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Abstract

My dissertation is a collection of three essays that consider various aspects of long-run economic growth

as well as income inequality and the demand for skilled labor.

The first chapter, co-authored with Joachim Voth, investigates the questions why England was the

first country to industrialize. We present a probabilistic two-sector model where the initial escape from

Malthusian constraints depends on the demographic regime, capital deepening and the use of more differ-

entiated capital equipment. Weather-induced shocks to agricultural productivity interact with the demo-

graphic regime and affect the speed of growth. We calibrate our model to match the main characteristics

of the English economy in 1700 and the observed transition until 1850. Higher initial per capita incomes

together with fertility limitation increase industrialization probabilities. In contrast to unified growth the-

ory in the tradition of Galor-Weil (2000) and Galor-Moav (2002), our setup does not depend on human

capital accumulation and is therefore closer to the empirics. Since there is little evidence that human

capital increased before 1850, this solves an important shortcoming in the existing literature. Simula-

tions using parameter values for other countries show that Britain’s early escape was only partly due to

chance. France could have moved out of agriculture and into manufacturing faster than Britain, but the

probability was less than 30 percent. Contrary to recent claims in the literature, 18th century China had

only a minimal chance to escape from Malthusian constraints. [This chapter is published in: Journal of

Economic Growth 2006, 11(4): 319-361.]

The second chapter is motivated by the finding that relatively high initial incomes in 1700 gave Eu-

ropean countries the edge to industrialize. This chapter is also co-authored with Joachim Voth. Using

a simple Malthusian model with two sectors, we examine why Western Europe overtook China in terms

of incomes and urbanization rates in the early modern period (1450-1700). Standard accounts of this

"reversal of fortune" emphasize European inventiveness and the slackening of Chinese technological cre-

ativity (Mokyr, 1990). That living standards could exceed subsistence levels in a Malthusian setting at
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all should be surprising. Rising fertility and falling mortality ought to have reversed any gains. We show

that productivity growth in Europe can only explain a tiny fraction of rising living standards. Population

dynamics – changes of the birth and death schedules – were far more important drivers of the long-run

Malthusian equilibrium. In our setup, population fell following the Black Death; wages surged. Because

of Engel’s Law, demand for urban products increased, raising urban wages and attracting rural population.

European cities were particularly unhealthy; urbanization pushed up aggregate death rates. This effect

was reinforced by more frequent wars, fed by city wealth, and disease spread by trade. Thus, higher

wages themselves reduced population pressure. Without technological change, our model can account

for income increases that led to levels far above subsistence, as well as the sharp rise in European urban-

ization.

Human capital accumulation is at the heart of unified growth theory. The transition from stagnation

to growth in these models goes hand in hand with an increasing importance of skills. Historical obser-

vations suggest the opposite: The first stage of the Industrial Revolution was skill-replacing rather than

skill-using. It was only later on that technical change became skill biased. Yet, we do not fully understand

what caused this change in the nature of technologically-induced factor demand. Previously suggested

explanations like international trade or complementarities between technology and skills cannot account

for the sheer magnitude of the observed skill bias in recent decades. This motivates the third chapter. I

present a novel stylized fact and analyze its contribution to the skill bias of technical change: The share

of skilled labor embedded in intermediate inputs correlates strongly with the skill share employed in fi-

nal production. This finding points towards an intersectoral technology-skill complementarity (ITSC).

Empirical evidence suggests that the channel through which this complementarity works is product in-

novation driven by skilled workers. Together with input-output linkages, the observed complementarity

delivers a multiplier that reinforces skill demand along the production chain. The effect is large, account-

ing for more than one third of the observed skill upgrading in U.S. manufacturing over the period 1967-92.

I also present a simple multi-sector model with intermediate linkages that integrates the observed ITSC

into the standard framework of skill-biased technical change. Therein, the relative productivity of skilled

workers rises with the skill intensity of intermediates. A calibration exercise confirms the quantitative

importance of the ITSC.

Thesis Supervisor: Hans-Joachim Voth

Title: ICREA Research Professor, Universitat Pompeu Fabra
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Chapter 1

Why England? Demographic Factors, Structural Change and Phys-
ical Capital Accumulation during the Industrial Revolution

(Joint with Joachim Voth, UPF)

1.1 Introduction

Britain was the first country to break free from Malthusian constraints, with population size and living

standards starting to grow in tandem after 1750 [Crafts (1985), Wrigley (1983)]. In many parts of the

world, however, growth rates of per capita income took a long time to accelerate. Eventually, more and

more countries industrialized, first in Europe and North America, and from the 20th century onwards in

other areas of the globe. The relative size of economies, the onset of the demographic transition, and

living standards of citizens are still profoundly influenced by the timing of Industrial Revolutions around

the globe [Galor and Mountford (2003)] – with dramatic consequences for the economic and political

history of the world that are still felt today.

Why did some countries industrialize so much earlier than others? Unified growth theory [Galor

and Weil (2000), Galor and Moav (2002), Jones (2001), Hansen and Prescott (2002)] offers a consistent

explanation for the transition from century-long Malthusian stagnation to rapid growth. What is missing

is a better understanding of why some countries overcame stagnation at radically different points in time.

The question is almost as old as industrialization itself. Economic historians have stressed a long list

of factors, ranging from the property rights regime to the land tenure system, that might have favored

Britain [Landes (1999)]. Galor (2005) argues that geographical factors and historical accident interacted

to delay or accelerate the timing of the "Great Escape", and that "variations in institutional, demographic,

and cultural factors, trade patterns, colonial status, and public policy" may have played a role. This paper

aims to provide a systematic answer to the questions "Why England?" and "Why Europe?" In doing so,

it offers clear quantitative evidence on the role of starting conditions and the nature of constraints that

delayed industrialization for centuries in many parts of the world.

In our model, chance can play an important role. Industrialization is treated as the result of a proba-

bilistic process. During the late medieval and early modern period, brief expansions – "efflorescences" –

occurred in many countries [Braudel (1973), Goldstone (2002)]. Yet most of these growth episodes sooner

or later ground to a halt. Some advanced economies (such as the Italian Republics) went into decline,

while countries like the Netherlands stagnated at high income levels. This is why economic historians

have often been sceptical of industrialization theories where the final outcome is pre-determined [Clark

(2003a), Mokyr and Voth (2007)]. What explains these starts and stops? And could other countries have

succeeded before Britain? Crafts (1977) argued that accidental factors, and not systematic advantages,

may have been crucial – that France, for example, could have easily industrialized first had it not been

for a number of random factors. To examine the determinants of early economic development, this paper

develops a simple stochastic model of the first Industrial Revolution – the transition from the Malthusian
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to the post-Malthusian regime, in the terminology of unified growth theory. In the spirit of Stokey (2001),

our model is then calibrated with eighteenth-century English data. We find that chance played a role

in the timing and speed of Britain’s initial surge – it’s actual performance was at the upper half of the

expected range of outcomes in our model. By altering the parameters of the calibrated model, we derive

probabilities of the escape in other parts of the world. France could have experienced substantial growth,

based on our model, but the manufacturing employment share in 1850 is lower than in Britain in most of

our simulations.

As emphasized by Galor and Moav (2004), physical capital accumulation is crucial for the first tran-

sition. This is reflected in our model, which emphasizes TFP advances as a result of growing capital

inputs. The key factors influencing industrialization probabilities in our model are starting incomes, the

nature of shocks, inequality, and the demographic regime. In our calibrations, we find that England’s

(and Europe’s) chances of sustained growth were greater principally because the demographic regime

propped up initial incomes. Redistribution plays only a small role. Galor and Moav (2004) argue that

inequality should be beneficial for industrialization in its initial stages, when physical capital is crucial;

during the second transition to self-sustaining growth, human capital becomes a key input, and inequality

is harmful. Zweimüller (2000) shows how, in an endogenous growth model, redistribution can be growth-

enhancing, while Matsuyama (2002) demonstrates how development depends on the exact shape of the

income distribution. We add another dimension emphasized by Fogel (1994). As many as 20 percent of

the population in 18th century France possibly did not receive enough food to work for more than a few

hours a day. Also, when inequality was too great prior to the Industrial Revolution, crisis mortality could

be high. This undermines growth by lowering the marginal return to capital, and the pace of accumula-

tion. If this effect is larger than the rise in the capital/labor and land/labor ratios due to falling population,

productivity growth suffers. We conclude that inequality may only be beneficial via the savings channel

if the population is sufficiently well-fed to avoid famines and chronic undernutrition.

Our work is related to three bodies of literature. Economic historians have sometimes been sceptical

of endogenous growth models.1 Crafts (1995) rejected endogenous growth models partly because they

had little to say about the different speeds of industrialization in England and France. He also argued that

detailed accounts of technological historians did not square with the predictions of endogeneous growth

models. Unified growth theory has made considerable progress in bridging the gap between theory and

historical facts. We therefore take the unified growth models by Galor and Moav (2002), Galor and Weil

(2000), Jones (2001), Kögel and Prskawetz (2001) and Cervellati and Sunde (2005) as our starting point.

Our model focuses on what Galor et al. call the first of two crucial transitions – the one from Malthusian to

a post-Malthusian world, when population pressure no longer determines wages (but before human capital

becomes crucial). In the vein of these models, demographic feedback and physical capital accumulation

are important for the initial escape from stagnation. While papers in the Galor-Weil tradition focus on

fertility limitation after the first transition, we emphasize the importance of fertility behavior for starting

conditions in Europe (as in the work of Wrigley (1988), inter alia).

A second set of related papers emphasizes technology adoption. Murphy, Shleifer and Vishny (1989a,b)

argue that bigger markets and moderate inequality facilitate the adoption of new technologies when fixed

1Voth (2003) concluded that "the Industrial Revolution in most growth models shares few similarities with the economic events

unfolding in England in the 18th century".
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costs are substantial. The technological history of the First Industrial Revolution only offers qualified

support for the importance of fixed costs and indivisibilities. Instead, we employ an externality to capital

use that is based on the findings of technological historians (Mokyr 1990). As in Kögel and Prskawetz

(2001), we emphasize the interactions between agricultural productivity and industrial growth – an ap-

proach that goes back in economic history to Gilboy (1932). Acemoglu and Zilibotti (1997) observe that

volatility in poor economies is high. New technologies represent high risk, high return investment. Be-

cause of indivisibilities, only richer and larger countries undertake them. A run of "good years" increases

the probability of switching to high-productivity projects. In our model, stochastic income fluctuations

and starting per capita income play a role because they increase the scope for the capital externality to

work.

The third body of literature uses calibrations and simulation methods to shed new light on the in-

dustrialization process. Stokey (2001) was amongst the first to employ calibrations for the Industrial

Revolution. She concludes that foreign trade and technological change in manufacturing were equally

important for growth, but that improvements in energy production mattered less. Crafts and Harley (2000)

examine the importance of broad-based technological change in a CGE model, and conclude that slow,

sector-specific improvements in TFP are compatible with the observed pattern of trade. Lagerlöf (2003)

uses a probabilistic model where mortality fluctuations – epidemics – eventually lead to a transition to

self-sustaining growth. Lagerlöf (2006) simulates the Galor-Weil model, and finds that it can replicate

most of the important features in the transition from stagnation to growth. Our approach differs from the

Stokey approach in that it uses a more explicit model of productivity change. We combine the calibration

exercise with the probabilistic models in the spirit of Lagerlöf (2003).

The paper proceeds as follows. Section II discusses the historical context and motivation for the paper.

It briefly highlights where existing unified growth models are in conflict with the historical record, and sets

out the basic elements of our story. Section III presents the model, explaining the role of demographic

factors and the productivity benefits of differentiated capital inputs. In the next part, we calibrate the

model and derive comparative industrialization probabilities for Britain, France, and China. Section V

concludes.

1.2 Historical background and motivation

We focus on three features of the First Industrial Revolution – the slow, gradual nature of productivity

growth and structural change, the role of inequality, and the nature of technological advances. Research in

economic history over the last three decades has emphasized the slow and gradual nature of economic and

structural change after 1750. Where once scholars argued for a few decades during which the transition

to rapid growth occurred, a much more gradualist orthodoxy has taken hold [Crafts and Harley (1992),

Antras and Voth (2001)]. As table 1.1 shows, total factor productivity growth rates were barely higher

after 1750 than before. What is remarkable about the period after 1750 in Britain is not output growth

or TFP performance as such, but the fact that accelerated population growth coincided with stagnant or

slowly growing wages and output per head [Mokyr (1999)] – which makes the term “post-Malthusian”

[Galor (2005)] particularly apt. During the period, and in line with unified growth theory, investment

rates increased from about 7% of GDP in 1760 to 14% in 1840 [Crafts (1985)].

One implication of the gradualist school of thought is that per capita living standards in Britain must
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Table 1.1: Output and Productivity Growth during the Industrial Revolution

(percent per annum) Feinstein Crafts Crafts and Harley Antras and Voth

(1981) (1985) (1992) (2003)

Output
1760-1800 1.1 1 1

1801-1831 2.7 2 1.9

1831-60 2.5 2.5 2.5

Productivity
1760-1800 0.2 0.2 0.1 0.27

1801-1831 1.3 0.7 0.35 0.54

1831-1860 0.8 1 0.8 0.33

have been quite high by 1750 already. This underlines the importance of starting conditions. One major

factor was the nature of its demographic regime. As Wrigley and Schofield (1981) have argued, social and

cultural norms limited fertility in early modern England in a way that few other societies did. This led to

higher per capita incomes. England practiced an extreme form of the ‘European marriage pattern’ – West

of a line from St. Petersburg to Triest, age at first marriage for women was determined by socioeconomic

conditions, not age at first menarche [Hajnal (1965)]. This stabilized per capita living standards and

avoided the waste of resources and human lives resulting from Malthus’ ‘positive’ check, when population

declines through widespread starvation. Within the European context, England was characterized by a

low-pressure demographic regime – negative shocks to income were mainly absorbed by falls in fertility

rather than increases in mortality [Wrigley and Schofield (1981); Wrigley et al. (1997)]. Both the higher

level of per capita income produced by this demographic regime, and the way in which it was achieved,

play a crucial role in our model.

Second, Britain was a highly unequal society in the 17th and 18th century [Lindert and Williamson

(1982), Lindert (2000)]. Nonetheless, average British standards of consumption were relatively high

compared to French ones, with a markedly higher minimum level of consumption. Fogel (1994) esti-

mated that as a result of higher inequality and lower per capita output, the bottom 20-30% of the French

population did not receive enough food to perform more than a few hours of work. This was partly a

result of higher productivity overall – Fogel calculates that the British consumed some 17 percent more

calories than their French counterparts. Yet the crucial factor may have been support for the poorer parts

of society. The Old Poor Law was an unusually generous form of redistribution. At its peak, transfers

amounted to 2.5% of British GDP, and more than 11% of the population received some form of relief.

This may also have had indirect effects for the wages of those who were not recipients, by reducing com-

petition in the labor market and raising the aggregate wage bill [Boyer (1990)]. Mokyr (2002) calculates

that at its peak the system may have boosted average incomes of the bottom 40 percent of society by 14

to 25 percent. This ensured that in England, most individuals were sufficiently well-fed to work. It may

have also stabilized consumer demand for industrial products. Even during the 1790s, when food prices

were high, up to 30% of working class budgets continued to be spent on non-food items (with 6% going

on clothing). With most of the goods produced by the nascent modern sector having high income elas-
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ticities of demand (in excess of 2.3), even modest gains in real wages in the later stages of the Industrial

Revolution could translate into rapidly growing purchases of manufacturing goods. Finally, because of

the large absolute value of the own-price elasticity of non-food spending (of –1.8 amongst the English

poor), productivity increases and subsequent price reductions facilitated the growth of the modern sector

[Horrell (1996)].

The third element in our story emphasizes the relative importance of innovation vs. inventions. Tra-

ditionally, economic historians in the tradition of North and Thomas (1973) have emphasized the im-

portance of property rights, especially the patent system. In this view, as the security of property rights

improved after the Glorious Revolution in 1688, more inventive activity took place. Technological change

accelerated. The problem with this interpretation is that intellectual property rights were poorly protected

before the 19th century in England, that few inventors received substantial material rewards, that the role

of traditional (“feudal”) forms of reward like grants from Parliament dominated benefits from patents,

and that non-monetary incentives and chance seem to have played an extraordinarily large part in many

of the key breakthroughs. Most of the technologies that made Britain great in 1850 were already known

a century before. As Mokyr (1990) has emphasized, the crucial breakthroughs did not take the shape of

blueprints or ideas. Instead, a stream of microinventions gave the First Industrial Nation its edge:

"In Britain, [...] the private sector on its own generated the technological breakthroughs and, more

importantly, adapted and improved these breakthroughs through a continuous stream of small, anonymous

microinventions which cumulatively accounted for the gains in productivity." [Mokyr (1990)]

New ways of adapting and making useful existing technologies were crucial. The Watt steam engine

was but a variation of the Newcomen design. Many productivity advances were embodied in better pieces

of capital equipment [Mokyr (1990)]. What made these advances possible was not a small group of heroic

inventors but a small labor aristocracy of highly skilled craftsmen, perhaps no more than 5 percent of the

workforce overall [Mokyr and Voth (2007)]. These glass-cutters, instrument makers, and specialists in

fine mechanics were crucial in turning ideas into working prototypes, or existing machines into reliable

capital equipment.

Industrialization occurs in our model in the following way: Incomes fluctuate around their long-run

trend, pinned down by the demographic regime in the pre-industrial era. Technology improves but slowly

through the use of capital itself – the more manufacturing activity there is, the more scope there is for

improving and refining existing designs. The higher pre-industrial incomes, the greater the chance that

a positive, persistent shock leads to a large increase in manufacturing output. The higher manufacturing

output, the more capital-intensive production overall becomes – and the greater the scope for an accel-

eration of productivity growth because of growing differentiation of capital inputs. This setup resolves

the apparent incompatibility of endogenous growth models with the history of technology which was em-

phasized by Crafts [1995]. One of the key criticisms of long-run growth models by economic historians

has been that they often imply important and large scale effects – and that countries with bigger markets

should have industrialized first [Crafts (1995)]. Yet the richest countries in early modern Europe were

typically small, as was Britain for most of the period before 1750. We deliberately avoid these pitfalls by

offering a mechanism for industrialization that does not presume that bigger countries have an automatic

advantage.2

2Unified growth theory models in the spirit of Galor-Weil do not predict that bigger countries should industrialize first. Rather,
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Population grows in response to higher wages; positive shocks to income add to demographic pres-

sures, but also increase the scope for the capital externality to work. Crucially, because of fertility lim-

itation, Europe’s birth rates never outpace the rate of capital accumulation. We argue that England in

particular (and Europe in general) had a higher chance to undergo a transition because of the high initial

starting incomes and a favorable demographic regime.

For our argument to hold, England had to be ahead of the rest of Europe – and Europe markedly

ahead of the rest of the world – in terms of per capita income. This is not accepted with unanimity.

Pomeranz (2000) argues that, in the Yangtze region in China, living standards were broadly similar with

the most advanced regions in Europe, and that the "great divergence" between Asia and Europe was a

result of industrialization. Broadberry and Gupta (2005a) have recently shown that Pomeranz’s claims,

even for the Yangtze area, are probably exaggerated. Allen (2005a) finds that because of low rice and

grain prices, the standard of living in Asia and Europe was broadly similar. However, money wages were

markedly lower, and the relative price of manufacturing goods much higher. This is compatible with our

interpretation, since it hinges on the purchasing power of income not dedicated to food.

1.3 The Model

This section sets out the basic setup of our model. The economy is composed of infinitely-lived, identical

households whose members work, consume, invest, and procreate. Households choose consumption and

saving to maximize their dynastic utility, subject to an intertemporal budget constraint. We consider a

representative household of size N . In the following, we will refer to N as population and to household

members as consumers or individuals. Current family members expect N to grow at the rate γN (·)
because of the net influences of fertility and mortality, depending on consumption. In every period the

economy produces two types of consumption goods: food and manufacturing products – and investment

goods in the form of capital varieties. Output is produced using land, labor, and the accumulated stock

of capital varieties. Consumers’ preferences are non-homothetic: Representing Engel’s law, the share of

manufacturing expenditures grows with income. Below, we describe each of these elements of our model

in turn.

1.3.1 Consumers

Each household member supplies one unit of labor in every period. Families use their income for invest-

ment, and to consume an agricultural good (cA) and a manufactured good (cM ). Households maximize

their expected life-time utility in a two-stage decision. In an intertemporal optimization problem, they

decide upon consumption expenditure per household member in a given period t, et. In the second stage,

the intra-temporal optimization, each individual takes et as given and maximizes instantaneous utility. We

consider the second stage first. The corresponding budget constraint is cA,t + pM,tcM,t ≤ et, where pM,t

is the price of a manufactured good. The agricultural good serves as the numeraire. Before they begin to

demand manufactured goods, individuals need to consume a minimum quantity of food, c. Preferences

their unit of observation is the world, and they simply assume that the partial derivative of technogical change with respect to

population size is positive. At this level of aggregation, economic historians cannot disagree. The difficulty appears to be that for

a model that captures cross-sectional differences, factors other than size must be important, and it is these factors that we try to

capture.
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take the Stone-Geary form and imply the composite consumption index:

u(cA, cM ) = (cA − c)αc1−α
M (1.1)

Given et, consumers maximize (2.1) subject to the budget constraint. This yields the following equation

for the expenditure share on agricultural products:

cA,t

et
= α + (1− α)

(
c

et

)
(1.2)

In a poor economy, where income is just enough to ensure subsistence consumption c, all expenditure

goes to food. As people become richer and et grows, the share of spending on food falls, in line with

Engel’s law. For very high levels of expenditure, c/et converges to zero and the agricultural expenditure

share converges to α, which can thus be considered the food expenditure share in a rich economy.

We now turn to intertemporal optimization. First, we derive the indirect utility of consumers from

(2.1) and (1.2):

ũ(pM,t, et) =
(

1
pM,t

)1−α

αα (1− α)1−α (et − c) (1.3)

We use this result to set up the intertemporal optimization problem. The representative household maxi-

mizes expected dynastic utility subject to the intertemporal budget constraint:

max
{kt+1}∞t=0

E0

∞∑
t=0

βt [ũ(pM,t, et)]
1−ψ − 1

1− ψ
Nt (1.4)

s.t. (1 + γN,t)kt+1 = (1− δ)kt + 1
pK,t

(yt − et)

yt = wt + rL,tl + RK,tpK,tkt

where yt, et, kt, and l are per-capita income, consumption expenditure, capital, and land, respectively,

and pK,t is the price of capital.3 Factor returns are the gross capital interest rate RK , wage w, and the land

rental rate rL. Capital depreciates at rate δ; β ∈ (0, 1) is the households’ discount rate, and 1/ψ gives the

(constant) elasticity of intertemporal substitution, where ψ ≥ 1. Since families take care of the welfare

and resources of their prospective descendants, individual instantaneous utility
(
ũ(·)1−ψ − 1

)
/(1−ψ) is

multiplied by household members N . Households take population growth γN,t as given when optimizing.

Together with the budget constraint, (1.4) yields the Euler equation

(
1

et − c

)ψ

= βEt

[(
pK,t+1

pK,t

)(
pM,t+1

pM,t

)(1−α)(ψ−1) (
1

et+1 − c

)ψ

(1 + RK,t+1 − δ)

]
(1.5)

The Euler equation is the standard one, except for the two price terms on the right-hand side. If the price

of manufactured goods increases, consumption in the next period will be more expensive. If the elasticity

of intertemporal substitution is low (i.e., ψ > 1), the income effect will outweigh the substitution effect,

and consumption et will be lower. If the price of capital pK is expected to increase, investment is shifted

from the future to the present, also lowering today’s consumption. We use policy function iteration to

solve the Euler equation, as described in Appendix A.6.

3In our model capital is the collection of varieties (machines). Thus, total capital K = kN is equal to the integral over all

capital varieties used in the economy. We provide a formal description of the capital stock below.
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1.3.2 Production

Firms produce both capital and final goods. The latter are either agricultural or manufactured, are ho-

mogenous, and are produced under perfect competition. Capital is non-homogenous. It comes in many

varieties that are produced monopolistically subject to increasing returns. The efficiency of production

depends on the number of capital goods varieties. Free entry in the capital-goods producing sector ensures

that, in equilibrium, there are no profits.

1.3.3 Final goods

Final sector firms use labor N , land L, and capital in the form of varieties j ∈ [0, J ] to produce their

output. The agricultural production function is

YA = AA

[∫ J

0

νA(j)
1

1+ε dj

]φ(1+ε)

Nµ
AL1−φ−µ (1.6)

where AA is a productivity parameter in agriculture and νA(j) is the amount of capital variety j used

for agricultural production in a representative final sector firm. Productivity fluctuates over time: AA,t =

ztAA,t, where the component zt represents a shock with mean one. The shock parameter zt follows the

AR(1) process ln zt = θ ln zt−1 + εt with autocorrelation θ and εt ∼ N
(
0, σ2

ε

)
. To capture the growth

of agricultural productivity over the long term even before the Industrial Revolution, we let the efficiency

parameter grow at rate γA, such that AA,t+1 = (1 + γA) AA,t. The shocks εt should be interpreted

as caused by weather conditions rather than changes in technology [as in Gilboy 1932].4 Production

becomes more efficient if more varieties of capital goods j are available. These enter with the (constant)

elasticity of substitution (1 + ε)/ε, where ε > 0. Land is a fixed factor of production.

Manufacturing production is given by

YM = AM

[∫ J

0

νM (j)
1

1+ε dj

]η(1+ε)

N1−η
M (1.7)

where AM is a productivity parameter, and νM (j) is the amount of capital variety j used to produce

manufacturing output in a representative final sector firm.5

1.3.4 Capital

Technological progress takes the form of a growing variety of machines available for production. There

are j types of capital. Each of them allows a firm to perform a specific task. The more specialized

machinery is, the higher productivity in final goods production.6 As the number of varieties grows,

machines that are better-suited to each production task become available.
4The abundance or shortage of seed as well as the effect of storage on price in periods following good or bad harvests causes the

autocorrelation of output. Cf. McCloskey and Nash (1984).
5Due to constant returns in final production, we can assume without loss of generality that final sector firms are identical and

have mass one. Individual firms’ output, YA and YM , and factor inputs are then equal to aggregate output and input in the final

sector. Thus, a final sector firm represents aggregate final production.
6In the symmetric equilibrium, νM (j) = ν̄M ,∀j, and thus YM = AMJηε (Jν̄M )η N1−η

M Consequently, for a given amount

of capital Jν̄M , productivity is increasing in the number of available capital varieties J , and the extent of this externality is given

by ηε. Similarly, for agriculture production, the extent of the externality is given by φε.
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Producers borrow capital from consumers, and pay interest at rate rK = RK − δ. Producers replace

depreciated capital while production occurs.7 The price of a variety is p(j). There are ν(j) items of type

j machines available. Representative final sector firms then use νA(j) and νM (j) machines of type j

for food and manufacturing production, respectively. We assume that the subset of varieties that break

(depreciate) in a given period is the interval [(1 − δ)J, J ] of capital varieties.8 The mass δJ of broken

machines is replaced by producers while production occurs.

To start production, capital variety producers need to pay up-front cost F . Capital variety producer ̃

uses technology

ν (̃) = AJ

[∫ J

0

ν̃(j)
1

1+ε dj

]η(1+ε)

N1−η
̃ − F (1.8)

where AJ is a constant productivity parameter. Note that j refers to machines existing in a given period,

whereas ̃ stands for capital varieties that are currently produced as investment goods, becoming available

for production in the next period. Like final sector firms, capital producers profit from a wider range of

available capital inputs.9

Because of fixed costs, each capital variety is produced by a single firm. Since capital varieties are

imperfect substitutes, their producers have monopolistic power. However, free market entry implies that

each producer just recovers his unit cost and makes zero profits. We show in Appendix A.1 that in

equilibrium each firm produces the same, fixed amount of capital varieties, given by F/ε. Increasing

investment leads to an extension of the range of capital varieties, while leaving the amount ν(j) of each

variety unchanged. This, together with symmetry in equilibrium, allows us to derive a simplified aggre-

gate externality representation of the model, where investment goods are produced in the manufacturing

sector.

1.3.5 Model Representation with Aggregate Externalities

We show in Appendix A.4 that the production side of our model can be simplified to a two-sector model

with externalities of aggregate capital in the style of Romer (1990). Technology is then given by

YA = AAKφεKφ
ANµ

AL1−φ−µ (1.9)

YM = AMKηεKη
MN1−η

M (1.10)

where we introduced a more convenient notation for capital: KA ≡ JνA and KM ≡ JνM , representing

the capital used by a representative firm in the respective sector. Investment, i.e., new capital varieties, are

produced by the manufacturing sector, and the price of capital, pK , is equal to the price of manufacturing

output, pM .10 The productivity-enhancing effect of an increased variety of capital inputs is obvious in
7This assumption becomes important in our simulation. It avoids that the capital stock falls until it finally reaches zero when

consumers live at the subsistence level for a long time (Malthusian trap).
8A simple way to motivate this assumption is to think of machines j ∈ [0, J ] as being ordered by age, with higher-j subsets

representing older machines. Due to their long use, or because of being incompatible with new machines, the highest-j subset

with mass δ breaks or becomes useless in each period, and is immediately repaired or replaced by machines of equal quality. New

machines fill up the interval from below, increasing J , but leaving the age-ordering unchanged.
9We deliberately deviate from the standard setup to simplify our analysis below, where we derive the model representation with

two sectors and an aggregate externality.
10Since we have pK = pM in the simplified model, the price terms in the Euler equation (1.5) simplify to(

pK,t+1/pK,t

)ψ(1−α)+α, where the exponent is always positive.
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these standard Cobb-Douglas production functions. For a given J = K, the aggregate externality is the

larger the larger the capital share (φ or η) and the larger ε (i.e., the smaller the elasticity of substitution

among capital varieties).

1.3.6 Equilibrium and Industrialization

Equilibrium in our model is a sequence of factor prices, goods prices, and quantities that satisfies the

intertemporal and intra-temporal optimization problems for consumers and firms.11 To fix ideas and

show how industrialization happens in our model, we first present a simulation without consumption-

dependent population dynamics. That is, we run our model with a positive constant birth rate and without

shocks, such that all individuals survive. The next section explores how population dynamics – based on

consumption-dependent fertility decisions and positive Malthusian checks in crisis periods – modify our

results.

1.3.7 Equilibrium and Industrialization without Population Dynamics

In this section we keep population growth constant in order to isolate the role of consumption preferences

(structural change) and aggregate capital externality. We show that even with this reduced-form model

we are able to replicate two important stylized facts of the Industrial Revolution in England – the ini-

tially small, but accelerating growth of industry output and structural change, i.e., an increasing share of

industry in GDP. We simulate the model with a constant birth rate, equal to the average rate in England

1700-1850, γb = 0.8%. In a non-stochastic setup, these parameters imply that consumption never falls

below subsistence such that all individuals survive. We thus have neither a preventive (via birth rates) nor

a positive (via death rates) Malthusian check. The corresponding results are shown in figure 1.1.

Our simulation for England starts with the historical labor shares in agriculture and manufacturing in

1700 (77% and 23%, respectively).12 Initially about half of manufacturing output is produced to replace

depreciated capital, with the other half being used for consumption. Consumption exceeds the subsistence

level so that all individuals survive and net population growth equals the birth rate (γN = γb). Figure 1.1

shows that our model, even with constant birth rates, replicates the low, increasing growth rates observed

in 18th century England. Growth is driven by the exogenous productivity progress in agriculture and

by endogenous capital accumulation. Technological progress is fast enough to compensate the constant

population growth of 0.8%, so that p.c. income increases.13 Per capita consumption of agriculture grows

much slower than p.c. output of manufacturing. This is explained by two mechanisms: First, as p.c.

income grows, consumption expenditure shares shift from agriculture to manufacturing (as shown in the

lower right panel). Once this transition is completed, industry growth rates fall but remain above those of

agriculture, which is explained by the second mechanism: due to their larger capital share, manufacturing

firms profit relatively more from the aggregate externality. This is reflected in the upper right panel:

Initially, agricultural and manufacturing TFP grow in tandem – the larger growth rate of p.c. industry

11A formal definition of the equilibrium is given in Appendix A.3.
12We use the same parameter values as in the full, calibrated model. Our conclusions with regard to structural change and the

role of capital externalities are robust with respect to the choice of parameters.
13This would not be the case if birth rates were substantially larger, since then p.c. capital would diminish at a rate that even the

aggregate externality would not be able to compensate.
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Figure 1.1: Simulation Results with Constant Population Growth

output is thus initially solely due to its increasing demand share. When structural change comes to a

standstill, TFP and all other growth rates stabilize at constant levels, with manufacturing TFP augmenting

faster than agricultural TFP. The investment rate is low initially because p.c. consumption is close to

subsistence. Investment then responds positively to growing income and interest rates. Eventually, when

p.c. consumption has grown to a level well beyond subsistence and interest rates level off, investment

rates stabilize at a higher level.

1.3.8 Open Economy Considerations

So far, we have assumed that the UK was a closed economy, with domestic conditions driving industri-

alization. Because of its role as a trading nation, this needs to be justified in the British case. Before it

started to manufacture cotton goods with new technology, for example, Britain imported many of them

from India.14 Eventually, Britain exported cotton goods and the like on a grand scale. Traditional inter-

pretations of the importance of demand have assigned an important role to exports [Cole (1973) Gilboy

(1932)]. This could also affect the logic of our argument – in some open economy models, lower initial

14In the 1750s, Indian cotton piece exports to Britain were five times higher than British exports. Exports from India to Britain

only collapsed after 1810 [Broadberry and Gupta (2005b), table 6].
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agricultural productivity can increase the probability of industrialization since wages (and thus, prices of

exports) are lower [Matsuyama (1991)]. Here, we discuss how adding foreign demand and supply would

change our basic setup.

The fact that British industrialization in cotton textiles replaced exports from India as such does not

fundamentally alter our conclusions. Rising manufacturing productivity has two consequences in the

model: higher p.c. income and lower prices. Both increase the demand for manufacturing output (the

former through Engel’s Law). In an open-economy framework, the price effect is even larger, because

imports are replaced by home production and/or due to growing international demand. The falling relative

price of manufacturing would also be expected to result in growing food imports.

An open economy setup, especially for the 18th century, must take into account the high cost of

transportation. These made it (i) easier to replace the Indian competition in the UK and (ii) isolated the

Indian producers from UK competition for some of the time.15 Table 1.2 shows that between 1750 and

1851, the share of exports - mainly of manufacturing products - in national output grew from about 15%

to 20%. As Mokyr (1977) stressed, there is no evidence that exports grew sufficiently rapidly to kick-start

industrialization. We conclude that our closed-economy model can serve as a reasonable approximation.16

Table 1.2: International Trade in England 1700-1851

Exports / Manufactures Exports / Food Imports /

Year Output Output Output

1750 14.6∗ 11.0 4.5

1801 15.7 13.8 6.1

1831 14.3 13.0 3.9

1851 19.6 15.9 7.2

Source: Crafts (1985), Table 6.6 and 7.1.Authors’calculation
assuming balanced trade. All numbers in per cent.

* Number for 1760.

