the navigator to memorize its routes. Middle) After several foraging runs,
a manipulation is made in the arena (i.e. a landmark is displaced or re-
moved as the red triangle in the figure), and the behavior of the navigator
observed. Right) The original constellation of the landmarks is restored
and the behavior of the navigator is observed.
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is important to note that in the real ant navigation experiments, the paper
on the floor of the arena was replaced after each foraging run, in order to
avoid the use of chemical cues by the ants.

Modeling and simulation environment

The modeling environment allows the input of the real ant trajectory for
the simulated ant called the SyntheticAnt, allowing it to have the same
perceptual input during foraging. Also free foraging behavior is available.
The simulation replicates the real arena and the robot. It allows testing
navigational paradigms before they are tested on the real robot. In this
work we only consider the simulated robot.

We test the proposed navigational model on the simulated robot. As
the neural implementation of the model is the very same for the simulated
and the real SyntheticAnts, the transition from simulation to real world is
readily manageable. More details of the experimental setup and the real
robot version of the SyntheticAnt are discussed in [74].

2.2.2 The extended model for mapless landmark naviga-
tion in dynamic environments

Here we discuss how we adapt the Distributed Adaptive Control (DAC)
architecture we used in the previous section to model the behavior of ants
in dynamic environments [74]. The Distributed Adaptive Control (DAC)
architecture has been shown earlier to be capable of optimizing behav-
ior using behavioral and perceptual learning in robots [113, 112]. DAC
consists of three, tightly coupled layers for behavioral control; the reac-
tive, adaptive and contextual layers. The reactive control layer provides
the behaving system with a pre-wired repertoire of reflexes such as col-
lision avoidance, chemosearch, homing etc. The adaptive layer provides
the mechanisms for the processing and classification of sensory events.
The contextual layer acquires, retains, and expresses sequential represen-
tations by means of short-term and long-term memories, figure 2.10, A.
(In this section, as we are concerned with information representation and
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Figure 2.10: (A) DAC Contextual Layer A segment contains the ex-
tracted landmark features, an HDA-set and the segment weight. Segments
are sequenced temporarily in the short-term memory (STM) whenever a
landmark is encountered. Upon feeder detection, the contents of the STM
are transferred into the long-term-memory (LTM). During recall phase
(homing, landmark navigation), the LTM is matched against the current
sensory events and an optimal trajectory is computed from recalled LTM
segments. (B) Sequencing: During the foraging runs from the nest to the
feeder, encountered landmarks are chained in the DAC contextual layer
short-term memory (STM) together with the HDA set. Each LTM se-
quence has a retention time t owing to the transiency of memory and each
segment has a weight w. (C) Recall: During the recall phase, the HDA-
sets starting from the recalled segment to the goal segment are combined
to compute the optimal homing vector. When the recalled segment and
the goal segment are on different LTM sequences, the segments from the
recalled segment to the nest on one sequence, and the nest to the goal
segment on the other are combined (such a combination is called path).
Paths are weighted according to the retention time of the sequence and the
mean relevance weights of the segments of the recalled LTM sequence.
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using it as a forward model, we only deal with the contextual layer.) These
representations are used to plan ongoing behavior, and have been shown
to be compatible with formal Bayesian models of decision making [112].
We use the DAC contextual layer to learn sequences of landmarks to-
gether with their Heading Direction Accumulator (HDA) set. Using this
the navigator can memorize several trajectories from the nest to feeder,
leading through different landmarks. The DAC contextual layer recall
mechanism is used when in the test scenario, a particular landmark is en-
countered, to recall the vectors to other landmarks. The details of this
mapless navigational strategy is discussed in the previous section [74]. In
this section, we consider the use of DAC contextual layer and its recall
mechanism as a forward model for learning to navigate in unknown and
dynamic environments.

2.2.3 Dynamic memory consolidation using expectations

Cognitive psychology has recently begun to embrace a new position rec-
ognizing memory as a highly dynamic process [79]. In this new view,
remembering and forgetting are not merely transient processes; moreover
they are achieved through a highly dynamic (re)consolidation process.
Strong support for such a dynamic memory comes from animal neuro-
science studies as reviewed in [79].

At the same time, insects have also been shown to expect events using
memories acquired in the past, speaking clearly for the existence of a for-
ward model [44, 43]. Building upon these two recent advances in neuro-
science and cognitive psychology, we propose a dynamic memory model
for insect-like mapless navigation in uncertain environments, which uses
expectations to consolidate or forget already acquired memories, figure
2.11. We propose a dynamic contextual layer LTM of Distributed Adap-
tive Control for mapless navigation using heading direction accumulation
cells. Therefore we consider memory transiency (to account for dynam-
ics of the memory), adaptive confidence in landmarks and an expectation
mechanism (to account for a forward model) as the necessary enhance-
ments of our simple model to account for the complex ant behavior in
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highly dynamic environments.

stable
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memory

consolidate

recall

acquire

forget

Figure 2.11: Dynamic Memory Reconsolidation Schema: As a mem-
ory is acquired it enters the instable state and then is consolidated into
the stable state. Nevertheless, memories in the stable state can reenter the
instable state upon recall. Reconsolidation again stabilizes this memory
that otherwise gets forgotten [79].

Transiency and confidence in memory sequences

We elaborate how transiency and confidence in memory traces are formu-
lated for mapless navigation in uncertain environments. First we consider
the situation, where the SyntheticAnt is kidnapped after many foraging
runs and placed at an arbitrary visual landmark. The details of the mem-
ory recall using the DAC contextual layer for mapless navigation can be
consulted in section 2.1.7 [74]. Memory recall of the DAC contextual
layer is used to compute an optimal path to another given landmark; we
further refer to this as the memory answer. We define a vector ~V as a
two dimensional vector indicating the angle γ and distance ψ of a given
memory answer: ~V = [γ, ψ]T . Assuming that n LTM sequences were
recalled, we are interested in computing the probability distribution:

P (~V |t, ~V t
1 , t

ret
1 , rseg1 · · · ~V t

n , t
ret
n , rsegn ) (2.5)
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where ~V is the vector indicating the goal, t is time, ~V t
i is the vector

suggested by LTM sequence i, treti is retention time of LTM sequence
i and rsegi is the segment relevance of the recalled segment of LTM se-
quence i.

We look at the contribution of one LTM sequence i to the overall
memory answer:

P (γψ|t, ~V t
i , t

ret
i , rsegi ) (2.6)

First, we consider equation 2.6 without the retention times:

P (γψ|t, ~V t
i , r

seg
i ) (2.7)

Using conditional independence of angle and distance we get

P (γψ|t, ~V t
i , r

seg
i ) = P (γ|t, ~V t

i , r
seg
i )

· P (ψ|t, ~V t
i , r

seg
i )

· P (t, ~V t
i , r

seg
i ) (2.8)

where ~V t
i = [γti , ψ

t
i ]
T . We formulate P (γ|t, ~V t

i , r
seg
i ) and P (ψ|t, ~V t

i , r
seg
i )

as Gaussian distributions centered around the means γi and ψi respec-
tively with time dependent variances, signifying that higher weight seg-
ments have a higher influence on the total memory answer as they have
a smaller variance. This dynamically adapting variance is used to weight
successful segments more and unsuccessful ones less.

P (γ|t, ~V t
i , r

seg
i ) = N (γi, f1(r

seg
i )) (2.9)

P (ψ|t, ~V t
i , r

seg
i ) = N (ψi, f2(r

seg
i )) (2.10)

where f1 and f2 are exponential growth functions of variance:

f1(x) = a1e
k1(x) (2.11)

f2(x) = a2e
k2(x) (2.12)
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As all memory answers should be seen as equally probable and no
correlations of distance, angle and retention-times of LTM sequences are
known, we assume the uniform distribution:

P (t, ~V t
i , r

seg
i ) = U (2.13)

Now we consider the contributions of all selected LTM sequences
weighted by segment retention times treti :

P (~V |t, ~V t
1 , t

ret
1 , rseg1 · · · ~V t

n , t
ret
n , rsegn ) =∑

i

treti
ttot

P (γ|t, ~V t
i , r

seg
i )P (ψ|t, ~V t

i , r
seg
i )P (t, ~V t

i , r
seg
i ) (2.14)

where ttot =
∑
i t
ret
i . Equation 2.14 signifies that the sequence reten-

tion times are used to weight the shares of LTM sequences to the final
memory answer. In other words, sequences are weighted so that mem-
ory acquired further back in the past is weighted less than more recent
memory.

Building up confidence in uncertain environments

When a landmark (or feeder) at a known location ceases to be available or
its position is manipulated, insects have been shown to exhibit search pat-
terns that optimize rediscovery of the landmark (or feeder) [116]. We fur-
ther refer to landmark manipulations of all kinds as manipulation. It has
also been proposed that such search patterns in insects could be modeled
using Lévy walks [96]. Lévy walks are characterized by a distribution
function

P (lj) ∼ l−µj (2.15)

with 1 ≤ µ ≤ 3, where lj is the walk length. The direction of the
walk is drawn from a uniform distribution. The natural parameter µ has
been shown to be optimal at the value 2 for modeling insect manipulation
behavior, yielding an inverse square power-law distribution [116].
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Here we propose a modified version of Lévy walk, to model the con-
fidence building behavior exhibited by ants upon manipulation. By con-
fidence building behavior we mean the specific behavior exhibited by the
animal once it detects the manipulation of a known landmark, namely the
environment resampling strategy that seems to serve the purpose of re-
building the confidence about the route to the feeder. The key idea is to
propagate the initialization point of the Lévy walk towards the nest, so that
the probability of encountering known landmarks is increased. Thus, the
forager can slowly build up confidence about the distance and direction to
the navigational goal. The proposed version of Lévy walk is summarized
in the pseudo-algorithm below:

while |con| ≤ ε do
t← 0
while t ≤ θ do
perform Lévy walk from i
upon landmark detection : update con

end while
if i = nest then
reset i to manipulation point

else
propagate i towards nest

end if
end while

where con is the mean confidence about the goal direction and dis-
tance, i the current position at which the Lévy walk is initialized, and θ
and ε two appropriate thresholds. The artificial forager is made to switch
to the above described search mode, when either an expected landmark is
not encountered or when a landmark with a very low confidence is found.
The duration of the Lévy walk is much higher in the first case and linearly
decreases with the confidence in the landmark, controlled by setting the
above parameters ε and θ. Our new proposal of the Lévy walk helps the
reinforcement of expectations as it lets the autonomous navigator validate
its expectations by going back to known terrain, instead of searching ran-
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domly in the whole arena. This is strongly suggested by observed ant
behavior in similar situations and is evaluated in our experiments.
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Figure 2.12: Expectation reinforcement for memory consolidation:
Discrepancy between expected paths and computed paths are used to con-
solidate memory by means of setting LTM segment weights and writing
new LTM sequences.

Adapting landmark reliability measure using expectations

The forager’s belief about the reliability of individual landmarks should
be updated each time a landmark is encountered. For this we use an ex-
pectation reinforcement mechanism, which gives rise to a dynamic mem-
ory reconsolidation process [79]. Expectations for positions of individual
landmarks can be read out from the DAC contextual layer memory. The
discrepancy between perceived position of a landmark and the expected
position is used to update the reliability of the landmark, i.e. the weight
of a DAC contextual layer segment, as shown in figure 2.12.
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To update the DAC LTM segment weight using the discrepancy, we
use the exponential decay function

rsegt+1 = rsegt e−λd (2.16)

where d is the discrepancy and t is time step. This causes the segment
weight to fall exponentially from its current value if the discrepancy is
high. Discrepancies are normalized (0 ≤ d ≤ 1) so that d = 1 for the
highest possible discrepancy (the length of the diagonal of the arena). The
natural parameter λ was shown to optimally fit observed insect behavior
at the value 2 [116]. The above decay is applied only if the discrepancy
is above a fixed threshold. Otherwise, the segment weight is allowed to
grow according to a linear function. In the following, we use the terms
landmark reliability and confidence interchangeably.

2.2.4 Results
First we test the ability of the proposed model to learn the reliability of
landmarks. For this purpose we test the simulated SyntheticAnt in an
arena with 10 visual landmarks. During the foraging no landmark ma-
nipulation were carried out. After that, during the test 9 of the 10 visual
landmarks were displaced randomly in each run, i.e. there was only a
single stable landmark. After the foraging runs, we test the feeder direc-
tion and angle from the nest, computed as discussed earlier, using each of
the 10 landmarks. Note that for this the distance and angle to the feeder
from an arbitrary landmark is computed first using DAC contextual recall
(as in [74]), which is then added to the vector leading from the nest to
this landmark. This allows to visualize the belief of the forager in the
reliability of each landmark as a probability distribution, as plotted in fig-
ure 2.13. The SyntheticAnt learns through expectation reinforcement that
only landmark number 10 is stable. The evolution of the confidence in
the landmarks are shown in figure 2.13 A (before the test runs), B (after 5
test runs) and C (after 10 test runs).

Note that a single simulation trial approximately runs for the same
time as an ant foraging run and we perform qualitatively the same kind
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of landmark manipulations in the real ant experiment and in the simula-
tion. We also use similar landmarks in the simulation as used in the ant
experiments. Nevertheless, for simplicity we do not consider complex
landmarks such as shadows, light direction etc. known to be used by real
ants in the simulation. Our simulations run at about 30Hz on an Intel(R)
Core(TM)2 Duo CPU 2.66GHz machine under openSUSE 10.3.

Table 2.2 shows the learned parameters of confidence in the individual
landmarks, which corresponds to figure 2.13, C. The growing skewness
of the distributions from left to right shows growing asymmetry in the
distribution, indicating that the navigator increases confidence in some
landmarks and decreases in some others.

Table 2.2: Landmark stability learning experiment: the table shows
the ten landmarks available in memory, the angle and distance from each
landmark to feeder, the segment relevance of the segment containing the
landmark (rseg) and the retention time (tret) of the memory sequence from
which this landmark recalled.

