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The representation of molecules by means of molecular descriptors is the basis of most of the 

computational tools for drug design. These computational methods are based on the abstraction 

from the chemical structure to summarize its relevant features while being efficient in the 

comparison of large molecule libraries. A very important feature of these descriptors is their ability 

to capture the information relevant for the interaction with any target independently from the 

scaffold of the compound. This will allow detecting as similar any two compounds with the same 

features arranged in the same way around essentially different scaffolds, a property referred to as 

scaffold hopping. With this in mind, a new set of descriptors based on the distribution of atom-

centred pharmacophoric feature pairs by means of the information theory concept of Shannon 

entropy [1], called SHED, have been developed. 

These descriptors have been successfully used in a number of applications important in the 

drug discovery process. After the implementation of novel in vitro technologies like high-throughput 

screening and combinatorial chemistry, the capacity of synthesizing and testing compounds 

increased exponentially but the need for a rational selection of the compounds arose as well. The 

prioritisation of compounds in terms of their predicted chances of displaying the targeted activity is 

thus one of the first applications of the ligand-based virtual ligand screening based on SHED 

descriptors. This application has shown very good results, both in terms of enrichment of actives in 

the hit list and in terms of scaffold hopping ability, i.e. the novelty of the scaffolds of the found 

actives in the top ranked compounds. 

Actually, this methodology can be extended to a chemogenomics view of the drug discovery 

process, using the descriptors to build ligand-based models of all the proteins with any ligand 

information. This broader approach, the virtual target profiling, is a step towards completing the 

activity matrix between all possible chemical compounds and all relevant targets. Moreover, a 

deeper analysis of this complete matrix generated by virtual target profiling can lead us to a 

network pharmacology perspective of the drug discovery process. This direction an be further 

followed by adding to ligand-target information the information about pathways and systems 

approaches, leading to a systems chemical biology approach that could help understanding 

biological processes as a whole and identifying more rationally novel and promising drug targets 

Abstract

5



6



 

The main objectives of this PhD thesis can be summarized as follows: 

1. To develop a new set of topological, feature-based descriptors (SHED). 

2. To develop a ligand-based approach to in silico chemical screening and target 

profiling by exploiting pharmacological data extracted from bibliographic sources and 

stored in annotated chemical libraries. 

3. To implement a new approach to design chemical libraries directed to entire protein 

families. 

4. To further exploit ligand – protein information to analyse and understand biological 

processes in a systems-directed approach. 

The first objective was addressed by implementing a set of descriptors based on Shannon 

entropy called SHED (SHannon Entropy Descriptors) (see Chapter III.1). The second objective 

was pursued by developing a ligand-based method for small molecule – protein activity prediction 

(see Chapter III.1 and Chapter III.2). The third objective was tackled with the application of SHED-

based models to the prediction of the target family profile for large compounds libraries and the 

selection of those compounds with the most appropriate profile for the project of interest (see 

Chapter III.3). The fourth objective consists on using all the previous generated information to 

provide a global picture that will help understanding the modulation of biological pathways and 

processes by small molecules (see Chapter III.4). 

Objectives
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This introductory part contains two main chapters. In the first one, an overview on the 

traditional and new in vitro techniques for drug discovery will be provided. The main steps of the 

drug discovery process will be presented, emphasizing the key points that will be determinant for 

the overall performance. The main issues of this process identified so far will be discussed, as well 

as the technological and conceptual alternatives proposed to solve them. Also, the impact of recent 

technological developments will be assessed and the consequences of their implementation in the 

overall process. 

The second chapter provides an introduction to the diverse in silico protocols in use in any of 

the steps of the drug discovery process and the relationships that are established among these and 

the in vitro techniques. The possible issues highlighted in the first chapter and the proposed in 

silico solutions for these problems will be discussed. On the other hand, the role of computational 

methods in a more rational approach to drug discovery, their relevance in the compilation of 

information and the generation of knowledge to understand the process and the help some 

predictive in silico tools can provide in decision making will also be reviewed. 

Part I - Introduction
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Drug discovery is a high-risk crucial process in pharmaceutical industry, as it can result, after 

many years and big investments, in a successful marketed drug or in total failure. The process of 

obtaining a drug candidate, which will be discussed in detail in Section I.1.1, consists on several 

steps (Figure 1) each of which has different time and technology requirements. After the target has 

been validated, the first step of this process is obtaining active compounds as defined by fixed 

criteria in a high-throughput assay. A number of potential issues associated with the high-

throughput screening technology make the validation of the obtained actives necessary. This is 

done in a second step, during the follow-up process. These two steps result in one or several hits, 

and will be discussed in more detail in Section I.1.1.1. 

The third step, discussed in Section I.1.1.2, is the hit-to-lead process. In this process, 

structure-activity relationships are established for a number of analogues of the initial hits, and the 

potency as well as other lead-like important characteristics is optimised. The outcome of this phase 

is one or more lead series, which have to be selected among all the hit series obtained in the 

previous steps. The prioritisation according to the likeliness of success of chemical series to be 

pursued will be key in the final success of the process. This decision-making is an important 

stepping-stone as the following steps are high time- and resource-consuming. The final step before 

obtaining of a drug candidate is the lead optimisation, reviewed in Section I.1.1.3, in which larger 

scale assays with emphasis on absorption, distribution, metabolism, excretion and toxicity 

(ADMET) properties and safety profile are carried out. 

 

Figure 1. Drug discovery process scheme. 

The success rate of this process is around 40%, and only 10% of the resulting drug 

candidates will finally make it into the market after the clinical testing phase [2]. Moreover, 

research-based pharmaceutical industry has faced an increase of economic and regulatory 

pressures with international price controls, rapid appearance of generic products and more 

stringent regulatory policies [2]. Hence, great efforts towards improving cost-effectiveness and 

maximizing the probabilities of success have been initiated over the years, leading to a constant 

Chapter I.1 – Drug discovery
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turnover of protocols and paradigms, and to great technological and conceptual advances as will 

be reviewed in Section I.1.2. Particular focus will be given in how recent technological advances 

impact the traditional process of drug discovery. 

I.1.1. Obtaining a drug candidate 

Before the advent of molecular biology, drugs were derived following a long, slow, very much 

empirical process. In vivo models were used as a “black box” to test drug-like or natural 

compounds for a certain phenotypic effect without knowing its mechanistic basis. After a number of 

experiences and cases in this so-called forward pharmacology manner, the substance was 

considered a safe drug. Although this was the first approach to drug discovery, it is still useful when 

very little or nothing is known about the molecular basis of a process or for complex processes 

involving whole pathways. Traditionally, these assays were performed on whole organisms, while 

now it is more common to use cell cultures of unicellular organisms or physiological or pathological 

tissues. 

The implementation of molecular biology into the drug discovery process helped realising that 

the effect of these remedies was typically elicited by the binding of an active compound to a single 

protein, changing completely the focus of the entire drug discovery. In this so-called reverse 

pharmacology manner, compounds are tested for their activity on a single target in purified protein 

in vitro assays. As illustrated in Figure 2, the output of forward pharmacology, once the 
protein(s) involved in the phenotype are identified, can be used in reverse pharmacology to identify 

new and more potent compounds for the protein target. Similarly, active ligands identified using 

reverse pharmacology can be biologically validated by examining the phenotypic effect in a forward 

assay [3]. 

 

Figure 2. Proposed cell systems biology approach. Extracted from [4]. 
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The final goal of the drug discovery process is to obtain a new chemical entity that has to enter 

the organism, reach its biological target and elicit the desired effect. In this process, the drug has to 

reach and pass a number of biological boundaries (oral absorption, membrane permeability, blood-

brain barrier) and gets in contact with a large number of proteins other than its theoretical target. Its 

possible interaction with these off-targets leads to metabolism, when the drug is modified by the 

interaction with the off-target and can lead to toxic and other undesired side effects, when an off-

target path is activated. All these events can be classified in pharmacodynamics (PD), effects on 

the organism caused by the drug, and pharmacokinetics (PK), effects on the drug caused by the 

organism, as shown in Figure 3. These interactions will determine both the efficacy and the safety 

of the drug, which are the main reason for which 90% of drug candidates entering clinical 

development do not reach the market [2,5]. Safety and efficacy have to be taken into account all 

along the drug discovery pipeline, as will be discussed deeper in Section I.1.1.2 and Section 
I.1.1.3. 

 

Figure 3. Scheme of the interaction between a drug and a biological system and of all the effects triggered by 
this interaction. Extracted from [6]. 

1.1.1.1. Hit identification 

The drug discovery process begins with the identification of one or more active compounds 

showing activity over a certain threshold in a given assay. Since the advent of reverse 

pharmacology, these actives are identified on in vitro assays in which they are normally tested for a 

single purified target. This process was dramatically influenced by the development of both 

combinatorial chemistry (CC) and high-throughput screening (HTS). These two technological 

advances have appeared to be highly complementary, as CC increased exponentially the capacity 

for synthesising compounds and HTS increased in the same proportion the ability for testing those 

compounds on in vitro target-based assays. 

CC, which takes advantage of miniaturization and parallel synthesis, allows the generation of 

100,000s of compounds within several months [7] by assembling building blocks in solution or on 

solid support [8]. Initially, the focus was set on the number of compounds produced, with little 
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regard to their quality. Rather, it was assumed that if an active compound could be identified, the 

possible issues related to its chemical properties could be solved with posterior small chemical 

modifications. This assumption led to poor initial results as in many cases the activity observed in 

assays was not reproducible. This was due to a number of reasons, among which the purity of the 

first compounds synthesized by means of CC is especially remarkable. In some cases, after an 

active compound was identified, when it was synthesized and characterized by conventional 

means it turned to be completely inactive. As a result, the early emphasis on the size of mixture-

based diversity-driven libraries gave way to parallel synthesis of project-focused libraries of well-

characterized discrete compounds, often followed by purification to improve the reliability of the 

outcome [8,9]. The challenge is now focused on selecting the best compound libraries for synthesis 

and testing [9], as although the number of compounds in a library is important, the diversity of the 

chemical structures and the quality of the compounds in the library are even more important. 

The implementation of HTS increased dramatically the capacity for testing these large 

numbers of compounds and thus the ability of exploring the pharmacology of a larger portion of the 

chemical space. The combination of CC together with HTS implied a revolution in the rate at which 

these assays were performed and the amount of compounds that could be processed, although the 

concept of testing each compound for a single target did not change. 

HTS technology consists on the testing of large compound collections, which are assayed 

robotically at a single concentration to one target in 96-, 384- or 1,536-well microtitre plates [10]. A 

careful design of the HTS assay is key for relevant information to be extracted from it. The nature 

of the response to be measured, the fact that the response might be stimulus-dependant and the 

duration of the response have to be taken into account. In the selection of the proper assay format, 

performance and sensitivity have to be considered and optimised. HTS assays have to be sensitive 

enough to detect compounds with low potency or efficacy, reproducible and stable among wells 

and plates, accurate in positive and negative controls and economically feasible [11]. 

Despite a careful choice of the HTS assay and the improvements in the liabilities formerly 

associated to CC, the rate of false positives is not neglectable. Some compounds can show activity 

by acting on mechanisms other than those that are of interest in the project. Other compounds can 

form aggregates or interfere with the assay signal causing an artifact due to the ability of the 

compound to mimic the sought effect as a result of its physicochemical properties, mainly 

fluorescence or absorbance [11]. For this reason, those compounds initially identified as active by 

HTS need to be confirmed and validated in a follow-up process before being considered hits. The 

purity and chemical structure of the identified actives have to be checked, as well as the activity 

through the desired mechanism for hit confirmation. In a second step, hit validation is done by 

means of lower throughput multipoint activity assays of a selection of diverse representatives of 

each cluster to confirm their potency. In these assays, half-maximal effective concentrations (EC50) 

for receptor agonists, or half-maximal inhibitory concentrations (IC50) for enzyme substrates are 

determined. 

16



This process ends up, typically, with hundreds of hits from an initial set of thousands actives. 

The prioritisation of these compounds for hit-to-lead requires a structural clustering of hits into 

series to provide an easy overview of the different chemical classes that have been identified as 

being active against the target [12]. Especially in the case of singletons or smaller clusters, there 

might be a need to search for close analogues to some of them so additional compounds are 

screened to enable deriving initial structure-activity relationships (SAR) for the corresponding hit 

series [12]. 

The resulting most potent validated hits are used for early in vivo proof-of-principle studies, in 

which first pharmacological effects in vivo are obtained. Although the targeted activity might be 

sought through oral administration, this early studies are often realised using intravenous or 

intraperitoneal administration [13]. Moreover, the formulations used are also often not suitable for 

later studies or clinical development. Rather than using them solely for target validation, these 

promising early biological data give such compounds sufficient support for further chemical 

resourcing, despite the fact that the overall ADMET profile has hardly been investigated so far and 

might be far from optimal [13]. 

The integration of CC and HTS allows rapid increases in the size of compound collections and 

rapid exploration of the structure-activity relationships around chemotypes of interest in medicinal 

chemistry programs [14]. Despite this, it is clear that the overall performance of the hit identification 

process will depend highly on the quality of the initial tested compounds. This was already 

observed in the early phases of CC, leading to a great improvement of the quality of the 

compounds obtained by this means. Additionally, HTS results are not fully reliable and active 

compounds identified using this technology have to be confirmed in their chemical structure and 

validated in their activity. Therefore, the combination of HTS and CC has represented a revolution 

in the drug discovery process in terms of capacity for testing, but more care needs to be put in the 

selection of the initial library. As will be discussed in Chapter I.3, this will be one of the main 

focuses of the computational methods developed to help in the drug discovery process. 
I.1.1.2. Hit-to-lead 

Validated hit series selected during hit identification are in this phase chemically modified by 

iterative synthesis and testing of analogues. All these chemical modifications around a common 

scaffold are aimed to elucidate SAR to establish consistent correlations of structural features or 

groups with the biological activity of compounds in a given biological assay. These SAR are aimed 

to maximize efficacy and potency while keeping adequate ADMET properties and selectivity profile. 

Through the late 1980s, medicinal chemistry focused on ligand selectivity and specificity and, 

although the importance of physicochemical and ADMET properties was acknowledged, they were 

not given the appropriate relevance in early phases [2]. In vitro screening methods for target 

activity, performed in non-aqueous solvents, often resulted in high affinity compounds that tended 

to have high molecular weight and lipophilicity and poor water solubility. Later development phases 
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were then faced with the challenge of fixing the compound’s development liabilities, leading to high 

development time and cost and to high attrition rate due to toxicity, lack of efficacy and poor PK 

properties [2]. Moreover, possible interactions of the compound with proteins other than the target 

was not done until a late stage of the drug development process [15]. To solve these drawbacks, 

the integration of drug discovery and development processes was engaged so that development 

requirements were taken into account early in the discovery process. In modern drug discovery, 

potency alone cannot be the driving force behind the prioritisation of hit series to be pursued, as 

optimisation of ADMET properties is considered to be much more difficult than optimising potency 

and/or selectivity [13].  

Nowadays, the hit-to-lead process can be split in two parts. The first one is based on 

miniaturised automated in vitro assays, achieving the required throughput with minimal compound 

use [16]. Because the hit set from an HTS campaign often comprises several hundred to several 

thousand compounds, experimental assessment of the ADMET and physicochemical profile of the 

entire hit set represents a considerable challenge and for large clusters several representatives 

based on maximum structural diversity are selected for testing [13]. On the other hand, in order to 

obtain representative data from these analysis, a purity of al least 80% is mandatory [13]. 

 

Figure 4. Schematic representation of high-throughput ADME assays. Extracted from [16]. 

 Many ADMET assays can be run in a high-throughput fashion with high sensitivity, selectivity 

and ease of automation relative to traditional analytical methods, due to the incorporation of liquid 

chromatography/mass spectrometry (LC/MS) (Figure 4). At this point, the most relevant issues for 

which the representative screening hits are characterised are toxicity and ADMET properties. 

LC/MS enables the testing for lipophilicity, solubility, metabolic stability, permeability (Caco-2 

assay), plasma-protein binding, human ether-a-go-go (hERG) related gene activity, cytochrome 

P450 inhibition and stability in human liver microsomes [12,16]. 
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The main challenge during hit-to-lead is to make the right decision with the information 

available at this stage while keeping in mind that these compounds will enter a lead optimisation 

process in which they need to be further modified. High potency of single hits must not be the main 

and only issue considered, as increasing the potency of a compound for a target is not considered 

a major bottleneck in the development process [17]. Instead, there are other issues that are 

important to be considered at this point. Firstly, hit series containing structurally related compound 

families are preferred over singletons when available, as they enable to distinguish between 

problems related to the chemical series and problems only related to some members of the series 

[12,13]. This is especially relevant in the case of ADMET profile and SAR analysis, where it is 

important to consider also the inactives. Other important criteria to be considered before a lead 

series is moved forward into a lead optimisation program are chemical tractability, selectivity, PK 

properties, demonstrated in vivo efficacy and preliminary intellectual property assessment [18]. 

Finally, ligand efficiency is currently one of the most important aspects in hit-to-lead decision [12]. 

When efficiency is considered, small, less potent molecules are ranked equally with large more 

potent compounds. 

The outcome of this optimisation process is typically a low number (less than 5) of lead series. 

Leads are prototypical chemical structures or series of chemical structures that in addition to 

displaying activity by confirmed specific binding and selectivity in a pharmacological or 

biochemically relevant screen, do also show emerging SAR for biophysical and ADMET properties 

[13]. Each distinct lead series has a unique core structure and the ability to be patented separately. 

In addition, a good lead requires many other properties prior to taking the decision of progressing it 

through the pipeline: assessing chemical progressability, assessing target selectivity and obtaining 

in vivo proof of principle. 

I.1.1.3. Lead optimisation  

With the lead series that result from hit-to-lead, larger scale assays with emphasis on ADMET 

properties and safety are carried out. This pre-clinical stage of the drug discovery process 

integrates in vitro and in vivo pharmacological data to assess undesirable pharmacodynamic 

effects in humans [19]. In lead optimisation, in vivo experiments are essential as its outcome will be 

a drug candidate that will enter clinical testing and systemic effects have to be addressed. 

Consequently, the time requirement shifts from around 6 months for hit-to-lead to up to 3 years in 

the lead optimisation phase. 

Early studies using simple assays for selected targets may help eliminate the major causes of 

a given adverse drug reaction (ADR). On one hand, early testing for the major ADRs saves time 

and costs by preventing the clinical toxicology pipeline from being truncated with low-quality 

compounds. On the other hand, a non-selective, large-scale testing for ADRs can slow down the 

lead optimisation phase. Although traditional toxicology can eliminate the major “zero tolerance” 

actions of molecules, there could be many other actions that produce minor or even major 
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“tolerable” side effects [19]. Traditionally, screening for drug safety starts at a relatively late phase 

of lead optimisation. Any liability discovered at this phase of drug discovery can cause high, late 

attrition rates associated with escalating costs [19]. However, recent advances have provided 

pharmaceutical industry with simple, fast and cost-effective in vitro screening assays, applicable to 

the early phases of drug discovery [19]. 

This type of information can help chemists and biologists to rank and prioritise compounds 

according to pharmacological profile and to optimise their structures without losing the affinity to the 

primary target. Once compounds are optimised for an acceptable level of promiscuity in addition to 

affinity to the primary target and appropriate ADMET properties, teams can make final decisions to 

promote the best candidate for final risk assessment of safety and toxicology studies, before 

clinical development. 

I.1.2. Beyond the one drug – one target paradigm 

Although the “magic bullet” approach seeking compounds binding specifically to a single 

rationally chosen target has proven to be highly effective in many drug discovery projects, there are 

certainly a number of other cases for which it presents a number of disadvantages. Recent studies 

have observed that targeting a single protein can lead to quick resistance in cases like human 

immunodeficiency virus type 1 therapy [20] or cancer [21]. Furthermore, complex diseases, such as 

depression [22], inflammation [23] and cancer itself [24], could be modulated more efficiently by 

targeting several proteins involved in the pathological process [25]. Moreover, it has been proposed 

that many modern anti-psychotic drugs failed in the clinic because they were too selective for 

specific targets [26]. Theoretical modelling of biological network structures, also called systems 

chemical biology [27], predicts that modulating multiple proteins simultaneously is often required to 

modify phenotype, as some pathways have a certain degree of redundancy and biological systems 

can often find alternative compensatory routes to single point perturbations [28]. Such network 

pharmacology approaches are necessary for analysing the consequences of perturbations in 

physiological pathways by small molecules and for designing multitarget-oriented pharmacological 

profiles for complex diseases, as will be discussed in Section I.2.8 [29]. 

Central nervous system (CNS) therapeutics has become one of the most profitable sectors of 

the pharmaceutical market, despite the lack of suitable animal models, disagreements in their 

biological basis and ineffectiveness of many CNS medications [30]. It has been shown that most of 

the currently approved atypical antipsychotic drugs have a complex pharmacology, with significant 

affinities for a variety of aminergic GPCRs [30]. Great efforts have been engaged to elucidate 

which of these targets are responsible for the therapeutic effects and which are causing the 

undesired side effects. In this field, the above mentioned systems chemical biology approach can 

be useful to the mechanistic understanding of all these processes. The discovery and design of the 

so-called “selectively non-selective” drugs is a challenging issue, as it cannot be faced with the 

classical in vitro medicinal chemistry technology approaches such as HTS. Two ways to face this 
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problem have been proposed: behaviour- and genomic-based screening [30]. The first one, which 

can be considered as an in vivo forward pharmacology approach, has the drawback of permitting 

only low throughput rate and the difficulty of having an appropriate animal model, as the polygenic 

and non-genetic components of CNS diseases make the use of genetically engineered mice 

difficult. In the second approach, compounds with known functional actions are screened for their 

effects on coordinated gene expression. These “gene signatures” obtained can contain too many 

targets, the majority of which may be irrelevant, making posterior rational based filtering based on 

previous information essential. In both cases, the selection of an appropriate set of compounds to 

be tested is key, making virtual target profiling approaches, which will be described in Section 
I.2.6, a very useful complementary tool. A third approach based on chemogenomics seems now 

the most convenient, as, after the desired pharmacological profile is defined thanks to a 

combination of previous experience and systems chemical biology, the full pharmacological profile 

of a library of compounds towards as many protein targets as possible could be elucidated and 

those showing the most promising activities chosen. 

 

Figure 5. Paradigm shift from traditional one drug – one target drug discovery (a) to multitarget-oriented drug 

discovery (b). Extracted from [31] 

Many treatments, such as cancer therapy, are already currently based on multiple medication 

therapy, which has the drawback of possible drug-drug interaction issues with respect to a single 

drug with polypharmacological profile. In cancer treatment, polypharmacology is also encouraged 

by the observation that new protein kinase-targeted drugs have, as in the case of antipsychotic 

drugs, a higher promiscuity for multiple kinases than initially thought [28]. Recent studies 

demonstrate that synergistic combined effects of a compound acting on two or more kinases is 

greater than the additive sum effect of targeting each kinase individually [32]. 

Consequently, the multitarget profiling of the drug candidates constitutes an important 

conceptual change in the drug development process, as it extends the available information along 

the biological axis in the chemistry-biology matrix. This step towards the completeness of the 

matrix is important both for the identification of the appropriate (single- or multi-target) profile and 
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for the early assessment of possible toxicity and side effects. The major effort currently available in 

this direction is BioPrint®. It enables the profiling on a panel of over 630 in vitro pharmacological 

assays for relevant targets and around 130 ADMET assays. These assays are used to identify lead 

compounds, to define mechanism of action and to identify off-target activities. An example of a 

subset of the results of this in vitro profiling for 2,000 drugs and reference compounds across 70 

pharmacological assays can be seen in Figure 6. 

 

Figure 6. pIC50 values for approximately 2,000 drugs and reference compounds across 70 pharmacological 
assays. Extracted from [28] 

Recently, tools for early evaluation of mechanism-based toxicity have been introduced but 

very little has been done to screen pharmacological promiscuity, which can also seriously affect 

success rate and influence side effects profiles [19]. The relevance of this component of drug 

discovery was recognized a long time ago but was applied to few compounds only, just before 

clinical trials. At this stage of the drug discovery process only little or no chemistry capacity was 

available for corrections. Therefore, in many cases projects were abandoned without establishing 

whether the undesirable side effect was associated with a particular pharmacophore specific for the 

scaffold or just an accidental effect of individual molecule [19]. 

Endogenous ligands are usually promiscuous, example of which is the fact that large receptor 

families share the same ligand (e.g. serotonin for the 5-HT receptor family). It is thus not surprising 

that drug-like synthetic molecules act in the same way. However, targeting a particular member of 

a protein family is often the goal of a therapeutic approach. Traditionally, during the hit or lead 

optimisation processes, selectivity was considered at most for a handful of targets within the same 

protein family, most usually only for one or two selectivity targets. Miniaturization and parallel 

screening have recently enabled the in vitro profiling of a handful of compounds to a wide range of 
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different targets, although the logistics do not enable a high throughput in this process. That makes 

this multitarget profiling only suitable for late stage leads, helping in the selection of drug 

candidates among them. 