1.3.9 Inequality

To capture one particular feature of the pre-modern world highlighted by Fogel (1994), we also con-

sider the economic contribution of the bottom 20% of the income distribution. According to Fogel, in

eighteenth-century France, the poorest 20% did not receive enough food to perform more than a few

hours of work a day. We model such an outcome by assuming that, if average consumption falls below

subsistence, members of the workforce that will die because of malnutrition will also not be able to work.
15Initially, Indian exports become uncompetitive in Britain as the UK switches to industrialized production. Home production in

India remains competitive while transport costs raise the price of UK cotton goods there. Eventually, Indian production of cotton

goods for home demand falls as UK imports become cheaper due to falling transport cost [Broadberry and Gupta (2005b)].
16Total output, Y , approximately quadrupled between 1750 (t=0) and 1850 (t=T) [Crafts (1985)]. From simple growth account-

ing, we have: Y T−Y 0

Y 0 =
[
sT
E

Y T

Y 0 − s0
E

]
+

[
(1− sT

E)Y T

Y 0 − (1− s0
E)

]
where the parentheses indicate output growth due to

exports and domestic demand, respectively. Let the share of exports grow from s0
E = 15% to sT

E = 20%, as in table 1.2. Then,

78% of growth is due to domestic demand, while exports account only for 22%.
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This is clearly too optimistic – even without starvation, many members of the workforce will be mal-

nourished. When harvest failures occur, the effective workforce will shrink – except in England, which

provided generous support to the poor via outdoor relief, especially during the years of high prices in the

late eighteenth century. In the other two countries we consider – France and China – we assume that there

is no redistribution.

1.3.10 Population Dynamics

Having summarized the basic properties of the economy, we now add population dynamics. At low levels

of productivity, the economy is Malthusian. As agricultural productivity increases, population expands.

As land-labor ratios fall, living standards decline and return to their earlier level. If times are bad, starva-

tion can cause sharp declines in population size. We show how certain features of the demographic regime

can make the escape from the Malthusian trap possible. In particular, we demonstrate how a low-pressure

regime with limited fertility increases the chances for sustained growth.

The size of the representative household (or population) N increases by a factor of gb(·) at the end of

each period:

N∗
t+1 = gbNt (1.11)

where N∗
t is the beginning-of-period population, whereas Nt stands for the population that survived

period t. The exact growth factor depends on the demographic regime. At one extreme ("high pressure

regime"), we assume a constant birth rate gb. Here, population returns to equilibrium after negative

shocks through more deaths (e.g., Malthus’ positive check). Alternatively ("low pressure regime"), the

birth rate depends positively on real consumption, gb(ct).17 This is because the European marriage pattern

regulated population-wide fertility by changing marriage rates. In bad times, people married later, and

fewer women ever married. Within marriage, there were no signs of fertility-limitation. In this way,

population is balanced by the operation of both the positive and the preventive check.

We assume that if consumption per head falls below c, only a subset of the population survives. The

probability of survival depends on the severity of the nutrition crisis, measured by the ratio of ct to c:

gs(ct) =
Nt

N∗
t

= min
{

ct

c
, 1

}
(1.12)

With severe harvest failures, population falls, and starving individuals consume their capital. They die

when they have exhausted it.18

It could be argued that population growth should only depend on income in terms of agricultural

goods (as in Strulik 2006). We consider our approach more intuitive, since goods produced in urban

centres were clearly an important part of the consumption bundle even for poor people (King 1997) before

the Industrial Revolution, as reflected by urbanization rates. However, the basic mechanism enabling

sustained growth is robust to changing the population growth function in the manner of Strulik (2006).

Since fertility responds only to one part of income, population growth is slower. The positive externality

17Concretely, ct denotes per-capita consumption of agriculture and manufacturing goods, that is, ct = cA,t + cM,t.
18Diamond (2004) describes how the Norse colony in Greenland collapsed after years of worsening climatic conditions, until

farmers started to eat their calves and seed corn.
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has a smaller effect. Hence, TFP and output growth also slow down. However, industrializations still

occur with a high frequency.19

Population growth γN,t is a function of economic conditions:

γN,t =
N∗

t+1 −N∗
t

N∗
t

= gbgs(ct)− 1 (1.13)

where gb depends on ct or is a positive constant.

The birth function gb(·) is crucial for the escape from the Malthusian trap.20 If birth rates at low levels

of consumption are also low, and the response of births to improving conditions is small, productivity

growth can translate into growth of per-capita income (despite the fact that population grows). This will

be the case if gb(·) is relatively flat at c.

Where gb(·) is a positive constant, escaping the Malthusian trap is nearly impossible. If the constant

birth rate gb exceeds productivity growth, resources are not sufficient to nurture everyone and the surviv-

ing population remains trapped at the subsistence level.21 We will from now on use the full model, with

population dynamics. Next, we describe the economic effects of demographic interactions, contrasting

the "low pressure" and the "high pressure" regimes. In this setup, we show how fertility limitation helps

the escape from the Malthusian trap.

Figure 1.2 shows population growth as a function of capital per head (k) – in the left panel for the low-

pressure regime and in the right panel for the high-pressure regime. Capital stock per head corresponds to

a certain level of per capita income, given a certain level of TFP. As incomes and consumption improve,

birth rates γb increase in the low-pressure regime, while they are constant in the high-pressure regime.

Above point A, income rises with k such that death rates (given by γb − γN ) dwindle to zero. The

solid black line shows the gross rate of capital formation, inv/k, where real investment is inv = (y −
e)/(pK).22 The growth rate of capital stock per capita is given by the difference between inv/k and

effective depreciation (δ + γN ). In equilibrium with constant k, the capital-diluting effects of population

growth and depreciation offset each other: (δ + γN )k = (y − e)/pK .

We begin by analyzing the low-pressure regime. To the left of point A, consumption is below sub-

sistence (c < c), and due to the crisis no new individuals are born (γb = 0). Investment just replaces

depreciation.23 Net population growth γN is negative such that the increasing land-labor ratio implied by

falling population finally drives the economy back to an equilibrium at point A. At point A, consumption

is at subsistence (c = c); the birth rate is zero. Point A is an unstable equilibrium. For higher levels of

k, incomes improve and investment rises. Eventually, declining marginal returns to capital force down

the ’inv/k’ curve. The new (stable) equilibrium is point B, which combines constant k and a growing

population.

In the high pressure regime, the economy behaves differently. The right panel of figure 1.2 depicts

the interactions of demographic growth, investment, and output. For low levels of capital, there is also

19The growth rate of output per capita over 150 periods with the Strulik assumptions is 0.34% instead of 0.56% in the determin-

istic baseline simulation.
20See Appendix A.7 for our calibration of the birth function for England.
21In our calibrated model for China in 1700, for example, the constant birth rate is 4%, while deaths occur with rate 3.2%,

implying a net population growth of 0.8% p.a.
22This is gross of depreciation.
23This follows from our assumption that producers immediately replace depreciated capital varieties. Without this assumption

consumers would choose not to repair the capital stock and even consume out of it if consumption falls below subsistence.
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Figure 1.2: Population Dynamics for England and China

starvation, as in England. Point A now is a stable equilibrium with c < c, and birth rates that are offset

by death rates. However, with capital slightly higher than at point A, death rates fall quickly until the

economy reaches point B, where c = c.24 Now, death rates are zero, and demographic growth becomes

very fast. Consumers respond to this rapid population growth by investing massively, in order to ensure

minimal consumption tomorrow, when they expect to share their income with many others. This explains

the steep slope of the ’inv/k’ curve to the right of point B. However, despite saving all income above

subsistence, demographic growth is too rapid – capital-labor ratios fall, driving the economy back to

point A. If the economy reaches point C, capital-labor ratios stabilize, as the capital stock expands at the

same rate as population. However, point C is not a stable equilibrium since a small negative shock will

drive the economy back to point A. To the right of C, investment falls rapidly, as marginal returns decline

and saving rates reduce.

Only the low pressure regime is likely to generate endogenous TFP growth. At point B in the low-

pressure regime, total capital is growing with population. Because of the aggregate externality, this

generates TFP growth. In figure 1.2 this would be equivalent to a shift up and to the left of the ’inv/k’

line – for any given capital stock, incomes are now higher. There is also an outward shift of the birth

schedule, since higher incomes stimulate higher birth rates and sustain a larger population at the same

p.c. capital level. The combined effect under our calibration leads to a point B’ that is markedly higher,

and further to the right – TFP growth produces a new equilibrium B’ that is more capital intensive, has

higher incomes, and more rapid population growth. This explains the gradual acceleration of growth rates

in the low pressure regime.

In the high pressure regime, endogenous growth is not impossible but highly unlikely. Higher TFP

simply shifts the investment schedule to the left – for any given level of capital, potential consumption

is higher, but so is population growth. Higher productivity leads to a bigger population, with unchanged

income at A. If the (constant) birth rate under the high-pressure regime was low enough, growth could

occur, because the investment schedule would eventually cross the line given by δ + γN . This would

create a stable equilibrium point C, similar to point B in the low-pressure regime. The maximum rate

of population increase that does not exhaust investment possibilities varies with starting conditions. In

24Between A and B, net investment is zero because consumption is below subsistence.
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our calibration, a country with an initial non-agricultural labor share of 23% (equivalent to Britain’s in

1700) could have sustained population growth rates of up to 3.7 percent because of high initial income;

a country with only 10% in non-agricultural occupations (as China in 1700) could not have coped with

rates higher than 0.6 percent without foregoing its chances to industrialize.25

1.4 Calibration and Simulation Results

In this section we explain the calibration of our model, and simulate it with and without shocks to agricul-

tural productivity. We then derive the probability of industrialization in England, France, and China. In

addition, we illustrate what would have happened to the English economy had it operated under a high-

pressure demographic regime instead. Finally, we simulate the model without the kind of redistribution

that the Poor Law provided.

1.4.1 Calibration

We normalize initial population of England to unity (N0 = 1) and choose land L = 8 such that its rental

rate is 5%. We choose initial agricultural TFP and aggregate capital to match the historical labor share in

agriculture of 77% in 1700.26 Aggregate capital K influences TFP via the externality. In order to identify

the initial conditions for AA,0 and K0, we re-normalize the production functions, dividing by Kφε
0 in

agriculture and by Kηε
0 in manufacturing. This means that the aggregate externality term has value one

in the initial period.27 We choose AM such that the price of manufacturing products is double the price

of agriculture products, i.e., pM = 2.28 This procedure gives AA,0 = 0.517 and AM = 0.359. Given

these parameters, we derive a low level of capital, Kmin, at which consumption is at the subsistence level

(c = c). Below this level, only agricultural goods are consumed, and aggregate capital does not influence

TFP. The externality works only if K ≥ Kmin.29 In other words, it is not before the "wave of gadgets"

[Ashton (1949)] arrives that the aggregate externality begins to matter quantitatively.

In the centuries before 1700, labor productivity grew at an average rate of 0.15% per year (Galor

2005). Because agriculture was the dominant sector, we assume an exogenous growth rate of TFP growth

in the sector of γA = 0.15%.

The magnitude and persistence of shocks in the agricultural sector is derived from real wage data for

England, 1600-1780 [Wrigley and Schofield (1997)]. With fixed labor supply and agriculture the domi-

nant sector, these productivity shocks have an immediate knock-on effect on real wages in the economy.

This is especially true since wages were largely fixed in nominal terms, and most of the variation in the

Phelps-Brown/Hopkins wage series results from changes in agricultural prices [Wrigley and Schofield

25 These are the results for non-stochastic simulations. In calibrations with shocks, there would be a distribution of industrializa-

tion outcomes for each demographic growth rate.
26We derive this figure from Craft’s (1985) original numbers by leaving out other sectors than agriculture and manufacturing and

re-normalizing the sum of these two sectors’ labor shares to unity.
27This normalization does not change any of the features of our model. In fact, dividing K by K0 is equivalent to re-defining

A in the production function. For example, let the original production function be YM = A∗MKηεKη
MN1−η

M . Then choose AM

such that A∗M = AM/Kηε
0 . This gives the new production function YM = AM (K/K0)ηεKη

MN1−η
M .

28Different values of this parameter change our results only slightly. They do so at all because pM = pK , and a different price

of capital implies a different real capital stock.
29The aggregate externality thus takes on the values [max{ K

K0
, Kmin

K0
}]φε, in agriculture and [max{ K

K0
, Kmin

K0
}]ηε in man-

ufacturing.
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(1997)]. We therefore use the wage zt as an indicator of the size of shocks. Figure 1.3 shows the real

wage index and the corresponding Hodrick-Prescott–trend.30

Figure 1.3: Real Wage Fluctuation and Trend

The magnitude of shocks is derived from analyzing the autocorrelation of wages. We estimate ln zt =

θ ln zt−1 + εt, which produces θ = 0.60 (t=10.15) and σε = 0.075. The autocorrelation of shocks is

high, and the series is volatile.

For the baseline model, we calibrate the parameters (µ, φ, η, ε) to fit average factor shares for the

period 1700-1850. In agriculture, we use µ = 0.4 for labor, φ = 0.25 for capital, and the remaining 0.35

for land. This is similar to the 40-20-40 split suggested by Crafts (1985), and is almost identical with the

average in Stokey’s (2001) two calibrations. In manufacturing, we use a capital share of η = 0.35.31

We normalize the minimum food consumption c to unity. For low income levels, equation (1.2)

implies that all expenditure goes to agriculture. With higher incomes, the expenditure share converges to

α. We take expenditure data from Crafts (1985), using the same re-normalization as for labor shares. The

agriculture consumption share falls from 65% in the 18th to 30% at the end of the 19th century. We thus

use α = 0.3. Next, we need to choose ψ, i.e., the inverse of the intertemporal elasticity of substitution.

In the literature, values between 1 and 4 have been used. We employ ψ = 1, which implies log-utility,

because this matches the elastic supply of savings during the Industrial Revolution.32 In order to capture

the low initial share of investment (4% in 1700, 6% in 1760, taken from Crafts 1985, table 4.1), we need

a low discount factor, and use β = 0.93 and depreciation rate δ = 0.02 .

The aggregate externality plays a central role in our model. The extent of the externality is given by

φε in agriculture and by ηε in manufacturing production. In manufacturing, total factor productivity is

given by AM (K/K0)ηε, where the first term and K0 are constant. Growth of manufacturing TFP is

γT,M = ηε γK (1.14)

30The standard deviation of real wages is very similar to the standard deviation of agricultural output in later years.
31Stokey (2001) uses a calibration for an energy-capital aggregate with the average share of 0.4.
32The higher intertemporal elasticity of substitution implied by the smaller ψ means that consumers’ savings react more elasti-

cally to changes in the interest rate. On the high elasticity of savings, see Allen (2005b).
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Total factor productivity in agriculture is determined by AA(K/K0)φε, where the first term grows at the

exogenous rate γA:

γT,A = γA + φε γK (1.15)

Crafts (1985) provides growth accounting figures for England, 1700-1860. We present the corresponding

TFP and aggregate capital growth rates in Figure 3. If the aggregate externality link from capital to TFP

in our model represents historical facts, we would expect a linear relationship between the growth rates

of the two variables. Figure 1.4 lends some support to this supposition.33

Source: Derived from Crafts (1985) and Crafts and Harley (1992).

Figure 1.4: Annual Growth Rates of TFP and Aggregate Capital

Average annual growth rates are γK = 1.17% and γT = 0.48% for capital and TFP, respectively.

There is no agreement in the literature as to whether productivity growth in agriculture was faster, slower

or equal to productivity growth in modern sectors. For example, Crafts (1985: 70-89) concluded that

productivity growth in agriculture was rapid, and in some periods surpassed manufacturing productivity

growth. On the other hand, Clark (2003b) argued that they took a long time to materialize. We there-

fore assume that the growth of labor productivity was broadly speaking the same in manufacturing and

agriculture. Thus, aggregate TFP growth is equal to sectoral TFP growth, and we can estimate the rela-

tionship (1.14) using the data represented in figure 3. A weighted least-square estimation (with the length

of periods serving as weights) without constant yields the estimate η̂ε = 0.44 (t=7.26).34 With η = 0.35,

this implies ε = 1.25, corresponding to an elasticity of substitution across capital varieties of 1.8. There

is an easy way to check the consistency of this calibration with other calibrated variables: we use the

observed γK and γT together with the calibrated γA, φ, and ε to check (1.15). The result is 0.51% on the

right-hand side, which corresponds well to γT = 0.48%.35 For the observed growth of aggregate capital

1700-1860, our calibration thus implies very similar TFP growth rates in manufacturing and agriculture,

where the latter also includes an exogenous term.

33Of course, we do not claim here that our model is the only explanation of the relationship observed in the growth accounting

data. In fact, the causality could also go the other way around – from exogenous TFP growth to capital accumulation. However,

what matters for our calibration is the linearity of the relationship, while we suppose the direction of causality to be from K to TFP,

along the main line of our argument relating to an increasing number of available capital varieties.
34Another possibility is to take average values instead of running a regression. The result is very similar: γK/γT = 0.41.
35Our choice of the capital shares φ and η is crucial for this result.
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We employ a birth schedule gb(c) based on the historically-observed co-movement with wages (cf.

Figure A.1).36 It is derived from fitting the empirical data with a spline regression, as described in detail

in Appendix A.7. For the demographic regime with positive Malthusian check, gb is a constant equal to

the net birth rate.

We summarize the calibration parameters in Table 2.1.

Table 1.3: Baseline Calibration

Symbol Interpretation Value

Parameters

α Agriculture expenditure share 0.3

β Consumer discount rate 0.93

ψ CRRA utility parameter 1

φ Capital share in agriculture 0.25

µ Labor share in agriculture 0.4

η Capital share in manufacturing 0.35

ε Parameter for capital variety substitutability 1.25

c Subsistence food consumption 1

L Land 8

δ Capital depreciation rate 0.02

γA Growth of agriculture technology 0.0015

θ Autocorrelation of shocks to agriculture 0.6

σε Standard Deviation of shocks to agriculture 0.075

AM Manufacturing technology parameter 0.359

Initial Conditions

N0 Initial population 1

AA,0 Initial agriculture technology parameter 0.517

K0 Initial aggregate capital 1.718

Kmin Capital at which c = c 1.308

1.4.2 The Industrial Revolution in England

How well does the calibrated version of our model fit the historical data for England? We start in 1700

and run the simulation for 150 years. Figure 1.5 compares the non-stochastic simulation and historical

facts. Over the period as a whole, population triples, while real per capita income doubles – mainly

due to the increase of manufacturing output. Importantly, growth rates of output and TFP are initially

low but increase over time. The model does well in capturing one of the key characteristics highlighted

by economic historians in recent years – the slow rate of productivity and output growth [Crafts and

Harley (1992)]. Also, output of agricultural products increases only slightly in our model, in line with the

historical record [Allen (1992), table 8.7].
36We use the data from Wrigley and Schofield (1997).
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The behavior of population and real manufacturing output is captured well by the model, even if

we overestimate the growth of the latter somewhat. Initially, investment mainly replaces depreciated

capital. Even with a low depreciation rate of δ = 0.02, this implies an investment share of about 6%,

which exceeds the historical estimate for 1700.37 Our simulation replicates the rise of the investment

rate during the following decades, but falls short of its full extent. One possible reason is changes in δ.

Depreciation rates may have increased over time because machines became increasingly complex and

technological obsolesence rendered useable equipment unprofitable. Real investment per capita grows by

a factor of 3.5, which is accounted for by an increasing investment rate, growing income, and a falling

relative price of capital (dropping by 25%). Population growth peaks around 1820, which coincides with

the historical facts. TFP in agriculture and manufacturing is growing at similar rates. Agriculture benefits

from exogenous growth (γA = 0.15%); manufacturing from the greater externality resulting from its

higher capital share. Payments to land become less imporant in total output, while capital and labor gain

about 5% each. Stokey (2001) shows that labor and capital gained a larger share of the pie, and that land

lost about 10 percentage points of aggregate income – yet the gains for capital in our model are somewhat

smaller than the historical record suggests.

Employment shares in agriculture and manufacturing fit the data well, while the model overestimates

the income share of agriculture.38 One reason for this is hidden unemployment in agriculture – many

workers in the English fields in 1700 may have added little to output. With the beginning of the Industrial

Revolution around 1780, many of these laborers migrated to the cities. For these later years, the fit with

our model is markedly better. Finally, TFP growth in our simulation fits the actual data well.39

1.4.3 Sensitivity Analysis

In the following we provide robustness checks of our model. We start from the baseline calibration and

sequentially change key parameters [similar to Lagerlöf (2006)]. The results are summarized in table 1.4.

Our baseline used an exogenous rate of agricultural TFP growth, γA = 0.15% p.a. In the first sensitivity

check, we set this to zero. In order to fit the observed relationship between capital and TFP growth

(figure 1.4), we consequently re-calibrate ε, obtaining a higher value.40 Thus, some of the growth that

was previously exogenous is now the result of a stronger aggregate externality. With all other parameters

identical with the baseline calibration, the simulation yields slower growth, capital accumulation, and

structural change when γA = 0. The difference with our baseline is however relatively minor.

In the second alternative specification, we change the capital shares in agriculture (φ = 0.2) and

manufacturing (η = 0.5). This represents the φ suggested by Crafts (1985) and the η used by Stokey

37The corresponding equations are I = δpKK and pKRKK = τY , where τ is the aggregate capital share. For τ ' 0.3 and

RK ' 0.1 (the approximate values in 1700) this yields I/Y = δ τ/RK ' 0.06.
38We derive the historical employment and income shares based on the numbers in Crafts (1985, p.62). We exclude the service

sector, renormalize the percentages and interpolate to find the data for 1700 to 1860.
39The exception is the unusually low TFP in the late eighteenth century, when negative shocks such as the Napoleonic Wars may

have made a big difference [Williamson (1984)], Temin and Voth (2005)].
40In the baseline calibration, equations (1.14) and (1.15) give γT,M ' γT,A ' 0.51% p.a. Thus, total TFP growth γT ' 0.51

in the baseline case. We now use this figure to derive ε for the case γA = 0. Given that the average share of agriculture in GDP was

about 60% between 1700 and 1850 [abstracting from the service sector, which we do not model], the corresponding approximation

γT ' 0.6γT,A + 0.4γT,M = 0.6φε γK + 0.4ηε γK implies ε ' 1.5. Note that we cannot obtain γT,M = γT,A if γA = 0

and φ 6= η.
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Figure 1.5: Simulation and Data for England 1700-1850

(2001).41 The larger aggregate capital share now implies a smaller ε.42 Since capital is more important

in aggregate production, it generates more externalities; ε thus has to be smaller to maintain the observed

relationship between capital and TFP growth.43 The simulation results shown in the third row of table

1.4 reveal that the larger manufacturing capital share leads to accelerated growth of output, population,

and capital stock, compared to the baseline. Again, the difference is not very large. Because of its

greater capital share, the manufacturing sector now profits more from aggregate capital accumulation,

and TFP rises relative to agriculture. The relative price of pM thus falls. Since pM = pK , the price

of investment also falls. Consequently, a given investment ratio leads to more capital deepening. Faster

capital accumulation, on the other hand, implies more rapid TFP growth, creating a virtuous circle.

Our final sensitivity check examines the elasticity of intertemporal substitution, 1/ψ. The usual range

for the CRRA parameter ψ is between 1 and 4. While we used ψ = 1 in the baseline, we now choose

ψ = 4. The last row of table 1.4 shows that growth and structural change occur somewhat faster than

41To ensure comparability, we use her figure for the "capital-energy aggregate in the manufacturing sector".
42Since γA > 0, we use the same procedure as in the baseline calibration. We obtain ε = 0.88 from η̂ε = 0.44 and η = 0.5.

Note that for γK = 1.17% we now have γT,M > γT,A, which deviates somewhat from the historical record.
43We also need to re-calibrate initial TFP in agriculture and manufacturing as well as the initial capital stock. These are AA,0 =

0.505, AM = 0.325, and K0 = 1.79, respectively.

27



Table 1.4: Sensitivity Analysis

Changed Parameters y1850/y1700 k1850/k1700 N1850/N1700 NM,1850/N1850

none [Baseline Model] 2.31 2.28 2.93 0.57

γA = 0, ε = 1.5 1.99 1.98 2.40 0.50

φ = 0.2, η = 0.5, ε = 0.88 2.61 3.11 3.18 0.45

ψ = 4 2.40 2.33 3.17 0.57

in the baseline simulation. This might be considered counterintuitive. In one-sector growth models, the

growth rate typically depends negatively on ψ. In a two-sector model, the relative price of manufacturing

output can change. The baseline simulation has pM rising initially, and then falling steadily.44 In the

baseline simulation with log-utility, the change in pM has no impact since the income and substitution

effect cancel each other. With ψ > 1, however, the income effect is relatively stronger. An (expected)

increase in the price of consumption lowers today’s expenditure and yields an increase in investment.

Consequently, with ψ = 4 the investment rates at the beginning are larger than in the baseline simulation,

which explains the faster growth.45

1.4.4 The Role of Chance

Adding shocks to our model produces a significant dispersion of industrialization outcomes. It also slows

development on average. In the stochastic simulations, a negative shock lowers both total income and

investment. Moreover, large negative shocks lead to starvation and a net decline of population and capital

stock, reducing the scope for the capital externality to work its wonders. There is also a second, more

subtle effect: In the stochastic simulation, a positive shock to agricultural productivity causes a surge

in expenditure, and more demand for manufacturing goods. Investment increases. However, the positive

shock to agricultural productivity also makes food much cheaper. This produces an increase in the relative

price of capital so that a given quantity of savings translates into relatively less capital accumulation. By

contrast, in the deterministic simulation, the relative price of capital (produced in manufacturing) does

not change quickly, because agricultural and manufacturing TFP grow in tandem.

Figure 1.6 shows the results of 1,000 model runs, starting with the parameters for 1700, and sim-

ulating the model over 150 periods.46 The share of the workforce in manufacturing is our indicator of

industrialization. It varies substantially across simulations, and so does the growth rate.

The results lend support to Crafts’s (1977) argument that historical accident may have contributed

to England industrializing first – the range of outcomes is wide. Also, the actual historical performance

of the English economy is in the better half of possible results. Most likely, England would have had

markedly lower per capita income and experienced an even slower shift out of agriculture – many sim-

44The explanation is provided by equations (1.14) and (1.15). Initially, capital accumulation proceeds slowly, such that γK is

small and γT,M < γT,A. Thus, the relative price of manufacturing increases. In later periods, when γK is larger, the opposite is

true.
45Although investment rates are lower in later periods, the virtuous capital-externality-circle initiated in the early periods prevails.
46The model is solved numerically as described in Appendix A.6. For the stochastic simulations, we allow agricultural TFP AA

to follow the random process described in section 1.3.3.
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Figure 1.6: Stochastic Simulation for England 1700-1850

ulation values for 1850 are as much as one third lower. A run of good years in the 1740s aided the

transformation, by producing higher incomes. This then led to higher demand for manufactured products

[Gilboy (1932)]. To our knowledge, this is the first calibration exercise that demonstrates, based on a

fully specified model, the extent to which Britain’s industrial dominance in 1850 was the result of a lucky

draw. Analogously, it could be argued that other, unmodelled factors – such as the Glorious Revolution’s

strengthening of property rights emphasized by North and Thomas (1973) – facilitated the acceleration

of actual growth compared to the predicted rate. If chance could have played a role in the absolute rate of

progress after 1700, it is natural to ask if it also played a role in determining which country got to be the

First Industrial Nation. This is what we examine next.

1.4.5 Probabilities of Industrialization in other Countries

Why did England industrialize first? Could it have been France or China instead? In our model, indus-

trialization occurs stochastically, but initial income, inequality, and the demographic regime are crucial

determinants. Starting positions differed a good deal. We summarize some key variables in Table 1.5.

England was both richer and more urbanized than France and China in 1700.

In order to compare England’s chances of industrialization in 1700 with those of other countries, we

need detailed, reliable data on per capita incomes, birth rates, and income support. There has recently

been an upsurge of historical research on Chinese wages and the productivity of its agricultural sector.

Revisionists’ arguments along the lines of Pomeranz (2000) have proven to be overoptimistic about liv-

ing standards in China. Land productivity was impressive, especially in the Yangtze delta. In some parts,

where political pressures limited rent increases, peasants could live quite well, especially when measured

in terms of the price of agricultural goods. Where silver wages are used – more relevant for our com-
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Table 1.5: Income, Urbanization and Population Growth in other Countries

p.c. income*
(in 1990 Geary-Khamis dollars)

Population growth
(% p.a.)

Urban Shares
(%)

NM/N**
(%)

Year 1700 1820 1700-1820 1820-1850 1700 1800 1700

England 1250 1706 0.76*** 0.83 13.3 20.3 23

France 910 1135 0.31 0.51 9.2 8.8 16

China 600 600 0.85 0.26 6.0 3.8 10

Sources: Maddison (2003) for p.c. income and population growth; Vries (1984) and Rozman (1973)
for urban shares.

* Maddison figures are controversial. In the calibration we rely on urban share.
** Manufacturing Labor Share. For England: Calculated from Crafts (1985), leaving out services.

For France and China: Author’s calculation based on urban shares, assuming that the British
ratio of the urban share to total employment in manufacturing is indicative of ratios elsewhere.

***1701-1751: 0.25%, from Wrigley and Schofield (1981)

parisons of the ability to purchase goods other than food – the gap between Europe and China is wide

(Broadberry and Gupta 2005a). Without politically skewed incomes, however, conditions were much

less favorable. Laborers were paid poorly. Everywhere after 1620, as a result of population pressure,

"the downward trend toward immiseration is stark" (Allen 2006).47 In the most comprehensive study of

comparative living standards yet, Allen et al. (2005) found that Chinese families’ incomes lagged behind

Northern European ones by a large margin. Only in the impoverished South of Europe – like Milan –

were living standard comparable. Allen et al. (2005) suggest that the ratio of English to Chinese wages

may have been close to 2:1. Broadberry and Gupta (2005a) derive even more pessimistic figures for silver

wages in the Yangtze.

In order to stack the odds in favor of China’s prospects, we consistently make the most optimistic

assumptions possible. We concentrate on the most prosperous area, the Yangtze. Instead of using the

wage comparisons directly, we rely on the agricultural and non-agricultural labor shares in England,

France and China, as based on urban shares. Table 1.6 gives our calibration figures. We calibrate TFP

in agriculture and manufacturing such that we match both net population growth and manufacturing

labor shares as close as possible.48 Given the calibrated TFP, we can compute the implied consumption

level relative to subsistence, c/c. As Allen et al. (2005) argue, there is indeed a substantial part of the

population in China that is not able to satisfy basic subsistence needs, as reflected by c/c < 1. As given

in equation (1.12), this corresponds to starvation of part of the population such that γN < γb. In France,

on the other hand, c > c such that everyone survives and γN = γb. Note that since we avoided the pitfalls

of size effects, TFP growth in our model is not dependent on size of the economy as such, but is driven

by capital accumulation. More capital in agriculture yields the same benefits as in manufacturing. This

biases our results towards industrialization in China, since there almost all capital is used in agriculture

in 1700.

The birth rates for both France and China are constant. In the case of France, this is a simplification –

47Allen (2005a) does not provide figures for 1700, offering estimates for 1620 instead. His finding of a strong trend towards

immiseration, and of broady comparable starting levels in incomes sustained by politically biased distribution of rents, is consistent

with our argument here.
48Deviations from historical population growth and manufacturing labor shares as given in table 1.5 are small. As in the English

case, manufacturing TFP is chosen such that pM = 2.
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Table 1.6: Calibration of Initial Conditions in Cross-Country Simulations

NM
N

γb γN
c
c

England 23% 0.29% 0.28% 1.101

France 16% 0.32% 0.32% 1.045

China* 11% 4.0% 0.73% 0.969

*Referring to the Yangtze Delta

population growth was low, and birth rates declined after 1800 in parallel with death rates. Wrigley and

Schofield (1981) show that France had more of a "high pressure" demographic regime, with birth rates

responding too little to avoid additional adjustment through the positive check. We deliberately simplify

to highlight the importance of the demographic regime, and assume a constant birth rate to match observed

population growth rates. For China, we also use historical data on population growth. We observe

maximum fertility rates in the period immediately before the demographic transition in China [Chesnais

(1992)], which implies birth rates of 4% in our setup (with infinitely-lived agents). Analogous to the

British case, French shocks are derived from the movement of grain wages [Labrousse et al. (1970)].49

For China, we used both the French and the British shock parameters in the stochastic simulation, but

the results do not differ. According to our assumptions in section 1.3.9, there is also no redistribution to

support lower incomes during times of crisis in France and China.50

For China, our simulations on average predict a decline in per capita income, combined with a very

low labor share in manufacturing.51 There are some cases of industrial development, but they are rare and

stop far short of the extent of industrialization witnessed in England. The periods of benign development

result from a sequence of positive shocks, which leads to capital accumulation outpacing demographic

growth. As aggregate capital grows, the externality pushes up TFP. Eventually, the investment schedule

crosses the line defined by δ + γN twice: from below for lower k and from above for higher k (due to

decreasing returns to capital the investment schedule eventually becomes downward-sloping). The latter

is a stable equilibrium with growing population and p.c. income .

France has markedly higher probabilities of industrializing than China. Its average share of the labor

force in manufacturing in our simulations is 36.5 percent – much less than Britain, but a long way away

from pre-industrial stagnation. Growth is markedly slower, at less than half the British rate. The two

distributions overlap to some extent. As Crafts (1977) argued, much of the difference between the expe-

rience of France vs. England could be due to chance. Detailed examinations of "France’s failure" may

have suffered from hindsight bias, finding causes where there was simply bad luck. In comparison with

China, on the other hand, chance plays almost no role – the British performance in all of our simulations

is markedly better than the best possible one for China.

49We use figures for 1726-1792 and find θ = 0.595 (t=5.71) and σε = 0.13.
50As in the case of England, the effect of redistribution is negligible.
51This is in line with the tendency towards involution found by Allen (2005a).
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Figure 1.7: Stochastic Simulation for 1700-1850

1.4.6 Turning England into China

What was crucial about England’s starting conditions – its demographic regime, its favorable income

level, or the redistributive institutions that raised incomes for the bottom 40 percent of the population?

First, we simulate the development of the British economy using the same parameters as in the base-

line calibration before, but changing the birth rate to a constant 4%. In the majority of simulations, after

introducing the Chinese demographic regime in England, individual consumption declines to subsistence,

so that all consumption expenditure goes to agriculture (cA/e = 1). The economy typically starts near

point C (figure 1.2). Population grows very quickly because higher initial incomes reduce death rates.

Despite high savings rates, capital per head declines. This pushes the economy towards A. Instead of

growing by 0.34% per year, per capita incomes now fall by 0.15% annually. As a result of high birth

rates, N can grow quite quickly in a short period of time. Eventually, the economy reaches a stable equi-

librium at point A, where during periods with average productivity, the only demand for manufactured

goods comes from investment. Over the period as a whole, demographic growth will be slower than in the

baseline case due to high mortality, driven by falling living standards. Our results therefore suggest that,

instead of being able to industrialize, England would have seen a economic collapse with a high-pressure

demographic regime. This underlines the crucial importance of fertility limitation as part of Europe’s

unique demographic regime. In passing, we might want to note that the parts of Europe where the Euro-

pean Marriage Pattern was weakest [Southern and Eastern Europe (Hajnal 1965)] also suffered from long

delays before industrial development got under way.52

52Japan is also a case in point for our model – as noted by Mosk [1976], it had strikingly low fertility during the Tokugawa period.
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What is the importance of starting conditions? Is a high starting point crucial for England’s high

chance to industrialize? We can repeat the simulations with Chinese starting conditions, but an English

demographic regime. In figure 1.2 (left panel), the inv/k curve is shifted down and to the right. The

economy at B will now grow more slowly as aggregate capital accumulation slows to a crawl. As table

1.7 shows, with Chinese starting levels and the English demographic regime, the country would have

seen slow growth of per capita incomes. The share of the population in manufacturing rises gradually,

eventually surpassing England’s level in 1700. Population may stagnate or even fall because initially,

many households are near the subsistence minimum.53

For our final counterfactual, we examine the effects of redistribution. In our model, the Poor Law

is potentially important because it ensures that the malnourished can work even during years with poor

harvests. We model this by assuming that in the absence of redistribution, during crisis periods (c < c) the

part of the population that will starve also does not work [reflecting the basic insight from Fogel (1994)].