Landmark Distance Angle rseg tret

1 5.1 181.5 0.019569 10
2 2.5 220.3 0.09090 5
3 3.3 94.6 0.03333 3
4 1.1 144.4 0.04 4
5 2.4 124.6 0.06666 5
6 3.5 91.0 0.04348 6
7 3.5 55.9 0.05263 7
8 4.2 64.1 0.04762 1
9 5.7 44.1 0.05263 3
10 9.1 35.2 0.9 9

The segment retention time tret is the number of the latest foraging
run in which the corresponding landmark was encountered, i.e. giving
a high value to recent runs. The segment weight rseg is initialized to 1.
Note that landmark 1 was seen more recently than landmark 10, but as
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Figure 2.13: Expectation reinforcement for learning stable land-
marks: A) Before the test runs (but after several foraging runs) Syntheti-
cAnt has encountered all 10 landmarks, but has the same confidence in all
of them. The observed variance is due to different LTM sequence acquisi-
tion times. B) After 5 test runs, during which 9 out of 10 landmarks were
displaced, the probability distribution for the confidence changes. C) The
confidence probability distribution after 10 test runs. The plot shows the
computed home distances and angles (as a probability distribution) using
individual landmarks using memory recall for each landmark. The indi-
cated skewness values are the third central moments of sample values,
divided by the cube of their standard deviations. The growing skewness
from left to right indicates growing asymmetry in the distribution.
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the segment weight of landmark 1 is very low it has low influence on
the overall answer. As shown in figure 2.13, the confidence for stable
landmarks is reinforced and is higher than instable landmarks; i.e. the
forager learns the stability of the landmarks. In short, higher frequency of
landmark position manipulations lead to lower segment weights, meaning
lower confidence represented by higher covariances of Gaussians. The
stable landmark has a greater influence than instable ones on the overall
memory readout (higher probability). The forager thus learns the stability
of the individual landmarks. Therefore higher frequency manipulations of
landmarks are reflected directly in the joint probability distribution with
lower probabilities. In short, the higher the search intensity the lower the
confidence.

Given the above result, we now investigate how the SyntheticAnt can
regain its confidence, once its expectation is violated. Expectation is vio-
lated when an expected landmark is missing or if a low confidence land-
mark is encountered. As described before, the SyntheticAnt falls into the
Lévy search mode and the intensity of the search is higher if the landmark
is missing. We evaluate how confidence is regained with time and how
the search intensity influences (figure 2.14). The θ value indicates the
search intensity (θ3 > θ2 > θ1). The results show that the confidence is
regained with time, where high intensity searches allow to reach a higher
confidence threshold in a shorter amount of time.

In figure 2.15B) the animal finds high discrepancy between its expec-
tation and perception. This results in very low confidence and it performs
correction maneuvers by going back towards the nest. The norms of the
position density matrix, reflecting the task resolution times, for the real
ant and the robot are shown in figure 2.16.

Given the above results, we predict that our model should behaviorally
be similar to a real ant. This prediction is tested using real ants in the same
landmark manipulation and restoration task. To perform the same land-
mark manipulation task, we first test the real ant and feed the recorded
trajectory to the SyntheticAnt, so that both navigators have the same per-
ceptual input. In further analysis, we define the confidence of the real ant
or the SyntheticAnt in a landmark as inversely correlated with the com-
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Figure 2.14: Confidence recovery and search intensities: The recovery
of confidence with time (after initialization of the Lévy search) is indi-
cated. High intensity searches (indicated by the θ values) reach a certain
confidence threshold quicker. A high intensity Lévy search is initialized
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Figure 2.15: Real ant benchmark: The upper panel and lower panels
show real and Synthetic ant data in the same landmark manipulation task.
The ant performs 25 foraging runs from nest (located at the right end the
arena) to the feeder (at the left end of the arena). The arena contains
displaceable visual landmarks and also non-displaceable obstacles, both
of which the ant cannot walk over. Trajectories are indicated by white
lines. The density maps are computed from the trajectories; we define
here density as inversely proportional to the confidence in the landmarks.
A) Ant trajectory in the 21st foraging run. B) Ant trajectory in the 22nd
run, where some landmarks were manipulated at the indicated positions.
C) In the next run (23) all the visual landmarks are again placed in the po-
sitions as in runs 1 to 21. D) The density plot of trajectory after landmark
restoration. The lower panel shows the performance of the SyntheticAnt
in the same experiment. E) Before the manipulation, the SyntheticAnt has
the same high confidence value in all landmarks and therefore does the
traversal on almost a straight line. F) Upon manipulation, a high intensity
Lévy search is initiated and propagated back home. G) Upon restora-
tion, a low intensity search at the low confidence landmark is performed,
as captured by the density plot. H) The confidence in the manipulated
landmark recovers slowly as indicated by the density plot.
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puted trajectory density. The ant is let to forage from feeder to nest for 21
runs, during which no landmark manipulations are made. The trajectory
after several foraging runs shows low densities all over the arena, indicat-
ing high confidence of the animal in the visual landmarks. In the 22nd
run, two landmarks are removed at the indicated position (figure 2.15B).
The ant does a high intensity search and tracks back almost to its nest. The
density plots indicate that the ant does not trust the landmarks in the area
that violated its expectations in the the past (figure 2.15C). In the next run,
the landmarks are again restored in the original constellation. Neverthe-
less, the ant does not trust these manipulated landmarks in the following
runs, as indicated by the high densities around these landmarks. But after
subsequent foraging runs in the restored arena the confidence of the ani-
mal in the landmarks increases again through expectation reinforcement,
as indicated by the low densities throughout the arena , figure 2.15 D.
Such behavior was prototypical of all four ants as shown in figure 2.16.
In the following we discuss how this behavior of the ants can be explained
by the proposed variant of the Lévy walk.

We compare the behavior of the real ant, with the behavior of the Syn-
theticAnt in the same task as above. The artificial forager switches to the
above described random search using Lévy walk, when an expected land-
mark is not encountered (figure 2.15, F) or when a landmark with a very
low confidence is encountered (figure 2.15, G). Our results show striking
similarity in the behavior of the real and the SyntheticAnt in similar situa-
tions of landmark manipulation tasks. The task resolution time before and
after manipulation shows the time taken by the forager to reach the feeder.
This task resolution time is reflected in the norm of the position density
plots. This is plotted in figure 2.16, the data of which was obtained from
position tracking of 4 ants in landmark manipulation tasks. Both the real
ants and the SyntheticAnt follow the same trend in the norm of the po-
sition density matrices, therefore also in the task resolution times. The
norm rises in both cases when a landmark is manipulated, and falls again
upon restoration of the landmark constellation. Baseline density before
manipulation slowly reached as relearning progresses. We observed that
ants track back to known terrain upon expectation violation. This behav-
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ior is captured by our model using the proposed new variant of the Lévy
walk. This new mechanism fits the context of expectation reinforcement,
as it allows the navigator to track back to known terrain to test the validity
of its expectations, while at the same time exploring new terrain.
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Figure 2.16: Position density norms reflecting task resolution times:
Bars represent the norm of the position density matrices before, at and
after manipulation of the landmarks (errors bars indicate standard devi-
ation of norms). Data obtained from 4 ants in the described landmark
manipulation tasks and from the SyntheticAnt simulation. 2.15.

2.3 On the necessity of top-down cognitive in-
fluence on perception

Our experiments with real ants 2 and our modeling work suggest that ants
use forward models to solve complex tasks in dynamic unknown environ-
ments under limited resources constraints. Our initial simple navigational

2we thank Dr. Markus Knaden from the Max Planck Institute for Chemical Ecology
in Jena, Germany for generously sharing the ant landmark manipulation experiment data
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paradigm without a forward model had to be extended to be able to cap-
ture more complex ant behavior in dynamic environments. Our findings
about the necessity of forward models for acting in dynamic environments
are supported by numerous other earlier studies (see [120] for review).
For example cockroaches executing a very rapid escape response need to
know the current position of their legs in order to send the correct motor
commands [24]. It has been suggested that proprioceptive feedback, even
though very fast in invertebrates in general, might be too slow to realize
such rapid reactions as the leg positions are very dynamic, suggesting the
maintenance of predictions of the current limb positions based on previ-
ous motor output [24]. Moreover flying insects need to be very fast at
distinguishing self-induced changes in the visual input (e.g. head move-
ment) from externally imposed stimulation (e.g. movement induced by
wind) in order to stabilize flight, suggesting the necessity of the existence
of forward models to predict expected visual input from executed mo-
tor commands especially when acting in dynamic/turbulent environments
[118]. Moving on from insects to higher order animals like mammals, the
difference in brain size suggests the existence of higher order cognitive
mechanisms, as they become highly necessary given the increased rich-
ness in the sensory and action spaces [106]. This inspired the phrasing
of PASAR as an integrated bottom-up and top-down cognitive model for
cognitive agents acting in highly dynamic environments, which allows us
to study the different components of such an integrated cognitive mecha-
nism.

48



Chapter 3

PASAR: AN INTEGRATED
BOTTOM-UP AND
TOP-DOWN MODEL FOR
ACTING IN DYNAMIC
UNCERTAIN
ENVIRONMENTS

In the previous chapter we discussed the necessity of the existence of a
forward model in a cognitive system for solving complex tasks in dy-
namic environments under limited resources constraints. In this chapter
we elaborate our model which integrates bottom-up sensory input with
high-level cognitive mechanisms and top-down influences on perception.
Furthermore, we address the question of how the different subcomponents
of such a cognitive system interplay to solve a given task.

After more than 50 years of robotics and cognitive sciences research,
artificial systems have not yet achieved performance comparable to their
biological counterparts, especially in complex tasks in dynamic environ-
ments. For this reason, the interest in understanding biological systems
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for designing new generations of artificial sensori-motor systems has steadily
been growing over the last decades. Nevertheless, even the basic notion
of persistent knowledge representation, which is arguably at the very core
of understanding human intelligence, is until today subject of heated de-
bate [20, 21, 129]. Besides persistent knowledge representation, the bi-
ological brain (both in insects and mammals) employs many additional
mechanisms like prediction, anticipation, sensation, attention and mo-
tor response to survive in dynamic and partially known environments
[63, 40, 82]. In this context, building artificial sensori-motor systems
has been the only benchmarkable way to test biologically based cogni-
tive models and has played a key role in identifying the minimal and
key mechanisms of cognition [91]. However, despite the fact that many
cognitive architectures have been proposed over the past three decades,
none of them account for the interplay between the key ingredients of
cognition [65, 5, 67, 32, 33]. In other words, the individual quantita-
tive contributions of some subcomponents of cognition - perception, an-
ticipation, sensation and attention - to behavior in artificial and biolog-
ical cognitive systems is largely unknown. For this reason we propose
Prediction-Anticipation-Sensation-Attention-Response (PASAR), a model
of knowledge acquisition, representation and action selection for artificial
autonomous systems. PASAR makes use of automated reasoning proce-
dures involving anticipation of future stimuli and fusion of bottom-up and
top-down information streams. The modular formulation of the PASAR
architecture allows the dissection and evaluation of the contribution of its
individual components. We demonstrate that PASAR can solve complex
real-world and simulated robotic tasks. Our experimental results testing
PASAR have strong implications on how prediction, anticipation, atten-
tion, sensation and motor response interplay. We show that a combined at-
tentive, predictive and anticipatory system is clearly preferable to systems
without those mechanisms when acting in dynamic environments under
limited resources constraints. Nevertheless, we also find that attention,
prediction and anticipation are only useful if the memory is transient (i.e.
contains a forgetting mechanism). Beyond providing a framework to in-
vestigate the interplay of the subcomponents of cognition. Thus, PASAR
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reveals itself as a very valuable tool for a systematic evaluation of the in-
terplay between the above mentioned subcomponents of cognition in both
biological and artificial cognitive systems.

3.1 Related Work

Immense efforts have been invested over the past two decades in dis-
covering the brain mechanisms involved in the interplay between pre-
diction, anticipation, sensation, attention and motor response [66]. Scru-
tinizing the highly hierarchichal structure of the brain has been a start-
ing point for various studies investigating these subcomponents of cog-
nition [108, 130]. Growing evidence from physiological research sug-
gests that higher cortical areas of the brain are involved in a dialogue with
lower areas (midbrain and superior colliculus) to solve low-level tasks,
like the integration of multisensory information [101]. Recent neurosci-
entific and behavioral evidence also suggests that higher cortical areas
of the brain modulates the incoming sensory data to fit expectations by
actively searching for relevant information [82]. Some researchers even
argue that the higher cortical areas are involved in predicting future stim-
uli based on past experience and subsequently anticipating sensory events
in time and space when solving complex sensori-motor tasks [40]. In
this context, bottom-up and top-down mechanisms are highly relevant
and have long been demonstrated to be at work in biological cognitive
systems [57, 87, 26]. In the domain of attention, influential bottom-up
processing models [57] and more recently top-down models [87, 108]
have been proposed. At the same time, some theories propose the emer-
gence of attention from knowledge representation itself, suggesting the
interplay between subsystems at different hierarchichal levels of the brain
[19]. The potential neural correlates of the sub-systems responsible for
multi-sensory integration and attention generation have been subject of
extensive research in psychology and cognitive neuroscience [47, 89, 52].
The interdisciplinary research of cognitive brain and robotics research has
profited hugely from the above findings about the the key hierarchical and
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vertical mechanisms involved in biological cognition [125].
Based on such empirical (anatomical, physiological and behavioral)

evidence that supports the notion of layered hierarchichal control sys-
tems, many interesting theories have been proposed until today to model
a multi-layered framework of the brain, that has strong top-down and
bottom-up information flows (see [91] for a review). Furthermore, many
of those models have been also designed with the aim of building novel
artificial systems. R.Brooks introduced the subsumption architecture as a
distributed architecture for building autonomous systems capable of sus-
tained activity in real-world environments [20]. The SOAR architecture is
another example that has been under development since the 70s and that
aims at explaining biological reasoning [65]. ACT-R is yet another fam-
ily of cognitive architectures, concerned primarily with modeling human
behavior [5]. Other approaches such as ICARUS use notions of hierar-
chical relationship between objects to achieve problem-solving behavior
[67]. Others have proposed biologically based hierarchical cognitive ar-
chitectures emphasizing the notion of embodied cognition and linguistic
interaction [33] or action imitation based on hierarchical representations
of perception and action [32]. Also in this context, the Distributed Adap-
tive Control (DAC) framework has been proposed to accommodate per-
ceptual and behavioral learning in artificial systems in a single framework
[113] (see [66] for a review). Nevertheless, to our knowledge none of the
above (and other) cognitive models address the issue of investigating and
quantifying the interplay of the minimal ingredients of cognition.

