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Abstract

Regulatory mechanisms of cells can be modelled to control and under-
stand cellular biology. Different levels of abstraction are used to describe
biological processes. In this work we have used graphs and differential
equations to model cellular interactions qualitatively and quantitatively.

From different organisms, FE. coli and S. cerevisiae, we have analysed
data available for they complete interaction and activity networks. At
the level of interaction, the protein-protein interaction network, the tran-
scriptional regulatory networks and the metabolic network have been
studied; for the activity, both gene and protein profiles of the whole or-
ganism have been examined. From the rich variety of graph measures,
one of primer importance is the degree distribution. I have applied sta-
tistical analysis tools to such biological networks in order to characterise
the degree distribution. In all cases the studied degree distributions have
a heavy-tailed shape, but most of them present significant differences
from a power-law model according to a statistical test. Moreover, none
of the networks could be unequivocally assigned to any of the tested
distribution.

On the other hand, in a more fine-grained view, I have used differential
equations to model dynamics of biochemical systems. First, a software
tool called ByoDyn has been created from scratch incorporating a fairly
complete range of analysis methods. Both deterministic and stochas-
tic simulations can be performed, models can be analysed by means of
parameter estimation, sensitivity, identifiability analysis, and optimal ex-
perimental design. Moreover, a web interface has been created that pro-
vides with the possibility interact with the program in a graphical man-
ner, independent of the user configuration, allowing the execution of the
program at different computational environments. Finally, we have ap-
plied a protocol of optimal experimental design on a multicellular model
of embryogenesis.







Resum

Els mecanismes de regulacié de les cél-lules poden ser modelats per
controlar i entendre la biologia cel-lular. Diferents nivells d’abstraccié
s'utilitzen per descriure els processos biologics. En aquest treball s’han
utilitzat grafs i equacions diferencials per modelar les interaccions cel-lulars
tant qualitativament com quantitativa.

En aquest treball s’han analitzat dades d’interacci6 i activitat de diferents
organismes, F. coli i S. cerevisiae: xarxes d’interaccié proteina-proteina,
de regulacié de la transcripcié, i metaboliques, aixi com perfils d’expressié
genomica i proteomica.

De la rica varietat de mesures de grafs, una variable important d’aquestes
xarxes biologiques és la distribucié de grau, i he aplicat eines d’analisi
estadistica per tal de caracteritzar-la. En tots els casos estudiats les dis-
tribucions de grau tenen una forma de cua pesada, pero la majoria d’elles
presenten diferencies significatives respecte un model de llei de poténcia,
d’acord amb proves estadistiques. D’altra banda, cap de les xarxes po-
drien ser assignades de forma inequvoca a cap distribucié testejada.

Pel que fa a un nivell més microscopic, hem utilitzat equacions diferen-
cials per estudiar la dinamica de models de diversos sistemes bioquimics.
En primer lloc, una eina de programari anomenada ByoDyn ha estat
creada des de zero. L’eina permet realitzar simulacions deterministes
i estocastiques, analitzar models mitjancant estimacié de parametres,
sensibilitat i analisi d’identificabilitat, aixi com dissenyar Optimament
experiments. S’ha creat una interficie web que ofereix la possibilitat
d’interactuar amb el programa d’una manera grafica, independentment
de la configuracié de 'usuari, permetent I’execucié del programa en difer-
ents entorns computacionals. Finalment, hem aplicat un protocol de dis-
seny experimental optim en un model multicel-lular de I’embriogenesi en
vertebrats.
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Preface

This thesis should be understood within the personal background of the
candidate. I graduated in Biochemistry in 2003. My daily work was in a
wet lab, where my ultimate project consisted on the cloning and expres-
sion of a human protein in bacteria. Willing to approach biology from a
more theoretical perspective, I started my PhD project in Barcelona in
2004. At that time, my deeper relationship with a computer was sending
e-mails. As it can be understood, a new rich world popped up. Although
at some points many hours had to be taken to understand the matter of
difference of a single character in a long code, the possibilities and un-
derstanding provided by computer modelling has been largely rewarding.

The contributions to the field have been very specific at slightly separated
areas of research. With the intention of putting into context the results
of the thesis, a large broad introduction has been elaborated with the
intention to bind together the three contributions. As a metaphor, the
plot of the thesis is centripetal in which a global overview is necessary to
arrive to the contributions, arranged in clearly precised areas. The large
number of references raised as an aside consequence of such structure.
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It always seems impossible until
its done.

Nelson Mandela

Introduction

1.1 Background

A cell is a closed macroscopic entity of a structured arrange of molecules.
With a typical size of 10 ym and 1 ng of mass, the complexity found
within a single cell is stoning: just the number of proteins is estimated
to be found in the order of 10'° molecules, of 10* different types [347],
precisely located at different points of the subcellular structures. Addi-
tionally, proteins represent only about 20 % of the cell’s weight [347]; it is
hard to conceive the complexity resulting from the interactions with other
macromolecules, like DNA for example. Complexity does not only come
from the number of elements but also from their intricate interactions:
dimerisation, poli-interaction, homo- and hetero-interactions, complex
formation, activation, inhibition, gain of function, transport, and many
more types of relations. And to make matters more inscrutable: space.
Because the cell is rather different from an homogeneous soup or a sim-
ple compartmented chamber of nucleus and cytoplasm [370]. More than
20 types of different compartments are known in eukaryotic cells [9],
each of them with different structure and function, clustering together
molecules at specific environments. The structure of the cell provides,
therefore, another independent level of complexity. Then, the quiet vi-
sion of homeostasis in the cell from an eye (and microscope) perspective
is quite partial as could be the Earth from the outer space looking quiet
and smooth while humankind’s most complex behaviours appear from
the large number of persons, physical and political barriers, cultures and
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particular philias and phobias of each individual. Concomitantly to this
view of a cell as a complex and dynamical system, it is understood that
the description and knowledge of the cell molecular networks entitles a
major step to comprehend the collective behaviour of macromolecules
resulting on the cellular physiology.

1.2 Cellular Networks and Graphs

Down at the cellular level, several types of networks (Figure 1.1 a.) are
subject of study. A typical example of a cellular network is the protein-
protein interaction network (PIN) [464] , where proteins are the nodes of
the network and links between nodes are defined as some kind of interac-
tion (Figure 1.1 b.): ideally links depict protein physiological interactions
but other relationships are typically described as results from yeast two
hybrid (Y2H) experiments. Also, metabolic networks (MN) [169] can be
constructed by linking two metabolites if they participate in the same
reaction (Figure 1.1 c.). Other examples of cellular networks are the
transcriptional regulatory network (TRN) [165] (Figure 1.1 d.) in which
interactions consist on regulation of the expression of a gene by a tran-
scription factor (TF). Other types of networks of biological interest are
metabolic flux networks [10] or activity networks [568].

1.2.1 Graph Properties of Interest for Biological Networks

Biological networks can be represented as graphs [286]. Therefore, ana-
lytical tools provided by graph theory can be applied to the reconstructed
set of interactions in order to understand key features from the biological
networks. In general, graphs are defined as an ordered pair G = (V, &)
were V is a set of vertices (also called nodes) and £ is a set of edges (or
links) which relate the vertices. We will use the notation V| and |£] for
the number of vertices and edges respectively. In this document I will
use the term node as synonymous for verter, the same way as link for
edge.

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Types of networks. a. An example of the representation
of a random network with 10 nodes and 9 links. Note the existence of
self-interactions, sepated components and isolated nodes. b. An ex-
ample of a PIN: nodes represent the proteins of the 30S subunit of the
bacterial ribosome and links are the accounted physical contacts [532].
c. An example of a metabolic network: glycolysis and cytric acid cycle.
Substrates are connected to each other through links that represent the
actual metabolic reactions. Information retrieved from EcoCyc [295]. d.
An example of a TRN: nodes represent the TF's responsible for the cell
cycle in yeast [105].
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Graphs can be defined of different type. When vertices are allowed to
be linked only by a single edge, the graph is called simple graph; multi-
graph when multiple edges are present between nodes. When any vertex
containing edges hold self-connections (loops) the graph is called a pseu-
dograph (Figure 1.1 a.). Edges generally do not indicate direction and
the graphs are termed undirected graphs (Figure 1.1 b.). If edges in-
dicate direction, the graph is called directed graph (or digraph), being
oriented graphs (Figure 1.1 d.) an special case of them, in which edges
are restricted to indicate a unique direction (no bidirectional edges are
allowed). Finally, other types of graphs commonly used to represent bi-
ological networks are weighted graphs, which associate a numerical value
to each edge, generally quantifying the relationship between nodes, e.g.,
binding strength, frequency of the interaction or any other relevant at-
tribute.

Several graph properties are relevant for the study of biological networks
[227, 622]. Here I describe some of the local and global properties com-
monly used to describe biological networks:

e Degree distribution: Degree (k) of a vertex is the number of edges
it has with other vertices of the graph. The degree of a vertex is
considered a local property of the networks. The degree distribu-
tion P(k) is the probability distribution of the degree of the vertices
of a given graph. Commonly the degree distribution is presented
as the cumulative degree distribution, this is, the probability of a
vertex to have K edges being K > k. Degree distribution is one of
the most popular measures to characterise a network [227]. In fact,
several generative models of graphs can be distinguished by the de-
gree distribution: graphs from either the Erdés-Rényi (ER) model
or the Watts-Strogatz (WS) model [157, 592] display a Poisson
degree distribution while the preferential attachment and growth
model from the Barabési and Albert (BA) [43] renders a power-law
distribution (see Section 1.2.2 for an explanation of these genera-
tive models). Important nodes of a network are those displaying
large number of connections called hubs. In particular for biological
networks, hubs tend to be essential for the survival of the organ-
ism [279, 611, 237, 612] although they do not show evolutionary
constrains [48]. However, the biological interpretation of the as-




CHAPTER 1. INTRODUCTION

sociation between protein degree and essentiality is deeply rooted
on the biochemical cellular processes rather than a simple corre-
lation between degree and essentiality [627]. PIN hubs have been
subjected to binomial classification as party hubs and date hubs
[239]. The differences associated to this classification, which have
been assigned to the node specific biological function rather than
to the graph topology, seem to affect dramatically the topological
properties. However this topic has caused recently large contro-
versy [183, 182, 49, 50, 63] with latest works finding no evidence of
support [3].

o (lustering coefficient: The clustering coefficient for undirected graphs
is defined as a local property as

2€k
Ci=—7-"_, (1.1)
ki(k; — 1)

where C; is the clustering coefficient of vertex i, vertex ¢ is linked
to k; neighbours and ey is the number of edges between the k;
neighbours. It provides an idea of the local cohesiveness of a vertex,
the degree of tendency of forming groups or clusters. An average
of C; over all vertices V,

c- L >,
Vs

along with the shortest path length, gives us an idea of the small-
world property! of a network. Another measure of interest is the
C(k) distribution which refers to the clustering coefficient of ver-
tices of degree k. Different proposed generative models for biolog-
ical networks present different C(k) scaling. For example, hierar-
chical models (HM) [461] display an scaling law of C(k) ~ k=1
while graphs resulting from the BA model present a constant value
of C(k) over the k range. However Soffer and Vézquez [520] ex-
plained that Equations 1.1 and 1.2 are biased towards degree cor-
relations. Authors propose [526] another measure that takes into

! The small-world propertity is defined upon two concepts: small shortest path
length and large clustering coefficient. The small-world network concept was firstly
described by Watts and Strogatz [592]. They also reported [592] to find this behaviour
in several natural, engineered and social networks, as the neural network of Caenorhab-
ditis elegans, the power grid of western United Stated or a film actors network.
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consideration the degrees of neighbour vertices:

G=1,

where w; is the maximum number of edges that can be drawn
among k; given the degree sequence of k;, taking, consequently,
the degrees of neighbour vertices into consideration. Using the new
metric, clustering coefficient distributions for real networks became
constant or logarithmic (as for other types of models [526]).

e Distance: A distance d;; in a graph is defined as the minimum
number of edges that connect vetex ¢ with vertex j. The definition
holds for non-weighted graphs, in the case of weighted graphs, the
d; ; will be considered as the sum of the weights of that path. An
interesting measure is the mean shortest distance (over all vertices
V of the graph G),

PP

ZGV JeV\{i}

also called the mean geodesic distance [407]?. This global measure

is important for understanding the information flow in the network,
centrality of nodes and network robustness against node loss. From
the shortest path, other measures of the graph can be calculated
like the eccentricity, which is the largest d; ; from a given vertex ¢
to any other vertex of G,

£(i) = max d;;.

FeV\{i}
2 Newman defines the mean shortest path (following [407] notation) & as:
=l Y,
5 TL +1 7,>g
where d;; is the geodesic distance from vertex ¢ to vertex j [407]. Newman includes

for mathematical convenience the distances from each vertex to itself which are zero
for definition. That makes the introduction of a minor error of factor (n + 1)/(n — 1)
negligible for practical purposes, that I avoid here. Another remark is that Newman
only counts one half (and the diagonal) of the distance matrix for computational
efficiency. Note the running index ¢ > j. That is valid for undirected graphs as the
set of shortest paths from 4 to 7 and j to ¢ is the same. In Equation 1.4 we run over
all pair of vertices but the diagonal, i = j.

6
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The diameter of a graph is considered the largest eccentricity of G,

de = max (i),

=%

while the radius, the shortest eccentricity of G,

re = min £(7).
i€y
Additionally, Wuchty and Stadler [607] recapitulate other less pop-
ular measures like the status, the median or the Wiener index.

e (Centrality: Centrality is a measure of the relative importance of a
vertex or an edge to the network topology. Several variables can
be used to determine centrality, like degree centrality, eigenvector
centrality, closeness and betweenness [4107]. The last two properties
have been used to provide insights into biological networks [343,
341]. Given a vertex i € V, closeness, Cl;, can be® defined as the
reciprocal of the sum of the mean shortest distances between ¢ and
the rest of the vertices of the graph [1806]:

Cl; =

-1
> dm’] :

JeV\{i}

Moreover, a very useful measure of centrality is betweenness [591],
D
2Ny KT
|D Js k"

being j € V\ {i} and k € V\ {i,5}*. Djy refers to the set of
shortest paths that go from j to k and D) (%) is the subset of D,

30ther types of closeness have been described in [540, 419, 410, 118].
* In Wasserman et al. [591] betwenness is defined (following their notation) as:

=5 gin(ni) 111

i<k ik

Similarly to the case of £ [407], for computational efficiency only half of the matrix (in
the current case without the diagonal, note j < k) is evaluated. As in Equation 1.4,
for Equation 1.10 we do not consider only just one half of the distance matrix but the
complete set of values but the diagonal (i = j) or the paths starting or ending at the
node of reference, i.e., i = j or i = k.
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that contains vertex i. Defined for both, vertices [184] and edges
[208], it is simply the number of shortest paths that pass through
a given vertex or edge. A way to obtain a convenient measure of
betweenness distributed on the range [0,1] is dividing B; by the
number of shortest paths evaluated:

B = D; 1.12
' (|V|—2) VI-1) ZZ !ng\

Edge betweenness can be used to detect community structure in a
graph [208]. If a graph contains clusters of vertices highly connected
while still connections are sparse between the clusters, the graph
is said to display community structure. Social and biological net-
works are known to display community structure [208]. Interesting
information about the structure of the network and the behaviour of
the nodes can be extracted from the knowledge of community struc-
ture. Specifically for biological networks, two functional aspects of
the network can be studied provided the community organisation:
(1) nodes of a given community are more likely to share certain
properties, as for example function and (2) specific links and nodes
responsible for connecting the scattered communities are likely to
be key players of the network as their loss or malfunction will af-
fect dramatically the whole behaviour of the system. Specifically
for cellular networks, those connecting nodes correlate with top
regulators, conserved sequences or house-keeping genes [343, 341].

o Community Structure: As mentioned above, important information
from the network can be derived from the study of the community
structure of a graph in general [235, 442]. However, a large variety
of graph properties can be studied to determine community struc-
ture in a network, rendering different results at different computa-
tional efforts®. Apart from various methods I highlight afterwards,
many others have been described [172, 432, 166, 515, 352, 266, 265,
3306, 363, 382] and I am confident that many others will be devised
in the close future. I suggest the excellent review by S. Fortunato
for a through exposition of the topic [179]. Here I introduce some
of the most commonly used methods to study community structure
with special emphasis in biological networks:

5Not necessarily the most computationally expensive methods provide the best
results.

8
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— Betweenness: As introduced before, Girvan and Newman [208]
developed an algorithm to find community structure in graphs.
The idea of the algorithm is the following:

1. For each edge, calculate its betweenness value.

2. Remove the edge of the graph with the highest value of
betweenness.

3. Go to step 1. until all edges have been removed.

Displaying the results of the removals as a hierarchical tree
will reveal the potential communities. The idea behind is that
edges connecting communities have high values of betweenness
and removing them will reveal the underlying communities.
Two essential elements of the algorithm need to be highlighted
for adequate results: (1) edge betweenness [208] and not ver-
tex betweenness [184, 216, 285] should be calculated and (2)
recalculation of the betweenness values should be done after
the removal of an edge. Not all edges of the graph necessarily
variate their betweenness when a single edge is removed, but if
the values of betweenness of the original graph are used for the
trimming, the community structure will not be revealed. The
original algorithm, and modifications of it, have been applied
to biochemical networks (metabolic and whole-cellular net-
works [148, 261, 90] and gene interaction networks retrieved
from bibliographic sources [598]), finding community structure
at different levels of the graph hierarchy, as well as a general
trend in social networks [19, 414, 230]. Additionally, very sim-
ilar measures to betweenness like information centrality [181]
have also been used within this framework with similar results.
Finally, vertex betweenness has been shown to correlate with
essentialilty and evolutionary age in PINs [285].