Adding this effect to our simulations amplifies the impact of negative shocks in the short run. Over the

long run, it hardly matters at all because higher land-labor ratios have a stabilizing influence. In China,

the absence of redistribution makes catastrophic declines of population and output more likely. As noted

by Lagerlöf (2006), these are a constant feature of the pre-industrial world. As it happens, British per

capita incomes are too high even in 1700 for this mechanism to make much of a difference. Very good

outcomes – showing growth above 0.6% p.a. – are more common in the simulations with redistribution,

but the average is basically the same for stochastic simulations with and without the Poor Law.

Table 1.7: Counterfactual Simulations for Britain - Results for 1850

p.c. Income Growth Population Growth Labor Share in M

Baseline Model 0.34% 0.57% 49.1%

Chinese Demography -0.15% 0.12% 4.6%

Chinese Starting Levels 0.13% -0.08% 28.2%

No Subsidies to the Poor 0.33% 0.56% 48.4%

Note: All results are the median of 1000 stochastic simulations, each over 150 periods.

1.5 Conclusions

This paper offers quantitative answers to our two initial questions: "why England?" and "why Europe?"

Based on a calibrated two-sector growth model with an aggregate capital externality, we argue that Eu-

rope’s unique demographic regime ensured starting positions that made industrial development much

more likely. No lucky accident through a few good harvests, or as a result of natural resource endow-

ments, could have similarly raised the chances to industrialize. Nor could redistribution, on its own, have

had sufficiently benign effects.

We derive a model that focuses on the first transition in unified growth theory – from Malthusian

stagnation to a post-Malthusian regime [Galor and Weil (2000), Galor (2005)]. The key driving vari-

able is not the generation of ideas through a link with population size or an increase in the population’s

Infanticide, not fertility limitation through changes in nuptiality, may have been decisive.
53Because of low fertility in the English demographic regime, recovery from negative shocks takes a long time.
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quality. Factors highlighted by historians of technology play a crucial role – such as the importance of

chance in new inventions, the role of tinkering, and the essentially non-economic motives for innovation

[Mokyr (1990)]. All of this suggests that the biggest single determinant of technological progress was

not the patent system, nor population size, but the fertility regime and the use of differentiated capital

inputs. Interacting with the installed stock of machinery created the opportunities for "microinventions",

in Mokyr’s phrase.

England’s chances to make many microinventions were good mainly because of high per capita in-

comes, resulting from fertility restriction. A more effective work force because of redistributive institu-

tions raised output and increased industrialization probabilities, but this channel’s role was small. These

conclusions follow from our simulations of England’s Industrial Revolution, which show a close fit be-

tween historical fact and model output. We also show how important it was that population growth

accelerated in a context of high per capita incomes. Economic historians have long puzzled over the

fact that the country with the biggest population increase between 1550 and 1800 also saw the biggest

increase in per capita output [Wrigley (1988)]. In our model, this is no accident, but arises naturally from

the interaction of starting conditions, the demographic regime, and the capital-use externality.

Based on the baseline simulation for England, we vary the parameter values to examine France’s and

China’s chance to develop. The exercise suggests that France had reasonable prospects to develop, too.

The absence of the Poor Law and a more high-pressure demographic regime reduced its chances, but

not to such an extent that history could not have played itself out differently. The answer for China is

fundamentally different. Because of the capital-diluting effects of rapid population growth, its chances

of industrializing were very small. Only very unlikely sequences of good shocks could have given it a

chance to develop. Starting conditions themselves were of secondary importance compared to the long-

run influence of the demographic regime.

Our results also highlight one mechanism through which inequality in the early stages of development

may be growth-reducing – if nutrient availability overall is low, redistribution from top to bottom may

create opportunities for growth because it raises the workforce’s effectiveness. This could qualify the

conclusions by Galor and Moav (2004). They argued that greater inequality is beneficial when physical

capital accumulation is key. The Galor and Moav effect may be conditional on overall nutrient supply

being sufficiently generous to leave all groups of society in a position to perform hard labor. In our

simulations, however, the consequences of workforce effectiveness matter, but are never large enough in

the long run to dominate our results.

Economic historians have sometimes been sceptical that endogenous growth models can capture the

complexity of the historical industrialization experience. Standard modelling approaches grappled with

cross-sectional differences in timing and speed. Crafts (1995) concluded that the contrasting experiences

of France and England did not seem to fit the mould of earlier models. Because of this, interpretations

based on exogenous growth should be preferred. Our results demonstrate that more recent advances

in unified growth theory can do much to resolve seeming contradictions between the historical record

and growth models. In particular, the emphasis on capital accumulation and declining constraints on

population growth during the first transition from stagnation to the post-Malthusian state prove useful.

In this way, rigorous, quantitative examinations of the cross-sectional differences in the industrialization

process can yield important conclusions about the nature of early development.
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1.6 APPENDIX

1.6.1 Appendix A.1 – Optimization of Production

In this section of the appendix we derive the first order conditions (FOC) for profit-maximization of the

production side of the model and calculate the demand function for capital varieties.

Final sector firms take input and output prices as given. A unit of capital variety j has value p(j)

and is borrowed at the gross interest rate RK . Labor and land are paid wage w and land rental rate rL,

respectively. Final producers solve the following problems in agriculture and manufacturing production:

max{YA −
∫ J

0

RKp(j)νA(j)dj − wNA − rLL} (A.1)

max{pMYM −
∫ J

0

RKp(j)νM (j)dj − wNM} (A.2)

subject to the production functions (2.3) and (2.5). Capital producing firms take input prices as given but

set the price of their own output in order to maximize profits. For given input prices, they solve the cost

minimization problem

min{
∫ J

0

RKp(j)ν̃(j)dj + wN̃ − λ̃ [ν(̃)− ν(̃)]} (A.3)

subject to the production function (1.8), where ν(̃) is the targeted production amount of variety ̃ and λ̃

is a Lagrange multiplier. In the following we derive the first order conditions for problems (A.1) - (A.3)

and use them to obtain the demand function for capital varieties.

For agricultural output, equation (A.1) has the FOC

RKp(j) = φ νA(j)−
ε

1+ε AA

[∫ J

0

νA(j)
1

1+ε dj

]φ(1+ε)−1

Nµ
AL1−φ−µ, ∀j (A.4)

w = µ AA

[∫ J

0

νA(j)
1

1+ε dj

]φ(1+ε)

Nµ−1
A L1−φ−µ (A.5)

rL = (1− φ− µ) AA

[∫ J

0

νA(j)
1

1+ε dj

]φ(1+ε)

Nµ
AL−φ−µ (A.6)

The corresponding FOC for manufacturing production follow from (A.2)

RKp(j) = η νM (j)−
ε

1+ε pMAM

[∫ J

0

νM (j)
1

1+ε dj

]η(1+ε)−1

N1−η
M , ∀j (A.7)

w = (1− η) pMAM

[∫ J

0

νM (j)
1

1+ε dj

]η(1+ε)

N−η
M (A.8)

Finally, the cost-minimization problem (A.3) of a capital variety producer ̃ implies

RKp(j) = η ν̃(j)−
ε

1+ε λ̃ AJ̃

[∫ J

0

ν̃(j)
1

1+ε dj

]η(1+ε)−1

N1−η
̃ , ∀j (A.9)

w = (1− η) λ̃ AJ̃

[∫ J

0

ν̃(j)
1

1+ε dj

]η(1+ε)

N−η
̃ (A.10)
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Note that we have not imposed symmetry of capital variety prices in any of these derivatives. Rather,

we will obtain symmetry in the following steps, which lead to the demand function for capital varieties.

Equations (A.9) and (A.10) can be used to derive

ν̃(j)
1

1+ε =

[
w

1− η

η

RK

1∫ J

0
ν̃(j)

1
1+ε dj

N̃
1

p(j)

] 1
ε

(A.11)

Integrating over all varieties j ∈ [0, J ] yields
[∫ J

0

ν̃(j)
1

1+ε dj

]1+ε

=
w

1− η

η

RKPJ
N̃ (A.12)

where PJ is the price index of existing capital varieties j ∈ [0, J ], given by

PJ ≡
[∫ J

0

p(j)−
1
ε dj

]−ε

(A.13)

We will need labor demand N̃ as a function of a given amount of output of variety ̃, ν ̃, later on. To

obtain this we plug (A.12) into the production function (1.8), which gives54

N̃ =
1− η

w

1
AJ̃

(
RKPJ

η

)η (
w

1− η

)1−η

(ν ̃ + F ) (A.14)

We then derive the demand for an existing variety j by a producer of a new variety ̃ by plugging (A.12)

into (A.11) and substituting N̃ from (A.14)

ν̃ (j) =
η

RKPJ

[
PJ

p(j)

] 1+ε
ε 1

AJ̃

(
RKPJ

η

)η (
w

1− η

)1−η

(ν ̃ + F ) (A.15)

Demand for variety j by a producer of a new variety depends on the price of j relative to the aggregate

price index of capital varieties PJ . Note that ν ̃ denotes the amount of the new variety ̃ that is actually

produced, whereas ν̃(j) is the amount of an existing variety j used in the corresponding production

process. We can now derive the total cost of producing ν ̃ from (A.13) - (A.15):

C̃ =
∫ J

0

RKp(j)ν̃(j)dj + wN̃ =
1

AJ̃

(
RKPJ

η

)η (
w

1− η

)1−η

(ν ̃ + F ) (A.16)

Consequently, the marginal cost of variety ̃ production is given by

MC̃ =
1

AJ̃

(
RKPJ

η

)η (
w

1− η

)1−η

≡ MCJ̃ , ∀̃ (A.17)

Marginal costs are the same for all capital variety producers ̃, which is one of the steps in our derivation

of the symmetric equilibrium. We need two more ingredients to derive total demand for variety j, νd(j):

the demand for j by agricultural and by manufacturing production. Using the FOC (A.4) - (A.8) and the

production functions (2.3) and (2.5) we repeat the steps outlined in (A.11) - (A.15) and obtain

νA(j) =
φ

RKPJ

[
PJ

p(j)

] 1+ε
ε 1

AA

(
RKPJ

φ

)φ (
w

µ

)µ (
rL

1− φ− µ

)1−φ−µ

YA (A.18)

νM (j) =
η

RKPJ

[
PJ

p(j)

] 1+ε
ε 1

AM

(
RKPJ

η

)η (
w

1− η

)1−η

YM (A.19)

54In this step we implicity impose that the constraint in (A.3) holds with equality, i.e., production is at its efficiency frontier.
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Total demand for an existing intermediate variety j can be derived from (A.15), (A.18), and (A.19):

νd(j) =
[

PJ

p(j)

] 1+ε
ε

Φ (A.20)

where

Φ ≡
∫ 1

0

φ

RKPJ

1
AA

(
RKPJ

φ

)φ (
w

µ

)µ (
rL

1− φ− µ

)1−φ−µ

YA(i) di + ...

...

∫ 1

0

η

RKPJ

1
AM

(
RKPJ

η

)η (
w

1− η

)1−η

YM (i) di + ...

...

∫ J̃

0

η

RKPJ

1
AJ̃

(
RKPJ

η

)η (
w

1− η

)1−η

(ν ̃ + F ) d̃ (A.21)

The first two rows in (A.21) represent total demand for variety j from final producers i ∈ [0, 1] (i.e., from

agriculture and manufacturing), and the last row is demand from currently active new variety producers

̃ ∈ [0, J̃ ]. Note that the price of variety j enters Φ only through the aggregate price index PJ , so that

its effect on Φ is negligible. Consequently, Φ is treated as a constant in a capital variety producer’s profit

maximizing price decision:

max
p̃

{p̃ νd(p̃)− C̃

(
νd(p̃)

)} (A.22)

where νd(p̃) is the total demand for the new capital variety ̃. Using (A.16), (A.17), and (A.20), we

obtain the profit-maximizing price as a markup over marginal cost of production MCJ̃ , which is the

same for each capital variety producer, so that the price of all newly produced capital varieties in a given

period is the same:

p̃ = (1 + ε)MCJ̃ ≡ pJ̃ , ∀̃ (A.23)

Free entry into the capital producing sector implies that each firm ̃ makes zero profits, i.e., (A.22) is zero.

This, together with the optimal price pJ̃ from (A.23) implies

ν(̃) =
F

ε
, ∀̃ (A.24)

That is, the amount of each newly produced capital variety, ν(̃), is the same in a given period, and

moreover, is constant over time, even if factor prices and thus marginal costs change.

1.6.2 Appendix A.2 – Capital Varieties and Aggregate Capital

In the following, we refer to aggregate capital as the collection of all machines available for production

in a given period:

K =
∫ J

0

ν(j)dj (A.25)

where ν(j) is the amount of capital variety j when it was produced (ν(j) does not change until j depre-

ciates – it then becomes zero). We choose the fixed cost F such that F = ε. Equation (A.24), and the fact

that ν(j) is constant, imply:

ν(̃) = ν(j) = 1, ∀̃, j (A.26)
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Therefore, the amount of each capital variety circulating in the economy (new and existing ones) is the

same. Our choice of F serves to simplify the following analysis since it implies, together with (A.25),

that

J = K (A.27)

that is, the total amount of capital in the economy is equal to the amount of capital varieties. Moreover,

newly produced capital is given by
∫ J̃

0
ν(̃)d̃ = J̃ . Consequently, J̃t denotes the mass of capital variety

producers as well as the number of varieties that are produced in period t (but are used for production

only from the next period on). The law of motion for the aggregate capital stock is thus equivalent to the

one for varieties, Jt+1 = (1 − δ)Jt + J̃t. The mass of currently active capital variety producers can be

derived from total investment, I = Y − eN :

J̃t =
It

pJ̃,t

= Jt+1 − (1− δ)Jt (A.28)

According to equation (A.23), the price of all newly produced capital varieties could differ from old

varieties if marginal costs vary. We therefore add the assumption that owners of existing capital varieties

exert the same market power as producers of new ones. All capital of variety j is owned by one individual

or entity (although, of course, different entities can own different varieties).55 The owner of an existing

variety j chooses pj to maximize pjν
d(pj) subject to νd ≤ 1, since the amount owned of each j is one.

Equation (A.20) with ε > 0 implies that revenue pjν
d(pj) is decreasing in the price of j. Therefore,

owners of existing varieties want to charge the smallest possible price at which the constraint νd ≤ 1

holds. The constraint holds with equality if pj = pJ̃ . Intuitively, if the owner of an existing capital

variety chooses a price above pJ̃ , demand is lower than unity and part of the variety is wasted. This is not

optimal because a marginal price decrease would raise the revenue and thus profits. On the other hand, if

pj < pJ̃ , demand is larger than unity and the fixed supply of one unit is not sufficient to satisfy demand.

Thus, the price of existing and new capital varieties is the same within each period. We can now define

the price of capital pK :

p(̃) = p(j) ≡ pK , ∀̃, j (A.29)

Equation (A.26) establishes symmetry in capital producing sectors. In the following we slightly abuse

notation and use J̃ as the subscript for a representative new capital producer as well as for the mass of

all producers of new capital varieties. Because the mass of final sector firms is one, output (YA, YM ) and

factor inputs (Ni, L, and νi(j) for i = A,M) of a representative final producer are equal to aggregate

final output and inputs. The price equality of capital varieties j given in equation (A.29), used in (A.15),

(A.18), and (A.19), implies that firms use the same amount of each variety, i.e., νi(j) = νi, ∀j and

i = A,M, J̃ . Clearly, the total amount demanded of each variety (i.e., the integral of νi(j) over all

producers i) is also equal for all j: ν(j) = ν. Market clearing of each existing variety j then requires56

νA + νM + J̃νJ̃ = ν = 1 (A.30)

55We noted before that existing capital varieties j ∈ [0, J ] are owned by consumers. Our assumption thus requires that population

N be a multiple of the measure of capital varieties J . To circumvent this problem we can assume that single consumers bring their

money to banks and that these act as profit-maximizing owners of each capital variety.
56Recall that newly produced varieties are only used from the next period on, but existing varieties are used by the mass J̃ of new

varieties producers.
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where the last equality follows from (A.26). At the aggregate level all capital, labor, and land are used in

each period. Integrating (A.30) over all existing varieties j ∈ [0, J ] yields

JνA + JνM + J J̃νJ̃ = Jν = J = K (A.31)

Recalling that J = K, we can interpret νA, νM , and J̃νJ̃ as the aggregate capital shares in agriculture,

manufacturing and variety production, respectively.

1.6.3 Appendix A.3 – Market Clearing and Equilibrium

The market clearing conditions for single capital varieties and aggregate capital are given by (A.30) and

(A.31), respectively. The corresponding conditions for labor and land are:

NA + NM + J̃NJ̃ = N (A.32)
∫ 1

0

Ldi = L (A.33)

where the latter condition is trivial because land is only used for agriculture by the [0, 1] final sector firms.

Market clearing in final product markets requires:

NcA = YA (A.34)

NcM = YM (A.35)

Before defining the equilibrium, we need to introduce total nominal output Y , since this is the basis

for individual income y = Y/N that enters in consumers’ intertemporal optimization decision. Let

Y = YA + pMYM + pK J̃ (A.36)

where the last term represents the total value of newly produced capital varieties (J̃ν, with ν = 1). This

equation, together with (A.28), J = K, and the condition that consumers’ budget constraints hold with

equality (YA + pMYM = eN), implies the law of motion for capital

Kt+1 = (1− δ)Kt + (1/pK,t)(Yt − etNt) (A.37)

that is taken into account in the intertemporal optimization (1.4) by households.57

Definition 1 Given initial values AA,0, N0, K0 =
∫ J0

0
ν0(j)dj = J0 (since ν0(j) = 1), and L, a compet-

itive equilibrium consists of sequences for t ≥ 0 of agricultural TFP, {AA,t}; prices, {pM,t, pK,t, RK,t,

rL,t, wt}; final sector firm allocations {YA,t, YM,t, νA,t, νM,t, NA,t, NM,t, Lt}, capital sector firm allo-

cations {νt, NJ̃,t, νJ̃,t} for all ̃ ∈ [0, J̃t] producing at t; and household allocations {cA,t, cM,t} such

that (i) Given the sequence of prices, final sector firm allocations solve the problems specified in (A.1)

and (A.2), and capital sector firm allocations solve (A.3); (ii) Producers of new capital varieties charge

the profit-maximizing price given by (A.23), and, due to free entry, sell the amount given in (A.24) of

each variety; (iii) Owners of existing capital varieties charge the price given by (A.29); (iv) Given the

sequence of prices, consumer allocations maximize (2.1) subject to cA,t + pM,tcM,t ≤ et, and consumer

consumption expenditures et satisfy the Euler equation (1.5); (v) The market clearing conditions (A.30)-

(A.35) hold; (vi) The law of motion of capital is given by (A.37); and (vii) Population growth follows

(1.11)-(1.13).
57The term (1 + γN,t)kt+1 in (1.4) results from the fact that capital will be divided among (1 + γN,t)Nt household members

in the next period.
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1.6.4 Appendix A.4 – Aggregate Externality Representation

In this section we utilize the symmetry of capital variety use in production to derive a simplified repre-

sentation of the model. It offers two advantages: First, the influence of aggregate externalities on produc-

tivity can easily be represented in the production functions. Second, with a single assumption about TFP

in capital variety production, we simplify the model such that variety production can be included in the

manufacturing sector. This reduces the number of equations that must be simulated to solve the model

numerically.

Using νi(j) = νi,∀j and i = A,M, J̃ in the production functions (2.3), (2.5), and (1.8), the integral

over all capital varieties j ∈ [0, J ] simplifies to Jφε(JνA)φ in agriculture, Jηε(JνM )η in manufacturing,

and Jηε(JνJ̃ )η in capital variety production. The terms in parentheses (Jνi) represent the total capital

used in firm i (i.e., the number of capital varieties multiplied by the amount utilized of each variety). It is

convenient to simplify notation and label these terms KA ≡ JνA, KM ≡ JνM , and KJ̃ ≡ JνJ̃ . We also

use (A.27) and set J = K. This implies the following simplified production functions:

YA = AAKφεKφ
ANµ

AL1−φ−µ (A.38)

YM = AMKηεKη
MN1−η

M (A.39)

ν(̃ ) = AJ̃KηεKη

J̃
N1−η

J̃
− F = ν, ∀̃ (A.40)

where N̃ = NJ̃ , ∀̃ follows from symmetry in variety production and (A.14).

In the following steps we will derive the TFP paramater AJ̃ as a function of AM such that, despite the

fixed cost in capital variety production (A.40), this sector’s output can be described by the manufacturing

production function (A.39). First, recall from (A.24) that each capital variety producer’s output is F/ε.

Second, we derive the labor and capital variety input needed to produce F/ε units of manufacturing

output. Repeating steps (A.11) - (A.15) for the manufacturing sector and using symmetry of variety input

prices yields

NM =
1− η

w

1
AMJηε

(
RKpK

η

)η (
w

1− η

)1−η

YM (A.41)

KM = JνM =
η

RKpK

1
AMJηε

(
RKpK

η

)η (
w

1− η

)1−η

YM (A.42)

Third, we suppose that we want to produce F/ε units of a new capital variety ̃ – that is, using the capital

variety technology (A.40) – with the labor and capital input given in (A.41) and (A.42) – i.e., the inputs

needed when applying the manufacturing technology.

F/ε
!= ν(̃ ) = AJ̃Kηε

(
KM |YM=F/ε

)η (
NM |YM=F/ε

)1−η − F (A.43)

We now use the corresponding inputs, i.e., (A.41) and (A.42) evaluated at YM = F/ε. This yields a

constraint on the ratio of AJ̃ and AM :

AJ̃ = (1 + ε)AM (A.44)

The price of capital varieties, as implied by (A.23), (A.17), and price symmetry, is then

pJ̃ = (1 + ε)
1

AJ̃Kηε

(
RKpK

η

)η (
w

1− η

)1−η

=
1

AMKηε

(
RKpK

η

)η (
w

1− η

)1−η

(A.45)
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which is equal to marginal cost of manufacturing production, as can be verified by calculating total cost

CM = wNM + RKKM from (A.41) and (A.42) and deriving it with respect to YM . Due to perfect com-

petition in final production, the price of output equals marginal cost, i.e., pM = MCM . Consequently,

(A.45) implies pJ̃ = pM , and, using (A.29) we obtain

pK = pM (A.46)

By choosing AJ̃ according to (A.44), each capital variety producer uses exactly the amounts of labor

and capital inputs that a manufacturing firm would need in order to produce the same (fixed) output F/ε

and charges the same price that a manufacturing producer would request. Intuitively, this result follows

because the higher TFP in variety production exactly offsets the fixed cost F . We can thus incorporate

the capital variety producing sector in the manufacturing sector. The simplification follows independent

of our assumption F = ε that leads to (A.26). Also, increasing returns in variety production imply that

the TFP advantage AJ̃ > AM , necessary to compensate for F , decreases with output ν(̃ ). It is therefore

crucial that each capital variety firm produces a constant amount of output, as follows from (A.24), such

that the necessary TFP difference is the same for all variety producers and constant over time.

In addition to consumers’ demand, Y d
M , manufacturing must also satisfy the demand for capital in-

vestment, as given by (A.28).58 Imposing market clearing, the total amount of manufacturing supply, YM ,

must thus equal demand from households and capital investment (I/pK), where we can use pK = pM :

YM = Y d
M +

I

pM
(A.47)

The simplified model is thus equivalent to a two-sector model where capital investment goods are pro-

duced in the manufacturing sector.

1.6.5 Appendix A.5 – Equilibrium Conditions of the 2-Sector Model

Having derived the two-sector version of the model in the previous section, we now present the corre-

sponding equilibrium conditions. The FOC for agriculture and manufacturing profit maximization (A.4)

- (A.8) can be easily simplified to their symmetric version by using νi(j) = νi,∀j and i = A,M, J̃ . The

FOC’s are the standard ones corresponding to profit maximization of (A.38) and (A.39). Factor payments

to capital and labor are equal in both sectors, while land rents are determined in agriculture:

rL = (1− φ− µ)AAKφεKφ
ANµ

AL−φ−µ (A.48)

pKRK = φAAKφεKφ−1
A Nµ

AL1−φ−µ = ηpMAMKηεKη−1
M N1−η

M (A.49)

w = µAAKφεKφ
ANµ−1

A L1−φ−µ = (1− η)pMAMKηεKη
MN−η

M (A.50)

Aggregate capital K and population N are given at the beginning of a period. In the following, we

take per-capita expenditure e as given and solve for the intratemporal equilibrium. From this solution we

obtain pM and RK , which we then use to solve the Euler equation (1.5). Total demand for agriculture

products can be derived from (1.2): Y d
A = NcA = N [αe + (1− α)c]. The remaining expenditure goes to

manufacturing, which implies Y d
M = NcM = N [(1− α)(e− c)/pM ]. Total demand for manufacturing

58Recall that the new capital produced in a given period is equal to
∫ J̃
0 νd̃ = J̃ since ν = 1, ∀̃.
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is given by (A.47). Markets clear for agriculture and manufacturing output:

N [αe + (1− α)c] = AAKφεKφ
ANµ

AL1−φ−µ = YA (A.51)

N
(1− α)

pM
(e− c) +

I

pM
= AMKηεKη

MN1−η
M = YM (A.52)

All land L is used and factor markets clear:

NA + NM = N (A.53)

KA + KM = K (A.54)

Finally, total nominal output, as given in equation (A.36), now simplifies to

Y = YA + pMYM (A.55)

This gives us a system with 13 unknowns: Y , YA, YM , I , NA, NM , ,KA, KM , RK , rL, w, pM , pK ;

and 13 equations: (A.46), (A.48), (A.53) - (A.55), and – each of the following counting twice – (A.49) -

(A.52). Population growth is then derived from (1.12) and (1.13), where c = cA + cM with cA = YA/N

and cM = (pMYM − I)/(pMN). This system of equations characterizes the intratemporal equilibrium.

We use the corresponding solution to derive per-capita expenditures e from the Euler equation in the

iterative process described in the next section.

1.6.6 Appendix A.6 – Numerical Simulations

In this section we outline the simulation of the equilibrium given in the previous section. Dividing (A.49)

by (A.50) and using (A.53) and (A.54) to substitute NM and KM implies

φ

µ

NA

KA
=

η

1− η

N −NA

K −KA
(A.56)

This condition, together with (A.51), gives a system of two equations with two unknowns, NA and KA,

that we solve numerically for given e. Given NA and KA, the remaining variables can be derived

analytically.

To solve the Euler equation (1.5) we use policy function iteration where expenditure is a linear func-

tion of the (given) per-capita capital at the beginning of a period:

e = ϕk (A.57)

We discretize the shocks ε to agricultural productivity using Gaussian quadrature with Q nodes and

corresponding weights ωq , defined by {εq, ωq}Q
q=1. We use a projection method to solve for the coefficient

ϕ, as described in the following steps:

1. Initialize by a guess ϕ0 (a small positive number)

2. In iteration l, for ϕl, calculate e according to (A.57)

3. For the given e, obtain y = Y/N , γN , and pM = pK from the the intratemporal equilibrium and

calculate next period’s population N ′ = gN
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4. Evaluate the implied next period’s p.c. capital, k′, by

k′ =
1

1 + γN

[
(1− δ)k +

y − e

pK

]

and calculate K ′ = k′N ′.

5. Evaluate next period’s consumption expenditure e′ = ϕk′. At all Gaussian quadrature nodes q,

calculate A′A,q = z′qA
′
A, where A′A = (1 + γA)AA and ln z′q = θ ln z + εq

6. For the given N ′, K ′, e′, and A′A,q obtain y′q = Y ′
q/N ′, g′q , and p′M,q = p′K,q from the intratemporal

equilibrium for q = 1, ..., Q

7. Evaluate expenditure implied by the Euler equation as

ẽ =

[
β

Q∑
q=1

ωq

(
p′K,q

pK

) (
p′M,q

pM

)(1−α)(ψ−1) (
1

e′q − c

)ψ (
R′K,q + 1− δ

)
]− 1

ψ

+ c

8. Calculate ϕ̃ = ẽ/k

9. If ‖ϕ− ϕ̃‖ < 10−9, stop the iteration and accept ϕ as a solution. Otherwise use a Broyden solver

to update ϕl+1 and go to step 2. Repeat until convergence.

1.6.7 Appendix A.7 – Calibration of the British Birth Function

In this section we describe the calibration of the net birth rate function gb(c) based on British historical

data, as shown in figure 1.8. Crucially for our purposes, English birth rates responded positively to

higher wages, as demonstrated by Wrigley and Schofield (1981), and Wrigley et al (1997). To derive the

function’s exact shape, we use an exercise similar in spirit to Hansen and Prescott (2002). We employ

a spline regression, defining x = w/w0, where w0 represents the wage in 1700. Population growth,

is yp(xt) = Nt+1/Nt − 1. Let xpeak denote the cutoff-point at which the slope changes its sign from

positive to negative. We then define a dummy d = 1, whenever x ≤ xpeak and zero, else. Population

growth in 1700 was close to zero; we thus impose yp(w0/w0) = yp(1) = 0. The spline regression is

yp(x) = β1 [(x− 1)d + (xpeak − 1)(1− d)]︸ ︷︷ ︸
x1

+β2 (x− xpeak)(1− d)︸ ︷︷ ︸
x2

+ u (A.58)

where u is an error term. When running this regression (without constant) we choose the cutoff-point

xpeak to maximize R2, and obtain β̂1 = 0.0277 (t=8.03) and β̂2 = −0.0016 (t=-3.39); xpeak = 1.4; the

adjusted R2 is 0.70. As in Hansen and Prescott (2002), we impose that demographic growth rates cannot

be negative because incomes are too high. For very low income, the net birth rate is zero and population

diminishes due to starvation as described in section 1.3.10. The gb(·) function for England is then defined

as

gb(x) =

{
max{β̂1(x− 1), 0 }+ 1, if x ≤ xpeak

max{β̂1(xpeak − 1) + β̂2(x− xpeak), 0 }+ 1, else
(A.59)
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Sources: Population: Wrigley and Schofield (1981) for 1541-1871; Mitchell

and Jones (1971) for 1881-1961. Real wages: Clark (2005)

Figure 1.8: Population Growth and Wage in England
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Chapter 2

The Three Horsemen of Growth: Plague, War and Urbanization in
Early Modern Europe

(Joint with Joachim Voth, UPF)

2.1 Introduction

In 1400, Europe’s chances for rapid economic development seemed small. The continent was politically

fragmented, torn by frequent military conflict, and dominated by feudal elites. Literacy was low. Other

regions, such as China, appeared more promising. It had a track record of useful inventions, from ocean-

going ships to gunpowder and advanced clocks (Moykr 1990). The country was politically unified, and

governed by a career bureaucracy chosen by competitive exam (Pomeranz 2000). Few if any of the

important variables analyzed in modern growth studies suggest that Europe looked promising.1

By 1700 however, and long before it industrialized, Europe had pulled ahead decisively - a first "Great

Divergence" had occurred (Broadberry and Gupta 2006, Diamond 1997).2 England’s per capita income

was more than twice that of China, European silver wages were often markedly higher, and European

urbanization rates were more than double those in China (Broadberry and Gupta 2006, Maddison 2003).

This early divergence matters in its own right. It laid the foundations for the European conquest of

vast parts of the globe (Diamond 1997). More importantly, it may have contributed to the even greater

differences in per capita incomes that followed. In many unified growth models, a gradual or temporary

rise of per capita income is crucial for starting the transition to self-sustaining growth (Galor and Weil

2000, Hansen and Prescott 2002). Also, higher starting incomes may increase a country’s industrialization

probabilities (Voigtländer and Voth 2006). If we are to understand why Europe achieved the transition

from "Malthus to Solow" before other regions of the world, it is necessary to explain this initial divergence

of incomes.

In this paper, we identify a new puzzle, and argue that its solution can help explain why the most

advanced parts of Europe were far ahead of the rest of the world by 1700 already. The early modern

divergence in per capita incomes represents a major puzzle for Malthusian models because per capita

incomes should not be able to rise substantially above subsistence for an extended period. Before indus-

trialization, the ’fertility of wombs’ was necessarily greater than the ’fertility of minds.’ Galor (2006)

estimates that TFP grew by no more than 0.05-0.15% p.a. in the pre-industrial era. Over a century, pro-

ductivity could increase by 5-16%. Maximum fertility rates per female, by contrast, are around 7. Even

with only 3 surviving children, a human population growing unconstrained would quadruple after 100

years.3 This is why, in a Malthusian regime, past generations should have always, in HG Well’s words,

1For a recent overview, see Bosworth and Collins (2003) and Sala-i-Martin et al. (2004).
2Pomeranz (2000), comparing the Yangtze Delta with England, argues the opposite. The consensus now is that his revisionist

arguments to do no stand up to scrutiny (Allen 2004; Allen, Bengtsson, and Dribe 2005; Broadberry and Gupta 2006).
3Assuming a generation length of 25 years.
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"spent the great gifts of science as rapidly as it got them in a mere insensate multiplication of the common

life."4

Nonetheless, living standards in many European countries increased throughout the early modern pe-

riod. Maddison (2007) estimates that Western European per capita incomes increased by more than 30%,

and aggregate incomes still more between 1500 and 1700.5 His figures are imperfect, but knowledge-

able observers such as Adam Smith detected the same trend: "the annual produce of the land and labour

of England... is certainly much greater than it was a little more than a century ago at the restoration

of Charles II (1660)... and [it] was certainly much greater at the restoration than we can suppose it to

have been a hundred years before."6 How could such a marked rise be sustained over such a long period,

despite the potential for rapid population growth to erode all gains quickly?

We argue that the impact of the Black Death in Europe was crucial. Western Europe’s unique set of

geographical and political starting conditions interacted with the plague shock to make higher per capita

living standards sustainable. In a Malthusian regime, lower population spells higher wages. Because the

shock was very large, with up to half of the population dying, land-labor ratios improved, and wages

increased substantially. These real wage gains were so large, and concentrated in such a brief period of

time, that they could not be undermined quickly by population growth. Wages remained high for more

than one or two generations, and were partly spent on manufactured goods. Their production required a

higher percentage of the labor force in the urban sector. Because early modern European cities were death-

traps with mortality far exceeding fertility rates, they would have disappeared had it not been for steady

in-migration from the countryside. Thus, the extra demand for manufactures pushed up average death

rates, making higher incomes sustainable. We capture these key elements in a simple two-sector model.

Effectively, Engel’s law ensured that the plague’s positive effect on wages did not wear off entirely as a

result of higher fertility and lower mortality. Because changes in the composition of demand increased

urbanization rates, average death rates became permanently higher, making the wage gains sustainable.

This benign effect was reinforced because city wealth fueled early modern Europe’s endemic warfare.

Between 1500 and 1800, the continent’s great powers were fighting each other on average for nine years

out of every ten (Tilly 1990). Cities also acted as nuclei for long-distance trading networks. Both war and

trade spread epidemics. The more effectively they did so, the higher death rates overall were, and the more

readily a rise in incomes and in the urban share of the population could be sustained. In this way, three

"Horsemen of Death" - plague, war, and urbanization - led to higher incomes. The combination of these

three factors is what we call the European Mortality Pattern. In contrast to numerous papers identifying a

negative (short-run) effect of wars, civil wars, disease, and epidemics on growth in economies today,7 we

argue that they acted as "Horsemen of Growth".