3.2 Research Question

We propose PASAR, a concise and modular framework for integrating
prediction, anticipation, sensation, attention and response. PASAR builds
on the DAC architecture for structuring perceptual and behavioral learn-
ing in three layers of control: reactive, adaptive and contextual [113, 111,
72] (see fig. 3.1). In our experiments in simulations and complex real-
world robotic tasks, we address the question of how each sub-component
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of PASAR contributes to the overall performance in the given task and
what insights we can gain about robotic control and cognitive mecha-
nisms in general. More concretely we investigate if a complete sensori-
motor system with attentional, anticipatory and predictive mechanisms
perform better than combinations of subsystems in complex tasks. Also
we question the use of a memory decay mechanism (forgetting) and the
use of higher level knowledge for modulating bottom-up sensory infor-
mation, as observed in biological systems [102]. Furthermore, we want
to gain deeper insights into the interplay of the different cognitive subsys-
tems involved in solving complex tasks. We thereby also aim to provide
new hypothesis about the functional organization of biological cognition
and also invitations to perform specific physiological and psychophysical
experiments to support our findings in biological systems.

3.3 The model and the components

The proposed PASAR model is embedded in the DAC framework and
comprises of three layers of control: reactive, adaptive and contextual
(see fig.3.1). This layered hierarchy of control has been shown earlier to
be optimal for solving diverse robotic sequence learning tasks [113, 72].
The arrows in fig.3.1 indicate information flows. Data perception and
the bottom-up saliency computation are indicated by the red arrow, all of
which are contained in the reactive layer. The adaptive layer contains the
data alignment and the data association mechanisms. Also, the bottom-
up and top-down attentional saliencies are integrated in the adaptive layer.
The contextual layer accomplishes higher-level knowledge acquisition in
the world-model, the top-down attentional modulation of action genera-
tion (green arrow) and the anticipatory bias in data association (blue ar-
row). The individual components are elaborated in the following subsec-
tions.
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Figure 3.1: PASAR proposes a three-layered distributed architecture: re-
active, adaptive and contextual (as in [113]). The reactive layer contains
the physical sensors and the feature extraction mechanisms. The adap-
tive layer contains the data alignment, the data association and saliency
computation mechanisms. The contextual layer contains the world-model
and the goals of the system. The arrows indicate information flow, and
the colored arrows indicate sensation and bottom-up attention (red), pre-
diction and anticipation (blue) and top-down attention (green). The mo-
tor response is a result of the integration of the bottom-up and top-down
saliency maps.
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3.3.1 World Model
The world-model of the contextual layer contains all the high-level knowl-
edge about the external world, acting as a memory mechanism (fig.3.1).
This memory is organized in terms of individual memory items, further
referred to as concepts. Concepts are defined as vectors in a high dimen-
sional space, where the artificial sensori-motor system acts in a complex
world using multimodal sensors for perception. The world-model is seen
as a mechanism for acquiring and maintaining knowledge about differ-
ent concepts either provided by bottom-up multimodal sensory signals or
even by long-term-memory retrieval. The covariances of concepts rep-
resent the spatio-temporal precision of the acquired knowledge, which is
computed from the prediction errors of the model for the concepts. On the
one hand, concepts are transient as they are forgotten with the passage of
time, where we define forgetting as a linear growth function of the covari-
ance of the concepts. On the other hand the covariance of the concepts
vary, depending on the spatial (in)congruence (spatially congruent stim-
uli simply means stimuli perceived at the same position in space) of the
incoming sensory data and the predictions of the same, representing the
spatial certainty of the concepts. A schema of perception/sensation of the
world and the representation of the concepts with their covariances are de-
picted in figure 3.2. The generation of attention from such a world-model
is discussed in the forthcoming subsections.

3.3.2 Prediction, Anticipation and Sensation
Given the above world-model with concepts and their covariances, we
discuss here how predictions of future stimuli and anticipations are com-
puted. Prediction refers to the mechanism of prognosing future stimuli
based on recently perceived stimuli related to a concept. Harnessing such
predictions, sensory stimuli associated to concepts can be anticipated in
a spatio-temporally constrained region. In this sense, multimodal percep-
tion/sensation therefore involves prediction, subsequent anticipation and
finally data association. To model these processes we use the Joint Prob-
abilistic Data Association (JPDA) method [10]. JPDA is a powerful tool
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Figure 3.2: Schematic of world-model and selective attention generation
for a dynamic scenario. Left panel: A dynamic scene as perceived by
an autonomous system. Four encircled objects are perceived as closed
entities by the autonomous system. Middle Panel: Four concepts (mem-
ory representation of real-world objects) in n = 3 feature space with hue,
weight and height as example features. The ellipsoids represent the co-
variance of the concepts. Right Panel: The top-down attention mecha-
nism initiates an action that might have an immediate effect on the world
model (arrow 3) as the sensory input is changed by the performed action.
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for solving data association problems, which arise in many applications
such as computer vision, surveillance, mobile robotics etc. The JPDA al-
gorithm uses the notion of a validation gate to restrict the association of
data to targets. JPDA is applicable to non-linear filters and our results can
be easily generalized [10]. In the following, each concept is a well defined
multidimensional vector of sensory data in a high dimensional space, that
depends on the type of the multimodal sensory input of the system. Let
K be the number of concepts in memory. The state dynamics of concept
k (xk) is modeled as

xkt+1 = Akt x
k
t + ψpt (3.1)

for t = 1, 2, ... where xkt ∈ Rnx is the state of concept k at time t.
ψpt is process noise with covariance matrix Q. Akt is the state transition
matrix of concept k at time t. Let yjt ∈ Rny be the j-th observation at
time t for j = 1, ..., nt. The measurement model is

yjt = Hxjt + φm (3.2)

where φm is a white Gaussian measurement error with covariance Rk

and H the measurement matrix. Given this Gaussian noise model and as-
suming linear dynamic and measurement models, we use a Kalman filter
for state approximation of concepts [59]. In this sense, the Kalman fil-
ter is an iterative mechanism that allows us to make predictions of future
sensory input as well as to use the sensory input to correct the state of the
world-model.

Using a priori knowledge about the world (e.g. state transition matrix,
process noise and measurement matrix in the case of the Kalman filter)
and the current state of the world-model, a prediction is made for each
concept. At timestep t, for each concept k, we compute the state predic-
tion x̃kt , its covariance P̃ k

t and the measurement prediction ỹkt as follows

x̃kt = Ax̂kt−1 (3.3)

P̃ k
t = AP̂ k

t−1A
T +Qk

t−1 (3.4)
ỹkt = Hx̃kt (3.5)
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Anticipation refers to harnessing the prediction to expect stimuli in
a spatio-temporally constrained region of the feature space for the given
concepts. Given the computed measurement prediction for concept k, we
now compute an anticipatory field (validation gate) for the same concept.
For each observation j the Kalman innovation (i.e. the prediction error
computed as the difference between the prediction and the actual stimu-
lus) and its covariance (for details see [59]) with respect to a concept k
are:

vjk = yjt − ŷkt (3.6)
Sjk = HP̃ k

t H
T +Rk (3.7)

An anticipatory field, or validation gate, is defined for each concept
as follows:

vTjkS
−1
jk vjk < ε (3.8)

Since the weighted norm of the innovation that defines the validation
gate is chi-square distributed with the number of degrees of freedom equal
to the dimensionality of the measurement, the threshold ε is obtained from
the tables of a chi-square distribution, as described in [10]. The size of the
obtained anticipatory field can be modulated by higher-level mechanisms
by varying this threshold. A validation gate for each concept dimension
is computed earlier using the Kalman innovation of new observations as
in [10].

We define sensation as the state estimation of concept k, using the
given sensory input, prediction and anticipation. Given multiple concepts
and multiple stimuli the problem of data association (see figure 3.1) natu-
rally arises [10]. For each concept, only observations inside its validation
gate are associated to it. The JPDA algorithm enumerates all possible
associations between observations and concepts at each time step. The
association probability βjk stands for the probability that the j-th obser-
vation originated from the k-th concept. The concept state is estimated by
Kalman filter and this conditional expectation of the state is weighted by
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the association probability. Let xkt indicate the state of concept k at time
step t, ωjk the association event where the observation j is associated to
concept k and Y1:t stands for all the observations from time step 1 to time
step t. Then the state of the concept can be estimated as

E(xkt |Y1:t) =
∑
ω

E(xkt |ω, Y1:t)P (ω|Y1:t) (3.9)

=
∑
j

E(xkt |ωjk, Y1:t)P (ωjk|Y1:t) (3.10)

where ωjk denotes the association event when the observation j is
associated to concept k and ω0k denotes the event that no observation is
associated to concept k. Therefore the event association probability βjk
is

βjk = P (ωjk|Y1:t) (3.11)

The computation of βjk requires a summation over the posteriors and
its exact calculation is NP-hard [30]. We implemented a Markov Chain
Monte Carlo (MCMC) method to compute βjk in polynomial time similar
to the proposal in [83]1.

Time dependent forgetting is achieved by linearly growing the covari-
ance of the represented concepts with the passage of time. This allows to
remove the representation of concepts in memory if they are not updated
by associations to novel stimuli, similar to the rehearsal-decay paradigm
for memory [8]. In short, the world-model acts as a memory mechanism
containing concepts. The prediction, anticipation and sensation mecha-
nisms act on concepts in the world-model. Next we discuss the integration
of top-down and bottom-up attention into the same framework.

3.3.3 Top-Down and Bottom-Up Attention
Having elaborated on the generation of world-model containing the con-
cepts, the data association, prediction and attention mechanisms, we now

1see details of the MCMC implementation in appendix section 7.1
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move on to attention. We aim to phrase attention in terms of bottom-
up and top-down processes as employed by the brain [57]. Recent psy-
chophysiological research suggests that selective attention is load-dependent
[89]. Artificial systems with limited and/or shared resources could ben-
efit from such a load-dependent protocol. Our architecture makes use of
a load-dependent push-pull mechanism, by means of a competition be-
tween distinct feature saliencies of concepts, the winner of which decides
which actions or sensory events the system decides to dedicate its re-
sources to. In PASAR, low level feature filters extract relevant features
of incoming multimodal stimuli. For vision, a number of feature filters
like color, orientation, luminance etc. are implemented. The combina-
tion of these filter outputs give rise to a bottom-up saliency map based
on the Itti and Koch model [57]. At the same time, top-down attention is
triggered by similarity interference, i.e. when similarity between memory
concepts is the major memory impairing factor of identification, similar
to some earlier proposals [80]. Similarity interference between concepts
is measured using the Mahanalobis distance between the concepts [68].
Top-down and bottom-up saliency maps are combined and a winner-take-
all (WTA) neural network computes the most salient attentional spotlight,
which is then used to trigger an action (figure 3.3). See also [71] for more
details.

3.3.4 Sensory Data Alignment

As seen in figure 3.1, the adaptive layer also contains the data alignment
mechanism. Such aligned maps of multimodal sensors have long been
discovered in the superior colliculus of the brain [102]. The superior col-
liculus, which has top-down connections from higher cortical areas, is
considered as the primary domicile of sensory data association and ap-
propriate motor action generation in animals [102]. It has been shown
that the superior colliculus contains a sensory map for each sensor, on
which the whole sensory space is represented on [58]. Biological systems
have been shown to be capable of (re)learning such sensory representa-
tions using the representation of another sensory modality as the refer-
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Figure 3.3: Saliency computation from multimodal sensory input: The
multimodal sensory input (A) is associated to existing targets by means
of the anticipatory fields of JPDA (B). The top-down biasing of the an-
ticipatory fields using the world-model is applied before data association.
The bottom-up and top-down saliency maps are combined using a com-
mon neural group onto which both the above saliencies are mapped (C).
A winner-take-all WTA neural network computes a single winner from
this map (D) and an appropriate action is triggered.

ence whenever one of the modalities is perturbed [126, 62]. Analogously
the PASAR adaptive layer uses top-down information to learn sensory
map alignments as shown in figure 3.1. PASAR is transparent to the spe-
cific learning mechanism itself, and we have demonstrated the capability
of PASAR using two different learning paradigms, asymmetric Hebbian
learning and Levenberg-Marquardt 2, which is an iterative error reduction
algorithm.

2see appendix section 7.2 for implementation details

61



3.3.5 Motor Response
Until now, we have discussed the mechanisms of world-model, prediction,
anticipation, sensation and attention in the PASAR framework. However,
to act in a dynamic world, the sensori-motor system needs to perform mo-
tor responses (fig.3.1). To choose the optimal motor response we consider
the general problem of an efficient energy consumption strategy [14]. In
this formulation, the artificial autonomous system has to optimize the util-
ity of its actions while at the same time minimize its limited energy con-
sumption. As the utilities of future actions are a priori not known, predic-
tions of the same are necessary. Here we formulate this in the context of a
Bayesian framework based on transient memory, prediction and attention.