— Modularity: Defined by Newman as [108, 414, 409, 231]

— L di )’ 1.13
Q=2 |jg~ <2|6|) '
ez

can be used to help algorithms to find the optimal partition-
ing of a graph into communities [102]. Given a graph parti-
tioned into several communities ¢ € Z, a high modularity value

9
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should be observed if the number of edges within the commu-
nity is larger than the expected. By expected, we consider the
number of edges of an ensemble of vertices connecting with
equal probability between them and to the rest of the vertices
of the graph. The ensemble would be of the same size as com-
munity ¢, showing the same degree sequence. Therefore I; is
the number of edges that link vertices of community ¢ and d;
is the sum of degrees of vertices of community .

This measure @) has been used as the minimisation function for
graph partitioning using deterministic [327] or heuristic meth-
ods, like simulating annealing or Monte Carlo sampling opti-
misation [533]. Guimera and Amaral [231] have applied that
protocol to metabolic networks discovering relevant biologi-
cal facts, like that non-hub metabolites connecting different
modules are more conserved than hubs that connect metabo-
lites of the same module. Other optimisation algorithms, like
extremal optimisation [71], have been applied with the same
purposes, the maximisation of @ [146]. Furthermore, other
authors combined optimisation and spectral analysis [450] to
obtain graph partitions with larger () than other methods
[208, 409, 146]. An interesting review comparing sensitivity
and performance for several methods, mainly based on mod-
ularity, has been published by Danon et al. [119]. Worth not-
ing is the fact that random networks [157] and networks with
power-law degree distributions [43] display relatively large val-
ues of modularity [232]. In order to assign a significant value
of modularity to the network in hands, Guimera et al. [232]
propose the comparison with the corresponding null model.

However, modularity, (), poses some problems when used as
a minimisation function for community structure detection.
Fortunato and Barthélemy [180] proved that the maximisation
of () might provide with a specific partition of the network
forced by the algorithm, not reflecting the actual structure of
the network. Authors proved that the number of communities
|Z| that maximises the modularity @ of a graph G(V,€&) is
|Z|* = \/|€], derived from the equation,
do(zl.1eh _ 1 1

= -+ —>. 1.14
d|Z] &l 2P

10
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At this point it is clear that communities derived from the
maximisation of () are forced to have a certain size. Those
communities, specially the loose ones (I; = /2|€| or lower),
are likely to be detected upon the aggregation of actual com-
munities. Consequently, authors re-analysed some of the most
studied networks so far, some biological, like the TRN of S.
cerevisiae or E. coli and the neural network of C. elegans and
some others like social or electric networks. They found that
most of the communities previously described [231] exhibited
themselves community structure. Therefore, a word of cau-
tion should be given when the community structure has been
inferred from the optimisation of the modularity, displaying,
likely, a poor resolution of the communities.

Resolution limit problems have been solved by an elegant and
simple solution proposed by Arenas et al. [21]. The idea
consists on the introduction of a self-loop of variable strength
r to each vertex of the graph. Using optimisation methods
(extremal optimisation [146] or tabu search) at different values
of r, the community structure resolves at different levels of
granularity. Authors explore a wide interval of r, including
the complete meaningful range, observing at different levels
of r, different graph partitions, some of them showing larger
stability than others.

A complementary alternative is the calculation of the local
modularity [396], where only vertex neighbours are taken into
consideration to calculate the modularity. This way the reso-
lution of the communities is much larger and in particular for
biological networks, biological function is inferred more con-
fidentially. In this direction, Medus and Dorso [374] take the
weak and strong community definitions [453] as a merit factor,
i.e., as a function subject of optimisation. In particular they
use a simulated annealing protocol. Consequently, using a lo-
cal approach for modularity proxy, the community resolution
problem is surmounted. Moreover authors use specific graph
benchmarks [319] to provide proofs for a better performance
than Equation 1.13.

Other works [183] have also efficiently solved the problem of
community resolution limit using other different approaches.

11
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— Hierarchical Structure: Hierarchical random graphs have been

proposed as a network model [101]. They are based on the con-
nection of two vertices depending on the degree of relatedness.
Using maximum likelihood estimation and Monte Carlo sam-
pling, hierarchical random graphs have been matched with
empirical biological networks, like the metabolic network of
Treponema pallidum. Using these models which inherently
incorporate communities, several critical features have been
determined as missing links or false-positive node associations
[101].

Alternatively, Sales-Pardo et al. [193] have developed a differ-
ent method that retrieves very accurately nested hierarchical
structure of real complex networks as those representing flight
connections, metabolism or e-mail communications. The ac-
curacy they show retrieving world-wide socio-political bound-
aries using just information about flight connections is impres-
sive. The method they propose proceeds as follows: first, node
affinities based on the complete modularity landscape are cal-
culated to assess node grouping. Then, the specified groups
are compared with a random network to assess whether or not
the defined modules contain themselves modularity structure.
Repeating iteratively this last step, modularity at the differ-
ent levels of the hierarchy is uncovered. Furthermore, using
simulated annealing and a cost function, a rearrangement of
the groups of nodes is performed so that groups of larger affin-
ity are closer. Finally an optimal number of modules at each
hierarchical level is determined using a Bayesian information
criterion.

Loops: Radicchi et al. [153] devised an algorithm based on
the edge-clustering coefficient, which is a local measure for
each edge (i,7) € &€ so,

|L]|
S+l
Ll _ 26
(4,3) — |L] ) 1.15
S,. .
(4,9)

where (i, 7) is the edge that links vertices i and j, |L| is the size

of the loop for which we are calculating the measure (loops of

size 3 and 4 have been studied), Zlf‘]) is the actual number of
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loops of size |L| that include (i,7) and sl(f‘J) is the maximum
possible number of loops of size |L| to which (7,j) belongs.
Basically, it consists on the ratio of cycles of size |L| based on
each edge with respect to the maximum possible. The measure
anti-correlates with betweenness for some empirical networks
studied by the authors. Radicchi et al. follow the protocol of
Girvan and Newman [208], but using the edge-clustering co-
efficient instead of betweenness. The results are very similar
but slightly more accurate than for the Girvan and Newman
algorithm [208]. Moreover, the computational cost is cheaper,
scaling between O(|V|?) and O(|V|?) while the Girvan and
Newman algorithm [208] scales O(|V|3). Finally, they propose
a useful measure to stop the algorithm based on the compar-
ison of the structure of the current subgraph with a random
graph of vertices with the same degree sequence. They use
that metric to stop the algorithm and retrieve naturally the
size of the communities. However, one of the major draw-
backs of the algorithm is that the closed loops are frequently
found in assortative networks (social networks) and authors
claim that the application of the algorithm at disassortative
networks (technological or biological networks) can be prob-
lematic.

Cliqueness: In principle, vertices of a graph can belong to
different communities simultaneously. Within the biological
context, in fact, pleiotropic proteins are typically involved in
several pathways or can display different functions in different
cell types. However, community structure algorithms have
generally eluded this issue and most of the algorithms clas-
sify vertices unequivocally to a single community. Palla et al.
[424, 131, 1, 425] bring this problem into consideration and
they study three complex networks, the Saccharomyces cere-
vistae PIN among them. While retrieving an accurately distri-
bution of proteins into different communities corresponding to
their biological function, surprisingly they found that 26 % of
the proteins belong to more than one community, proving the
importance of nodes shared by different communities. Their
algorithm is based on cliques, which are subgraphs where each
vertex is connected to all other vertices of the subgraph. The
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authors used k-cliques and based their results on k-clique ad-
jacency, meaning that two cliques are adjacent if they share
k — 1 vertices. Then, a k-clique community [425] is defined as
the sub-graph resulting from the union of adjacent k-cliques.

Spectral analysis: Spectral properties of the connectivity ma-
trix of a graph can be exploited to uncover the community
organisation [74, 78, 140, 81, 515]. Newman [4113, 412] has de-
veloped an spectral method improving previous results [208,
102, 146] (in accuracy, maintaining performance) based on the
spectral properties of the network modularity matrix, B; ;, de-
fined as

kik;
Bij= §:<&J—2WW 1.16
{i,j}eV

being A; ; the adjacency matrix, k; the degree of vertex ¢ and
|V| the total number of edges. Concomitant refinement of the
results, inspired on the Kernighan-Lin graph partitioning al-
gorithm [294], also proposed by Newman, provide a final com-
munities vertex re-distribution that optimises the modularity
of the graph divisions. Other algorithms very similar to the
Newman proposition based on the Kernighan-Lin algorithm
have been tested. Mei et al. [375] use an algorithm based
on single-node-move operations starting from a random parti-
tion as initial condition that outperforms for the Q) value the
complete spectral analysis protocol [113] and other methods
[483, 327].

A nice property of the Newman algorithm [413] is that the
community partitioning is stopped automatically and it pro-
vides with a procedural definition of community as the indivis-
ible subgraph [413]. Alternative efforts based also on spectral
properties have been proved to be successful to retrieve com-
munity structures in graphs. For example Richardson et al.
have extended the analysis to spectral tripartitioning [471].
Furthermore, Arenas et al. [20] have related spectral proper-
ties of the Laplacian matrix to the dynamics of group oscil-
lators. Authors took advantage of synchronisation in coupled
oscillators to detect correlated dynamics of vertices and clas-
sify them into communities.
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— Statistical mechanics: Reichardt and Bornholdt [4165, 466] in-
troduced a formal framework derived from statistical mechan-
ics to find community structure in networks. Their approach
connects ideas from the Potts model with the well-known mod-
ularity measure in Equation 1.13. Concepts as vertex cohesion
and adhesion to a given community are introduced. The al-
gorithm is able to detect overlapping communities, further-
more, tuning a single parameter their algorithm is capable to
find embedded hierarchical structures. Finally, an interesting
feature of the method is the capacity to determine to which
community a given vertex belongs to without classifying the
whole graph, a useful feature for large networks. Recently
their algorithm has been applied to PINs [330].

— Statistical methods: Maximum likelihood estimation has been
used to assign vertex association to a given group. As for the
work of Reichardt and Bornholdt [465, 466], Hastings [242]
converted the graph partitioning problem into a maximum
likelihood inference problem, linking the Potts model and be-
lief propagation. However one of the major drawbacks of the
method is that it takes the number of communities as an input.
Furthermore, not many types of networks have been tested
against the proposed method.

Independently, Newman and Leicht [415] developed a very ef-
fective method to uncover complicated relationships of asso-
ciativity and it works perfectly for both assortative, disassorta-
tive and neutral networks. Moreover, a probability is given for
each vertex to belong to a community which provide a valu-
able information about how strongly that vertex belongs to
that community. This feature is very convenient because com-
munities are not always sharply separated and certain vertices
can shown inclination towards several communities. Again a
drawback of the method is that the number of communities
has to be provided by the researcher. Several partitions can
be tested for a maximum value of likelihood but the procedure
could be cumbersome for large networks.

— Processes propagation: Wu and Huberman [601] take the orig-
inal idea of viewing a graph as a an electric circuit. First, each
vertex is understood as a resistance. Then a voltage is applied
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to any two vertices of the graph and thanks to the Kirch-
hoff equations, the voltage to each node can be calculated.
Analysing the spectrum of voltages, vertices can be classified
within different communities. One the main advantages of
the method is that it runs in O(|V|) time, which makes it
one of the fastest methods for graph community finding. On
the other hand, some drawbacks are present. For example,
vertices at which voltage would be applied (the poles) should
belong to different communities for a correct functioning of the
algorithm. Authors provide useful stratagems to solve this is-
sue. However, another more serious problem is, again, that
the number of communities should be specified a priori.

On the other hand, Nandini et al. [454] propose an algorithm
based on label propagation that overcomes those problems.
The simple algorithm, which also runs in O(|V|) time, starts
with the labelling of each vertex with a unique label. Each
vertex is then updated asynchronously in such a way that it
takes the most frequent label among its neighbours. Labels
propagate along the graph, stopping the algorithm when each
of the vertices of the graph is labelled with the most frequent
label among its neighbours. This simple and fast algorithm,
provides with very good partitions, comparable to other algo-
rithms much more computationally intensive. Moreover, no
assumption is taken about the number of communities, it is
the underlying structure of the graph itself which guides to it.

— Entropy-based measures: Several authors [181, 64], have pro-
vided with different alternatives to Equation 1.13 to assess
significance of community structure in networks. Based on
entropy, authors have applied their methods to social, spa-
tial and biological networks showing in some cases a better
behaviour than Equation 1.13.

Once vertices are assigned to communities in a graph and a com-
munity value has been assigned, we should consider if that value
could be explained by chance or not: is the graph truly modular?
A first and intuitive approach would be to calculate a z-score from
an ensemble of null model graphs. However Karrer et al. [291] have
provided with a much more elegant and reliable method based on
information theory measurements. The protocol consists on a fair

16



CHAPTER 1. INTRODUCTION

perturbation in the arrangement of edges and the measurement of
the variation of information of the two classifications based on the
conditional Shannon entropy. Moreover, authors prove that the
use of the z-score may lead to the misinterpretation of the results
given that very high z-score values are not always consistent with
strongly modular graphs [291].

k-core structure: Similar to community structures, graphs vertices
can be classified into k-core structures. k-cores were introduced by
Seidmann [513]: given a graph G = (V, £), a k-core is defined as the
maximum subgraph Gy = (V, &) such that each vertex v € Vi, has
at least degree k. k-core classification is a valuable tool for coarse
grain analysis of graphs, it might not reveal the fine structure of
small dense associations but it proved to be a very helpful tool for
the visualisation of large networks [11]. k-core decomposition has
been applied to several biological networks resulting on interesting
insights about protein evolution and essentiality [605, 606].

Connectivity indexes: Based on distance, several connectivity in-
dexes can be calculated:

— Matching index: The matching index, M; ;, is of special im-
portance on the study of biological networks as it can provide
with a method to reveal nodes of the network that share func-
tion. In PINs, two proteins that participate on the same func-
tion does not necessarily bind together but certainly they will
share common proteins to which they connect. The matching
index is defined as the number of shared neighbours of ¢ and
j divided by the total number of neighbours of i and j [280].
Nodes with a high matching index are more probable of being
involved on the same biological function.

Other interesting connectivity indexes, less common in the study
of biological networks are:

— [B-index:

_ el
14K

which provides an idea of the connectivity of a graph compar-

ing the number of edges and number of vertices.

B 1.17
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— 7 index:

e

VIV = 1)’
which compares the actual number of edges against the max-
imum number of edges possible.

v 1.18

e FEdge miring pattern: Alternative variables can be associated to
the nodes of a network. These variables can be either inherent to
the graph, like the connectivity degree distribution P(k), or others,
alien to the mathematical representation. For biological networks,
for example, a biological function can be associated to each node; in
the case of social networks, the income, race or speaking language;
etc. Using those variables as classifiers, it can be observed whether
if elements of the same group tend to bind together (assortative
mixing) or to avoid each other (disassortative mixing). A commonly
used index is the assortativity coefficient [106],

_ Tre— €|

1.19
1—[le?|

where e is the matrix whose elements e; ; represent the fraction of
edges that connect vertices of type ¢ with vertices of type j. Tr ac-
counts for the trace of a matrix and ||x|| is the sum of the elements
of x. Generally speaking social networks are assortative while tech-
nical and biological networks are disassortative [105, 365, 406]. In-
terestingly, some important properties of graphs vary depending on
the P(k) associative mixing coefficient [405, 106]. Positive assorta-
tive mixing coefficient graphs display more robustness than neutral
or disassortative graphs against hub removal which is an important
property in networks of different fields: it contributes to the control
of epidemic outbreaks, it determines system failures in targeted at-
tacks of computer networks or it predicts gene knockout resilience
in biological systems.

o Subgraph Frequencies: An interesting local measure is the frequency
at which certain small subgraphs appear in the whole graph. Those
subgraphs that appear more frequently than expected are called
motifs [386]. Several motifs have been described in PINs [3806, 385]
relating the topology to the biological role through dynamical anal-
ysis [517, 480, 479, 359, 361, 289, 360]. Further studies [447] have
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concluded that the general distribution of frequencies of motifs is
closer to geometric random graphs [431] than other types of gen-
erative models like Erdés-Rényi [157, 158, 159] or small-world net-
works [592] (see Section 1.2.2 for an explanation of the generative
models). The relative distance between two graphs, G and H, can
be calculated [147] based on the difference of frequency of a set of
subgraphs, g € S, as

D(G,H) = Zabs(vg(G) - Vg(H)>, 1.20

geS

being v,(G) = —10g< 91 ) , accounting for the relative frequency

> gl

geS
of subgraph ¢ in G.

Other graph measures have been used to describe biological and other
types of networks. Some of them are network efficiency [321], vertex
accessibility, spectra properties derived from the adjacency matrix [65,
164], local connectivity measures [234, 384], rich-club phenomenon [106]
and many others. Finally, I suggest the reading of [107], an excellent
review about the study of network properties. We are confident that new
graph measures will be described in the following years providing us with
further description and deeper understanding of biological networks.

1.2.2 Graph Generative Models for Biological Networks

As some of the main graph properties employed to study biological net-
works are defined, now a new question arises. Can we model the whole
network? Are we able to understand how the network was constructed,
under which principles? On the way to answer these fundamental ques-
tions, several generative models have been proposed, both for networks
in general and specifically for biological networks too.

Generative models represent a key tool for the understanding of the tenets
of the studied networks. For example, in the biological field, some models
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provide good approximations for the degree distributions of the empiri-
cal networks, other models work well to simulate the observed clustering
coefficient, some others reproduce faithfully intricate properties as sub-
graph frequencies, and so on. However, unfortunately, no single model
has fulfilled yet all properties displayed by graphs representing biological
networks.

Some of the most popular models used are the following:

e Random graphs: Random graphs were formalised and analysed by

Erdds and Rényi [157, 158]. A random graph G(|V|,p) [203] is a
random graph if it belongs to the ensemble G such that the |V|
number of vertices are connected with independent probability p.
Therefore, the probability for a random graph to have precisely
€] edges is pl€l(1 — p)M~I€l where M is the maximum number of
edges possible, M = Z|V|(|V| — 1). In other words, the expected
number of edges is 3p[V|(|V| — 1) and the expected mean degree
is (k) = p(|]V| —1). Random graphs can alternatively be defined
specifying directly the number of vertices and edges, as G(|V|, |E|).