Another step beyond in vitro multitarget profiling for safety and toxicity evaluation of drug 

candidates is cell-based high content screening (HCS). Historically, cellular toxicity screening has 

relied on the use of single-parameter readouts for toxicity markers such as cell proliferation, 

mitochondrial activity or membrane permeability. Although useful to an extent, predictability for 

compound toxicity in vivo is poor [33]. HCS is a functional screening in an automated platform 

based on fluorescence microscopy and quantitative image analysis in the physiologic context of 

intact cells [34,35]. It allows multiplex analysis, and thus allows two or more discrete responses to 

be measured in a single assay. While in vitro assays on single targets neglect the intracellular 

structural and functional networks, HCS enables to assess safety within cell context [34].  

HCS provides with higher biological-content information with respect to HTS for which, while 

HTS is used as a fast primary screen to identify hits for further testing, HCS can be used in 

secondary screening in the lead optimisation process [36]. HCS-based cytotoxicity assays analyse 

the effects of compounds on a number of parameters such as nuclear size, mitochondrial 

membrane potential, intracellular calcium levels, membrane permeability and cell number, offering 

increased specificity and selectivity for toxic events, and allow a higher level of predictability for 

future in vivo testing [33]. 
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The advent of genomics, combinatorial chemistry, HTS and other drug discovery innovations 

and technologies has resulted in an unprecedented abundance of new targets and potential drug 

candidates. Despite this, the rate of entry of new chemical entities into the market is still slower 

than expected [2], suggesting that the quality of drug candidates must be improved. An increase in 

computational capacity has enabled new, high-throughput in silico methodologies that can directly 

be implemented in the traditional drug discovery process to improve its success rate. The key point 

addressed by these methodologies is the interface between chemistry and biology for which 

classification and annotation of data (Section I.2.1 and Section I.2.2, respectively) is crucial. Once 

this has been properly done, the next step for the generation and integration of knowledge and its 

use for rational and systematic drug design [37] requires the analysis of data relevant to 

establishing links between proteins and ligands in an attempt to extract knowledge from them. This 

knowledge is generated by deriving generic rules and models that can be applied to the virtual 

design and screening of compounds. For these predictions and this knowledge generation, it is key 

to find the right descriptors that will accomplish the “neighbourhood behaviour” assumption [38] and 

that will actually enable to extend the biological properties of a compound to its closest neighbours 

in the n-dimensionality space defined by the descriptors. A broad overview of molecular descriptors 

will be provided in Section I.2.3. 

These descriptors enable to create models that can be used in hit and lead optimisation 

processes. Quantitative structure-activity relationship analysis (Section I.2.4) can predict ADMET 

properties of the studied compounds that can help prioritising the series of compounds with the 

most promising features. Moreover, these rules and models enable also predicting the activity to a 

certain target for a large set of compounds leading to virtual ligand screening (Section I.2.5). 

Extending this prediction along the biological space allows for virtual target profiling (Section I.2.6) 

that attempts for a complete profile of compounds against all relevant targets. Virtual target profiling 

enables to fill the ligand – target matrix, which, as summarized in Figure 7, provides with 

information useful all along the drug discovery process. Despite the increased throughput of 

binding assays with miniaturization and parallel screening allows testing thousands of small 

molecules against hundreds of protein targets, it is still impossible to test all possible lead- or drug-

like compounds for all relevant targets. Therefore, virtual target profiling can help predicting the full 

pharmacological profile of ligands, useful for multitarget-directed drug design and enabling cross-

reactivity and safety assessment. This full profile can also be used to cluster ligands depending on 

the similarity of their target profile and cluster targets in terms of their ligands. Moreover, it can also 

be used for predicting the protein a given orphan active compound might be acting upon, using the 

so-called target fishing strategies. 

Chapter I.2 – In silico drug discovery
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Figure 7. Adapted from [39]. 

Additionally, all these developed in silico methodologies can be used in the first step of drug 

discovery by narrowing down the number of chemical compounds to be tested for hit identification. 

As discussed in Section I.1.1.1, the initial chemical diversity-driven approach to compounds testing 

relying on random finding of actives did not provide with the expected wellness of interesting hits 

[40]. Consequently, the development of computational methodologies to predict the full 

pharmacological profile of compounds led to a more rational approach towards compound 

selection, selecting smaller subsets of compounds predicted to be relevant for the project of 

interest, as explained deeper in Section I.2.7. 

Finally, the most recent use given to the accumulated annotated knowledge for ligands and 

proteins is network pharmacology (Section I.2.8), which takes advantage of this information for a 

systems approach to analysing the influence of the modulation of one or several targets over whole 

pathways and all available studied targets. 

I.2..1. Classification schemes 

Information on small molecules, proteins and their interactions has to be collected so 

knowledge can be extracted from it. The usage of both unified nomenclatures (ontologies) and 

appropriate classification schemes is key for the annotation of all biological and chemical entities 

and for an integrative and information-rich knowledge generation [41]. Initiatives towards the unified 

nomenclature [42,43] and classification of proteins have already been successfully engaged. 

However, from the ligands point of view, no consensus has been reached although several unique 
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identifiers [44-46] and classification schemes, including one developed in our laboratory [47], have 

been proposed. 

With respect to the functional classification of proteins, targets that share structure activity 

relationships (SAR) can be thought of a SAR homologous (SARAH). This concept was re-

introduced in 1999 by Frye [48], who claimed for the recuperation of this functional classification 

over the sequence-based classification of protein families. One of the most broadly used target 

classification scheme is the Enzyme Commission (EC) classification scheme [49]. The EC scheme 

is a 4-level hierarchical functional classification where enzyme classes are assigned four numbers, 

one for each level. The first number represents one of the six main classes of the chemical 

reactions that enzymes catalyse. The second and third numbers describe the subclass and sub-

subclass of the overall reaction and the last number reflects the substrate specificity of the reaction 

[50]. Another largely used protein classification scheme is the one established for nuclear receptors 

[51], which is a 3-level hierarchical scheme also based in function, with a first number, a letter in 

the second level and another number in the third level. These different classification schemes for 

different protein families highlight, however, that no standard has been reached that is applicable 

throughout all the protein families. 

The hierarchical nature of target class similarity has a profound influence on the way novel 

ligands are discovered. The conservation of the binding site architecture within a target family 

translates into a conservation of the architectures of ligands which bind to these targets [52], so 

targets within a gene family will often have similar ligands and properties. A number of compounds 

active to one family member will be active against other family members, which often have different 

biological functions [40]. Thus, one way to gain efficiency is to re-use information and know-how 

among proteins of the same family [40] as knowledge about ligands of one target and the distance 

between targets in biological space facilitates the prediction as to which molecules are suitable for 

novel targets. Thus, we can relate targets by the similarity of ligands to which they bind, a central 

paradigm of chemogenomics [53]. 

With respect to the structural classification of ligands, while in the case of proteins 

classification is done in terms of functional hierarchy, in the case of small molecules it is done on 

the basis of structural hierarchy. In these terms, compounds can be summarized in scaffolds 

(subset of the molecule where side chains have been removed), frameworks (simplified scaffolds) 

[54], ring systems or other substructures. Although the classification of proteins has not reached a 

global consensus for all protein families, different committees for different protein families have 

reached well-established classifications that have become a standard for the given protein family. 

For small molecules, however, no such consensus has been reached although a variety of 

classification schemes have been proposed. One of such chemical graph-based classification 

schemes is the HierS [55]. This recursive algorithm identifies all possible ring-delimited 

substructures for each molecule and, once all such subsets for a set of compounds are identified, 

molecules are grouped by shared ring substructures. The hierarchical structural relationships 
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between the substructures are established so over-represented structural features can be rapidly 

identified. Another classification scheme is the Scaffold Tree [56], based on the hierarchical 

classification of scaffolds, from which rings are iteratively removed. These rings are prioritised 

following a set of rules by which peripheral, less characteristic rings are removed first. 

In our laboratory, a classification scheme, the Chemical Structure Code (CSC) [57], has been 

developed also based in structural hierarchy. The code consists on a unique hierarchical six-level 

CSC for each molecule, in which each level encodes for a substructural characteristic, going from 

the most general ones to the final unique identifier of the molecule. The first, second and third 

levels are integers specifying, respectively, the number of rings in the largest ring system present in 

the molecule, the number of bonds in the longest path and the number of branching points in the 

longest path. The fourth, fifth and sixth levels are unique eight-character hash codes for the 

molecular framework, scaffold, and the complete molecular structure, respectively. 

I.2.2. Annotated chemical libraries 

There are essentially two types of data that are useful to establish a link between proteins and 

their ligands. These are on one hand structural data on proteins and protein-ligand complexes and 

on the other hand response data on the interaction of ligands with proteins, including potency, 

affinity, metabolism and toxicity. These two data types lead, respectively, to structure-based and 

ligand-based approaches to chemogenomics. Structural data available is growing significantly, 

even more since the advent of structural genomics [58], and is nowadays centralized in the Protein 

Data Bank (PDB) [59], a public repository of three-dimensional structures currently containing over 

50,000 entries. The information available in it is scarcely classified, and several attempts to extract 

and organize relevant information from the PDB are currently available. Among them, enzymes 

structures are organized following the EC classification scheme [49] in the Enzyme Structures 

Database [60] and protein-ligand complexes from the PDB, together with their binding affinities, are 

compiled in the PDBbind database [61], currently containing around 3,200 entries [62]. Another 

effort towards organizing information from the PDB was engaged in our laboratory, where FCP, a 

publicly accessible, web-based tool to analyse the contents of the PDB, the population of each 

protein family represented and the trends this protein structures population over the years, has 

been developed [63]. 

From the response data perspective, a number of initiatives have recently focused on 

collecting and storing the structures of small molecules for which pharmacological data is available, 

giving rise to the so-called annotated chemical libraries (ACL) [64]. Among those, one can find 

databases relating drugs and targets, such as Therapeutic Target Database [65], DrugBank [66], 

SuperTarget [67] and Matador [67], or relating chemical compounds to their effect in cell-based 

assays, as ChemBank [68] and PubChem BioAssay [69]. Another kind of very popular ACLs are 

those that relate small molecules and their in vitro binding affinities to a given protein target as 

reported in literature. Example of these are the MDL Drug Data Report (MDDR) [70], the WOMBAT 
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database [71], the AurSCOPE database [72] and the MedChem and Target Inhibitor databases 

[73]. Under the same spirit, a more modest initiative took place in our laboratory to assemble an 

annotated chemical library directed to the nuclear receptor family (NRacl) on the basis of public 

sources of information, mainly reviews and medicinal chemistry journals of the last 13 years [74]. 

I.2.3. Molecular descriptors 

Recent efforts in collecting, storing, and organizing data on the pharmacology of ligands and 

on the structure of proteins are facilitating the generation of knowledge on target classes. 

Comparative studies have suggested that information about a target obtained from known bioactive 

ligands is as valuable as knowledge of the target structures for identifying novel bioactive scaffolds 

[6,75,76]. Therefore, the final choice for a method to use will depend on the type and amount of 

information available without a priori having a large impact on performance [6]. 

Most structure-based approaches are based on docking, which enables visual inspection of 

the results leading to an intuitive interpretation and understanding of the binding process [75]. 

Another quality of these methodologies is that they allow for new binding modes fitting within the 

defined active site. Despite this, it has been reported to be outperformed, in some cases 

investigated, by purely ligand-based approaches [75] due to the still low accuracy of the scoring 

functions to predict binding affinity [77] and the need for conformational space exploration. The 

quality and resolution of the initial structural data are other factors that will have an impact on the 

performance of these methodologies. Moreover, structure-based approaches can be based on 

homology models of the structure [78,79] or on very closely related proteins [80] instead of the 

actual 3D information of the target of interest. Although these approaches have been proven to 

perform well, more uncertainty is added to the already big amount of variables with which structure-

based VS has to deal. 

On the other hand, ligand-based approaches rely on the central similarity-property principal 

which states that similar molecules should exhibit similar properties [81]. Hence, the activity 

prediction of a compound or a set of compounds will be done based on the similarity or distance to 

a set of reference ligands with known bioactivity to a protein target [82]. Different types of two- and 

three-dimensional molecular descriptors, features and substructures in combination with a variety 

of classification schemes, such as recursive partitioning, Bayesian statistics, neural networks or 

machine-learning methods have been used for this purpose. Among those, methods aiming at 

identifying chemical moieties commonly appearing in bioactive ligands have attracted particular 

attention due to the ease of translation of these privileged structural motifs into compound-library 

synthesis. However, despite the many evidences of chemical substructures occurring frequently in 

ligands bioactive across a diverse panel of proteins [55,74,83,84], the true existence of target-

family selective privileged substructures continues to be a matter of debate [85]. 

Pharmacophore-based VS can be considered to be in the intersection between structure-

based and ligand-based approaches. On one hand, they use structural information but, on the 
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other hand, they often use ligands as the references to build the models. One obvious advantage 

of similarity searching over a pharmacophore-based search is that it does not require a set of 

structurally related compounds of similar biological activity to derive a model. When using similarity 

searching, even one active molecule can be used to search a database for related compounds. 

This similarity-based model generation has proven very convenient, as it is computationally 

inexpensive and requires little information [86]. It mostly uses 2D descriptors, also called 

topological descriptors, which are derived from the connectivity table of the molecule and take into 

account distances among atoms in terms of number of bonds in the shortest path between them. 

These methodologies are based on the “neighbourhood behaviour” assumption [38], which states 

that compounds with high chemical similarity have high probability of sharing biological profile. 

Thus, the in silico annotation of a given ligand as active for a target will be done on the basis of the 

distance to any ligand with target information [82]. For these distance (or similarity) metrics, 

numerical representations of chemical structures that provide with relevant information about the 

compound are necessary [87]. To be effective in a large pharmaceutical environment, an optimal 

method needs to be fast and sufficiently robust to process millions of similarity calculations in each 

research project. 

The most commonly used descriptors are topological fingerprints [88,89], which encode the 

presence or absence of substructural fragments in molecules in a binary fingerprint, without taking 

into account the number of occurrences of the feature. These fingerprints can be precalculated and 

compared, usually by means of Tanimoto distance, in a very fast and efficient manner to any 

reference set. The encoded substructures can either be a predefined list common to all sets of 

molecules analysed or a list that depends on the analysed set, in which all the encountered 

substructures up to a certain path length are considered. Example of this type of descriptors are 

MDL MACCS [90], which consist on a 960-bit string in which each position corresponds to a 

predefined pattern. These lack of generality and high dimensionality have been highlighted as the 

main handicaps for this method. Conversely, Daylight [91] and UNITY [92] fingerprints do not 

consider a predefined set of substructures, so the resulting boolean array is dependent on the 

nature of the chemical structures in the database. Both Daylight and UNITY fingerprints are 

hashed, meaning that structural patterns are mapped to overlapping bit segments [93]. 

Consequently, these descriptors are more abstract as single bit positions can no longer be 

associated with one specific feature and collisions can occur when two different paths cause some 

of the same bits to be set. The compression of long binary fingerprints using hashing or fingerprint 

folding algorithms can introduce a systematic error in the similarity metric used, which should be 

taken into account and corrected [94]. 

Despite the broad use of topologic fingerprints, some authors have suggested that, based on 

the increasing knowledge available about ligand-protein interaction, it is reasonable to say that 

pharmacophoric features may be more important than topology or substructures when discerning if 

two molecules will bind the same protein [38]. Moreover, as these descriptors are scaffold-
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independent due to the abstraction inherent to the data encoding in a set of descriptors, they are 

especially useful for identifying chemically different but biologically similar compounds, the so-

called scaffold hopping ability [5]. These methods are able to detecting as similar molecules with 

the same pharmacophoric features arranged in the same way around essentially different scaffolds 

[95]. In this sense, atom-centred feature pairs [96] have been proven to be highly effective 

[53,97,98]. A set of descriptors based in this concept is CATS [97], in which molecular graph nodes 

(atoms) are translated to the corresponding pharmacophoric feature (hydrogen bond donor (HBD), 

hydrogen bond acceptor (HBA), positively charged, negatively charged or lipophilic). Each of the 

corresponding 15 possible feature pairs is considered for distances of up to 10 bonds, which 

results on a 150-dimensional vector. Another atom pair-like approach are the Similog keys 

developed at Novartis [53], which also translate the graph nodes into pharmacophoric features 

(HBD, HBA, bulkiness and electropositivity) and consider, in this case, triplets of atoms instead of 

pairs. When used for similarity calculations, the presence or absence of each possible Similog key 

is encoded in a binary fingerprint that could have as many as 8031 dimensions. Despite this, based 

on internal data, Novartis researchers have limited this number to 5989 possible Similog keys, and 

thus descriptors dimensions. The Shannon entropy descriptors (SHED) presented in this thesis are 

also based in atom pairs, and consider four types of pharmacophoric features (HBD, HBA, 

aromaticity and hydrophobicity). The main difference with respect to the previously described 

methods is that they summarize each atom pair distribution into a single value by means of 

Shannon entropy, leading to a 10-dimensional vector. This will be discussed in detail in Chapter 
III.1. 

Another set of descriptors summarizing relevant properties of small molecules are BCUT 

descriptors [99]. Each BCUT combines physicochemical and structural information, derived from 

2D or 3D structure, in a single number. The properties evaluated include atomic polarizability, 

atomic charge, HBA and HBD. From the total of BCUT descriptors calculated for a set of 

compounds, the subset that better represents the structural diversity of the analysed dataset is 

extracted. Consequently, for each reference dataset a new subset of descriptors has to be 

generated. Using BCUT descriptors, chemistry space is divided into cells so, when looking for a 

maximally diverse set, molecules will be selected to occupy the maximum number of different 

chemistry-space cells, whereas for virtual ligand screening molecules will be selected that occupy 

the same chemistry-space cells as the reference compounds [14]. 

Finally, other pharmacophoric features-based descriptors are molecular fields, which are 

ligand-based 3D descriptors. Examples of these are comparative molecular field analysis (CoMFA) 

and grid-independent descriptors (GRIND). These methods are based on the assumption that 

shape-dependent descriptors are key to predict the activity of chemical compounds. Still, despite 

the use of principal component analysis or partial least squares (PLS) to reduce dimensionality, 

similarity calculations based on molecular fields are computationally expensive due to the large 

amount of numerical descriptors required for the comparison of the three-dimensional fields around 

the molecules. In CoMFA [100], a data table is constructed from the field values at lattice 
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intersections, which reflect steric and electrostatic interaction energies between the compound and 

a probe atom placed in each lattice point. The analysis of this data table is done using PLS that 

leads to the generation of a conventional QSAR equation that can be contoured in 3D space. Some 

of the drawbacks of this approach are that it is highly dependent on the conformation chosen for 

the analysis and that the comparison among molecules (fields) is done by using a lattice-point-by-

lattice-point correlation coefficient, which is very computational- and time-consuming. 

GRIND [101] are alignment-independent molecular fields descriptors calculated in three steps. 

First, molecular interaction fields are calculated for each molecule. Then, this set of fields is 

simplified and in a last step the results are encoded into alignment-independent variables using an 

autocorrelation transform. The results can be then traced back to the original fields and visually 

represented together with the 3D structures of the molecules, which enables an intuitive 

interpretation of the results. 

I.2.4. Quantitative structure-activity relationships 

A major goal in pharmaceutical research is to predict the behavior of new molecules using 

knowledge derived from the analysis of the properties of previously tested molecules. The earliest 

intuitions and insights in structure-activity relationships (SAR) can be traced back to the nineteenth 

century. Hansch was among the first authors to use statistics rather than intuition to relate structure 

and activity, giving birth to quantitative structure-activity relationships (QSAR) in the mid twentieth 

century [102], assuming that the activity, expressed in the logarithmic form, depended on the 

substituents’ contribution to the parent compound properties [103]. In this sense, QSAR consists on 

the construction of a mathematical model relating a molecular structure to a chemical property or 

biological effect by means of statistical techniques [6]. These relationships are derived, as shown 

schematically in Figure 8, by statistical analysis of a data table, filled with numerical property 

values in one axis and molecules in the other, and usually take the form of a linear equation [100]. 

For this, QSAR methodologies require a series of structural analogues, at least 4 or 5 compounds 

having very similar chemical structure per descriptor, that interact in the same way at the same 

binding site. Based on the assumption that the differences captured by the model are only due to 

the accommodation of different functional groups to the binding site, QSAR models can be used, in 

addition to predict the response of the entire molecule, to understand the relevance of particular 

molecular features for the suited effect [104]. 

The statistical analysis required for QSAR consists on a first pre-processing step essential to 

reducing redundant information and selecting the most relevant variables for the building of the 

prediction model. The increasing number of descriptors commonly calculated has required the 

introduction of different tools to cope with correlated variables and with matrices constituted by 

more numerous variables than chemicals in the data set. Tools such as principal component 

analysis (PCA), a multivariate data exploratory method, have set the stage to deal with the 

selection of independent and relevant variables based on the use of latent variables generated by a 
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linear combination of the original set of descriptors. However, since the first implementation of 

QSAR, the simpler models with few variables based on homogeneous set of chemicals have been 

replaced with studies using more heterogeneous data sets and a high number of variables [103]. In 

cases where too many initial variables have to be studied, PCA does not efficiently explore all 

possible combinations and more sophisticated tools, like genetic algorithms, are required [103].  

 

Figure 8. Schematic representation of the steps for developing (Q)SAR models. Extracted from [103]. 

In the second step, the methodology behind the model derivation itself will strongly depend on 

the type of response variable studied. For categorical properties classification tools will be used, 

while for continuous variables regression approaches will be applied. Most of the regression QSAR 

methods are based on a multiple linear regression or partial least squares analysis. These 

approaches can only capture linear relationships between molecular characteristics and functional 

properties. By contrast, artificial neural networks (ANN) can recognize highly non-linear 

relationships between structural or physicochemical descriptors and biological activities or any 

other molecular features [105-107]. This inherent feature of non-linearity makes neural networks 

particularly well suitable to treatments of generally non-linear structure–activity relationships. 

Despite the similarity principle in which QSAR is based is often true, experience has shown 

over the years that two molecules that are chemically very similar can have different activity 

profiles. On one hand, minor differences in the structure of molecules may result in different 

mechanism of action or in different binding modes. This can lead to outliers which are unable to fit 

any QSAR model [108]. On the other hand, the intrinsic noise associated with both the original data 

and specific methodological aspects involved in the construction of a QSAR model have to be also 

considered [109]. Another issue are activity cliffs in the so-called activity landscape, defined as 

compounds with a high ratio of the difference in activity with respect to their chemical difference 

[110]. These make measures like q2 unreliable and impossible to separate measurement errors 

from observations that do not obey the physical assumptions of the model [111]. 
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There are other issues that can affect the accuracy of QSAR models, some of which can be 

overcome by using ANN. As amply discussed in the literature, overfitting can occur whenever the 

model has been set to explain and adapt to the peculiarities of the training set at the expense of its 

predictability for a new test set [112,113]. If the architecture of the ANN and the number and quality 

of the training examples are adequate, overfitting can be avoided. Another issue to be considered 

is extrapolation. As any statistical model, QSAR applicability is limited to interpolation within the 

limits of the data from which they are constructed. Its availability to be applied to any molecule with 

low similarity to those comprised in the training set has been discussed [104]. 

I.2.5. Virtual ligand screening 

Beyond this linear relationship of structures and biological effects, chemogenomics has 

appeared as the attempt of rationally mapping all possible ligands to all possible targets [40]. On 

one hand, the experimental determination or prediction of binding affinities of small molecules to 

the desired targets facilitate the rational optimisation of the compounds. On the other hand, 

information on activity of drug candidates for off-targets enables to predict undesired side effects. 

Virtual ligand screening (VS) is the process of scoring and ranking molecules in decreasing 

probability of activity for a certain target [6,89].  In analogy to HTS, VS is a tool to extend the 

profiling of compounds against a single target along the chemical space. This technique has shown 

very good results with respect to HTS alone, enhancing cost-effectiveness, increasing hit rates by a 

factor of 100 to 1000 [114] and decreasing the high proportion of false negatives provided by HTS 

alone. Its objective is finding the true actives in the initial database while trying to catch novel 

chemotypes displaying the sought activity. This means the obtained results can be at most as good 

as the initial set of compounds. 