In this framework, the attentional saliency of a concept is defined as
the perceived relevance of the stimuli associated to this concept. Note
that although this is a simplification that reduces all forms of attention
into a single variable, it allows for testing the contribution of attention
to overall performance in a well-defined testbed. We assume that the
utility of an action is predefined for a given task. E.g. in our multi-robot
testbed the utility of a concept is defined as inversely proportional to the
perceived charge of the robot (i.e. high utility for a low charge robot and
vice versa). PASAR computes the predicted utility distribution of actions
from the individual utilities of single concepts. We write Θt

s for utility of
a certain concept s at time t, and for computing the utility distribution, we
are interested in the following conditional probability distribution defined
as the predicted utility:

Predicted utility of concept = P (Θt
s|F t

s(Θ
t−1
s )At(s)) (3.12)

whereF t
s(Θ

t−1
s ) andAt(s) are two time-dependent functions that weight

the concept s. For example, F t
s(Θ

t−1
s ) evaluates the temporal weight of

the concept: if there is at least one stimulus associated to this concept
currently, it has the highest temporal weight and decays linearly other-
wise. Such a mechanism allows for a simple time-dependent forgetting.
At(s) evaluates the attentional saliency of this concept proportional to
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the perceived utility of the concept. By computing the joint distribution
of the predicted utility probabilities for all concepts, the system can per-
form the action with the highest predicted utility.We elaborate the update
mechanism of this predicted utility distribution. Lets assume that we can
compute predicted utility probabilities of individual concepts as shown in
eq. 3.12. Given these individual concept utilities, we are interested in the
total predicted utility distribution:

Predicted total utility = P (Θt|F t(Θt−1)At) (3.13)

We express this probability as the normalized sum of probabilities of
individual utilities:

P (Θt|F t(Θt−1)At) =
∑
s

P (s)P (Θt
s|F t

s(Θ
t−1
s )At(s)S) (3.14)

where the random variable S ∈ 1...n, n being the number of concepts
and P (s) indicates the probability of the utility of this concept. Normal-
ization is straightforward as P (s) is uniformly distributed over all con-
cepts. PASAR then either selects the action of maximum utility or draws
from this distribution, where the former can be seen as exploitation of the
world-model and the latter as exploration. We are therefore interested in
the following probability distribution of actions:

P (Action|F t
s(Θ

t−1
s )At(s)) (3.15)

This probability distribution can be computed using Bayesian infer-
ence, given a priori information about the environment PASAR is acting
in.

The formalizations in this section allows us to test the contributions
of the individual components of PASAR to the overall performance of
the system. In summary, we have elaborated on how an optimal motor
response is chosen by the system using a prediction, anticipation, sen-
sation, attention and memory decay. In the next section, we define our
experimental setup, with which we want to quantify the contribution of
each of the above sub-components to the overall system performance.
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Chapter 4

TESTING PASAR:
CONTROLLING ARTEFACTS
IN REAL-WORLD DYNAMIC
ENVIRONMENTS

In the above sections we have elaborated on the PASAR model and how
the different sub-components (prediction, anticipation, sensation, atten-
tion and response) are formalized. Here we discuss a rescue robot simu-
lation and real-world robotic testbeds, which we use to evaluate PASAR’s
performance and the contribution and interplay of its sub-components.
The real-world robotic testbed is a multi-modal multi-person mixed re-
ality space named the eXperience Induction Machine (XIM) that allows
extensive testing of PASAR for learning multi-model sensory map align-
ments, dynamic update of the world-model for solving the multi-person
tracking task using bottom-up sensory information and top-down infor-
mation for controlling active sensors. In the rescue robot simulation testbed
we test PASAR’s performance in exploiting the world model knowledge
to solve a multi-goal task under limited resources constraints in a partially
known world.
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4.1 eXperience Induction Machine (XIM)
XIM is a physical space, which is part of the Persistent Virtual Commu-
nity (PVC) where groups of real, remote and synthetic characters interact
with each other [18]. XIM comprises a pressure sensitive floor, overhead,
infrared and controllable pan-tilt color cameras, moving lights, triplets of
microphones for sound recognition and localization, projection screens,
and also ambient and spatialized sonification. On the projection screens
the virtual world of PVC is made visible to the real visitors of XIM. XIM
is about 25 square meters and allows several humans to be active in it
simultaneously (fig.4.1). XIM, as an artificial autonomous entity, is a
suitable testbed for PASAR as it comprises of multimodal sensors and
effectors in a scalable and controlled environment for solving complex
collective mixed reality interaction tasks (fig.4.2). The accurate tracking
of real objects in the XIM physical space is a requirement for meaningful
interaction scenarios among the different types of users. PASAR is tested
in XIM for solving this task.

We use the IQR system for distributed large-scale real-time real-world
neuronal simulations of the winner-take-all network of the attention sys-
tem for driving the movable pantilt cameras in XIM [17]. For image pro-
cessing we used the OpenCV library [1], and for the human torso detec-
tion in the mixed reality space testbed we used the OpenCV Haar clas-
sifier method [115]. The PASAR implementation for the mixed reality
testbed runs 7 applications developed in C++ on 3 Intel(R) Core(TM)2
Duo CPU 2.66GHz machines with the GNU/Linux Suse10.3 operating
system, which communicate with each other using UDP sockets.

4.2 Rescue Robot Simulation
In this testbed we consider the following multi-robot scenario: N robots
are on a common mission in a given environment. The individual robots
move around in a given common field solving a given task (e.g. demi-
ning). One of the robots, named PASAR, has the specific task of rescue-
ing expired (out of charge) robots. For this PASAR first has to localize the
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Figure 4.1: The eXperience Induction Machine (XIM) can be con-
sidered as an artificial organism in the shape of an environment, that
has its own goals and expresses its own internal states. It comprises a
pressure sensitive floor, overhead and pan-tilt cameras (gazers), movable
lights (light-fingers), triplets of microphones for sound recognition and
localization, projection screens and ambient and directional sound output
(adapted from [70]).
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Figure 4.2: XIM Multiuser Interaction Scenario: Multiple real users
interacting with each other in a mixed reality Pong game, which is one of
the scenarios used to evaluated PASAR performance. Also remote users
take part in the same interaction by logging in from remote machines into
the virtual world and they are represented by avatars on the projection
screens (adapted from [55]).

expired robots using its sensors and approach them and recharge them so
that they can continue on their missions. PASAR is equipped with a lim-
ited number of distance measurement sensors like sonar and laser range
scanners, that are used to scan the environment and localize the robots to
recharge. We simplify all these sensors in the form of a circular perceptive
field around PASAR, inside which it perceives its co-robots. From time
to time, PASAR has to return to the base station to recharge itself. We
implemented this testbed in a simulation with N = 10 robots (figure 4.3).
Concepts in this testbed are the robots involved in the common mission.

4.3 Data Collection

Given the PASAR model and the testbeds, here we discuss the data we
collect in the two testbeds. For the Bayesian inference computations we
used the ProBT Bayesian library [2]. The simulation runs on a single
Intel(R) Core(TM)2 Duo CPU 2.66GHz machine with the GNU/Linux
Suse10.3 operating system.
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Figure 4.3: PASAR multi-robot rescue scenario. Left Snapshot from
PASAR Experiment: The bigger circle surrounding PASAR shows sen-
sory range. Everything outside this range is not perceived by PASAR.
The smaller circles surrounding some of the agents indicate that the cor-
responding agents are expired. The base station, where PASAR recharges
itself, is indicated by the rectangle on the left bottom. Right Example of
the predicted total utility as a probability distribution. PASAR either goes
to the location with the highest probability (exploitation phase) or draws
form this distribution (exploration phase).

4.3.1 XIM

In this testbed, learning sensory map alignment, creation and maintenance
of a world-model under limited resources constraints when acting in an
unknown environment and attentional mechanisms for active information
acquisition are tested. All the above problems are addressed in the con-
text of solving the multi-person tracking problem under limited resources
constraints.
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The sensory map alignment of the overhead camera and floor modali-
ties are learned online using the sensory input provided by a single person
walking in XIM1. For evaluating the construction and maintenance of a
world-model we look at the problem of multi-person tracking. Tactile
floor tiles and overhead infrared cameras are the sensors used for this. A
concept here is a single human in XIM. We use a 8-dimensional space
for the concepts containing the x-y positions, x-y velocities, x-y acceler-
ations, hue of the outfit and weight. To test the precision of the world-
model during interactions involving different difficulty levels of tracking,
a number of experiments are performed2. Bottom-up and top-down atten-
tion for action generation is tested using the controllable pan-tilt cameras
for collecting hue information about tracked persons. Using this active
recruitment mechanism we analyze ID maintenence in four different in-
teraction scenarios3. To evaluate the scalability of the system, we also
implemented a simulation of the XIM environment to test PASAR in the
above tasks, for a much higher number of persons than was possible in
the real setup.

4.3.2 Rescue Robot Simulation
PASAR is tested in a multi-robot simulation for optimal usage of the ac-
quired world-model for multiple goal decision making. This testbed, in
contrast to the previous one, allows for testing how to capitalize on the
existence of such a world-model for generating optimal actions in a par-
tially observable world. In particular, we will use this second testbed for
evaluating the contributions of the individual components of PASAR to
the overall performance.

In this context, the attentional saliency of a concept is defined as per-
ceived utility of the stimuli associated to this concept, where a concept is
defined as a robot in involved in the scenario. I.e. the attentional saliency
is defined to be proportional to the detected remaining power of a concept,

1see appendix section 7.2 for details on sensory map alignment learning
2see appendix section 7.4 for details on multi-person tracking experiment in XIM
3see appendix section 7.5 for details on attention trigger in XIM
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giving a high utility for reapproaching nearly expired concepts. PASAR
computes the predicted utility distribution of actions from the individual
utilities of single concepts. Performance is measured by the total expiry
time in seconds of the robots. I.e. the lower this value, the better the per-
formance. For each test case 100 trials were performed. Each trial lasted
160 seconds. The expiry time of the normal robots was 30 seconds and
that of the PASAR rescue robot was 60 seconds. Solving this multiple
goal task involves goal-driven selective attention generation for attend-
ing to the most vital subtask at the moment and maintaining a dynamic
transient world model, which is used to compute the optimal action in
the Bayesian sense. We formulated an optimal Bayesian decision making
method for generating actions based on the world-model. PASAR com-
putes the predicted utility distribution of going to a certain point (x, y)
from the individual utilities of the concepts4.

In order to evaluate the contributions of prediction, attention and mem-
ory decay, we perform the following experiments. First we evaluate the
performance of the whole system using the complete PASAR framework
for the robot rescue task (COMPLETE). Note that for this case we use the
optimal memory decay rate, as discussed in section 4.2, and an adaptive
exploratory behavior of PASAR. The optimal memory decay rate is set
to be the memory decay for which the highest performance was observed
for the COMPLETE test case (value 13, see figure 4.11). With adaptive
exploratory behavior, we mean that PASAR drew from the predicted util-
ity distribution much more often at the beginning of the run, than towards
the end. This allowed PASAR to explore the world at the beginning,
when the world-model did not contain any concepts, and to exploit this
acquired knowledge more towards the end of the run. This behavior is
achieved simply by making the draw probability a linear function of time,
in a negatively correlated fashion. Next we evaluate the performance of
the system without the use of attention, i.e. we set the attentional saliency
of all perceived concepts to be the same (NO-ATT). Further we evalu-
ate the performance of the system without memory decay and without

4for the elaboration of how the general PASAR equations 3.12, 3.13 and 3.14 are
applied to the multi-robot testbed, see appendix section 7.3
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attention (NO-DECAY-NO-ATT). We also test the case without memory
decay, but with attention (NO-DECAY-ATT). Finally we evaluate the per-
formance of the system also when not using the utility predictions of the
world-model. I.e. the rescue robot randomly wanders around the arena to
find and recharge expired robots (RAND).

4.4 Data Analysis
For all offline analysis we used Matlab(R) (2007a, The MathWorks). For
multiple error comparisons we use Tukey-Cramer multiple comparison
method p < 0.05. The hue bin comparisons were done using the student’s
t-test p < 0.05. For the Bayesian inference computations and analysis we
used the ProBT Bayesian library [2].

4.5 Results

4.5.1 Mixed Reality Space XIM Testbed
In the XIM mixed reality space testbed, we test the online learning of sen-
sory maps, use of high level knowledge for world-model maintenence,
the use of attentional resources for triggering motor commands for ac-
tive information acquisition and the use of the same for correction of the
world-model.

First, we consider sensory map learning using PASAR adaptive layer.
The tactile floor delivers low resolution but precise position data and
therefore is used as the reference for aligning the higher resolution sen-
sory map of the overhead infrared tracking camera placed arbitrarily in
XIM. The procedure for this learning consists of a person walking freely
in XIM while the tactile floor and the overhead infrared camera tracking
data are used by the PASAR adaptive layer. See section 4.3.1 for details
of data collection. This procedure drastically reduces the camera per-
spective and distortive errors (from 75 to 26 cms) in the overhead camera
tracking (figure 4.4 A,B, Tukey-Cramer multiple comparison, p < 0.05).
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Figure 4.4: Sensory Map Learning Using PASAR Adaptive Layer: A
shows the error map in [cms] for the overhead infrared camera tracking
before learning (mean 75 cms). High errors are due to camera perspective
and distortive errors. B shows the error after online learning with a sin-
gle user in XIM (mean 26 cms). C The validation gates of the concepts
(i.e. the tracked persons) for the tactile floor modality are made larger
along the periphery of the space. Using this top-down bias in PASAR
improves the tracking error significantly (mean 14 cms). The error distri-
butions decrease significantly from A to B to C (Tukey-Cramer multiple
comparison, p < 0.05)
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After this initial learning, the overhead camera tracking still has relatively
high error along the periphery of the tracked area (mean error 26 cms, fig-
ure 4.4 B). The PASAR contextual layer fuses the multimodal data taking
into account prior knowledge such as that the tactile floor data is more
reliable along the periphery of the space and uses this to modulate the
validation gate of the floor modality accordingly (the larger the validation
gate, the more reliable the modality). This gives less than 15cms track-
ing position error (Tukey-Cramer multiple comparison, p < 0.05)(figure
4.4 C). This demonstrates the use of top-down attentional bias using the
validation gate thresholds (see equation 3.8).