Many properties have been studied for random graphs [72, 277,
290]. The most relevant one is the phase transition from low to high
p values. Defined a phase transition point in z = (k) = p(|V| — 1),
if z < 1, connected components are typically small, with values no
larger than O(log |V|) while for z > 1 a giant component appears
holding O(|V|) of the vertices. At both cases distribution of com-
ponents’ sizes is exponential. At the phase transition point, z = 1,
however, the largest component is of size O(|V|?/3), with a power-
law distribution of components’ sizes characterised by a scaling ex-
ponent of 3/2. Other properties typical of random graphs from the
Erdds and Rényi (ER) model are Poisson distributions for the de-
gree distribution, low clustering coefficient (C' ~ k/|V|~!) and low
mean shortest distance (§ ~ log |V|/log k) [72].

Although most real networks do not behave as random graphs, the
latter represent fairly a first approximation of the former. More-
over, they can be used to assign specific features to real networks.
Used as the null model [466], real network properties that deviate
from the ones of random graphs can be said to be significantly rele-
vant at the system studied. On the case of biological networks, de-
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gree distributions are far from Poisson distributions, although some
properties like the mean shortest path is closely approximated by
random graphs.

One step further is provided by random graphs with specific de-
gree distributions [58], power-law, for example, which have been
proved to provide a very exact approximation to some real net-
works [116]. Finally, hierarchical random graphs [101] have been
defined recently.

Small-world graphs: Watts and Strogatz [592] defined a type of
graphs called small-world. The idea is the following. First start
from a regular lattice (the most studied case is for lattices of one
dimension although higher dimensions have been used too [395,
403, 417, 127, 423]) where a vertex is linked to k neighbours with
periodic boundary conditions. Then with probability p re-wire
each edge to another random vertex so no self-edges nor double
edges appear. Moving from a regular lattice (p = 0) to a ran-
dom graph (p = 1), there exists a region (Figure 1.2) where the
resulting graph is a small-world graph. Apparently, the graph is
much more similar to a regular lattice than to a random graph, due
to the low number of new edges, but the properties of the result-
ing graph are drastically different [45, 404, 542]. Basically, those
new edges are “shortcuts”, that increase dramatically the connec-
tivity of the network and while the clustering coefficient remains
very similar to the original regular lattice value, the mean shortest
path decreases to the values of random graphs. Recently quan-
titative measures that evaluate the degree of small-world-ness of
a graph have been presented [269]. Small-world models have been
very successful to explain many real systems, including biochemical
networks [592, 13, 172, 280, 587, 527, 353]. However, particularly
at metabolic networks, some concerns have been exposed about the
network representation [391] given that analyses of more biochemi-
cally sensitive representations fail to disclose small-world properties
[22].

Growth models: The two previous models presented here did not
consider how networks may evolve. On the other hand, several
other network models take into consideration the starting point of
few nodes and links and establish some rules for the addition of
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Figure 1.2: Starting from a regular lattice (ring topology) of 1,000 ver-
tices, each connected to k = 10 other neighbouring vertices, with prob-
ability p, each edge is rewired randomly. Therefore at p = 0 we have a
regular lattice while at p = 1 the graph is a random network. Typically
for a regular lattice, clustering coefficient and mean shortest path are
large while for a random graph, both measures are low. In this figure I
depict the relative values with respect to a regular lattice of the clustering
coefficient (blue triangles) and the mean shortest path (red dots). Each
value has been averaged over 1,000 graph instances. Interestingly, along
the p-axis there is a broad range (grey frame) at which the clustering
coeflicient remains within the same order of magnitude of that of a reg-
ular lattice, while, at the same time, the mean shortest path is already
within the same order of magnitude of a random graph: the graph is a
small-world.
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new elements.

In the early 1960s, Price [144, 445] applied ideas of Simon [520]
to describe and explain networked systems. Simon showed that
power-law distributions are displayed by economic systems where
the rule “the rich gets richer” is applied. Price put this knowledge
in the context of bibliographic networks and he provided with the
first explanatory mechanism for power-law degree distribution of
networks of real systems. The mechanism consists on the addition
of a newly introduced vertex of defined m degree to the network
such that each edge of the new vertex is added to the old vertices
with probability proportional to the degree of the old vertex.

Later Barabdsi and Albert starting from the same ideas, applied
them to a growth model for the World Wide Web [43] and coined
the new term, preferential attachment®. Their model consists on
two simple rules: growth and preferential attachment. Starting
from a bunch of initial vertexes my (typically a low number like 1,
3, 5 or 7), a new vertex is introduced, with m edges (m < my).
Each of the m edges are bound to vertex ¢ € V with a probability
proportional to its degree as following:

ks

>k

jev

p(i) =

An important difference from the Price model is that the Barabasi-
Albert (BA) model is defined on undirected graphs (while Price
worked with directed networks) which provided an excellent work-
around to treat formally the growth process. Much attention within
the scientific community has been drawn to the BA model and, in
fact, graphs created using the BA mechanism display power-law
degree distributions, which have been claimed to be observed in
many real systems [2, 463, 411, 121], including biological networks
[280, 279, 451, 527, 571, 152, 10, 568, 42, 6]. The BA model can be
easily understood from an evolutionary biology point of view as a
process of gene duplication [299, 527, 100, 427, 571, 585, 61]. Addi-
tionally, the inclusion of other mechanisms to the BA model (differ-
ent forms of biological divergence) can render graphs holding other

5Price called it cumulative advantage and it is also known as the Matthew effect
[380] in sociology.
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types of scaling on the degree distribution [7, 527, 570, 571, 427] like
truncated power-laws, logarithmic or multifractal. As a matter of
fact, many biological constrains have been postulated to account for
the truncated power-law degree distributions like molecular crowd-
ing, aging or molecular surface drain [142, 13, 307]. Nevertheless,
graphs with the same degree distribution may display very differ-
ent properties [143] concerning clustering coefficient, degree corre-
lation, performance, robustness, etc. For example, a graph of 100
triangles has the same degree distribution that a single 300-nodes
cycle, but completely different local properties [119]. Addition-
ally, not all real networks show power-law forms for their degree
distribution [13] and some features from real networks are not ad-
equately modelled by the BA mechanism [407, 554, 285, 383, 302].
Moreover, the BA model is not the only one that yields power-
law degree distributions; some references, among many others are:
[416, 79, 141, 4, 143, 285, 411, 492, 62, 129, 387, 67, 195]. Still,
the BA model is a popular generative network model for biological
networks.

Another growth mechanism of interest for biological networks is the
hierarchical model [461, 460]. Starting from an small cluster of n
connected vertices with a central vertex, the cluster is copied n — 1
times and the peripheral vertices of the new replicas are connected
to the central vertex of the original cluster. Repeating this process
several steps, a hierarchical graph is created with power-law degree
distribution and C(k) ~ k=1 scaling ” for the clustering coefficient.
This model provides a better approximation than the BA model
for the clustering coefficient of metabolic networks. Other aggre-
gation generative models provide too similar results on the degree
distribution and the clustering coefficient [141, 101].

e Geometric random graphs: Recently, geometric random graphs (GRGs)
[431] have been provided as a striking good approximation for local
measures (subgraph frequencies [147] and graphlet degree distri-
bution [446]) in biological networks, specifically in PINs [447, 446,
143, 252]. GRGs can be constructed by placing randomly points in

"Soffer et al. [526] have shown that the decreasing scaling is a consequence of degree-
correlation biases. Without the bias, empirical networks show constant or logarithmic
scales (constant for PINs). Authors provide with a new clustering coefficient index,
free of vertex degree correlations, see Section 1.2.1.
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a given metric space. Those points closer to a threshold are bound.
A variety of graphs can be obtained using different N dimensional
spaces, different types of distances (Euclidean, Hamming, etc.), and
thresholds. It results very interesting that although the definition
of GRGs is so simple, trained-GRGs [3106] are very capable to ac-
curately describe detailed features such as subgraph frequencies,
additionally to the degree distribution, the clustering coefficient or
the graph diameter. Moreover, from an evolutionary point of view,
GRGs can be constructed using simple mechanisms. The resulting
graphs provide with a better similarity than other classical protein
evolution models on structural local aspects [449]. Finally, GRGs
have been used to assess false positives and false negatives in PINs
[317].

Other generative models have been shown to be useful to study specific
aspects of biological networks [570, 448, 387]. Finally, other generative
models from other fields like firm growth [536, 326] or airport networks
[195] could be adapted to biochemical networks.

1.2.3 Degree Distribution Determination

As it has been shown previously, different generative models may render
different degree distributions. A first and obvious step on the validation of
network models is to determine if generative models can explain, among
other features, the observed degree distributions. Several methods have
been used so far, some of them presenting problems or incompatibilities.

Firstly, merely from the data acquisition, partial sampling of actual net-
works, due to the lack of complete coverage from experimental limita-
tions, has raised serious problems [545, 237] about the conclusions that
can be inferred. More generally, it has been suggested [296, 543, 550, 602]
that the charactheristic observation that biological networks follow a
power-law distribution may have been reached due to methodological
shortcomings. Specifically, it has been argued that analysing relatively
small cellular networks, having only a few hundred to a few thousands
data elements using frequency-degree or intensity plots, does not have
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sufficient power to differentiate among various network models having
heavy-tailed distributions, and that the use of rank-degree plots proves
superior for this purpose [296, 543, 550, 602].

As explained in Section 3.2.3, the assessment of the best model explain-
ing a given data distribution has typically been done using simple linear
regression methods. These methods are suitable for normal distribution
functions, but not for highly skewed distribution functions. Essentially,
the problem arises from the fact that skewed distributions are charac-
terized by the scale of the tail, which forms most of the support for the
distribution but it is barely populated (i.e. contains less than 10% of the
data points). Because of this, simple least square fits of the probabil-
ity density distribution computed via histogram methods are very poor
estimators of the distribution parameters (see [411, 550] for a review of
possible problems) due to the noisy poor sampling of the tails.

Therefore, it has been argued that density plots should not be used as a
base for the fitting of these types of data, as several more reliable meth-
ods are available. A simple and better strategy is to use rank-plots as
commonly used in engineering and economics [550]. Logarithmic binning
[8] has also been used as a more robust alternative, but it has been re-
ported that this procedure fails to retrieve the value of the exponent as
the slope of the graph for power-law distributions [550, 219, 103]. Fi-
nally, a logarithmic transformation could be applied to the data and fit
the corresponding distribution function [335] thus avoiding the problem
of skewed data from the outset. In this case the appropriate transforma-
tion of the probability distribution has to be performed (for instance a
normal distribution for log-transformed, log-normally distributed data),
a procedure which could be cumbersome for some distribution functions.

Then, in order to have a good mathematical representation of the proba-
bility distribution, the cumulative distribution function (CDF') should be
used, that it is directly related to rank-plots [550]. In addition, instead
of graphical-based estimation methods, maximum likelihood estimation
(MLE), which is not dependent on the graphical representation, is a su-
perior analytical method [219, 411, 544, 262, 103]. Furthermore, the use
of MLE allows to perform a statistical test of different proposed mod-
els [219, 103]. A rigorous quantification of goodness-of-fit to establish
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relatedness to various distributions is critical for proper analysis of the
empirical distributions.

1.3 Dynamical Analysis of Mathematical Models of
Biochemical Interest

Once the graph properties of biochemical models have been introduced,
we jump here to the questions relating to dynamical behaviour of bio-
chemical systems. From a coarse-grained perspective determining which
element interacts with which is sufficient to characterise the system as
a whole. We have seen that many variables can be studied, which con-
duce us to an interesting knowledge about the biology of the organism.
However in some cases, not only the network of interactions is known,
but for a subset of the network, it is known quantitatively the terms of
relationship for each link. When such a detailed information is available,
the systems studied tend to be much smaller in size, from the order of
tens to hundreds of nodes, not covering the complete organism. Systems
modelled quantitatively refer generally to specific parts of the complete
network, focusing on a biological process: for example the pathway of a
given metabolism, a gene regulation module, etc.

At this point we have systems of relatively few items but with a much
richer relationships between them. A first matter to take into consid-
eration is the level of detail for the description of the interactions. A
large variety mathematical formalisms have been used to model such sys-
tems, each of them accounting for different levels of description. Different
methods to model dynamically biological systems have been compared
[595, 120, 441].

Two main branches for modelling methods separate whether if state vari-
ables are continuous or discrete. Discrete models have been shown to be
specially useful to establish the first hypotheses about the dynamics of
biological networks of interactions (see Chapter 12 of the Kriete and Eils
book [315] for successful examples). Some of them are Boolean networks
[292, 555, 553, 293, 398, 528, 337, 608, 88] including cellular automata
[160, 600, 132] and Bayesian networks [187] listing neural networks [167,
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66]. Petri nets have also been used to model biological processes in gen-
eral [430, 92, 438, 429, 86, 537, 603, 476] and specifically for metabolic
pathways [462, 223, 199, 367, 583, 401, 488, 244], transcriptional regula-
tion [139], gene regulation [366, 138, 400, 229, 397, 332, 137, 238] or sig-
nal transduction [367, 245, 325, 333, 331, 484]. Other modelling methods
take continuous state variables but handle time as discrete like piece-
wise models [110], logic models [616, 615], pair-wise methods [24, 93],
difference equations [552, 133], expression clustering [594, 569] or dose
response equations based on weight matrices [593, 569].

Alternatively, state variables and time can be understood as continuous
models. The majority of continuous models are formalised as differ-
ential equations (DEs). DE have a long successful record in the field
of mathematical biology and the number of studies applying them is
huge. Historic important models are the Hodgkin-Huxley model [256],
the Lotka-Volterra equations [350, 348, 349, 580, 581, 215] or the Tur-
ing mechanism [565]. Examples of adequate books for the introduction
of DEs in biological modelling are [551, 161, 399, 282, 308, 128]. Other
interesting efforts are the collection of mathematical models of biological
interest, stored in computer readable format and based on DEs. Some
of the main examples are the BioModels Database [322] and the CellML
repository [346] (see Section 1.3.2).

Many are the flavours of DEs. Once we are aware of their usefulness, I
give here some hints about their formal definition. A DE is an expression
of the relationship between functions and their derivatives.

y' = flz,y) 1.22

Several notations are valid to express the same relation,

Yy

— 1.2
V=0 3

the description of the change of state variables with respect to other
independent variables. Most commonly the independent variable is time,
then another possible notation raises:

dy .

_ 1.24
a Y
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An idea important to take into account is the order of a DE, which is the
order of the highest derivative of the unknown function. In the case the
dependent variable is a function of a single independent variable, the DE
is termed ordinary differential equation (ODE). If that function is linear,
the system can be treated analytically but for the case of non-linear
functions, generally the system needs to be solved numerically. ODEs
have supplied successful stories on the modelling of a broad variety of
biological phenomena. General overview can be found in [282] and a
non-exhaustive and subjective list of particularly interesting examples is
389, 468, 107, 155, 193].

Discrete events embedded in continuous models of ODEs define a type of
hybrid models commonly used in systems biology (a significant propor-
tion of models from the BioModels Database contains events). Events
can be dependent on time or other variables and can affect both state
variables or parameters. A typical example is the cell division, when at
a given point a single cell separates into two different ones.

Other types of DEs are partial differential equations (PDEs), in which,
as opposed to ODEs, the dependent variable is a function of multiple
independent variables. For example, for two independent variables, y =
u(x1,x2), the general form is,

ou Ou 9%u 9%u 9%u

_— =0. 1.2
"Ox1 Oxy Ox10x1 Ox10%2’ 81,‘28332) 0 >

F(xy,z9,u

Both ODEs and PDEs can be classified as linear if the dependent variable
and its derivatives appear to the power of one or non-linear otherwise.
In fact, applied to the modelling of biochemical systems, power-law for-
malisms have been broadly used: the S-system formalism [500, 501, 502,
503, 505, 579, 504, 577, 530, 578, 562, 531, 572, 575, 354]. Equivalently,
the number of applications using PDEs to the modelling of biological
systems is immense. As representative works, it should be mentioned the
works in pattern formation [565, 202, 376, 357, 5] or calcium signalling
[207, 609]. Adequate deep knowledge of biological modelling using PDEs
can be found in [399, 320].

Other types of DEs are differential algebraic equations (DAEs). DAEs
are a type of DE where some of the dependent variables are not expressed
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explicitly [436, 226]. The general form of a DAE is,
F(x,y,y") =0, 1.26
or

d
9(x,y,2) =0
DAESs have been used for modelling constrained dynamical systems, also

in the field of molecular biology [420, 91, 113, 51].

DEs can hold special types of functions being therefore classified ac-
cordingly. Piecewise functions are functions which definition changes
depending on the value of the independent variable. Piecewise differen-
tial equations (PWDE) [117] have been used to model several biological
phenomena in which the system displays different behaviour after a de-
fined threshold, like for example neuron models [372, 559, 561, 560] or
some gene regulatory networks [210, 209, 523, 124, 125, 123, 84, 478,
196, 228, 126, 354]. Other works deal with sigmoid continuous threshold
response functions [272]. In this case, the modelling framework provides
with some advantages with respect to discontinuous functions [125], i.e.,
sigmoid functions are more realistic to gene regulation. Still consider-
able assumptions, that might be far from biological reality, need to be
taken during the analysis of the model, like linear regulatory terms (see
assumption A in [272]).

Another type of DEs used to model biological systems is delay differ-
ential equations (DDEs) [156, 56]. DDEs consist on DEs in which the
derivative of some parts of the dependent variable are a function of the
not immediately past system state, being,

y = f(t,y,ye) 1.28

where y; = {y(7) : 7 < t} represents the solution of y at a certain
moment of the past. Solving DDEs requires knowing not only the current
state of the system but also the state at certain previous times. Several
examples of biological phenomena explained by DDEs can be found in
[218, 507, 69, 112, 258, 402, 521, 31, 59, 522, 329, 334, 617, 224, 301].