The main goal of VS is to come up with hits of novel chemical structure that yield a common 

pharmacological profile. This scaffold hopping differs from the synthesis of analogues in the 

requirement that, instead of peripheral conservative replacements, the central core of the 

compound has to be changed. Thus, VS methods have to be fuzzy enough to retrieve structurally 

different compounds with the same activity without getting too many false positives. The success of 

a virtual screen should be defined in terms of finding interesting new scaffolds rather than many 

hits, as low hit rates of interesting scaffolds are clearly preferable over high hit rates of already 

known scaffolds [115]. 

Target-based VS approaches rely on docking of libraries of single structures or even 

multiconformer libraries, and are thus suitable for high-throughput searches [116]. These 

approaches are limited by the quality of the scoring function, an issue widely discussed in the 

literature [77]. Another drawback of docking-based VS is that it is computationally intensive, 

although pre-filtering using pharmacophore models is often applied to reduce non-productive 

orientations [117]. Docking is generally poorer at selecting actives than most 2D or 3D ligand-

based methods, as measured by enrichment factor [76,86,118,119]. Despite this, target-based 
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approaches generally perform better in terms of scaffold hopping [115]. A review comparing 10 

docking algorithms and 37 scoring functions against seven different targets showed that the 

performance of each program was not consistent across the different targets [77], suggesting that 

different methodologies and scoring functions are biased towards different binding site 

environments. 

Ligand-based approaches can use either of the descriptors presented in Section I.2.3. In 

terms of novel lead discovery, pharmacophore searching has perhaps proven the most widely 

applied VS method with hit rates for selected data sets of 1 to 20% [117]. Conversely, substructure-

based fingerprints methods will be those providing with poorer scaffold hopping, as they are based 

in common substructure searching. 

Integrating VS-based subset selection and HTS in an iterative manner leads to the process of 

sequential screening [120]. VS-selected compounds with increased probability of being active are 

tested through HTS, and HTS results are used to enrich VS model for a re-selection and re-testing 

of compounds. Moreover, VS is only feasible when knowledge, either on the target structure or on 

ligands, is available. When there is no such information, a first HTS screen is useful to provide with 

initial ligand-based information to derive a VS model. 

These iterations might identify series of analogues early on during the sequential screening 

process and produce initial structure-activity relationships [120]. In order to be suitable for HTS 

library selection, VS has to perform very well in identifying active compounds within the first 0.1 to 

1% of the scored set, as many pharmaceutical companies have screening libraries of up to one 

million compounds from which, by means of VS, they select a few thousands to be tested [121]. 

Consequently, it is not only interesting for VS to provide with better enrichment compared to 

random selection, but to provide with a high enrichment even in this top proportion of the ranked 

list. 

I.2.6. Virtual target profiling 

Beyond the mere improvement of the potency, the generation of safer and more efficacious 

drugs is one of the main concerns in current pharmaceutical research. In silico target profiling 

methods are emerging as efficient alternatives to the currently unaffordable high-throughput in vitro 

target profiling of compounds [114]. Unlike HTS and VS, virtual target profiling (VP) extends the 

matrix relating biological and chemical space both along the chemical structures axis, enabling 

large number of compounds to be tested, and along the biological axis, making predictions for 

many targets for each molecule. 

The uses of this broad virtual profile of compounds cover a wide range of applications. In the 

first place, it can assist in the drug discovery process by prioritising the hit and lead series in terms 

of their activity and selectivity profile, both in projects targeting a single protein and in multitarget-

oriented projects. In the second place, it can alert of potential secondary effects due to residual 
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affinities for undesired targets [122], which is useful to establish which in vitro selectivity targets 

would be more relevant for the project of interest. Finally, another promising possibility is in the 

area of finding new therapeutic uses for approved drugs, an activity often referred to as drug 

repurposing [123]. Drugs have traditionally been designed to interact with a primary target known to 

be relevant to the particular disease of corporate interest. During the drug optimisation process, 

very limited scope was often given to address properly the issue of selectivity, by considering only 

a handful of additional targets phylogenetically related to the primary target. Through drug 

repurposing, obtaining a drug candidate and many steps in safety assessment can be skipped 

leading to a ruction of the 40% of the overall cost of bringing a drug to the market [124]. Moreover, 

there are less risks of failure, as the systemic effects of the drug have already been proven in its 

previous use. Thus, the ability of in silico target profiling methods to identify new targets for old 

drugs, as demonstrated recently by Keiser et al. [125], has direct implications for using immediately 

off-patent products in clinical trials [124,126].  

As in the case of VS, there have been target-based and ligand-based approaches towards VP. 

High-throughput docking methods for rapidly computing relative affinity [127] and inverse docking 

for automatically screen small molecules, in some cases even for a panel of 698 protein structures 

covering 15 therapeutic areas [128], are representative of target-based VP methodologies, while 

the extension of ligand-based VS through the biological axis is the basis of ligand-based VP 

[57,129]. 

I.2.7. Chemical library design 

As discussed in Section I.1.1.1, the implementation of combinatorial chemistry and HTS 

within the drug discovery process increased the traditional capacity for synthesizing and testing 

compounds. The early technology-driven diversity-focussed HTS phase showed poorer 

performance [40] and higher costs [6] than originally anticipated. On one hand, screening purely 

diverse libraries can lead to missing activity areas, as these areas will be enriched with active 

compounds but, as very similar compounds often show dramatically different activities, they will 

also contain a number of inactive compounds [130]. Selecting just 1 or 2 analogues from each 

cluster of compounds with Tanimoto similarity over 0.85 would result in missing activity within 70% 

of the clusters, while screening any 10 members of the same cluster would yield a 97% chance of 

finding an active compound. On the other hand, as corporate collections were compiled before the 

drug-likeness and lead-likeness filters were broadly used, hits retrieved through HTS often showed 

poor physicochemical properties [131,132] leading to a higher attrition rate in later stages [132].  

As mentioned earlier, the selection of the compounds to be tested in vitro is a key step in drug 

discovery process, as the quality of the initial hits will determine the overall performance of the 

process. The shift from technology- to knowledge-driven drug discovery has set the stage for 

efforts towards small and focused compound collections [10] and crucial to this are the many in 

silico tools developed recently that take advantage of the available knowledge rather than trusting 
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in probabilistic find of interesting compounds in large and diverse databases. Rationally selecting a 

set of compounds to be tested in vitro which are predicted to have desirable characteristics for the 

project of interest is done in two steps, the filtering of undesired compounds and the ranking and 

selection of compounds according to their likeliness to have the sought activity. The first step 

consists on filtering out compounds with undesirable features (i.e. reactive groups, poor ADMET 

prediction) and selecting those that are predicted to have drug-like or lead-like filters based on one-

dimensional descriptors [133], such as molecular weight, counts of nitrogen and oxygen or number 

of rings, which reflect global properties like the size, shape and lipophilicity of molecules [6] or more 

sophisticated complexity analysis [134]. In many cases, a reactive substructures filter based on 

two-dimensional topological descriptors is also applied [135,136]. Lead-likeness filters aim basically 

at retaining compounds with enhanced chemical tractability and development potential, as they 

have to be modified and analogous molecules have to be synthesized and tested in hit-to-lead, 

lead generation and lead optimization phases. 

In the second step, VS or VP protocols can be used to select the compounds that are more 

likely to display the desired pharmacological profile, either directed to a particular target or a protein 

family, respectively. In order to increase the efficacy of the drug discovery process, 

chemogenomics approaches tend to organize research around target families for effective reuse of 

chemical and biological information [40]. Target family-oriented approaches rely on the hypothesis 

that the conservation of the binding site architecture within a target family or subfamily translates 

into a conservation of the architectures of ligands which bind to these targets [52]. Therefore, 

similar ligands should bind to similar targets and thus the knowledge obtained from one protein 

should be transferable to new related proteins. For this to be true, target families should be defined 

and clustered taking into account the protein structures and particularly the structure of their 

binding sites, rather than using the traditional sequence-based phylogenetic approach [137]. 

Focused libraries provide a considerably higher hit rate (typically 10 to 100 fold higher than 

random screening selection [138]) and fewer false positives [138]. Moreover, focused libraries 

targeting protein families instead of single targets take advantage of the functional similarity for 

close structural homologues so that the selected set of compounds designed to be active to one of 

the members of the protein family can be assumed to contain an implicit pharmacophore 

hypothesis not only valid for single target but also for a whole family of targets [53]. 

I.2.8. Network pharmacology 

Network pharmacology results from the integration of systems biology and the huge amount of 

response data describing the biological effects of small molecules [27] mostly provided by HTS. 

Organisms and cells can be considered as complex networks of interacting molecules and, despite 

all the experimental data available to date, they are still far from being fully understood and 

properly modelled. Because of the complexity of the cell network, most of the attempts of modelling 

it have preferred to consider pathways, i.e. parts of it acting in concert, instead of the whole 
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network [15]. In drug discovery process, the modelling of these pathways puts possible drug 

targets into context and can help to the mechanistic understanding of a disease and the possible 

consequence of the perturbations on the system caused by the drug action [139]. They can serve 

as a way to choose the most appropriate protein target and assess possible toxicological effects by 

analysing the proteins homologous to the target and the consequences the interaction with these 

may cause [15]. In modern drug discovery, network pharmacology can be used to design a 

polypharmacology profile for a drug to modulate multiple proteins simultaneously, as discussed in 

the Section I.1.2. Moreover, in a recent study, Yildirim et al. [140] have applied network analysis to 

existing public drug – target information from DrugBank [66], and although this data is far from 

complete, the authors could observe a network behaviour instead of the isolated bipartite nodes 

that would be expected if the drugs did actually act selectively on single targets. 

To obtain a global picture of their interplay, the increasing amount of data being generated 

around small molecules, proteins, genes, pathways, and diseases has to be to collected, stored, 

organized, connected and integrated with a variety of existing molecular, cellular and organismal 

data such as microarray experiments and pathways [141]. By bringing together these 

heterogeneous data types, it is possible to construct a network that captures many aspects of how 

small molecules function in a cellular context [142]. This can help studying the relationships among 

different protein families in terms of shared ligands, as the intra- and inter- protein family 

promiscuity study performed by Paolini et al. illustrated in Figure 9. 

 

Figure 9. Cross-pharmacology interaction matrix. Extracted from [143] 

Despite this, the data currently available relating ligands and proteins are still far from 

complete. This is due to the fact that, because of limited time and resources, molecules are usually 
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not screened systematically through a large panel of protein targets for the sake of obtaining the 

maximum amount of information possible but solely to the target of interest at that point in time. But 

even if they were screened through multiple targets, habitually only a limited amount of data is 

made available, since publishing large amounts of negative data is often regarded as not 

informative. These important, yet often overlooked, aspects lead to a situation of data 

incompleteness within the interaction matrix, as will be discussed in Chapter III.4. 
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During this introduction, a global description of the in vitro drug discovery process has been 

provided. Additionally, the impact and consequences of new technological advances has been 

discussed. These advances have implied a dramatic increase in the throughput rate at which data 

can be obtained, leading to a need for computational tools to gathering, storing and classifying this 

information through annotated chemical libraries, ontologies and classification schemes, which has 

been stressed as one of the key steps towards the generation of knowledge from this data. 

This knowledge, under the form of in silico modelling and prediction tools, has led to a 

conceptual shift in the drug discovery process towards a more rational approach. Relevant for this 

are the methodologies for representing the chemical structures by means of molecular descriptors 

able to catch and summarize the pharmacologically relevant features while enabling fast and 

efficient similarity or distance-based comparisons of large reference and target molecule sets. 

These predictive models, either for QSAR, VS or VP, can be of use all along the drug discovery 

pipeline and have so far proven their ability to increase the overall efficiency of the process. 

Despite these improvements, the quality of the drug candidates is still far from optimal, as 

proven by the high attrition rates at late stages of drug discovery process due, mainly, to efficacy 

and safety issues. These issues have to be considered and properly addressed in early phases 

and many efforts to optimise all aspects simultaneously have been engaged in pharmaceutical 

companies. Possible adverse drug reactions are now considered earlier in the drug discovery 

pipeline by means of hit or lead profiling for several relevant off-targets to avoid late attrition and to 

improve cost-effectiveness. The greatest challenge, still, remains the simultaneous optimisation of 

both binding affinity and pharmacokinetic properties [116]. 

Despite the formal separation of the in vitro and in silico methodologies for drug discovery in 

this Introduction, there is actually a great complementarity among them. It is clear that, despite the 

proven usefulness of the computational algorithms, they can only be regarded as prediction tools, 

requiring a continuous validation of proposed actives by rapid synthesis and testing to ensure a 

successful process making an effective integration of in vitro and in silico approaches necessary 

[10]. This has already been discussed in Section I.2.5 with sequential screening, which integrates 

HTS and VS. Other integration examples are between LC/MS and ADMET models, which are also 

mutually enriched by iterative cycles of prediction of properties, proposal of compounds and 

testing. 

Chapter I.3 – Conclusions and outlook
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The Part I of this thesis puts our work into context by providing a general overview of the drug 

discovery process. A general outline of the main steps towards obtaining a drug candidate is 

provided, together with an introduction to the new trends in this field. Then, the role of in silico 

methodologies within drug discovery is presented, emphasizing the paradigm shift they have 

introduced towards a more rational approach. Computational tools are actually integrated with in 

vitro methodologies in most of the pharmaceutical companies’ pipelines. These tools take 

advantage of previous information by organizing it and generating knowledge from it. This 

knowledge, under the form of computational models, can then be used in almost every step in the 

drug discovery process. 

In Part III the work developed during this thesis by means of published research articles will 

be presented. A new set of computational tools for assisting in drug discovery process will be 

presented. All these methodologies are based upon a novel set of topological descriptors called 

Shannon Entropy descriptors (SHED). These descriptors are introduced in Chapter III.1, where 

their capabilities are also proven. These descriptors enable to summarize the pharmacophoric 

features of molecules in a topological, fuzzy, scaffold-independent manner. In this chapter, it is 

shown how these characteristics allow SHED to be especially suitable for scaffold hopping. 

Additionally, a first introduction of the potential use of SHED for ligand-based virtual ligand 

screening is provided. The combination of these two features makes these descriptors especially 

useful in the drug discovery process, as they enable to retrieve structurally diverse compounds with 

similar pharmacophoric features distribution and thus similar activity profile. 

It is remarkable to highlight the fact that usually 3D descriptors-based methods are considered 

to be more appropriate for scaffold hopping, as they are often based in pharmacophore models 

independent of the compound’s structure. SHED descriptors, despite being 2D topological 

descriptors, are based on pharmacophoric features rather than on atoms and enable a great 

degree of independence from the compound’s structure. On the other hand, scaffold hopping is a 

term often used on the basis of intuitive criteria after the visual inspection of a hit list. It is thus 

important to establish a rational unbiased criterion, independent of the similarity method used, to 

assess it. A very useful approach is to first define the chemical scaffolds of the actives and then to 

asses the enrichment in terms of novel unique scaffolds or frameworks in the top hits selected 

[144]. This is the criteria used in our research, where scaffold and framework definition is based on 

the Bemis and Murcko definition [54] and the detection of repeated or novel structures are done 

using a unique chemical graph identified based on the Xu and Johnson molecular equivalence 

indices [44] developed in our laboratory. 

Part II - Discussion
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In Chapter III.2 the ability for virtual target profiling of SHED is discussed and proven for the 

nuclear receptors family. This opens the door towards the full pharmacological profile of 

compounds for all targets with any ligand information available. This information is useful and can 

be applied for drug safety assessment, hit progressability assessment and drug repurposing. 

During the course of this thesis, ligand – target information has been gathered from diverse 

sources in order to accumulate as much information as we had available to build all possible 

ligand-based models. Specifically, a commercial annotated chemical library (ACL), the WOMBAT 

database [71] containing 186,114 annotated compounds and two ACLs developed in our laboratory 

directed to nuclear receptors [74] with 2,033 compounds and cytochrome P450, with 303 

compounds have been used. Additionally, other publicly accessible ACLs, namely BindingDB [145] 

with 18,450 compounds, DrugBank [66] with 829 drugs, and PDSP Ki database [146] with 215 

annotated compounds have been used. This has led to the construction of a final ACL containing 

153,511 unique ligands with 426,376 annotations to 1,308 targets. 

Two different sets of models have been generated using this information. In the first one, all 

the activity information below 10 μM has been used while, in the second one, just those 

compounds with activity below 100 nM have been considered. Both these models have been used 

successfully in several projects, although there is still room for improvement. The usage of negative 

information has so far been neglected, although giving an alert for compounds with high similarity 

to other compounds with low activity or proven inactivity could be useful. Moreover, when 

information is available, the differentiation among agonist and antagonist models could also be 

useful, as this information is relevant in most drug discovery projects. 

Another possible modification of our virtual screening and virtual profiling protocols is to adapt 

them to quantitative predictions instead of the current qualitative binary prediction (active / non-

active). Up to date, the most common approach towards the quantitative prediction of the activity of 

a compound to a given protein has been the docking scoring functions. Despite this, ligand-based 

approaches are also suitable for these quantitative predictions, as a biased mean of the activity 

values of all the compounds previously tested for a target within a confidence range of distances 

can be used to estimate the activity of a query compound. 

In Chapter III.3, targeted library design is presented as another of the applications of this 

developed methodology. After the ability of full profile prediction of large compound libraries has 

been proven, it can be used to design collections having a limited number of molecules with high 

probability of displaying the targeted pharmacological profile. This approach is already widely used 

in pharmaceutical industry as a way to improve cost effectiveness of early phases of the drug 

discovery process. Traditional high-throughput testing of a large maximally diverse library can be 

substituted by the testing of a smaller set specifically design for the project of interest. 

Furthermore, given the great effort in gathering and organizing information for the generation 

of the models, we have attempted to fully exploit this information. Beyond considering only columns 

(in virtual ligand screening) or rows (in virtual target profiling) of this annotations matrix, analyzing 
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the matrix, or rather the network of connections that could be derived from it, as a whole is a way to 

get more information and a better perspective of the global process. In Chapter III.4, the 

applicability of the generated models for network pharmacology is proven, although the relevance 

of the completeness of the ligand – protein data is highlighted.  

Hert et al. have recently highlighted the difference between sequence-based and ligand-based 

clustering of proteins. In this study, the different behavior of the networks constructed in the basis 

of these two approaches is stated. Moreover, the stability of ligand-based target network and its 

robustness to perturbations in ligand representation are proven [147]. This stresses the interest of 

careful ligand – target networks analysis, to draw relevant conclusions from those. On the other 

hand, it would be interesting to assess the differences between the ligand-based and the binding 

site structure-based classification of proteins. Furthermore, taking the shift in activity value into 

account when using this information for relating proteins [143] is an important issue that has not 

been considered in our study and that can be taken into account in following research. 

Finally, all these methodologies have been made available through a tool that enables an easy 

application of any of them. This tool, called ViSCA, is a stand-alone program that can be run in 

command line and that enables to perform from very simple file management operations to virtual 

screening, virtual profiling and chemical annotation processes, as will be explained in Chapter III.5. 
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II.1.1. Chemical structure hopping 

The well-known pharmacologist and Nobel laureate Sir James Black is famously quoted to say 

that  “the most fruitful basis for the discovery of a new drug is to start with an old drug”. Inspired by 

this statement, have begun to be developed SHIFT, a new approach to chemical Structure Hopping 

by Isosteric Fragment Transformations. In a previous step, a fragments database is generated by 

systematic fragmentation of a library of over 7 million unique commercially available compounds 

collected during this thesis. This fragmentation is based on the rules set by Wagener and 

Lommerse [148], that flag as cleavable all acyclic single bonds not being part of a ring or a 

functional group and either linking a carbon to an heteroatom or a branching point. To these rules a 

limitation has been added so no single terminal atom fragment is generated, in order to avoid very 

small and featureless fragments. Then, the query compound is also fragmented and chemical 

isosters can be sought in the database for each individual fragment in the molecule, as well as for 

each combination of two and three contiguous fragments, using SHED descriptors [98]. 

New molecules will then be built using the top ranked set of isosters to replace the query 

fragment. A molecule re-ranking with reference to the original molecule using also SHED 

descriptors will follow these isosteric transformations. In this way, the chemical space around the 

original molecule will be generated, which can be applied to generating structurally novel potentially 

active molecules from a reference compound, that being a drug, a natural product a competitor’s 

new chemical entity, or an internal novel hit. The isosteric chemical transformation of this initial 

bioactive compound will provide a set of structurally different, yet pharmacophorically similar, 

compounds that are expected to retain (most of) the pharmacological profile of the parent 

molecule. This ability to move to new scaffolds can be of interest in situations where the natural 

ligand is known but synthetic inhibitors are not [144]. Alternatively, it can be used to break out of 

the protected patent space around competitor’s compounds or when lead compounds have 

intractable chemistry, flat SAR or poor physicochemical properties [144]. Combining this chemical 

space exploration with an in silico target profiling method [149] can be ultimately used for 

prioritising hit series or projecting the pharmacological space relevant to a hit optimisation process. 

One of the main issues to be taken into account in these in silico de novo ligand design 

methodologies is the synthetic accessibility of the generated proposals. Once the preferred 

generated compounds are selected, ideally all of them should be synthesized. The most common 

approach used currently to address this issue is the RECAP procedure [150], which is based on 

the splitting of molecules based on a set of 11 bond types pre-defined following a set of reaction 

Chapter II.1 – Future directions of research
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schemes that can be seen in Figure 1. These same rules are then used to rebuild the molecule, 

assuming that these same reactions can then be used in in vitro synthesis. 

 

Figure 1. Eleven default bond cleavage types. Extracted from [150]. 

Other fragment replacement-based methods have been already developed, mainly based in 

3D structure. Among them, CAVEAT [151] starts from a molecular structure and a selection of at 

least two outgoing bonds (exit vectors). From this basis, alternative molecular fragments with 

similar geometric arrangement of exit vectors are searched in a database of geometric 

relationships of bond pairs. Through the use of experimentally observed conformations, CAVEAT 

avoids artifacts generated by conformation generation programs. Another approach is Recore 

[152], which combines fast search with the crystal structure conformations used in CAVEAT. 

During the preprocessing phase, a database of 3D structures is converted into a fragments 

database using rules analogous to the RECAP procedure [150]. Then, after a drug-likeness 

filtering, a geometric rank-searching algorithm is applied based on 3D query, which consists on at 

least two exit vectors and an optional set of pharmacophoric features, to end up with the final 

fragments database. 

II.1.2. Systems chemical biology 

During this thesis, a first approach to network pharmacology is presented. Ligand-based 

protein network analysis, as the one presented in Chapter III.4, is based on relating proteins in 

terms of the ligands they share. This type of analysis can be of use in target hopping, re-using 

chemical expertise from one widely explored target to another protein with highly related ligand-

space. This re-using of information is a practice that has historically been used in pharmaceutical 

industry, although the basis for relating proteins has traditionally been phylogenetic relationships 

[153]. 
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Moving further in this direction, the integration of chemical and biological spaces can 

be extended to applications to computational and systems biology, reaching systems 

chemical biology [27]. This approach seeks to describe all the elements of a biological 

system, define the biological networks that interrelate the elements of this system and 

characterize the flow of information that links these elements [154]. In order to construct a 

network that captures many aspects of how small molecules interact in a cellular context, 

it is clue to incorporate to ligand-target data the already existing molecular, cellular and 

organismal data such as microarray experiments and pathways information, as contained 

in databases like Reactome [155], KEGG [156] and MetaCyc [157]. Biological systems are 

intrinsically robust, and this property enables them to be resistant to various perturbations. 

Systems chemical biology will open the possibility of understanding the complex 

relationship between chemical structures and their effects in living systems. In an 

integrated interface, biochemical networks, target function and the effects of small 

molecules could be simulated. 

Over the past decade, the entire industry has averaged only two or three small-

molecule drugs against “innovative” targets per year [4]. Reverse pharmacology, based on 

target-based screening, has shown to perform successfully only for well-validated targets. 

Accordingly, the use of systems chemical biology to return to a forward pharmacology 

approach taking advantage of current advances in technology and knowledge is expected 

to be a promising way to increase the number of new chemical entities that reach the 

market. Rather than considering isolated proteins, the consideration of the biological 

system as a whole can be of use in a more rational target identification and recognition 

and avoidance of adverse drug reactions [29,154]. On one hand, the analysis of these 

networks will enable to identify those proteins not suitable as protein targets, which either 

constitute essential hubs or whose regulation can be by-passed and compensated by 

alternative paths. On the other hand, through the comparison of normal and diseased 

networks, critical proteins can be identified as potential drug targets. 
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In this part, the results of the research carried out during this thesis and published in peer-

reviewed journals are presented. 

 

Part III - Publications
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In this chapter, a new set of topological atom features-based descriptors called Shannon 

entropy descriptors (SHED) are presented. These molecular descriptors are based on the 

information-theoretical concept of Shannon entropy [1] applied to quantifying the variability 

displayed by topological distributions of atom-centered feature pairs in chemical structures. 