A B

Figure 4.5: PASAR for multimodal multitarget tracking: A shows cor-
rectness of ID resolution in cluttered situations of tracking with 2 to 5
persons freely interacting in XIM. B shows ID resolution accuracy for
different interaction scenarios (see text for further details).

We consider the complex problem of multi-person tracking in XIM
using the passive and active sensors available in XIM. We evaluate the
tracking performance of PASAR under different tracking difficulty lev-
els where multiple persons interact simultaneously in XIM.The PASAR
world-model thereby contains the high dimensional information about the
tracked humans. To test the precision of the world-model during inter-
actions involving different difficulty levels of tracking, a number of ex-
periments are performed. ID maintenence is analyzed for four different
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interaction scenarios: exploration, energy, center of mass, pong game.
The results in the four different scenarios show high precision of the
world-model even for challenging tracking conditions involving occlu-
sions, clutter and high movement speed (about 88% correct ID resolutions
in average for 5 persons) (fig.4.5). To evaluate this with a high number of
tracked objects, we use a simulation of the XIM persons and use PASAR
for tracking. The performance falls with the number of tracked persons as
expected for upto 20 persons. For each number of persons, we perform 20
trials. The computed mean and standard deviation are depicted in fig.4.6.

Figure 4.6: PASAR for multimodal multitarget tracking: ID resolution
performance percentage as a function of the number of objects tracked in
XIM simulation.

In the context of multi-person tracking in XIM, we now look at top-
down modulation of incoming bottom-up sensory data to achieve a higher
tracking performance. The idea of using a priori information is to be
able to modulate the association probabilities of sensory data to tracked
persons using a priori information about the world. We use the a pri-
ori knowledge that spatio-temporal proximity of multimodal sensory data
should mean the same origin. Therefore, we give more weight to uni-
modal data, that is spatio-temporally correlated with data of other modal-
ities. Here the camera data that is proximal to floor data in space and time
is weighted more, i.e. the association probabilities of such data concepts
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Figure 4.7: Usage of a priori knowledge: spatiotemporal congruence
of multimodal data in XIM Multimodal data that is proximal to data
of another modality in space and time has an added weight. The sce-
nario numbers 1,2,3,4 refer to the interaction scenarios exploration, en-
ergy, center of mass, pong game respectively.

are higher. Using this method improves the ID resolution in all interaction
scenarios and this strongly supports the usefulness top-down modulation
of sensory data for enhancing data association performance(fig.4.7).

Given the above mentioned usage of top-down weighting of sensory
data, we now investigate the change in tracking performance. The perfor-
mance falls with the number of simulated persons as expected (fig.4.8).
Nevertheless, the performance is significantly higher than when not using
the a priori knowledge for upto 12 persons (Tukey-Cramer, p < 0.05).
This speaks for the relevance of using higher level knowledge to modu-
late the incoming sensory data in the context of multi-person tracking in
XIM.

76



Figure 4.8: Usage of a priori knowledge: spatiotemporal congruence
of multimodal data in simulation: The accuracy of ID resolutions in
percentage is depicted as a function of the number of tracked objects in a
simulation of the XIM tracking scenario. The accuracy when using the a
priori knowledge to weight modulate data and when not using it is shown.

PASAR’s just-in-time attention trigger allows to drive the pan-tilt cam-
eras, which is a limited resource, to make them follow moving persons
in XIM and extract hue information at the right moment (fig.4.9). The
top-down attention for such deployment of movable cameras and moving
lights is triggered as discussed in the section 4.3.1, using the similarity
interference paradigm. Sample images from the four moving cameras for
two subjects in XIM are depicted in figure 4.9. We evaluated the sim-
ilarity of the computed mean hue for two different subjects. The com-
puted hue bin means were significantly different (student’s t-test, p <
0.05)(fig.4.10).

Although hue extraction is a simple feature extraction method, it serves
as a proof of concept for motor action generation from attention. By ac-
tively collecting hue information of subjects in the space, their IDs can
be corrected. Latency for the recuperation of IDs after an ID confusion,
using this attentional deployment of the controllable pan-tilts are shown
in figure 4.10 for two subjects acting in the space simultaneously for 10
minutes. Mean time for ID recuperations is 17 seconds after confusion.

77



mean hue value:75 mean hue value:351

 s
n

a
p

h
o

ts
 f

ro
m

 
th

e
 4

 a
tt

e
n

tiv
e

ly
 

d
ri

ve
n

 p
a

n
­t

ilt
 

ca
m

e
ra

s 
fo

llo
w

in
g

 a
 

sa
lie

n
t 

co
n
ce

p
t 

(a
 h

u
m

a
n

 in
 X

IM
)

w
h

ite
 

re
ct

a
n

g
le

s 
in

d
ic

a
te

 t
o

rs
o

 
(t

h
is

 R
e

g
io

n
 o

f 
In

te
re

st
 (

R
O

I)
 

is
 u

se
d
 f

o
r 

h
u

e
 

h
is

to
g

ra
m

 
e
xt

ra
ct

io
n

)
hue spectrum

Example 1 Example 2

Figure 4.9: Attention-guided feature extraction under noise and lim-
ited resources constraints: PASAR attention system follows subjects in
XIM and hue extraction from torsos. Two such attempts are shown, one
for green and one red. The snapshots are from a moving camera image
and the bottom indicates the images used for hue extraction. The Region-
of-Interests (ROIs) of the images used to extract the hues are indicated by
the white rectangular boxes in the smaller images at the bottom.
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Figure 4.10: Attention-guided feature extraction under noise and lim-
ited resources constraints: A) Subjects with two different hues are iden-
tified as belonging to two different hue bins with a significant difference
(student’s t-test, p < 0.05). B) Latency of recuperation: Latency of
recuperation of IDs using hue feature extraction after an ID confusion
(mean 17 seconds). The data shown is extracted from two subjects acting
simultaneously in XIM for 5 minutes.
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4.5.2 Robot Rescue Simulation Testbed
In this second testbed the objective is to evaluate the exploitation of a
world-model for the generation of actions maximizing a given utility.
Also we evaluate the contributions of the different component of PASAR,
prediction, attention and memory decay, to performance. See section
4.3.2 for details of the experiment. For each test case mentioned in sec-
tion 4.3.2, 100 trials were performed. Each trial lasted 160 seconds. The
expiry time of the normal robots was 30 seconds and of the PASAR rescue
robot was 60 seconds.

Figure 4.11: Total expiry time of robots as a function of the memory
decay: Memory decay rate is used in seconds. Decay rate refers to the
time in seconds in which the concept variance falls to a predefined base-
line.

In order to evaluate the performance of the PASAR rescue robot, we
study the total expiry time of the agents and the number of rescued agents
in the limited time. In order to study the contributions of the subcompo-
nents of PASAR, we evaluate the performance when using isolated sub-
components of PASAR to solve the same task. Figure 4.11 shows the
total expiry time of agents as a function of memory decay rate. It shows

80



*

*

*

*
to

ta
l e

xp
iry

 ti
m

e 
[s

]

COMPLETE

NO­ATT
RAND

NO­D
ECAY­

NO­ATT
NO­D

ECAY­

ATT

Figure 4.12: Total expiry time for different testcases: Performance of
PASAR in different test cases. Asterisks indicate significant difference of
means (Tukey-Cramer multiple comparison, p < 0.05). COMPLETE test
case performs the best.

that neither a too low nor a too high memory decay rate is good for per-
formance. In the COMPLETE case we achieve a mean performance of
100.6567 seconds and standard deviation 42.4679. In the NO-ATT case
we achieve a mean performance of 131.0965 seconds and standard de-
viation 43.9256. In the NO-DECAY-NO-ATT case we achieve a mean
performance of 249.5249 seconds and standard deviation 55.5471. In the
test case without memory decay, but with attention (NO-DECAY-ATT) we
achieve a mean performance of 248.0998 seconds and standard deviation
62.9844. Finally, in the random case RAND (i.e. without using predic-
tions of utility) a mean performance of 145.9758 seconds and standard
deviation 53.1304 is achieved.

We summarize our results as following:
1) using the predictions of the world model together with attention and a
good memory decay rate performs the best (figure 4.12, COMPLETE)
2) Using attention is better than not using it (figure 4.12, COMPLETE vs.
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NO-ATT)
3) Using memory decay has a significant effect on performance (COM-
PLETE and NO-ATT compared to NO-DECAY-NO-ATT and NO-DECAY-
ATT).
4) Further, attention does not seem to help performance if there is no
memory decay (NO-DECAY-ATT vs. COMPLETE and NO-ATT).
5) Using utility prediction does not help if no memory decay is used
(RAND vs. NO-DECAY-NO-ATT).

4.6 Conclusions

We proposed and evaluated PASAR, a concise and modular framework
for quantitatively assessing the integration of prediction, anticipation, sen-
sation, attention and response. PASAR allows the evaluation of system
performance in complex tasks using the whole system and also selected
components of the system. We conducted experiments in simulations
and complex real-world tasks to address the question of how each sub-
component of PASAR contributes to the performance of the overall sys-
tem in the given task. First we demonstrated the feasibility of our model
for solving complex real-world problems using the XIM setup to solve
a multi-person multi-modal tracking problem. In the XIM tracking task,
we demonstrated that PASAR is able to learn sensory map alignment,
create and maintain a world-model under limited resources constraints
when acting in an unknown environment and deploy attentional mecha-
nisms for active information acquisition. The second testbed of rescue
robot simulation demonstrated PASAR’s optimal usage of the acquired
world-model for multiple goal decision making and allowed to evaluate
the contributions of the individual components of PASAR to the overall
performance. Our results on the interplay of anticipation, perception, at-
tention and response suggest that a complete sensori-motor system with
attentional, anticipatory and predictive mechanisms perform clearly bet-
ter than incomplete subsystems in complex tasks. We find evidence that
the use of attentional mechanisms and prediction is only beneficial, if
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there is a forgetting (memory decay) mechanism at work. Building novel
bio-inspired robotic systems for real-world applications can benefit from
our findings, by using prediction, anticipation, sensation attention and re-
sponse in the suggested combinations. For example, the usage of memory
decay together with attention and predictive mechanisms for controlling
a humanoid robot in a human-robot interaction scenario would not only
enable the robot to attend to the most relevant human or object at a given
time, but also enable it to predict the future attentional relevance of ob-
jects and to gradually forget the past in order to manage limited memory
resources. We also believe that our results suggest more specific physio-
logical and psychophysical experiments to support the findings of inter-
play of the different sub-systems of cognition in biological systems. For
example it would be very interesting to perform psychophysical experi-
ments to investigate the existence of anticipatory gates (validation gates)
in human/animal perception.

4.7 Discussion

Our model allows to evaluate the sub-components of an artificial cog-
nitive system and we tested it in both simulation and real-world setups.
Even though the model is inspired by the hierarchichal architecture of
biological systems and has been shown to be very efficient for artificial
sensori-motor systems, concrete evidence of such a framework in biolog-
ical systems is yet to be found. Targeted research has to be conducted to
find support for a JPDA like processing for data association in biological
systems. Similar highly influential cognitive architectures that try to char-
acterize brain function and cognition have their own particular strengths,
e.g. in powerful symbol manipulation and automation mechanisms [5],
extremely versatile knowledge representation schemes [65], primacy of
action and perception over cognition [67], language processing [33] etc.
However, unlike other cognitive architectures, PASAR provides a generic
framework for integrating subcomponents of cognition and testing their
interplay. PASAR thereby makes use of a so-called forward model by
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harnessing predictions and anticipations [60]. In this context, prediction
is essentially a problem of matching the current state (the current situa-
tion of each concept in the world-model at a single point in time) to future
state possibilities produced by the model. Similarly, anticipation is es-
sentially the process of expecting stimuli or events in the n-dimensional
spatiotemporal vicinity of the predicted state. Very related to this discus-
sion of predictions of future states of items in memory is the so-called
human ability of theory of mind[90]. It is thought that something similar
to such state-matching happens in the human mind, through the ability
known as theory of mind, which attributes mental states (beliefs, desires,
intentions, etc.) to others and uses them to predict how others will behave
[90]. A very interesting research question would be to ask if the modular
concept of PASAR can be used in the context of theory-of-mind to un-
derstand the interplay of attention, prediction, anticipation, memory and
actions in humans.

In the next chapter we discuss a psychophysical experiment in hu-
mans to reveal the existence of JPDA-like validation gates in a visual data
association task. Additionally we investigate how such validation gates
change with changing cognitive load, supporting the hypothesis of top-
down control of the use of limited resources.
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Chapter 5

TESTING PASAR: THE
BOTTOM-UP AND
TOP-DOWN INFLUENCES IN
HUMAN VISUAL
PROCESSING

In the previous chapter we investigated the performance of PASAR on ar-
tificial systems in complex scenarios. Also, we investigated how the dif-
ferent subcomponents of PASAR interact with each other to achieve com-
plex task solving behavior. PASAR thereby integrated both low and high
level cognitive mechanisms like prediction, attention, sensation, attention
and response in a single framework. The particular case of human vi-
sual processing requires the involvement of both low-level sensory-motor
mechanisms and higher level cognitive functionalities [57]. In this chapter
we investigate the existence and role of higher level cognitive mechanisms
like prediction, anticipation and attention in human visual processing and
how saccadic control is affected by this. We thereby use a psychophysi-
cal reverse correlation method for analyzing conscious decisions and sac-
cadic eye movements in a human psychophysics experiment.
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The question whether data association is related to attention is sub-
ject of ongoing debate. Some studies have formalized the unexpected
observation (or surprise) in a Bayesian sense and linked this to attention
[56]. But the link between data association and attention, and the influ-
ence of higher level mechanisms on such a system still remains unclear.
Anticipation of future stimuli is a crucial component of a data association
mechanism in classical dynamical systems [10]. Some support for this in
human vision comes from studies that showed anticipatory eye behavior
for predictable movements [23]. Furthermore, anticipation is seen as an
integral part of visual cognition [104].