Finally, a very special type of DEs are stochastic differential equations
(SDEs). SDEs [4121, 192] are characterised by a stochastic processs at
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some of their terms. The general form for a system of SDEs is

% =9(y) + > smy)nm(@), 1.29
m=1

where y represents the dependent variable, g and s are arbitrary functions
and 7, different types of random fluctuations. SDEs are essential to
model biological systems [369, 23, 221, 222, 497, 470, 599, 485, 573, 597]
specially when the deterministic formalism can not be assumed anymore,
as for example, for regulatory networks whose nodes are found in low
concentration.

Other types of DEs, like complex DEs, for which the solutions are com-
plex functions, have been less popular to model biological systems.

Worth to note is that the types of DEs exposed here are not exclusive.
As an example, delayed stochastic DEs have been used to model a variety
of cellular networks [16, 482, 556, 621].

At the end of the day, once a mathematical formalism is chosen, the
ultimate target of biological modelling, as for other disciplines as engi-
neering, is the ability to design reliable and robust (biological) systems in
silico prior to fabrication [47, 109]. Mathematical modelling is the tool
to organise and predict the behaviour of biological systems. The choice
of the modelling method should be done carefully, evaluating the type
of questions we are interested in, because the results of the analysis may
be different depending on the approach used [441]. DEs have been the
approach selected for the current work. In this direction, some of the
formal tools available to the modelling community are presented in the
next section. Using such tools, as for example, sensitivity analysis, model
calibration or optimal experimental design, those mathematical models
of biochemical interest can be characterised, classified and understood.

1.3.1 Analysis of Analysis

In the previous section, I have focused on the use of different flavours of
differential equations for the study of biochemical phenomena. Thanks to
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differential equations we can predict the state of the system along time or
space. We can determine the system stability, the effect of missing nodes
from the system, different response depending on the initial conditions
or more complex modifications of the system. Operation research can
be applied to models of differential equations to solve questions as which
model from a set of plausible ones is able to reproduce the experimental
observations, which are the experiments necessary to validate our model
or which reaction should be modified to obtain the maximum yield of a
product. Rational strategies to answer those questions are described in
the following sections.

While differential equations can be treated analytically, we have concen-
trated on the numerical approaches. Within the numerical approach,
several types of analyses can be distinguished if the model dynamics are
considered explicitly. Structural analysis like flux balance or elementary
mode analysis do not centre its interests on the temporal dynamics but
on the derived effects from the network connectivity [248, 315]. Alterna-
tively, other methods work directly with the temporal evolution of the
system variables. Some of them will be presented on the following sec-
tions. Others like frequency analysis, bifurcation analysis or stability of
the system dynamics have been described elsewhere [270, 157, 566, 541].
In accordance to the results section, I introduce here some of the main
computational tools used for numerical analysis of differential equations.

1.3.1.1 Model Integration

Numerical integration is a method to solve the direct problem: given a
system of differential equations, it determines the system state at a given
time point. The amount of research is huge on the field of ODE numerical
integration. An adequate introduction to the topic is Chapter 7 from the
book of R. Schwartz [512], T give here a succinct overview of the subject.

The most common technique to tackle the problem are finite difference
schemes, which consist on the integration of the equations by summing

successively over approximations at short time steps,

Yer1 = f(y, Ye—1,-..). 1.30
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The simplest method is the forward Euler method consisting on the lo-
cally valid approximation,

Yir1 = Yn + Af(yn), 1.31

for the generic system, 1

= ).
An example of a more robust strategy is the Runge-Kutta methods that
compute a series of intermediate middle points and uses a combination
of them to determine the state of the system at the next time step. Four-
order Runge-Kutta methods are a good compromise on stability and
computational cost and they are in practice one of the most extended
methods used in computational applications. Finally, I want to mention
adaptative methods, like the Adams-Moulton, that can vary the step size
accordingly to the stiffness of problem. In the computational biologists
community, popular implementations of numerical methods for solving
initial value problems are, among others, LSODE [253] and CVODE [104,
254].

1.3.1.2 Stochastic Simulation

Two assumptions necessary for models of ODEs are not always true for
biological systems. Biological molecules are discrete and if the number
of molecules modelled are below few hundreds, the approximation of the
system by a continuous concentration is an oversimplification. Another
accepted fact as true is the deterministic regime of the nature. Reac-
tions occur thanks to random fluctuations and noise has to be taken into
account for small systems.

Therefore if our system, or parts of it, behave out of these bounds,
stochastic differential equations (SDE) are required for modelling the
system [458]. System variables are not anymore concentration of the dif-
ferent species, ¢;, but the number of molecules, |y;|. The update of the
system is then probabilistic. Given the system S = {|v1],|v2l, ---s |ynl},
the state at time ¢t 4 d¢ will be [205],

P(S,t+dt | S,t) = a;dt + o(dt). 1.33
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being ¢ a given reaction of the system and a; the result of a mesoscopic
reaction constant (¢;) and the number of particles.

a; = hz(y,cl) 1.34

The summand o(dt) denotes for terms that can be dropped for sufficiently
small dt,
o(dt)
dt

That is to say, the variables of the system are now transition probabili-
ties and the stochastic kinetic processes can be treated with the master
equation,

—0 as dt—0. 1.35

v

d | |
Pty =3 <hi(y — 8@, ¢i)Pyo, to, y — S, 1)
= 136

_hz(ya Ci)P(y07 t07 Y, t)) 5

where v is the total number of reactions and S the ith column of the
stoichiometry matrix.

Several algorithms have been implemented to solve the master equation,
two of them implemented by Gillespie in the late 70s, the direct method
and the first reaction method [204]. Due to the computational cost of
those algorithms, other algorithms have been developed much faster with
moderate loss of accuracy [201, 206]. Stochastic modelling has been
widely applied to biological systems, reviewed in [597]. Finally I would
like to point out to the book of Darren J. Wilkinson [599] as a complete
introduction to the rich field of stochastic modelling of biological systems.

1.3.1.3 Sensitivity Analysis

The analysis of the system sensitivity (SA) consists on the evaluation
of the variation of the output of a system with respect to some source
of variation. This source of variation can be a change in the parameter
values, initial conditions or a change in the model state variables.
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In the context of SA applied to the model parameters, two very different
levels of analysis can be distinguished, either local or global. For the
local analysis, given the system’s dynamics described by

dy
where y is a vector of n state variables, yo = y(t¢) is a vector of the initial
conditions, @ the vector of m model parameters and ¢ > ¢y, generally
to = 0. Then, SA can be defined as,

o) o .. 9n(®
001 005 00,
o o0 .. o
oy(t m
s(t) = gé)z '1 '2 ' . 1.38
Oyn(t)  Oyn(t) ... Oyn(d)
001 005 00,

Similarly, for 1 <i¢<n, 1 <j <m,

1.39

sig(t) = =55
J

which is usually called unnormalised sensitivity. The normalised sensi-
tivity,
0; Oyi(t)
Sii(t) = 2= 1.40
may confront numerical problems when the value of y; gets close to zero.
Numerically, an indirect method [604] to calculate the sensitivity is the

use of the centred difference approximation,

5i5(1) = lim yill 05+ h) —yi05)  wilti 05 + 80;) — yi(t: 05 — A0;)
h—o0 h QAQJ
being commonly Af; = 0.001 #; [626]. Computationally the sensitivity of
the system with respect to the parameters is evaluated at 1 < k <[ dis-
crete points along the integration time and several normalisation strate-
gies are available to render a specific value of sensitivity of the sys-
tem with respect to a given parameter [538, 614, 626]. Alternatively
to the finite difference method, other methods to determine the sensi-
tivity of the system are the so called direct methods, which determine
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y(t) and s(t) simultaneously [136, 147, 328, 516]. Other types of alterna-
tive local approaches to calculate numerically the sensitivity of a system
[548, 270, 338] have been used to study biological networks. Sensitivity
analysis has been applied to many different biological systems [538, 264],
providing with knowledge about the dynamics, in many cases hard to
find by intuition. Also, sensitivity analysis can be useful for model re-
duction as the parameters that affect weakly the system behaviour can
be bypassed [130, 342].

Within the framework of metabolic reaction networks (enzymes and metabo-
lites) in steady state, metabolic control analysis (MCA) can be under-
stood as an extension of sensitivity analysis. MCA consists on a math-
ematical framework for the description of the relative changes of system
variables (as steady-state concentrations, reaction fluxes) with respect to
perturbations on the system parameters [170, 248, 171, 288, 596, 259].
MCA was firstly developed from initial ideas of Higgins [250] by two in-
dependent groups in the 1970s: Kacser and Burns [287] and Heinrich
and Rapoport [247, 246]. A central measurement of MCA is the control
coefficient, defined equivalently for both substrate concentration (S) and

fluxes (J):
, A; 0S; A; Ov;
Vo= & == — 1.42
Ji é GJj é 8vi 14
i = (Jj 8Ai>/<vi A, 43

being v the reaction rate and A the activity of a given enzyme, which can
be related to its concentration. The summation theorem is a systemic
property of control coefficients,

Sai=1 1.44
%

and

> ci=o. 1.45

Finally, another importat variable is the enzyme elasticity,

€d =
Si Vj 851
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which define the degree of change of reaction rate v; with respect to
substrate concentration S;. Application of MCA approach has provided
insights on several biochemical models [311, 108, 257, 82, 194]. Inter-
estingly, an extension of MCA is frequency response analysis to pertur-
bations [270, 457]. Moreover, bifurcation analysis can be indicated as
a tool to examine qualitative changes on the behaviour of the system
steady state with respect to changes in the model parameters [566, 567,
16, 588, 558, 154, 490, 251, 362).

Local sensitivity analysis provides a measure of the system behaviour at
the closed neighbourhood of the nominal values. However, the sensitivity
might be, generally, very different if calculated at a different parameter
points. For that reason, if we lack a high knowledge about the parameter
values, a global sensitivity analysis is recommended [99, 356]. Global
sensitivity analysis consists on the use of statistical tools to address the
behaviour of a system over a wide range of parameter values [271]. A
first simple approach would be the Morris method [394] (used in [613])
which consists on taking the mean value of s; j(t) over several sampled
points of 6;. Other more elaborate methods weigh differently the sampled
parameter points, using for example, the Boltzmann distribution [60].

More commonly, a broad distribution of parameter values is sampled and
the output of the system is analysed. Methods based on this strategy are
random sampling—high dimensional model representation (RS-HDMR)
[173], multi-parametric global sensitivity analysis [96, 623, 364, 94, 610],
partial rank correlation coefficient [620, 364], Sobol’s method [525, 310],
Fourier amplitude sensitivity test (FAST) [111, 506, 309, 373, 364] and its
related Walsh amplitude sensitivity procedure (WASP) [437]. An efficient
sampling procedure for high dimensional systems is the Latin hypercube
sampling used in many of the previous works cited above. Furthermore,
several global methods have been compared using the same signal trans-
duction pathway [620]. Other forms of global sensitivity analysis, like
the information-based approach proposed by Liidtke et al. [351] results
very useful given the large number of species and parameters commonly
found in models of biochemical systems.

Also, T would like to point out to the reviews from Turdnyi [564], Frey
and Patil [186] and Saltelli [196, 195] for a complete description on the
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topic of sensitivity analysis.

Finally I would like to emphasise the relationship between sensitivity and
robustness. Robustness, contrary to sensitivity, is the system property
to maintain its function under internal or external perturbations [305].
Several indexes have been proposed to account mathematically the ro-
bustness of a system [595, 89, 305, 518]. Indeed, many biological systems
have been described as robust®, [44, 53, 185, 582, 584, 393, 68, 539, 153,
625, 18, 518] among many others. Robustness and model parameter sen-
sitivity can also be used as model validation [178].

1.3.1.4 Model Calibration

Once we have a mathematical model describing the dynamics of a system,
we might wonder how far is our model from reproducing the observed be-
haviour of the system. In principle, one of our goals is the establishment
of the simpler model that most accurately describes the phenomenon we
are interested in. Initial steps are the choice of the mathematical for-
malism we are going to use (see Section 1.3) and the definition of the
interactions among the network components. Often within the frame of
systems biology, information is available about which components of the
system interact with each other and to a certain level the qualitative type
of relationship, e.g. activations, inhibitions, complex formation, etc. If
knowledge about model parameters and initial conditions is available,
the inference of the dynamics of the system is called direct problem and
consists on the integration of the system or the solution of the equations
(see sections 1.3.1.1 and 1.3.1.2). The information that most commonly
is missing, however, is the quantitative strength of the interactions: the
numerical values of the parameters that define the interactions. We face
then the inverse problem. A prevalent approach is to calibrate the model
in order to reproduce the observed behaviour, that is to say, to modify
the model parameter values in such a way that the computed output
match as best as possible the measured variables of the system. Model
calibration could be one of the most challenging tasks in systems biology

¥Do not mistake robustness with inconsistency [595]. While the first refers to an
intrinsic property of the system, the second refers to a rather wrong balance between
the model level of description and the sampled data available.
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[241]. Obviously, when modifying the parameter values, the model will
exhibit different behaviour, however the flexibility of the response will be
within the bounds imposed by the fixed assumed structure of the model
[595]. Certain dynamics will not be reached by changing the parameter
values but changing the intrinsic structure of the model: model selection
is a major challenge in systems biology. Automated symbolic reverse
engineering of non linear systems has been demonstrated [73]. However,
when we are confident of the specified rules of interaction among chemical
species, model calibration can play an decisive role in model validation.

In some cases, the structure of the model itself allows to perform a rela-
tively easy model calibration: for example S-systems [500, 501, 502] can
be decoupled and non-linear terms can be linearised making possible of a
much faster search on the parameter space [303, 576, 563, 197, 574, 575].
For most of these cases, data points can also be approximated to more
smooth functions and those functions become surrogate models, bypass-
ing consequently the computationally costly step of model integration.
When such strategies cannot be applied, true for a large amount of non-
linear dynamical models, the parameter space exploration using optimi-
sation algorithms becomes much harder.

For this purpose a function called objective function is defined which
accounts for the goodness of the model with respect to the targeted be-
haviour. Different types of objective functions can be introduced, de-
pending on the interests one wants to meet, in fact, multiple objective
functions can be optimised simultaneously [240]. If we assume the resid-
uals are normally distributed, independent and homoscedastic, then the
maximum likelihood criterion is equivalent to the sum of the least squares.
The log-likelihood form,

! - 2
l 1 2 (y’L - yz(e))
L= §ln(27r) + 3 El [ln(az-) + 73], 1.47
can be reduced to the objective function,

~ 2
J(0) = Z(y_yQ(e)) 1.48

g
=1

where [ is the total number of constrains, §; € Y. Constrains are mapped
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to variables through the observation function, h,

g =h(y(0)). 1.49

From here on, a constrain is assumed to be the value of any of the sys-
tem variables at a given time. They can be obtained from experimental
measurements (g;) and they are compared to their corresponding values
obtained from simulation (y;(8)). o? is the variance associated to .
Note that system variables do not hold necessarily the same number of

constrains. In practice other several similar forms have been used as,

l 2
27( yi(0)) : 1.50

_ !
2
or

(=~ 2
J(g)_}. M7

Therefore, depending on the parameter values, the value of J(0) will vary
on the parameter space (see Figure 1.3). I would like to remind that, in
the case the initial conditions of the system (ygo) are unknown, they can
be considered as parameters to calibrate and therefore yo may depend
on 0. A huge number of strategies of largely different nature have been
conducted to explore the objective landscape. In principle there is no
a single method that outperforms all others for a representative variety
of problems [379, 34]. The election of the most suitable method for the
problem in hands is generally tricky and often left to a trial and error
strategy.

Three main groups can be distinguished based on the way the param-
eter domain is explored: local search, global search and a third group
designed as the hybrid approach which consists on a more or less elab-
orated mixture of both methods. Additionally, other alternative model
calibration strategies have been applied to biochemical dynamical sys-
tems, like maximum likelihood estimation [80] or Kalman filters [547].
Others stress the importance of an initial phase of constrain data pro-
cessing [455, 214] or the capability of model selection [339]. Although not
universally applicable, other complex approaches following the divide and
conquer spirit have been deployed [433] for the calibration of gene regula-
tion models performing orders of magnitude more efficiently. Other less
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Objective Function Surface
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Figure 1.3: Objective function (J(@)) surface for a 2D parameter space.
In this convex situation, it can be observed that the surface is rather flat
with a deep and narrow basin of attraction at the nominal parameter
values. All in all, these types of surfaces are relatively easy to explore
given the existence of a sole minimum. In other cases (see Figure 1.4),
surfaces are rough and the large abundance of spread basins of attraction
makes model calibration a cumbersome task.
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Objective Function Surface
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log tau_mRNA

2.16 log J(8) 7.28

Figure 1.4: Objective function (J(@)) surface for a 2D parameter space.
Contrary to the situation of Figure 1.3, here a multi-modal (non-convex)
objective surface is presented. It is largely rough and full of local minima:
observe the blue dots around the right lower third of the figure. Fair
chances of finding the global minimum in such surfaces requires from
the combination of local and global strategies and a large computational
effort. Still the solution found is generally suboptimal.
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popular methods have also been applied to biological systems; I suggest
to consult the prolific review of Chou and Voit [97] for a comprehensive
list of model calibration methods. General reviews about model calibra-
tion of biological systems can be found in [390, 25, 39]. More methods
are compared in [198].

Worth mentioning is that the previously described methods can be ap-
plied to a wide range of modelling frameworks, including both determin-
istic and stochastic models [169, 557].

1.3.1.4.1 Local Search Methods Local search methods are itera-
tive methods that evaluate at a given point the topological characteristics
of the objective surface by, for example, calculating directly the gradient
or approximating it. From this information, a new point in the parameter
space is selected and a new step begins. The algorithm stops at differ-
ent convergence criteria, like a very low value of the objective function,
deprecative improvement of the objective function, minor movements in
the parameter space, achieved maximum number of steps, etc. Some of
the most common local search methods applied to biological models are
based on Levenberg-Marquardt or Gaussian-Newton methods [475, 25].