Examples of their possible uses in virtual ligand screening, scaffold hopping and ligand-based 

virtual target profiling are provided and their performance assessed and compared to well-

established methodologies. Their capability of highlighting the common profiles of known actives 

for a certain target with different scaffolds while differentiating them from actives to other targets is 

proven. 

 

 

  Papers included in this chapter: 

• Gregori-Puigjané E, Mestres J: SHED: Shannon entropy descriptors from topological 

feature distributions. J Chem Inf Model 2006, 46:1615–1622. 

 

Chapter III.1 – Molecular descriptors and
ligand-based virtual screening
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A novel set of molecular descriptors called SHED (SHannon Entropy Descriptors) is 

presented. They are derived from distributions of atom-centered feature pairs extracted directly 

from the topology of molecules. The value of a SHED is then obtained by applying the information-

theoretical concept of Shannon entropy to quantify the variability in a feature-pair distribution. The 

collection of SHED values reflecting the overall distribution of pharmacophoric features in a 

molecule constitutes its SHED profile. Similarity between pairs of molecules is then assessed by 

calculating the Euclidean distance of their SHED profiles. Under the assumption that molecules 

having similar pharmacological profiles should contain similar features distributed in a similar 

manner, examples are given to show the ability of SHED for scaffold hopping in virtual chemical 

screening and pharmacological profiling compared to BCI fingerprints and GRIND descriptors. 

                                                 
* Corresponding author e-mail: jmestres@imim.es  
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Introduction 
 

The generation of mathematical representations for molecules has long been an active line of 

research in computational drug discovery. As a result, a large number and variety of molecular 

descriptors reflecting the one-dimensional, two-dimensional, and three-dimensional features of 

chemical structures have been devised [1]. Once formulated, the relevance of these descriptors is 

often established according to their ability to reflect the pharmacological properties of molecules 

[2]. Their potential impact in drug discovery is ultimately assessed when used, for example, in 

deriving quantitative structure-activity relationships from sets of molecules for which biological data 

is experimentally available [3], or performing similarity searches of large chemical libraries against 

a panel of reference active compounds [4]. 

Within this context, atom-centered feature pairs constitute an attractive family of molecular 

descriptors [5]. In their various formulations, they have been proven to show a decent performance 

on a diverse range of computational aspects in drug discovery covering quantitative structure-

activity relationships [5], compound selection [2], virtual chemical screening [6-9], and virtual 

pharmacological profiling [10]. In all these studies, the actual computational encoding of the atom-

centered feature pair descriptors attempts to capture their overall distribution within a molecule by 

storing the occurrence of feature pairs at different distance ranges, either at the topological [2,5-7] 

or geometrical level [8-10], to form a so-called binned fingerprint representation of each molecule. 

These molecular fingerprints are then used to assess the degree of resemblance between 

molecules according to different similarity metrics [11-13].  

Two aspects are worth emphasizing to understand the scope and limitations of this family of 

descriptors. On one hand, formulations based on geometric atom pair descriptors require three-

dimensional coordinates and thus provide representations which are dependent on the 

conformation of molecules [8-10]. Consequently, this involves 2D to 3D conversion of atomic 

coordinates and potentially the generation of multiple conformers for each molecule. On the other 

hand, formulations based on topological atom pair descriptors do not need three-dimensional 

coordinates and do not have this conformational dependency [2,5-7]. However, they result in crisp 

representations of molecules that may not capture some of the essential information present only 

when using three-dimensional coordinates. A formulation based on a fuzzy description of 

topological features could be a good balance between the two approaches. 

It is along these lines that a novel set of molecular descriptors is introduced. This new 

formulation takes advantage of the information-theoretical concept of Shannon entropy [14], an 

approach that is increasingly being applied to process chemical information [15-18]. Accordingly, 

these new descriptors will be referred to as SHED, for SHannon Entropy Descriptors, and 

represent a means to quantify the variability displayed by topological distributions of atom-centered 

feature pairs in molecules. The following sections describe, first, the methodological details for 

56



 

obtaining SHED and, second, several application examples to assess their potential ability for 

scaffold hopping in virtual chemical screening and pharmacological profiling. 

Methods 

The process of obtaining SHED from chemical structure is illustrated in Figure 1 for 

dimetindene, a histamine H1 antagonist. The original input structure should be in MDL’s SD file 

format [19]. From a SD file, each atom in a molecule is first mapped to a Sybyl atom type [20]. 

Subsequently, each atom type is assigned currently to one or more of four atom-centered features, 

namely, hydrophobic (H), aromatic (R), acceptor (A), and donor (D). For example, an aliphatic C.3 

carbon will be assigned to a hydrophobic feature (H), whereas a protonated N.4h nitrogen will be 

assigned to both aromatic and donor features (R,D). Then, the shortest path length between atom-

centered feature pairs is derived and its occurrence at different path lengths stored to create a 

feature-pair distribution. A maximum path length of 20 bonds was used. Feature pairs being at 

distances over 20 bonds are accumulated in the last bin. As an example, the distribution of RD 

feature pairs within dimetindene is displayed. An equivalent distribution is derived for each of the 

ten possible feature pairs resulting from all pair combinations of the four features used. 

Figure 1. Generation of a SHED profile from chemical structure 
 

At this stage, the concept of Shannon entropy [14] is applied to determine the variability of 

feature-pair distributions. Within this approach, the entropy, S, of a population, P, distributed in a 

certain number of bins (representing in this case the different path lengths), N=20, is given by 
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where ρi and pi are, respectively, the probability and the population at each bin i of the 

distribution. The values of S range between 0, reflecting the situation of all population being 

concentrated in a single bin, and a maximum number, Smax=lnN, reflecting the situation of a 

uniformly distributed population among all bins. In the case of dimetindene (Figure 1), RD pairs 

can be found at path lengths occupying 7 bins and the variability in their population gives rise to a 

distribution with an entropy value of 1.8095. In order to have a more intuitive measure that can be 

linearly related to the situation of full uniform occupancy, entropy values are transformed into 

projected entropy values, E=eS. Correspondingly, E values provide a measure of the expected 

maximum uniform occupancy from the corresponding S value. Now, for any given population P>0, 

the values of E can vary from 1, reflecting the situation of zero entropy in which the population is 

totally concentrated in a single bin, to N, reflecting the situation of maximum entropy in which the 

population is uniformly distributed among all bins. In the limit case of P=0, then E will be assigned 

to E=0. For the RD feature pair in dimetindene (Figure 1) the maximum achievable E value for a 

population occupying uniformly 7 bins would be E=7. The obtained E value of 6.1074 reflects a 

slight deviation from the situation of full uniform occupancy on 7 bins. This E value will ultimately be 

the Shannon entropy descriptor (SHED) for the RD feature pair. The set of SHED values obtained 

for the ten possible feature pairs constitute the SHED profile of a molecule. As illustrated in Figure 
1, SHED profiles are represented using a wheel chart, the circle in the chart indicating the E value 

(SHED) for the RD feature pair in dimetindene. 

Results and discussion 

The basic assumption is that molecules having similar features arranged in a similar way 

should display similar SHED profiles. The underlying question is to which extent SHED profiles 

derived from topology-based atom-centered feature-pair distributions of molecules are well suited 

to recognize the presence of similar features arranged in a similar way around significantly different 

molecular scaffolds, an ability usually referred to as “scaffold hopping” [6]. To investigate this issue, 

an analysis of SHED profiles for molecules directed to different targets is presented next, followed 

by application examples on the use of SHED profiles for virtual chemical screening and 

pharmacological profiling. 

Scaffold hopping. Three diverse sets of molecules containing comparable features arranged 

similarly around essentially different scaffolds were selected. The structures of the molecules and 

their corresponding SHED profiles are collected in Figure 2. The first set includes a list of five 

known cyclooxygenase-1 inhibitors (COX-1: EC 1.14.99.1), namely, indomethacin (1), sulindac (2), 

fenbufen (3), ketoprofen (4), and indoprofen (5); the second set is a selection of five known 

thrombin inhibitors (Factor IIa: EC 3.4.21.5), namely, BM14.1224 (6), BM51.1047 (7), DAPA (8), 4-

TAPAP (9), and 3-TAPAP (10); and the third set contains five estrogen receptor subtype α 

antagonists (ER�: NR 3.A.1), namely, raloxifene (11), bazedoxifene (12), a tetrahydroisoquinoline 

ligand (13), LY326315 (14), and EM343 (15). As can be observed, despite the significant scaffold 

diversity present in the three families of chemical structures, reasonably equivalent SHED profiles 
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are obtained within each set. At the same time, the various target-directed SHED profiles are found 

essentially different from one another. Altogether, these results provide evidence of the potential 

applicability of SHED for identifying molecules containing similar features distributed similarly 

around diverse molecular scaffolds. 

A characteristic worth emphasizing is the fact that size appears to be implicitly accounted for 

in the SHED profile of molecules, particularly in the SHED values corresponding to feature pairs 

involving hydrophobic and aromatic centers. For example, average values and standard deviations 

of SHED for the HH pairs found in COX-1 inhibitors, thrombin inhibitors, and ERα antagonists are, 

respectively, 4.40±0.27, 5.95±0.61, and 7.01±0.17, which are indicative of the increasing size of 

compounds associated with those targets. In general, as compounds become bigger and more 

complex (in terms of combinations of features), the area filled by their SHED profiles would tend to 

be larger as well. 

Figure 2. SHED profiles for three diverse sets of target-directed molecules, namely, cyclooxigenase inhibitors 
(top), thrombin inhibitors (middle), and estrogen α antagonists (bottom) 
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In order to assess quantitatively the degree of discrimination obtained when comparing 

different types of molecules, average Euclidean distances and standard deviations derived from the 

SHED profiles of the three sets of ligands are presented in Figure 3. It is remarkable the clear 

separation obtained between comparisons of pharmacophorically similar molecules and 

comparisons of molecules having essentially different feature distributions. For example, average 

intra-set distances and standard deviations between COX-1, thrombin, and estrogen ligands are 

1.17±0.46, 2.23±0.75, and 1.62±0.71, respectively. In contrast, average inter-set distances and 

standard deviations when comparing COX-1/Thrombin, COX-1/Estrogen, and Thrombin/Estrogen 

ligands are 9.65±0.92, 11.21±0.70, and 4.35±0.78, respectively. To put these results into 

perspective, the same exercise was done using BCI fingerprints [21], a representative 2D 

substructural fingerprint-based method widely used in compound clustering and similarity searching 

[22]. In this case, discrimination between intra-set and inter-set comparisons is not as clear as with 

SHED profiles and a more fuzzy (less separation between intra-set and inter-set distances) and 

less compact (larger values for standard deviations) picture appears. This outcome emphasizes the 

potential use of SHED in virtual screening applications. 

Figure 3. Average Euclidean distances and standard deviations obtained when using SHED profiles and BCI 
fingerprints for the three sets of ligands active to COX-1 (C), thrombin (T), and estrogen (E) shown in Figure 

2. White bars correspond to intra-set distances (e.g., CC refers to the 10 non-zero Euclidean distances 
between all pairwise combinations of the five COX-1 inhibitors) and gray bars correspond to inter-set 

distances (e.g., CT refers to the 25 Euclidean distances between all pairwise combinations of the five COX-1 
and the five thrombin inhibitors) 

Despite the attractive resemblance observed in the target-directed SHED profiles, both 

qualitatively in Figure 2 and quantitatively in Figure 3, those compounds represent only a focused 

subset extracted from the ample diversity of active compounds that could be identified and 

generated for a given target. In fact, having similar SHED profiles may well be a reflection of 
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making analogous interactions within similar pockets in their respective targets. In reality, 

depending largely on the size of the protein binding cavity, its flexibility, and its degree of exposure 

to the solvent, ligands will bind to different pockets, exploit different interactions, and have a variety 

of solvent exposed functional groups. In this scenario, a less compact picture will certainly emerge 

when visualizing the corresponding SHED profiles, but yet each SHED profile will be representative 

of a particular distribution of features present in a known active compound for a given target. 

Virtual chemical screening. Computational drug discovery of novel chemical modulators for 

members of the therapeutically-relevant family of G protein-coupled receptors (GPCRs) is still 

dominated by ligand-based approaches mainly due to, on one hand, the technical difficulties 

encountered in crystallizing these receptors and, on the other hand, the large amount of biological 

data available for molecules acting on these receptors. Accordingly, in order to illustrate the 

applicability and performance of SHED for virtual chemical screening on GPCRs, the structures of 

a set of 24 highly diverse α1A-adrenoceptor antagonists with known binding affinities (Ki < 300 nM) 

were extracted from a recent publication [23]. The SHED profiles derived from those 24 reference 

compounds were then used to score a database composed of 3033 drugs and a test set of 15 α1A-

adrenoceptor antagonists [23]. The scoring of each compound in the database was simply 

assigned to the minimum value of all Euclidean distances calculated between the SHED profile of 

the compound and each one of the 24 reference SHED profiles. 

The percentage of actives found with SHED within each percentage of the database is plotted 

in Figure 4 (black bold line). After rank ordering, selection of the top-ranked 5% and 10% of 

compounds in the database would have included 53.3% (8) and 80.0% (12), respectively, of the 15 

α1A-adrenoceptor antagonists in the test set. In terms of overall enrichment, in the ideal situation 

that all 15 actives were found in the 15 top-ranked compounds, the value for the normalized area 

under the curve (AUC) would be 0.9975 (AUCT), whereas a random identification of actives 

(symbolized by the thin diagonal line in Figure 4) would result in a normalized AUC of 0.5000 

(AUCR). Correspondingly, the normalized AUC of the resultant active identification line is 0.9220. 

From these AUC values, an enrichment factor can be defined as E=(AUC-AUCR)/(AUCT-AUCR). 

This enrichment factor can have values in the range of [-1.0,1.0]. A value of E=-1.0 would reflect 

the worst scenario of finding all actives in the database in the last bottom-ranked compounds, 

whereas a value of E=1.0 would reflect the ideal situation of finding all actives in the database in 

the first top-ranked compounds. A random identification of actives would result in E=0.0. Based on 

this definition, the current virtual screening returns an enrichment of E=0.8482. 
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Figure 4. Enrichment curve for the retrieval of 15 α1A-adrenoceptor antagonists from a database of 3033 
drugs, using a reference set of 24 α1A-adrenoceptor antagonists using SHED (black line) and GRIND (gray 

line) descriptors 

For the sake of comparison, alignment-independent GRIND descriptors derived from three-

dimensional molecular interaction fields were also calculated for all compounds using the program 

ALMOND [24] with three-dimensional structures derived by CORINA [25]. In this case, the scoring 

of each compound in the database was assigned to the minimum value of all Euclidean distances 

calculated between the first three scaled principal component analysis scores of the compound and 

those corresponding to each one of the 24 reference compounds. The percentage of actives found 

with GRIND within each percentage of the database is plotted in Figure 4 (gray bold line). After 

rank ordering, selection of the top-ranked 5% and 10% of compounds in the database would have 

included 6.7% (1) and 13.3% (2), respectively, of the 15 α1A-adrenoceptor antagonists in the test 

set. In terms of overall enrichment, the normalized AUC of the resultant active identification line is 

0.7340, which corresponds to an enrichment of E=0.4704. Accounting for more components to 

calculate the Euclidean distance between compounds did not have an effect on the AUC and E 

values presented above. 
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Figure 5. Selection of top-ranked drugs identified in the virtual chemical screening for α1A-adrenoceptor 
antagonists. Reference α1A-adrenoceptor antagonist having the closest SHED profile to each drug is also 

included. Rank position of drugs is given in parenthesis 

The performance of SHED for identifying the test set of 15 α1A-adrenoceptor antagonists within 

the top positions of the rank ordered database may have been masked to some extent by the 

presence of drugs that might as well have some affinity for the α1A-adrenoceptor. For instance, 

droperidol and trazodone were found at ranks 9 and 29, respectively, and were neither in the 

reference nor in the test set of α1A-adrenoceptor antagonists. Some examples of drugs that were 

found within the top ca. 1% of the rank ordered database, together with the reference α1A-

adrenoceptor antagonist with the closest SHED profile to that of each drug, are collected in Figure 
5. At rank 4 we found WAY 100635, an antagonist of the serotonin 5-HT1A receptor. The closest 

α1A-adrenoceptor antagonist found in the reference set is ARC 239 (pKi=9.0) [23]. Despite having 

essentially different scaffolds, the similarities between the structural features of both compounds 

are remarkable. This result would thus alert on the possibility of WAY 100635 hitting the α1A-

adrenoceptor as an off-target. In fact, evidence can be found in the literature that WAY 100635 

induces hypotension in anaesthetized rats and that this effect could be partially explained by 

antagonism of vascular α1-adrenoceptors [26]. Ketanserin, a serotonin 5-HT2 antagonist, was found 

at rank 14. The closest α1A-adrenoceptor antagonist found in the reference set is Spiperone 

(pKi=8.1), with which Ketanserin shares a similar distribution of pharmacophoric features [23]. Most 

interestingly, Ketanserin was recently reported to be a potent antagonist for the α1A-adrenoceptor 

(pKi=8.0) [27]. Also Benperidol, a dopamine D2 receptor antagonist, is found at rank 22. As for 

Ketanserin, Spiperone was the closest reference α1A-adrenoceptor antagonist to Benperidol. 

Benperidol is structurally related to Droperidol and shows a striking resemblance with Spiperone, 

suggesting that the α1A-adrenoceptor could well be an off-target for Benperidol. A final fourth 

example was extracted from rank 32, where Terguride, a dopamine D2 partial agonist, was located. 

The closest α1A-adrenoceptor antagonist found in the reference set is Corynanthine (pKi=7.5) [23]. 

The two compounds present no obvious structural similarities but yet the relative distribution of the 

different features appears to be remarkably equivalent. Of mention is the fact that a recent study 

confirmed experimentally that Terguride displays indeed potent antagonist properties at the α1A-
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adrenoceptor (pKb=8.0) [28]. On the basis of these results, the potential use of SHED profiles 

beyond virtual chemical screening will be investigated next. 

Virtual pharmacological profiling. The basic assumption sustaining virtual chemical 

screening activities is that similar compounds are expected to have similar affinities for a given 

target. However, further than having affinity for a particular target, the ultimate biological effect of 

compounds is established by their pharmacological profile against a set of biologically relevant 

targets [29]. Therefore, for virtual pharmacological profiling, the original statement can be extended 

to assuming that similar compounds should display similar pharmacological profiles. To explore this 

aspect further, we took a list of 47 compounds for which the experimental pharmacological profile 

on a panel of 75 targets was known [30]. The majority of compounds had some affinity for the μ 

opiate receptor, but against a panel of diverse targets they displayed essentially different 

pharmacological profiles. As illustrative examples, two selected pairs of compounds are shown in 

Figure 6. Despite the apparent structural differences, compounds 16 and 17 had similar affinity for 

the μ opiate receptor, with pIC50 values of 5.98 and 5.83, respectively. However, while the 

pharmacological profile of compound 16 shows a high selectivity toward the μ opiate receptor, 

compound 17 has a poor specificity, with low micromolar affinity for 14 out of 20 GPCR targets. In 

contrast, compounds 18 and 19 had not only similar high affinities for the μ opiate receptor, with 

pIC50 values of 7.80 and 7.78, respectively, but showed also comparable overall pharmacological 

profiles against the panel of 20 GPCRs. 

 

Figure 6. Structures, pharmacological profiles (extracted from ref. 22), and SHED profiles for two selected 
pairs of molecules 
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Having the ability to estimate in advance potential deviations in the pharmacological profiles of 

a list of hits identified in the early stages of a drug discovery project would be of great value to 

prioritize further optimization activities on those hits. Recent studies have explored the use of 

similarity metrics to analyze the relationship between the degree of pharmacophore similarity in a 

pair of compounds and the similarity of their respective pharmacological profiles [30]. Accordingly, 

the extent to which the SHED profiles introduced in this work reflect the relative pharmacological 

profiles of compounds is an aspect worth investigating at this stage. To this aim, the SHED profiles 

for the two pairs of compounds described above have been included also in Figure 6. Comparison 

of the SHED profiles obtained for compounds 16 and 17 evidences dissimilar feature distributions, 

the profile for compound 17 covering clearly a wider SHED area consistent with the larger size of 

this molecule relative to 16. In contrast, compounds 18 and 19 showed visibly similar SHED 

profiles, consistent with a pair of compounds of approximately the same size containing similar 

features arranged similarly.  

At a more quantitative level, as proposed in a previous study [30] an activity dissimilarity score 

of the pharmacological profiles of two compounds can be defined as 

D(A,B) = Σ Δ(|%inhi(A) – %inhi(B)|) 

where %inhi stand for the percentages of inhibition (at 10 μM) of A and B in the test i among 

75 tests of the profile. The term 

Δ (|%inhi(A) – %inhi(B)|) 

was originally defined as an empirical measure of how different the two compounds behave 

with respect to that test: 

         0 if x ≤ 30 

    Δ (x) =     (x – 30)/40 if 30 < x ≤ 70 

         1 if x > 70 

 

As an example, Figure 6 contains also the values obtained for the dissimilarity of 

pharmacological profiles and SHED profiles between the two illustrative pairs of compounds. The 

visual observation that the pharmacological profiles of compounds 16 and 17 differ much more 

than those of compounds 18 and 19 is reflected in dissimilarity values of 24.7 and 2.6, respectively. 

Correspondingly, the differences observed in the SHED profiles of compounds 16 and 17 

compared to those of compounds 18 and 19 result in dissimilarity values of 5.2 and 1.0, 

respectively. These results are illustrative of the potential use of SHED profiles as a means for 

alerting of likely differences or similarities in the pharmacological profiles of series of molecules for 

which experimental affinities are available only for a particular target. 
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Figure 7. Dissimilarity of pharmacological profiles versus dissimilarity of SHED profiles for all compound pairs 
derived from a list of 47 compounds for which experimental affinity data on 75 targets are available (extracted 

from ref. 22) 

To investigate this issue further, SHED and pharmacological profile dissimilarities were 

evaluated for each of the pairwise combinations of the 47 compounds, in an analogous way as 

reported in the previous study from which the structures and experimental binding affinities of 

compounds were extracted [30]. Then, all pairs of compounds were sorted into dissimilarity 

categories. The resultant distribution of the pairs in each category versus the dissimilarity scores 

obtained for the calculated SHED profiles and the observed pharmacological profiles is given in 

Figure 7. For each pair of compounds, dissimilarity of SHED profiles refers to the Euclidean 

distance between their SHED profiles, whereas dissimilarity of pharmacological profiles accounts 

for the differences in their respective percentages of inhibition accumulated over the entire set of 

biologically relevant targets to which the compounds were tested against, as detailed above [30]. 

Remarkably, the overall distribution presented in Figure 7 reproduces qualitatively the results 

obtained in the earlier parent study (see Figure 2 in ref. 22). In the class of compounds having the 

most similar feature distributions (dissimilarity of SHED profiles ≤ 2), the occurrence of 

pharmacologically similar compound pairs (dissimilarity of pharmacological profiles ≤ 5) is 

significantly high. With increasing dissimilarity of SHED profiles, the relative probability of finding 

pairs of compounds with similar pharmacological profiles decreases considerably. Consequently, 

pairs of compounds having similar SHED profiles are more likely to have similar pharmacological 

profiles than any random pair of dissimilar molecules. 

Conclusions 

We have introduced SHED as a novel set of molecular descriptors based on the information-

theoretical concept of Shannon entropy applied to quantifying the variability displayed by 

topological distributions of atom-centered feature pairs in chemical structures. Under this new 

representation, molecules containing comparable features arranged similarly around essentially 

different scaffolds give rise to similar SHED profiles, illustrated in this work for the cases of 
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cyclooxygenase-1 inhibitors, thrombin inhibitors, and estrogen α antagonists. This property was 

then further assessed in a virtual chemical screening exercise to retrieve 15 α1A-adrenoceptor 

antagonists from a database of 3033 drugs. Using a reference set of 24 diverse α1A-adrenoceptor 

antagonists, selecting the top-ranked 10% of compounds in the database would have included 

80.0% of the α1A-adrenoceptor antagonists in the test set, with an overall enrichment factor of 

0.8482. In addition, the use of SHED helped identifying α1A-adrenoceptor as a potential off-target 

for several top-ranked drugs. Finally, SHED profiles demonstrated a decent performance for 

estimating differences in the virtual pharmacological profiling of molecules, with pairs of 

compounds having similar SHED profiles showing a trend toward having also similar 

pharmacological profiles. 