Psychophysicists have often used the Multiple Object Tracking (MOT)
experimental paradigm to test the prediction hypothesis in vision [94,
119]. The prediction hypothesis states that momentarily disappearing ob-
jects are often perceived as persisting when they reappear with a veloc-
ity and trajectory that was consistent with what was previously viewed
[61]. Many earlier studies support the prediction hypothesis in MOT
[110, 109]. Nevertheless, a rigorous experimental paradigm to measure
the interplay of top-down predictive processes and bottom-up sensory
processes is still to be proposed. Furthermore, the role of top-down cog-
nitive mechanisms on the generation of express saccades and saccades of
longer delays are not well known. The early/express saccade window has
been observed to be in the range of 80-110 ms in humans [39] and the late
saccades have reaction times around 200 ms [41, 37]. Some experiments
suggest a top-down influence on late saccades while the same for early
saccades remains unexplored [37].

Here we hypothesize that a single generic framework, consistent with
PASAR, could be at work for data association and generation of event-
related saccades. Our model builds on the hypothesis of violation of ex-
pectation that trigger attention. The starting point for our model is that
attention is object based. Even though there is some evidence for space-
based attention, evidence for object based attention is overwhelming at
psychophysical [34], neurophysiological [88], clinical [12] and concep-
tual [61] levels. We use PASAR as a model of object-based attention
triggering in human visual processing. We also hypothesize the existence

86



of, so called, anticipatory gates in predictive dynamic scenarios and the
modulation of the anticipatory gate by higher level cognitive mechanisms.
Inspired by our model, we propose a variant of the MOT paradigm and a
psychophysical reverse correlation method to test the model. Our results
support the notion of top-down prediction of visual stimuli, revealing the
existence of an anticipatory field. We show that human perception relies
more on predictions when working under higher cognitive loads. Also
our results show that express saccades of shortest latency (80-110ms) are
independent from higher level cognitive and decision-making processes.
Nevertheless, our results suggest that later saccades at around 200ms are
influenced by higher-level predictions. The PASAR model reproduces the
influence of higher level cognitive mechanisms on the anticipatory field
in varying cognitive load conditions.

5.1 Methods

5.1.1 Model
We describe a model of data association based on the principle of antici-
patory gate and violation of expectations. The model is able to integrate
higher-level influences and bottom-up sensory information for perform-
ing data association. We formulate the anticipatory gate in the model and
discuss how anticipations can be violated and how this can be used for
data association. We hypothesize which parameters of the model should
vary with the cognitive load, under limited resources constraints.

Prediction in predictable dynamic scenarios

The so-called prediction hypothesis has been discussed widely in psy-
chophysical literature and the Multiple Object Tracking (MOT) has been
used widely to test this hypothesis [94, 119, 61]. In vision research, the
prediction hypothesis states that momentarily disappearing objects are of-
ten perceived as persisting when they reappear with a velocity and trajec-
tory that was consistent with what was previously viewed, i.e. when they
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reappear predictably relative to their pre-disappearance trajectories [61].
Many earlier studies support the prediction hypothesis in MOT [110].
Also we know that subjects keep information object velocity when track-
ing [109]. Nevertheless some studies doubt the validity of the prediction
hypothesis [61]. Therefore, even though the existence of forward-models
in human cognition is widely accepted, the usage of forward-models (e.g.
for prediction) in human visual tasks like MOT is not beyond discussion.

In our opinion MOT is not appropriate for testing the prediction hy-
pothesis. Occlusion experiments in MOT pose the question whether dis-
placements effect MOT performance. We think that MOT performance
cannot give a measure on the use of predictions in visual perception, as
a high MOT performance can be achieved using higher-level object ID
recovery mechanisms after object reappearance. E.g. as the number of
tracked objects is usually fixed, the subject can use this information to
probabilistically assign object IDs after reappearance. This is in accor-
dance with a persistent object based model of attention, that allows to
filter out objects when those objects are relevant to current goals [48].

In the above mentioned MOT context, the role of saccades is still
largely unexplored. Express saccades refer to saccades in the time win-
dow observed earlier in humans in the 80-110 ms range after the occur-
rence of a perceptual event [39]. We further refer to saccades in this time
interval as early saccades. Slower saccades with reaction times around
200 ms after the occurrence of a perceptual event have also been studied
earlier [41, 37]; we refer further to these as late saccades. Some work
suggests top-down influences on late saccades, while the same for for
early saccades remains unexplored [37]. We propose a psychophysical
experimental paradigm, that enables us to explicitly verify the prediction
hypothesis, which is a prerequisite for our computational model for data
association. We investigate the top-down (anticipatory) influence on both
kinds of saccades and compare them with the conscious decisions made,
with the goal of investigating the role of high-level predictions in data
association.

88



Probabilistic data association in predictable scenarios

As discussed in section 3.3.2 to model the PASAR framework, we con-
sider the Joint probabilistic data association (JPDA) algorithm as the model
underlying human visual data association in dynamic predictable scenar-
ios. Here we summarize shortly the JPDA algorithm to motivate its usage
in this context. As discussed in section 3.3.2 JPDA enumerates all pos-
sible associations between observations and targets at each time step and
computes the association probabilities βjk, which is the probability that
the j-th observation originated from the k-th target. Given such associ-
ation probabilities, the target state is estimated by Kalman filtering [10]
and this conditional expectation of the state is weighted by the associa-
tion probability. Let xkt indicate the state of target k at time step t, ωjk
the association event where the observation j is associated to target k and
Y1:t stays for all the observations from time step 1 to time step t. Using
a priori knowledge about the world (e.g. state transition matrix(A), pro-
cess noise (Q), measurement matrix (H), control-input model (B) and the
control input-vector (û) of the Kalman filter) and the current state of the
target, a prediction is made for each target. At timestep t, for each target
k, we compute the state prediction, its covariance and the measurement
prediction as follows

x̃kk = Ax̂kt−1 +Bûkt−1 (5.1)

P̃ k
t = AP̂ k

t−1A
T +Qk

t−1 (5.2)
ỹkt = Hx̃kt (5.3)

Then the state of the target can be estimated as:

E(xkt |Y1:t) =
∑
ω

E(xkt |ω, Y1:t)P (ω|Y1:t) (5.4)

=
∑
j

E(xkt |ωjk, Y1:t)P (ωjk|Y1:t) (5.5)

where ωjk denotes the association event and observation j is associ-
ated to target k and ω0k denotes the event that no observation is asso-
ciated to target k. Therefore the event association probability is βjk =
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P (ωjk|Y1:t). JPDA computes a anticipatory gate for each target using the
Kalman innovation of new observations. It only considers observations
inside the anticipatory gate for each target. The ellipsoidal anticipatory
gate using the Kalman filter is discussed in section 5.1.1.

The ellipsoidal anticipatory gate hypothesis and the violation of an-
ticipations

We consider the linear state evolution model for state dynamics of target
x at time k:

xk = Axk−1 +Buk−1 + ρp (5.6)

where ρp is the process noise with time-invariant covariance matrixQ,
B is the control-input model and uk the control vector. The well-known
linear Kalman filter prediction and estimation step is used to update the
state. The ellipsoidal anticipatory gate is optimal for the above linear
observation model1 with additive noise:

z = Hx+ ϕ (5.7)

whereϕ is the zero Gaussian measurement error with p(ϕ) = N (ϕ; 0, R)
and is independent of the state x. H is the observation model which maps
the true state space into the observed space. The state probability density
function is Gaussian p(x) = N (x; x̂, P ). The validity of measurement yi
is determined from its innovation with the predicted observation

ν = yi −Hx̂ (5.8)

with the covariance S = R + HPHT . The anticipatory gate is com-
puted by gating the Mahanalobis distance (the normalized innovation squared
(NIS))

νTS−1ν < Md (5.9)

1further we omit the time-subscripts of state space variables for the sake of clarity
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Md is the threshold for an innovation dimension d and can be com-
puted efficiently since the NIS follows a chi-square probability density
function. E.g. to compute the probability that j% of true associations are
accepted, Md is obtained from

j

100
= P (

d

2
,
Md

2
) (5.10)

where

P (a, b) =
1

Γ(a)

∫ b

0
e−tta−1 dt (5.11)

is the incomplete gamma function [92]. The anticipatory gate (com-
monly known as validation gate) defines a region of acceptance such that
(100−j)% of true measurements are rejected given that the measurements
yi are distributed according to

p(y) = N (y;Hx̂, S) (5.12)

This formulation avoids the necessity to model clutter, which is usu-
ally very hard to model, and also unlikely associations are eliminated (see
figure 5.1 for an illustration). For non-linear anticipatory gates for non-
Gaussian models see [9].

We hypothesize the existence of the above described ellipsoidal an-
ticipatory gate in human visual perception, when dealing with dynamic
but predictable scenarios. And we hypothesize that data association is
performed using such a gate. Given this hypothesis, increasing the cog-
nitive load in humans corresponds to increasing the process noise covari-
ance (Q) as in equation 5.6. We propose a psychophysical experimen-
tal paradigm using a displacement detection task to test our hypothesis
of the existence of anticipatory gates. Further, increasing the cognitive
load should lead thereby to increasing the covariance of process noise,
which should be reflected in the anticipatory gate described above. More
concretely, the anticipatory gates in higher cognitive loads should have
higher eccentricities along predicted movement directions (a higher pro-
cess noise covariance Q has that effect). This is a reasonable effect as this
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Figure 5.1: Schema of ellipsoidal anticipatory gates: A: Moving targets
with predicted positions indicated by arrows. B: Ellipsoidal anticipatory
gates for data association. C: Target states after one movement step. One
anticipation was violated by a displacement (bottom right) and the dis-
placement falls outside the anticipatory gate. The question mark indicates
if the subjects answers ”yes” or ”no” to the question if this displacement
was noticed.

would allow a limited resources system, like the human brain, to have a
riskier but more efficient data association strategy when under high cog-
nitive load.

5.1.2 Displacement detection task

The subject watches a fixed number of moving identical non-filled white
circles (referred to as targets) on a black background (as in MOT
[61]) that move on predictable linear paths at constant speed and bounce
at the boundaries. This allows the subject to use linear predictions of
the movements. We avoid visual habituation when performing smooth-
pursuit of a single linear movement (as in [38]), by using several simul-
taneously moving circular items (N = 10). Once every T = 3 seconds
just one of the moving objects displaces itself from the linear trajectory
and then continues the linear motion at the same speed as before the dis-
placement (see figure 5.1, C). The displacement and direction is chosen
randomly around the movement direction and current target position. The
subject is instructed to press a button whenever he/she perceives a dis-
placement from the normal linear motion. Simultaneously, using infra-red
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eye-tracking we also track the eye movements of the subject. We conduct
three trials of 3 minutes each per subject: trial one is of low cognitive load
where the subject solely performs the above psychophysics task (men-
tioned as the low load task). In trial 2 we increase the subject’s cognitive
load by instructing him/her to continuously count aloud the even num-
bers (in his/her mother tongue) while performing the same psychophysics
task (medium load task). In trial 3 the subject is instructed to continu-
ously count aloud the the alphabet in reverse order (also in his/her mother
tongue) until the experiment stop (high load task). The low, medium and
high cognitive tasks were designed to modulate the cognitive load with-
out affecting the perceptual load [25]. Recalling less automatized chains
(alphabets in reverse order) results in higher cognitive loads than more
automatized chains like the numbers, while all counting is resource de-
manding [25].

We used the Tobii c© x120 eye tracker to log eye tracking data at 120
Hz. The psychophysical experiment was developed using the OpenGL
library in Linux Fedora 8, C++ environment and runs at 200Hz on aver-
age on a quadcore Intel(R) Xeon(R) CPU of 2.00GHz speed. The button
press reaction of the subjects and the movements of the circular items
were logged time synchronized with the eye tracking data. The screen
resolution was 1400x900 and the subject sat at 60 cms from the screen,
stabilized using a chin rest of 35 cms height. The movement speed of the
circular targets were in between 1 and 10 ◦/s. The speed of a target was
altered slightly only when bouncing at the peripheries (random change of
±0.001 ◦/s). Subjects were 8 male university (under)graduate students
between 23 and 32 years old. The total experiment consisted of 3 trials
of 3 minutes each (one trial for each cognitive load). Eye calibration was
performed before each trial. The radius of all circular items were identical
at 0.20 ◦.
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Figure 5.2: Schematic of the psychophysical kernel computation: All
trials are sorted to detected and non-detected trials and all displacements
normalized. A single kernel is computed from the density plots of the two
sorted data groups (see text for more details).

5.1.3 Psychophysical reverse correlation

Psychophysical reverse correlation has been used in a number of stud-
ies to characterize human observer’s strategies in visual tasks [3]. Also,
many physiological studies have used reverse correlation to characterize
neural responses to visual stimuli (see [114] for a review). Both in phys-
iology and psychophysics, reverse correlation has proven to be a strong
technique for seeking relationships between a high-dimensional variable
(e.g. an image) and a categorical variable (two-choice decision or neural
spiking) [114]. Here we tailor psychophysical reverse correlation to ana-
lyze the two-choice decision strategy and express saccades. Each stimulus
is a displacement that is plotted as a point on the speed-normalized and
direction-corrected coordinate system (see figure 5.2), where the positive
x-axis is the linear movement direction of the circular target before and
after the displacement. For each displacement the direction and length
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of displacement chosen from a uniform distribution. This displacement
is then normalized with respect to its speed and corrected for direction
so that all displacements can be plotted on the same reference frame,
where the positive x-axis denotes the movement direction of the object
(see figure 5.2). We then sort the stimuli according to the ’detected’ and
’non-detected’ choices (analogously using early and late saccade data, see
below). We then computed the average detection and non-detection ma-
trices and used interpolation to incorporate datasets of different sizes for
detection and non-detection. This yields a two-dimensional probability
distribution each for detection and non-detection classes. The difference
between the two probability distributions preceding non-detected choices
and detected choices defines the dataset which is fitted using the Expec-
tation Maximization algorithm to find the 2D Gaussian. The covariance
ellipse of this fitted Gaussian is referred to as the psychophysical kernel
hereafter (the ellipse covers 39.4 % of the total probability mass). The
goodness of the Gaussian fit is estimated by multivariate normality tests
using skewness and kurtosis.