The great 13th century plague also affected China, as well as other parts of the world (McNeill 1977).

Why did it not have the same effects? We argue that two factors were crucial. Chinese cities were far

healthier than European ones, for a number of reasons involving cultural practices and political con-

4Wells 1905. Galor and Weil (2000) assume that the response of fertility to incomes is delayed. Hence, a one-period acceleration

in technological change can generate higher incomes in the subsequent period, and a sequence of positive shocks can lead to

sustained growth. While this solves the problem in a technical sense, it is unlikely to explain why fertility responses did not erode

real wage gains over hundreds of years.
5Maddison estimates that total real GDP doubled in the same period.
6Smith, 1776 (1976), pp. 365-66.
7Murdoch and Sandler 2002, Hoeffler and Querol-Reynal 2003, Hess 2003.
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ditions. Also, political fragmentation in Europe ensured that greater wealth in cities helped to finance

almost continuous warfare after 1500. Since China was politically unified, there was no link between

city growth and the frequency of armed conflict. Hence, a very similar shock did not lead to permanently

higher death rates; per capita incomes could not rise.8

The mechanism presented in this paper is not the only one that can deliver a divergence in per capita

incomes without technological change. In addition to high death rates, Europeans curtailed birth rates.

In contrast to many other regions of the world, socio-economic factors, and not biological fertility, de-

termined the age at first marriage for women. This is what Hajnal (1965) termed the European Marriage

Pattern. In our calibrations, we find that fertility restriction can explain part of the European advantage,

but that the mortality effects identified in our model account for more than half of the "Great Divergence".

We are not the first to argue that higher death rates can have beneficial economic effects. Young

(2005) concludes that Aids in Africa has a silver lining because it reduces fertility rates, increasing the

scarcity of labor and thereby boosting future consumption. Lagerlöf (2003) also examines the interplay

of growth and epidemics, but argues for the opposite causal mechanism. He concludes that a decline in

the severity of epidemics can stimulate growth if they stimulate population growth and human capital

acquisition. Brainard and Siegler (2003) study the outbreak of "Spanish flu" in the US, and conclude

that the states worst-hit in 1918 grew markedly faster subsequently. Compared to these papers, we make

two contributions. We are the first to construct a consistent model demonstrating how specific European

characteristics - political and geographical - interacted with a mortality shock to drive up living standards

over the long run. Also, we calibrate our model to show that it can account for a large part of the "Great

Divergence" in the early modern period.

Other related literature includes the unified growth models of Galor and Weil (2000), and Galor

and Moav (2003). In both, before fertility limitation sets in and growth becomes rapid, a state variable

gradually changes over time during the Malthusian regime, making the final escape from stagnation more

and more likely. In Galor and Weil (2000) and in Jones (2001), the rise in population which in turn

produces more ideas is a key factor; in Galor and Moav (2003), it is the quality of the population.9

Hansen and Prescott (2002) assume that productivity in the manufacturing sector increases exogenously,

until part of the workforce switches out of agriculture. Our model abstracts from technological change

during the Malthusian era, and emphasizes changes in death rates as a key determinant of living standards.

One of the key advantages is that it can be applied to the cross-section of growth. In contrast, the majority

of unified growth papers implicitly uses the world as their unit of observation.

We proceed as follows. The next section provides a detailed discussion of the historical context.

Section 3 introduces a simple two-sector model that highlights the main mechanisms. In Section 4, we

calibrate our model and show that it captures the salient features of the "Great Divergence", compare

the effect of the European Mortality Pattern to the consequences of fertility restriction, and compare

the model predictions with actual data. The final section summarizes our findings and puts them in the

context of explanations of the transition to self-sustaining growth.

8Hui (2005) compares the Warring States period in China (656-221 BC) with early modern Europe, and argues that flawed

strategy is largely to blame for Europe’s failure to unify politically.
9Clark (2007) finds some evidence in favor of the Galor-Moav hypothesis, with the rich having more surviving offspring.

52



2.2 Historical context and background

Our story emphasizes three elements that can explain the first "Great Divergence": the impact of the

plague, the peculiarities of European cities, and interaction effects with the political environment. In this

section, we first assemble some of the evidence suggesting that European growth during the early modern

period was unusually rapid, and then discuss the three central elements in our model in turn.

The Great Divergence

That Europe pulled ahead of the rest of the world in terms of per capita living standards is now a widely

accepted fact. While Pomeranz (2000) argued that farmers in the Yangtze delta in China earned the same

wage in terms of calories as English farmers, there is now a broad consensus that overturns this argument.

First, better data strongly suggest that English wages expressed as units of grain or rice were markedly

higher. Broadberry and Gupta (2006) calculate Chinese grain-equivalent wages were 87% of English ones

in 1550-1649, and fell to 38% in 1750-1849. Second, since foodstuffs were largely non-traded goods,

they are a poor basis for comparison. Silver wages were much higher in Europe than in China. According

to Broadberry and Gupta, they fell from 39% of the English wage to a mere 15%.10 Finally, urbanization

rates have been widely used as an indicator of economic development (Acemoglu, Johnson and Robinson

2005). They strongly suggest that Europe overtook China at some point between 1300 and 1500, and

then continued to extend its lead (figure 3.1).

Figure 2.1: Urbanization rates in China and Europe, 1000-1800. Source: Maddison 2003

The beneficial effect of the Black Death on real wages is well-documented. The wage figures for

England by Phelps-Brown and by Clark (2005) suggest that wages broadly doubled after 1350. If and

when these gains were reversed, and to what extent, is less clear. The older Phelps-Brown series suggests

a strong reversal. Clark (2005) shows that wages fell back from their peak somewhat, but except for crisis

10While Broadberry and Gupta’s figures for the second period are partly influenced by values from the early 19th century, when

industrialization was already under way, it is clear that observations for the 18th century alone would also show a marked advantage.
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years around the English Civil War, they remained about fifty percent above their 1300 level.11 In this

sense, they offer some indirect support to the optimistic GDP figures provided by Maddison (2003).

Changes in Europe were not uniform. Allen (2001) found that the real wage gains for craftsmen after

the Black Death were only maintained in Northwestern Europe. In Southern Europe - especially Italy, but

also Spain - stagnation and decline after 1500 are more noticeable. Yet for every single European country

with the exception of Italy, Maddison estimates that per capita GDP was higher by 1700 than it had been

in 1500. This indirectly suggests that standard Malthusian predictions did not hold during the period.

Maddison argues that subsistence is equivalent to ca. $400 US-Geary Khamy dollars. Even relatively

poor countries like Spain and Portugal had per capita incomes more than twice as high in 1700. At this

stage, every single European country had been above the threshold for centuries, often by 50 percent or

more. This is the puzzle that we seek to explain.

The Plague

The plague arrived in Europe from the Crimea in December 1347. Besieging Tartar troops suffered from

the disease. In an early example of biological warfare, they used catapults to throw bodies of the deceased

over the city wall of Caffa, a Genoese trading outpost. Soon, the city population caught the disease. It

spread via the shipping routes, first to Constantinople, then to Sicily and Marseille, then mainland Italy,

and finally the rest of Europe. By December 1350, it had spread to the North of England and the Baltic

(McNeill 1977).

Mortality rates amongst those infected varied from 30 to 95%. Bubonic and pneumonic forms of the

plague both contributed to surging mortality. The bubonic form was transmitted by fleas and rats carrying

the plague bacterium (Yersinia pestis). Infected fleas would spread the disease from one host to the next.

When rats died, fleas tried to feast on humans, infecting them in the process. In contrast, pneumonic

plague spread person to person, by coughing of the infected. Transmission and mortality rates were

particularly high for this form of the plague.

There appear to have been few differences in mortality rates between social classes, or between rural

and urban areas. Some city-dwellers tried to escape the plague, by withdrawing to country residences, as

described in Decamerone. It is unclear how often these efforts succeeded. Only a handful of areas in the

Low Countries, in Southwest France and in Eastern Europe were spared the effects of the Black Death.

We do not have good estimates of aggregate mortality for medieval Europe. Most estimates put pop-

ulation losses at 15 - 25 mio., out of a total population of approximately 40 mio. people. Approximately

half of the English clergy died, and in Florence and Venice, death rates have been estimated as high as

60-75%.

City Mortality

European cities were deadly places. In 1841, when large inflows of labor put particular pressure on urban

infrastructures, life expectancy in Manchester was a mere 25 years. At the same time, the national average

was 42, and in rural Surrey, 45 years. Early modern cities were often equally unhealthy. Life expectancy

11What matters for the predictions of the Malthusian model is per capita output, not wages as such. National income in the

aggregate will be equivalent to the sum of wages, rents, and capital payments. Since English population surpassed its 1300 level in

the eighteenth century, it is likely that rental payments were higher, too.
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in London, 1580-1799, fluctuated between 27 and 28 years (Landers 1993). Nor were provincial towns

much more fortunate. York had similar rates of infant mortality.12 In France, the practice of wet-nursing

(sending children from cities for breast-feeding to the countryside) complicates comparisons. A compre-

hensive survey of rural-urban mortality differences estimates that in early modern Europe, life expectancy

was 1.5 times higher in the countryside (Woods 2003).

Mortality figures for China have been reconstructed based on the family trees of clans (Tsui-Jung

1990). Infant mortality rates were lower in cities than in rural areas, and life expectancy was higher.

While the data is not necessarily representative, other evidence lends indirect support. For example, life

expectancy in Beijing in the 1920s and 1930s was higher than in the countryside. Members of Beijing’s

elite in the 18th century experienced infant mortality rates that were half those in France or England

(Woods 2003). Given that, in Europe at least, class differences in mortality were not common in cities,

there is a good chance that mortality rates in general might have been low.

In Japan, where some data for 18th century Nakahara and some rural villages survives, city dwellers

lived as long as their cousins in the countryside. Some recent evidence (Hayami 2001) on adult mortality

questions if cities were indeed healthier than the countryside, as some scholars have argued (Hanley

1997; Macfarlane 1997). What is clear is that on balance, the evidence favors the hypothesis that there

was no large urban penalty in the Far East. The main reasons probably include the transfer of "night soil"

(i.e., human excrement) out of the city and onto the surrounding fields for fertilization, high standards of

personal hygiene, and a diet that emphasized vegetarian food. Since the proximity of animals is a major

cause of disease, all these factors probably combined to reduce the urban mortality burden.

In the view of one prominent urban historian, in "1600, just as in 1300, Europe was full of cities girded

by walls and moats, bristling with the towers of churches." (DeVries 1976). In China, city walls were

widely used throughout the early modern period, partly because of their symbolic value for administrative

centers of the Empire. However, since the country was unified under the Qin Dynasty, the defensive

function of city walls declined. With relative ease, houses and markets spread outside the city walls.13

Because Far Eastern cities could easily expand beyond the old fortifications, city growth did not push up

population densities in the same way as in Europe.14

In many European countries, regulations further ensured that manufacturing activities and market

exchange was largely a monopoly of the cities.15 In China, periodic markets in the countryside served

the same function, reducing relative urbanization rates (Rozman 1973). Finally, European cities offered a

unique benefit not found in other parts of the world - the chance to escape servitude. The general rule of

staying within the city walls for one year and one day made free men out of peasants bound to the land

and their lord. In contrast, "Chinese air made nobody free".16

12Galley 1998. There is not enough data to derive life expectancy. Since infant mortality is a prime determinant, it was probably

in the same range.
13In some cases, the new suburbs would also be enclosed by city walls (Chang 1970).
14Barcelona is one extreme example. After the 1713 uprising, the Bourbon kings did not allow the city to expand beyond its

existing walls until 1854. As industrial growth led to an inflow of migrants, living conditions deteriorated considerably (Hughes

1992).
15Some scholars have argued that "proto-industrialization", i.e. early forms of home-based manufacturing, often located in the

countryside, were an important feature of early modern European growth (Ogilvy and Cerman 1996). This view is not widely

accepted (Coleman 1983).
16Mark Elvin, cited in Bairoch (1991).
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Wars, Trade and Disease

The available data on deaths caused by military operations in the early modern period is sketchy.17 What

is clear is that diseases spread by armies were far more important than battlefield casualties and the deaths

of siege victims in determining mortality rates. While individual campaigns could be deadly, armies were

too small, and their members too old, to influence aggregate mortality rates significantly.18 The plague of

1347-48 was not the last to strike Europe. In the period 1347-1536, there were outbreaks every 7 years.

Until the 1670s, frequency declined by half. The last incidents in Western Europe were plague outbreaks

in Austria (1710) and Marseille (1720). Warfare and the outbreak of diseases were closely linked. The

Black Death had originally arrived with a besieging Tartar army in the Crimea. Early modern armies

killed many more Europeans by the germs they spread than through warfare. Isolated communities in the

countryside would suddenly be exposed to new germs as soldiers foraged or were billeted in farmhouses.

The effect could be as deadly as it had been in the New World, where European diseases killed millions.

In one famous example, it has been estimated that a single army of 6,000 men, dispatched from La

Rochelle to deal with the Mantuan Succession, spread plague that killed over a million people (Landers

2003). Population losses in the aggregate could be heavy. The Holy Roman Empire lost 5-6 mio. out of

15 mio. inhabitants during the Thirty Years War; France lost 20% of its population in the late 16th century

as a result of civil war. As late as in the Napoleonic wars, typhus, smallpox and other diseases spread by

armies marauding across Europe proved far deadlier than guns and swords.

For the early and mid-nineteenth century, we have data that allows some gauging of the orders of

magnitude involved. In the Swedish-Russian war of 1808-09, mortality rates in Sweden doubled, almost

exclusively through disease. In isolated islands, the presence of Russian troops led to a tripling of death

rates. During the Franco-Prussian and the Austro-Prussian wars later in the 19th century, non-violent

death rates increased countrywide by 40-50% (Landes 2003). Both background mortality and the impact

of war were probably lower than in the early modern period. Warfare was less likely to spread new

germs, since in areas touched by troop movements were now integrated by extensive railway networks.

The figures for the Thirty Years War and for 16th century France similarly suggest increases in mortality

above their normal rate by 50 to 100%.

Early modern warfare, with its need for professional, drilled troops, Italian-style fortifications, ships,

muskets and cannons were particularly expensive – money formed the sinews of power (Brewer 1990,

Landers 2003). To fight wars, princes needed access to liquid wealth. Philip II’s silver allowed him to

fight a war in every year of his reign except one. Elsewhere, the growth of cities provided the kind of

easily mobilized wealth that could be spent on mercenary armies - either directly, through taxation, or

through sovereign lending. With the growth of urbanization in early modern Europe, the financial means

for fighting more, fighting longer, and in more deadly fashion became more easily accessible.

China in the early modern period saw markedly less warfare than Europe. We calculate that even on

the most generous definition, wars and armed uprisings only occurred in one year out of five, no more than

a quarter of the European frequency. Not only were wars fewer in number. They also produced less of a

17Landers (2003) offers an overview of battle-field deaths.
18Since infant mortality was high, by the time men could join the army, many male children had died already. This makes it less

likely for military deaths to matter in the aggregate. Lindegren (2000) finds that military deaths only raised Sweden’s death rates by

2-3/1000 in most decades between 1620 and 1719, a rise of no more than 5%. Castilian military deaths were 1.3/1000, equivalent

to 10 percent of adult male deaths but no more than 3-4% of overall deaths.
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spike in epidemics. Europe is geographically subdivided by rugged mountain ranges and large rivers, with

considerable variation in climatic conditions. China overall is more homogenous in geographical terms.

While rugged in many parts, major population centers were not separated by geographical barriers in the

same way as in Europe. Since linking semi-independent disease pools through migratory movements

pushes up death rates in a particularly effective way, it may also be that in every armed conflict, similar

troop movements produced less of a surge in Chinese death rates than in Europe.19

Compared to warfare, trade in early modern Europe was a less effective, but more frequent cause

of disease spreading. This is why quarantine measures became frequent throughout the continent. The

last outbreak of the plague in Europe occurred in Marseille in 1720. A plague ship from the Levant,

with numerous sufferers on board, was first quarantined, only to have the restriction lifted as a result

of commercial pressure. It is estimated that 50,000 out of 90,000 inhabitants died in the subsequent

outbreak (Mullett 1936). Since trade increases with per capita incomes, the positive, indirect effect of

the initial plague on wages created knock-on effects. These combined to raise mortality rates yet further.

In addition, there were interaction effects between the channels we have highlighted. The effectiveness

of quarantine controls, for example, often declined when wars disrupted administrative procedure (Slack

1981).

2.3 The Model

This section presents a simple two-sector model that captures the basic mechanisms determining pre-

industrial living standards. The economy is composed of N identical individuals who work, consume,

and procreate. NA individuals work in agriculture (A) and live in the countryside, while NM agents live in

cities producing manufacturing output (M ), both under perfect competition.20 For simplicity, we assume

that wages are the only source of income. Agents choose their workplace in order to maximize expected

utility, trading greater risks of death in the city for a higher wage. Agricultural output is produced using

labor and a fixed land area. This implies decreasing returns in food production. Manufacturing uses labor

only and is subject to constant returns to scale. Preferences over the two goods are non-homothetic and

reflect Engel’s law: The share of manufacturing expenditures (and thus the urbanization rate NM/N )

grows with income.

Population growth responds to per-capita income. Higher wages translate into more births and lower

mortality. Therefore, the economy is Malthusian – per capita income stagnates close to the subsistence

level, keeping most people at the edge of starvation ("positive" Malthusian check). With stagnating tech-

nology, death rates equal birth rates, and N is constant in equilibrium. Technological progress temporarily

relieves Malthusian constraints; population can grow. In the absence of ongoing productivity gains, how-

ever, the falling land-labor ratio drives wages back to their original equilibrium level. Per-capita income

is therefore self-equilibrating.

An epidemic like the plague has an economic effect akin to technological progress: it causes land-

labor ratios to rise dramatically. This leaves the remaining population with greater per-capita income,

19We are indebted to David Weil for this point. Weil (2004) shows the marked similarity of agricultural conditions in large parts

of modern-day China.
20During the early modern period, a substantial share of manufacturing took place outside cities – a process called "protoindustri-

alization" by some. We abstract from it since cities still grew, and our key mechanism remains intact, even if some of the additional

demand translated into growth for non-urban manufactured goods.
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which translates into more demand for manufactured goods. As a consequence, urbanization rates have

to rise. In the absence of productivity growth and shifts in the birth or death schedules, subsequent

population growth pulls the economy back to its earlier equilibrium – there is no escape from Malthusian

stagnation. However, after the plague, the ’Horsemen of Death’ start to ride high: Wars become more

frequent. City mortality is high. Increasing trade, linking the urban nuclei, spreads disease, as do wars.

As these become a permanent feature of the early modern European economy, the death schedule shifts

upwards. We argue that this mechanism captures an important element of the European experience in

the centuries between the Black Death and the Industrial Revolution. The new long-run equilibrium has

higher birth and death rates, but also increased per capita incomes and a higher share of the population

living in cities.

2.3.1 Consumption

Each individual supplies one unit of labor inelastically in every period. There is no investment – indi-

viduals i use all their income to consume homogenous agricultural goods (cA,i) and manufactured goods

(cM,i). At the beginning of each period, agents choose their workplace in order to maximize expected

utility. Agents’ optimization therefore involves two stages: The choice of their workplace and the optimal

spending of the corresponding income. We consider the latter first.

In the intra-temporal optimization, each individual takes workplace-specific wages wi, i = {A,M}
as given and maximizes instantaneous utility.21 The corresponding budget constraint is cA,i + pMcM,i ≤
wi, where pM is the price of the manufactured good. The agricultural good serves as the numeraire.

Before they begin to demand manufactured goods, individuals need to consume a minimum quantity

of food, c. In the following, we refer to this number as the subsistence level, meaning that individuals

satisfy their basic needs for calories at c. Below c, individuals suffer from hunger, but do not necessarily

die – mortality increases continuously as cA falls. Preferences take the Stone-Geary form and imply the

composite consumption index:

u(cA, cM ) =

{
(cA − c)αc1−α

M , if wi > c

β(cA − c), if wi ≤ c
(2.1)

Where β > 0 is a parameter specified below. Given wi, consumers maximize (2.1) subject to their budget

constraint. In a poor economy, where income is not enough to ensure subsistence consumption c, equation

(2.2) does not apply. In this case, the starving peasants are unwilling to trade food for manufactured goods

such that the relative price pM and rural wages wM are zero. Thus, there are no cities and all individuals

work in the countryside: NA = N , while cA = wA < c.

When agricultural productivity is large enough to provide above-subsistence consumption wA > c,

expenditure shares on agricultural and manufacturing products are:

cA,i

wi
= α + (1− α)

(
c

wi

)

pMcM,i

wi
= (1− α)− (1− α)

(
c

wi

)
(2.2)

21In the following, the subscripts A and M not only represent agricultural and manufacturing goods, but also the locations of

production, i.e., countryside and cities, respectively.
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Once consumption passes the subsistence level, peasants start to demand manufacturing products, which

leads to the formation of cities. If income grows further, the share of spending on manufactured goods

grows in line with Engel’s law, and cities grow in size. The relationship between income and urbanization

is governed by the parameter α. A larger α implies more food expenditures and thus less urbanization at

any given income level.

2.3.2 Production

Agricultural and manufactured goods are homogenous, and are produced under constant returns and per-

fect competition. In the countryside, peasants use labor NA and land L to produce food. The agricultural

production function is

YA = AANγ
AL1−γ (2.3)

where AA is a productivity parameter and γ is the labor income share in agriculture. Suppose that there

are no property rights over land. Thus, the return to land is zero and agricultural wages are equal to the

average product of labor:

wA = AA

(
L

NA

)1−γ

= AA

(
l

nA

)1−γ

(2.4)

where l = L/N is the land-labor ratio and nA = NA/N is the labor share in agriculture, or rural

population share. Since land supply is fixed, increases in population result in a falling land-labor ratio

and ceteris paribus in declining agricultural wages. Manufacturing goods are produced in cities using the

technology

YM = AMNM (2.5)

where AM is a productivity parameter. Manufacturing firms maximize profits and pay wages wM =

pMAM . The manufacturing labor share nM is identical to the urban population share.

2.3.3 Migration

The optimal workplace choice determines migration in our model. We suppose that migration occurs at

the beginning of every period t, such that migrating individuals arrive at their workplace before production

starts in t. In early modern Europe, death rates were substantially higher in cities as compared to rural

areas (dM > dA). Higher mortality rates in the cities were compensated by higher average wages. In

order to set up the corresponding optimization problem, we first derive the indirect utility of consumers

from (2.1) and (2.2):

ũ(wi, pM ) =
(

1
pM

)1−α

αα (1− α)1−α (wi − c) (2.6)

Note that this equation is valid only if (wi > c), which is the more interesting case on which we concen-

trate from now on. Individuals maximize expected utility in each period, where (1 − di) is the survival

probability when working at place i = {A,M}. We define the (hypothetical) utility associated with

death as the one corresponding to zero consumption: ũ(0, pM ) = −βc, as implied by (2.1).22 For the

22Any negative number associated with the utility level of death serves to obtain a positive city wage premium – the more

negative, the higher the premium.
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following steps it is convenient to define β ≡ (1/pM )1−α
αα (1− α)1−α. The optimization problem is

then:

max
i={A,M}

{(1− di) ũ(wi, pM ) + di ũ(0, pM )} (2.7)

This setup implies that the city and countryside expected utility levels are equal whenever no migration

is desired. In this case, (2.7) yields:

(wM − c) =
(1− dA)
(1− dM )

(wA − c) +
dM − dA

1− dM
c (2.8)

Since dM > dA, wages in the city are higher than in the countryside.23 If (2.8) holds with equality,

no migration occurs. When the LHS is larger than the RHS, the urban wage premium outweighs the

excess mortality in cities, attracting rural workers. The rising urban labor supply then causes the relative

wage to drop until equality is re-established. The opposite workplace decisions restore the equilibrium

when the RHS is larger than the LHS. These dynamics can immediately correct minor shocks to relative

productivity or population NA and NM . If shocks are large, like the plague, migration must be large to

re-establish equality in (2.8). In this case, cities grow less than would be predicted by the baseline model

as it takes time to build urban infrastructure – Rome was not built in a day. We discuss this case in detail

in section 2.3.5.

Figure 3.2 illustrates the basic income-demand-urbanization mechanism of our model. If the rural

wage (horizontal axis) is below subsistence, the starving population does not demand any manufacturing

goods and cities do not exist (zero urbanization, left axis). Correspondingly, there are no manufacturing

workers (zero urban wages, right axis). Cities emerge once peasants’ productivity is large enough to

provide above-subsistence consumption, such that agents also demand manufacturing goods. At the same

time, urban consumption becomes important, driven by city workers who produce manufacturing output.

As productivity grows further, urbanization and consumption (both urban and rural) grow in tandem.

Figure 2.2: Wages and urbanization
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23If rural income is too small to ensure consumption above subsistence (wA ≤ c ), equation (2.8) does not hold and there is no

migration, since all agent work in agriculture.
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2.3.4 Population Dynamics

Birth and death rates depend on real p.c. income. Since there is no investment, units of consumption

serve as a measure of real income: c•,i = cA,i + cM,i for i = {A,M}.24 Substituting from (2.2) into

this expression yields:

c•,i = αwi + (1− α)c +
(1− α)

pM
(wi − c) (2.9)

Individuals at location i procreate at the birth rate

bi = b0 · (c•,i)ϕb (2.10)

where ϕb > 0 is the elasticity of the birth rate with respect to real income. Note that c•,i = c if wi = c.

We choose c = 1, so that b0 represents the birth rate at subsistence income. Before the Black Death,

location-specific death rates fall with income and are given by

dA = min{1, d0 · (c•,A)ϕd}
dM = min{1, d0 · (c•,M )ϕd +4dM} (2.11)

where ϕd < 0 is the elasticity of the death rate with respect to real income and 4dM represents city

excess mortality; d0 is the countryside death rate at subsistence income.

Higher p.c. income and urbanization after the plague spur trade and wars. Military casualties mount.

Armies as well as merchants continuously spread pathogenic germs across cities and countryside. These

factors raise background mortality. In combination, this is what we call the ’Horsemen effect’, h. Be-

cause it is driven by growing income and urbanization, we use the urbanization rate nM as a proxy for its

strength. To capture the positive relationship between urbanization and Horsemen mortality, we calculate

h as:

h(nM ) =

{
0, if nM ≤ nh

M

min{δ nM , hmax}, if nM > nh
M

(2.12)

where δ > 0 is a slope parameter, hmax represents the maximum additional mortality due to the Horse-

men effect, and nh
M is the threshold urbanization rate where the effect sets in. A poor economy with little

urbanization has neither long-range mobility due to trade nor means for warfare; germ pools remain iso-

lated and mortality is only driven by individual rural income as given by (2.11).25 The role of the plague

in our model is to introduce germs and to push p.c. income to levels where nM > nh
M . Neither germs

nor higher income (and thus mobility) alone have an effect on long-run income levels. Only if higher

mobility spreads epidemics, background mortality increases and alleviates the population pressure.

The last step before analyzing equilibria is to derive population growth from economy-wide fertility

and mortality rates. We derive average fertility from (2.10), using the workforce shares nA and nM as

weights:

b = nAbA + nMbM (2.13)
24A simplified approach would have birth and death rate as functions of nominal income wi, not taking into account changes in

the relative price pM . Because the latter changes substantially with the land-labor ratio, we choose the real income approach.
25A more detailed justification for nh

M > 0 is that it indicates a minimum income level that cannot be expropriated, containing

food for elementary nutrition as well as basic cloth and tools produced in city manufacturing. Once this threshold is passed, taxation

yields the means for warfare and arouses the Horsemen.
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The same method yields average death rates from (2.11) and (2.12), depending on whether or not the

Horsemen are at work.

d =

{
nAdA + nMdM , if nM ≤ nh

M

nAdA + nMdM + h, if nM > nh
M

(2.14)

Note that increasing real income has an ambiguous effect on mortality: Larger c•,i translates into smaller

death rates in (2.11). On the other hand, manufacturing demand rises with income, driving more people

into cities where mortality is higher. Moreover, in the presence of the Horsemen effect, urbanization

(proxying for the spread of epidemics through trade and wars) also implies larger overall background

mortality. The aggregate impact of productivity on mortality depends on the model parameters (as shown

in section 2.4.1).

Population growth equals the difference between the average birth and death rate: γN,t = bt − dt.

The law of motion for aggregate population N is thus

Nt+1 = (1 + bt − dt)Nt (2.15)

Births and deaths occur at the end of a period, such that all individuals Nt enter the workforce in period

t.

2.3.5 Equilibria

Equilibrium in our model is a sequence of factor prices, goods prices, and quantities that satisfies the

intra-temporal and workplace optimization problems for consumers and firms. In this section, we ana-

lyze the economy without technological progress. The long-run equilibrium is characterized by stagnant

population, labor shares, wages, prices, and consumption. All depend on how the birth and death sched-

ule respond to income. Figure 3.3 visualizes this relationship. Real peasants’ income c•,A is shown on

the horizontal axis.26 Relatively low death rates lead to equilibrium A: a poor economy with below-

subsistence income (c•,A ≤ c) where all individuals work in agriculture. The long-run level of con-

sumption is independent of productivity parameters; it only depends on the intersection of b and dL. For

purposes of illustration, assume that there is a one-time major innovation in agriculture, augmenting AA

in equation (2.4). The rising wage shifts c•,A to the right of point A, such that population grows (b > dL).

Consequently, the land-labor ratio l declines. So do wages, which eventually drives the economy back to

equilibrium A. Land per worker is therefore endogenously determined in the long-run equilibrium.

In the absence of ongoing technological progress, there are two ways for achieving a permanent rise

in per-capita income.27 First, a permanent drop in birth rates, for example due to the emergence of the

European Marriage Pattern. And second, a permanent increase in mortality – the main focus of this paper.

Permanently higher death rates (dH ) imply lower population in equilibrium and therefore higher income,

26Provided that there is demand for manufacturing products, urban income is proportional to its rural counterpart, as shown in

Figure 3.2.
27Continuous technological progress constantly pushes consumption to the right of point A, with increasing population and

falling l always pulling it back. The equilibrium is thus located to the right of the intersection of b and d and is characterized by

consumption stagnating at a higher level. Consumption can grow continuously only if technological change outpaces the falling

land-labor ratio – a highly unrealistic scenario given the observed productivity growth of about 0.1% p.a. before the Industrial

Revolution.
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Figure 2.3: Population dynamics and equilibria
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as represented by point B in Figure 3.3.28 While total population is constant in point B, there must be

perpetual migration from the countryside to cities in order to compensate city excess mortality.

Points A and B in Figure 3.3 are long-run equilibria with endogenous population size. For given

technology AA, productivity is fixed in the long-run, given by the endogenously determined land-labor

ratio. During the transition to long-run equilibria, population dynamics change land per worker and thus

productivity. In the following, we analyze these short-run equilibria. We first concentrate on the economy

with below-subsistence consumption where individuals struggle for survival and produce only food in the

countryside. Next, we turn to the economy with consumption above c, accounting for constraints to

migration due to city congestion during the transition process.

The Economy with Below-Subsistence Consumption

In order to check whether overall productivity (determined by AA and the land-labor ratio) is sufficient to

ensure above-subsistence consumption, we construct the indicator ŵ, supposing that all individuals work

in agriculture. Equation (2.3) then gives the corresponding per-capita income:

ŵ ≡ YA(N)
N

= AA

(
L

N

)1−γ

(2.16)

If ŵ ≤ c, all individuals work in agriculture (NA = N ) and spend their complete income on food.

Since there is no demand for manufacturing goods, the manufacturing price is zero, implying zero urban

wages and population. Economy-average fertility and mortality are thus equal to the rural levels given by

equations (2.10) and (2.11).29 Finally, there is no migration. In order to derive the long-run equilibrium,

we calculate birth and death rates according to the equations in section 2.3.4. The intersection of the

28Note that the death schedules dL and dH become flatter when consumption passes the subsistence level. This is because richer

agents also demand manufacturing products such that part of the population lives in cities, where mortality is higher (4dM > 0).
29Note that the Horsemen effect is zero because nM = 0.
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two schedules (point A in Figure 3.3) determines equilibrium income, which we can use to derive the

corresponding population size N from (2.16).

Above-Subsistence Consumption and Unconstrained Migration

If ŵ > c, agricultural productivity is large enough to provide above-subsistence consumption. Following

(2.2), the well-nourished individuals spend part of their income for manufacturing goods. Thus, a share

nM of the population lives and works in cities. In each period, individuals choose their profession and

workplace based on their observation of income and mortality in cities and the countryside. Productivity

increases lead to more manufacturing demand and spur migration, which occurs until (2.8) holds with

equality. For small productivity changes, migration is minor and cities can absorb sufficiently many

migrants to establish this equality immediately. We refer to this case as equilibrium with unconstrained

migration. Goods market clearing together with equations (2.2), (2.3), and (2.5) implies

AANγ
AL1−γ = α [(wA − c)NA + (wM − c)NM ] + cN (2.17)

pMAMNM = (1− α) [(wA − c)NA + (wM − c)NM ] (2.18)

Solving for the expression in brackets in (2.18), plugging it into (2.17), and substituting wM = pMAM

yields

αwM (1− nA) + (1− α)c = (1− α)AAnγ
Al1−γ (E1)

This equation contains two unknowns: nA and wM . We find an expression for the latter by using the

equality in (2.8), as implied by unconstrained migration. Substituting (2.4) into (2.8) and rearranging

gives:

(wM − c) =
(1− dA)
(1− dM )

[
AA

(
l

nA

)1−γ

− c

]
+

dM − dA

1− dM
c (E2)

We now need dA and dM as functions of nA and wM . Plugging (2.9) into (2.11), with wA substituted

from (2.4) and pM = wM/AM , we obtain:

dA = d0

[
αAA

(
l

nA

)1−γ

+
1− α

wM
AM

(
AA

(
l

nA

)1−γ

− c

)
+ (1− α)c

]ϕd

+ h(1− nA) (E3)

dM = d0

[
αwM +

1− α

wM
AM (wM − c) + (1− α)c

]ϕd

+4dM + h(1− nA) (E4)

The last term in (E3) and (E4) represents the Horsemen effect as a function of the urbanization rate

nM = 1 − nA. For a given population size N we now have a system of 4 equations [(E1)-(E4)] and 4

unknowns (nA, wM , dA, and dM ) that we solve numerically. Given these variables, it is straightforward

to calculate the urbanization rate nM , rural wages wA from (2.4), and workplace-specific real income (or

consumption) c•,i from (2.9). Finally, workplace-specific birth rates are given by (2.10).

All calculations up to now have been for a given N . For small initial population, births outweigh

deaths and N grows until diminishing returns bring down p.c. income enough for b = d to hold. The

opposite is true for large initial N . To find the long-run equilibrium with constant population, we derive

b and d from (2.13) and (2.14). We then iterate the above system of equations, deriving Nt in each

period t from (2.15), until the birth and death schedules intersect (point B in Figure 3.3). The long-run
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equilibrium level of population depends on the productivity parameters AA and AM , and on the available

arable surface, L.

Under unconstrained migration, expected utility in each period is identical for peasants and manufac-

turing workers. Rural and urban population is given by NA = nAN and NM = nMN , respectively. But

is there migration in the long-run equilibrium? To answer this question, Figure 2.4 shows the workplace-

specific death rates as a function of real income.30 We calibrate city excess mortality including the effects

of war and trade as 4dM = 1.5%. Equilibrium death rates in cities are higher than in the country-

side.31 Birth rates, on the other hand, are similar in both workplaces.32 With stagnant total population

and no migration, NM would therefore decline continuously. This implication of our model is in line with

the finding in the historical overview section that early modern European cities would have disappeared

without a constant inflow of population.