1.3.1.4.2 Global Search Methods In the case the objective func-
tion surface presents many local minima, the application of a local search
approach will render inconsistent results: starting from different points
of the parameter space, the final parameter values will differ. In those
cases, global search methods are recommended in order to surmount the
problems derived from the non-convexity situation. Global methods can
be classified as deterministic or heuristic [175] and several of the most
popular heuristic ones have been compared in [34]. Generally the size
and complexity of typical models of systems biology exceed the capabil-
ities of deterministic methods and therefore I describe here some of the
most popular methods used in the field:

e Random or multi-start: When local search methods fail to provide
consistent results, a first approach to get an idea of the shape of

T

the objective surface would be multiple shooting [70, 428, 38, 300],
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that’s it, to launch several instances of a local search method from
different starting points of the parameter space. It constitutes a
good compromise for parameter spaces of low dimension and analy-
sis of the results can help the detection of the major optimal regions
of the parameter space.

Metropolis-Hasting: Metropolis-Hasting sampling [243] consists on
the exploration of the surface randomly and accepting parameter
space points depending on a probability calculated from the objec-
tive function. It has been applied to several biological problems
[498]. Although it is a relatively cheap method, computationally
speaking, its performance may be reduced for high dimensional
functions or functions holding steep narrow local minima.

Simulated Annealing: Simulated annealing [304, 98] is a meta-
heuristic global optimisation method consisting on the probabilis-
tic choice of new states. The probability depends on the value
of the function we want to minimise and on a parameter called
temperature that is gradually decreased during the process. When
temperature is set at high levels, broad parameter space can be
searched. Then when the temperature is gently decreased, the lower
regions of the objective surface are explored. Simulated anneal-
ing has been applied to the calibration of many biological models,
[468, 467, 379, 390, 276, 275, 220] to cite a few.

Evolutionary algorithms: Evolutionary algorithms is another meta-
heuristic approach for combinatorial problems. It consists on a
population of instances that based on random movements explore
the parameter space guided by the objective function. Some of the
most commonly used are genetic algorithms, particle swarm optimi-
sation or ant colonisation optimisation. These algorithms have been
widely used for the calibration of dynamical systems of biochemical
interest [379, 390, 281, 177, 284]. An special mention deserves the
scatter search method [150, 151]. It has been reported [474, 284]
that these methods have outperformed, both in accuracy and speed
(several orders of magnitude indeed) other previously state of the

art methods for several benchmarks within the biological modelling
field.
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Other global approaches, like exhaustive strategies [440] as the branch-
and-bound method, have been successfully applied to biological models,
specially to generalised mass action models.

1.3.1.4.3 Hybrid Methods: While local search methods converge
fast, they suffer from non-consistency on rough surfaces. On the other
hand, global methods are able to surmount the problem of multiple local
minima but they are very slow finding the lower parts of the objective
surface. Therefore a straightforward approach would be the combination
of both methods [276, 275, 563, 628, 475, 177, 37, 26, 27, 255, 300]. A
global method may be used initially to locate widely the most optimal
regions and from there, a local search method would be triggered. This
combination of approaches benefits from the virtues of both methods
[40] and provides with very good results with minor complications (a
transition rule should be defined for the change from the global to the
local search phase.).

1.3.1.5 Identifiability

The previous sections, approaches for model sensitivity and model cali-
bration have been presented. In a close relationship, including concepts
of both topics, I introduce here parameter identifiability. Parameter iden-
tifiability refers to the ability to determine the numerical value of a model
parameter from experimental data. Formal definitions can be found in
Grewal and Glover [225]. A great review to bring into scene the problem
of identifiability in biological models is [278]: it treats the key mathe-
matical concepts in a very amenable manner and furthermore it contains
enlightening examples of the forefront biological research. Intuitively,
there are three main reasons for lack of identifiability [534]:

e Degrees of freedom derived from the number of constrains and pa-
rameters.

e Parameter correlations.

o Noisy measurements.
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One of the major reasons for the failure of model calibration methods
is the presence of flat regions in the objective function: when the algo-
rithm arrives to a flat region, it is not capable to find a sensible direction
to go further and it gets trapped there. Flat regions on the objective
function can be expected if the system displays very low differences from
the constrains (the experimental data) for variations in the parameter
range [236]. Flat regions are associated with a problem of large number
of degrees of freedom. Also if model parameters correlate, that’s it, if dif-
ferent parameter combinations yield the same output (evaluated through
the objective function), a lack of identifiability is also presented. It can
be observed when the sensitivity of a parameter is a constant multiple
of another [534]. From an alternative perspective, identifiability is not
attainable when deviations in the parameter space do not have a great
impact on the objective function [474]. In this direction it would be in-
teresting the comparison of Figure 1.3 and 1.4 and observe the radically
different behaviour of the objective function along the parameter space.
Identifiability analysis, then, becomes a great complementary tool for
model calibration as it helps on the interpretation of model calibration
results. In fact, parameter identifiability should be studied prior to any
model calibration to ensure that the parameter estimation is well-posed
[474].

Identifiability analysis can be distinguised as two types: a priori and a
posteriori identifiability. A priori identifiability integrates the first two
sources of unidentifiability (named, degrees of freedom and parameter
correlations) while a posteriori identifiability comprehends all three [534],
including the observational noise. A posteriori identifiability alludes to
the identifiability of the parameters given a finite set of constrains or
experimental values ) while a priori analyses the model itself, without
any specific set ). A priori identifiability evaluates whether the param-
eter for the mathematical model can be determined assuming that for all
observables continuous and error-free data would be available [25]. More-
over identifiability can be classified as local or global if we talk about a
specific region in the parameter space or its complete domain.

1.3.1.5.1 A priori Identifiability Although some techniques are
available [87, 30, 163, 57, 381, 487, 619] and they have been applied to
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2]

biological models [30, 36, 477], a priori global identifiability is a hard
task in non-linear dynamical models [475, 452, 459]. When possible, a
priori global identifiability should be tested [278]. Important insights
about the structure of the model itself will be uncovered. On the other
hand, if we work at a precise point of the parameter space, for the local
analysis, simply the correlation of the sensitivities (see Equation 1.39) is
calculated [618]. Any correlation of +1 or -1 makes those parameters a
priori unidentifiable. One of them should be fixed and the identifiability
analysis should be repeated once again until no unidentifiable parameter
is detected.

1.3.1.5.2 A posteriori Identifiability When we have access to
temporal experimental data ) for some of the state variables of a model,
we can perform a posteriori identifiability for that data set. Assuming
Gaussian noise on the constrains, a local approach is based on the Fisher
information matrix (FIM). It is very similarly to the a priori approach,
but restricted to experimental data points.

0y;
00

50 ) 1.52

!
i=1
where | = |Y| and y; refers to the time and state variable corresponding
to; € Y. Q = M~ being M the measurement error covariance matrix.
When parameter correlations are present (larger than 0.99, for example)
the FIM becomes singular and the model is not identifiable [475, 474].
Another important concept is the correlation matrix, R,

Cij P .
=l if £,

Rij = Cii Gy fori,j=1,...,10|, 1.53
1 if i = j,

obtained from the parameter estimation covariance matrix, C', which is
approximated as the inverse of the FIM.

Finally, in the neighbourhood of the estimated parameters 6, a linear
approximation can be used to measure the quality of the estimates. Con-
fidence intervals can be calculated through the FIM [475] as well as from
other alternative approximations [474, 534] like the second derivative (the
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Hessian matrix) of .J(€) [26] or more robust methods as jackknife or boot-
strapping [313, 33, 283]. Systematic exploration of the objective function
is also possible [474], however this approach is computationally too ex-
pensive, specially for typical models of biological systems. Confidence
intervals around the estimated parameter 6 can be calculated thanks to
the Cramér-Rao inequality [344], which states that:

2 —1 .
oy, >FIM;,~, fori=1,...16]|. 1.54

Therefore, the true parameter value 8* lays in the interval [283],

A~

0i — oit! ;y < 07 < 0; + it 1.55

where £7 /2 is the t-Student statistic for v degrees of freedom and a confi-
dence level of (1 —a). These equations should be be taken with a grain of
salt as we are assuming a linear approximation and Equation 1.54 is only
a lower bound to the variance [283]. Revealing graphical interpretations
of parameter confidence intervals can be found in [26, 25].

It is very important we do not start a model calibration until no cor-
relations are present, otherwise we face very poor chances of successful
parameter estimation. Not only model calibration methods will fail, but
the obtained results will be meaningless, essentially random numbers.
Identifiability analysis have been applied to different biological systems
(274, 76, 618, 75, 313, 191, 614, 2306, 452], including power-law models
[534] and in silico models [459]. The application of identifiability anal-
ysis is strongly recommended for models of biological interest, for which
large emphasis is put on the biological interpretation of the estimated
parameter values [26]. Ashyraliyev et al. have studied the a posteriori
identifiability of the Drosophila gap gene circuit [26] uncovering signif-
icant problems: due to model parameter correlations, none of the pa-
rameters determined presented reasonable accuracy, a problem that can
not be always relieved with better experimental data sets. Gadkar et
al. [191] conclude that some models, given their lack of identifiability,
require from the direct measurement of certain key parameters (reaction
rates, for example) to capture the dynamics of the experimental system.

Apart from the FIM-based approach to identifiability, other alternative
methods are presented and compared in [452].
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Although not strictly global approaches of a posteriori identifiability, I
would like to stress the importance of some research works on the study
of a posteriori identifiability along different parameter points of a bound
parameter space. Examples of such an important approach is the work of
Balsa-Canto et al. [36] or Ashyraliyev et al. [26]. Identifiability is derived
from averaged values of sensitivity from a Latin hypercube sampling or
FIM values from optimal model calibration results respectively. It is im-
portant identifiability is evaluated at different representative parameter
locations due to the generally large roughness of the objective function.

Finally, worth noting are two excellent books for a deeper understanding
on identifiability methods [590, 344].

1.3.1.6 Optimal Experimental Design

In the previous section I have presented a pervasive problem on biochemi-
cal modelling: parameter unidentifiability. At the worst cases, even using
ideal data (both in quantity and quality, i.e., sampling within the order
of simulation time step for all the state variables and noise free data
respectively, a situation largely out of reach of current experimental set-
tings), specific model parameters cannot be constrained tightly. Not in
the sense to solve it completely but in the spirit of making the problem
less severe, the techniques of optimal experimental design (OED) appear.
An intuitive working hypothesis of OED is the following: do constrains
(9; € Y ) have a different influence on the model calibration problem? Ac-
cepting the hypothesis as true and understanding the model calibration
problem as a function minimisation (the objective function, J(6)), OED
searches for the constrains that transform J in such a way that it results
more facile for the algorithms to explore it and eventually arrive to the
global minimum. As expressed in [35], OED aims to define the measure-
ments with the mazximum amount and/or quality of information for the
subsequent model calibration. A work worth consulting that present the
problem of OED very clearly is [11], an excellent broad review introduc-
ing the OED in the context of systems biology is [314] and deep insights
on OED could be found at the A. C. Atkinson book [29].

Within this framework, diverse forms are available to discriminate con-
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strains in such a way. Mainly OED is based on parameter identifiability
results and it can be broadly distinguished as in local and global designs.

1.3.1.6.1 Local OED The most suitable prospective experiment would
be the one that maximises a given criterion. Using the FIM, several op-
timal criteria can be defined [475]:

e A-optimal design criterion: Defined as,

Y= arg min tr(FIM_l), 1.56
Yy

which can be interpreted as which set of constrains, ), provides
with the lowest trace of the inverse of the FIM. It can be interpreted
as an effort to minimise the average variance of the parameter es-
timates.

e Modified A-optimal design criterion: Equivalent to the A-optimal
design criterion, it is defined as the maximisation of the trace of
the FIM:

)> = arg max tr(FIM). 1.57
Y

o D-optimal design criterion: A geometric correspondent match of
the arithmetic strategy of the modified A-optimal design criterion
is the D criterion, which maximises the determinant of the FIM:

Y= arg max det (FIM) 1.58
Y

That implies minimising the overall volume of the estimated pa-
rameters’ variance [35]. Kutalik et al. [318] elaborated a formal
procedure to optimise the constrain that better improves the D-
optimal criterion.

o FE-optimal design criterion: Defined as,

Y = arg max Amin (FIM), 1.59
Y
where A\jin (FIM) is the lowest eigenvalue of the FIM, the E-optimal
design criterion is understood as an effort to minimise the variance
on the widest principal component of the FIM.
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o Modified E-optimal design criterion: Instead of maximising the low-
est eigenvalue as for the E criterion, in this case the goal is to limit
the extreme eigenvalues,

5 — arg i Amaz (FIM)
= argymm 7>\min (FIM) .

Geometrical interpretation of the OED criteria can be found in [28]. Sev-
eral of these criteria have been applied to various biological experimental
setups [41, 162, 613] with extraordinary results [38]. Additionally other
FIM-based criteria have been applied to signal transduction pathways
[83]. Finally, robust extensions of the local FIM-based criteria to the
neighbourhood of a parameter point have been developed [28, 176] and
applied to a signal transduction pathway [77, 613].

1.3.1.6.2 Global OED Local OED approaches assume that we know
with precision the parameter values or at least that our estimates are very
close to the real values. But for most of the cases in biological modelling,
this is not true and estimates of the parameter values are largely broad.
For example, the calculation of the FIM-based criteria could be radically
different at different local minima of the parameter space. Therefore
global OED approaches would be more adequate when poor information
is available about the numerical values of the model parameters. Al-
though computational cost would be, in general, larger, predictions would
enjoy greater robustness, against experimental measurement errors, for
example. Balsa-Canto et al. [35] presented an application of global OED
to a signal transduction model, taking as a basis the concepts of FIM-
based optimal criteria. Starting from a Monte Carlo sampling of the
fitness landscape, the shape of the results is analysed. A PCA is per-
formed on the 0.05-0.95 interquantile, generating several criteria suitable
for OED:

o Volume of the hyper-ellipsoide: Taken as the product of the semi-
axes.

o Mazimum eccentricity: Taken as the ratio of the largest semi-major
axis divided by the smallest semi-minor axis.
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e Distance to nominal values: From the parameter nominal value,
the distance to the mean value of the cloud of points is determined.

The volume variable can be understood as a global equivalent to the D-
optimal criterion (Equation 1.58), while the eccentricity is a simile to the
modified E criterion (Equation 1.60). Other methods take as criterion
the data that provide a smallest global parameter sensitivity, Feng and
Rabitz [174] presented an elaborated protocol in which a genetic algo-
rithm determines which experiment would be capable to reduce furthest
the parameter global sensitivity. Despite of its large computational cost,
its method is able to propose sensible experiments without the require-
ment of any knowledge about the precise value of the model parameters.
Moreover, the same authors presented two years later an improved ap-
proach [175] taking into account the extremes of the parameter distri-
bution: parameter distribution analyses after model calibration could be
a computer expensive approach, but a very appropriate criterion to di-
rect global OED. Similar ideas have been used to assess indexes of global
sensitivity on MCA models [4191].

Alternative protocols for global OED have been proposed recently [241],
unfortunately they have been developed for discrete time models (differ-
ence equations) limiting therefore its direct deployment on DEs models.

Both local and global OED can be included into iterative protocols along
with model calibration [190, 38] in an attempt to determine with certainty
the model parameter values. Finally, I would like to note that OED can
be not only be applied to model calibration, but also to model selection:
[314, 549] and references therein.

1.3.2 Information Storage and Sharing

Up to here, I have surveyed the broad range of methods available to
analyse the dynamical responses of biological models. Suppose that you
have a large interest on a specific pathway and you want to perform some
of the analyses described above. For example, you would like to know
which of the kinetic rates is the most sensitive of the system. How should
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we proceed? Well, now I will shortly introduce here some of the main
computational pieces necessary to carry out the presented approaches.

First of all we need a computer format to store the biological model.
Within the experimental biology community, biochemical pathways are
generally shared using cartoons of arrows and names. However if we
want to work quantitatively with the system, we require from comput-
ers and therefore a format to store it. Following this direction whatever
computer format would be possible, from a text file to a Fortran code
file. But we should choose a format, though, that could be able of taking
profit of the plausible befits offered by them. By far the most suitable one
is SBML [268], standing for Systems Biology Markup Language. SBML
is a computer-readable format based on XML for representing models
of biological processes, being the de facto standard format in computa-
tional biology [144] with over 180 software tools (July, 2010) supporting
it. SBML enables us to use the model with different tools without the
need to re-write it, which is largely convenient, avoiding thus the incorpo-
ration of errors. Moreover, a SBML model can be shared among different
scientists using different tools or programming languages, or even sharing
it publicly, in repositories or journals. Further, models can become inde-
pendent of the software they were created with, developed or analysed.
Extensive resources of information are available about SBML from its
portal, http://sbml.org/Main_Page. A similar effort to SBML is the
format CellML [345] and tools exist (Ce11ML2SBML [508]) that automati-
cally convert both formats.

Concentrically to SBML as the nuclear seed, other computational re-
sources have been developed. One of the most relevant is concerning the
visualisation of the models. The Systems Biology Graphical Notation
(SBGN) [324] provides with a way to represent biological pathways in
an unambiguous way. Another important aspect of biochemical mod-
elling, aside from the model itself, is quantitative experimental data. As
we have seen in Section 1.3.1.4, quantitative data for the behaviour of
the system is of crucial importance for model validation. Computational
standards to store and share such data have been recently developed
within the SBML community, the Systems Biology Results Markup Lan-
guage (SBRML) [116]. Not only experimental data, but results of a
simulation with reference to a SBML model can be specified. Comple-
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mentary efforts, specialised on microarray data sets have been developed
too [489].