Given the large amount of experimental data available currently on the affinity of molecules to 

targets, ligand-based approaches to drug discovery remain still competitive against more 

sophisticated structure-based methods. In the view of the results presented here, the use of SHED 

appears as a simple, yet attractive, low-dimensional representation of molecules with promising 

applicability for the virtual identification and profiling of novel hits at the early stages of drug 

discovery projects. 
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SUPPORTING INFORMATION 
 

Table Mapping Sybyl Atom Types and Pharmacophoric Features 
 

Atom type  Pharmacophore features 
  H R A D 

C.1  X X   
C.2  X X   
C.3  X    
C.ar  X X   
C.cat   X   
N.1   X X  
N.2   X X  
N.2h   X X X 
N.3    X  
N.3h    X X 
N.4   X   
N.4h   X  X 
N.ar   X X  
N.arh   X  X 
N.am  X X   

N.amh   X  X 
N.pl3   X   
N.plh   X  X 
O.2   X X  
O.3  X    

O.3h    X X 
O.co2   X X  

Si  X    
P.3    X  
P.3h    X X 
P.o2  X X   
S.2   X   
S.2h   X  X 
S.3  X    
S.3h    X X 
S.o  X X   
S.o2  X X   

F  X  X  
Cl  X    
Br  X    
I  X    
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SUPPORTING INFORMATION 
 

Feature-Pair Distributions and SHED Profile for Dimetindene 
 
<Feature-pair population distributions> 
H-H: 19 29 29 28 25 23 19 11  5  2  0  0  0  0  0  0  0  0  0  0 
H-R: 22 29 28 29 29 28 21 15  6  2  0  0  0  0  0  0  0  0  0  0 
H-A:  2  3  3  2  4  3  1  2  0  0  0  0  0  0  0  0  0  0  0  0 
H-D:  3  1  1  2  3  4  3  2  1  0  0  0  0  0  0  0  0  0  0  0 
R-R: 14 17 15 12 13 14 12  6  2  0  0  0  0  0  0  0  0  0  0  0 
R-A:  2  2  2  2  2  2  2  0  0  0  0  0  0  0  0  0  0  0  0  0 
R-D:  0  0  1  1  2  3  4  2  1  0  0  0  0  0  0  0  0  0  0  0 
A-A:  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
A-D:  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0 
D-D:  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
 
<SHED profile> 
H-H: 4.2821 
H-R: 4.3533 
H-A: 3.7547 
H-D: 4.0242 
R-R: 4.0974 
R-A: 3.5000 
R-D: 3.0537 
A-A: 0.0000 
A-D: 0.5000 
D-D: 0.0000 
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SUPPORTING INFORMATION 
 

SHED Profiles for COX-1, Thrombin, and Estrogen Ligands 
(Ligand Numbering from Figure 2) 

 
 
Ligand H-H H-R H-A H-D R-R R-A R-D A-A A-D D-D 
  1 4.6905 4.6908 4.7615 0.0000 4.2945 4.5000 0.0000 0.9449 0.0000 0.0000 
  2 4.5336 4.8536 5.1993 0.0000 4.9270 5.1554 0.0000 1.3747 0.0000 0.0000 
  3 4.4541 5.1367 5.7786 0.0000 5.1141 5.6381 0.0000 0.9449 0.0000 0.0000 
  4 3.9642 4.3031 4.5004 0.0000 4.3130 4.6657 0.0000 0.9449 0.0000 0.0000 
  5 4.3645 4.7983 5.1270 0.0000 4.8040 5.0607 0.0000 0.9449 0.0000 0.0000 
  6 6.6220 6.8085 4.8326 6.7986 7.0193 4.8302 6.8386 0.5000 1.5000 1.5000 
  7 6.1484 6.3378 4.3840 6.9027 6.5384 4.3565 7.0640 0.5000 1.0000 0.5000 
  8 6.3634 6.3439 4.2997 6.5151 5.8844 4.2690 6.2042 0.9449 2.6727 1.3747 
  9 5.3128 5.8198 3.7660 6.0616 5.6920 4.6393 5.5821 0.9449 1.7858 0.9449 
  10 5.3128 5.5033 3.7660 5.6569 5.3129 4.2297 5.4546 0.9449 1.7858 0.9449 
  11 7.1872 7.2380 7.6801 8.2332 5.0115 5.4179 6.5613 1.5000 3.0000 1.5000 
  12 6.9564 6.9914 7.5023 7.8198 4.9978 5.5059 6.2247 0.5000 1.5000 1.5000 
  13 6.8525 6.8141 6.7470 7.2081 5.0002 4.5425 5.9401 0.5000 0.9449 0.9449 
  14 7.1816 7.3313 7.8253 8.1830 5.1285 5.4525 6.7486 0.5000 1.5000 1.5000 
  15 6.8551 6.9267 7.3142 7.6918 4.9353 5.0153 6.3275 0.5000 1.5000 1.5000 
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SUPPORTING INFORMATION 
 

Reference Set of 24 α1A-Adrenoceptor Antagonists 
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SUPPORTING INFORMATION 
 

Test Set of 15 α1A-Adrenoceptor Antagonists 
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In this chapter, an annotated chemical library directed to nuclear receptors developed in-

house [74] is used to generate ligand-based models for 25 nuclear receptors using the SHED 

descriptors presented in the previous chapter. The usefulness of this methodology is proven by 

presenting the internal validation of the models through leave one out analysis and the external 

validation using four external chemical libraries of targeted to proteases, kinases, ion channels, and 

G protein-coupled receptors. 

 

 

Papers included in this chapter: 

• Mestres J, Martin-Couce L, Gregori-Puigjané E, Cases M, Boyer S: Ligand-based 
approach to in silico pharmacology: nuclear receptor profiling. J Chem Inf Model 
2006, 46:2725-2736. 

 

 

 

 

 

Chapter III.2 – Virtual target profiling

75



 

76
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Abstract 

Bioactive ligands are a valuable and increasingly accessible source of information about 

protein targets. Based on this statement, a list of 25 nuclear receptors was described by a series of 

bioactive ligands extracted directly from bibliographical sources, stored properly in an annotated 

chemical library, and mathematically represented using the recently reported SHED molecular 

descriptors. Analysis of this ligand information allowed for deriving a threshold of nuclear receptor 

concern. In the case the similarity of one molecule to any of the molecules annotated to one 

particular nuclear receptor is below that threshold, the molecule receives an alert on the probability 

of having affinity below 10 μM for that nuclear receptor. On this basis, a linkage map was 

constructed that reveals the interaction network of nuclear receptors from the perspective of their 

active ligands. This ligand-based approach to nuclear receptor profiling was subsequently applied 

to four external chemical libraries of 10000 molecules targeted to proteases, kinases, ion channels, 

and G protein-coupled receptors. The percentage of each library that returned an alert on at least 

one nuclear receptor was reasonably low and varied between 4.4% and 9.7%. In addition, ligand-

based nuclear receptor profiling of a set of 2944 drugs provided an alert for 153 drugs. For some of 

them, namely, acitretin, telmisartan, phenyltoloxamine, tazarotene, and flumazenil, bibliographical 

evidence could be found indicating that those drugs may indeed have some potential off-target 

residual affinity for the nuclear receptor(s) annotated. Overall, the present findings suggest that 

ligand-based approaches to protein family profiling appear as a promising means towards the 

establishment of novel tools for in silico pharmacology. 

                                                 
* To whom correspondence should be addressed: jmestres@imim.es  
† Institut Municipal d’Investigació Mèdica and Universitat Pompeu Fabra 
‡ AstraZeneca 
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Introduction 

One of the grand challenges in chemical biology is identifying a small-molecule modulator for 

each individual function of all human proteins [1]. For pharmaceutical research, this has the 

potential to provide molecules that may then be used as chemical probes for protein validation and 

as initial hits for lead generation in target and drug discovery programs, respectively [2]. Vital to this 

aim is the ability to produce quantitative data on the response of biological systems to the presence 

of chemical compounds [3]. Pharmacologists have been gathering this type of data for over a 

century. However, it has not been until recently that the technological advances produced in 

combinatorial chemistry [4] and high-throughput screening [5] have made possible to collect these 

data in a more automatic and systematic manner, opening an avenue towards determining 

experimentally the pharmacological profile of compounds [6-18]. Nonetheless, in spite of the 

significant progress made towards improving the capacity for chemical synthesis and particularly 

for biological testing [19], any aspiration of being able to make and store every synthetically 

feasible molecule and test it on every assayable protein remains to date unreachable and thus 

complementary strategies for massive pharmacological profiling of large compound collections 

need to be explored [20,21].  

One such complementary approach is the application of in silico methods capable of rapidly 

searching through large virtual chemical spaces for compounds similar to a set of bioactive 

reference molecules against a panel of multiple targets [22-24]. These methods are based on 

mathematical representations of molecules [25-29], and capitalize on initiatives aiming at the 

construction of annotated chemical libraries that incorporate pharmacological data into traditional 

repositories of chemical structures [30]. Early initiatives focused on gathering biological data for 

drug molecules. Of mention are the Comprehensive Medicinal Chemistry (CMC) database [31], 

offering currently biochemical information for over 8400 pharmaceutical compounds, and the 

Derwent World Drug Index (WDI) [32], containing data on activity and mechanism of action for over 

58000 marketed and development drugs worldwide. More recently, those initiatives have extended 

their scope to capture the increasing amount of pharmacological data available from public 

sources. Representative examples are the MDL Drug Data Report (MDDR) [33], including 

information on therapeutic action and biological activity for over 132000 compounds gathered from 

patent literature, journals, and congresses, and the WOMBAT database [34], offering biological 

information for 120400 molecules reported in medicinal chemistry journals over the last 30 years. 

The construction of all these annotated chemical libraries contribute to establishing the knowledge 

base towards integrating chemical and biological data and thus for gaining a deeper understanding 

of the properties of molecules associated to the different protein families forming the 

chemogenomic space [35,36]. Ultimately, the establishment of direct biochemical connections 

through annotated chemical libraries may contain clues over the existence of apparently unrelated 

proteins having affinity for similar ligands or the presence of some privileged structures responsible 

for the activity of ligands in entire protein families [37,38].  
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The present work aims at introducing a ligand-based approach to in silico pharmacology by 

exploiting publicly available pharmacological data collected in a family-directed annotated chemical 

library encoded using biologically-relevant molecular descriptors. In particular, the performance of 

the approach to the family of nuclear receptors is presented. This family of ligand-activated 

transcription factors is of paramount importance for pharmaceutical research since many of its 

members are often considered as a double-edged sword. On one hand, they regulate a variety of 

biological processes, including lipid and glucose homeostasis, detoxification, cellular differentiation, 

embryonic development and organ physiology. Consistent with these important regulatory roles, 

mutations in nuclear receptors are associated with many common human diseases like cancer, 

diabetes, and osteoporosis and thus they are considered highly relevant therapeutic targets [39]. 

On the other hand, there is increasing evidence that nuclear receptors act as regulators of some 

cytochrome P450 enzymes, which in turn are responsible for the metabolism of molecules. 

Accordingly, many nuclear receptors are also regarded as potential therapeutic off-targets [40].  

The following sections describe, first, the particular set of molecular descriptors and the 

annotated chemical library used in this work and, second, the construction of a ligand-based 

descriptor model as a rapid means for estimating in silico the pharmacological profile of 

compounds across the family of nuclear receptors. 

Methodology 

The use of biologically-relevant mathematical representations of molecules and the availability 

of pharmacological data for a significant number of ligands are the two key elements required to 

perform the type of analysis presented in this work. Details on the use of Shannon entropy 

descriptors derived from topological feature-pair distributions and the construction of an annotated 

chemical library directed to the family of nuclear receptors are provided next. 

Shannon Entropy Descriptors. A novel set of molecular descriptors called SHED (SHannon 

Entropy Descriptors) was recently introduced [41]. SHED are derived from distributions of atom-

centered feature pairs extracted directly from the topology of molecules. The process of obtaining 

SHED from chemical structure is illustrated in Figure 1 for clomifene, a selective estrogen receptor 

modulator. The original input structure should be in MDL’s SD file format [42]. From a SD file, each 

atom in a molecule is first mapped to a Sybyl atom type [43]. Subsequently, each atom type is 

assigned to one or more of four atom-centered features, namely, hydrophobic (H), aromatic (R), 

acceptor (A), and donor (D). For example, an aliphatic C.3 carbon will be assigned to a 

hydrophobic feature (H), whereas a protonated N.4h nitrogen will be assigned to both aromatic and 

donor features (R,D). Then, the shortest path length between atom-centered feature pairs is 

derived and its occurrence at different path lengths stored to create a feature-pair distribution. A 

maximum path length of 20 bonds was used. Feature pairs being at distances over 20 bonds are 

accumulated in the last bin. As an example, the distribution of RD feature pairs within clomifene is 
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displayed. An equivalent distribution is derived for each of the ten possible feature pairs resulting 

from all pair combinations of the four features used. 

Figure 1. Generation of a SHED profile from chemical structure (see text for details). 

At this stage, the concept of Shannon entropy is applied to determine the variability of feature-

pair distributions [41]. Within this approach, the entropy, S, of a population, P, distributed in a 

certain number of bins (representing in this case the different path lengths), N=20, is given by 

S  =  – ∑
=

N

i
ii

1
ln* ρρ  ;  ρi = pi / P 

where ρi and pi are, respectively, the probability and the population at each bin i of the 

distribution. The values of S range between 0, reflecting the situation of all population being 

concentrated in a single bin, and a maximum number, Smax=lnN, reflecting the situation of a 

uniformly distributed population among all bins. In the case of clomifene (Figure 1), RD pairs can 

be found at path lengths occupying 10 bins and the variability in their population gives rise to a 

distribution with an entropy value of 2.1809. In order to have a more intuitive measure that can be 

linearly related to the situation of full uniform occupancy, entropy values are transformed into 

projected entropy values, E=eS. Correspondingly, E values provide a measure of the expected 

maximum uniform occupancy from the corresponding S value. Now, for any given population P>0, 

the values of E can vary from 1, reflecting the situation of zero entropy in which the population is 

totally concentrated in a single bin, to N, reflecting the situation of maximum entropy in which the 

population is uniformly distributed among all bins. In the limit case of P=0, then E will be assigned 

to E=0. For the RD feature pair in clomifene (Figure 1) the maximum achievable E value for a 

population occupying uniformly 10 bins would be E=10. The obtained E value of 8.8546 reflects a 

slight deviation from the situation of full uniform occupancy on 10 bins. This E value will ultimately 

be the Shannon entropy descriptor (SHED) for the RD feature pair. The set of SHED values 
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obtained for the ten possible feature pairs constitute the SHED profile of a molecule. As illustrated 

in Figure 1, SHED profiles can be represented using a wheel chart, the circle in the chart indicating 

the E value (SHED) for the RD feature pair in clomifene. 

Annotated Chemical Library. An annotated chemical library directed to the nuclear receptor 

family (NRacl) was recently constructed [44]. All data incorporated in NRacl were collected from 

public sources of information, mainly reviews and medicinal chemistry journals of the last 10 years. 

Each chemical entity within NRacl contains a set of structural, biological, and bibliographical data. 

Structural data include a unique identifier for the molecule and its 2D structure representation. 

Biological data contain the list of nuclear receptors at which the molecule has been reported to be 

active, identified by their names and corresponding nuclear receptor code, together with the 

associated pharmacological data (Ki, IC50 and/or EC50), when available. Finally, bibliographical data 

collect the list of references from which structural and biological data were extracted. 

Figure 2. Distribution of all (white bars) and non-redundant (gray bars) chemical annotations present in NRacl 
among 25 nuclear receptors. See text for details. 

A compound in NRacl is considered annotated to a given nuclear receptor if its associated 

pharmacological data (Ki, IC50 and/or EC50) is under a certain cut-off. In this work, an annotation 

cut-off of 10 μM was considered. Under this cut-off, NRacl contains currently 4088 annotations to 

25 nuclear receptors derived from a total of 2324 molecules, some molecules containing multiple 

annotations to nuclear receptors. The overall distribution of annotations among all nuclear 

receptors currently covered by NRacl is provided in Figure 2 (white bars). As can be observed, this 

distribution is a fair reflection of the historical therapeutic relevance of some of the members of this 

family. For example, the nuclear receptor containing the largest number of chemical annotations is 

the estrogen receptor subtype alpha (ERα; NR3A1), an important target in reproductive medicine 

and cancer research. Due to its high homology, many compounds binding to ERα are also reported 
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to be active to ERβ  thus justifying the large number of annotations present also for the latter. 

Another nuclear receptor highly populated with annotations in NRacl is the peroxisome proliferator-

activated receptor gamma (PPARγ; NR1C3), widely recognized as a key regulator in multiple 

metabolic pathways including fatty acid and carbohydrate metabolism and thus being considered a 

relevant target in cardiovascular research. In contrast, estrogen-related receptor gamma (ERRγ; 

NR3B3) and vitamin D3 (VDR; NR1I1) are the only nuclear receptors collecting less than 25 

annotations. 

All molecules present in NRacl are unique with respect to their structure. However, in terms of 

their feature distribution, some molecules may have exactly the same SHED profile, either due to 

pharmacophorically comparable atom mutations or to topologically equivalent structural 

symmetries (e.g., stereoisomerism, cis/trans isomerism, or symmetric regioisomerism). For 

example, having a methyl in a molecule substituted by a chlorine in another will give rise to 

equivalent SHED profiles since the atom types C.3 and Cl are both assigned to a hydrophobic 

feature. Accordingly, in order to avoid having descriptor collisions that could bias the significance of 

any statistics derived subsequently, all SHED-redundant molecules were identified and removed. 

The final distribution among nuclear receptors of the 3536 annotations remaining from the set of 

2033 molecules with non-redundant SHED profiles is also depicted in Figure 2 (gray bars). 

Results and discussion 

The distribution of annotations presently contained in NRacl is visually illustrated in Figure 3a. 

In the heatmap shown, annotations of molecules (in rows) to nuclear receptors (in columns) are 

represented as red cells, meaning that the interaction of a particular molecule with a specific 

nuclear receptor has been positively reported and experimentally quantified in the literature with a 

pharmacological value below 10 μM. In contrast, green cells indicate current lack of information on 

the possibility of any interaction between a given molecule and a certain nuclear receptor. The 

extent of the green area denotes the existence of large information gaps, clearly one of the main 

limitations of dealing with annotated chemical libraries relying on data extracted directly from public 

sources of information [44]. This is due to the fact that, because of limited time and resources, 

molecules are usually not screened systematically through a large panel of protein targets for the 

sake of obtaining the maximum amount of information possible but solely to the target of interest at 

that point in time. But even if they were screened through multiple targets, habitually only a limited 

amount of data is made available, since publishing large amounts of negative data is often 

regarded as not informative. These important, yet often overlooked, aspects lead to a situation of 

data incompleteness within the interaction matrix depicted as a heatmap in Figure 3a. 
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Figure 3. Comparison between the heatmap representing all original annotations extracted from 
bibliographical sources and stored in NRacl (a) and the heatmap reflecting the minimum SHED 
Euclidean distances between the SHED profile of each molecule and the set of non-redundant 

SHED profiles annotated to each nuclear receptor (b). Color coding: (a) red is annotated and green 
not annotated; (b) red reflects distance values close to 0.0 and as distances increase in magnitude 

they turn to orange, yellow and finally green at a value of 1.2 and over. 

In an attempt to address these limitations, the following section describes a means of filling the 

gaps in annotated chemical libraries based on deriving ligand-based descriptor models of protein 

targets. Subsequently, the applicability of these models for the nuclear receptor profiling of 

chemical libraries is finally tested on a drugs database and a series of targeted libraries designed 

for proteases, kinases, ion channels, and G protein-coupled receptors. 

Ligand-based Models of Proteins. The ensemble, S, of non-redundant SHED profiles, I
is , 

representing all molecules, i=1,MI, annotated to each particular nuclear receptor, I=1,N, constitutes 

a mathematical description of the nuclear receptor family from a ligand perspective: 

NIMi
I
i I

sS ,1,1 ]}[{ ===  

The scoring of each compound in a chemical library, Id , with respect to a given nuclear 

receptor, I, is then assigned to the minimum value of all Euclidean distances calculated between 
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the SHED profile of the compound, s, and each one of the SHED profiles, I
is , describing the 

molecules annotated to that particular nuclear receptor: 
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where f
I
is }{  is the SHED corresponding to the f feature-pair distribution of molecule i 

annotated to nuclear receptor I. In the context of similarity-based virtual screening, the approach of 

combining the scores over multiple bioactive reference molecules has been recently referred to as 

group fusion and proven to give significantly superior results to using data fusion strategies on 

single reference molecules for a wide variety of protein targets [45].  

At this stage, the recall (proportion of original, bibliographically confirmed, annotations stored 

in NRacl) obtained at different minimum SHED Euclidean distance cutoffs was investigated, with 

the ultimate aim of identifying the optimum cutoff value to be used as annotation threshold for the 

nuclear receptor profiling of chemical libraries. Accordingly, calculation of all minimum Euclidean 

distances was performed between the SHED profile of each molecule in NRacl and the SHED 

profiles representing each nuclear receptor. In the case the latter contained the SHED profile of the 

molecule in NRacl being processed, that SHED profile was left out during the calculation of 

Euclidean distances. The results of this analysis are depicted in Figure 4 in which gray bars are 

the percentage of original annotations recovered and white bars are the percentage of original 

annotations within all annotations assigned at each minimum SHED Euclidean distance cutoff. 

Figure 4. Comparison between the percentage of original annotations in NRacl recovered (gray bars) and the 
percentage of original annotations within all annotations assigned at each annotation threshold (white bars). A 

value of 0.6 is taken as a threshold of nuclear receptor concern. 

As can be observed in Figure 4, as the annotation threshold is set to higher minimum SHED 

distances, a larger percentage of original annotations are being recovered (gray bars) but, in 
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parallel, they represent also a smaller percentage of all the annotations being assigned to 

molecules (white bars). An optimal annotation threshold would be one that recovers the majority of 

the original annotations without adding at the same time too many additional annotations. A 

minimum SHED Euclidean distance of 0.6 seems to show a satisfactory balance between these 

two criteria. Under this annotation threshold, a total of 1441 molecules, that is 70.9% of all 

molecules in NRacl, receive an annotation to at least one nuclear receptor. These 1441 molecules 

contain a total of 3462 annotations to nuclear receptors, of which 2503 were already present in 

NRacl and can thus be bibliographically confirmed. These 2503 nuclear receptor annotations 

represent 70.8% of all annotations present in NRacl (gray bar) and 72.3% of all annotations 

assigned at this cutoff value (white bar). Since assigning a particular annotation to a molecule 

effectively reflects a probability for that molecule of having an affinity value under 10 μM for the 

corresponding nuclear receptor, a minimum SHED Euclidean distance of 0.6 will be considered for 

the remainder of this work as a threshold of nuclear receptor concern when profiling chemical 

libraries. This strategy follows on recent studies suggesting that similarity to molecules in the 

reference set is a good criteria for prediction accuracy of external test sets [46]. 

Figure 5. Nuclear receptor profile of molecule 1 based on the minimum SHED Euclidean distance between its 
SHED profile and the set of non-redundant SHED profiles annotated to each nuclear receptor. Molecules 2 to 

5 are the molecules present in NRacl responsible for the annotations (white bars) assigned to molecule 1. 

As an illustrative example, Figure 5 shows the profile of minimum SHED Euclidean distances 

obtained for molecule 1 over the ligand-based model of 25 nuclear receptors. On the basis of 

literature data, molecule 1 is annotated in NRacl to the three retinoic acid receptors (RARα: 1B1, 
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RARβ: 1B2, and RARγ: 1B3) [47]. However, as reflected in Figure 5, under the 0.6 annotation 

threshold established above, molecule 1 can be annotated to seven nuclear receptors (white bars). 

The lowest values of all minimum Euclidean distances correspond indeed to the three RAR nuclear 

receptors, thus recovering all annotations assigned originally to molecule 1. Besides the RAR 

annotations, Euclidean distances between 0.20 and 0.35 annotate molecule 1 to the three retinoic 

X receptors (RXRα: 2B1, RXRβ: 2B2, and RXRγ: 2B3) and the farnesoid X receptor (FXR: 1H4). 