Figure 2.4: Death rates by workplace and average death rate

0.6 0.8 1 1.2 1.4 1.6 1.8 2
2.5

3

3.5

4

4.5

5

Real income of peasants (c
· ,A

)

D
ea

th
 R

at
e 

(%
)

City inhabitants (d
M

)

Peasants (d
A
)

Economy Average (d)

Subsistence level

Congestion and Constrained Migration

Major changes in the urban-rural income differential provide substantial incentives for migration. How-

ever, the short-term capacity of cities to absorb migrants is limited because new dwellings and infras-

tructure must be provided. Building new dwellings and urban infrastructure was one of the costliest

undertakings in the early modern economy. Too many migrants caused congestion, making further move-

ment to cities unattractive. In the interest of simplicity, we capture congestions effects with an upper limit

30As in Figure 3.2, we use peasants’ consumption to represent real income. Urban income is a multiple of rural income, as

implied by (2.8). Each point on the horizontal axis therefore corresponds to an urban real income level c•,M > c•,A. Note that for

c•,A < c, urban death rates are not defined since all individuals work in the countryside.
31The higher real income of manufacturing workers drives down dM according to (2.11). However, this income effect is over-

compensated by the higher background mortality in cities4dM .
32With an urban wage premium (relative to subsistence) in the range of 30% and birth rate elasticity ϕb = 1.41, as in our baseline

calibration, bM and bA deviate by less than 0.05%.
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to the growth rate of cities, ν.33 When shocks are large, implying large wage differentials, the migration

constraint becomes binding. It then takes time until the population shares reach their long-run equilibrium

levels nLR
A and nLR

M .

Let N?
A,t and N?

M,t be the number of individuals living in the countryside and cities, respectively, at

the beginning of period t before migration occurs. This ’native’ population is determined by workplace-

specific fertility and mortality in the previous period:

N?
i,t = (1 + bi,t−1 − di,t−1)Ni,t−1 (2.19)

where Ni,t−1 is the number of agents that live at workplace i = {A, M} during period t − 1, after

migration has taken place. Let Mu
t be the level of migration necessary to (immediately) establish long-

run population levels NLR
i = nLR

i N in period t, i.e., the migration that would take place if it were

unconstrained:

Mu
t = N?

A,t −NLR
A = NLR

M −N?
M,t (2.20)

There are two ways to calculate Mu
t , since migration out of agriculture (first term in (2.20)) must equal

migration into cities (second term). Mu
t is positive if migration goes from the countryside to cities, i.e.,

if the number of native peasants is larger than the optimal long-run rural population, and negative if

migration takes the opposite direction. Next we derive the growth of city population that occurs when

migration is unconstrained, reaching the long-run equilibrium instantaneously.

νt ≡ Mu
t

N?
M,t

=
NLR

M −N?
M,t

N?
M,t

=
nLR

M − n?
M,t

n?
M,t

(2.21)

As this equation shows, the growth rate of city population is equal to the growth of the urbanization rate

– a fact that we will use to calibrate ν. The magnitude of Mu
t , and thus the likelihood that congestion

constrains migration, is the larger the more the long-run population distribution deviates from actual

values. If νt exceeds the upper bound for into-city migration, the constraint ν becomes binding. The

number of migrants under this constraint is given by M c
t = νN?

M,t, that is, urban population grows at

the rate ν. Together with (2.19), this gives the law of motion for workplace-specific population under

constrained migration.

NA,t = N?
A,t − νN?

M,t

NM,t = N?
M,t + νN?

M,t (2.22)

The agricultural workforce in period t is thus composed of rural offspring and surviving peasants from t−
1, less the ones migrating to cities (until congestion makes these places unattractive). The city population

consists of surviving manufacturing workers and urban offsprings, augmented by the migrants from the

countryside.

The equilibrium values of wages, prices, and income under constrained migration are derived from

the location-specific workforce given by (2.22). Rural wages are obtained directly from (2.4), while (E1)

can be re-arranged to recover urban wages:

wM =
1− α

α(1− nA)
[
AAnγ

Al1−γ − c
]

(2.23)

33Migration in the opposite direction plays no role in our model because any income increase (following the Plague or techno-

logical progress) makes cities more attractive than the countryside via the manufacturing demand channel.
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Manufacturing products are sold at pM = wM/AM . Workplace specific real income, fertility, and mor-

tality are then calculated from (2.9), (2.10), and (2.11), respectively.

2.4 Calibration and Simulation Results

In this section we explain the calibration of our model and simulate it with and without the Horsemen

effect. We choose parameters in order to match historically observed fertility, mortality, and urbanization

rates in early modern Europe. We then simulate the impact of the plague and derive the long-run levels

of p.c. income and urbanization in the centuries following the Black Death. Finally, we add to our model

the alleviating effect on birth rates that the European Marriage Pattern provided.

2.4.1 Calibration

In order to calibrate our model, we follow the procedure outlined in section 2.3.5: The intersection of

birth and death schedule determines per-capita income and equilibrium population size. Urbanization

rates in Europe before the Black Death were about 2.5%.34 For cities to exist in our model, we need

above-subsistence real income (and consumption) c•,i > c in the long-run pre-plague equilibrium. For

the intersection of b and d to lie to the right of c, we must have death rates higher than birth rates at the

subsistence level, i.e., d0 > b0 in equations (2.10) and (2.11). Kelly (2005) estimates the elasticity of

death rates with respect to income, using weather shocks as exogenous variation. We use his estimate for

England over the period 1541-1700, ϕb = −0.55, as a best-guess for Europe. Regarding the elasticity

of birth rates with respect to real income, we use his estimate of ϕb = 1.41 for Europe.35 Regarding

the level of birth and death rates, we use 3.5% in the pre-plague equilibrium, corresponding to the cu-

mulative birth rates reported by Anderson and Lee (2002). This, together with the elasticities and the

equilibrium urbanization rate of 2.5%, implies b0 = 3.2% and d0 = 3.5%. As discussed in the historical

overview section, we estimate that death rates in European cities were approximately 50% higher than in

the countryside. This implies a (conservative) value of 4dM = 1.5%.

Scale does not matter in our model. Solely the productivity parameters AA and AM , together with

the land-labor ratio l determine individual income. Thus, for any equilibrium p.c. income derived from

the intersection of b and d, we can recover the corresponding population N .36 We choose parameters

such that initial population is unity (N0 = 1). This involves AA = 0.460, AM = 0.535, and L = 8,

where land is fixed such that its hypothetical rental rate is 5%.37 Our calibration also implies the desired

urbanization rate nM,0 = 2.5% and a price of manufacturing goods that is double the price of agriculture

34Maddison (2003) reports 0% in 1000 and 6.1% in 1500; DeVries (1984) documents 5.6% in 1500. Our 2.5% for the 14th century

is at the upper end of what we expect, given that wages stagnated throughout the millenium before the plague. We deliberately make

this conservative choice, leaving less urbanization to be explained by our story.
35This number is bigger than the estimates in, say, Crafts and Mills 2007, or in Lee and Anderson 2002. Because of the important

endogeneity issues in deriving any slope coefficient, the IV-approach by Kelly is more likely to pin down approximate magnitudes

than identification through VARs or through Kalman filtering techniques.
36For example, rural population is implicitly given by (2.4), and is the larger (for a given wage wA) the more land is available.

We calculate the long-run equilibrium by solving the system (E1)-(E4) and iterating over population until b = d. This procedure

gives the long-run stable population as a function of fertility and mortality parameters, productivity, and land area.
37Recall that we assume no property rights to land. The size of L is therefore not important for our results – it could also be

normalized to one and included in AA. We leave L in the equations for the sake of arguments involving the land-labor ratio.
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products, i.e., pM = 2.38

For the baseline model, we calibrate the parameters γ to fit the average historical labor share in

agriculture, using data for England over the period 1700-1850, which implies γ = 0.6. This corresponds

to the land income share of 40% suggested by Crafts (1985), and is almost identical with the average

in Stokey’s (2001) two calibrations. We normalize the minimum food consumption c to unity. For low

income levels, all expenditure goes to agriculture. With higher productivity, manufacturing expenditure

share and urbanization grow in tandem. To derive this relationship, we pair income data from Maddison

(2007) with urbanization rates from DeVries (1984). In the model, the responsiveness of urbanization to

income is governed by the parameter α. The data for Europe show that the urbanization rate rose from

5 to 10 percent between 1500 and 1800, while p.c. income grew by 50%. The corresponding model

parameter that approximately reflects this relationship is α = 0.6. Figure 3.2 is derived using this value.

In the centuries before 1700, labor productivity grew at an average rate of roughly 0.05-0.15% per

year (Galor 2005). We use an exogenous growth rate of agricultural and manufacturing TFP, AA and AM ,

of τ = 0.1% in our simulations with technological progress. In order to quantify the upper bound for

city growth, reflecting congestion in our model, we use DeVries’ (1984) urbanization data for 1500-1800.

The largest observed growth rate of urbanization in Europe over this period is ν = 0.38% between 1550

and 1600.

After the Black Death, the Horsemen effect comes into play. Means for warfare and trade grow with

p.c. income, and the increased mobility leads to an ongoing dispersion of germs. According to equation

(2.12), the Horsemen are at work when the urbanization rate nM is larger than the threshold level nh
M .

We choose nh
M = 2.5%, corresponding to the pre-plague urbanization rate. Therefore, the Horsemen

effect begins to work its wonders immediately after the Black Death, though not yet with full force. The

effect is linearly increasing in the urbanization rate until reaching its maximum. In order to calibrate the

maximum impact of the Horsemen channel on mortality, we use data on war-related deaths and epidemics

from Levy (1983). His data show that, in a typical year, more than one European war was in progress –

there were 443 war years during the period 1500-1800, normally involving three or more powers. Since it

is the movement of armies, and not just military engagements that caused death, we count the territories of

combatant nations as affected if they were the locus of troop movements. The weighted average produces

a war-related effect of an additional 0.75% deaths per annum. To this we add a guestimate of 0.25%.

This is motivated by the spread of disease through additional trade, also facilitated and encouraged by

the wealth of cities – few of the goods on the plague ship in Marseille harbor in 1720 would have carried

goods for the consumption of peasants. Overall, our best guess for the maximum size of the Horsemen

effect is thus hmax = 1% . This value is reached in the first half of the 17th century. War frequency was

almost double what it had been a century before, and the devastation wrought by the Thirties Years War

was the most severe in any armed conflict until the 20th century (Levy 1982). Urbanization rates reached

8% at this time (De Vries, 1984). The implied slope parameter of the Horsemen function is therefore

δ = hmax/(0.08− nh
M ) = 1.82. Table 2.1 summarizes the calibration parameters.

38Other values of this parameter, resulting from different AM relative to AA, do not change our results.
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Table 2.1: Baseline Calibration

Symbol Interpretation Value

Parameters

α Food expenditure share (as income →∞) 0.6

γ Labor share in agriculture 0.6

c Subsistence food consumption 1

L Land 8

AA Agriculture technology parameter 0.460

AM Manufacturing technology parameter 0.535

τ Rate of technological progress 0.1%

b0 Birth rate at c = c 0.032

d0 Death rate at c = c 0.035

ϕb Elasticity of birth rates wrt. income 1.41

ϕd Elasticity of death rates wrt. income -0.55

4dM City excess mortality 0.015

hmax Maximum Horsemen effect 0.01

nh
M Threshold for Horsemen effect 0.025

δ Slope parameter for Horsemen effect 1.82

ν Upper bound on city growth due to congestion 0.0038

Resulting values in long-run equilibrium before Black Death

N0 Population 1.00

nA,0 Urbanization rate 2.5%

b0 = d0 Economy-average birth and death rate 3.5%

pM,0 Relative price of manufacturing goods 2.00

2.4.2 Plague and Equilibrium without Horsemen Effect

The left panel of figure 2.5 shows the pre-plague long-run equilibrium corresponding to our baseline

calibration. The fertility and mortality schedule intersect at 3.5%, while 2.5% of the population live in

cities. The economy is trapped in Malthusian stagnation in point E. One-time increases in productivity

lead to higher income and therefore population growth. As a consequence, the land-labor ratio falls and

drives per-capita income back to its long-run equilibrium value.

The effect of a one-time technological improvement on p.c. income is very similar to the impact of

the plague in our model: While the former raises TFP, the latter increases the land-labor ratio; both result

in higher wages, according to (2.4). The right panel of figure 4 shows the effect of the Black Death when

all model parameters are unchanged. Before the plague, population and urbanization rate stagnate in

the absence of technological progress. The Black Death kills one third of the population, similar to the

devastation documented in 14th century Europe. As an immediate consequence, wages, p.c. consumption,

and urbanization rates rise. In the aftermath of the plague, population grows because the economy is now

situated to the right of the long-run equilibrium in point E, such that fertility outweighs mortality. The

falling land-labor ratio then drives the economy back to E, where all variables are back at their pre-plague
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Figure 2.5: Long-run impact of the plague, ceteris paribus
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values. Things look different in the presence of the Horsemen effect.

2.4.3 Long-run Equilibrium with Horsemen Effect

Following the plague in Europe, higher p.c. income increases trade, but also means for warfare. The

enhanced mobility constantly spreads epidemics and therefore raises country-wide mortality. The size of

this Horsemen effect grows with urbanization, as given in (2.12). The left panel of figure 5 shows that the

equilibrium with the Horsemen effect (point H) involves higher birth and death rates (about 4%), more

p.c. consumption, and higher urbanization. Point H is a unique and stable equilibrium where all variables

are in a stalemate in the absence of technological progress. The economy converges to this equilibrium

in the aftermath of the Black Death (right panel of figure 5). Surviving individuals and their descendants

are therefore better off then their ancestors before the plague. Famously, it took until the 19th century for

wages to recover the level last seen at the post-plague peak (Clark 2005).

Figure 2.6: Impact of the plague with Horsemen effect
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2.4.4 Technological Progress and Model Fit

Technological progress in premodern times alone is not enough to escape from the Malthusian trap. While

the growing population completely eats up the fruits of one-time inventions, ongoing progress implies

higher, but still stagnating, long-run p.c. income. Technology constantly improves p.c. income in this

case, and population growth responds, offsetting any gains. This corresponds to a long-run equilibrium

in point T in figure 7, where the birth rate exceeds the death rate and technological progress is exactly

offset by the falling land-labor ratio.39 The right panel of figure 7 illustrates the orders of magnitude

involved. The rate of technological change before the Industrial Revolution was low, approximately 0.1%

(Galor 2005). For purposes of illustration, progress is assumed to set in after 50 periods of stagnating

technology. As the figure shows, this raises the urbanization rate by less than 2%. Note that this is an

extreme scenario where the economy jumps from complete stagnation to continuous inventions. The

corresponding increase of urbanization is thus an upper bound for the impact of technology on individual

income. Therefore, technological progress cannot be a candidate to explain the rise of Europe in the early

modern period.

Figure 2.7: Effect of ongoing technological progress
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Next, we investigate the fit of our model, including the Horsemen effect and the observed rate of tech-

nological progress. While the former alone can account for almost all the observed increase in European

urbanization (see figure 2.4.3), the latter helps to explain the growing population. Figure 2.8 shows the

corresponding simulation results together with the data. Our model performs well in reproducing both

population growth and urbanization.

2.5 Extensions

2.5.1 The European Marriage Pattern

Europe curtailed fertility in an important way. In a normal Malthusian setting, fertility should have eroded

all gains in living standards quickly. Lower birth rates for a given income have a similar effect as higher

39Equation (2.3) with constant p.c. income (and thus constant agricultural labor share) implies that the population grows at the

rate τ/(1− γ) in the long-run equilibrium.
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Figure 2.8: Europe: Simulation Results vs. Data

1300 1350 1400 1450 1500 1550 1600 1650 1700

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Year

In
de

x

Population (1300=1)

Simulation
Data

1350 1400 1450 1500 1550 1600 1650 1700
0

2

4

6

8

10

12

Year

P
er

ce
nt

Urbanization Rate

Simulation
Data

Data sources: Population from Kremer (1993). Urbanization rates from DeVries (1984).

background mortality: both alleviate population pressure on the land-labor ratio. Average realized fertility

rates in early modern Europe were approximately equal to those in China, despite markedly higher living

standards (Clark 2007). At Chinese levels of per capita income, European fertility would be much lower

because of fertility restriction. In figure 2.9, 17th century China would be close to point E, implying that

English fertility with the EMP would have been 0.75% below the corresponding value for China. We do

not know when the European marriage pattern emerged. Some authors have argued that the plague was

critical (Van Zanden and deMoor 2007). If so, then some of the increase in European incomes after 1350

has to be attributed to the plague’s impact on fertility.

Births in England were probably unusually responsive to economic conditions (Lee 1981, Wrigley

and Schofield 1981). England was also ahead of the European average in terms of its income and city

growth: p.c. income grew by 75% between 1500 and 1700 (50% in Europe), and urbanization rates more

than quadrupled from 3% to over 13% (and 20% in 1800) (Maddison 2007, DeVries 1984). We now turn

to investigating the contribution of the EMP to income and city growth in our model. We suppose that

birth rates are not responding to income before the Black Death, so that ϕbefore
b = 0. After the plague the

EMP emerges, shifting the birth schedule downwards by 1% (corresponding to 0.3× 3.5%) and making

it responsive to income such that ϕafter
b = 1.4, as in the baseline calibration.40

Figure 2.9 shows the EMP simulation results. In the absence of the Horsemen effect, the shift and

turn of the birth schedule move the economy from the pre-plague equilibrium E to the EMP equilibrium.

Part of the downward-shift is compensated by the positive response of birth rates to growing income after

the plague. The Horsemen effect creates an additional rise in urbanization (equilibrium H+EMP). Instead

of an urbanization rate of 2.5%, we predict a rate of 9% based on the rotated fertility schedule. The rise

from 9 to 15% is due to the Horsemen effect. Both effects appear to be equally important, and together

they match the observed increase in England’s urbanization rate. This underlines the importance of the

Horsemen effect for increasing living standards in early modern Europe – in continental Europe, where

the EMP was weaker, the Horsemen contribution was likely even more significant.

40The corresponding parameter values are bbefore
0 = 0.0345 and bafter

0 = 0.0245. With all other parameters unchanged, this

implies an equilibrium urbanization rate of 2.5% before the plague.
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Figure 2.9: England: Pre-and post-plague equilibria with EMP and Horsemen
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The fact that the outward shift of the death schedule did not lead to a much sharper decline in popu-

lation is also a result of the European Marriage Pattern. Had it not been for the sharp response of fertility

due to higher living standards, the reduction in population pressure after 1350 would have been even

stronger.

2.6 Concluding Remarks

Standard accounts of the transition from "Malthus to Solow" emphasize the near-stability of incomes

before 1800 (Hansen and Prescott 2002). While sensible compared to modern rates of growth, it is

incorrect by historical standards. The Dutch Republic and England in 1700 had per capita incomes that

were extraordinary compared to all ages that came before, and contemporaries saw them as such (DeVries

1976). This precocious rise in incomes long before industrialization may have been an important factor

contributing to the ultimate economic, military and political ascendancy of Western Europe from the 19th

century onwards.

In this paper, we argue that a simple two-sector extension of the standard Malthusian model can

shed new light on the puzzling rise of European per capita incomes. Many interpretations of the "rise

of Europe" emphasize high rates of innovation, compared to Asia (Mokyr 1990), or fertility restriction

(Wrigley 1988). We argue that, in a Malthusian setting, better technology cannot explain the "Great

Divergence", and we also show that fertility restriction alone is insufficient. Instead, we build a model

in which per capita living standards can rise markedly without technological change or fertility decline.

Many unified growth models generate the early transition from stagnation to sustained growth by means

of a delayed response of fertility to wages. This allows per capita incomes to rise slowly but steadily in

tandem with population. We argue that this cannot be realistic in most settings, because fertility responds

"too rapidly" to permit anything other than a short-lived increase in living standards. In a micro-founded

model, we show that only very large, negative shocks can be followed by a marked delay between rising

incomes and return to earlier population levels. We argue that the Black Death hitting Europe in the

14th century was precisely such a shock, lifting wages and per capita incomes for several generations.

Richer individuals began to demand more urban goods, and because early modern European cities were
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"graveyards" (Bairoch 1991), incomes could permanently exceed conventionally-measured subsistence

levels. This is particularly true because city growth acted as a catalyst for European belligerence and the

spread of disease through trade – a link we call the "Horsemen of Growth".

One implication of our results is that urbanization is not simply an indicator of higher levels of de-

velopment, as assumed in some recent work (Acemoglu, Johnson and Robinson 2005). City growth also

provided a mechanism that made higher per capita incomes sustainable in a Malthusian setting. Our pa-

per has emphasized the contrast between early modern Europe and the rest of the world. Future research

should examine if the model developed in this paper can also explain the growing differences between

Northwestern and Southern Europe. Did differences in political structure allow the self-sustaining rises

in incomes to persist for longer in the North? Did greater preferences for urban goods, or differences in

sanitary practices drive up mortality rates differently? While many histories of the "rise of the West" have

been written from a technological perspective, we argue that differences in mortality (and also, fertility)

were far more potent determinants of pre-industrial living standards.
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Chapter 3

Many Sectors Meet More Skills: Intersectoral Linkages and the Skill
Bias of Technology

3.1 Introduction

This paper shows that skill upgrading in one sector increases skill demand in many other sectors, because

of linkages operating through the use of intermediate products. This channel has been ignored by the

literature so far, despite the fact that more than half of a final product’s value is embedded in intermedi-

ates. I construct a measure of input-embedded skills, matching input-output tables with workforce data

for detailed U.S. manufacturing sectors. Input skill intensity is defined as the weighted average share of

white-collar workers employed in the production of a sector’s intermediate inputs.1 Figure 3.1 presents

a novel stylized fact: A strong positive correlation between input skill intensity and skills employed in

final production in U.S. manufacturing.2 I argue that this finding implies an intersectoral technology-skill

complementarity (ITSC): Skills used in intermediate production are complementary to skills required in

the further processing of intermediates or their integration into redesigned final products. Using an esti-

mation strategy derived from a labor-demand framework, I show that the ITSC is quantitatively important,

explaining more than one third of the increase in white-collar labor demand in U.S. manufacturing.
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Figure 3.1: Skilled labor share in final production vs. input skill intensity
Notes: Data are for 358 U.S. manufacturing sectors in 1992. Input skill intensity is calculated as the
weighted average share of white-collar workers employed in the production of a sector’s inputs. Only
inputs purchased outside a sector are taken into account. See Section 3.3 for a formal description and
data sources, and Section 3.4 for regression results and robustness.

1White-collar workers – including personnel engaged in supervision, installation and servicing, professional, technological, and

administrative – have been widely used to proxy for skilled labor. See in particular Berman, Bound, and Griliches (1994).
2The figure presents cross-sectional observations in 1992. The correlation is very similar for any other benchmark year (5-year

intervals) between 1967 and 1992.
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Empirical evidence suggests that this complementarity works through product innovation. Building

on the seminal work by Nelson and Phelps (1966), much econometric and case-study evidence indi-

cates that highly skilled workers are not merely more productive, but are also good innovators, adapt

better to technological change, and speed the process of technological diffusion [Bartel and Lichtenberg

1987; Goldin and Katz 1998; Doms, Dunne and Troske 1997]. Because of this innovation-skill comple-

mentarity, an upstream supplier employing highly educated workers turns out innovative intermediates.

Upstream product improvement induces innovation at the downstream level, which in turn increases skill

demand.3 The argument does not depend on the direction of causality; the complementarity also works

from producers to suppliers. An example is a cutting-edge downstream firm demanding innovative inter-

mediate inputs, so that its upstream supplier needs highly skilled workers.

Because of the ITSC, inputs used in the production process are not only ’intermediate’ in the stan-

dard semi-manufactured sense, but also ’intermediaries’ that transmit skill requirements across industries.

Therefore, product innovation affects labor demand not only in the corresponding firm or industry, as pre-

vious studies have argued, but also in other firms or sectors, via input-output linkages. These linkages

deliver a multiplier that reinforces skill demand across firm and sector boundaries. For example, the in-

vention and improvement of the transistor affected skill demand within and outside its sector of origin,

the electronic components industry. Within this industry, the transistor enabled the production of more

refined electronic parts, engineered by highly skilled workers. These innovative electronic components

eventually became fundamental intermediate inputs for a large variety of other sectors, including com-

puters, communication equipment, and controlling devices, where their integration went hand in hand

with product innovation and skill upgrading. The improvement of these devices, in turn, enabled further

innovation of electronic components. Innovation in the electronic components industry therefore drives

skill demand in many other sectors. Eventually, it feeds back into the originating sector itself, creating a

virtuous circle, or in effect a multiplier of skill upgrading.

This amplification mechanism closes an important gap in the empirical wage-inequality literature.

While many variables have been shown to contribute to rising skill demand in a statistically significant

way, accounting for the full scope has proved difficult. By adding the intermediate dimension, this paper

shows that skill upgrading in one sector leads to rising skill demand in linked sectors, amplifying initial

increases in skill demand along the production chain. It also suggests that a positive supply shock for

skilled labor could lead to a rise in skill demand in the economy at large.

The empirical analysis in this paper is based on U.S. input-output data, paired with workforce char-

acteristics from the NBER Manufacturing Industries Database at the detailed 4-digit level over the period

1967 to 1992. To quantify input skill intensity, I construct a variable that measures, for each sector, the

proportion of white collar workers involved in the production of its intermediate inputs. The correlation

between input skill intensity and skill share in final production is stable over time and robust to the inclu-

sion of a large number of additional controls.4 These results are confirmed when going beyond a mere

3As Scherer (1982) for the United States and Pavitt (1984) for Great Britain show, product innovation in upstream sectors serves

to improve productivity and quality of output in the buying industries.
4These controls include sectoral fixed effects, time dummies, as well as various measures proposed in the wage inequality

literature: capital intensity, shares of computer and high-tech capital, R&D intensity, and outsourcing. I also exclude inputs from

similar industries in the calculation of input skill intensity in order to address the concern that common trends drive the observed

correlation.
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correlation analysis and using instruments to account for the endogeneity of input skill intensity and con-

trol variables. The estimated ITSC implies a multiplier of approximately 1.5 - 2. Consequently, an initial

innovation (or shock) that causes immediate average skill upgrading of one percent translates into a total

skill demand increase of up to two percent (for given relative wages), as innovations and skill demand

spread across sectors, reinforcing each other.

Differentiated goods can be refined more readily than homogenous ones. Crude petroleum does not

change, whether it is pumped out of the ground by laborers or university graduates, while the presence

of engineers contributes to continuous improvement of electronic components. Therefore, differentiated

inputs are more susceptive to ’skill embedding.’ Innovations in the production of homogenous inputs

improve processes rather than products, and thus have little effect on skill demand at the subsequent

downstream level. I provide evidence for this assertion, combining data on sectoral product and process

innovation from Scherer (1982) with Rauch’s (1999) classification of product differentiation. The con-

structed cross-section shows that product innovation is more pronounced in sectors that produce differen-

tiated goods. Thus, downstream users of differentiated intermediates purchase relatively more embedded

product innovation. Next, I use Rauch’s (1999) classification to construct a measure of input differentia-

tion. I demonstrate that the ITSC is increasing in the degree of input differentiation, and is insignificant

for sectors that use mainly homogenous inputs. In an additional analysis, I show that skill-intensive

intermediates coincide with higher productivity only in those sectors that employ skilled workers able

to handle them. In the absence of final production skills, skill-intensive intermediates could even harm

output per worker. Thus, input-embedded and final production skills complement each other in raising

productivity.

The rest of the paper is organized as follows. Section 3.2 reviews the related literature and presents

a framework that incorporates complementarities between product innovation, skills embedded in inter-

mediate inputs, and skilled labor in final production. Section 3.3 describes the data, explaining in detail

the construction of my input skill intensity measure. Section 3.4 reports empirical results, documenting

the intersectoral technology-skill complementarity, and confirms its robustness. In addition, I derive a

regression from a labor-demand framework to estimate the ITSC’s contribution to skill upgrading. I ad-

dresses endogeneity issues by using a set of IV regressions and check instrument validity, applying weak

instrument tests and overidentifying restrictions. Section 3.5 integrates the novel stylized fact into the the-

oretical skill-biased technical change (SBTC) framework. I build a simple model that adds intermediate

inputs to the standard SBTC setup. Therein, the relative productivity of skilled workers depends on the

skills embedded in intermediates. A calibration exercise implies that the correlation of skill requirements

along the production chain accounts for up to one half of SBTC in U.S. manufacturing over the sample

period, underscoring the potential of my framework to reconcile key facts. Section 3.6 concludes.

3.2 Motivation and Framework

As the supply of skilled workers has risen, so has the skill premium. A large body of studies following

Katz and Murphy (1992) documents substantial increases in wage inequality in the United States. Skill

upgrading, i.e., a rise in skilled labor’s share in employment and payroll, is also observed in other OECD
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countries as well as in developing countries.5 Many explanations have been offered for the rising wage

inequality, but two stand out: Trade liberalization and its effects on international patterns of specializa-

tion [e.g., Leamer 1996; Wood 1998; Feenstra and Hanson 1999], and skill-biased technical change –

technological progress that shifts demand toward more highly skilled workers relative to the less skilled.

Numerous studies quantify SBTC as a complementarity between capital (or technology) and skill, where

computer-based information technologies (IT) play a central, although disputed role [DiNardo and Pis-

chke 1997, Card and DiNardo 2002]. So far, the SBTC literature has treated technology-skill comple-

mentarities as a phenomenon within specific industries6, within firms7, and at the worker level8, ignoring

linkages across sectors. Some contributions add the role of complementarities among information tech-

nology, production organization, and product innovation [Milgrom and Roberts 1990] and link these to

the observed increase in skill demand [Bresnahan et al. 2002].

Existing work can explain some of the rise in skill demand, but falls far short of accounting for all

of it. The first prominent channel, international trade, has a between- and a within-industry component.

The between-component, relocating production of low-skill-intensive industries to low-skill abundant

countries, contributes little to the observed skill upgrading [Berman et al. 1994, Autor et al. 1998]. To

explain the importance of observed within-industry skill upgrading, Feenstra and Hanson (1999) suggest

outsourcing of low-skill intensive activities within firms or sectors. Their measure explains up to 15%

of relative wage increases in U.S. manufacturing. The second group of explanations has used numerous

variables to quantify the skill bias of technical change. Computers and other high-tech capital have been

shown to contribute about 1/3 to the increase in white-collar labor demand in manufacturing [Feenstra and

Hanson 1999, Autor et al. 1998].9 The role of a broad capital-skill complementarity [Krusell, Ohanian,

Ríus-Rull, and Violante 2000] has proved controversial. Finally, while studies document significantly

positive coefficients on R&D intensity [Machin and van Reenen 1998, Autor et al. 1998], the variable

itself changes relatively little over time. I show below that R&D intensity can account for about 5-10%

of skill upgrading in manufacturing. All individual contributions together explain only about half of the

overall magnitude.

Studies of SBTC have made the key (and limiting) assumption that complementarities are found

at the individual worker, firm, or industry level. To this, I add complementarities across sectors, i.e.,

complementarities between input-embedded skills and skills employed in the subsequent processing of

5See Machin and van Reenen (1998), and Berman, Bound and Machin (1998) for evidence on the former; Pavcnik (2003), and

Zhu (2005) on the latter group of countries.
6Berman et al. (1994) find that the rate of skill upgrading within U.S. manufacturing is strongly correlated with IT investment

and R&D, and accounts for most of the demand shift towards skilled workers over the 1980s. This effect has been greater in more

IT-intensive industries [Autor, Katz and Krueger 1998]. Autor, Levy and Murnane (2003) argue that computer capital substitutes

for ’routine tasks’ while it complements more complex ’nonroutine’ tasks performed by skilled workers.
7Levy and Murnane (1996), Doms et al. (1997), and Bresnahan, Brynjolfsson and Hitt (2002) use broad measures of technolog-

ical progress and provide evidence on firm and plant level skill-favoring demand shifts.
8Krueger (1993) and Autor et al. (1998) document a strong positive correlation between wages and computer use by workers.

Epifani and Gancia (2006) point out scale increases as an additional channel for skill bias. See Bound and Johnson (1992) and

Autor, Katz and Kearney (2008) for an assessment of alternative explanations of the observed relative wage changes. Katz and

Autor (1999) and Sanders and Ter Weel (2000) summarize the literature at the three levels of aggregation.
9These estimates are to be interpreted with caution, as they take correlation coefficients as causal effects. Autor et al. (2003)

investigate computer-induced task shifts in all sectors of the U.S. economy. Their approach can explain up to sixty percent of the

relative demand shift favoring college labor, but half of this impact is due to task changes within nominally identical occupations.

The remaining thirty percent between occupations are similar to Feenstra and Hanson’s finding.
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intermediates and their integration into final products. Ignoring these intersectoral linkages imposes an

important limitation to the investigation of skill upgrading. This paper suggests that technology-skill

complementarities across sectors can explain more skill upgrading in U.S. manufacturing than high-tech

capital, R&D intensity, or outsourcing.

A tale of two sectors

To illustrate my finding, I contrast the divergent experiences of two sectors. Both began with a white-

collar worker share similar to the manufacturing average (24% in 1967), but took very different paths

thereafter: One revolutionizing its products, while the other turned out an unchanging artifact. The first

sector, Calculating and Accounting Equipment (SIC 3578), experienced major skill upgrading, with the

share of white-collar workers increasing from 23% in 1967 to 58% in 1992. In contrast, this share

stagnated at 20% in the second sector, Truck Trailers (SIC 3715), lagging far behind the manufacturing

average that grew to 31% in 1992.10 Table 3.1 shows for both sectors the six most important intermediate

inputs and the white-collar labor share employed in their production.

Over the period 1967-1992, the Calculating and Accounting Equipment sector underwent major in-

novations, above all the switch from mechanical (wiring, metal, machines) to high-tech components

(computing, electronic, and semiconductors). This transition is reflected by the changing input shares aj

in Table 3.1. The producers of high-tech components, in turn, experienced skill upgrading, as reflected by

changes in hj . For example, semiconductors were produced with 32% of white-collar workers in 1967

as compared to 51% in 1992. Less skill-intensive (and less innovative) inputs like wiring devices, on the

other hand, were important in 1967 but nonrelevant in 1992. Therefore, skill upgrading in the Calculating

and Accounting Equipment industry went hand in hand with innovation and skill upgrading in the produc-

tion of its intermediate inputs. This example provides a strong case for product innovation driving skill

demand in many sectors, as opposed to the commonly studied within-sector effects of process innovation.

As Pavitt (1984, p.350) puts it, referring to the same sector:

"Innovative activities are in fact heavily concentrated on product innovation: no amount of

process innovation in, for example, the production of mechanical calculators would have

made them competitive with the product innovations resulting from the incorporation of the

electronic chip."

Things look different in the Truck Trailer industry, where input mix and skill intensity of input produc-

tion changed little. As the lower part of Table 3.1 shows, input shares are very stable over time – a truck

trailer in the 1990’s is not much different from one three decades earlier. Moreover, sectors supplying

intermediate inputs for truck trailer production experienced minor or no skill upgrading, indicating little

product innovation. Product monotony goes hand in hand with stagnation of the workforce composition:

The white-collar labor share remained unchanged throughout 25 years.