Another of the most important pieces of the SBML world are model
repositories publicly accessible. BioModels Database and JWS Online
Model Database store about 250 and 90 models respectively (in July
2010). Models of disparate biological interest (metabolism, signal trans-
duction cascades, genetic networks, etc.) can be downloaded and simu-
lated on-line.

Finally we want to conclude this section with a reference to MIRIAM
(Minimum Information Required in the Annotation of Models) [323]
which can be understood as a guide for scientists to develop and share
computational models of biological interest.

1.3.3 Software Tools for Models

The amount of software developed for the field of systems biology is
large and heterogeneous. It is out of the scope of this introduction to
review carefully in detail the complete broad range of examples. As I said
previously, more than 180 tools are available, just for models written in
SBML. A tentative review of the tools available for kinetic modelling of
biochemical models, where some of the major programs are evaluated,
is a good source of primary information [12]. Instead I will give here a
subjective overview of the most useful tools available in the field. Another
source of information with short description about the capabilities of
the SBML-compatible applications can be found in the SBML portal,
specifically in http://tinyurl.com/2c44sqg6.

The very first step would be the creation of the model. We need a tool
to build a model and preferably to visualise it. Major tools used for
this purpose are CellDesigner [189] and COPASI [263, 378] among many
others (http://tinyurl.com/32eenag). A very helpful tool during the
creation of SBML models is SBMLsqueezer [145] which helps on the def-
inition within the model of the mathematical equations of the kinetic
laws. If different single models need to be merged, modular composition
of different SBML models can be assisted by SBMLmerge [511]. With-
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out the need of specific reaction kinetics, qualitative analysis of SBML
models can be conducted with or SQUAD [135]. Generally, a graphical
interface exists for these tools and if our model is based simply on ODEs,
integrating the system and generating the dynamics is nicely accessible
for scientists with no high skills on programming. Narrator [358] of-
fers not only a graphical interface to build a model but also provides
with techniques on information processing to facilitate the development
of the model. Other tools providing deterministic and stochastic simula-
tors are also available. If we are interested on stochastic simulations, I
would recommend DIZZY [456], STOCKS [297], Cain or the efficient Ce11MC
[85] as a good starting point. An special mention is required for spatial
simulators, applications that take into account the 3D nature of cells or
multi-cellular entities. Biological processes in which reaction/diffusion
phenomena are key factors can be modelled using among others Virtual
Cell [392], CompuCell [273] and SmartCell [I14] which have been shown
to be the most matured. Not compatible with SBML is Smoldyn [15],
which is specially suitable for modelling mesoscopic aspects of cellular
biology.

Other resources like the Systems Biology Workbench (SBW) [199] or the
Systems Biology Toolbox for MATLAB [509], they are more than a single
application, being true environments where a combination of different
applications converge to provide the user with a diverse bunch of analyses,
from deterministic to stochastic simulations, different types of sensitivity
analysis, model calibration, etc.

Specifically for sensitivity analysis, the number of tools is large. The most
complete ones are without doubt SBML-SAT [(626] and SensSB [473], but
there exist others as well as BioSens. For the related field of metabolic
analysis, two main tools exist integrated in the MATLAB environment,
the COBRA Toolbox [52] and CellNetAnalyzer [300].

The important analysis of model calibration has been included in a very
large number of applications. Some of the ones I consider outstanding
are COPASI, SBML-PET [624] and DOTcvpSB [255]. All three incorporate
many different strategies for function minimisation, from local to global
methods including hybrid algorithms. Special mention requires software
dedicated to parameter inference for stochastic models, like CaliBayes
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[95] which is capable of distributing the large computational cost derived
from such an expensive task.

Although identifiability analysis has been less popular among systems
biology scientists, efforts to provide software for the analysis of identi-
fiability problems were completed as early as in the 90s. Jacquez and
Perry [274] applied Fortran routines to several biological models. Some
drawbacks were present though, because models should be coded in the
Fortran programming language and the analysis was performed only at lo-
cal values of the parameter space. If we search for a tool compatible with
SBML models, a very useful software provided by Rodriguez-Fernandez
and Banga [173] is SensSB, a toolbox for MATLAB that calculates both
local and global sensitivity indexes and connects them with identifiability
and optimal experimental design. A priori and a posteriori identifiability
analysis has been also implemented in PottersWheel [249, 459], a MAT-
LAB toolbox. Finally, DAISY [57] is to our knowledge the only software
available for a priori global identifiability, unfortunately, not compatible
with SBML.

As biochemical models are getting larger and larger, efficiency is an im-
portant aspect to consider for modelling tools. Not many tools allow
parallel execution. Grid Cellware [134] allows to perform deterministic
and stochastic simulations and model calibrations in grid environments.
If our model contains thousands of reactions and species, Hy3S [4194] has
been proved to be an efficient tool to study such models. Simulations
can be treated in a hybrid manner distinguishing the deterministic from
the stochastic part.

Finally I want to emphasise that the current section is intended to in-
troduce the results presented in this work. ByoDyn is a computational
tool within the context explained here. Some of its features are unique
among all other tools, other are scattered along different tools, others are
shared. The motivation for the construction of such a tool was clear: the
power to develop the features that meet our needs. Currently the tool
offers a rich bunch of diverse types of analyses hard to find in a single
tool. ByoDyn is explained thoroughly in Section 3.
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2.1 General Objective

The objectives of the current PhD thesis can be framed in a quanti-
tative approach to biology. Biological systems, as any other existing
reality, can be treated quantitatively. Historically the field of molecular
biological suffer from difficulties to treat their matter of research in an
accurate quantitative way. Thanks to the important advances of experi-
mental techniques, the data acquired from biochemical systems has been
on demand of computational treatment. The general objective of the
work presented here is to develop and apply appropriate computational
tools for the understanding and interpretation of biological systems. The
choice and application appropriate methods to study biological systems
at the different levels of organization of cellular systems has been a con-
stant motto all along the work uncovered here. Secondary, at the time
this work was conceived, the opening of an entire new line of research
within the group was fostered.

2.2 Specific Objectives

The specific objectives of this PhD thesis are:
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1. Study the topological features of cellular networks, both at the
interaction and expression level.

2. Own a computational framework for the quantitative analysis of the
dynamical features of mathematical models of biochemical interest.

3. Apply our computational framework, ByoDyn, to biologically rele-
vant models.

Along the following section the specific objectives will be set forth in
detail.
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Results

3.1 General Overview

Within the group of Computational Biology and Biophysics Lab, I started
my PhD thesis project in January 2004. At the time, the main focus of
research of the group was in the microscopic aspects of biological sys-
tems, specifically, biochemical reactivity, protein folding and molecular
interactions. Then, the group decided to open new fields of research on
the macroscopic aspects of biochemical systems. At that point, the group
decided to glue the experiences and knowledge on biochemistry from one
side and on computer modelling from the other.

Following this path we started a collaboration with the Developmental
Biology Group of Pompeu Fabra University to better understand the
pattern formation arising on the otic placode during chick organogen-
esis. The system in hands was fairly large involving many genes and
proteins regulating each other on different cells. Efficient model calibra-
tion on a multicellular system constituted a difficult handicap for the
available tools at the current time. Facing this condition we decided to
build our own code for the analytical purposes we had in mind. Within
this framework ByoDyn was born. Observing the necessity of good (in
the sense of universal) coding system for the models studied, we incor-
porated SBML [268] compatibility on ByoDyn. The compatibility was
implemented during a short stay at the Control and Dynamical System
Laboratory in Caltech under the supervision of Mike Hucka. At this
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point we became aware of the large and steadily growing variety of mod-
els available in SBML, specifically, from public repositories as BioModels
Database [322]. Given the different relevant aspects of the models, differ-
ent analytical approaches should be taken which brought us to develop
different algorithms in ByoDyn: from deterministic to stochastic simula-
tors, sensitivity analysis, model calibration, parallel processing, optimal
experimental design and many more. Today’s situation of ByoDyn can be
stated as a largely complete tool for the analysis of mathematical models
of biochemical interest.

While ByoDyn reached a mature status we started the application of our
tool to specific systems. The model of lateral inhibition at the otic pla-
code represented a good ground for the application of the algorithms in-
cluded in ByoDyn. One of the major problems of the system under study is
the experimental difficulties to obtain precise and frequent samples along
the time scale of the experiment. On this direction, our motivation was
to generate a computational protocol to determine which measurements
(which species and at which time) resulted more appropriate for the
model calibration problem. Finally, due to the computational cost of the
complete protocol, which includes rounds of model calibration, some key
algorithms of ByoDyn were parallelised. A short stay for six weeks, funded
by the HPC-Europa granting frame (http://www.hpc-europa.eu/) un-
der the supervision of Gianni de Fabritiis at University College London
was essential for the completion of this goal.

Finally we were interested on another critical aspect of the biochemical
networks: topology. Genes, proteins and metabolites interact together
in the cellular context setting up a network of connections. Generally
speaking, the typical size of these networks is in the order of thousands
for both elements and interactions. Obviously then, statistical methods
are required to determine unequivocally the properties of such networks.
With this aim I spend two months at Zoltdn Oltvai’s laboratory at Uni-
versity of Pittsburgh where we applied appropriate statistical methods
to a large variety of experimental data from cellular networks. Either
retrieved from public repositories or generated at Oltvai’s lab, the data
selected was as most up to date and accurate as possible. The data
analysed reflected the genome at different conditions, the proteome, the
transcriptome and the metabolome; both activity and interaction aspects

60


http://www.hpc-europa.eu/

CHAPTER 3. RESULTS

of the networks were studied. The results of the work revealed that the
established models for network generation fail to explain some of the
main properties of the cellular networks.

More specifically we summarise and present in the next section the arti-
cles that constitute the results of the thesis.

3.2 Papers

3.2.1 Paper 1. ByoDyn: A Tool for the Computational
Analysis of Biochemical Kinetic Models

In this paper we present a new computational tool for the analysis of
mathematical models of biochemical interest. ByoDyn reads models in
SBML format [268], which is the de facto standard format [144] for com-
putational models of biochemical systems. We benefit from that fact
by accessing a broad variety of models, stored in public repositories like
BioModels Database [322] and JWS Online Model Database [122]. Our
platform is capable of a full range of analysis protocols: deterministic and
stochastic simulations, model calibration, sensitivity analysis, identifia-
bility analysis, optimal experimental design and many others. ByoDyn
is able to take profit of different architectures as it runs in single PCs,
clusters and supercomputers. Some of the model calibration algorithms
have been parallelised and ByoDyn has been deployed into the QosCos-
Grid [312] platform which offers supercomputer behaviour on clusters.
Finally in order to facilitate usability, a public web-based graphical in-
terface called ByoDynWeb has been developed as an alternative access to
the program.
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ABSTRACT

Summary: In ByoDyn, SBML models can be imported, visualised,
simulated and analysed using the methods provided. Both deter-
ministic and stochastic simulations can be performed, and systems
can be analysed by means of parameter estimation, sensitivity and
identifiability analysis, and optimal experimental design. The web
interface provides a personalised workspace and transparent links to
calculations in different computational environments.

Availability: http://byodyn.in m es provides links to both the
web GUI server and the GPL source code.

Contact: jordi.villa@upf.edu

1 INTRODUCTION

The development of standards for systems biology (SB) litslan
explosion of available models and applications for thigiff&lipp
etal., 2007]. The field is now mature enough to make use ofradva
ced algorithmics beyond the basic simulation schemas gedvby
deterministic and stochastic frameworks. Thus, a researoay be
interested in estimating parameters for a model from a sextjéri-
mental data, analysing the identifiability of such paramseter even
proposing new experiments through different flavours ofrogk
experimental design techniques [Kreutz and Timmer, 20@ga
and Balsa-Canto, 2008, Chen et al., 2009]. Equally releisatite
need to provide tools to easily integrate software fromedéht dis-
ciplines in a transparent way for the user, and here webceare
becoming a standard way to intercommunicate tools in, samest
distant servers.

2 FEATURES

ByoDyn can import SBML models through its binding to libSBML
[Bornstein et al., 2008]. The program numerically solvesdina-
mics of species for models grounded in different deterrtimis
frameworks (ODEs, DDEs, DAES), including events, rules aser
defined functions. The appropriate solver is automaticsghected
from Python bindings to SciPy, Octave, XPP or OpenModelica (

*to whom correspondence should be addressed
TALGL and AGG contributed equally to the work, MHS developbe tveb
interface and PR developed the stochastic simulations. code

a complete list of web sites for these and other tools uselimwit
ByoDyn, please, refer to the supplementary material). Stochastic
simulations are run using the direct method implementadfoBil-
lespie’s stochastic simulation algorithm (SSA) or differeariants
of 7—leaping methods [Gillespie, 2007, Rué et al., 2009].

Different parameter estimation tools are available, iditlg local
(gradient-based, using methods from the Netlib PORT lihrar
global (genetic algorithms, GA) or hybrid (different cométions
of the former) optimization methods. Sensitivity analyiSselling
etal., 2004], identifiability analysis and optimal expegimtal design
(OED) based on the Fisher information matrix [Banga and &als
Canto, 2008] can be performed with the program. The Pyttased
object oriented structure of the code permits a modularempgin-
tation of the different tasks and paves the way for easy éurth
implementation following the open source philosophy. Giep
are obtained through the link to gnuplot, matplotlib or byedt
PostScript/PNG outputs.

2.1 Web Interfaceand distributed computing

Focussing on the biomedical field, the ultimate goal of SRighbe

to provide links between basic and clinical research anditoend
the integration of its methods into biomedical informaticzkflows

is going to become critical in the years to come. Thus, it jgontant

to provide easy to implement links between knowledge manage
ment portals and SB tools. It is also necessary to providg &as
use graphical interfaces, aiming not just at expert SB uséralso

at experimentalists willing to test their hypothesis in ategrated
environment. To this end, accessBpoDyn is both command-line
based and web based.

The graphical web based interface includes support foesyst
biology graphical notation (SBGN) visualization and edt of
models, while providing an easy link to popular SBML modglae
sitories and a personal workspace with a UNIX-like shariysfem
for input files, results and models, helping creating caltakive
environments (due to computational restrictions, guesesg is
provided with some limitations on the accessible featur@sje
web GUI has been developed on top oEAMP system and web
services are being used to imp&yoDyn from wider scope por-
tals, e.g., BioBridgeHt t p: / / www. bi obri dge. eu). Figure 1
shows how the diverse program features can be reached frem th
web GUI. Documentation, model repository links and exasple
also provided through the web GUI.

© Oxford University Press 2009.
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Garcia de Lomana et al

Kinetic_modelling_of Amadori_degradation

or60 no

d)

Fig. 1. Snapshots of thByoDyn web GUI. Taking as an example the model in Martins and Van Bof@003], the figure shows: a) visualisation/editting of
SBML files following the SBGN standards; b) deterministiclaochastic integration; c) reconstruction of the trajees obtained after parameter estimation
(local method starting from 10 initial parameter vectonsd@mly sampled within two orders of magnitude centered ennttodel nominal values). As a
proof of concept, the calculation used 4 computer genepé@tts as pseudo-experiments. Note the difference betiheebehaviour of the targetted nodes
(left) and the non-targetted nodes (right); and d) resultselocal OED protocol using the modified E criterion[Barayal Balsa-Canto, 2008], showing the
information associated with each of the data points useldeiparameter estimation protocol.

An important aspect of the program is its capability to run in ALGL]; and European Commission [grant numbers FP6-2005-

different computational environments, depending on ther per-
missions, which is done in a transparent way for the usealldo-
ster, external high-performance computing resources$.ilbludes
the possibility of running parallel computations throudie stan-
dard message passing interface (MPI) in ScientificPythwiuding
its deployment on the QosCosGrid environmelmt t(p: / / vww.
goscosgri d. eu), while providing basic computing capabilities
for guest users.

The supplementary material for this paper includes a comple
user’s reference, describing 8y oDy n features in more detail, and
a quick start guide.

2.2 Futureprospects

Although there exist tools able to translate CellML into SBfles
[Schilstra et al., 2006] andce versa, the two standards do not share
100% of their features. Thus, the upcoming versions of cogiam
are scheduled to provide support for CellML. There will beoal
support for steady state analysis, although current res@athe lab

is focussed on the improvement of identifiability of paraenetby
means of global analysis of the parameter landscape anéoaé
simulations from coupled deterministic-stochastic apphes.
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3.2.2 Paper 2. Optimal Experimental Design in the Mod-
elling of Pattern Formation

In this work we apply optimal experimental design techniques [162, 475]
to a multicellular model of pattern formation in developmental biology
[377, 17]. Apart from exceptional results [55], kinetic parameters of bio-
chemical systems are not easily measurable. Instead, if sufficient exper-
imental data of key species is available, kinetic parameters’ values can
be inferred using model calibration techniques [39]. Generally, experi-
mental data about the output of the system is scarce [514] and measured
at time points decided by the experimentalists without any prior knowl-
edge. We apply here a complete protocol for optimal experimental design
which provides information about which would be the next measurement
so that the model calibration problem becomes easier. The protocol is
based on the local improvement of the objective function shape [175]. We
have detected a main drawback along the iterations of the protocol: given
the roughness of the objective function and therefore the abundance of
many local minima, we risk at each minimisation procedure to end up
in a different minimum. This problem validates the application of the
complete protocol only at the vicinity of the parameter nominal values.
Otherwise a global characterisation of the objective function is required
[96, 173, 626].
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CHAPTER 3. RESULTS

3.2.3 Paper 3. Statistical Analysis of Global Connectivity
and Activity Distributions in Cellular Networks

In this article we use appropriate mathematical methods to determine
some of the main topological features of cellular networks. We can ac-
count for mainly three types of interaction networks in the cellular con-
text: protein-protein interaction networks (PIN), transcriptional regula-
tory networks (TRN) and metabolic networks (MN). All of them have
been said [279, 165, 280] to follow power-law distributions for the con-
nectivity degree. Moreover, the activity of cellular networks have been
declared to follow power-law distributions [168, 568, 10]. Elicited by
other works [296, 543, 550, 602] which raised methodological problems
on the analysis of the networks’ degree distributions, we analysed in this
paper a broad number of the most accurate and complete data sets on
cellular networks using appropriate statistical methods [103]. The net-
works we analysed were PIN (retrieved from literature curated sources
or high-throughput experiments [464]) and TRN [355] in yeast and the
E. coli reactome [169]. We also studied gene expression data in E. coli
at different growth conditions [54] and protein expression data [200]. All
tested networks either differed significantly from the power-law distri-
bution or alternative models were equally good explaining the empirical
distributions. Thereafter we concluded that none of the studied networks
can be accounted unequivocally for power-law on the connectivity degree
distribution.
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There is only one thing in the
world worse than being talked
about, and that is not being
talked about.