We analyze the eye tracking data, to detect a possible correlation be-
tween displacements and eye behavior. Here we formalize an operational
definition of saccade towards displacement position as follows: we com-
pute the distance between the eye position and the displacement position
at the beginning (distb) and at the end (diste) of a given time window.
We define that a saccade occurred if diste < distb

2
. For a time window of

110ms such saccades were observed for 90% of the displacements. Also
see figure 5.4(a). We looked at two kinds of saccades and computed the
psychophysical kernels for each of them separately. First we looked at the
early saccades, that occur at around 100ms after displacement (see figure
5.4(a)). Secondly we looked at the late saccades at around 200ms after
displacement. The early/express saccade window has been observed ear-
lier to be 80-110 ms in humans [39] and the late saccades have reaction
times round 200 ms [41, 37]. Some work suggest top-down influence on
late saccades while the same for early saccades remains unexplored
[37].
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5.2 Results

The eccentricity ε of the psychophysical ellipse is the eccentricity of the
covariance matrix of the psychophysical kernel indicated by the ellipse
is computed as:

√
1− λ2

λ1
, where λ1 and λ2 are the first and the second

eigenvalues of the covariance matrix (ε = 0 is circle, ε = 1 is 1, the
higher the ε, the higher the eccentricity of an ellipse). The orientation
γ of the psychophysical ellipse is given by the covariance matrix of the
kernel; readable from the orientation of the eigenvector corresponding to
the largest eigenvalue of the covariance matrix. (we have -90◦ for ver-
tically up through 0 ◦ for movement direction, to +90◦ vertically down).
We computed the mean kernels for all subjects as shown in figure 5.3.

The mean areas of the psychophysical kernel ellipses of the subjects in
the low(l), medium(m) and high(h) cognitive load trials do not change rel-
evantly (1-way ANOVA, p = 0.39, 0.39, 0.39 for the null hypothesis that
the area remains the same for decision, early saccade and late saccade
kernels respectively). Also, the mean shift of the psychophysical kernel
ellipse does not change relevantly (1-way ANOVA, p = 0.95, 0.95, 0.95
for the null hypothesis that the shift remains the same for decision, early
saccade and late saccade kernels respectively). Further, the mean of the
psychophysical kernel ellipse orientation also does not change relevantly
(1-way ANOVA, p = 0.39, 0.99, 0.39 for the null hypothesis that the shift
remains the same for decision, early saccade and late saccade kernels re-
spectively). The only parameter of the ellipse that changes over the differ-
ent cognitive loads is the eccentricity (1-way ANOVA, p = 0.0005, 0.95,
0.0005 for the null hypothesis that the shift remains the same for decision,
early saccade and late saccade kernels respectively). As the p-values in-
dicate, the eccentricity mean changes relevantly only for the late saccade
and the conscious decision. This indicates that cognitive load has an effect
on both the decision making process and the late saccades, but not on the
early saccades. To further analyze this, we also analyzed the intra-subject
change in eccentricities and orientations of the psychophysical kernels.
The results are shown in figure 5.4(b) and figure 5.4(c).

The results indicate that the eccentricity of the ellipse increases along
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Figure 5.3: Psychophysical kernels for all subjects for conscious deci-
sion, early and late saccades and in different cognitive loads (low, medium
and high). The area (a), eccentricity (ε) and the orientation (γ) of the ker-
nel ellipses are indicated.

the movement direction with cognitive load for decisions and late sac-
cades, but not for the early saccade. To see the statistical relevance of
this change, we perform the signtest for the above as shown in table 5.1.
The results suggest that the effect of the change of the cognitive load is
reflected solely in the elongation of the psychophysical ellipse eccentric-
ity. The eccentricity increases along the movement direction reflecting
the existence of a riskier but more efficient data association mechanism at
work, as predicted by the model in section 5.1.1. It is trivial to compute
the psychophysical kernel ellipses for the different conditions using lin-
ear motion equations, and as the speed of the movement of the targets are
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Figure 5.4: a) Saccade histograms with early and late saccade intervals
indicated. b) Change in intra-subject eccentricities. c) Change in intra-
subject orientations.

known. The process noise covariance matrix Q as in equation 5.1.1 can
simply be adapted to obtain the observed eccentricity of the psychophys-
ical kernel ellipses for the different cognitive loads.
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Table 5.1: p-values of the two-sided sign test for the eccentricity(ε) and
orientation(γ) differences of the psychophysical kernel ellipses at indi-
vidual subject level between low(l), medium(m) and high(h) load exper-
iments. The kernels computed by the subjects’ decisions, the express
saccades and the late saccades are separately analyzed. The bold values
indicate small values of p (<= 0.05), where the null hypothesis of 0 me-
dian is rejected.

decision express late
m-l h-m h-l m-1 h-m h-l m-l h-m h-l

ε 0.726 0.289 0.007 1.0 0.697 0.218 0.218 0.687 0.031
γ 0.726 0.070 0.0703 1.0 1.0 0.687 1.0 0.218 0.687

5.3 Conclusions

In this chapter we investigated the existence of an anticipatory/validation
gate, and the influence of high-level cognitive loads on saccade gener-
ation and decision making processes on (visual) data association tasks
using the PASAR framework. The probabilistic computational frame-
work of PASAR hypothesizes that anticipation of future stimuli is mea-
surable and that data association in visual processing can be explained
using a paradigm of violation of anticipations. We investigated the mech-
anisms that underlie top-down decision making and saccade generation
in the context of visual data association in a psychophysical task. We
have shown that the top-down influences on conscious decision making
and early/late saccades are measurable by means of the formulation of a
psychophysical kernel. The proposed experimental paradigm (a modified
version of Multiple Object Tracking (MOT)) serves exactly the purpose
of computing the psychophysical kernels constructed on the basis of pre-
dictability. The conventional MOT paradigm was insufficient to reveal
the existence and the properties of an anticipatory field. The possibility to
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quantify anticipation as psychophysical kernels has enabled us to measure
the anticipation of future stimuli.

The psychophysical data has evidenced the existence of a modulation
of the anticipatory gates. This modulation was observed only for late
saccades and the conscious decisions, but not for the early saccades. This
supports the idea of a different process driving the early/express saccades,
independently from high-level neuronal processes. At the same time, our
results support the idea that late saccades have top-down influences as
they follow the trend of the psychophysical kernel of conscious decision
in low, medium and high cognitive load tasks.

The existence of such modulated elliptical anticipatory gates gives
support to our integrated data association framework, and thus validating
the use of PASAR for explaining human visual processing at different lev-
els of the sensory-decision making hierarchy, and modeling the interplay
of attention, decision, cognitive load, anticipation and the generation of
saccades.

We believe that this novel psychophysical paradigm to measure an-
ticipation and the interplay of the above mentioned systems is extremely
valuable to approach deficits in the human visual processing such as uni-
lateral neglect patients or patients with other attentional deficits. The
computed psychophysical kernel could possibly then be used for diag-
nosis of attentional deficits, and to further understand the mechanisms in
place for an eventual rehabilitation. Also, data association in humans is
usually multi-modal, and it needs to be investigated how the psychophys-
ical kernel generalizes when anticipations are violated across modalities.
Hence we aim at extending our psychophysical kernel paradigm to in-
clude 3D sound spatialization.
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Chapter 6

CONCLUSIONS

In this dissertation, we have addressed the issue of modeling the integra-
tion of forward model mechanisms like prediction and anticipation with
attention and motor response in artificial and biological cognitive systems.
We posed the question of what the minimal subcomponents of cognition
contribute to the performance of the cognitive system. We addressed this
question in experiments with biological systems and in artificial cognitive
systems. Our phylogenic model-based approach allowed us to refine our
initial minimal model in a stepwise fashion. Our initial model is based
on the first version of the DAC architecture [113]. Other recent variants
of the DAC architecture also contain explicit forward-model mechanisms
for integrating behavioral and perceptual learning [35]. Nevertheless, the
other recent variants of DAC do not provide a framework to integrate at-
tentional mechanisms with forward model mechanisms and therefore do
not allow the investigation of the specific contributions of the subcompo-
nents of cognition to the overall task solving performance.

In this thesis, we first presented a mapless navigational model based
on ant navigation strategies, that included different aspects of insect-navigation
like chemical search, path integration and landmark navigation and was
inspired by earlier insect navigational studies suggesting that insects make
use of vector-like memory representations to achieve robust navigation
[29, 124, 123]. This initial model, based on the first version of the Dis-
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tributed Adaptive Control framework [113, 111], did not possess any for-
ward model mechanisms like prediction, anticipation or attention, but de-
spite these limitations was capable of mapless landmark navigation us-
ing chemo-visual sensors. The model was implemented and tested on a
ground robot in a chemo-foraging task [74]. Unlike navigational mod-
els based on place/map like representations, our model used solely head-
ing direction accumulation and proprioceptive information in combina-
tion with landmark recognition. This approach proposed a solution to
autonomous landmark navigation without having the need to learn place
representations, based on which the SyntheticAnt robot was able to learn
a graph structure using low memory usage.

Nevertheless, the feasibility of this initial model was challenged by
dynamic landmark scenarios. We showed that forward model mecha-
nisms like prediction of future positions of landmarks were necessary to
explain the behavior of real ants when navigating in dynamic scenarios.
Thus, we enhanced our model with an expectation reinforcement mecha-
nism and transient memory based on insect studies to allow the artificial
forager to navigate in unknown dynamic environments [122]. The pro-
posed navigational strategy enabled the navigator to learn the reliability
in the landmarks by using expectation reinforcement. We also proposed a
version of Lévy walk, which supported the idea of expectation reinforce-
ment, by enabling the navigator to trace back to known terrain when-
ever expectations were violated. We tested our navigational model on the
simulated SyntheticAnt, and compared its behavior to its biological coun-
terpart. The striking behavioral similarity of our model to the real ant
support the principle of our model. In fact, our model formulated nav-
igation as a dynamic memory reconsolidation process, which made use
of an expectation reinforcement mechanism. By modeling ant naviga-
tion and then directly comparing the results of our navigational model to
real ant navigational behavior, we could better understand the capabilities
and limits of a non-forward model. In summary, we saw the necessity
of forward models to capture the ant behavior in dynamic scenarios [73].
Also, our approach proposes a viable and biologically plausible alterna-
tive to the solution of the SLAM problem [99]. The main differences to
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the conventional solutions are the reformulation of mapping as recalling
a graph-like structure and the reinterpretation of localization as relative
distances and directions to known landmarks.

Subsequently we moved on to propose the PASAR framework that
enabled us to integrate and quantify the minimal ingredients (including
forward models) of cognition such as prediction, anticipation, sensation,
attention and motor response needed for task solving in dynamic, par-
tially known environments under limited resources constraints. PASAR
allowed us to pose specific questions about the role and contributions of
each of its subcomponents. The interplay of these cognitive mechanisms
were analyzed in a complex robotic task in the mixed reality environment
of XIM. In the XIM tracking task, we demonstrated that PASAR was able
to learn sensory map alignment, create and maintain a world-model under
limited resources constraints when acting in an unknown environment and
deploy attentional mechanisms for active information acquisition [70, 72].
The second testbed, the rescue robot simulation, demonstrated PASAR’s
optimality in the usage of the acquired world-model for multiple goal de-
cision making and allowed to evaluate the contributions of the individual
components of PASAR to the overall performance [71]. Our results in
the XIM and robot simulation testbeds demonstrate the feasibility of the
PASAR framework for use in artificial cognitive systems. Furthermore,
our results on the interplay of anticipation, perception, attention and re-
sponse suggest that a complete sensori-motor system with attentional, an-
ticipatory and predictive mechanisms perform clearly better than incom-
plete subsystems in complex tasks. Besides that, our results also suggest
that the use of attentional mechanisms and prediction is only beneficial,
if there is a forgetting (memory decay) mechanism at work. Our findings
can serve designing novel artificial cognitive systems by using prediction,
anticipation, sensation attention and response in constructive interplay.

Our results with PASAR in artificial cognitive systems postulated a
number of testable predictions on the interplay of the different sub-systems
of cognition in biological systems. To address this we designed a human
psychophysical experiment and a reverse correlation paradigm to study
the feasibility of PASAR in human visual processing and investigated the
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influence of high-level cognitive loads on saccade generation and deci-
sion making processes in a visual displacement detection task. The data
association mechanism of PASAR hypothesizes that anticipation of fu-
ture stimuli is measurable and that data association in visual processing
could be explained using a paradigm of violation of anticipations. The
psychophysical task showed that the top-down influences on conscious
decision making and early/late saccades are measurable by means of the
formulation of a psychophysical kernel. Our results suggested the exis-
tence of an anticipatory gate in human visual processing, and that this gate
is modulated by top-down influence. This modulation was stronger when
acting under higher cognitive load, suggesting that the brain traded off
sensory data processing for alloting computational resources to the extra
cognitive task by relying more on predictions for decision making and for
triggering late saccades.