Intermediate input linkages

While intermediate linkages play no role in the SBTC literature, studies concerned with linkages con-

centrate on labor productivity rather than skill bias and wage inequality. Although intermediate inputs
10The data are from the NBER Manufacturing Industry Database. See section 3.3 for details.
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Table 3.1: Two sectors: Intermediate input shares and skills used in intermediate production

Calculating and Accounting Equipment (SIC 3578)

1967 1992

Input (j) aj hj aj hj

Electronic computing equipment .018 .419 .364 .663

Miscellaneous electronic components .055 .267 .232 .358

Semiconductors & related devices .021 .322 .095 .507

Wiring devices .116 .249 .000 .285

Office machines .110 .284 .000 .500

Metal stampings .038 .172 .068 .237

Truck Trailers (SIC 3715)

1967 1992

Input (j) aj hj aj hj

Motor vehicle parts & accessories .237 .180 .201 .217

Aluminum rolling & drawing .122 .208 .144 .241

Blast furnaces & steel mills .150 .186 .115 .230

Tires & inner tubes .065 .230 .121 .183

Fabricated rubber products .039 .255 .053 .265

Sawmills & planing mills, general .030 .088 .037 .146

Notes: Data from U.S. Input-Output tables and the NBER Manufacturing Industry
Database. See section 3.3 for details. aj : The respective sector’s expenditure
share for input j (relative to total expenditures for manufacturing inputs purchased
outside the same sector); ordered by average importance in 1967/92. hj : Share
of white-collar workers in production of input j

account for more than half of all costs, the literature has not taken notice of intersectoral linkages as an

explanation for skill demand. Input-output tables for the United States show that industries’ expenditure

share for intermediate inputs is stable over time, largest in manufacturing (57%), and smallest in services

(43%). The remaining expenditures include employee compensation (about 30%) and payments to capi-

tal (about 16%).11 Studies arguing that a capital-skill complementarity is responsible for skill upgrading

therefore focus on a relatively small component of the final product’s value.12 The approach applied in

this paper is strictly separated from the capital-skill complementarity literature. While the latter analyzes

SBTC related to capital (or investment) goods, my analysis is based on intermediate input-output linkages

that by construction do not include investment.

The importance of input-output linkages for economic development has been investigated in an ample

11These two, together with the minor component ’Indirect business tax and nontax liability’ make up value added (on average

47% of all expenditures). All percentage values are derived from the 1992 U.S. input-output table from the Bureau of Economic

Analysis. Numbers are very similar in other years.
12The hypothesis of capital-skill complementarity has been formalized by Griliches (1969). Krusell et al. (2000) argue that the

stock of capital equipment, measured in efficiency units, is complementary to skilled labor, accounting for much of the variations

in the skill premium over the last 30 years. This result has been challenged because it disappears upon the inclusion of a time trend,

which is the case in my analysis, as well.
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literature pioneered by Leontief (1936) and Hirschman (1958). Ciccone (2002) shows that small increas-

ing returns at the firm level can translate into large effects on aggregate income when industrialization

goes hand in hand with the adoption of intermediate-input intensive technologies. In a recent contribu-

tion, Jones (2007) analyzes this point more deeply, underlining the role of linkages and complementarities

to explain large cross-country income differences. In his paper, input-output linkages give rise to a mul-

tiplier effect in production that augments productivity differentials; the latter are in turn explained by

complementarities along the production chain. Multipliers have also been used to explain the growth in

the trade share of output, or the cyclical behavior of aggregate productivity.13 However, this paper is the

first to investigate the role of intersectoral linkages for skill upgrading.

Innovation linkages across sectors

Linkages across industries alone need not imply connected skill requirements.14 What makes the pro-

posed point plausible is the (above discussed) innovation-skill complementarity within sectors, combined

with strong empirical evidence showing that innovation is transmitted across sectors through input-output

linkages.

Research from the 1980’s provides substantial evidence for technology linkages across sectors. Scherer

(1982) using U.S. patent data, and Pavitt (1984) using British innovation data, implement a methodology

first proposed by Schmookler (1966). They construct what can be considered the technological equivalent

of an input-output table, identifying sectoral R&D expenditures, as well as the amount of each sector’s

R&D that is passed to other sectors in the form of product-embedded innovation. In this context, prod-

uct innovations are by definition used outside their sector of origin, and process innovations are used

inside their sector. For example, in the United States 86% of all R&D expenditures in the Lumber and

Wood sector improved production processes, and only 14% of innovations left this sector in the form

of improved products. The opposite holds for Industrial Electrical Equipment, where 85% of R&D was

devoted to product innovation, benefitting sectors that use electrical equipment. Both Scherer and Pavitt

confirm the overall prevalence of product innovations, which account for 73.8 percent of total R&D out-

lays in the USA, and 75.3 percent in Great Britain. Therefore, the majority of innovations influence

product characteristics and design outside their sector of origin.15 How does this pattern of production

and use of innovations compare with recent contributions to the SBTC literature that analyze innovation-

and capital-skill complementarities solely within sectors? These studies assume that technology is cre-

ated by R&D within a sector, or that it is capital-embodied, entering the sector through investment. For

non-manufacturing sectors, where technical change comes mainly through the purchase of equipment,

these assumptions are realistic. Within manufacturing, however, much of technical change is originating

outside of a given sector and enters the sector through intermediate inputs. As Scherer (1982, p.227)

emphasizes:

"If [a new product] is a producer good or intermediate sold externally, it serves to improve

13Yi (2003) shows that small decreases in tariff barriers multiply up to large trade increases when intermediates are traded several

times during the production process. Basu (1995) argues that intermediate goods act as a multiplier for price stickiness, augmenting

little firm-level rigidity to a large economy-wide price inflexibility.
14As pointed out by Jones (2007), one can have linkages without complementarity of inputs.
15Scherer (1982) also provides evidence that most productivity benefits are realized by R&D using, rather than product R&D-

originating industries.
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output/input relationships or the quality of output in the buying industries. With a new tur-

bojet engine product, for example, the R&D is performed in the aircraft engine industry,

but the productivity effect often shows up in lower energy consumption or faster, quieter,

and more reliable operation of equipment used by the quite distinct airlines industry. [...]

to assume that the productivity-enhancing effect occurs solely within the R&D-performing

industry [...] is more wrong than right, since three-fourths of all industrial R&D is devoted

to new or improved products, as distinguished from processes."

This discussion underlines the existence of innovation spillovers from upstream suppliers to down-

stream final producers, via intermediate linkages. Does this channel exist in the opposite direction, too?

That is, do innovative final producers demand cutting-edge intermediates? At the national level, this

specific causal relationship is empirically difficult to separate from agglomeration economies, due to the

proximity of production activities.16 However, the literature on international spillovers and transfer of

knowledge provides evidence that innovative downstream producers foster technical progress of their up-

stream suppliers. For example, Blalock and Gertler (2002) document vertical spillovers in the case of

foreign investment in Indonesia: Subsidiaries of multinational enterprises provide technological knowl-

edge to their local intermediate suppliers in order to reduce prices and increase competition in upstream

markets.17

Adding the role of technology-skill complementarity

We currently know that innovation goes hand in hand with skilled labor. Moreover, innovative activity

improves a sector’s products. Some are used as intermediates in other sectors, generating spillovers along

the production chain. So far, these two facts have been treated separately in the literature. Combining

them yields an intersectoral technology-skill complementarity. The interactions of innovations and skills

run in both directions, and across sectors, reinforcing one another. Individually and collectively, innova-

tions in sectors related through input-output (I-O) linkages increase the relative demand for skilled labor

(H/L) as summarized below:

Upstream Downstream

Product Innovationj ⇔ Product Innovationi

l I-O linkages l
(H/L)j (H/L)i

Closest to my contribution are the complementarity frameworks proposed by Milgrom and Roberts (1990)

and Bresnahan et al. (2002), where the adoption of IT, work organization, product innovation, and skill

upgrading reinforce each other within, but not across firms.

16Besides technological spillovers and intermediate input linkages, Marshall’s (1927) three major sources of agglomeration also

include labor pools. Robbins (2006) identifies knowledge spillovers that spread across U.S. states and vary in magnitude depending

on distance and technologies.
17For a theoretical framework see Rodríguez-Clare (1996). Keller (2004) and Koo (2005) summarize the literature on interna-

tional and local technology spillovers.
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3.3 Data

Data on worker characteristics, wages, value of shipment, and real capital (equipment and structures) at

the 4-digit SIC level are from the NBER-CES Manufacturing Industry Database. These data are col-

lected from various years of the Annual Survey of Manufacturing (ASM), and have been widely used to

investigate the determinants of the rise in U.S. wage inequality.18 This database classifies employment

in two broad categories: production and non-production workers. The former are ’workers engaged in

fabricating, processing, assembling, inspecting, and other manufacturing’, while the latter are ’person-

nel, including those engaged in supervision, installation and servicing of own product, sales, delivery,

professional, technological, administrative, etc.’ According to this classification, non-production work-

ers are involved in innovative activities, the focus of this paper. As noted by Berman et al. (1994), the

production/non-production classification closely mirrors the distinction between blue- and white-collar

occupations from the Current Population Survey, which in turn closely reflects educational levels as high

school vs. college. In the following, I refer to non-production (white-collar) workers as high-skilled labor

H and to production (blue-collar) workers as low-skilled labor L.

The Bureau of Economic Analysis’ (BEA) Input-Output Use Tables specify expenditures of each in-

dustry i for intermediate inputs purchased from industry j. The BEA provides U.S. input-output (I-O)

data at the 4-digit SIC level in 5 year periods between 1967 and 1992. For some sectors, the level of

aggregation or coverage changes over time. I account for this by aggregating sectors, and match the

resulting I-O panel to the ASM’s 1987 SIC classification.19 This yields a panel of 358 manufacturing in-

dustries over the period 1967-1992. For each industry, the panel contains production and non-production

employment and wages, value of shipment with the corresponding deflator (1987=1), real capital equip-

ment and structures (all from the ASM), and the purchases of industry i from sector j (from the BEA

I-O data). All figures provided in the BEA’s I-O Use Tables are in nominal dollars. I use the shipment

deflators provided by the ASM to calculate, for every manufacturing industry i, its real expenditures for

inputs from each manufacturing industry j in year t, Xt
ij .20

Constructing the measure of input skill intensity

To construct a measure of skills embedded in intermediate inputs, I first derive intermediate input shares

from the real I-O expenditure data Xt
ij . Let Xt

i =
∑

j 6=i Xt
ij represent total expenditures for manufactur-

ing inputs purchased by industry i outside the same industry in period t. The time-varying intermediate

input shares are then given by at
ij = Xt

ij/Xt
i . These exhibit substantial fluctuations over time, mostly

due to one-time outliers in the six benchmark years. For example, in 1967 ’Paperboard containers and

boxes’ accounted for 3.4% of the manufacturing inputs in the ’Chocolate and cacao products’ sector. This

number more than quadrupled 5 years later (13.4%), stabilizing at 6.5% thereafter until 1992. Another

example is ’Communication equipment’, used in ’Guided missiles and space vehicles’ production. The

corresponding aij grows from 4% in 1967 to 47% in 1977, then falling back to 5% in 1992. There is no

18Examples include Berman et al. (1994), Autor et al. (1998), and Feenstra and Hanson (1999). See Bartelsman and Grey (1996)

for a documentation of these data.
19For example, paper mills (SIC 2621) and paperboard mills (SIC 2631) are available separately in the I-O data until 1982, but

aggregated from 1987 on. I treat these data as one sector, ’paper and paperboard mills’ over the full sample period. Detailed sector

correspondences are available upon request.
20Bartelsman and Grey (1996) use the same method to derive real material (or input) costs.
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reason to believe that these numbers reflect physical input shares. The paper wrappings around chocolate

did not become thicker in 1972. Measurement error as well as fluctuations in relative input prices, im-

perfectly corrected by the deflators, appear to be reasonable explanations.21 Therefore, I use average real

input shares āij =
∑92

t=67 at
ij between 1967 and 1992 as a baseline. This approach can be interpreted

to reflect an underlying Cobb-Douglas technology that keeps expenditure shares constant over time (or a

Leontief that has the same effect under stable relative prices).22 Input skill intensity is then defined as

σt
i =

∑

j 6=i

āijh
t
j (3.1)

where ht
j ≡ Ht

j/(Ht
j +Lt

j) denotes the share of white-collar workers employed in the production of input

j.23 I exclude inputs purchased within the same sector (j = i) for two reasons. First, this avoids that

skilled workers employed in sector i itself enter its measure of input-embedded skills σi, which would

bias my results. Second, I am concentrating on product innovation entering a sector via intermediates

purchased from outside, rather than process innovation generated within a sector.

A potential concern arises because inputs Xij (and thus input shares aij) contain imports from abroad,

while the corresponding skill shares hj are measured in U.S. sectors.24 However, the resulting measure-

ment error of σi is likely to be minor. The share of imports in non-energy intermediates during my sample

period is relatively small, growing from 4% in 1967 to 13% in 1992 (see Appendix A1). Moreover, most

U.S. imports of intermediates in this period were sourced from other OECD countries with similar skill

intensities. Finally, having a noisy measure of input skill intensity creates attenuation bias against finding

skill complementarities across sectors.

By construction σi ∈ [0, 1] is the weighted average share of non-production workers involved in the

production of sector i’s intermediate manufacturing inputs. An alternative measure of input skill intensity

is obtained by excluding those inputs that are purchased from the same two-digit SIC industry as the good

being produced. I implement this idea by restricting the four-digit industry subscripts i and j in (3.1) to

be outside the same two-digit SIC industry. This measure addresses the concern that skill upgrading

may happen simultaneously in similar industries, which would imply a correlation of input and final

production skill intensities when similar sectors buy each other’s inputs. The resulting measure is labeled

σ2d
i .

Table 3.2 provides a list of the twenty industries with the smallest and the largest increase in input skill

21Out of the about 128,000 i × j input shares, 7,000 are nonzero throughout the sample period. Their average coefficient of

variation over the six sample benchmark years is 0.67. Less than 1/3 have a time trend that is significant at the 10% level.
22This would be a strong assumption if input shares shifted systematically towards more (or less) skill intensive industries,

which is not the case. In section 3.4.2 I use the time-varying aij to decompose input skill intensity into input-mix and skill-mix

components. This analysis shows that practically all the increase in input skill intensity between 1967 and 1992 is due to skill

upgrading in input production at constant input shares (skill mix), rather than changing input shares (input mix). Section 3.4.2 also

provides an extended empirical analysis with time-varying input shares, showing that the ITSC is robust to this specification.
23Alternatively, σw

i can be calculated, using wage-bill instead of employment shares: hw
j ≡ wH,jHj/(wH,jHj + wL,jLj),

where wH,j and wL,j denote white- and blue-collar wages, respectively. Regression results change only very little when using

σw
i .

24Unfortunately, the BEA provides import matrices only from 1997 on. But even these numbers are approximations and do not

include the source country. Actual data on the domestic/imported content of an industry’s intermediate inputs are, for the most part,

not available. Import matrix estimates are typically based on the assumption that the share of imports in total domestic consumption

of a commodity applies to each industry that uses the commodity (proportionality assumption).
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intensity σ2d
i for the period 1967-92.25 The reported ranking seems sensible. The industries with smallest

changes (or declines) in input skill intensity are mainly textile and food industries. These tend to use

primary inputs, which in turn changed little or dropped in terms of white-collar employment shares. Most

industries that experienced the largest increase in inputs skill intensity also appear sensible. These include

various electronic, computing, and communication equipment, as well as aircraft and space industries, all

of which intensively use high-tech inputs that experienced innovation and skill-upgrading throughout the

last decades.26

Table 3.2: The twenty industries with smallest and largest change in input skill intensity

Smallest change in σ2d
i 1967-92 Largest change in σ2d

i 1967-92

4σ2d
i Industry description 4σ2d

i Industry description

-.045 Leather tanning & finishing .074 Carbon black
-.023 Tire cord & fabrics .074 Ceramic wall & floor tile
-.022 Yarn mills & finishing of textiles .075 Watches, clocks, & parts
-.011 Women’s hosiery, except socks .075 Photographic equipment & supplies
.001 Carpets & rugs .076 Paperboard containers & boxes
.006 Cordage & twine .076 Primary aluminum
.009 Thread mills .076 Primary nonferrous metals
.010 Knit fabric mills .077 Ordnance & accessories
.020 Hosiery .079 Steel pipe & tubes
.021 Manufactured ice .079 Search & navigation equipment
.021 Footwear cut stock .080 Aircraft
.025 Leather gloves & mittens .081 Wood preserving
.026 Knitting mills .082 Paper & paperboard mills
.027 Schiffli machine embroideries .082 Calculating & accounting equipment
.027 Malt beverages .086 Typesetting
.028 Truck trailers .089 Instruments to measure electricity
.028 Mobile homes .090 Pulp mills
.028 Bottled & canned soft drinks .091 Electronic computing equip.
.029 Frozen fruits & vegetables .093 Guided missiles & space vehicles
.029 Fertilizers, mixing only .111 Electromedical equipment

Note: Reported input skill intensities are rounded from seven digits to three digits.

25The sectoral levels of input skill intensity are not important for my empirical results – they are taken up by fixed effects in the

regressions. Thus, I report changes rather than levels. The ranking is similar when based on the measure σi.
26Pulp Mills and Paper & Paperboard Mills do not seem to fit this pattern. Part of the increase in input skill intensity is explained

by their dependence on Industrial Chemicals (about 1/4 of all inputs), which experienced skill upgrading from 35 to 44 percent.

However, another part is due to accounting, rather than real skill upgrading in input production. Both industries depend heavily

on inputs from Logging, with the corresponding input shares 36 and 28 percent, respectively. The non-production labor share in

Logging rose from 4.4% to 17.0%. A possible explanation for this increase is offered by the Occupational Employment Statistics

from the Bureau of Labor Statistics, which provides detailed occupation data from 1999 on. According to these data Logging

involved about 22 percent of employment in transportation activities in 1999. The ASM classifies transportation as non-production

labor. The rising importance of transportation is relative rather than absolute, because overall employment in Logging fell. Because

few sectors depend on inputs from Logging, this problem is an isolated one. Moreover, my results are robust to splitting the sample

into sectors with falling and increasing overall employment.
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The measure of input differentiation

In order to identify the degree of differentiation for each sector’s inputs, I use data from Rauch (1999).

Rauch groups goods into 1,189 industries according to the 4-digit SITC Rev. 2 system. An industry’s

product is classified as being differentiated if it is neither traded on an organized exchange nor reference

priced in trade publications.27 I aggregate the Rauch data into the 358 SIC industries of my sample.

This procedure yields data on the fraction of each industry’s output that is differentiated.28 Using this

information, along with the input shares derived above, I define the degree of input differentiation:

κi =
∑

j 6=i

āij Rdiff
j (3.2)

where Rdiff
j is the proportion of input j that is classified as differentiated. The measure κi is therefore the

weighted average share of a sector’s inputs (purchased outside the same sector) that are differentiated.

This variable is similar to Nunn’s (2007) measure of relationship specificity; but Nunn uses Rauch’s

classification in a different context, showing that countries with good contract enforcement specialize in

the production of goods that require relationship-specific investments.

Data on product innovation

I use data from Scherer (1982) to derive, for each industry, its share of R&D spent for product innovation,

πprod
i .29 In the empirical analysis πprod

i serves to investigate the relationship between product innovation

and product differentiation, given by Rdiff
i described above. In order to perform this analysis, I match my

4-digit SIC code to Scherer’s 36 manufacturing industries and aggregate Rdiff
i to this level of detail, using

sectoral shipments as weights. The resulting sample includes πprod
i and Rdiff

i for 34 manufacturing sectors

(2 observations of πprod
i are missing). πprod

i has mean .66 and standard deviation .27. The share of product

innovation is smallest in primary industries like wood products, ferrous metals, or petroleum, and largest

in various machinery and equipment industries, including photo, medical instruments, communication

and construction equipment.

Additional control variables

In the empirical analysis I include several variables that have been previously used to explain increasing

wage inequality. In the following I describe these variables briefly. Appendix A.1 provides more detail.

Krusell et al. (2000) argue that the stock of capital equipment is complementary to skilled labor. To

control for this capital-skill complementarity, I include real equipment and real structures per worker,

kequip and kstruct, respectively. Data on research and development (R&D) intensity are from the National

Science Foundation (NSF). Following Autor et al. (1998), I use lagged R&D intensity (R&Dlag) in the

27Rauch provides liberal and conservative estimates. I use the former, but none of the results presented in the following depend

on this choice.
28Nunn (2007) describes the construction of a crosswalk from the 4-digit SITC to the BEA’s 1987 4-digit SIC classification. He

kindly shared his data. These aggregate into 302 sectors of my sample. For the remaining 56 sectors I use a correspondence from

4-digit SITC to 4-digit SIC provided by Pamela Lowry (downloadable from Jon Haveman’s Industry Trade page). Like Nunn, I

apply equal weights when aggregating SITC industries to the SIC classification.
29Appendix A.1 explains the corresponding methodology in detail.
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regressions.30 I use data from the BEA to construct sectoral shares of high-technology capital (HT/K)

and office, computing & accounting equipment (OCAM/K).31 Feenstra and Hanson (1999) document a

substantial impact of foreign outsourcing of intermediate inputs on relative wages. I calculate their broad

(OS broad) and narrow (OS narr) measures of outsourcing for the years and sectors included in my sample.

Feenstra and Hanson argue that the narrow measure – from within the same two-digit industry – best

captures the idea of outsourcing. For example, the import of steel by a U.S. automobile producer is

normally not considered as outsourcing, while it is common to think of imported automobile parts by that

company as outsourcing. Following this reasoning, I use OS narr in most regressions, including OS broad

in the robustness checks.

Table 3.3 reports the pairwise correlations between two measures of input skill intensity (σi and σ2d
i )

and the most prominent control variables. As in most of the following analyses, these correlations are

obtained after controlling for industry and time fixed effects. The two measures of input skill intensity

are highly correlated with one another, and are also correlated with control variables commonly used in

the SBTC literature. Industries using skill-intensive intermediates tend to be capital and R&D intensive,

employ high-tech capital, and outsource the production of their intermediates.

Table 3.3: Correlations between input skill intensity and control variables

Input skill Capital R&D/ Out-

intensity per worker High-Tech sales sourcing

Measure σi σ2d
i kequip kstruct HT/K R&Dlag OS narr

σi 1

σ2d
i .66*** 1

kequip .12*** .15*** 1

kstruct .05** .07*** .70*** 1

HT/K .20*** .14*** -.03 -.01 1

R&Dlag .18*** .13*** -.01 .03 .39*** 1

OS narr .13*** .11*** .05** .04* .03 .10*** 1

Notes: Reported numbers are pairwise correlation coefficients, controlling for sector and time fixed effects.
Key: *** significant at 1%; ** 5%; * 10%.

3.4 Empirical Results

Complementarity implies correlation. It is irrelevant for the ITSC whether we think that "downstream

skills and innovation cause upstream innovation and skills" or the other way around. If new technology

and skills are complements along the production chain, skill upgrading at one level affects innovation

30The first (lagged) period is 1963, implying a 4-year lag. All other lags are 5 years. Because industrial R&D intensity tends to

be persistent over time, working with lagged or contemporaneous R&D makes very little difference to the nature of the results.
31Both technology measures are widely used in studies of wage inequality. See, in particular, Autor et al. (1998) and Feenstra

and Hanson (1999). The capital stock data are likely measured with substantial error, and are often not measured directly but

inferred from employment data, assuming relationships between occupations and capital-type usage. See Becker et al. (2006) for

a discussion. This implies an upward bias of computer capital’s impact on skill upgrading, stacking the odds against finding an

important contribution of input skill intensity.
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and skill demand in both directions, upstream and downstream. Thus, the complementarity theory can be

investigated in either causal direction. I follow the common identification strategy in the SBTC literature

and use the high-skill labor share, hi, as dependent variable.

First I show that the novel fact presented in the introduction is not an artifact: the correlation between

input skill intensity and final production skills is robust to a variety of additional controls and specifica-

tions. After this, I provide evidence suggesting that the ITSC works through product innovation. Finally,

I examine the ITSC’s importance for skill upgrading and address endogeneity issues.

3.4.1 Correlation of Skill Intensities across Sectors

A first look at the data was provided above by Figure 3.1, plotting a cross-section of hi against σi, where

both variables are calculated in 1992. The corresponding regression, including a constant term, yields

a highly significant coefficient: β = .957, with a (robust) standard error of .101. Two concerns arise.

First, the observed correlation may be due to unobserved sectoral characteristics that drive both skill

demand and input skill intensity.32 Second, when using a panel, the correlation between hit and σit may

be spurious, driven by a general trend of skill upgrading. To address these concerns, I now turn to using

the full panel, controlling for time and sectoral fixed effects. In addition, I control for variables that have

been previously identified as influencing hi. I estimate the following equation

hit = αi + αt + βσit + γZit + εit (3.3)

where αi and αt denote industry and time fixed effects, respectively; Zit are control variables, and εit

denotes the error term, capturing measurement error and unobserved drivers of the skilled labor share.

The first column of Table 3.4 shows regression (3.3) with sectoral and time fixed effects. The coefficient

on σit is highly significant. The number of observations represents the full sample of 6 years × 358

sectors = 2148. I report two frequently used measures for the goodness of fit: One including the variation

explained by sectoral fixed effects (R2), and the other assessing the model’s fit after accounting for

sectoral dummies (R2 within). The former is close to one, while the latter implies that the regressions

presented in Table 3.4 account for roughly half of the variation of hit within sectors over time.

Next, I control for capital endowments as determinants of skill upgrading. Krusell et al. (2000) find a

strong positive impact of capital equipment on skill demand for the aggregate U.S. economy. As column

2 shows, this finding is not reproduced at the detailed industry level; the coefficient on kequip has the

wrong sign and is significant at the 10% level.33 I also include capital structures, which are skill-neutral

in the setup of Krusell et al. (2000), and on the verge of influencing skill upgrading significantly in my

sample. The share of high-tech capital correlates significantly positively with the proportion of skilled

labor, resembling the well-documented complementarity. This variable has more explanatory power than
32One such story would be that both skill-intensity of sectors and the inputs they use are ’naturally given’ (e.g., determined by

technological history) and independent of innovative activity. Suppose that ’ancient’ sectors are low-skill intensive, buying mainly

’ancient’ inputs, while ’modern’ sectors employ skilled workers and purchase ’modern’ inputs. This would yield the observed

correlation in the absence of intersectoral technology-skill complementarities.
33This supports the critical view of Krusell et al.’s results, which disappears when a time trend is included. In fact, if I only

include kequip and sectoral dummies as explanatory variables in (3.3), the coefficient on kequip is positive and highly significant. As

soon as other controls or time dummies are included, the coefficient becomes insignificant. Note, however, that sector-specific real

equipment data from the ASM used in my sample do not include the quality-adjustment that Krusell et al. apply at the aggregate

level.
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Table 3.4: Final production skills, input skill intensity, and controls. Dependent variable is hit.

Input skill measure Baseline: σi σ2d
i σw

i

(1) (2) (3) (4) (5) (6)

Input skill intensity: σi .834*** .658*** .558*** .665*** .502*** .548***
(.156) (.145) (.126) (.066) (.170) (.148)

Structures per worker: kstruct .259* .191 .249** .232* .175
(.134) (.117) (.120) (.122) (.118)

Equipment per worker: kequip -.114* -.0992 -.168** -.103 -.0687
(.067) (.062) (.070) (.064) (.061)

High-Tech capital: HT/K .716*** .600*** .410*** .618*** .614***
(.134) (.151) (.125) (.150) (.153)

Office equipment: OCAM/K -.0692 .0102 .0576 .0371 .016
(.294) (.316) (.324) (.308) (.316)

R&D intensity R&Dlag .401** .322* .461*** .363**
(.163) (.193) (.158) (.163)

Outsourcing: OSnarr .146*** .122** .161*** .139***
(.050) (.051) (.053) (.048)

Sector fixed effects yes yes yes yes yes yes
Time fixed effects yes yes yes no yes yes

R2 .97 .98 .98 .98 .98 .98
R2 (within) .50 .55 .57 .56 .56 .57
Observations 2148 2148 2089 2089 2083 2089

Notes: Clustered standard errors (by sector) in parentheses. Key: *** significant at 1%; ** 5%; * 10%. All regressions
are weighted by sectors’ average share in total manufacturing employment 1967-92.

the alternative measure that only includes office, computing, and accounting equipment. Finally, and

most important for my results, the coefficient of input-skill intensity is robust to the inclusion of capital

controls. The same holds when further controls are included, as shown in column 3. The sample size

is now 2089 due to missing observations in the outsourcing measure. Both lagged R&D intensity and

outsourcing have a significantly positive correlation with skilled labor in final production, which con-

firms previous findings (Machin and van Reenen 1998, Feenstra and Hanson 1999). Column 4 shows

the results without time dummies. As expected, because of the general skill upgrading over time, the

coefficient of input skill intensity is now slightly bigger. Remarkably, the coefficient of capital equipment

is significantly negative, providing further evidence against a capital-skill complementarity.

The last two columns of Table 3.4 present regression results for alternative measures of input skill

intensity, including all controls. In column 4, σ2d
i is used, excluding inputs purchased within the same

2-digit industries. This specification addresses the concern that common trends or technology shocks may

drive skill upgrading in similar industries, biasing β upwards when these industries are linked via input-

output relationships. The more conservative measure comes along with a cost: σ2d
i discards a substantial

part of intersectoral linkages, since sectors purchase on average 35% of their inputs within the same

2-digit category.34 Therefore, σ2d
i is a more noisy measure of input skill intensity and likely subject to

attenuation bias. However, the coefficient β is only slightly smaller than in the previous specifications and

34One sector, ’Special product sawmills’ (SIC 2429) purchases all inputs within the same 2-digit category. The corresponding

σ2d
i is therefore missing in all 6 benchmark years, leaving 2083 observations.
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still highly significant. I implement two additional ways to address the common-shock concern. Both are

based on specification 3 and are not reported in the table. First, I use the 5-year lag of σi. The coefficient

on σi,t−5 is highly significant, .366 (.095), with all other coefficients very similar to those reported in

columns 3 and 5. This finding mitigates the common-shock concern – to maintain it, one would have

to argue that downstream skill demand reacts half a decade later than its upstream counterpart to the

same shock. Second, I include time dummies at the 2-digit industry level. These absorb any industry-

specific shocks to skill demand, such that the coefficient β only reflects the variation of detailed 4-digit

sectors relative to the corresponding 2-digit industries. Even with this restriction, the coefficient remains

highly significant and of similar magnitude, β = .401 (.185). Finally, column 6 uses σw
i , where skills

in input production are measured with the wage-bill, instead of the labor share of skilled workers (see

footnote 23). Berman et al. (1994) propose the wage-bill share as an alternative measure of skill demand,

because it also captures skill upgrading within either category – production or non-production workers.

The results obtained with σw
i are very similar to the ones with σi.

3.4.2 Robustness of the Correlation

The robustness of my results to alternative measures of input skill intensity, σi, σ2d
i , and σw

i has been

verified in Table 3.4. These measures were all calculated based on constant input shares, i.e., stable

linkages over time. In this section, I first show that my results are robust to including input skill intensity

measures based on changing input shares. Second, I test the sensitivity and robustness of my estimates to

alternative specifications.

Input skill intensity with changing input shares

Because input shares aij vary substantially over time, mostly due to one-time outliers, my baseline input

skill intensity measures are derived based on average input shares āij . Now, I use the time-varying aij

to construct the input skill intensity measure St
i =

∑
j 6=i at

ijh
t
j . This variable can be decomposed into

three parts. First, a skill component σt
i , as defined in (3.1), representing constant input expenditure shares

with changing skilled labor shares of suppliers. Second, an input-mix component τ t
i =

∑
j 6=i at

ij h̄j ,

reflecting varying input shares with constant skilled labor shares of suppliers. This variable grows over

time if sector i switches its input mix towards more skill intensive intermediates. Finally, a covariance

component τ t
i =

∑
j 6=i(a

t
ij − āij)(ht

j − h̄j)−
∑

j 6=i āij h̄j , which grows if sector i switches its input mix

towards sectors whose skill intensity rises over time.35 Note that St
i = σt

i + τ t
i +ρt

i. The skill component

σi is by far the most important contributor to increases in St
i between 1967 and 1992. The weighted

average of St
i increases from 21.2 to 27.6 percent. Of this 6.4% rise, 6.2% are due to σi, 1.3% to τi, and

-1.1% to ρi. As Table 3.5 shows, the coefficient of σi does not change when the two additional variables

are used – it is still above 0.5.

Once the usual controls are included, neither τi nor ρi are significant, as shown in the second and third

column of Table 3.5. This result was to be expected, given the noise in the input shares used to calculate

these variables.36 Similarly, we expect attenuation bias and therefore a smaller coefficient when using

35The term
∑

j 6=i āij h̄j is a constant for each sector i and does not influence estimation results in the presence of sectoral fixed

effects.
36Less than 1/3 of all input shares have a time-trend that is significant at the 10% level. In an additional check not presented
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Table 3.5: Input skill intensity with time-varying input shares. Dependent variable is hit.

Input skill measure σi σ2d
i Si

(1) (2) (3) (4) (5)

Input skill intensity

Skill component: σi / σ2d
i .832*** .562*** .511***

(.150) (.124) (.161)

Input mix component: τi / τ 2d
i .110 .068 -.011

(.077) (.061) (.079)

Covariance component: ρi / ρ2d
i .725* .236 .224

(.389) (.394) (.466)

All together: Si = σi + τi + ρi .189*** .325***
(.059) (.049)

Controls no yes yes yes yes

Sector fixed effects yes yes yes yes yes
Time fixed effects yes yes yes yes no

R2 .97 .98 .98 .97 .97
R2 (within) .51 .57 .56 .56 .53
Observations 2090 2089 2083 2089 2089

Notes: Clustered standard errors (by sector) in parentheses. Key: *** significant at 1%; ** 5%; * 10%. All
regressions are weighted by sectors’ average share in total manufacturing employment 1967-92. Controls in-
clude the following variables: Structures per worker (kstruct), Equipment per worker (kequip), High-Tech capital
(HT/K), Office and computer capital (OCAM/K), R&D intensity (R&Dlag), and Outsourcing (OSnarr).

the composite skill intensity Si. Columns 4 and 5 show this result with and without time dummies. The

coefficients on Si are, however, still highly significant.

Alternative specifications and further controls

Alternative specifications comprise running the regression in changes, including further controls, and

restricting the sample to single years, analyzing cross-sections rather than a panel. Table 3.6 presents

the results. Therein, I include the computer capital share OCAM/K and the difference between high-

tech and computer capital share (HT/K−OCAM/K), which represents the fraction of capital services

derived from various high-technology assets other than office, computing and accounting machinery.

Feenstra and Hanson (1999) suggest this specification, and a similar one for outsourcing: the difference

between the broad and narrow measures OSbroad − OSnarr, representing the intermediate inputs from

outside the two-digit purchasing industry that are sourced from abroad.

The first column of Table 3.6 runs the baseline regression in changes, instead of including fixed

effects. All variables are in 5-year differences.37 The corresponding coefficient on input skill intensity

is very similar to the one obtained above, and again highly significant. In column 2, I turn back to

estimating levels, including fixed effects and all previously used controls. Additionally, I control for

various other variables that potentially drive skill demand. First, broad outsourcing (as difference to

narrow). Second, two measures of the ’complexity’ of production processes: the variety of inputs used in

here, I calculate τi and ρi using changing input shares when the time-trend is significant, and average shares otherwise. Under this

method, τi is significant at the 5% level when all controls are included, while the coefficient of σi remains unchanged.
37R&D intensity is also calculated in actual differences, rather than differences of the lagged variable.
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Table 3.6: Robustness analysis. Dependent variable is hi.