Oscar Wilde

Discussion

4.1 Cellular Networks and Graphs

Since little before the 2000s decade, catalysed by some seminal works
as [592, 43], there has been a prominent interest on the study of the
properties of real networks. Apart from the extraordinary work of the-
oretical approaches in graph theory, the burst in the field has been a
consequence of the availability of interaction data from real networks.
For example, in sociology, relationships were established based on per-
sonal interviews which are time consuming and subjective. Nowadays,
however, on-line social networks or e-mail communications provide with
a source of data much more reliable and retrievable in extremely short
time. In the biochemical arena, high-throughput techniques and text
mining tools have uncovered an unprecedented large amount of biochem-
ical interaction data: protein-protein physical interactions, gene regula-
tion relationships and connections among metabolic reactions. However,
the accuracy of high-throughput methods is far from the ideal [149], in
fact, for yeast two hybrid (Y2H) experiments, the false positive rates
are up to 64% and false negatives from 43% to 72% [317]. Other high-
throughput methods employed, like tandem affinity purification (TAP)
experiments have also very low reliability with 77% for false positives and
15%-50% for false negatives [317]. With this type of data, the derivation
of accurate predictive theories about the behaviour of biochemical net-
works results utopian. Nevertheless, the use of more accurate data sets
[464], derived from example from literature curation and the use of sta-
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4.1. CELLULAR NETWORKS AND GRAPHS

tistical methods to assess the confidence of the analyses [317] represents
a secure path for future research.

Indeed, in the field of network biology several myths have extended [340]:
(1) power-law degree distribution, (2) scale-freeness, (3) small-world-ness,
(4) error tolerance simultaneous to attack vulnerability and (5) prefer-
ential attachment as the network growth mechanism. In order to have
greater insights on the first hypothesis, i.e., the power-law degree dis-
tribution of cellular networks, we have performed the most appropriate
statistical analysis to the state of the art biochemical data sets (See Sec-
tion 3.2.3) finding no specific support for the power-law model. In the
case the results of the analysis would lean to a specific distribution, ad-
ditional remarks would be taken into consideration as small size data
sets or inherent noise. Practices of leave-one-out cross validation would
provide, in that case, with robust conclusive results.

From a biochemical perspective, node functional inference or prediction of
global network behaviour results more appealing than the determination
of the probability distribution of a graph feature. Then, whether or
not biochemical networks display power-law degree distribution, other
properties as community structure, largely linked to functional modules,
can arise large interest from biochemistry scientists. Is in this direction
already described or newly discovered graph measures should be tested
in cellular networks. Intuitively, the importance of community structure
in metabolic networks is considerable, in fact, metabolism is organised
in cycles, cascades or pathways in general, which tend to be relatively
distinguishable. In this framework, however, cross-talk among pathways
is essential for a proper regulation of the cellular responses. Key players
connecting several pathways identified conceptually as date hubs in [239]
or more accurately as R3, R6 and R7 type nodes in [231, 233] should
be identified and characterised to better understand, as a whole, the
complete set of relationships!.

Graph analysis tools have proved to be largely useful for biochemistry,
specially for the analysis of omics data sets. Specifically, as it has been

!Metaphorically, certain nodes touch different network communities as motorways
link different large cities or states, while other nodes touch only intra-community
nodes, as secondary roads link nearby villages. The characterisation of those nodes
that bind different communities can be a proxy for the global picture of the network.
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exposed in Section 1.2.1, many algorithms have been developed to in-
fer community structure in graphs. The uncovering of communities in
graphs derived from biochemical interactions allows for further biologi-
cal knowledge, as closely clustered biological entities can be assumed to
be involved in the same biological process. Nevertheless, a recent work
from Song and Singh [529] have shown that function prediction is better
accomplish in the S. cerevisiae PIN by a guilt-by-association approach
than by several leading edge clustering algorithms. Other works [291]
emphasise the lack of relationship between strength of community struc-
ture and robustness of community structure: some graphs may display a
largely significant community structure but small perturbations may van-
ish it completely. Consequently, a word of caution should be addressed
when deriving biological attributes from graph features of biochemical
networks.

Basic scientific disciplines like physics or chemistry has largely founded
the knowledge in biochemistry and molecular biology, aiding in the un-
derstanding of, for example, the activity of proteins or the kinetics of
enzymes. Graph theory too, has proved to be another helpful tool to
take into account in biochemistry and many other further insights are
expected.

4.2 Dynamical Analysis of Mathematical Models of
Biochemical Interest

All scientific disciplines concerned about understanding nature combine
together experimental approaches with rigorous analytical approaches.
Which formal methods and how we use them is critical for the under-
standing of biological world. The work of Bashor et al. [17] could be
one of the innumerable examples. The usefulness of the models we work
with relies not on their ability to reproduce the observed behaviour but
to predict novel results. Which mathematical formalism we choose is the
first important matter we have to solve. There is not a universal rule to
choose a formalism or another, being up to the choice of the scientist.
The main idea to use the simplest model without missing the features we
are studying. In fact, the mathematical framework we use is of crucial im-
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portance and the results derived from different formalisms might bring
us to different predictions and conclusions. A clear example would be
the choice between deterministic or stochastic methods. Understanding
cellular behaviour is the ultimate goal of systems biology and cellular be-
haviour is the result of stochastic molecular interactions [278]. Although
historically continuous deterministic assumptions have been considered
for modelling biochemical systems, efforts to determine sensitivity [115]
or even to perform model calibration [118, 188] in stochastic systems have
been conducted.

At any rate, independently of the method we use, i.e., whether we model
our system using discrete or continuous approaches, deterministic or
stochastic, we need to validate our model. At the validation stage, from
a more philosophical perspective, we have to keep in mind the question:
What we have built the model for? or Which questions we wanted to
answer?. Within this context, the objective function will never be an
adequate measure for goodness of the model. Instead, if for example,
our goal was the determination of the parameter values from dynamical
data, identifiability analysis provide us with adequate answers on model
validation.

Model calibration, which is a central problem in systems biology and
for which much resources have been allocated, requires from both com-
putational and the experimental efforts. Methods for model calibration
are generally computationally too expensive turning into rather slow op-
tions; on the other hand, acquisition of temporal quantitative data for
biochemical species in cellular environments is highly complicated (ex-
cept for some exceptions [439]). Data of low quality is the fist obviously
burden for a successful model calibration. As a rule of thumb, the ex-
perimental data should be several times the number of parameters to
estimate. A pervasive problem in model calibration of biological systems
is the lack of adequate data [628]. Another important aspect is the noise
of the measured data. While it might not always be possible, smoothing
noisy data could help dramatically model calibration. Collaterally, work-
ing with smoothed resulting functions instead of noisy data sets [80] may
help bypassing model integration, which is for sure the most computa-
tionally demanding task of model calibration: from 95% to nearly 100% of
the resources is spent on model integration [576]. In this sense, efficient
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algorithms for model integration and algebraic strategies are essential
points of the model calibration problem. Model integration algorithms
need to be fast and robust: fast because they are executed many times
along the objective function minimisation and robust because different
parameter values will be explored, yielding various dynamics [26].

Clearly, the choice of the model calibration method itself is a decisive
issue. Local methods are fast and inconsistent for non-convex problems
and global methods are more robust but they show slow convergence.
Then, hybrid strategies (combination of both global and local phases)
will generally be the best compromise. Typically, objective functions in-
stead of soft surfaces (Figure 1.3), they are more likely to be majorly
planar but with very deep and narrow basins of attraction (Figure 1.4).
Such structures represent an extreme challenge for minimisation algo-
rithms and the global minimum is missed oftenly. Importantly, a model
calibration benchmark using time series data has been defined recently
by Gennemark and Wedelin [198]. Given the computational cost of in-
verse problems, many of the available methods are commonly parallelised
for efficiency reasons. However, worth noting is the argument from the
authors that none of their tested problems within the field of systems bi-
ology required from supercomputing. Problems were solved at the range
of hours in ordinary desktop computers. Not only model calibration but
identification of the model structure has also been surveyed [313]. These
works represent a major path for the development of more efficient model
calibration algorithms for systems biology.

When model calibration fails, we start asking ourselves why. A relatively
low value for the objective function only expresses the quality of the fit
but does not provide any information about the quality of the estimated
parameters [25]. Main sources of poor model calibration could be defined
as [97]: the model, the data, the computational cost or any combination
of all three. Taken the problem of computational cost apart, which can
be alleviated using alternative minimisation algorithms, the combination
of model and data can be studied with identifiability analysis. Identifia-
bility analysis will eventually reveal some of the main problems of model
calibration, e.g., flat regions on the objective function or convergence to
local solutions®. As a matter of fact, the identifiability analysis should

2Not only identifiability analysis, but other techniques like global sensitivity indexes
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be done prior to any model calibration. We should not need to ask our-
selves why the model calibration failed, but rather controlling the sources
of failure before any calculation is launched. The application of identifia-
bility analysis is strongly recommended for models of biological interest,
for which large emphasis is put into the biological interpretation of the
estimated parameter values [20], being a must prior to model calibration.

For example Fomekong-Nanfack et al. worked on an initial model of 66
parameters. After fixing only four parameters the model calibration al-
gorithms behave strikingly different, finding a relatively good result with
much higher frequency. What does that mean? Which is the importance
of those 4 parameters? And the importance of the other 627 How much
importance show we put on those model parameters that show very wide
distributions after model calibration? How much relevant should they
be considered for the model? These types of questions, basically the re-
lationship between @ and Y, bring us to the concept of sloppiness [230].
A large number of biological models studied, hold parameters such that
changing their numerical values does not particularly affect its dynamic
response. In those cases, modellers should focus on model predictions
rather than model parameters [32, 2306], specially for tentative or incom-
plete models. In sloppy models, parameters show a large variance while
predictions remain tight; it is the dynamic response from ensembles of
parameters which should be evaluated, not single points of the parameter
space [75].

Almost all biochemical models for which identifiability analysis has been
applied, showed several levels of unidentifiability, both a priori [618, 191,
190, 459, 36, 477] or a posteriori [159, 36]. Srinath and Gunawan [534]
argument that for the majority of models using power-law formalisms,
around 80% of the model parameters are a priori unidentifiable and 50-
60% a posterior: unidentifiable. Worse, taking into account the typical
noise of such biological measurements, only around 25% of the model pa-
rameters could be identified. Worth noting is that a priori unidentifiable
parameters will not be recovered with better data sets [452]. In fact it
is a central matter in biological modelling, not a merely peripheral issue.
A positive point of view is that determination of a subset of parameters
(the stiff ones) is sufficient to recover a consistent dynamic behaviour

[300] have been used to improve and understand model calibration results.
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[94].

An interesting link can be drawn from parameter identifiability and model
reduction. When it is detected a lack of parameter identifiability, then it
is a good time for model reduction [510]. A general trend in biochemical
modelling is to build more and more complex models, with an increasing
number of model parameters. However that does not necessarily imply
better models, models capable to predict more trustfully. Specially if
our models are data-driven, we should rely on the models that hold a
succinct number of parameters such that different model hypothesis can
be discriminated with the data in question.

Another important aspect which is not always sufficiently emphasised
is that sloppy models do not necessarily correspond directly to biologi-
cal properties. Identifiability is a mathematical notion, raising from the
model. Whether if the biological process we are modelling is robust or
not, is a different matter [185, 586]. It should be taken into consideration
that most parameters of biochemical models are, with few exceptions,
phenomenological.

In such a complicate context of parameter unidentifiability OED will not
solve the problem but at least could guide us in the determination of the
most useful experiment. At least, OED will tell us which measurements
are necessary to fix the stiff parameters of the system ?, reducing human
and economic costs [35]. Most of the literature presents works on OED
based on the FIM. The FIM is evaluated at a single point of the param-
eter space and more robust methods would be more suitable for the type
of problems arising in biochemical modelling, which show non-convex
objective functions. Moreover, models showing disparate identifiable pa-
rameters (sloppy) tend to generate singular FIMs, making FIM-based
criteria useful only for identifiable models. Additionally, if we are in-
terested on applying protocols of OED, the parameter nominal values
are generally unknown and ideal OED techniques should deal with that.
For those reasons, some efforts have been developed in the direction of
global OED. Hengl et al. [249] have studied the parameter relations on

3An ultimate extension of OED for model calibration would be OED for model
selection: defining which ) is best for discriminating among models of different struc-
ture.
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a distribution of model calibration fits. Another example is the work
of Feng et al. [175] who generated indexes of OED based on the limits
of the distribution of parameters derived from model calibration. From
my personal perspective, although computationally costly, OED indexes
based on information theoretic measures, like Shannon entropy, would
yield largely trustful results.

As final point the software tool ByoDyn has been presented. ByoDyn is
fairly complete tool which attempts to deal with most of the problems
discussed above. It is based on computational standards like SBML or
MPI and intended to be easily accessible and free for the scientific com-
munity: none of its dependencies is under commercial licence.
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Conclusions

The conclusions of the PhD thesis are the following:

1. Cellular networks, both at the level of interaction and activity dis-
play heavy-tailed distributions. However, using adequate data sets
of interaction and activity networks in yeast and E. coli and ap-
propriate statistical methods, the resulting distributions could not
be assigned unequivocally to any of the suggested distributions,
included the power-law.

2. A new computational tool ByoDyn has been developed from scratch.
ByoDyn is fairly complete tool which attempts to deal with most
of the problems encountered on the study of dynamical models
of biochemical interest. Built from computational standards, its
idiosyncrasy is to be easily accessible and free for the scientific
community. Understanding quantitatively the processes occurring
in a cell requires from the computational tools found in ByoDyn.

3. Despite of their computational cost, prevalent methods for the dy-
namical analysis of mathematical models of biochemical interest,
e.g. sensitivity analysis, model calibration, identifiability analysis
and optimal experimental design, need for global strategies for a
consistent description of the dealing problems. Lack of convergence
is generally suffered from local approaches applied to dynamical as-
pects of biochemical modelling.
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Adjacency matrix
A real symmetric matrix A used as representation of an undirected
graph G = (V,€). The elements of A are a;; taking the values 1
if there is an edge between vertex i and j, 0 otherwise. {i,j} € V.
14, 19

Artificial neural network
Computational modelling technique consisting on simulating a sys-
tem using a network of nodes which behaviour mimics to a certain
point the functions of real neurons. A node works as the input
of the system and the rest of nodes as functions f : X — Y.
The output of the system is a composition of the other functions,

flx)=K ( Z wi gz(x)) Some of the most popular neural networks
i

are support vector machines and self-organising maps. The amount
of applications is broad, specially efficient on learning problems as
classification, pattern recognition or image processing. 27

Bayesian Network
A Bayesian network is a probabilistic graph model G = (V, &),
being G an acyclic graph where vertices v € V are represented
by random variables x; and edges £ are conditional dependencies.
They have been applied to network inference and learning, specif-
ically in computational biology, where their use is widely common
in network inference from microarray experiments [187]. 27

Bifurcation analysis
Bifurcation analysis consists on a mathematical analysis of topo-
logically inequivalent changes on dynamical systems. 32, 37

BioModels Database
Data repository of mathematical models of biochemical interest
[322]. Models are stored in SBML format. Models are annotated
and linked to other relevant resources as publications, ontologies
and other biochemical databases. Models can be browsed, down-
loaded, exported into other formats, visualised and simulated. Web
services are also provided. 28, 29, 54, 60, 61, 144
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Boolean Network

Proposed by S. A. Kauffman [292], a Boolean network is a discrete
dynamical modelling method. States and time are defined as dis-
crete. Cellular automata is a particular case of Boolean networks.
As in the original work, it has been further applied to gene regula-
tory networks [528, 608, 267, 519]. Each of the genes are represented
by a system of N-binary variables with K inputs as the regulatory
mechanisms, being 2V possible states, arriving eventually to an
atractor. Different variable update mechanisms have been defined.
27

ByoDyn

Command line program for the analysis of dynamical systems of
biochemical interest. It inputs as primary model format SBML
models and the software holds a large variety of analysis tools.
Some of the most relevant ones are deterministic and stochastic
simulations, sensitivity analysis, model calibration, identifiability
analysis and optimal experimental design. Some of the most com-
putationally expensive routines have been parallelised, specifically
some of the global methods for model calibration. The program is
mainly written in Python and its sources are freely available for the
scientific community. It is distributed from SourceForge under the
GNU GPL Licence. It has been developed, tested and used under
Mac OS and Linux operating systems. 56, 5861, 94, 95

ByoDynWeb

Graphical interface for ByoDyn. It is a web-based server that allows
the user to send a calculation of ByoDyn using a graphical inter-
face. The user needs first to register (for free) and they will access
a personal workspace where different models and runners are avail-
able. All runners from the ByoDyn documentation are available
and a large amount of models from public repositories (BioMod-
els Database and JWS Online Model Database) are also directly
uploaded into the server, accessible for the user. The calculations
can be sent using the displayed windows to several computational
environments: (1) the web server itself providing robustness under
network failures, (2) a dedicated PC for regular calculations and
(3) a dedicated cluster of machines for specially long calculations.
61
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CellML
It is an open standard computational language based on the XML
markup language. It is intended to store and exchange computer-
based mathematical models, specifically for different aspects of bi-
ology [345]. Tools and model repositories are publicly available. 28,
53