One of the advantages of using a ligand-based approach for annotating molecules to nuclear 

receptors is the possibility to examine the ligand(s) responsible for the annotation(s) and, if 

necessary, go back to the original bibliographical sources stored in NRacl. The four molecules 

responsible for the seven annotations to molecule 1 are also collected in Figure 5. The full list of 

annotations assigned to each of those molecules in NRacl is also included and those annotations 

furnished by each respective molecule to molecule 1 are given in italics. Among all molecules 

currently present in NRacl, molecule 2 is, with a SHED Euclidean distance of 0.0177, the most 

similar molecule to molecule 1. It has been reported to have potencies below 10 μM for 1B1, 1B2, 

and 1B3 [48], and is thus responsible for the assignment of those annotations to molecule 1. Also, 

molecule 3 has been reported to have potencies below 10 μM for 1B1, 1B2, 1B3, and 2B1 [48], and 

with a SHED Euclidean distance of 0.2033 is responsible for the 2B1 annotation to molecule 1. In 

addition, molecule 4 (also known as TTNPB) was the first non-steroidal ligand to be described and 

is known to be a weak FXR agonist [49]. At a SHED Euclidean distance of 0.2630, molecule 4 is 

the ultimate responsible for the 1H4 annotation to molecule 1. Finally, molecule 5 has been 

reported to have binding affinities below 10 μM for all RARs and RXRs [50]. With a SHED 

Euclidean distance of 0.3527, molecule 5 is responsible for the additional 2B2 and 2B3 annotations 

to molecule 1. Besides the reported potencies for the three RARs, we are not able to confirm that 

molecule 1 has indeed affinities below 10 μM for FXR and the three RXRs, but the evident 

structural similarities with the four molecules responsible for all annotations are an indication that 

those additional four annotations are not an unreasonable alert. 

The process described above for molecule 1 was applied to each one of the 2033 molecules 

with non-redundant SHED profiles present in NRacl. The results are given in Figure 3b, in which 

the order of the molecules is exactly the same as the one obtained from the original annotations 

shown in Figure 3a. In contrast to the binary heatmap illustrated in Figure 3a, in which red was 

annotated and green was not annotated, Figure 3b presents a color gradation between red and 

green reflecting the value of the minimum SHED Euclidean distance between the SHED profile of 

each molecule and the set of non-redundant SHED profiles annotated to each nuclear receptor. 

Taking the annotation threshold of 0.6 as the center of the color scale, distance values close to 0.0 

are represented in red, those close to 0.6 are seen as light orange, and as distances increase in 

magnitude they turn to yellow and finally green at a value of 1.2 and over. There are two main 

aspects worth mentioning when comparing the heatmaps of Figures 3a and 3b. On one hand, it is 

remarkable the fact that the essential pattern observed when plotting the original annotations 

(Figure 3a) is preserved when molecules are processed through the ligand-based descriptor model 
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of nuclear receptors (Figure 3b). This result reveals that the remaining molecules in NRacl are to a 

great extent representative of the molecule being processed after leaving that molecule out, 

something that can only be achieved if the annotated chemical space has been sufficiently 

saturated with as many known bioactive molecules as possible. On the other hand, despite the 

clear discrimination between nuclear receptor groups, some correlation patterns between them 

emerge. The most apparent example is the clear correlation observed in Figure 3b between RARs 

(1B1, 1B2, and 1B3) and RXRs (2B1, 2B2, and 2B3), a result that provides an indication of the 

potential of this approach for understanding side effects through the identification of off-target 

affinities. 

Figure 6. Nuclear receptor network derived using the matrix of minimum SHED Euclidean distances (see 
Figure 3b). The set of 2033 molecules from NRacl are given as small green squares and the 25 nuclear 
receptors as large red squares. A value of 0.6 for the minimum SHED Euclidean distance was used to 
establish direct links between molecules and nuclear receptors. This linkage map was constructed with 

Cytoscape [51]. 

To investigate further any potential links between nuclear receptors from the perspective of 

their active ligands, we used some graph-based tools to construct an interaction network [51]. A 

similar method was reported recently to visualize nuclear hormone receptor networks relevant to 

drug metabolism [52]. Figure 6 contains the nuclear receptor network obtained on the basis of the 

matrix of minimum SHED Euclidean distances presented in Figure 3b, using the threshold of 

nuclear receptor concern derived above as the linkage criteria for assigning direct connections 
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between a molecule and a nuclear receptor. The first observation that can be made from inspection 

of Figure 6 is that the essential phylogenetic relationships among nuclear receptors are essentially 

preserved. The strong interconnections between RARs and RXRs noticed above are also clearly 

retrieved. But perhaps a more interesting outcome is the existence of several molecules connecting 

the estrogen receptors (3A1 and 3A2) with the pregnane X receptor (PXR: 1I2) and the ecdysone 

receptor (1H1). The link observed between PXR and estrogen may have implications related to the 

metabolism and toxicity of estrogenic compounds [53,54], whereas the link identified between 

ecdysone and estrogen may suggest that a library designed around estrogenic compounds may be 

a good starting point for the identification of novel chemical modulators of the ecdysone receptor 

[55]. Finally, of mention are the links observed between FXR (1H4) and the peroxisome 

proliferator-activated receptor gamma (PPARγ: 1C3), as well as with members of the RAR and 

RXR groups, indicating that FXR may be an off-target to take into consideration when developing 

compounds for PPARγ, RARs, and RXRs [56,57]. 

Nuclear Receptor Profiling. The ligand-based model of nuclear receptors described in the 

previous section can then be used to profile large chemical libraries on this family of transcription 

factors of key importance for pharmaceutical research. As a first validation exercise, a small 

database of 82 diverse molecules, not included in NRacl, was compiled as an external test set from 

bibliographic sources reporting experimental evidence of activity on nuclear receptors. Profiling of 

this database on the ligand-based nuclear receptor model provided annotations (that is, a minimum 

SHED Euclidean distance of 0.6 for at least one nuclear receptor) for 47 molecules (57% of the 

database). Out of these 47 molecules, 32 molecules had annotations to at least one member of the 

nuclear receptor group at which the molecules were known to be active. Accordingly, the method 

provided a correct identification of the target nuclear receptor group for 68.1% of the molecules 

annotated. This result is in good agreement with the expected performance of the method (70.9%; 

vide supra).  

To provide an idea of the level of structural hopping that can be achieved using the current 

approach, a selection from this 47 molecules, covering the whole range of distance values under 

the threshold of 0.6, is presented in Figure 7. Molecule 6 is a benzoxepin analogue of tamoxifen 

[58]. Not surprisingly, the closest molecule found when profiled against the ligand-based nuclear 

receptor model is molecule 7, toremifene, a chlorine analogue of tamoxifen, annotated in NRacl to 

have affinity for the estrogen receptor subtype α (ERα: 3A1) and thus responsible for the 3A1 

annotation to molecule 6 [59]. Molecule 6 had also minimum SHED Euclidean distances below 0.6 

for other molecules in NRacl that provided additional annotations to the estrogen receptor subtype 

β (ERβ: 3A2) and PXR (1I2). Molecule 8, Am93, is structurally related to Am80, a known potent 

synthetic retinoid reported to be active to RARs [60]. Nuclear receptor profiling of this compound 

identifies molecule 9, with annotations to all RARs [47], as the molecule in NRacl being closest in 

SHED profile to molecule 8. Molecule 10 is a conformationally restrained analogue of retinoic acid, 

with reported nanomolar affinity for all RXRs and hundred-fold selectivity over RARs [61]. Molecule 

11 is the closest reference compound found to it in NRacl. Most interestingly, despite being 
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annotated to all RARs and RXRs because of the 10 μM cut-off used for the construction of NRacl, 

molecule 11 is also being reported to have nanomolar affinities for all RXRs but only micromolar 

affinities for all RARs, in good agreement with the known profile of molecule 10 [50]. Finally, 

molecule 12, DA010, is a known ligand for both RARs and RXRs [62]. In this case, molecule 13 is 

the only molecule present in NRacl with a SHED profile under a distance of 0.6 to that of molecule 

12 and is thus responsible for the annotation of molecule 12 to all RARs [47]. This is an example 

where the approach would have missed annotating molecule 12 to all RXRs. 
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Figure 7. Selection of molecules from the test set annotated to nuclear receptors (test compound). The 
molecule in NRacl showing the minimum SHED Euclidean distance to each test compound (reference 

compound) is also included. Besides the annotation(s) provided specifically by the reference compound 
shown, all annotations assigned to test compounds from reference compounds are also given in italics (see 

Figure 5). 

Following current trends in chemogenomic strategies for family-directed drug discovery, a 

direct application of this approach is in the selection of compounds targeted to nuclear receptors 

from chemical provider databases and the nuclear receptor profiling of targeted libraries designed 

specifically for other protein families of high therapeutic relevance. Accordingly, as a second 

validation exercise, we took four commercially available targeted libraries designed to provide hits 

for the families of proteases, kinases, ion channels, and G protein-coupled receptors (GPCR) 
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containing 19649, 515265, 31579, and 110507 molecules, respectively [63]. For the sake of 

consistency, a set of 10000 molecules was randomly selected from each of them and processed 

through the ligand-based nuclear receptor model. The results are compiled in Figure 8, 

represented in a form comparable to the gray bars in Figure 4. As can be observed, under the 

annotation threshold of 0.6 established above, only 9.7% of the 10000 molecules contained in the 

protease library, 4.4% of an equivalent number of molecules present in the kinase library, 7.0% of 

the ion channel library, and 6.0% of the GPCR library would be alerted on the potential of having 

affinity to some nuclear receptor. Since molecules designed for these libraries should not be 

expected to have activity on nuclear receptors, at least to a large extent, these results confirm the 

validity of the ligand-based approach to nuclear receptor profiling used in this work. 

Figure 8. Percentage of each targeted library (protease, kinase, ion channel, and GPCR) annotated to nuclear 
receptors at varying threshold values. Numbers indicate the percentage of each library under the threshold of 

nuclear receptor concern. 

One of the major concerns during the process of drug discovery is the possibility that the 

compounds being optimized could have residual affinities for some off-targets responsible for 

highly undesirable side effects. Therefore, the third validation exercise consisted of profiling a 

dataset of 2944 drugs, none of them present in NRacl, through the ligand-based nuclear receptor 

model. Interestingly, only 153 drugs, that is 5.2% of the total number contained in the dataset, were 

identified as having at least a minimum SHED Euclidean distance below 0.6 to a nuclear receptor. 

Of those, 32 drugs contained a steroidal scaffold and were found to be similar to some of the 

steroidal hormone receptor ligands present in NRacl. An additional set of 19 drugs was found to 

have the same scaffold to some molecule present in NRacl, and could thus be considered a close 

analogue. An illustrative selection of the 102 remaining drugs that were annotated to nuclear 

receptors is compiled in Figure 9, covering the whole range of distances within the 0.6 annotation 

threshold. 
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Figure 9. Selection of drugs annotated to nuclear receptors yet not designed specifically for them. The 
molecule in NRacl showing the minimum SHED Euclidean distance to each drug (reference compound) is also 

included. 

The first drug collected in Figure 9 is acitretin, an oral retinoid indicated for the treatment of 

psoriasis, although its mechanism of action has not been fully elucidated. When profiled against the 

ligand-based nuclear receptor model, this drug was found at close distance to molecule 14, a 

molecule that has been reported to have potencies below 10 μM to all three RARs [47]. This result 

would provide an alert for acitretin having potential affinity for RARs. We have not been able to find 

direct experimental data confirming this fact, but there is bibliographical evidence suggesting a link 

between psoriasis and an alteration in the cellular retinoid pathways at which synthetic retinoids, 

such as acitretin, may interact [64]. The next drug listed is telmisartan, originally designed as an 

angiotensin II receptor blocker for treating the metabolic syndrome. Nuclear receptor profiling of 

this drug identified molecule 15 as the closest to its SHED profile, a molecule that has been 
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reported to have affinity below 10 μM to all peroxisome proliferator-activated receptor subtypes 

(PPARα: 1C1, PPARβ: 1C2, PPARγ: 1C3) [65]. Recent preclinical studies indicate that telmisartan 

acts as a PPAR� modulator when tested at concentrations that might be achievable with oral 

doses recommended for the treatment of hypertension [66]. Having processed telmisartan through 

some type of nuclear receptor alert system, such as the one presented in this work, this outcome 

could have been anticipated at an earlier stage. The following drug is phenyltoloxamine, a H1 

histamine antagonist used in pain treatment. Molecule 16 was identified as the closest molecule in 

NRacl to this drug. This molecule has been reported to show antagonistic activity for ERα (3A1), as 

well as to the glucocorticoid (GR: 3C1), mineralcorticoid (MR: 3C2), progesterone (PR: 3C3) and 

androgen (AR: 3C4) receptors [67]. Since the SHED Euclidean distance between phenyltoloxamine 

and molecule 16 is below 0.6, phenyltoloxamine is alerted for having potential affinity on these five 

nuclear receptors. We have not been able to find experimental data confirming this result in its 

totality. But bibliographical evidence has been found on the fact that the antiestrogen binding site is 

an histamine or histamine-like receptor and that, in particular, phenyltoloxamine has indeed some 

antagonistic affinity for the estrogen receptor [68]. Next in Figure 7 is tazarotene, a topically 

applied retinoid for the treatment of psoriasis. Nuclear receptor profiling of this drug identifies 

molecule 17, with annotations to RARs and RXRs, as the molecule in NRacl being closest in SHED 

profile to tazarotene [69]. Indeed, indications can be found in the literature that tazarotene does 

bind to RARs, although selectively with respect to RXRs [70]. Finally, flumazenil is a GABAA-

benzodiazepine receptor antagonist. A SHED Euclidean distance right below 0.6 is obtained with 

respect to molecule 18, a known androgen receptor antagonist [71]. Despite no direct evidence of 

this result could be found, recent indirect reports indicate that flutamide, an androgen receptor 

antagonist, produced an anticonvulsant effect in common seizure models through a possible 

interaction with benzodiazepine receptors, thus being indicative of potential cross-pharmacologies 

between these two receptors [72].  

Conclusions 

On the basis of pharmacological data extracted directly from bibliographical sources, a ligand-

based descriptor model for the family of nuclear receptors was constructed, offering the possibility 

to perform in silico the profiling of large chemical libraries on 25 nuclear receptors in a fast and 

efficient manner. It was shown that, provided the annotated chemical space for the protein family of 

interest is sufficiently well saturated, the model attains a decent degree of both internal consistency 

and external predictability. The model served also to construct an interaction network from which 

potential cross-pharmacologies between nuclear receptors emerged. In addition, the approach was 

proven to be sensible enough to achieve significant discriminative power when applied to external 

chemical libraries designed for a priori unrelated protein families such as proteases, kinases, ion 

channels, and GPCRs, opening an avenue for its use in the selection and design of targeted 

libraries. Further external validation of the model was finally provided by the identification of a 

selected list of drugs for which bibliographical evidence exists, though indirect for some, indicating 
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that those drugs may indeed have some potential off-target residual affinity for the nuclear 

receptor(s) annotated. 

A vast amount of pharmacological data on many protein targets is becoming available for 

increasingly large quantities of molecules. The systematic collection of these data in annotated 

chemical libraries allows for describing proteins from the perspective of ligands, descriptions that 

develop into a more complete picture as data on new ligands are obtained and the active chemical 

space stored becomes more saturated. Interestingly, a recent study comparing the performance of 

some ligand-based and structure-based methods for virtual screening concluded that information 

about a target derived from knowledge on bioactive ligands can be as valuable as knowledge of the 

target structures for identifying novel scaffolds by computational means [73]. Functional coverage 

of the proteome by structures is progressing rapidly but many areas are still devoid of any 

structural information [74]. In the wait for having at least one representative structure for each 

target protein, ligand-based representations of proteins may offer a means to move from the 

traditional virtual chemical screening to the necessary virtual pharmacological profiling. 

The ligand-based approach to nuclear receptor profiling presented in this work can be readily 

extended to other protein families of high therapeutic relevance, such as GPCRs, for which only 

limited structural information is available but pharmacological data on a significant number of 

molecules are known. By gathering, properly storing, and maximally exploiting all pharmacological 

knowledge on ligands available to date, in silico pharmacology on a genomic scale may soon 

become a reality. 
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The use of relatively small libraries containing compounds designed to have a high probability 

of activity for a given protein or protein family has recently increased in pharmaceutical industry. In 

this chapter, a review on new trends in ligand-based techniques for designing targeted libraries, 

with special focus on nuclear receptors, is provided. Additionally, we discuss on the need for a 

quality assessment of any targeted library. Actually key features of these libraries, like coverage of 

the target and chemical spaces or possible biases towards a few particular chemical series or 

protein targets, are hardly ever assessed and provided. 
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1 Introduction 

In the early 1990s, the advent of high-throughput screening (HTS) increased dramatically the 

capacity for testing compounds. The implementation of this wonder piece of robotic equipment in 

pharmaceutical industry was soon perceived as the technological solution to the relatively poor 

performance of drug discovery in terms of new chemical entities approved per year. Obviously, an 

increase in the capacity for testing compounds implied immediately increasing the number of 

compounds available for testing. Within this scenario, the size of the corporate compound 

collection was perceived as one of the key aspects for having a successful HTS campaign. 

Accordingly, the high demand for more compounds generated suddenly a strong need for wide 

compound synthesis and acquisition activities directed mainly at obtaining optimally diverse 

screening libraries [1].  

However, a review of the performance of HTS in its first years of implementation revealed that 

the number, diversity, and progressability of the hits identified were below original expectations [2]. 

It became then clear that augmenting the capacity for testing alone was not sufficient for delivering 

high-quality leads and that more effort was required in carefully balancing the composition of the 

screening collections with compounds containing features compatible with the nature of the targets 

or target classes of corporate interest. Therefore, novel strategies were conceived to design 

chemical libraries focussed to a particular target or directed to entire protein families to enrich 

corporate collections with a pool of targeted compounds that could complement those selected by 

diversity means [3]. Some of the main protein families for which chemical libraries have been 

designed in the last few years include G protein-coupled receptors [4,5], kinases [5], serine 

proteases [6], and nuclear receptors [7]. 

The focus of this contribution will be on introducing novel knowledge-based strategies for 

designing chemical libraries directed to the family of nuclear receptors, with special emphasis on 

more generic often overlooked aspects such as the degree of expected family coverage and bias 

by the compounds in the library. As extensively exposed in previous chapters, nuclear receptors 

form a family of ligand-activated transcription factors that regulate a variety of biological processes, 

including lipid and glucose homeostasis, detoxification, cellular differentiation, embryonic 

development and orphan physiology. Consistent with these important regulatory roles, mutations in 

nuclear receptors are associated with many common human diseases such as cancer, diabetes, 

and osteoporosis, and thus they are considered highly relevant protein targets [8]. Furthermore, 

many nuclear receptors play also an important role in mediating the induction of hepatic 

cytochrome P450s, a class of enzymes involved in drug metabolism and in the toxification and 

detoxification of xenochemicals prevalent in the environment. Accordingly, many nuclear receptors 

are also regarded as potential off-targets [9]. Finally, there are still a number of orphan nuclear 

receptors involved in novel regulatory systems that impact human health for which ligands have yet 

to be identified and that are likely to lead to the discovery of new drugs in the near future [10]. The 

combination of these three aspects makes nuclear receptors a protein family of utmost therapeutic 
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relevance for pharmaceutical industry and, thus, highlights the need for having access to chemical 

libraries designed especially to cover the entire family. 

2 Collecting and storing prior knowledge 

The design of targeted chemical libraries is an activity that requires the availability of prior 

knowledge either on bioactive ligands (ligand-based approaches) or on crystallographic data 

(target-based approaches) for the different members of the protein family of interest. In this 

respect, one of the current challenges in biomedical research is to collect, store, organize, and 

connect the increasing amount of data being generated around small molecules, proteins, genes, 

pathways, and diseases [11]. The efficient access to and linkage of all these data will essentially 

constitute the stepping stone towards the establishment of novel integrative knowledge-based 

approaches to drug discovery activities, in particular to the design of targeted chemical libraries 

[12,13]. 

A number of initiatives have focused recently on collecting and storing the structures of small 

molecules for which pharmacological data to a given protein target have been reported in the 

literature, giving rise to the so-called annotated chemical libraries [14]. Among those, the MDL Drug 

Data Report (MDDR) includes information on therapeutic action and biological activity for over 

132,000 compounds gathered from patent literature, journals, and congresses [15], the WOMBAT 

database offers currently data on 307,700 biological activities for 154,236 molecules annotated to 

1,320 protein targets reported in medicinal chemistry journals over the last 30 years [16], the 

AurSCOPE databases offer a collection of chemical libraries containing over 323,000 molecules 

annotated to over 1,300,000 biological activities related to members of therapeutically relevant 

protein families covered in over 38,000 publications [17], and the MedChem and Target Inhibitor 

databases compile around 2,000,000 molecules with biological activity, toxicity and 

pharmacological information for therapeutically relevant protein families extracted from 20,000 

publications [18]. All these commercial databases provide an invaluable source of pharmacological 

data for ligands that can be ultimately exploited for designing targeted libraries. 

Under the same spirit, a more modest initiative took place in our laboratory to assemble an 

annotated chemical library directed to the nuclear receptor family (NRacl) on the basis of public 

sources of information, mainly reviews and medicinal chemistry journals of the last 13 years [19]. 

Each entry in NRacl contains information on its topological chemical structure and the connection 

to nuclear receptors is established through the associated pharmacological data (Ki, IC50 and/or 

EC50), as reported. At this stage, only biologically active compounds (activity < 10 μM) were 

entered into NRacl. In total, NRacl includes currently 2718 small molecules connected to 29 

nuclear receptors, some molecules containing multiple annotations to nuclear receptors. 

Since the ability to extract knowledge from annotated chemical libraries will be highly 

determined by the way chemical and biological data are stored, when constructing NRacl special 

emphasis was put in storing both chemical structures and nuclear receptors using appropriate 

103



unique identifiers and classification schemes. For chemical structures, we used an in-house 

proposed Chemical Structure Code (CSC) purely based on topological features of molecules. 

Accordingly, each molecule in NRacl is identified with a unique hierarchical five-level CSC [19]. The 

first and second levels are integers specifying, respectively, the number of rings in the largest ring 

system present in the molecule and the total number of ring systems in the molecule. The third, 

fourth, and fifth levels are a unique seven-character hash code for the molecular framework, 

scaffold, and the complete molecular structure, respectively. On the other hand, for the annotation 

of ligands to nuclear receptors, we avoided using the receptor names directly but using instead the 

more compact and unified three-character code nomenclature system proposed by the Nuclear 

Receptors Nomenclature Committee [20]. Within this scheme, the first character is a number that 

designates the subfamily. There are six main subfamilies, assigned to identifiers 1 to 6. All nuclear 

receptors in these subfamilies contain a highly conserved zinc-finger DNA-binding domain (DBD) 

and a less conserved ligand-binding domain (LBD). However, some unusual receptors contain only 

one of the two conserved domains and thus an additional subfamily, assigned to identifier 0, has 

been included to account for them. The second character is a capital letter specifying the group 

within the subfamily, and the third character is a number identifying the individual nuclear receptor 

within a group. Globally, this classification scheme of nuclear receptors defines at present 7 

subfamilies, 25 groups, and 73 receptors. The use of hierarchical classification schemes for both 

molecules and receptors takes the exploitation of family-directed annotated chemical libraries to 

another level, the added value coming from the fact that complete flexibility exists for extracting 

knowledge at all levels of those classification schemes. For the sake of clarity, Table 1 compiles 

the list of 36 nuclear receptors for which prior knowledge on both small molecules and/or receptor 

structures is currently available. 

Subfamily Group Receptor Name Abbreviation BL PS 
1. A. 1 Thyroid hormone TRα 81 3 
  2  TRβ 93 12 
 B. 1 Retinoic acid RARα 107 1 
  2  RARβ 112 2 
  3  RARγ 118 9 
 C. 1 Peroxisome proliferator-

activated 
PPARα 

134 
4 

  2  PPARβ 37 8 
  3  PPARγ 280 25 
 F. 1 RAR-related orphan RORα 0 2 
  2  RORβ 0 3 
 H. 1 Ecdysone ECR 2 3 
  2 Liver X LXRβ 4 6 
  3  LXRα 30 2 
  4 Farnesoid X FXR 33 3 
 I. 1 Vitamin D VDR 16 18 
  2 Pregnane X PXR 1 6 
  3 Constitutive androstane CAR 0 4 

2. A. 1. Hepatocyte nuclear factor 4 HNF4α 0 2 
  2.  HNF4γ 0 1 
 B. 1 Retinoid X RXRα 135 18 
  2  RXRβ 78 2 
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Subfamily Group Receptor Name Abbreviation BL PS 
  3  RXRγ 97 1 
  4 Ultraspiracle protein USP 0 5 

3. A. 1 Estrogen ERα 729 39 
  2  ERβ 757 21 
 B. 1 Estrogen receptor-related ERRα 0 2 
  3  ERRγ 9 11 
 C. 1 Glucocorticoid GR 312 3 
  2 Mineralocorticoid MR 14 10 
  3 Progesterone PR 380 7 
  4 Androgen AR 280 32 

4. A. 1 Nerve growth factor IB NGFI-B 0 2 
  2  NURR1 0 1 
  4  DHR38 0 1 

5. A. 1 Steroidogenic factor-1 SF1 0 4 
  2 Fetoprotein TF FTF 0 5 
       

 
Table 1. List of nuclear receptors and the number of bioactive ligands (BL) and protein structures (PS) 

currently available for each of them. 