Input skill measure σi σw
i σ2d

i

(1) (2) (3)‡ (4) (5)

Changes Additional Wage 1967 1992

Controls bill only only

Input skill intensity: σi / σ2d
i / σw

i .621*** .468*** .574*** .562* .467***
(.062) (.123) (.201) (.324) (.139)

Structures per worker: kstruct .255* .291** .353*** - .557 .941***
(.136) (.121) (.135) (1.317) (.337)

Equipment per worker: kequip -.0872 -.107* -.266*** .580 -.383**
(.090) (.064) (.090) (1.442) (.176)

Office equipment: OCAM/K .107 .588 .481 3.884*** 4.637***
(.165) (.380) (.492) (1.306) (.460)

High-Tech capital: difference .124 .579*** .490*** 4.238*** 2.011***
(HT/K −OCAM/K) (.109) (.152) (.186) (.898) (.497)

R&D intensity R&Dlag .323** .268 .468*** 1.077 .144
(.161) (.165) (.181) (1.027) (.364)

Outsourcing: OSnarr .0651* .159*** .157** -.650** .0768
(narrow) (.039) (.045) (.069) (.313) (.100)

Outsourcing (broad): difference .0944* -.0369 .0781
(OSbroad −OSnarr) (.055) (.570) (.129)

Many inputs: Ini>n̄
i .00177 .00892 .0352***

(.005) (.026) (.012)

Input variety: (1−Hi) -.00155 -.0837 .0385
(.014) (.107) (.042)

Relative wage: ln(wH,i/wL,i) -.0493***
(.017)

Real shipments: ln(Yi) .00912**
(.004)

Value added share .0330*
(.017)

Sector fixed effects no yes yes no no
Time fixed effects no yes yes no no

R2 .17 .98 .97 .24 .71
R2 (within) - .59 .55 - -
Observations 1731 2089 2089 328 356

‡ The dependent variable in (3) is the non-production wage bill share: hw
i ≡ wH,iHi/(wH,iHi + wL,iLi).

Notes: Robust standard errors in parentheses (for (1) - (3) clustered by sector). Key: *** significant at 1%; ** 5%;
* 10%. Regressions (1) and (2) are weighted by sectors’ average share in total manufacturing employment 1967-
92; (3) by the average share in total manufacturing wage bill 1967-92; (4) and (5) by the sector’s employment
in 1967 and 1992, respectively. All variables in (1) represent 5-year differences (in this case, R&D intensity is
R&Dt −R&Dt−5.), while levels are used in the remaining regressions.
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production, measured as one minus the Herfindahl index of input concentration for each industry (1−Hit).

This variable is used as a measure of a good’s ’complexity’ by Blanchard and Kremer (1997) to explain

the decline of output when bargaining breaks down along the production chain. The other measure for

production ’complexity’ is an indicator function for the number of inputs, proposed by Nunn (2007).

Init>n̄t
it equals one if the number of inputs nit used in industry i in year t is greater than the median

number of inputs used in all industries, n̄t. I derive both measures from the year-specific I-O tables.

Since more ’complex’ production processes require more coordination, I expect these variables to have a

positive impact on demand for skilled labor. Third, I include the sector-specific skill premium, or relative

wage, to capture differences in cost and quality of skilled workers across sectors.38 Fourth, I control for

productivity by including the real value of shipments, ln(Y ).39 This variable addresses the concern that

productivity increases may be the driver of skill upgrading in final, as well as input production. Finally,

the share of value added in total cost (derived from the BEA I-O data) controls for the overall importance

of labor and capital (as opposed to intermediate inputs) in production. Service-oriented sectors generally

have a larger value added share, and also a higher proportion of white-collar labor.

The inclusion of further control variables shown in column 2 of Table 3.6 changes neither the size

nor the high statistical significance of the coefficient on input skill intensity. The last three additional

controls are significant and have the expected sign. Interestingly, the positive and significant coefficient

of real shipments, ln(Yi), confirms Epifani and Gancia’s (2006) hypothesis that the scale of production

may be skill-biased. On the other hand, neither measure for production ’complexity’ has a significant

impact on skill demand.40 The additional outsourcing measure has the expected positive sign and is

significant at the 10% level. Column 3 presents the regression with the non-production wage-bill share as

dependent variable. This measure is frequently used as an alternative to the purely labor based measure,

as it also captures skill upgrading within either occupational category (Berman et al. 1994). The wage-bill

regression confirms magnitude and significance of the ITSC effect.

In all panel regressions presented so far, I address the concern of inconsistent standard errors due to

serially correlated observations by accounting for correlation within sectors across time (i.e., by cluster-

ing standard errors). Bertrand, Duflo and Mullainathan (2004) argue that this correction alone may not

fully solve the problem and suggest collapsing the time series information into single periods as a further

correction.41 The last two columns of Table 3.6 implement this additional consistency check, presenting

cross-sectional regressions for the first and the last benchmark year of the sample, 1967 and 1992. Fixed

effects cannot be used in this specification, raising the concern that unobserved characteristics, like sim-

ilarity of sectors, drive the correlation between input skill intensity and the skilled labor share in final

production . To address this concern, I use σ2d
i as the input skill intensity measure, excluding linkages

38Because of its endogeneity with skill demand, this variable is usually not included in regressions where the dependent variable

is the share of skilled workers. Here, I merely use it as a control for possible cross-sectoral variations in the cost of labor classified

as ’non-production’ in the ASM. For example, a sector employing 30% delivery and sales personnel likely faces different non-

production labor costs than one with 30% engineers.
39Feenstra and Hanson (1999) use this control variable. Results are very similar when using the natural logarithm of value added,

as in Bresnahan et al. (2002).
40The two complexity measures vary little over time, such that the inclusion of sector fixed effects eliminates much of their

variation. In fact, when running the same regression without sector dummies, the effect of I
ni>n̄
i is positive and significant.

41Long time series (15 periods and more) are a major contributing factor to Bertrand et al.’s concern. Since my panel involves

only 6 periods, the concern is likely of minor importance, given that I am already controlling for serial correlation.
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within 2-digit industries. The corresponding coefficient is of the same magnitude as observed before,

significant in 1967, and highly significant in 1992. Most control variables also confirm the previous find-

ings. Capital equipment turns out negatively significant in the 1992 cross section.42 In the panel, kequip

shows up negative and significant in some specifications. These findings together argue strongly against a

broad equipment-skill complementarity. The more narrow high-tech capital variable, however, shows up

significantly positive in the cross-section, as well. Finally, production ’complexity’, measured by Ini>n̄
i ,

has a significantly positive impact on skill demand in the 1992 cross-section.

3.4.3 Investigating the Channel of the ITSC

In this section, I investigate the hypothesis that the ITSC works through product innovation. I follow

a three-step process. First, I show that sectors producing differentiated products spend relatively more

R&D for product innovation, while producers of homogenous goods concentrate on innovating their own

processes. This suggests that differentiated products embody more innovation than homogenous ones.

Therefore, sectors using differentiated products as intermediates purchase relatively more embodied prod-

uct innovation, which leads to the second step: If the ITSC works through product innovation, we expect

it to be stronger for sectors that use relatively more differentiated inputs. Finally, I turn to the relationship

between skills and productivity – the outcome of innovation. I show that innovative intermediates, mea-

sured by their skill content, raise productivity only if they meet skilled workers knowing to handle them.

Consequently, skills in intermediate and final production complement each other in fostering innovation

and productivity.

Product innovation and product differentiation

As described in section 3.3, I derive sectoral shares of R&D expenditures used for product innovation,

πprod
i , from Scherer’s (1982) data, and match them to Rauch’s (1999) data on product differentiation. This

gives πprod
i together with the share of products classified as differentiated, Rdiff

i , for 34 manufacturing

industries. The median of Rdiff
i in this sample is .84. The 17 industries turning out goods with below-

median product differentiation spend on average 53% of R&D for inventing new products (as opposed

to processes), while this number is 80% for producers of above-median differentiated goods. After this

preliminary observation, I turn to the simple regression πprod
i = δ0 + δ1R

diff
i + εi, where the last variable

represents an error term. The corresponding estimate is positive and highly significant: δ1 = .416 with

a robust standard error of .127 and R2 of 0.27.43 These findings suggest that differentiated products are

more susceptive to product innovation, such that they are more readily reshaped by the innovative minds

of skilled workers.

Input differentiation and ITSC

When skilled workers improve their products, the innovation passes through intermediate linkages to

other sectors, where it also drives innovation and skill demand. As we have seen, purchasers of differenti-

42This finding is robust and also appears when only capital structures and equipment are included in the regression.
43The result is practically identical when using Rauch’s (1999) conservative estimate to construct Rdiff

i . Outliers are not an issue,

and even excluding the 9 sectors that produce only differentiated products (Rdiff
i = 1) leaves the remaining ones with a significantly

positive δ1.
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ated inputs buy on average more innovation incorporated in their intermediates than users of homogenous

ones. Consequently, we expect a stronger ITSC when input-output linkages involve more differentiated

intermediates. The corresponding measure κi gives the weighted average degree of input differentiation,

as described in section 3.3. To obtain a first look at the data, I use this measure to split the sample into

sectors with below- and above-median input differentiation. Then I estimate regression (3.3) for the two

subsamples and report the results in Figure 3.2 in the form of partial scatter plots. The vertical axis shows

the variation in the skilled labor share hi to be explained by input skill intensity σi, after controlling for

fixed effects and statistically significant control variables (all controls that were significant in at least one

specification in Table 3.4).
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Figure 3.2: Partial scatter plots: Skilled labor share (hit) vs. input skill intensity (σit)

Notes: The measure of input differentiation is calculated as in (3.2), yielding a median of .52. The vertical axis shows
hit − (α̂i + α̂t + γ̂Zit); notice that β̂σit does not appear in this equation. In the left panel, coefficient estimates α̂i,
α̂t, and γ̂ are obtained by estimating (3.3) for the full sample (2089 obs.), with the controls Zit comprising kstruct,
kequip, HT/K, R&Dlag , and OSnarr. In the right panel, the same methodology is applied for the two subsamples
including sectors with above-median input differentiation (1040 obs.) and below-median input differentiation (1049
obs.).

The left panel of Figure 3.2 shows the partial scatterplot for the full sample, where the corresponding

coefficient from regression (3.3) is β̂ = .590.44 This plot also shows that the positive correlation between

input skill intensity and final production skills is a broad phenomenon, not driven by outliers. The right

panel repeats the exercise for two subsamples, one with sectors purchasing relatively homogenous inputs

(below-median κi) and the other comprising sectors that use more differentiated inputs (above-median

κi). These first results are in favor of the hypothesis that the ITSC is stronger for sectors using more

differentiated inputs than for those using more homogenous ones; the corresponding coefficients are

β̂diff = .848 and β̂hom = .479, respectively.45 In addition, the two subsamples have different final

production skill shares. Sectors using more differentiated inputs are on average more skill intensive

(h̄diff = .286 vs. h̄hom = .245). This is what we expect, given that differentiated inputs incorporate

more product innovation. However, the difference in final production skill shares could also be due to

different endowments like high-tech capital or different levels of outsourcing in the two subsamples. To

analyze whether this concern is justified, I use the Blinder-Oaxaca decomposition, splitting the mean
44To ease graphical exposition, the regressions in Figure 3.2 use equal weights for each sector. The estimated coefficient is very

similar when weighted by employment shares, β̂ = .558.
45A more detailed analysis, using quintiles of input differentiation κi, confirms this result: β̂ increases with each quintile of κi

and is highly significant for all except the first one.
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outcome differential (predicted h̄diff − h̄hom) into one part that is due to differences in endowments in the

two subsamples, one part that is due to differences in coefficients (after accounting for fixed effects), and

a third part that is due to interaction between coefficients and endowments. This decomposition shows

that the different final production skill shares in the two subsamples are entirely due to differences in

coefficients, while endowments and interaction make small negative (and insignificant) contributions.

Next, I include interaction terms of explanatory variables with input differentiation κi.46 Table 3.7 re-

ports the results, using the three alternative measures for input skill intensity, σi (baseline), σ2d
i (excluding

inputs from the same 2-digit sectors), and σw
i (calculated based on the high-skill wage bill share). The in-

teractions ’input skill intensity’× ’input differentiation’ are positive and highly significant, implying that

the ITSC grows with the degree of input differentiation. Moreover, the coefficient on input skill intensity

(β1) becomes small and insignificant when the usual controls are included. This indicates that the ITSC

is not present for a (hypothetical) sector using only homogenous inputs (κi = 0). To see this, note that

the marginal effect of input skill intensity on final production skills is given by ∂hi/∂σi = β1 + β2κi.

On average, this effect is slightly larger than above, where input differentiation was not controlled for.47

Table 3.7: Interaction of input skill intensity with input differentiation. Dependent variable is hit.

Input skill measure σi σ2d
i σw

i

(1) (2) (3) (4) (5)

Input skill intensity (β1): .293* .118 .046 -.071 .018
σi / σ2d

i / σw
i (.152) (.154) (.158) (.240) (.219)

Inp. skill intensity × inp. differentiation (β2): 1.118*** 1.147*** 1.284*** 1.325*** 1.213***
σi × κi / σ2d

i × κi / σw
i × κi (.317) (.334) (.312) (.449) (.389)

Implied coefficient: β̂ = β̂1 + β̂2κ̄ .907*** .747*** .751*** .657*** .684***

Controls no yes yes yes yes

Sector fixed effects yes yes yes yes yes
Time fixed effects yes yes no yes yes

R2 .97 .98 .98 .98 .98
R2 (within) .53 .59 .58 .58 .59
Observations 2148 2089 2089 2083 2089

Notes: Clustered standard errors (by sector) in parentheses. Key: *** significant at 1%; ** 5%; * 10%. All regressions and
the mean κ̄ are weighted by sectors’ average share in total manufacturing employment 1967-92. Controls include: Structures
per worker (kstruct), equipment per worker (kequip), high-tech capital (HT/K), R&D intensity (R&Dlag), and outsourcing
(OSnarr), as well as their interactions with input differentiation: kstruct × κi, kequip × κi, HT/K × κi, R&Dlag × κi, and
OSnarr × κi. Weighted average input differentiation is κ̄ = .549.

46Because the framework analyzed here involves complementarity among several explanatory variables, I also interact the control

variables with input differentiation. This addresses the concern that the σi×κi interaction alone might capture other effects related

to product differentiation. This is the case, for example, if the processing of differentiated intermediates is more R&D intensive, or

if outsourcing is more pronounced for differentiated inputs, influencing skill demand through these channels. Input differentiation

κi is not included in the regressions, as it is captured by sectoral fixed effects.
47An interesting and robust finding is that the interaction term ’high-tech capital’× ’input differentiation’ is negative and highly

significant, while the coefficient on ’high-tech capital’ is significantly positive and of the same magnitude (not reported in Table

3.7). Therefore, high-tech capital explains much of the skill demand in sectors using homogenous inputs, but little in sectors using

differentiated inputs.
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Productivity and ITSC

Now I turn to the relationship between productivity and skills. Because of the well-documented innovation-

skill complementarity, we expect sectors with a high proportion of skilled workers to be more productive.

However, this holds only for the right mix of complementary inputs [Milgrom and Roberts 1990, Bres-

nahan et al. 2002]. When skilled workers meet an environment without the potential for production

improvements, their innovative potential is wasted. On the other hand, computers or innovative interme-

diates are squandered when there are no skills to handle them.48 It is only when skills meet an innovative

environment that ideas and productivity flourish. Following this argument, I examine the interaction be-

tween input-embedded skills σit, reflecting innovative intermediates, and final production skills hit in

regressions with productivity measures as dependent variable. I run the following regression, expecting a

positive coefficient on the interaction term.

prdit = αi + αt + β1hit + β2σit + β3hit × σit + γZit + εit (3.4)

where prdit denotes productivity, measured by value added per worker (in natural logarithm) or alter-

natively by total factor productivity (TFP).49 Zit stands for the controls used above, and also includes

the interactions of high-tech capital with hit and σit. As always, sector and time dummies (αi, αt) are

included, and εit denotes the error term. The results are presented in Table 3.8.

Table 3.8: Productivity and skills. Dependent variable is productivity.

Productivity measure: ln(value added per worker) TFP

(1) (2) (3) (4) (5) (6) (7)

Skilled labor share: hi .006 .058 .834*** -1.904*** -2.421*** -2.577***
(.286) (.293) (.179) (.693) (.910) (.899)

Input skill intensity: σi .672 .675 -.025 -1.840** -2.455** -1.982*
(.503) (.535) (.382) (.812) (.981) (1.061)

Interaction: σi × hi 6.748*** 8.824** 9.600***
(2.089) (3.610) (3.567)

Controls yes yes yes yes yes yes yes
Interaction Controls no no no no yes yes yes

Sector fixed effects yes yes yes no yes yes yes
Time fixed effects yes yes yes yes yes yes no
R2 (within) .97 .97 .97 .90 .97 .16 .11
Observations 2089 2089 2089 2089 2089 2089 2089

Notes: Clustered standard errors (by sector) in parentheses. Key: *** significant at 1%; ** 5%; * 10%. All regressions
are weighted by sectors’ average share in total manufacturing employment 1967-92. Controls include: Structures per
worker (ln(kstruct)), Equipment per worker (ln(kequip)), high-tech capital (HT/K), R&D intensity (R&Dlag), and
outsourcing (OSnarr). Interaction controls include: hi ×HT/K and σi ×HT/K.

As column 1 shows, neither input-embedded nor final production skills correlate significantly with

productivity. Columns 2 and 3 verify that this is not a consequence of collinearity between σi and hi;

48Massive inflows of modern Western capital to the Polish economy in the early 1970’s failed to raise industrial productivity –

partially due to the lack of technical personnel [Terrell 1992].
49I use the 5-factor TFP index (1987=1) from the NBER Manufacturing Industry Database. See Bartelsman and Gray (1996) for

a documentation. Results are also very similar when using the natural logarithm of shipments per worker to measure productivity.
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neither is significant by itself. Column 4 drops industry fixed effects in order to exploit cross-sectoral

variation. In this case, hi is highly significant, but subject to the concern that unobserved sector-specific

characteristics drive both productivity and skill demand. Next, the significantly positive interaction term

σi × hi in column 5 explains why σi and hi alone are insignificant: innovative inputs, reflected by their

embedded skills, raise productivity only if they are combined with skilled labor to process them. The

marginal effect of input skill intensity on productivity is given by ∂prdit/∂σit = β2 + β3hit, with the

weighted average of hit equal to .279, and the corresponding 10th and 90th percentile given by .147

and .420, respectively.50 Therefore, a 1% increase in σit lowers value added per worker by 0.9% when

industry i has few skilled workers (10th percentile), leaves it unchanged in an average industry i, and

raises value added per worker by 0.9% if i employs many skilled workers (90th percentile). This finding

provides further support for product innovation as the ITSC channel: Skills in intermediate and final

production together foster innovation and raise productivity. Finally, columns 6 and 7 confirm that this

result is neither an artifact of the chosen productivity measure (it is obtained when using TFP, as well)

nor dependent on the inclusion of time dummies.

3.4.4 The ITSC’s Contribution to Skill Upgrading

So far, we have seen that the correlation between input skill intensity and the skilled labor share in final

production is highly significant and robust to the inclusion of various controls. We have interpreted this

finding as evidence for an intersectoral technology-skill complementarity. Next, I turn to the importance

of the ITSC for skill demand increases. I present a framework that has been used to estimate the impact

of trade and technological change on the demand for skilled labor. The underlying idea is that structural

variables like R&D intensity, computer capital, or input skill intensity can shift the production function

and therefore the optimal choice of skilled versus unskilled labor. Because some structural variables are

arguably endogenous, I use instruments in the corresponding estimation. My results suggest that the

ITSC’s contribution to skill upgrading in U.S. manufacturing is large – in the same range or even above

computers and other high-tech capital.

A labor demand framework

In the following I derive a labor demand regression from a model with sector-specific technologies that

are influenced by structural variables.51 Feenstra and Hanson (1999) argue that labor demand shifting

structural variables comprise fixed capital, computing equipment, and outsourcing (reflecting imported

input prices). I add R&D intensity and input skill intensity to this list. The former has been identified

as an important determinant of skill demand (Machin and van Reenen, 1998), while the inclusion of

the latter is motivated by the empirical evidence presented above. Input skill intensity σi proxies for

innovation or complexity embedded in a sector’s intermediates. Because firms need skilled workers to

handle innovative intermediates, we expect higher σi to go hand in hand with more demand for skilled

labor in sector i.
50While prdit is specified in logs, σit and hit are already percentages. Thus, the marginal effect can be interpreted as the

elasticity of value added per worker with respect to input skill intensity.
51For a more detailed exposition see Katz and Murphy (1992) and Feenstra (2004, ch. 4).
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The production function in sector i takes the form Yi = Fi (Hi, Li; σi,Zi) where structural vari-

ables, σi and Zi, are fixed in the short run, while skilled and unskilled labor, Hi and Li, are chosen

optimally. Consequently, a firm in sector i minimizes its wage bill wHHi + wLLi subject to the corre-

sponding production technology, taking as given high-skill and low-skill wages, wH and wL, as well

as input skill intensity σi and other structural variables Zi. This yields the short-run cost function:

Ci (wH , wL; σi,Zi, Yi). Next, we need to choose a functional form for the cost function. The translog

cost function is a convenient choice, as it imposes no a-priori restrictions on elasticities of substitution and

returns to scale.52 We then use Shephard’s Lemma, which states that the derivative of the cost function

with respect to wH gives the demand for skilled labor, Hi. This final step is the centerpiece of the demand

framework – it enables us to analyze factor demand by examining the properties of the first derivative of

the cost function. As shown in Feenstra (2004, ch. 4), we obtain the estimation equation

4hw
it = α + β4 ln σit + φ4 lnZit + γ4 ln Yit + δ4 ln

(
wH,t

wL,t

)
(3.5)

where hw
i = (wHHi)/(wHHi + wLLi) is the wage bill share of skilled (white-collar) labor. This

equation says that the relative demand for skilled labor, represented by its cost share, depends on the

structural variables σi and Zi, and on the relative wage. Intuitively, for a given relative wage, structural

variables shift the relative demand for the two types of labor, as captured by the coefficients β and φ.

Contributions without input skill intensity

The first specification of Table (3.9) presents an estimation of (3.5), following the strategy outlined in

Feenstra and Hanson (1999). Input-skill intensity is not yet included in the regression. The structural vari-

ables Zi comprise all previously used drivers of skill demand (see Table (3.4)). In addition, (3.5) implies

that we also have to control for the real value of shipments, ln Yit, and the relative wage (wH,t)/(wL,t).

The latter captures cross-industry variation in wages, for example due to quality variation of workers.53

Multiplying each regression coefficient by the 1967-92 change in the corresponding variable (shown in

the first column) gives each structural variable’s contribution to the increase in the white-collar wage

share. If we divide this number by the total change in the white-collar wage bill share 1967-92 (0.0727)

we obtain percentage contributions. In the first specification, high-tech capital contributes about 12% to

overall skill upgrading, and outsourcing (broad and narrow) delivers another 17%. Both numbers are in

the ranges documented by Feenstra and Hanson (1999) for the period 1979-90. While the coefficient of

R&D intensity is large, its contribution to the increasing white-collar wage share is not. This is because

R&D intensity itself increased relatively little. Overall capital is roughly skill neutral, with the positive

contribution of structures offsetting the negative impact of equipment.

Endogeneity of input skill intensity

Before including σi in regression (3.5), we have to carefully discuss its endogeneity. In the intersectoral

complementarity framework presented in the previous sections, causality could run in either direction –

52See Kim (1992) for a general treatment of the translog function. In order to derive the estimation equation below, we have to

assume that the translog cost function is homogenous of degree one in wages.
53Results are very similar when relative wages are dropped from the regressions.
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Table 3.9: Contribution to skill upgrading. Dependent variable is the white-collar wage bill share hw
it.

(1) (2) (3)

Change Regres- Contri- Regres- Contri- Regres- Contri-

’67-’92 sion bution sion bution sion bution

Input skill intensity: 4σi .0546 .485*** 36.4% .499*** 37.5%
instrumented (.098) (.093)

Structures per worker: 4kstruct .0120 .281 4.7% .196 3.2% .190 3.1%
(.220) (.140) (.129)

Equipment per worker: 4kequip .0383 -.0679 -3.6% -.0858 -4.5% -.0741 -3.9%
(.110) (.082) (.070)

High-Tech capital: 4HT/K .0469 .189* 12.2% .299*** 19.3% .423** 27.3%
instrumented in (3) (.115) (.097) (.190)

R&D intensity 4R&D .0108 .442*** 6.6% .221 3.3% .26 3.9%
instrumented in (3) (.164) (.134) (.242)

Outsourcing: 4OSnarr .0470 .103** 6.7% .0838** 5.4% .0816** 5.3%
(.043) (.037) (.038)

Outs.: 4(OSbroad −OSnarr) .0571 .136*** 10.7% .0508 4.0% .0358 2.8%
(.047) (.056) (.049)

Total Contribution: 37.2% 67.1% 75.9%

Additional Controls:
Real shipments: 4 ln(Y ) -.012* -.012*** -.010**

(.007) (.004) (.005)
Relative wage: 4 ln(wH/wL) .101*** .118*** .115***

(.015) (.012) (.012)

Observations 1731 1402 1402

First stage regressions: ‡

F -test for significance of IV for σi 43.6 35.4
Instrumented control variables: HT/K, R&D

individual F -test for IV 51.5, 15.3
p-value overidentifying restrictions .78 .79
Stock and Yogo weak IV F -statistic 43.5 15.2

Critical value for highest quality IV 19.9 17.8

Notes: The first column gives the change of each variable’s weighted (by industry wage bill) average over the period 1967-92. The
change in the dependent variable hw is .0727. All regressions are run in 5-year changes and are weighted by sectors’ average share
in the manufacturing wage bill 1967-92. Standard errors (in parentheses) are robust to arbitrary heteroskedasticity and intra-sector
correlation. Key: *** significant at 1%; ** 5%; * 10%. Regressions (2) and (3) are estimated using two-step feasible efficient
GMM. ’Contribution’ gives the proportion of the observed change in hw explained by the respective variable.
‡ Instruments are the 5- and 10-year lags of each instrumented variable. In addition, 4σi is instrumented with the 5-year lag of
4Zj 6=i (see text). 4R&D also uses its 15-year lag.
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from upstream to downstream skill intensity (σi to hi), or the other way around.54 But now we treat σi as

a structural variable that can shift the demand for skilled labor in downstream sectors. We must therefore

find instruments that explain innovation and skill upgrading at the upstream level but do not have an

impact on downstream skill demand other than through intermediate linkages. To derive candidates for

such instruments, I restate the ITSC in a simultaneous equations model:

hit = α1,i + β1σit + γ1Zit + ε1,it (3.6)

σit = α2,i + β2hit + γ2Zj 6=i,t + ε2,it (3.7)

The first equation represents the upstream-downstream direction of the ITSC, estimating the impact of

input skill intensity on final production skill demand, where Zit are the usual control variables. The

second equation describes the opposite causal direction – from final producers i to intermediate suppliers

j 6= i.55 Control variables that affect the skill demand in intermediate production, Zj 6=i,t, are constructed

in a similar fashion as σit:

Zj 6=i,t =
∑

j 6=i

āijZjt (3.8)

For example, let Zjt be outsourcing of intermediate supplier j. We expect this variable to affect σit =∑
j 6=i āijhjt through its impact on hjt. The same holds for all suppliers j 6= i. In this example Zj 6=i,t

thus represents weighted average outsourcing of sector i’s suppliers. The same methodology applies to

computer and high-tech capital as well as R&D intensity. All are summarized as Zj 6=i,t.56

Deriving the reduced form for σit from (3.6) and (3.7) gives the first stage of an instrumental variable

(IV) regression, with Zj 6=i,t being the instruments for σit:

σit = α̃ + γ̃1Zit + γ̃2Zj 6=i,t + ε̃it (3.9)

This equation suggests that we could use 4Zj 6=i,t to instrument for 4σit in (3.5). I use the 5-year

lags, 4Zj 6=i,t−5, in order to alleviate the concern that downstream innovation and skill upgrading might

lead to more computer use or R&D in supplying upstream industries.57 The exclusion restriction is

that instruments 4Zj 6=i,t−5 influence 4σit but are uncorrelated with 4hw
it once we control for Zit in

the second stage, i.e., in (3.5). For this restriction to hold we have to assure that, first, lagged changes

in high-tech capital, outsourcing, or R&D at the upstream level influence upstream skill demand and,

second, do only have an impact on downstream skill demand through the (intersectoral) technology-skill

complementarity. The first part is well-founded, as my own and other previous findings in the literature

show. Note that variations in high-tech capital or R&D across sectors may also capture variations in
54As a first pass at the issue, I use a Granger causality test. The usual cavaets apply – time precedence and causality are two

distinct concepts. I find Granger causality in both directions: stronger in the upstream-downstream direction, where the coefficient

on lagged σi is .179 (.054); and weaker in the opposite direction with a coefficient on lagged hi of .033 (.015). All lags are 5 years;

both regressions include all lagged control variables used in Table 3.4, sectoral dummies, and the lag of the left-hand side variable.
55These two equations can be used to quantify the bias that arises when we interpret the OLS coefficient β from equation (3.3)

as a causal influence of σit on hit, not taking into account the reverse relationship. The covariance between σit and ε1,it is given

by β2/(1 − β1β2)V ar(ε1,it), and the corresponding bias in β is equal to this covariance divided by V ar(σit). The Granger

causality test suggests that the feedback from hit to σit is small in comparison to the opposite direction. We thus expect that β2 is

small, which yields a small positive bias of the OLS coefficient in (3.3).
56The set Zj 6=i that I use in the IV regressions comprises (HT/K)j 6=i, (OCAM/K)j 6=i, OSnarr

j 6=i, OSbroad
j 6=i − OSnarr

j 6=i, and

(R&D)j 6=i.
57Recall that the manufacturing industry panel has 5-year intervals. Using the contemporaneous4Zj 6=i,t gives similar results.
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(unobserved) innovative activity. This poses no problem for the instruments – to the contrary: it is in line

with the innovation - skill channel, which is at the core of the ITSC. Although less evident, it is reasonable

to argue that the instruments also fulfill the second requirement. More computers and R&D in an upstream

sector can drive innovation and skill upgrading there, leading to downstream sectors demanding more

skills in order to process the innovative intermediates. But upstream computers requiring downstream

skills for reasons different from innovation-skill complementarities is harder to maintain – especially

because any intersectoral computer-compatibility channel would be captured by computers showing up

as a control variable in the second stage regression (3.5).

A final concern regarding the instruments is that high-tech capital, outsourcing, or R&D can be cor-

related across upstream and downstream industries, especially if the production chain involves similar

industries. This could lead to 4Zj 6=i,t−5 influencing 4hw
it because both correlate with 4Zit. Including

the downstream variables 4Zit in the second stage regression (3.5) controls for this channel. Although

we are able to alleviate the most important concerns, it is important to mention that the instruments are

not completely satisfactory. Endogeneity remains a concern if three things come together: unobserved

shocks or innovations hit similar industries, these industries are linked through intermediates, and the

shocks influence skill demand and the Z-variables over a long horizon (>5 years). Empirically, we have

the means to shed light on this concern using overidentification restrictions. The results are encouraging

(see below).58

Endogeneity of control variables

Having addressed the endogeneity of σit, we now turn to the same concern for the other structural vari-

ables Zit. Most importantly, endogeneity is an issue for high-tech capital as well as for R&D intensity.

To tackle the potential bias, I use an approach outlined in Wooldridge (2002, ch. 11). Under sequential

exogeneity, we can use lagged levels of Zit as instruments for4Zit, which gives consistent estimates and

is similar in spirit to Arellano and Bond (1991). Sequential exogeneity implies that if we run regression

(3.5) in levels, then after the structural variables (Zit and σit) and sectoral fixed effects have been con-

trolled for, no past values of Zit or σit affect the expected value of hw
it. To see whether this holds, I include

the 5- and 10-year lags of all structural variables in (3.5), estimated in levels. None is significant at the

10% level, with the exception of the 10-year lag of R&D. This suggests that sequential exogeneity is a

reasonable assumption for the structural variables in my demand framework. As suggested in Wooldridge

(2002, ch. 11), I thus use the 5- and 10-year lags of high-tech capital and R&D intensity to instrument

for the contemporaneous 5-year changes. Sequential exogeneity also delivers the 5- and 10-year lags of

σit as additional instruments for 4σit.59

58An empirical analysis that takes a further pass at the endogeneity issue is in the making. This project combines changes in

Argentinian tariffs at the detailed 4-digit level with firm-level workforce characteristics at the same level of detail. Following sector-

specific drops in tariffs, Argentinian firms increase their imports of US intermediates. In sectors where this leads to an increase of

input skill intensity, we expect skill demand in Argentinian final production to rise.
59My estimation results do not depend on whether or not I use these additional instruments, but they contribute to instrument

quality and provide additional overidentification restrictions (see below).
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Results with input skill intensity

Following this extended discussion, it is time to turn to the estimation results. The second specification

in Table 3.9 adds instrumented input skill intensity to the regression. The corresponding coefficient is

highly significant and smaller than in the OLS specification.60 This makes sense, given that we expect

an upward bias of OLS estimates (see footnote 55). Input skill intensity contributes over one third to

the overall increase in the white collar wage bill share in US manufacturing – about as much as the

upper bound of previous estimates for the contribution of computers. Interestingly, the other structural

variables remain largely unchanged when adding 4σit to the regression, which suggests that input skill

intensity is not merely picking up explanatory power from other variables. As the number of observations

reflects, the choice of instruments – using lagged changes 4Zj 6=i,t−5 as instruments for 4σit – loses

an additional time period (with one already lost due to first differencing). The instruments for 4σit are

highly significant – the corresponding F -statistic of the exclusion hypothesis is well above the rule of

thumb threshold of 10 recommended by Staiger and Stock (1997) to avoid weak instrument concerns.

The additional test of weak instruments based on Stock and Yogo (2002) confirms this result. This test

becomes especially useful in models with more than one endogenous variables and is discussed in more

detail below. Since the number of instruments is larger than one, we can test for their endogeneity using

the Sargan-Hansen test of overidentifying restrictions. The corresponding p-value is .78. We therefore do

not reject instrument exogeneity.

Next, I turn to specification 3, instrumenting for several endogenous structural variables. The Staiger

and Stock (1997) rule of thumb for avoiding weak instruments refers to models with one endogenous

variable. In models with two or more endogenous variables, instruments can be weak despite being very

significant in each first-stage regression. This is because endogenous explanatory variables predicted by

the instruments may be close to collinear, which makes it difficult to separate the effect of each individual

one. Stock and Yogo (2002) provide a framework that allows testing the hypothesis of weak instruments

in this case. The null hypothesis is that instrument quality is below one of four levels. The last row of

Table 3.9 reports the critical value for the highest quality level, corresponding to a maximum IV bias of

5% because of weak instruments. The Stock and Yogo framework allows for models with up to three

endogenous variables. Therefore, I first instrument (in addition to σit) for those two controls for which

endogeneity is the most serious concern: high-tech capital and R&D intensity.61 The results for all

structural variables, including input skill intensity, are very similar to the previous specification – with

the exception of high-tech capital that now has a larger coefficient. The p-values for the overidentification

test is again well above the rejection level. Finally, instruments are close to the highest quality level

according to the Stock and Yogo test.62 Altogether, the results reported in Table 3.9 suggest that the ITSC

is very important for explaining skill upgrading in US manufacturing. Its contribution appears to be in

the same order of magnitude, or even larger, than high-tech capital.