Cellular automanton

Cellular automata is a discrete modelling technique. It consists
on a regular grid of elements called cells with specified rules of
connectivity and evolution. As time (also discrete) advances, the
state of a cell variates depending on the state of its neighbours.
Generally update rules are deterministic although probabilistic ones
are also possible. Cell’s states are in principle finite but continuous
automata have been described too. 27

Clique
A clique, in an undirected graph, is any of their complete subgraphs,
i.e., a subset of vertices so that every two vertices are connected.
13, 14

Clustering coefficient
Local property of a vertex from a graph. It provides an idea of
the local cohesiveness of the vertex evaluating the number of edges
among the direct neighbours of the given vertex. It can also be
called transitivity. 5

Degree distribution
Global property of a graph, generally noted as P(k), consisting on
the probability distribution of the degree over all vertices of the
graph. The degree k of a vertex is no more than the number of
edges with the other vertices of the graph. 4, 148

Determinant of a matrix
Defined on a n-by-n square matrix, it is a mathematical object
defined as,

det(A) = Y Ay(—1)"I My
j=1

being M; ; the minor, which is defined as the determinant of the
matrix resulting from removing the i-row and the j-column of A.
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Geometrically it can be interpreted as a scale factor for measure.
50

Difference Equations

Not to be confused with differential equations, difference equations
are a specific type of recurrence relation, where an equation defines
a sequence of recurring terms, x; = f(t,z;—1). It has been applied
to modelling dynamical systems in discrete timescales [368, 552].
28

Differential Equations

Edge

A differential equation is an equation involving the unknown func-
tions and its derivatives.

y' = f(z,y)

Several types of differential equations are explained in Section 1.3,
including ordinary differential equations, linear and non-linear dif-
ferential equations, partial differential equations, algebraic differ-
ential equations, delay differential equations, piecewise differential
equations, stochastic differential equations and complex differential
equations. 146

As defined in [407], an edge is the line connecting two vertices. In
a social network it represents a relationship, a wire in a computer
network or a functional relationship in a transcriptional regulatory
network. 2

Fortran

Fortran is a programming language developed by IBM in the 1950s.
It is specially suitable for numerical computation. 53, 56

Fourier amplitude sensitivity test

It is a sensitivity method based on the Fourier transformation re-
ducing the multidimensional input model into a single dimensional
one. From a sample of inputs, the expected value and the expected
variance (along with the contribution of each parameter to it) are
calculated. 37
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Gaussian-Newton method
The Gaussian-Newton method is a numerical algorithm to solve
non-linear least squares problems. Given a model,

y=f(z,0),

and the associated sum of squares,

55(6) = 320
The new position at the parameter space for iteration ¢+ 1 is taken

as,
0(t+1) — gt + 4,

where é can be taken from,

(JTI)6 = JTr,

being J7 the transpose of the Jacobian matrix of f with respect to
0. 43, 149

Genetic algorithm

Genetic algorithms are a type of global search algorithms inspired
by natural selection. The idea is the following: a group of elements
are initialised typically at random positions of the parameter space.
Each of the elements are evaluated and a fitness value is associated
with them. Those elements with better fitness pass to the next
generation. The selected elements can undergo modification pro-
cedures with specific probabilities. Those modifications are called
mutation and cross-over in which an element is modified or two
elements are combined, respectively. Introduced and formalised by
many scientists in the 60s and 70s a great variety of different modi-
fications have been implemented [260, 217, 122, 388]. In the field of
computational systems biology, they have been applied extensively
[535, 426, 589, 298, 546]. 44, 52

Geometric random graphs
A geometric random graph is a graph G(V,d), being ¢ a threshold
distance. V is a set of vertices embedded in a metric space and € a
set of edges such that & = {(u,v) € £ | {u,v} € VAO < |lu—1]|| <
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0}, where || - || is an arbitrary distance norm in the metric space
[447].

In other words, geometric random graphs are a type of random
graphs constructed as follows:

1. In a bounded N-dimensional space a number of points are
placed uniformly and independently.

2. Each point is referred as a graph vertex and two vertices

are connected if the distance between them is below a given
threshold.

Further information can be found at [431]. 19, 24

GNU GPL Licence
GNU General Public Licence is a software licence for free software.
144

Graphlet degree distribution
The graphlet degree distribution of a graph is the degree distri-
bution of a graphlet. A graphlet is defined as a small connected
non-isomorphic subgraph. See [446] for further insights. 24

High dimensional model representation
High dimensional model representation is a finite expansion of a
multivariate function,

fer, g, ng) = fo+ > fit Y Y fij+ oot ro ke
5 i >

It is used for the calculation of global sensitivities by the Sobol’s
method. 37

Homoscedasticity
Two or more variables are said to be homoscedastic if they have
the same finite variance. 39

Hub
A vertex with a relatively large number of edges, ideally |£|. 18

JWS Online Model Database
Data repository of mathematical models of biochemical interest
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[422]. Models are stored in SBML format. Models can be run
on-line or downloaded. 54, 144

Laplacian matrix
A |V| x |V| matrix L, which diagonal values are the degree of node
i and L;; values take —1 if an edge exist between vertices 7 and j
and 0 otherwise. 14

Latin hypercube sampling

Latin hypercube sampling (LHS) is a statistical technique gener-
alising the concept of Latin squares for multiple dimensions first
described by McKay in 1979 [371]. A Latin square consist on a
n-square matrix in which n different elements appear exactly once
for each row and column. LHS guarantees that the sampled set
is more representative of the real variability than a pure random
sample. 37, 49

Lattice
A lattice is a discrete subgroup which spans a vector space, gener-
ally in R™. It can be defined as,

E—{Zaivi\aiEZ},
=1

where {v1,...,v,} is a basis for the vector space. 21

Leave-one-out cross validation

A statistical technique to evaluate the performance of a predictive
model, assessing how the results of a statistical analysis will gener-
alise to an independent data set. The idea is to divide a complete
data set into complementary subsets, the training set and the val-
idation set. The training set is used for analysis (parametrization
for example) and the validation set is used for evaluation of the per-
formance of the model. Commonly different partitions are created
and tested, then an average result is adopted. 88

Levenberg-Marquardt method
The Levenberg-Marquardt method is a modification of the Gaussian-
Newton in which the increment § can be solved from,

((JTT) + Adiag(JTJ))é = JTr,
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where ) is a damping adjustable factor and diag(J”J) is a scaling
term that accomodates the curvature of the gradient. 43

Linux

It refers to the Unix-like operating systems based on the Linux ker-
nel developed originally by Linus Torvalds in 1991. The underlying
code is subjected to the GNU GPL Licence. It is now widespread
on desktops, laptops and many other electronic devices. 144

Mac OS

Graphical operating system of Apple computers. 144

Maximum likelihood estimation

Given a sample data set of n independent observations @ = (z1, 2, ..., Tn),
a maximum likelihood estimation is a method to determine which

is the parameter value 8 of a given model, more likely to produce

such data. First a joint density function is constructed,

f(x1, e, ... x,|0) = f(21|0) f(22]0)...f(2,]0). 6.10

Reversing the roles, we arrive to the likelihood function,

n

l(0|l’1,$2,-..,$n) :Hf(xz|0)a

=1

although more practically is to work with the log likelihood func-
tion,

L(B|z1, 29, ...,xn) =Inl =) f(xi]6). 6.12
=1

The parameter value é, that maximises the likelihood as,

6 = argmax L(0|z1, o, ..., 2p) 6.13
0

is the most likely model parameter that explain the data set .

Generally,
oL

% =
is solved to find . 12, 15, 40

0 6.14
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Message passing interface (MPI)
It is a computational standard that specified the way of communi-
cating among different computers. It is language-independent and
it is the most used protocol for parallel applications in supercom-
puters and grids. 94

Metabolic network (MN)
Ensemble of metabolites related by the reaction they participate
in. Generally a MN refers to the complete metabolism of an entire
organism. 2

Metaheuristic
Computational algorithm that iteratively attempts to improve a
measure quality based on simply defined rules. 44

Monte Carlo sampling
The Monte Carlo method refers to any method that starts from an
ensemble of random points and select some of them based on some
principles in order to achieve a given goal. 10, 12, 51

Motif
A network motif is a subgraph that occurs within a network more
often than expected at random. 18, 19

Multifractal
A multifractal system refers to the generalisation of a fractal sys-
tem, where more than a single exponent is required to describe it.
24

Partial rank correlation coefficient
A correlation coefficient consists on a measure of the degree of as-
sociation between two variables. Given a sample of n elements for
which two variables x and y are known, the correlation coefficient
can be defined as,

n

S (@i — 2) (i - 9)

Ty = =1 : 6.15
(n—1),| > (& =2 (v —9)°
=1 =1
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being  and g the mean values of x and y respectively. The partial
correlation coefficient measures the correlation of a pair of variables
(x,y) holding constant the influence of a third (zy),

Tajar — Tayyleyy

Tz;yexy, = .
JA=r2)0-12,)

The partial rank correlation coefficient is the result of a partial
correlation on rank-transformed data. 37

Petri net
A Petri net is a mathematical formalism to model distributed sys-
tems. Formally is defined as a tuple P = (S,7,)V) where S is a
set of places, 7 a set of transitions and W a set of archs. No object
can be both a place and a transition. Arcs, which joint elements of
S and 7 are defined as non-negative integer values. Introductory
references are [134, 435]. 28

Phase transition
Generally a phase transition is the transformation of a thermody-
namic system from one state of matter (where physical properties
are essentially uniform) to another, e.g. from liquid to gas. Specif-
ically for random graphs, it refers to the phenomenon that many
monotone-increasing graph properties switch from very unlikely to
highly likely around a threshold concerning the number of edges
[158, 277]. 20

Pleiotropy
Pleiotropy is a genetic phenomenon where a single gene affects mul-
tiple phenotypic traits. A common example is the CFTR gene,
whose mutations can cause multiple diseases, e.g., congenital ab-
sence of vas deferens or any of the many manifestations of cystic
fibrosis: lung illness, gastrointestinal, liver or pancreatic failures,
endocrine disorders, etc. 13

Power-law distribution
A power-law distribution is a probability distribution that satisfies
the form:

p(xz) o< L(z)x™® 6.17
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where a > 1 and L(x) is a slowing varying function so

lim L(tx)/L(z) =1 6.18
Tr—00
for ¢ being a constant. The property of L(z) follows from the re-
quirement that p(z) should be asymptotically scale invariant; thus,
the form of L(x) only controls the shape and finite extent of the
lower tail. Scale invariance and polynomial relationship between
two variables can be defined as:

f(z) = az® + o(z) 6.19

where a and k are constants, and o(z") is an asymptotically small
function of z*. k is typically called the scaling exponent, where
the word scaling denotes the fact that a power-law function satis-
fies f(cx) o< f(x) where ¢ is a constant. Thus, a rescaling of the
function’s argument changes the constant of proportionality but
preserves the shape of the function itself. 4

Principal component analysis

It is an orthogonal linear transformation of data in a new system
such that each new variable is as less correlated as possible. Each
of the new axes to describe the data, called principal components,
are expressed in decreasing order of variance explanation. 51

Protein-protein interaction network (PIN)

Ensemble of proteins that relate physically and/or functionally. 2

Python

Python is a high-level programming language. It accounts for its
readability and easy to learn. Programming style is not forced sup-
porting both object-oriented and structured programming. Many
scientific libraries are available and it is used by several important
users as NASA or Google. 144

Runge-Kutta method

Runge-Kutta methods is a robust numerical integration methods
to solve ODEs given an initial value. Different modifications have
been developed since its first implementation in the 1900s. One of
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the most broadly used is the fourth order Runge-Kutta consisting
on the following. Taken the initial value problem,

v = f(t,y), wy(to) =wo 6.20

the new value is calculated as

(=)
N
—

1
Yn+1 = Yn + gh(kl + 2ko + 2k3 + k),
being h = At and,

ki = f(tn,yn) 6.22
1 1

K2 = f(tn+ Shoyn + Shk)
1 1

B3 = f(ta+ ghiyn+ Shks)

o
)
a

k4 = f(tn+ h,yn + hks)

In this case, contrary to the Euler method, the slope is averaged at
four points, two middle points (for which double weigh is counted;
two different slopes are used to locate them) and at the beginning
and at the end of the interval. 33

Shannon entropy
The Shannon entropy is a measure of the uncertainty of a random
variable. Mathematically defined as,

H(X)= - p(x;) logyp(:) 6.26
i=1
where n is the number of elements of the random variable X and b
the base of the logarithm. In the case of b = 2, the value of H(X)
is measured in bits. 17

Shannon entropy
A measure of uncertainty of a random discrete variable X. It is
defined as,

n
H(X)=- ZP($i)10ng($i), 6.27
i
where n is the number of possible states of X, p is the probabil-
ity mass function and b is the base of the logarithm. Entropy is
measured in bits if b = 2 or hartleys if b = 10. 94
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Small-world network

A small-world network is a network that exhibits high clustering
coeflicient and low shortest path average, compared to random net-
works. Specifically, the average shortest path length scales at most
logarithmically with the number of nodes for fixed mean degree
[592]. Formally described by Watts and Strogatz in 1998 [592] it
has been claimed that small-world properties can be found at many
real networks, from the nematode Caenorhabditis elegans neural
network to film actor collaboration networks. 5, 19

Sobol’s method

Sobol’s method is a computational method to calculate variance-
based global sensitivity indexes [524]. It is based on the decompo-
sition of the function y = f(x) into terms of higher dimensionality,

flen, g, mae) = fo+ > fi+t D > fij+ o+ fron (628

i g>i

Accordingly the variance D associated to y can be decomposed,

D:ZDi+ZzDij+---+D12...k7
i

i g>i
or
k
D= > Di.. 6.30
s=1141<...<ig
Sobol’s global sensitivity indexes are defined as,
D, .,

Siris = D

6.31

which quantifies the amount of variance for the combination of
parameters #1...i5 with respect to the total variance. 37, 148

SourceForge

Largest open source software development site hosting more than
230,000 software projects and over 2 millions of registered users.
144

Stiffness

Applied to differential equations, stiffness refers to numerical insta-
bility. A practical common source of stiffness in ODEs systems is a
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very wide range in the parameter values: then some terms account
for large variations in the solution and large errors are conducted
during the integration. 33

Stochastic process

A stochastic process is a collection of random variables. The stochas-
tic process is specified by the properties of the joint distribution
for those random variables. Mathematically, we can define it as a
collection {X;|t € T}, being T' a parameter space and X a ran-
dom variable. Examples of stochastic processes are random walks,
Brownian motion, a Poisson process or a Markov chain. 30

Systems Biology Markup Language (SBML) [268]

Computer-readable format based on XML for representing models
of biological processes, being the de facto standard format in com-
putational biology [144] with over 180 software tools (July, 2010)
supporting it. 53-56, 5961

Tabu search

Tabu search is a local search optimisation method which is charac-
terised by the tabu list, which is a list of once explored parameter
values that are bypassed. Further references are [211, 212, 114, 213].
11

Tandem affinity purification (TAP) experiment

Biochemical technique consisting on the addition of a TAP tag to
generally the C-terminus of a protein. The TAP tag consists on a
calmodulin binding peptide, a tobacco etch virus protease cleavage
site and a Protein A. The process of purification consists first on a
column of IgG, to which Protein A binds. Then the tobacco etch
virus protease is used to cleavage part of the TAP tag and a second
column of purification is used next, this time of calmodulin, for
which the binding is reversible. The final purification elution holds
the protein under study and its binding partners. 87

Trace of a matrix

Defined on a square matrix, it is the sum of the elements of the
main diagonal. 50

Transcription factor (TF)

Molecule with capabilities to direct regulation of gene expression.
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It binds to the DNA, recognising specific sequences and promoting
or inhibiting the transcription of a DNA sequence into mRNA. 2

Transcriptional regulatory network (TRN)
Ensemble of genes and transcription factors with functional (regula-
tory) relationships. Because relations are effected by transcription
factors over genes or over other transcription factors, TRNs are
commonly represented by oriented graphs. 2

Vertex
As defined in [107], a vertex is the fundamental unit of a network,
i.e., a person in a social network, a computer in computer networks
or a protein in a protein-protein interaction network. 2

Vertex accessibility
Mean shortest distance from a given vertex to the rest of all or a
part of all other vertices of the graph. 19

Yeast two-hybrid (Y2H) experiment

High-throughput experiment to elucidate physical interaction among
proteins. The basic idea of the technique consists on the expression
of a reporter gene by a genetic construct. The construct consists
on a protein A (commonly called bait) fused to a DNA binding
domain and a protein B (also called prey) fused to an activating
domain. Only when proteins A and B interact, the reporter gene
is expressed. 2, 87

157



Glossary

158



Notes

159






	Introduction
	Background
	Cellular Networks and Graphs
	Graph Properties of Interest for Biological Networks
	Graph Generative Models for Biological Networks
	Degree Distribution Determination

	Dynamical Analysis of Mathematical Models of Biochemical Interest
	Analysis of Analysis
	Model Integration
	Stochastic Simulation
	Sensitivity Analysis
	Model Calibration
	Local Search Methods
	Global Search Methods
	Hybrid Methods:

	Identifiability
	A priori Identifiability
	A posteriori Identifiability

	Optimal Experimental Design
	Local OED
	Global OED


	Information Storage and Sharing
	Software Tools for Models


	Objectives
	General Objective
	Specific Objectives

	Results
	General Overview
	Papers
	Paper 1. ByoDyn: A Tool for the Computational Analysis of Biochemical Kinetic Models
	Paper 2. Optimal Experimental Design in the Modelling of Pattern Formation
	Paper 3. Statistical Analysis of Global Connectivity and Activity Distributions in Cellular Networks


	Discussion
	Cellular Networks and Graphs
	Dynamical Analysis of Mathematical Models of Biochemical Interest

	Conclusions