In summary, we identified prediction, anticipation, sensation, atten-
tion and motor response as minimal components of cognitive systems,
and analyzed their interplay in artificial and biological cognitive systems.
Predictive and anticipatory mechanisms are increasingly thought to play
an important role in motor control, goal oriented behavior and cognition
in biological systems [128]. Biological cognitive systems are thought
to use forward models to achieve this by predicting the sensory conse-
quences of actions to ensure robust adaptive behavior [60]. Our find-
ings of forward models in insect cognition is supported by a wide range
of recent insect studies (see [120] for a review). In mammalian neuro-
science, there is increasing interest in interpreting the function of vari-
ous brain areas in terms of forward models (e.g. the cerebellum [76] or
the substantia nigra of the midbrain[78]). Besides that, several authors
have suggested the relevance of forward modeling in understanding the
brain circuitry that underlies cognition [27, 11, 31]. There is support, on
the one hand, for the existence of a forward model mechanism to modu-
late bottom-up sensory information in order to fit expectations based on
past events, and on the other hand, for its close relationship to attentional
mechanisms [60, 57, 101]. The notion of top-down and bottom-up infor-
mation flows, commonly used in attention literature [57], is of particular
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interest to our model as it makes use of top-down modulation of antici-
pations and bottom-up sensory input. In the context of this dissertation
we addressed the issue of integrating attention mechanisms with predic-
tion, anticipation, sensation and motor response in a single framework.
We thereby took a phylogenic approach and modeled a cognitive system,
starting with a simple model and then incorporating forward models and
attention mechanisms. We then tested our model in complex real-world
and simulated robotic tasks and in human visual processing.

The so-called prediction hypothesis in human visual processing has
been discussed in many earlier studies [94, 119, 61]. Some studies support
the prediction hypothesis in MOT [110, 119, 61], but also some studies
doubt the validity of the same [61]. Here we not only provide a signa-
ture of an anticipatory gate (which makes use of predictions) in human
visual processing, but also model the same using the PASAR data asso-
ciation mechanism. Our findings support the prediction hypothesis (and
the related anticipatory mechanism) and shows that humans harness more
the available anticipations about future stimuli with increasing cognitive
load.

It is our strong belief that the proposed PASAR framework will con-
tribute to the design of novel control architectures of artificial robotic sys-
tems. For this reason, in future work, we plan to test PASAR on the state-
of-the-art humanoid robotic platform iCub2. A humanoid robot platform
offers a plethora of possibilities to test a framework like PASAR in real-
world interactions with humans, which involves, prediction, anticipation,
attention, sensation and motor response. Also, we plan to evaluate the
PASAR framework more elaborately in biological systems using brain
imaging techniques to uncover the existence of the neural correlates of
the hypothesized anticipatory gates.

2http://www.robotcub.org/

105





Chapter 7

APPENDIX

7.1 MCMC Implementation for JPDA Event
Probability Computation

The problem is reformulated as a bipartite graph as discussed in previous
work [71]. Consider the bipartite graph G = (U, V,E), where U is a
vertex set of predicted observations, V is the vertex set of observations
and E is mapping predicted observations (or in other words a concept) to
an observation. We thereby only consider feasible mappings, i.e. the ones
that respect the validation gate criteria for the JPDA. The algorithm starts
with one such feasible mapping and then a Markov chain is generated.
The polynomial time complexity with respect to the number of concepts
allows MCMC to be used for computing βjk in real-time. For details of
the MCMC approximation of βjk, its convergence and stability see [83]
and [71].
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7.2 Sensory MAP Alignment Learning in the
XIM Mixed-Reality Space

Neural plasticity guarantees shaping and maintaining mutual spatial align-
ment across different sensory representations.The PASAR adaptive layer
employs a learning mechanism so that purely reactive responses are pro-
gressively replaced by learned responses. PASAR is transparent to the
specific learning mechanism itself, and we have demonstrated the ca-
pability of PASAR using two different learning paradigms, asymmetric
Hebbian learning and Levenberg-Marquardt. In the first testbed, PASAR
makes use of asymmetric Hebbian learning to learn one sensory represen-
tation by using another one as the reference. The sensory modality which
delivers reliable data is used as the reference to learn the space representa-
tion of another modality. The Hebbian learning rule mediates the learning
to correct the synaptic weights of a neural network connecting the neural
representation of one modality to the other. Once the Hebbian learning
converges on a low resolution neural representation, a cubic interpola-
tion is applied to get high resolution mapping of space of the learned
representation. The transparence of the PASAR adaptive layer to the spe-
cific learning algorithm is demonstrated by implementing a Levenberg-
Marquardt algorithm to learn the extrinsic parameters of active sensory
devices.

We take a close look at how sensory map learning in XIM is achieved
online during human interaction in the space. Firstly, we use the PASAR
adaptive layer to learn the sensory map of the overhead camera using the
floor map as the reference. The overhead infrared camera, placed in an
arbitrary position, has intrinsic perspective and distortive errors. Based
on the superior colliculus sensory map alignment [102, 58], this can be
implemented using a Hebbian learning rule in the PASAR adaptive layer
(see also section 3.3.4). The tactile floor, which delivers reliable but low
resolution position data, is used as the reference. The Hebbian learning
rule mediates the learning to correct the synaptic weights of a neural net-
work connecting the overhead camera neural group with the floor group
(figure 7.1). The procedure for learning the camera sensory map consists
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Figure 7.1: Learning Sensory Maps: Using the PASAR adaptive layer,
the space representation errors of one sensory modality are corrected us-
ing a different modality stimulus.

of a person walking freely in XIM while the tactile floor and the overhead
infrared camera tracking data are used by the PASAR adaptive layer. This
basically learns the synaptic weight of a neural network connecting a 72
by 72 linear threshold cell group to another 72 by 72 linear threshold cell
group by means of Hebbian plasticity. The details of the usage of the
DAC adaptive layer for Hebbian learning can be consulted in [35]. Af-
ter the Hebbian learning stabilizes, a cubic interpolation is used to regain
the high resolution mapping of the overhead camera. After the Hebbian
learning has converged, a cubic interpolation is applied to regain the high
resolution of the camera space representation. This online mechanism of
PASAR allows to learn the space representation of a sensor placed arbi-
trarily in space.

Secondly, we use the same PASAR adaptive layer for online learning
of the extrinsic parameters of the four controllable color cameras placed
in arbitrary positions in XIM (figure 4) by means of the Levenberg Mar-
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Figure 7.2: Online learning of the extrinsic parameters of movable
cameras: Using the PASAR adaptive layer, the controllable color cam-
eras extrinsic parameters are learned using tracking information of a per-
son walking in XIM as the reference. C(x, y) is the camera position and
the angels α, β and ω are used for the yaw computation. The control-
lable cameras scan the space and upon human torso detection (snapshot
on the right bottom) the extrinsic parameter approximation is iteratively
corrected.

quardt error minimizing algorithm [69]. The extrinsic parameters of these
four cameras (position in 3D space, yaw and pitch) are learned iteratively:
the pan-tilt cameras scan the XIM space for human torsos. When a human
torso is detected in the camera image, the tracked position of the person is
used as the reference to correct the extrinsic parameter estimation of the
pan-tilt camera.

This online learning of the camera extrinsic parameters can be practi-
cally carried out by placing the pan-tilt cameras in arbitrary positions and
a single person walking in the space. We consider the error minimization
for the camera x-y position and yaw. Let ω be the yaw of the pan-tilt
camera, (tx, ty) the position of the tracked human in XIM and (cx, cy) the
pan-tilt camera position. The angles α and β are indicated in figure 7.2.
Using simple trigonometry we compute α:
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β = arctan(
cy − ty
cx − tx

) (7.1)

α = 180− β − ω (7.2)

α = f(tx, ty) = 180− arctan(
cy − ty
cx − tx

)− ω (7.3)

While scanning the XIM space, the pan-tilt camera detects humans
and stores the tracked position of the human (tx, ty) and the yaw α. For a
set of corresponding measurements t̂i and α̂i the cost function

C(~p) =
n∑
i=1

[αi − f(t̂i|~p)]2 (7.4)

has to be minimized by optimizing the parameter vector:

~p = (cx, cy, ω)T

The online estimation of pitch is carried out analogously [54].

7.3 Multi-robot Testbed Equations
In the following we elaborate on how the general PASAR equations 12,
13 and 14 are applied to the multi-robot testbed. Let us assume that the
motor action consists simply of choosing a point (x, y) in space distance,
both x and y ∈ 1..20. The best action is then chosen as a point (x, y) the
world-model, to which then PASAR moves. As in the general equation
15, here are interested in computing the best point on the (x, y) plane.
Therefore we are interested in the probability:

P (XY |F t
s(Θ

t−1
s )At(s))

F is a time decay function that depends on time t, since the time of
a previous stimulus associated to this concept. With ai we denote the
attentional weight for concept i. For n concepts we formalize the above
probability as:
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P (XY |y1, ...ynt1, ...tnx1, ...xna1, .., an) (7.5)

First we consider the conditional probability in equation7.5 as if there
were only one concept i and without attentional inputs ai. Assuming con-
ditional independence for X and Y , we do the following decomposition:

P (XY |yitixi) = P (X|yitixi)P (Y |yitixi)P (tiyixi)

The probability distributions P (X|yitixi) and P (Y |yitixi) are Gaus-
sian distributions as shown in the following equations.

P (X|yitixi) = N (xi,
ti
c1

) (7.6)

P (Y |yitixi) = N (yi,
ti
c2

) (7.7)

Where the Gaussian distributions are centered on xi and yi at which
the concept i is located. The standard deviation is a function of time ti at
which this concept was last perceived. This allows PASAR to gradually
loose certainty (time decay) of what it had seen in the past, as past infor-
mation is always prone to change in a dynamic world.

And we assume the uniform distribution U for the joint probability
P (tiyixi) as we do not have any prior information about possible correla-
tions between those random variables.

P (tiyixi) = U (7.8)

where c1 and c2 are pre-defined constants.
Now to consider the utilities of all the concepts for the computation of

the total utility as shown in equation 14, in which we bring back the atten-
tional components ai and consider the following conditional probability
distribution:

P (XY |y1, ...ynt1, ...tnx1, ...xna1, .., an) = (7.9)∑
i

ai
atot

P (X|yitixi)P (Y |yitixi)P (tiyixi) (7.10)
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where atot is the sum of all attentional components ai, which are the
attentional saliencies for individual concepts depending on their detected
remaining charge.

This means that the attentional components ai weight the shares of the
individual concepts to form the joint conditional probability distribution.
In other words, attention modulates the world model, which is expressed
as a probability distribution that changes in each step with the sensory
input.

This formulation allows to test the individual components of PASAR,
such as prediction, attention and time decay of memory. For instance to
test the contribution of attention on performance, we run trials where the
attention of a concept is inversely proportional to the perceived power of
the robot and also trials where attention is the same for all robots.

7.4 Multi-Person Tracking Experiment in XIM

In this case, the world-model, containing high-dimensional information
about the humans interacting freely in the space, is to be constructed and
maintained for tracking purposes using the available sensors. For this
PASAR makes use of the contextual layer to fuse and associate the mul-
timodal sensory data. Tactile floor tiles and overhead infrared cameras
are the sensors used for this. A concept here is a single human in XIM.
We use a 8-dimensional space for the concepts containing the x-y posi-
tions, x-y velocities, x-y accelerations, hue of the outfit and weight. To
test the precision of the world-model during interactions involving differ-
ent difficulty levels of tracking, a number of experiments are performed.
ID maintenence is analyzed for four different interaction scenarios: explo-
ration, energy, center of mass, pong game. Different interaction scenarios
are considered to analyze the performance in varying tracking conditions.
The four interaction scenarios are different from each other in how hu-
mans move in XIM. In the exploration scenario humans move randomly
exploring the space. In the center-of-mass scenario they form a highly
cluttered tracking scenario. In the energy scenario, high speed move-
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ments are produced by running around in the space. Pong involves team
cooperation, where people coordinate their movement to achieve a team
performance as discussed in [55]. We further consider the use of a pri-
ori information for improving the performance of PASAR. The idea of
using this is to be able to modulate the association probabilities of sen-
sory data to persons using a priori information about the world. PASAR
computed the association probabilities of sensory data to concepts in the
world-model using the JPDA algorithm and updates the concept states as
discussed in chapter 3, section 3.3.2 and particularly in equation 3.10. We
make use of this here by adding the heuristic that spatio-temporal proxim-
ity of multimodal sensory data has to be weighted more. In other words,
sensory data congruent to sensory data of another modality is weighted
higher. Here the camera data that is proximal to floor data in space and
time is weighted more, i.e. the association probabilities of such data con-
cepts are higher.

7.5 Bottom-up and Top-Down Attention for Ac-
tion Generation in XIM

In this case, the recruitment of active sensors under limited resources con-
straints (e.g. 10 people in the space where only 4 controllable color cam-
eras are available) to acquire features of the tracked humans is tested. The
extracted features of the tracked humans are highly useful for ID main-
tenence in cluttered situations. Controllable color cameras and moving
lights are allocated using the above discussed PASAR attentional spot-
light mechanism to extract hues of the humans. We use a just-in-need
feature extraction mechanism, which is very useful for autonomous sys-
tems with limited resources like the XIM. This becomes highly relevant
for ID correction in XIM, where there are usually more than four subjects
interacting in the space when there are only four controllable color cam-
eras for hue feature extraction. Nevertheless, PASAR allows to drive the
pan-tilt cameras to make them follow moving persons in XIM and extract
hue information at the right moment (guaranteeing line of sight). Stan-
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dard image processing techniques are applied to extract the hue of the
subject torso despite distracting background noise such as other subjects,
virtual world projection screens, floor illumination etc. At the same time,
the moving lights are used to shine white light on the subject to aid hue
extraction. From the movable camera images, hue histograms are com-
puted for predefined hue bins (we used bin size 18, giving 20 bins for hue
values range from 0 to 360). The top-down attention for such deploy-
ment of movable cameras and moving lights is triggered as discussed in
the methods section using the similarity interference paradigm. Although
hue extraction is a simple feature extraction method, it serves as a proof of
concept for motor action generation from attention. By actively collecting
hue information of subjects in the space, their IDs can be corrected.
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