60See, in particular, regression (3) in Table 3.6, which also uses hw
it as dependent variable.

61R&D intensity can be instrumented with one more time lag without using an additional time period of observations, because

the R&D data include 1963.
62The critical value for the second quality level, corresponding to a maximum IV bias of 10%, is 10.01.
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3.5 A Sketch Model

This section integrates my empirical findings into the analytical SBTC framework. The standard setup

has two types of labor in a CES production function, producing one final good.63 I add intermediate

input linkages and skill-complementarity across many sectors, as motivated by the empirical evidence

presented above. In order to concentrate on the main mechanism, I present a static model, abstracting

from intertemporal dynamics and endogenous skill supply. The economy is composed of i = 1, ..., N

sectors, each producing a specific good, or variety i. The number of sectors is fixed. Within each sector, a

multiplicity of firms operates under perfect competition and constant returns. I focus on a representative

firm for each sector i, making zero profits. Each good i is used for final consumption and as intermediate

input in sectors j 6= i with constant input shares. This Leontief technology is at the heart of input-output

tables, and section 3.4.2 has shown that constant input shares are a reasonable assumption.

The economy is populated by L low skilled individuals, working in production, and H high-skilled

individuals that coordinate production and handle innovative intermediate inputs. The skill intensity of

inputs is defined as the weighted average share of high-skilled workers employed in their production,

resembling the empirical part of the paper. High-skilled workers are relatively more productive in pro-

cessing skill intensive inputs. This setup is similar in spirit to Kremer’s (1993) O-Ring theory. Kremer

assumes that production involves the completion of n tasks, each performed by a worker of skill level qi

in one and the same firm. Output is proportional to
∏n

i=1 qi, implying a strong complementarity of work-

ers’ skill levels. In this framework, a high skilled worker performing task i is most productive in firms

that employ high-q workers in all other tasks, too. The model presented here can be thought of as a multi-

sector version of the O-Ring theory. Kremer’s tasks are my intermediate inputs – final products contain

intermediates from various sectors instead of being entirely manufactured in one firm.64 Innovations and

quality of skilled workers are embedded in the goods they produce. In my setup, Kremer’s within-firm

skill complementarity works its wonders across firms along the production chain. High skilled workers

in sector N are the more productive relative to the unskilled, the more innovative their inputs are, i.e., the

more skills are embedded in the N − 1 input varieties that they process.

Another related model endogenizes the direction of technical change [Acemoglu 1998, 2002 and

2007, Acemoglu and Zilibotti 2001]. Therein, an increasing number of skilled workers implies a larger

market and demand for skill-complementary technologies, inducing skill-biased technological change.

However, this channel lacks empirical support, as it is hard to pin down a robust relationship between

demand factors and R&D intensity [Cohen and Levin 1989].65 In a more recent contribution, Ngai

and Samaniego (2007) find that neither TFP growth nor R&D intensity are related to demand factors

in equilibrium, arguing that technical progress is largely a supply-driven phenomenon. They draw this

conclusion from a calibrated multi-sector model of productivity growth with knowledge generation and

spillovers as the driving factors. This is similar in spirit to my model, where innovations and skill de-

mand are also supply driven. However, neither the model of Ngai and Samaniego nor the one pioneered

by Acemoglu feature intersectoral linkages or skill complementarities across sectors. Furthermore, in

Acemoglu’s setup a relative increase in the amount of skill-complementary technologies yields decreas-

63See Card and DiNardo (2002) for a review of the standard SBTC framework.
64The infamous O-Ring itself is not a product of the space vehicle industry (SIC 3761), but of the gaskets, packing, and sealing

devices sector (SIC 3053).
65Some studies argue explicitly against demand-driven innovation [Nelson and Winter 1977].
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ing incentives to develop more of them, since their relative price falls.66 In my model, increasing skill

intensity in one sector augments the skill bias in other sectors connected through intermediate linkages.

3.5.1 Production and Consumption

There are N types of goods produced in this economy, each by a representative firm in its corresponding

sector i. A producer of good i employs low-skilled labor Li, high-skilled labor Hi, and an aggregate of

intermediate inputs Xi, specified in more detail below. Output of good i is given by

Yi = Ai

[
γi

[
e φiσi Hi

] ε−1
ε + (1− γi) [Li]

ε−1
ε

] ε
ε−1 α

(Xi)1−α (3.10)

where ε > 0 is the elasticity of substitution between the labor inputs, γi is a sector-specific technology

parameter, and α is the share of value added (or aggregate labor) in production. Finally, σi denotes the

skill intensity of intermediate inputs that enter the production of i, and φi reflects the strength of the ITSC.

I do not specifically model innovation, but rather assume that skilled labor Hi performs innovation and is

needed to process innovative intermediates. This is a shortcut, aimed at providing a simple calibratable

model. A micro-founded model is in the works [Voigtländer 2008]. If φi > 0, overall productivity

of sector i increases in input skill intensity σi, which reflects the spillover of innovations embedded

in intermediates produced by skilled workers. Moreover, when φi > 0, the relative productivity of

high-skilled workers increases with σi, reflecting skill complementarities along the production chain.

Therefore, a sector purchasing skill intensive intermediates will employ relatively more skilled workers.

If φi = 0 we are back to a standard SBTC production function, in a setup with intermediate inputs.

Each sector i uses the products from all sectors j 6= i as intermediate inputs. To keep matters simple,

I assume that intermediates enter final production (3.10) according to a Leontief technology:

Xi = min
j 6=i

{
1

aij
Xij

}
(3.11)

where Xij is the amount of input j used in the production of good i, and aij ∈ (0, 1) is the corresponding

input requirement. High aij indicate that much of input j is needed in the production of product i. Sectors

do not use their own output as intermediate: aii = 0, but use a positive amount of all others: aij > 0,

∀j 6= i; and aij is normalized such that
∑

j 6=i aij = 1. Let the fraction xij ≡ Xij/aij denote the effective

units of input j. When optimizing production, the representative firm i chooses the same amount of each

effective input j, such that xij = xi, ∀j. Consequently, the total amount of input i used by sector j is

given by

Xij = aijxi (3.12)

where the effective amount of each input in sector i, xi, is determined in the optimization of production

(3.10), with Xi = xi. A convenient feature is that xi also gives the total amount of intermediates used,∑
j 6=i Xij = xi. Equation (3.12) implies that the share of input j in sector i is given by Xij/

∑
j 6=i Xij =

aij . The final piece of the model’s production side is the skill intensity of inputs, which is defined in

66The overall strength of the skill bias results from a trade-off between this price effect and the market size effect, with the

elasticity of substitution between skilled and unskilled labor playing a crucial role. This parameter is of secondary importance for

my results.
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concordance with the empirical analysis:

σi =
∑

j 6=i

aijhj (3.13)

where hj is the skilled labor share employed in the production of input j. Thus, σi ∈ [0, 1] represents the

weighted average share of skilled workers employed in the production of all intermediate inputs used in

sector i.

All agents have the same preference structure, independent of their skill level. Skill-specific wages

wL and wH are the only source of income. There is no investment. A representative consumer draws

utility from the consumption ci of all N goods according to the Cobb-Douglas preferences

u
({ci}N

i=1

)
= exp

(
N∑

i=1

ln ci

)
. (3.14)

This formulation of utility is convenient because it delivers constant and equal final expenditure shares in

equilibrium.

3.5.2 Linkages, Complementarities, and Multipliers

The economic environment in my model is similar to Jones’ (2007) setup involving intermediate linkages

and complementarity. There, too, final goods are used for both consumption and as intermediate inputs.

Jones needs the assumption that goods are complements in both production and consumption in order

to obtain a closed-form solution. My approach achieves this result with a more natural formulation of

preferences but the stronger assumption of no input substitutability. Both Jones’ and my model deliver a

multiplier that reinforces productivity differences and skill demand, respectively. The multiplier channel,

however, is different. In Jones’ paper, higher intermediate productivity leads to more output, which

feeds back into the production of intermediates. The share of intermediate goods in total revenue is

therefore crucial for the size of the multiplier. In my approach, the intermediate input share in total

output, 1 − α, is not important for the ITSC. What counts is the average proportion of skills embedded

in inputs, σi, together with the strength of cross-sectoral complementarity given by φi. Linkages are only

important for granting that sectors process each others’ output. They are necessary, but not sufficient

for skill complementarities across sectors. If φiσi = 0, there is no intersectoral skill complementarity

despite the existence of intermediate linkages. Provided that φi > 0, my model delivers a skill demand

multiplier. Suppose that Hj increases relative to Lj , for example because of an innovation in sector j

that requires more skilled labor. Skill upgrading in sector j increases σi for all i 6= j, which leads to

higher productivity of skilled workers and thus augmented skill demand in these sectors, as well. The

consequence is a virtuous circle of skill upgrading in the whole economy. Appendix A.3 derives the

multiplier effect formally.

3.5.3 Optimization and the Symmetric Case

Firms take factor and goods prices as given and choose Li, Hi, and xi to maximize profits from production

(3.10) subject to (3.11) - (3.13). Xi in (3.10) is replaced by xi because of the Leontief technology related

to intermediate inputs. The total cost of intermediates is
∑

j 6=i pjXij , with Xij given by (3.12). A
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representative firm in sector i optimizes

max
{Li,Hi,xi}

piYi − wLLi − wHHi −
∑

j 6=i

pjaijxi (3.15)

where pi is the price of good i. A convenient implication of the Leontief technology is that firms do

not adjust intermediate input proportions if input skill intensities change, that is, firms take σi as given.

Setting the ratio of the two labor types’ marginal product equal to the ratio of their wages and rearranging

yields the relative demand for skilled labor:

Hi

Li
=

(
γi

1− γi

)ε (
eφiσi

)ε−1
(

wL

wH

)ε

(3.16)

The relative labor demand is determined by sector-specific characteristics γi (including, for example,

computer equipment and outsourcing), input skill intensity, and relative wages. This result will become

important in the calibration of the model. The remaining steps of calculus for the production side are

needed to close the model, but not crucial for the intuition. They are presented in Appendix A.2.

On the demand side, let cL,i and cH,i denote labor-type specific consumption of good i. Low-skilled

and high-skilled individuals maximize (3.14) subject to their budget constraints
∑N

i=1 picL,i ≤ wL and∑N
i=1 picH,i ≤ wH , respectively. This yields the skill-specific demand functions

cL,i =
wL

Npi
and cH,i =

wH

Npi
(3.17)

Let Ci = LcL,i + HcH,i denote total final demand, and X•i =
∑

j 6=i Xji total intermediate demand for

good i. We can now specify the three market clearing constraints that the economy faces:

L =
N∑

i=1

Li (3.18)

H =
N∑

i=1

Hi (3.19)

and

Yi = Ci + X•i, ∀i. (3.20)

The first two constraints assume that the economy is endowed with an exogenously given amount of

each type of labor, and that both are fully employed. The last market clearing constraint says that each

sector’s output is completely used up in final consumption and as an intermediate input for other sectors’

production.

For expositional reasons, I present only the symmetric case of the model. This is sufficient to explain

the main intuition, and more readily compared to the standard SBTC framework. However, heterogeneity

of sectors is important in the calibration, as it provides the variation needed to identify the key parameter

φ.

Definition 1 The symmetric case of the model is characterized by all sectors having the same technology,

that is, Ai = A, γi = γ, φi = φ, ∀i = 1, ..., N ; and aij = 1/(N − 1),∀j 6= i.

The last expression in the definition says that each sector uses the same proportion of all other sectors’

products as intermediate inputs. Appendix A.2 shows that in the corresponding symmetric equilibrium
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the relative wage is given by
wH

wL
=

γ

1− γ

(
eφh

) ε−1
ε

(
L

H

) 1
ε

(3.21)

where h is the proportion of high-skilled workers in the economy. This result is an extension of the

standard expression in the SBTC literature, which is recovered if φ = 0, i.e., in the absence of intersectoral

skill complementarities. The empirical evidence presented above argues strongly for φ > 0. In this case,

an increase in H relative to L has two effects. First, the standard downward pressure on the relative

wage due to the increased relative supply. Second, the ITSC effect, working in the opposite direction:

The newly employed skilled workers foster product innovation in their own sectors, which in turn drives

innovation in all other sectors and raises the relative productivity of skilled workers. The second effect

therefore raises skill demand and the relative wage. Next, I calibrate the model in order to investigate

the strength of the ITSC effect and see how the model performs in explaining the observed relative wage

trend in U.S. manufacturing.

3.5.4 Calibration

In the symmetric equilibrium shown in (3.21), φ represents the average strength of the ITSC in the model

economy. In order to calibrate this parameter, I use my panel of manufacturing sectors. First, I derive the

relative demand for skilled workers from equation (3.16) in logarithmic form:

ln
(

Hi

Li

)
= ln

(
γi

1− γi

)
+ (ε− 1)φiσi + ε ln

(
wL

wH

)
(3.22)

On the right-hand side, γi reflects sector-specific characteristics driving skill demand, i.e., the previously

used sectoral fixed effects and control variables. I follow two approaches to deal with the inverse relative

wage in (3.22). When estimating (3.22) in levels, I use time-dummies to account for changes in economy-

wide relative wages. When run in changes, I include the relative wage in the regression. This also

accounts for sector-specific worker quality.67 A variety of studies pin down the elasticity of substitution

between high- and low-skilled labor, ε, in the range 1.5 to 2 [Angrist 1995, Ciccone and Peri 2005].

In (3.22) we can only identify the term βi ≡ (ε − 1)φi. However, for a given ε, φi can be recovered.

Following the empirical findings reported above, we expect βi ≥ 0 and increasing in the degree of input

differentiation in sector i. The identifying regression is:

ln
(

Hit

Lit

)
= αi + αt + βiσit + γZit + εit (3.23)

where αi and αt are sector and time fixed effects, Zit are control variables, and εit denotes the error

term. Note the similarity to regression (3.5), which we derived from the labor demand framework. The

left-hand side variable is now the relative demand, rather than the wage share of skilled labor. There are

two ways to estimate the economy-average ITSC parameter φ. First, identify it directly by constraining

βi = β, ∀i and weighting by sectoral employment. The corresponding results are shown in column 1

(using OLS) and columns 3, 5, and 6 (using instruments) of Table 3.10. Instruments and control variables

are the same as in section 3.4.4; the previous discussion of control variable endogeneity and potential

bias applies here, as well. OLS and IV estimates yield similar estimates of the coefficient β.68 Second,
67See footnote 38 for a discussion. I also address the endogeneity of controls as in section 3.4.4.
68Since Stock and Yogo’s (2002) weak instrument test is only available for up to three endogenous regressors, I instrument (in

addtion to σi and the relative wage) for the one for which endogeneity is of greatest concern: high-tech capital.
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take into account that βi varies with input differentiation κi and include the corresponding interaction:

β1σi + β2σiκi (using the interaction terms Zj 6=i× κi, to instrument for σ× κi). In this case, the average

effect is β = β1 + β2κ̄, where κ̄ is average input differentiation, weighted by sectoral employment.

Columns 2 and 4 show the corresponding results, with the derived coefficient slightly larger as compared

to the first method. As reported in the bottom of the table, instruments pass all the relevant tests.69

Overall, the estimates of β lie in the range 2.2-3.5. I use the IV estimate of column 3, β ≈ 3.0, as a

baseline, and also include the lower and upper bounds in the calibration.

Table 3.10: Calibration of the ITSC parameter φ. Dependent variable is ln(Hi/Li).

Levels Changes
OLS OLS IV IV IV IV

(1) (2) (3) (4) (5) (6)

Input skill intensity (β1): 2.670*** 1.088 3.052*** 1.759* 2.543*** 2.187***
σi (.629) (1.095) (.514) (.974) (.464) (.445)

Inp skill intens. × inp diff. (β2): 4.045* 3.184
σi × zi (2.065) (2.018)

Implied coefficient: β̂ = β̂1 + β̂2z̄ 3.309*** 3.508***

Relative wage: ln(wH,i/wL,i) -.452*** -.770*** -.467*** -.515***
(.051) (.139) (.053) (.160)

Controls yes yes yes yes yes yes
Sector fixed effects yes yes no no no no
Time fixed effects yes yes no no no no
R2 (after FE) .56 .57
Observations 2089 2089 1402 1402 1402 1402

First stage regressions: ‡
F -test for significance of IV for: 4σi 39.82 56.82 33.86 29.8

4σi × zi 62.52
Instrumented control variables: HT/K HT/K ,

ln(wH/wL)

p-value overidentifying restrictions .82 .20 .64 .42
Stock and Yogo weak IV F -statistic 39.8 24.0 52.3 9.8

Critical value for highest quality IV 19.9 19.8 18.3 17.4

Notes: Clustered standard errors (by sector) in parentheses. Key: *** significant at 1%; ** 5%; * 10%. All regressions and
the mean κ̄ are weighted by sectors’ average share in total manufacturing employment 1967-92. Controls include the fol-
lowing variables: Structures per worker (kstruct), Equipment per worker (kequip), High-Tech capital (HT/K), R&D intensity
(R&Dlag), and Outsourcing (OSnarr). In columns 2 and 4, also the interactions of the control variables with input differen-
tiation κi are included. Weighted average input differentiation is κ̄ = .549. All variables in (1) and (2) are in levels, while
5-year differences are used in regressions (3) - (6); the latter are estimated using two-step feasible efficient GMM.
‡ Instruments are the 5- and 10-year lags of each instrumented variable. In addition, 4σi is instrumented with the 5-year lag
of 4Zj 6=i. See section 3.4.4 for further details on instruments.

Figure 3.3 shows the results of the calibrated model, depicting the skill premium given by (3.21). In

the absence of other factors driving skill demand (γi constant), the model with φ = 0 predicts a sharp

decline in wH/wL when the high-skill labor share h grows. In the figure, I refer to this as the standard

model, meaning a CES production function with skilled and unskilled labor. The ITSC model uses φ =
69In column 6, instruments are not of the highest quality, but very close to the second-best level, corresponding to a maximum

IV bias of 10% (critical value: 9.85).
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3.0, corresponding to β = 3.0 and ε = 2.70 In the ITSC baseline case, the decline of the skill premium

is much more moderate. The same holds for the upper and lower bounds, φ = 2.2 and φ = 3.5. This

result is interesting when related to the endogenous SBTC literature pioneered by Acemoglu. Therein,

elasticities ε > 2 are needed to obtain an increasing skill premium as a response to increasing skill supply.

My results suggest that when intersectoral skill complementarities are added to this setup, more realistic

elasticities ε < 2 will deliver increasing skill premia because the ITSC flattens the aggregate skill demand

curve.

The right panel of Figure 3.3 compares the model predictions with the observed skill premium in

U.S. manufacturing. While the weighted average share of skilled workers rose from 24.7 to 30.6 percent

between 1967 and 1992, the skill premium returned to its previous value of 1.56 after a small initial

decline. Following the common convention, I refer to skill bias as the difference between the standard

model’s predicted decline and the observed stagnation of the relative wage. The calibrated ITSC model

explains about half of the observed skill bias. This confirms the empirical importance of the ITSC that

we found in section 3.4.
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Figure 3.3: Calibrated ITSC model vs. standard model and data

Notes: The data in the right panel represent the weighted average share of white-collar workers in U.S. manufacturing

1967-92, derived from the NBER Manufacturing Industry Database, using total sectoral employment as weights. The

parameter γ is normalized such that the model matches the data in 1967. The elasticity of substitution between skilled

and unskilled labor is ε = 2.

3.6 Conclusions

While intermediate inputs account for more than half of a final product’s value, intersectoral linkages

have been ignored as a source of skill bias. Existing empirical work on rising wage inequality has failed

to account for the full scope of skill upgrading in recent decades. This paper presents strong evidence

for an intersectoral technology-skill complementarity (ITSC). The ITSC amplifies initial shocks or inno-

vations that increase skill demand, spreading their impact across sectors. I provide empirical evidence

suggesting that the ITSC works through product innovation. The innovative activity of skilled workers in

one sector improves products used in many other sectors, stimulating innovation and skill demand along

the production chain. The result is a self-enforcing circle of skill upgrading that eventually feeds back

70Results are very similar when using ε = 1.5 and φ = 3.0/0.5 = 6.0.
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into the originating sector. Overall, the ITSC can account for more than one third of the skill upgrading in

U.S. manufacturing between 1967 and 1992. The remaining is largely explained by previously suggested

within-sector drivers of skill demand, including high-tech capital, R&D intensity, and outsourcing.

To identify this novel mechanism, I construct a measure for the skills embedded in a sector’s inter-

mediate inputs. This input skill intensity correlates with final production skills, i.e., skills employed in

the further processing of intermediates. The correlation is robust to the inclusion of numerous control

variables previously suggested in the SBTC literature, as well as to using a more conservative mea-

sure of input skill intensity, discarding linkages between similar sectors. These results are confirmed by

an estimation framework that goes beyond the mere correlation, using instruments to account for the bi-

directional causality between upstream and downstream skill requirements and the endogeneity of control

variables.

The ITSC does not come as a surprise. It combines the well-documented findings of a technology-

skill complementarity within sectors with technological spillovers across sectors. The concept of multi-

pliers due to intermediate linkages is also a well-established one. It has been used in studies explaining

productivity differences or rising world trade, but not in the SBTC literature. Two empirical findings

suggest that the ITSC works through product innovation performed by skilled workers. First, the ITSC is

stronger when involving differentiated intermediates, more readily reshaped by innovative minds. I show

that product innovation is more pronounced in sectors producing differentiated goods. Thus, downstream

industries using differentiated intermediates purchase relatively more embedded innovation. Construct-

ing a measure of input differentiation, I then provide evidence for a stronger ITSC among sectors linked

through differentiated intermediates. Second, productivity regressions show that skills in intermediate

and final production complement each other in driving TFP and output per worker. Skill-intensive in-

termediates go hand in hand with higher productivity only if they meet skills in final production. These

findings suggest that upstream skills foster intermediate product innovation, which in turn augments skill

demand and productivity in final production.

In order to integrate my empirical findings into the SBTC framework, I extend the standard model

featuring skilled and unskilled labor in a CES production function, adding intermediate inputs in a setup

with N sectors. Therein, the relative productivity of skilled workers can grow with skills embedded

in intermediate inputs, reflecting the complementarity of skills along the production chain. Moreover,

overall productivity increases with input skill intensity, reflecting the innovative activity of skilled workers

in intermediate production. An increase in the number of skilled workers has two effects on the skill

premium: The standard downward pressure due to increased supply, and an ITSC effect, pushing in the

opposite direction. The latter works through the complementarity of skills along the production chain.

Once the newly available skills are employed in one sector, they raise the relative productivity of skilled

labor in other sectors through intermediate linkages, augmenting skill demand. The calibrated model

can account for almost half of the observed skill bias in U.S. manufacturing, confirming the previous

estimation results.

The present paper documents the novel stylized fact of an ITSC and applies it to the skill bias of

technical change. In addition, the ITSC opens the door for analyzing other important questions from

an intermediate-linkage angle. One example is the observed prevalence of North-North trade. Standard

models of international trade predict that the skill-abundant North should specialize in skill-intensive pro-
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duction, importing low-skill intensive goods from the South. The ITSC, on the other hand, suggests that

skill intensive Northern production requires high-quality skill-intensive intermediates, purchased in the

North. Another potential application is the observation that TFP growth rates differ widely and persis-

tently across industries [Ngai and Samaniego 2007]. The ITSC, working through product innovation, can

help to explain this fact. Some sectors purchase more innovation embedded in their intermediates than

others. Innovative intermediates, in turn, foster final product improvements. Therefore, heterogeneity

in intermediate input requirements could lead to persistent variations in sectoral TFP growth. Finally,

an important topic for further investigation is whether the ITSC is a broad phenomenon, extending to

linkages beyond the manufacturing sector.

3.7 APPENDIX

3.7.1 Appendix A.1 Data Sources and Construction of Variables

Product innovation

Scherer (1982) provides data on R&D expenditures broken down into product and process innovation for

36 manufacturing sectors, broadly equivalent to the 2-digit level. In this context, a new process is defined

as a technical improvement in a firm’s own production methods, while a new product is an improvement

sold to other business enterprises or consumers. Scherer uses data from the Federal Trade Commission’s

Line of Business survey for 1974 to construct a match between industrial invention patents and the under-

lying R&D expenditures. He also derives, for each patent, its industry of origin and industries using the

invention. Based on these data, Scherer implements a methodology first proposed by Schmookler (1966):

Constructing a matrix similar to an input-output table, with industries performing R&D and originating

inventions comprising the rows, and industries (including end consumers) using those inventions com-

prising the columns. Each element in the matrix represents the flow of technology from an originating

industry to a using one. Diagonal elements indicate process technology. I use this table to derive, for

each industry, its share of R&D spent for product innovation, πprod
i , as the sum of off-diagonal elements

divided by total R&D expenditures (row-sum).

Additional control variables

The capital measure in efficiency units used by Krusell et al. (2000) is only available at the aggregate

U.S. level. Thus, I use the 4-digit SIC figures from the Manufacturing Industry Database for real capital

equipment and structures.71 The National Science Foundation (NSF) provides company and other (except

Federal) research and development (R&D) expenditures as a percentage of sales by industry. This R&D

proportion is commonly referred to as R&D intensity.72 The NSF data cover 24 industries that I match to

the 358 industries of my sample.73 The weighted mean of R&D intensity for my sample increases from

2.12 percent in 1963 to 3.28 percent in 1992.

71See Bartelsman and Gray (1996) for a documentation of these data and the corresponding investment deflators.
72See, for example, Autor et al. (1998), who work with the same NSF data as used here. Machin and Van Reenen (1998)

use R&D intensity in an industry-level panel for several OECD countries and report substantial positive effects on the growth of

high-skill employment and wage-bill shares.
73The corresponding crosswalk from the 24 NSF industries to the 358 SIC industries of my sample is available upon request.

Due to missing observations in the NSF data, several imputations and interpolations were required.
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In order to control for computer equipment and other high-technology capital, I use detailed data on

private nonresidential fixed assets from the BEA. These data distinguish capital by asset type for 21 (ap-

proximately two-digit) NAICS manufacturing industries, which I match to the 358 industries of my panel.

I derive the real net capital stock by asset type and industry (in 2000 dollars) from the current-cost capital

stock and the chain-type quantity index. Following Berndt, Morrison, and Rosenblum (1992), who use an

earlier version of this dataset, I define high-technology capital to include office, computing and account-

ing machinery; communications equipment; scientific and engineering instruments; and photocopy and

related equipment. From this number I calculate the share of high-technology capital in the total capital

stock for each industry (HT/K). The weighted average of this broad measure increases from 1.2 percent in

1967 to 3.2 percent in 1982, and 6.0 percent in 1992. A frequently used, more narrowly defined measure

includes only the share of office, computing and accounting equipment in the capital stock (OCAM/K).

This variable is 0.4 percent in 1967, 0.8 percent in 1982, and then increases to 2.0 percent in 1992.

Feenstra and Hanson (1999) derive, for each 4-digit SIC industry, a proxy for imported intermediate

inputs from trade data. Expressing this measure relative to total expenditure on non-energy intermediates

in each industry gives their broad measure of foreign outsourcing. The narrow measure considers only

inputs that are purchased from the same 2-digit SIC industry as the good being produced. While the broad

measure includes all imported intermediates, the narrow measure restricts attention to the outsourcing of

production activities that could have been performed by the respective industry within the United States.

I calculate both measures of outsourcing for the years and sectors included in my sample, using data on

U.S. imports and exports by 4-digit SIC industries from the Center for International Data at UC Davis

together with the above described input-output data.74 The weighted averaged broad (narrow) measure

increases from 4.4 (2.4) percent in 1967 to 8.6 (3.9) percent in 1982 and 13.4 (6.6) percent in 1992.

3.7.2 Appendix A.2 Equilibrium for the Symmetric Case

Firms’ optimization with respect to Hi and Li yields the relative demand for skilled workers, shown

in (3.16). The first order condition (FOC) for xi gives sector i’s demand for effective units of each

intermediate input j, xij , as a function of total output and goods prices:

xij = xi =
(1− α)piYi∑

j 6=i pjaij
, ∀j (A.1)

In the following, I use these FOC to derive the demand for each factor and the marginal cost of production,

which equals the product price under perfect competition. Rearranging (3.16) and substituting for Hi in

(3.10) yields

Li =
(

wL

1− γi

)−ε

Ωε
i (xi)

− 1−α
α

(
Yi

Ai

) 1
α

(A.2)

and similarly for Hi:

Hi =
(

wH

γi

)−ε (
eφiσi

)ε−1
Ωε

i (xi)
− 1−α

α

(
Yi

Ai

) 1
α

(A.3)

74I construct a crosswalk to match the 450 manufacturing industries from the trade database to the 358 industries of my sample.

The correspondences are available upon request. Feenstra and Hanson use nominal input shares when calculating the outsourcing

measure. My results are robust to using both nominal and real input shares.
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where Ωi is the cost of the Hi-Li labor composite, given by

Ωi =
[
γε

i w
1−ε
H

(
eφiσi

)ε−1
+ (1− γi)εw1−ε

L

] 1
1−ε

(A.4)

The next steps lead to factor demand as linear functions of Yi. Multiplying (A.2) and (A.3) by the

respective wages and adding up yields the total cost of labor in sector i:

wLLi + wHHi = Ωi (xi)
− 1−α

α

(
Yi

Ai

) 1
α

(A.5)

The FOC of producers’ optimization also yield the standard result that the expenditure share for labor is

α, i.e., wLLi + wHHi = αpiYi. Plugging this into (A.1) gives

wLLi + wHHi

pixi
=

α

(1− α)
(A.6)

where pi ≡
∑

j 6=i aijpj is the effective (or weighted average) input price. Plugging (A.6) into (A.5)

yields the demand for effective units of each input as a function of factor prices and output:

xi =
1
Ai

1− α

pi

(
pi

1− α

)1−α (
Ωi

α

)α

Yi (A.7)

Using this result together with (A.2) gives the demand for low-skilled labor Li; and together with (A.3)

for high-skilled labor Hi, as functions of factor prices and output:

Li =
1
Ai

α

(
1− γi

wL

)ε

Ωε−1
i

(
pi

1− α

)1−α (
Ωi

α

)α

Yi (A.8)

Hi =
1
Ai

α

(
γi

wH

)ε (
eφiσi

)ε−1
Ωε−1

i

(
pi

1− α

)1−α (
Ωi

α

)α

Yi (A.9)

We can now derive the total cost of production, TCi, by multiplying (A.7) - (A.9) with the corresponding

factor prices and adding up.75

TCi =
1
Ai

(
pi

1− α

)1−α (
Ωi

α

)α

Yi (A.10)

Due to perfect competition within sectors and constant returns to scale in production, representative firms

make zero profits, implying piYi = TCi. Therefore, the price of good i is given by

pi =
1
Ai

(
pi

1− α

)1−α (
Ωi

α

)α

. (A.11)

We can now derive the quantities for the symmetric case described in Definition 1. First, from (3.13):

σi = 1/(N − 1)
∑

j 6=i hj ; the input skill intensity of sector i is equal to the average skill intensity of

production in all other sectors. Plugging this result into (3.16) and using Hi/Li = hi/(1− hi) gives:

hi

1− hi
=

(
γ

1− γ

)ε (
eφσi

)ε−1
(

wL

wH

)ε

(A.12)

75Recall that xi reflects also the total amount of inputs used in sector i, which follows from (3.12) and the normalization∑
j 6=i aij = 1. The total cost of intermediate inputs is equal to

∑
j 6=i pjXij =

∑
j 6=i pjaijxi = pixi, i.e., weighted average

input price times total amount of inputs used.
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This equation implies that hi = h = H/(H + L),∀i.76 Plugging this into (A.4) yields Ωi = Ω,∀i.
Moreover, the input skill intensity is equal to the average high-skill labor share in each sector: σi = h,∀i.
Next, using pi = 1/(N − 1)

∑
j 6=i pj in (A.11) implies pi = p, ∀i.77 Consequently, pi = p, ∀i. Because

of price symmetry, final demand (3.17) is also symmetric, and so are factor demands (A.7)-(A.9). Thus,

Li = L/N , Hi = H/N , and Yi = Y/N , where Y is total (intermediate and final) output of the economy.

Dividing (A.9) by (A.8) in the symmetric case gives equation (3.21).

Finally, I show that goods markets clear, using the superscripts D for demand and S for supply. Total

demand for each good i has a final and an intermediate component: Y D
i = Ci + X•i. The former derives

from (3.17) and is given by

Ci = cL,iL + cH,iH =
wLL + wHH

Np
, (A.13)

while the latter is composed of the demand for sector i’s output from all other N − 1 sectors:

X•i =
∑

j 6=i

1
N − 1

xj =
1
A

(
p

1− α

)1−α (
Ω
α

)α 1− α

p(N − 1)

∑

j 6=i

Y S
j =

(1− α)
N − 1

∑

j 6=i

Y S
j (A.14)

where the first equality follows from (3.12), and the last one from (A.11). In order to join these two

equations, I replace Y S
j using the symmetric expression for the labor expenditure share, αpY S

j = (wLL+

wHH)/N for all sectors j 6= i. Therefore, total demand for each good i is given by

Y D
i = Ci + X•i =

wLL + wHH

Np
+

(1− α)
α(N − 1)

∑

j 6=i

wLL + wHH

Np
=

1
α

wLL + wHH

Np
. (A.15)

The total demand for i is therefore a multiple 1/α of the corresponding final demand. With α = 0.5,

doubling final demand means quadrupling total demand. Under perfect competition, in each sector i total

sales equal total expenditures for labor and intermediates:

piY
S
i = wLLi + wHHi +

∑

j 6=i

pjXij (A.16)

where the last term is equal to pixi. Under symmetry, and using (A.7) together with the labor expenditure

share to replace pixi, (A.16) yields total supply for each i

Y S
i =

1
α

wLL + wHH

Np
, (A.17)

which equals total demand given by (A.15).

3.7.3 Appendix A.3 The Multiplier in the Model with N Sectors

Suppose that an exogenous innovation arrives in sector i, augmenting skill demand by δi. The total

change in sector i’s high-skilled labor share is then given by 4hT
i = 4hE

i + δi, where 4hE
i denotes

76To prove this result, note that h = [(N − 1)/N ]σi + [1/N ]hi. Now suppose that sector i uses more than the average skilled

labor share, hi > h. Then σi < h. However, (A.12) requires that σi > h in order to have hi > h. A similar contradiction arises

when we suppose hi < h.
77The proof is similar to the one in the previous footnote. Define the average price as p = [(N − 1)/N ]pi + [1/N ]pi and

suppose that sector i charges more, pi > p. Then pi < p, which implies that sector i has a lower intermediate input price, but

charges more for its final product than the economy average, therefore making positive profits. This would attract competitors

charging lower prices until pi = p.

119



the endogenous component due to the multiplier effect. The latter is driven by changes in i’s input skill

intensity:

4hE
i = β

∑

j 6=i

aij4hT
j (A.18)

where the sum corresponds to 4σi, and β is the strength of the ITSC, as estimated in section 3.4. Now

suppose symmetry, such that hi = hj = h, δi = δj = δ and aij = 1/(N − 1). Then (A.18) simplifies to

4hE = β(4hE + δ), which implies

4hE =
β

1− β
δ and 4hT =

1
1− β

δ. (A.19)

Therefore, an exogenous innovation that leads to economy-wide skill-upgrading of 1 percent increases

the skilled labor share by 1/(1−β) percent because of the ITSC. With β ≈ .33− .5, the multiplier effect

augments initial skill upgrading by 50 to 100 percent.
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