Recent trends in nuclear receptor medicinal chemistry can be analysed in terms of the number 

of novel scaffolds representing all small molecules reported to have affinity under 10 μM for a 

nuclear receptor over the last 13 years. As can be observed in Figure 1, early efforts in 1994 and 

1995 focused primarily on synthesising compounds directed to the groups of retinoic acid receptors 

(RARs; 1B), retinoic X receptors (RXRs; 2B), thyroid receptors (TRs; 1A), peroxisome proliferator-

activated receptors (PPARs; 1C), and estrogen receptors (ERs; 3A). Accordingly, the overall 

distribution of annotations among all nuclear receptors is a fair reflection of the historical 

therapeutic relevance of some of the members of these groups (Table I). In particular, the nuclear 

receptor containing the largest number of chemical annotations is the ER subtype alpha (ERα; 

3A1), an important target in reproductive medicine and cancer research. Due to its high homology, 

many compounds binding to ERα are also reported to be active to ERβ thus justifying the large 

number of annotations present also for the latter. Another nuclear receptor for which vast 

information on bioactive ligands is available is PPAR gamma (PPARγ; 1C3), widely recognized as 

a key regulator in multiple metabolic pathways including fatty acid and carbohydrate metabolism 

and thus being considered a relevant target in cardiovascular research. In contrast, the groups of 

hepatocyte nuclear factor 4 receptors (HNF4s; 2A) and estrogen-related receptors (ERRs; 3B) are 

among the youngest in terms of medicinal chemistry exploration. This will be the main body of 

ligand-based information used for designing targeted chemical libraries to nuclear receptors. 
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Figure 1. Progress over time in the number of novel scaffolds generated from nuclear receptor medicinal 

chemistry efforts in the last 13 years. The radius of the circles reflects the cumulative number of molecules 
entered in NRacl (specific numbers are given above each circle, in bold). When a bioactive molecule to a 

nuclear receptor was first encountered in the literature, its code (in italics) is added above the circle. 
(Reproduced with permission of Bentham Science Publishers Ltd.) 

Apart from pharmacological data on ligands, the other important source of knowledge 

generated within protein families is the availability of experimentally determined protein structures. 

Recent advances in high-throughput methods for protein expression and production, NMR 

spectroscopy, and X-ray crystallography have led to a significant rise in the number of protein 

structures solved [21]. Many of these structures are ultimately deposited and made publicly 

accessible in the Protein Data Bank (PDB), currently containing over 47,000 entries and its size 

continuing to increase annually at an almost exponential rate [22]. In particular, the first structure of 

a DBD of a nuclear receptor was deposited in the PDB in 1991 [23], whereas the first LBD structure 

was not deposited until four years later [24]. Since then, the number of nuclear receptor structures 

has grown significantly and, as per 27-July-2007, there are 319 entries in the PDB involving 294 

separate PDB files, some of which having more than one NR number associated with them [25]. Of 

them, 36 entries correspond to nuclear receptor DBDs covering 5 subfamilies, 11 groups, and 16 

receptors. The remaining 283 entries correspond to nuclear receptor LBDs covering a total of 6 

subfamilies, 14 groups, and 37 receptors, which provide essential structural information that can be 

exploited for designing targeted libraries directed to the entire family of nuclear receptors (Table I). 

To complement Figure 1 from a receptor structure viewpoint, the evolution in the number of LBD 

structures deposited in the PDB over the years is illustrated in Figure 2. Overall, beyond the mere 

increase in the population of structures, it is important to stress again that the general adoption of 

classification schemes for proteins is an essential aspect for analyzing quantitatively the functional 

coverage and structural bias of target families in the PDB, and thus ultimately for assessing the 

applicability of structure-based approaches to targeted chemical library design [26]. 

106



0

50

100

150

200

250

300

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Year

Po
pu

la
tio

n

 
Figure 2. Growth in the number of nuclear receptor ligand-binding domain structures deposited in 

the Protein Data Bank 

3 Nuclear receptor profiling 

Beyond having access to prior knowledge, a key aspect for being able to design compounds 

directed to the protein members of a particular family is the ability to detect that compounds 

possess the right features arranged in an optimal complementary manner to the protein cavities of 

interest by properly scoring them on the basis of some predefined metrics. In this respect, the 

process of scoring and ranking molecules in large chemical libraries according to their likelihood of 

having affinity for a certain target is generally referred to as virtual screening [27]. The term itself 

was coined in the late 1990s when computer-based methods reached sufficient maturity to offer an 

alternative to experimental HTS techniques. In spite of the initial reluctance, over the years 

pharmaceutical industry has learned to accept that virtual screening methods can indeed be an 

efficient complement to HTS to the point that they have undoubtedly become an integral part of 

today’s lead generation process [12]. It is worth emphasising again that, in contrast to technology-

driven HTS, virtual screening is a knowledge-driven approach that requires structural information 

either on bioactive ligands for the target of interest or on the target itself. Comparative studies have 

suggested that information about a target obtained from known bioactive ligands is as valuable as 

knowledge of the target structures for identifying novel bioactive scaffolds through virtual screening 

[28]. Therefore, the final choice for a ligand-based or target-based method will ultimately depend on 

the type and amount of information available without a priori having a large impact on performance. 

With virtual ligand screening well integrated in the drug discovery process, a wave of new 

strategies is currently emerging with the aim of exploiting both the ever increasing amount of 

information and computational power available to add a biological dimension to traditional single-

target virtual screening. In this respect, it has been shown recently that these strategies are 

capable of estimating the pharmacological profile of molecules on multiple targets and promise to 

have a strong influence in drug discovery as a means for detecting potential side effects of 

compounds due to off-target affinities earlier on during the optimisation process [29]. As mentioned 

above, some members of the nuclear receptor family may be considered relevant off-targets to 
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which it is important to avoid affinity to a safe degree. Therefore, not surprisingly, some ligand-

based and target-based approaches to nuclear receptor profiling have been recently described in 

the scientific literature. 

From a ligand-based viewpoint, it is worth understanding that the relative success of ligand-

based methods depends to a great extent on the use of biologically-relevant mathematical 

representations of molecules. In this respect, a novel set of molecular descriptors called SHED 

(SHannon Entropy Descriptors) was recently introduced [30]. SHED are derived from distributions 

of atom-centered feature pairs extracted directly from the topology of molecules stored in standard 

MDL’s SD file format. From a SD file, each atom in a molecule is first mapped to a Sybyl atom type. 

Subsequently, each atom type is assigned to one or more of four atom-centered features, namely, 

hydrophobic (H), aromatic (R), acceptor (A), and donor (D). For example, an aliphatic C.3 carbon 

will be assigned to a hydrophobic feature (H), whereas a protonated N.4h nitrogen will be assigned 

to both aromatic and donor features (R,D). Then, the shortest path length between atom-centered 

feature pairs is derived and its occurrence at different path lengths stored to create a feature-pair 

distribution. A maximum path length of 20 bonds was used. Feature pairs being at distances over 

20 bonds are accumulated in the last bin. An equivalent distribution is derived for each of the ten 

possible feature pairs resulting from all pair combinations of the four features used. In summary, 

each chemical structure is ultimately represented by a SHED profile composed of 10 real numbers 

reflecting the particular feature-pair distributions present in the molecule. 

Figure 3. Comparison between the heatmap representing all original annotations extracted from 
bibliographical sources and stored in NRacl (a) and the heatmap reflecting the minimum SHED Euclidean 

distances between the SHED profile of each molecule and the set of non-redundant SHED profiles annotated 
to each nuclear receptor (b). Color coding: (a) red is annotated and green not annotated; and (b) red reflects 
distance values close to 0.0 and as distances increase in magnitude they turn to orange, yellow, and finally 

green at a value of 1.2 and over. (Reproduced with permission of the American Chemical Society) 
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These SHED descriptors were recently used to profile in silico a chemical library of 2033 

molecules against 25 nuclear receptors [31]. As described above, this annotated chemical library to 

nuclear receptors (NRacl) was assembled internally in our laboratory from various medicinal 

chemistry sources [19]. The distribution of annotations contained at that stage in NRacl is visually 

illustrated in Figure 3a. In the heatmap shown, annotations of molecules (in rows) to nuclear 

receptors (in columns) are represented as red cells, meaning that the interaction of a particular 

molecule with a specific nuclear receptor has been positively reported and experimentally 

quantified in the literature with a pharmacological value below 10 μM. In contrast, green cells 

indicate current lack of information on the possibility of any interaction between a given molecule 

and a certain nuclear receptor. The extent of the green area denotes the existence of large 

information gaps, clearly one of the main limitations of dealing with annotated chemical libraries 

relying on data extracted directly from public sources of information. This is due to the fact that, 

because of limited time and resources, molecules are usually not screened systematically through 

a large panel of protein targets for the sake of obtaining the maximum amount of information 

possible but solely to the target of interest at that point in time. But even if they were screened 

through multiple targets, habitually only a limited amount of data is made available, since 

publishing large amounts of negative data is often regarded as not informative. These important, 

yet often overlooked, aspects lead to a situation of data incompleteness within the interaction 

matrix depicted as a heatmap in Figure 3a. 

The information on bioactive ligands contained in NRacl was then used to derive a ligand-

based model of each nuclear receptor based on the SHED descriptors defined above. Essentially, 

the scoring of each compound in a chemical library with respect to a given nuclear receptor is 

assigned to the minimum value of all Euclidean distances calculated between the SHED profile of 

the target compound and each one of the SHED profiles describing the molecules annotated to that 

particular nuclear receptor [31]. The result of applying this process to each one of the 2033 

molecules with non-redundant SHED profiles present in NRacl is given in Figure 3b, in which the 

order of the molecules is exactly the same as the one obtained from the original annotations shown 

in Figure 3a. In contrast to the binary heatmap illustrated in Figure 3a, in which red was annotated 

and green was not annotated, Figure 3b presents a color gradation between red and green 

reflecting the value of the minimum SHED Euclidean distance between the SHED profile of each 

molecule and the set of non-redundant SHED profiles annotated to each nuclear receptor. Taking 

the annotation threshold of 0.6 as the center of the color scale, distance values close to 0.0 are 

represented in red, those close to 0.6 are seen as light orange, and as distances increase in 

magnitude they turn to yellow and finally green at a value of 1.2 and over. There are two main 

aspects worth mentioning when comparing the heatmaps of Figures 3a and 3b. On one hand, it is 

remarkable to notice that the essential pattern observed when plotting the original annotations 

(Figure 3a) is preserved when molecules are processed through the ligand-based descriptor model 

of nuclear receptors (Figure 3b). This result reveals that the remaining molecules in NRacl are to a 

great extent representative of the molecule being processed after leaving that molecule out, 

something that can only be achieved if the annotated chemical space has been sufficiently 
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saturated with as many known bioactive molecules as possible. On the other hand, despite the 

clear discrimination between nuclear receptor groups, some correlation patterns between them 

emerge. The most apparent example is the clear correlation observed in Figure 3b between RARs 

(1B1, 1B2, and 1B3) and RXRs (2B1, 2B2, and 2B3), a result that provides an indication of the 

potential of this approach for understanding side effects through the identification of off-target 

affinities. 

In contrast, from a target-based viewpoint, it is also important to understand that the relative 

success of a target-based method will depend to a great extent on the availability of representative 

experimental crystal structures for all members of the protein family of interest, as the performance 

of these methods tend to degrade depending on whether a holo (ligand bound), an apo, or a model 

structure of the protein is available [32]. In this respect, the family of nuclear receptors is relatively 

well covered in terms of structural information available, with representative LBD structures for up 

to 37 receptors (Table I). Another equally important aspect in target-based methods is the docking 

procedure used to generate a binding hypothesis of the interaction between the ligand and the 

protein, which involves conformational sampling and scoring of small molecules into protein 

cavities [33,34]. 

Despite the decent amount of structural information available, applications of target-based 

methods to nuclear receptor profiling have been so far scarce. Perhaps the most comprehensive 

work in this respect is the recent systematic virtual screening of a library composed of 78 known 

active ligands against 19 different structures representative of 13 nuclear receptors [35]. Note that 

for some nuclear receptors, more than one crystal structure was considered to assess the 

dependency of the results on the particular conformation of the receptor. As mentioned, each one 

of the 78 ligands is a known binder to certain nuclear receptors (black bars in Figure 1 of reference 

[35]). This information is illustrated in Figure 4a (the structure-based counterpart of Figure 3a), in 

which annotations of molecules (in rows) to nuclear receptors (in columns) are represented as red 

cells, meaning that the interaction of that particular ligand with a specific nuclear receptor has been 

positively reported and experimentally quantified in the literature. Remarkably, Figure 4a provides 

a very crisp picture of the interaction of ligands to nuclear receptors, promiscuity being observed 

only to a limited degree between some of the steroid hormone receptors. However, interpretation of 

Figure 4a at this stage needs to be taken with the same level of caution highlighted previously 

when discussing Figure 3a, since large information gaps exist in these data (represented by green 

cells) due to the incompleteness of the experimental information. 
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Figure 4. Comparison between the heatmap representing all original annotations extracted from 

bibliographical sources on 78 known nuclear receptor binders (a) and the heatmap reflecting the annotation 
associated to a docking score being above the score threshold to select 1% of a 5000 random molecule 
database (b). Color coding: red is annotated and green not annotated. (Information derived from J. Med. 

Chem. 2003, 46, 3045-3059). 

When this set of 78 nuclear receptor ligands was put into a library of 5000 random compounds 

and scored, the sensitivity of the method for distinguishing between true binders and non-binders 

could be assessed. In order to perform an analysis comparative to the one presented above when 

using a ligand-based method, an annotation criterion was selected. Accordingly, a ligand was 

considered annotated to a given nuclear receptor if its docking score was above the score 

threshold to select 1% of a 5000 random compound database (the horizontal solid black line in 

Figure 1 of reference [35]). The resulting heatmap is depicted in Figure 4b. In essence, there are 

two main aspects worth mentioning when comparing the heatmaps of Figures 4a and 4b. On one 

hand, it is remarkable how the target-based method is able to identify the correct nuclear receptor 

target for the majority of true binders. On the other hand, in the same lines as observed previously 

in Figure 3b for a ligand-based method, some stronger correlation patterns between nuclear 

receptors emerge as a consequence of the extend of the promiscuity profiles predicted. For 

example, the relatively limited signal shared between steroid hormone receptors in Figure 4a is 

transformed in Figure 4b in a strong promiscuity signal among them. But again, the conclusions 

extracted from Figure 4b need to be taken with caution, since a full affinity matrix between the 78 

ligands and the 13 receptors is not available. 
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In summary, examples have been provided in which both ligand-based and target-based 

methods performed decently when profiling compounds against the family of nuclear receptors. 

Therefore, it is reasonable to say that these methodologies have reached sufficient level of maturity 

to be applied sensibly for designing the next generation of chemical libraries directed to entire 

protein families. 

4 New trends in designing targeted libraries 

Despite its recognised relevance, it is remarkable to realise that very few reports document 

recent efforts towards designing chemical libraries particularly directed to the family of nuclear 

receptors. However, analyses on the characteristics of nuclear receptor ligands have revealed 

valuable information on the specific molecular properties and topological substructures these 

ligands possess compared to other family-directed sets of ligands. For example, in terms of 

molecular descriptors, nuclear receptor drugs seem to be characterised by significantly high mean 

clogP values (4.1) and low mean counts of oxygen and nitrogen atoms (3.8) compared to drugs 

designed for primary targets belonging to other protein families [36]. Similar trends were also found 

when analysing sets of hit-to-lead ligand pairs instead of drugs [37]. In this case, a mean clogP 

value of 5.0 was found for nuclear receptor ligands, the largest mean clogP value among all 

compound entries directed to targets belonging to a list of eleven protein families. 

To investigate this aspect further, we took all ligands annotated to nuclear receptors in 

Wombat having an affinity value (pKi, pIC50, or pEC50) larger that 7.0. This resulted in a list of 

2929 molecules containing 3839 annotations to 24 nuclear receptors. Figure 5 illustrates the 

distribution of this set of 2929 nuclear receptor bioactive ligands (white circles), together with a set 

of 135 nuclear receptor drugs (black squares), in the plane defined by two molecular descriptors 

related to size and hydrophobicity such as molecular weight (MW) and clogP values. It was 

observed that 65.4% of all bioactive ligands fail to meet the Lipinski criteria for both MW and clogP 

values and thus, under the rule-of-five, they would receive an alert as having poor oral 

bioavailability. One could then conclude that high-affinity ligands for nuclear receptors are 

intrinsically handicapped for oral bioavailability relative to high-affinity ligands for other protein 

families. In fact, one could delineate and oval-shaped region within the MW vs clogP space that 

would contain the vast majority of both nuclear receptor bioactive ligands and drugs. The south-

west of this oval region appears to be populated by the smaller more compact steroid-like drugs, 

such as the estrogen receptor agonists estradiol and genistein, whereas the north-east side is 

occupied by larger hydrophobic compounds, such as the estrogen receptor antagonist raloxifene 

and the PPAR modulator telmisartan. Outside this region, we find a set of outliers including the 

iodine substituted thyroid hormone receptor drugs (levothyroxine and liothyronine), a variety of 

glucocorticoid receptor modulators (such as betamethasone dipropionate, fluticasone propionate, 

dexamethasone, and prednisolone), and some retinoic-acid receptor ligands (such as isotretinoin 

and adapalene). Therefore, this region could certainly be used as a fast molecular descriptor filter 

when designing chemical libraries directed to the nuclear receptor family. 
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Figure 5. Distribution of a set of 2929 nuclear receptor bioactive ligands (white circles) and 135 nuclear 
receptor drugs (black squares) in the plane defined by the molecular weight (MW) and clogP descriptors. The 

dashed region defines the nuclear receptor space. 

Besides ranges of molecular descriptor values, another strategy often applied for biasing 

chemical libraries towards particular protein families is to generate and synthesise compounds 

around so-called privileged substructures [38]. However, the results obtained in a recent 

substructure-class analysis of ligand sets from five target families, namely, G protein-coupled 

receptors (GPCRs), nuclear receptors, ligand-gated ion channels, serine proteases, and protein 

kinases put a question mark on the actual existence of target-family-privileged substructures [39]. 

For nuclear receptors in particular, the study revealed that nuclear receptor substructure classes 

were present in 40% of a total of 21620 GPCR ligands, 30% of a total of 3792 ion channel ligands, 

17% of a set of 1079 kinase ligands, and 15% of a set of 3015 protease ligands but, most 

interestingly, 45% of a set of 10000 random ligands. Altogether, these results are an indication that 

the nuclear receptor substructure classes generated are in fact non-privileged substructure classes 

for the nuclear receptor family and thus, its use for designing targeted chemical libraries is 

questionable. 
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Table 2. List of the 10 most promiscuous scaffolds in a set of nuclear receptor bioactive ligands (NRactive) 

and 10 most populated scaffolds in a set of drugs and drug candidates (Drugs) and in the open NCI database 
(NCI). Numbers refer to the population of molecules containing each scaffold in the respective sets. In 

parenthesis, the level of nuclear receptor promiscuity associated to scaffolds in the NRactive set. 

In order to investigate this further, we performed a comparison of the most populated scaffolds 

in three sets of ligands, namely, the same set of 2929 nuclear receptor bioactive ligands used 

above (NRactive set), a set of 2900 drugs and drug candidates (Drug set), and the “open NCI 

database” composed of 250251 compounds (NCI set). The lists of 10 most promiscuous (for 

NRactive) and 10 most populated (for Drugs and NCI) scaffolds are collected in Table 2, the 

definition of scaffold in this work being equivalent to that of atomic framework given earlier [40]. As 

can be observed, phenyl emerges as the most promiscuous scaffold among nuclear receptors, with 

60 compounds showing high-affinity for 8 nuclear receptors from 5 different nuclear receptor 

groups (1B1, 1B3, 1C1, 1H3, 2B1, 2B2, 2B3, 3C4). Comparatively, phenyl is also by far the most 

populated scaffold in both Drugs and NCI sets. The second most promiscuous scaffold among 

nuclear receptors is a biphenyl core. It is present in 43 compounds having high-affinity for 6 nuclear 

receptors from 4 different nuclear receptor groups (1B2, 2B1, 2B2, 2B3, 3A2, 3C4). A recent study 

suggested that high-throughput screening libraries enriched with biphenyl-containing compounds 

can be expected to have increased chances of yielding high-affinity ligands for proteins [41]. The 
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results presented here for nuclear receptors, together with the fact that the biphenyl substructure is 

found also quite frequently in GPCR ligands, would be supportive of the conclusions reached in 

that study. Going further down the list of most promiscuous scaffolds present in the NRactive set 

we notice that the remaining scaffolds have promiscuities below 5 and that, for the majority of these 

scaffolds, their associated nuclear receptors belong to the group of glucocorticoid-like receptors. 

Altogether, this scaffold promiscuity analysis leads to two main conclusions. On one hand, it is 

remarkable to realize that besides phenyl and biphenyl no other scaffold could be identified that 

could cover vastly this apparently well conserved protein family, in terms of tertiary structure. In the 

lines of a recent study [39], the true existence of privileged scaffolds for the entire nuclear receptor 

family remains thus unclear and, consequently, the use of nuclear receptor substructure classes for 

targeted chemical library design is also dubious. On the other hand, also in agreement with a 

previous work [41], the present results would indicate that enriching chemical libraries with 

compounds containing a variety of substituent decorations around the phenyl and biphenyl cores 

could be a strategy worth considering to deorphanise nuclear receptors. However, it must be 

stressed at this stage that these conclusions have been derived from information contained in 

annotated chemical libraries. As highlighted earlier [19], due to limited time and resources, 

molecules are usually not screened systematically against the complete panel of proteins forming a 

family for the sake of generating the maximum amount of information but solely to the target(s) of 

interest, leading to a data completeness issue. Should the molecules contained in the NRactive set 

be screened against the entire nuclear receptor family, the existence of privileged scaffolds, 

currently hidden because of lack of information, could potentially be revealed. 

Lately, we have seen a new trend in designing targeted chemical libraries in which not only the 

descriptor profiles and the presence of particular substructures observed in known bioactive 

compounds is considered but also the concrete potential coverage of the protein family by the 

molecules in the chemical library is assessed [31]. This represents adding a biological dimension to 

the process and that both chemical and biological diversity are included when designing the 

composition of a targeted chemical library. Using a ligand-based approach to nuclear receptor 

profiling, Figure 3b provides an example of a chemical library covering fully all nuclear receptors 

under consideration. However, it reveals also that the chemical library is clearly biased with 

compounds potentially being active to the estrogen receptors and thus it is far from being optimally 

diverse in terms of projected nuclear receptor pharmacology. Addressing protein family coverage 

and bias should become standard procedure when designing targeted chemical libraries. 

Finally, a new wave of computationally efficient in silico pharmacology methods promise to 

have the ability to profile large chemical libraries against hundreds of protein targets in a 

reasonably short period of time. These activities may lead to the identification of potential protein 

family off-targets, defined as those protein targets against which compounds designed for a 

particular protein family may have some residual affinity. We have profiled the NRacl chemical 

library used to generate Figure 3b against a panel of 674 protein targets covering 411 enzymes, 
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168 GPCRs, 48 ion channels, 32 nuclear receptors, and 15 transporters. Of those, only 6 targets 

contained more than 100 annotations from compounds annotated also to any nuclear receptor and 

only 23 targets had more than 50 annotations. The corresponding heatmap is illustrated in Figure 
6, in which the family off-target signals (on the left) can be compared against the nuclear receptor 

profile (on the right) equivalent to Figure 3b. In rank #2 of the off-target list we find COX-2. 

Interestingly, using a cavity site-based similarity searching method, a relationship between the 

PPAR-gamma agonist binding pocket and the COX-2 binding site was recently identified [42]. Also, 

in rank #14 of the off-target list we can locate angiotensin II type 1-receptor (ATR1). Again, 

evidence could be found in the literature of clear cross-pharmacology between ATR1 antagonists 

and activation of PPARgamma [43]. Unfortunately, we could not find evidence in the literature 

relating directly the other off-target names in the list to nuclear receptors. Further investigation is 

underway in our laboratory. 

 
Figure 6. Heatmap reflecting the minimum SHED Euclidean distance between SHED profile of each molecule 
and the set of non-redundant SHED profiles annotated to each one of the 26 nuclear receptor targets and the 
23 off-targets identified. Color coding: red reflects distance values close to 0.0 and as distances increase in 

magnitude they turn to orange, yellow, and finally green at a value of 0.6 and over 

5 Conclusions and Outlook 

Nuclear receptors are a protein family of utmost importance for pharmaceutical research and 

thus chemical libraries directed to probe this family exhaustively are required. Lately, a variety of 

strategies have been applied to designing nuclear receptor chemical libraries. In view of the fresh 

perspectives novel in silico pharmacology methods are offering, it is envisaged that properly 

addressing coverage and bias during the design process together with the ability to identify 

NR off-targets NR targets 
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potential protein family off-targets would lead to a new generation of high-content chemical libraries 

directed to nuclear receptors composed of small molecules exposing a rich diversity of 

therapeutically-relevant pharmacological profiles. However, recent studies are highlighting the need 

to go beyond the target level when designing chemical libraries and incorporate information at the 

pathway level [44]. The relative importance of achieving target selectivity when the target has an 

intrinsic promiscuity at the pathway level may change the way drug discovery is perceived and 

smoothly shift from target-focused to systems-oriented research. 
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Summary 

The design of chemical libraries directed to target classes is an activity that requires the 

availability of ligand pharmacological data and/or protein structural data. Based on the knowledge 

derived from these data, chemical libraries directed mainly to G protein-coupled receptors, kinases, 

proteases, and nuclear receptors have been assembled. However, current design strategies widely 

overlook assessing the potential ability of the compounds contained in a focused library to provide 

uniform ample coverage of the protein family they intend to target. Here we discuss the use of in 

silico target profiling methods as a means to estimate the actual scope of chemical libraries to 

probe entire protein families and illustrate its applicability in optimizing the composition of 

compound sets to achieve maximum coverage of the family with minimum bias to particular targets. 
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Introduction 

The implementation of high-throughput screening (HTS) within the drug discovery process has 

increased the traditional capacity for testing compounds to levels sufficient to expect that this 

technological breakthrough would develop into an endless source of new chemical entities for the 

pharmaceutical industry. Within this scenario, the size of the screening compound library became 

one of the key aspects for having a successful HTS campaign. Accordingly, wide compound 

synthesis and acquisition activities were initiated, mainly aiming at compiling a large, maximally 

diverse, corporate screening collection [1]. 

Unfortunately, this early technology-driven diversity-focussed HTS phase showed weaker 

performance than originally anticipated. In some cases, the progress of hits was limited, as many 

screening collections were assembled with compounds having poor drug-likeness and the 

presence of reactive functionalities. In other cases, the number of hits itself was low, as chemical 

areas relevant for the targets being screened were not properly covered. It then became clear that 

augmenting the capacity for testing alone was not sufficient for delivering high-quality leads and 

that more effort was required to carefully balance the composition of diversity-oriented libraries with 

drug-like non-reactive compounds containing features compatible with the nature of the targets or 

target classes of corporate interest [2]. 

In recent years, drug discovery research has been organized gradually around target classes 

to maximize the efficiency of internal chemistry and biology resources. The adoption of this new 

chemogenomics paradigm has emphasized more strongly the need for assembling chemical 

libraries directed to entire protein families [3]. These targeted libraries are expected to contain a 

diverse set of small molecules, which, as a whole, have a potential ability to probe as many protein 

members of the family as possible. Therefore, an optimal design of targeted libraries should take 

into consideration both chemical and target diversity. However, while diversity of chemical space 

has been investigated thoroughly and is now commonly incorporated in current library designs, 

diversity within the target space has yet to be properly addressed [4]. In this respect, a wave of 

recently developed in silico target profiling methods is offering a means for assessing the degree of 

target diversity in chemical libraries, an aspect that is expected to influence the design of the next 

generation of targeted libraries [5]. 

Current design of targeted chemical libraries 

The design of targeted chemical libraries is an activity that requires the availability of prior 

knowledge for the different members of the target family of interest. Recent efforts in collecting, 

storing, and organizing data on the pharmacology of ligands and on the structure of proteins are 

facilitating the generation of knowledge on target classes [6,7]. Ultimately, the type and amount of 

information available for a given protein family will determine whether ligand-based and/or 

structure-based approaches can be applied when designing targeted libraries. Ideally, enough 
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pharmacological and structural data on the protein family should be available to allow both 

methods to be used in a complementary manner. However, despite the fact that the number of 

protein structures being solved and made available in the Protein Data Bank continues to increase 

at a remarkable pace, the application of structure-based methods to targeted chemical library 

design has often been limited by the relatively low functional coverage by experimentally-

determined structures within protein families [8]. In addition, this wealth of structural information, 

with nearly 50,000 entries being currently accessible, is unevenly distributed among the protein 

members of the main target classes of therapeutic interest. Thus, while enzymes and nuclear 

receptors have at present a functional coverage of 37% and 51%, respectively, G protein-coupled 

receptors (GPCRs) are almost devoid of structural information [9]. To complement current low 

coverage levels by structures within certain target classes, homology modelling techniques offer a 

matured means to construct computationally-derived structural models [10]. Accordingly, the 

increase in both numbers and coverage is contributing to make structure-based methods 

progressively more applicable to targeted compound selection and library design, particularly after 

the reporting of the first X-ray crystal structure of a human aminergic GPCR [11]. 

Ligand-based methods face, in contrast, a completely different situation. The vast amount of 

pharmacological data available for molecules on numerous targets makes them applicable to 

almost every protein family of therapeutic relevance. One way these data can be exploited is in 

extracting knowledge about the property differences observed in bioactive molecules depending on 

the protein family being targeted [12,13]. For example, marketed oral drugs targeting ion channels 

have been found to be significantly smaller than those targeting proteases, reflected by mean 

molecular weight values of 306 and 431, respectively, whereas drugs targeting nuclear receptors 

appear to be significantly more hydrophobic than drugs targeting proteases, with mean counts of 

oxygen and nitrogen atoms of 3.8 and 7.2, respectively [12]. Similar trends were also found when 

analysing sets of hit-to-lead ligand pairs instead of drugs [13]. These trends can now be used as 

simple descriptor-based guidelines to assess or bias the composition of chemical libraries designed 

to target a given protein family. 

Beyond mere molecular property distributions, other ligand-based methods, in combination 

with a variety of classification schemes, such as recursive partitioning, Bayesian statistics, neural 

networks or machine-learning methods, have been used to investigate different types of two- and 

three-dimensional molecular descriptors, features, substructures and pharmacophores for the 

selection of compounds similar to a set of bioactive reference ligands associated with members of 

a certain protein target class [14]. Among those, methods aimed at identifying chemical moieties 

commonly appearing in bioactive ligands have attracted particular attention due to the ease of 

translation of these privileged structural motifs into compound-library synthesis. However, despite 

the many evidences of chemical substructures occurring frequently in ligands bioactive across a 

diverse panel of proteins [15-18], the true existence of target-family selective privileged 

substructures continues to be a matter of debate [19]. 
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Current design of chemical libraries directed to target classes is focused mainly on GPCRs, 

kinases, and nuclear receptors [20]. Various strategies have been applied to designing GPCR 

libraries [21-24], mostly based on ligand information captured in the form of molecular descriptors, 

pharmacophores, and substructures extracted from a reference set of active compounds among 

different receptors [25-27]. In contrast, the significant amount of structural information presently 

available for kinases [28,29] makes structure-based approaches to compound selection and library 

design [30,31] as applicable to this protein family as ligand-based methods [31-35]. A similar 

situation is encountered for nuclear receptors, with structure-based and ligand-based information 

being equally exploited [36,37]. Remarkably, none of the strategies presented above addresses the 

need to asses the degree of coverage and bias across the protein family offered by the final 

selection of compounds. 

Novel approaches to in silico target profiling 

Several ligand-based and structure-based approaches to estimate the profile of molecules 

across a large number of targets have emerged lately [38]. Among those, ligand-based methods 

have received far more attention than structure-based methods due to their wide applicability to all 

target classes, but also to their high computational efficiency. All ligand-based target profiling 

methods developed [39-45] share three common requirements, namely, the availability of a 

reference database of molecules bioactive with respect to known protein targets, the choice of 

mathematical descriptors representing the structural features of molecules, and the use of a metric 

to evaluate the similarity between a target-orphan molecule and all reference target-annotated 

molecules that will ultimately be used as a score to assign target annotations to molecules. Of 

mention is the fact that, despite the differences in reference databases, molecular descriptors, and 

similarity metrics, all methods perform comparably in forecasting the correct target for ligands [40-

43]. 

Structure-based target profiling methods have gained interest lately as a result of the 

considerable advancements made in the functional coverage by the structures of proteins within 

specific families. Accordingly, it is now possible to generate pharmacophore models from protein 

cavities and use them to profile compounds against multiple proteins [46], dock a single molecule 

against thousands of binding sites extracted from the Protein Data Bank [47] and even take 

advantage of a public web server that allows for the automatic screening of small molecules over a 

target database of 698 protein structures covering 15 therapeutic areas [48]. At a protein family 

level, structure-based target profiling has been mainly applied to nuclear receptors and kinases, but 

also to GPCRs. For nuclear receptors, systematic virtual screening of a library consisting of 5000 

random compounds and 78 known active ligands against 19 different protein structures 

representative of 10 members of this family revealed that it is possible to identify the correct 

nuclear receptor for a particular active ligand [36]. For kinases, rapid computation of the relative 

affinity of inhibitors to individual members of this family showed that, on a set of five known kinase 

inhibitors, the approach is able to identify the correct native kinase target as well as reproduce the 
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experimental trends in binding affinities [49]. Finally, for GPCRs, it is shown that exploring the 

boundaries of structure-based methods through protein structure modelling offers, in the lack of 

experimentally determined structural data, a decent means for estimating the selectivity profile of 

compounds over a panel of 277 receptors [50]. Given the increasing applicability and overall 

performance of these in silico target profiling methods, projecting the expected target diversity of a 

compound collection is just one step away. 

Assessing target diversity 

The ability to estimate the pharmacological profile of compounds over the members of a given 

protein family now offers the possibility to account for target diversity when designing chemical 

libraries directed to protein families. Here, target diversity will be assessed in terms of the degree of 

coverage and bias within the chemical and protein spaces. To illustrate the different concepts, the 

estimated ligand-target interaction matrix of a chemical library composed of 2,033 compounds over 

a set of 26 nuclear receptors is presented in Figure 1 [43]. The colour gradation used in the 

heatmap reflects the Euclidean distance of SHED descriptors [51] between each compound in the 

library (in rows) and the closest reference compound annotated as bioactive to a given target (in 

columns), with values close to 0.0 being red and turning then into orange, yellow, and green as 

values approach a predefined distance threshold [43]. 

 
Figure 1. Chemical and target coverage (C.cov and T.cov), bias (C.bias and T.bias) and promiscuity 

(Prom10) to derive an overall diversity Score from an estimated ligand-target interaction matrix (see text for 
details) 
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The expected target coverage and bias by the compounds in the library is extracted from the 

distribution of the number of compounds annotated to each target, depicted on top of the heatmap. 

Correspondingly, the expected chemical coverage and bias by the targets of the family is derived 

from the distribution of the number of targets annotated to each molecule, depicted on the right 

side of the heatmap. Coverage indicates the proportion of targets/ligands with at least one 

ligand/target annotation (T.cov/C.cov). This particular chemical library offers full target coverage 

(T.cov = 1.0000) and acceptably high chemical coverage (C.cov = 0.7088), with only 29.12% of the 

compounds not being annotated to any nuclear receptor under the approach used. In contrast, bias 

reflects the deviation from uniformity of the distribution of ligand annotations to targets (T.bias) and 

target annotations to ligands (C.bias), calculated using Shannon entropy [43,51]. As can be 

observed, this is not a particularly biased library, with target bias (T.bias = 0.3989) being higher 

than chemical bias (C.bias = 0.1428) as a consequence of the large number of ligand annotations 

condensed in two individual nuclear receptors. An additional term provides a measure of the 

average degree of target promiscuity expected from the compounds in the library. In particular, the 

promiscuity parameter used here focuses on the ten closest annotations to targets (Prom10). 

Prom10 is bounded between 0 and 1, with values close to 0 reflecting the limit situation of all 

compounds being selective and as values tend to 1 the selection of compounds becomes 

systematically more populated with promiscuous compounds over at least 10 targets. This 

promiscuity parameter is conceptually equivalent to the Gini coefficient suggested recently to 

assess the selectivity of kinase inhibitors against a panel of kinases [52], the difference lying in the 

use of the cumulative fraction of total similarity instead of the cumulative fraction of total inhibition. 

On this basis, an optimal chemical library design to target an entire protein family should exhibit 

maximum target and chemical coverage, minimum target and chemical bias, and maximum mean 

promiscuity. Accordingly, a final library score considering both chemical and target diversity within 

the ligand-target interaction matrix could take the following form: 

Score = (T.cov+C.cov+ (1-T.bias)+(1-C.bias)+Prom10) / 5. 

To put the concepts to work in a real case scenario of compound selection from a particular 

library, we took two commercially available, yet publicly accessible, chemical libraries designed to 

target GPCRs [53] and kinases [54] containing 19,533 and 31,882 compounds, respectively. The 

aim of the exercise was to select an optimal subset of those libraries, containing 10% of the original 

compounds, according to the diversity score defined above. In addition to the five parameters 

included in the diversity score, three additional constraints were imposed: first, all compounds 

containing reactive functionalities will be discarded directly [55]; second, to ensure novelty with 

respect to prior knowledge of bioactive ligands, compounds selected should not contain a scaffold 

present in any of the reference bioactive ligands; and third, to avoid potential internal redundancy 

from having atom variations with the exact same pharmacophoric features, all pairwise Euclidean 

distances between any two selected compounds should be larger than 0.05. The results of this 

exercise are presented in Figure 2. 
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Figure 2. Examples of compound selections targeted to GPCRs and kinases with optimal coverage, bias, and 

promiscuity 

Using ligand-based models of proteins [43], the original targeted chemical libraries were 

profiled against 199 GPCRs and 194 kinases, respectively. Starting from an initial set of random 

selections, a genetic algorithm can be then used to optimize the composition of the selections 

using the diversity score as fitness function. Interestingly, similar coverage values are obtained for 

the two selections: on one hand, their chemical composition covers approximately two thirds of all 

respective protein targets considered and, on the other hand, they both exhibit full chemical 

coverage, as all compounds contained in the final selections have at least one target annotation. 

Also, comparable chemical biases are obtained in both libraries, the value for the GPCR subset 

being slightly higher as a consequence of the level of promiscuity observed among the aminergic 

GPCRs (top-left region of the heatmap). In contrast, target bias is clearly higher in the kinase 

subset than in the GPCR selection, reflecting the situation that a small number of kinases 

concentrates the majority of the compound annotations compared to the more even distribution 

observed for GPCRs. Finally, the difference in the mean promiscuity value just quantifies the visual 

perception that the GPCR selection is clearly more promiscuous than the kinase selection. Overall, 

the higher diversity score obtained for the GPCR subset compared to the kinase subset makes in 

principle the former selection more suitable than the latter to probe their corresponding protein 

families. 

Conclusions 

Regardless of the strategy used for assembling targeted chemical libraries, it is still 

uncommon to attempt providing an estimate of the actual coverage and bias that a given selection 

of compounds is expected to have, as a whole, when tested against an entire target class. This 

largely overlooked question is crucial to be able to assess objectively the potential scope of a given 
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chemical library to probe the protein family that was originally intended to target. In this respect, in 

silico target profiling methods provide a means to analyse both chemical and target diversity in 

terms of the projected pharmacological promiscuity of compound libraries. 

As the traditional one drug – one target paradigm is slowly loosing acceptance, modern drug 

discovery is increasingly contemplating the adoption of multitarget strategies for developing the 

next generation of safer more efficient drugs. Within this context, collecting chemical libraries 

designed to cover fully and uniformly a panel of proteins is likely to have a strong impact in the 

identification of novel hits with customised pharmacological profiles for both drugged and orphan 

targets. Assessment of coverage and bias in chemical libraries targeting multiple proteins may then 

become an aspect of utmost importance. 
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In this chapter, the methodology presented previously is used to build and validate ligand-

based models for 684 targets. These models are used in the in silico target profiling of 767 drugs 

and the results analysed in to detect possible cross-pharmacologies among different target 

classes. A recent work by Yildirim et al. [140] highlighted the network behaviour of the relationships 

among drugs and protein targets, rather than the one drug – one target expected relationship. This 

conclusion being highly relevant, we here discuss the effect of data completeness in the following 

conclusions extracted on the nature of these networks. 
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Introduction 

In recent years, the capacity for synthesising and testing compounds has increased 

dramatically and screening campaigns of thousands of compounds against a single target are 

nowadays realistic, both within industrial and academic settings [1]. The total amount of unique 

compounds available for purchase from chemical providers is estimated at present to be close to 

eight million [2]. Therefore, with current screening capacities, experimental testing of the entire 

chemical space synthesised today against a particular target would still be feasible. However, 

current drug discovery is moving away from the traditional one drug – one target paradigm and 

focusing more towards identifying molecules that modulate multiple targets simultaneously [3]. 

Adding a biological dimension to high-throughput screening means that, even with the impressive 

technological advances made, current capacities are no longer sufficient to tackle the experimental 

testing of thousands of compounds against hundreds of targets. 

Within this new scenario, in silico target profiling methods are emerging as efficient 

alternatives to the currently unaffordable high-throughput in vitro target profiling of compounds [4]. 

All these methods capitalize on the vast amount of prior knowledge available for many targets of 

therapeutic relevance, either by exploiting all bioactive ligands stored in annotated chemical 

libraries [5] or by using experimentally-determined crystal structures deposited in the Protein Data 

Bank [6]. Among some of the recently reported ligand-based methods, Nidhi et al. [7] exploited the 

contents of the WOMBAT annotated chemical library [8] to derive a multiple-category Laplacian-

modified naïve Bayesian model that predicted the protein targets for all compounds in the MDDR 

database with a success rate of 77%, and Mestres et al. [9] used an in-house onstructed library of 

2033 molecules annotated to 25 nuclear receptors [10] to derive a similarity-based model that was 

able to recover the original annotations with a success rate of 71% and provide estimates of 

potential off-target affinities to nuclear receptors for several drugs. Among the most recent target-

based methods, Rockey and Elcock [11] reported a method for rapidly computing the relative 

affinity of inhibitors to individual members of the kinase family, Kellenberger et al. [12] created a 

database of 6415 binding sites (sc-PDB) that was used to identify the native target of four unrelated 

ligands among the top 1% of scored binding sites, and Li et al. [13] have recently created a web 

server for inverse docking that allows for automatically screen small molecules over a panel of 698 

protein structures covering 15 therapeutic areas. All these reports provide ample evidence for the 

possibilities of in silico target profiling methods in multitarget drug discovery. 

One of the most promising possibilities is in the area of finding new therapeutic uses for 

approved drugs, an activity often referred to as drug repurposing [14]. Drugs have been 

traditionally designed to interact with a primary target known to be relevant to the particular disease 

of corporate interest. During the drug optimisation process, very limited scope was often given to 

address properly the issue of selectivity, by considering only a handful of additional targets 

phylogenetically related to the primary target. The ability of in silico target profiling methods to 

identify new targets for old drugs, as demonstrated recently by Keiser et al. [15], has direct 

136



implications for using immediately off-patent products in clinical trials but also for alerting of 

potential secondary effects due to residual affinities for undesired targets [16]. Accordingly, the aim 

of this work is to probe the chemogenomic space of drugs by profiling in silico a set of 767 drugs 

against a panel of 684 targets representing all therapeutically-relevant protein families. 

Ligand-based prior knowledge 

As stated above, in silico target profiling methods rely on the availability of prior knowledge on 

bioactive ligands and protein structures. In this contribution, focus will be given to a ligand-based 

method that currently exploits pharmacological data stored in three different annotated chemical 

libraries. The main source of information is the WOMBAT database [8], currently containing 

163,102 unique molecules with activity data (125,113 IC50 values and 91,693 Ki values) on 677 

protein targets collected from medicinal chemistry journals over the last 30 years. WOMBAT is 

complemented with BindingDB [17], a public database of 12,394 small molecules with activity data 

(24,772 experimentally determined binding affinities) for 110 protein targets. And these two 

databases are finally completed with an in-house constructed chemical library composed of 2,718 

ligands annotated to 27 nuclear receptors [10]. Integrating all the data from these three different 

sources and filtering out all compounds having an activity value (Ki, IC50, and/or EC50) above 10 μM 

resulted in a total number of 109,766 unique compounds annotated to 684 targets. e 

Class Number of 
Targets 

Number of 
Ligands 

 Proteases (pEC) 74 16,263 

 Kinases (kEC) 45 9,432 

 Cytochrome P450 (cEC) 24 1,199 

 Other Enzymes (oEC) 268 27,392 

 Aminergic GPCRs (aGR) 40 14,390 

 Peptidic GPCRs (pGR) 68 17,965 

 Other GPCRs (oGR) 60 10,505 

 Ion Channels (IC) 48 5,579 

 Nuclear Receptors (NR) 30 4,825 

 Transporters (TC) 15 3,067 

 Integrins (IN) 8 2,087 

 Catalytic Receptors (CR) 4 1,232 
 

Table 1. The list of 12 target classes and their respective target size and ligand coverag 

Table 1 presents the distribution of these 684 targets among 12 different target classes 

contained within 7 protein families, namely, enzymes, G protein-coupled receptors (GPCRs), ion 

channels, nuclear receptors, transporters, integrins, and catalytic receptors. The chemical space 
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covering the family of enzymes contains 53,702 small molecules annotated to 411 enzymes that, in 

turn, are subdivided into 4 target classes, namely, proteases, kinases, cytochromes, and the rest, 

to reflect some of the enzyme subfamilies of main therapeutic relevance. In terms of chemical 

space coverage, GPCRs come next with 42,064 ligands annotated to 168 receptors which, in turn, 

are subdivided into 3 target classes, namely, aminergic, peptidic, and the rest, to reflect again 

some of the therapeutically most relevant GPCR subfamilies. The rest of the protein families are 

comparably smaller, both in terms of number of targets and chemical coverage. In essence, this 

will be the body of prior knowledge that will be subsequently used to derive the ligand-based 

protein models necessary to perform an in silico target profiling.  

Since the ability to extract knowledge from annotated chemical libraries will be highly 

determined by the way chemical and biological data are stored, special emphasis was put in 

storing both chemical structures and protein targets using appropriate unique identifiers and 

classification schemes [18]. For chemical structures, we used an in-house proposed Chemical 

Structure Code (CSC) purely based on topological features of molecules. Accordingly, each 

molecule was identified with a unique hierarchical five-level CSC [9]. The first and second levels 

are integers specifying, respectively, the number of rings in the largest ring system present in the 

molecule and the total number of ring systems in the molecule. The third, fourth, and fifth levels are 

a unique seven-character hash codes for the molecular framework, scaffold, and the complete 

molecular structure, respectively. For proteins, standard classification schemes were adopted 

directly when available or derived instead following the phylogenetic relationships among the 

members of the different protein families. For example, the Enzyme Commission number [19] was 

used for enzymes and the proposal from the Nuclear Receptor Nomenclature Committee [20] was 

used for nuclear receptors, whereas the classification scheme for GPCRs had to be derived from 

its internal phylogeny [21]. 

Ligand-based protein models 

The set of bioactive ligands collected for a given target provides in fact a complementary 

description of the target from a ligand viewpoint. In order to be able to process this information 

efficiently, molecular structures need to be encoded using some sort of mathematical descriptors. 

In this respect, we use a novel set of low-dimension molecular descriptors called SHED [22]. SHED 

are derived from distributions of atom-centred feature pairs extracted directly from the topology of 

molecules. Initially, each atom in a molecule is mapped to a Sybyl atom type and then assigned to 

one or more of four atom-centred features, namely, hydrophobic (H), aromatic (R), acceptor (A), 

and donor (D). For example, an aliphatic C.3 carbon will be assigned to a hydrophobic feature (H), 

whereas a protonated N.4h nitrogen will be assigned to both aromatic and donor features (R,D). 

Then, the shortest path length between atom-centred feature pairs is derived and its occurrence at 

different path lengths stored to create a feature-pair distribution. At this stage, Shannon entropies 

are used to quantify the degrees of occupancy and uniformity of each one of the ten distributions 

resulting from all pair combinations of the four features. In the end, each chemical structure is 
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ultimately represented by a vector, referred to as its SHED profile, composed of 10 real numbers 

reflecting the particular feature-pair distributions present in the molecule. The ensemble of SHED 

profiles representing all molecules annotated to each particular target constitutes a mathematical 

description of the target from a ligand perspective. 

Ligand-based descriptor models were derived for each one of the 684 targets with information 

on bioactive ligands. Prior to validating the sensitivity and specificity of the models, the criteria 

followed for annotating a query molecule to a given target needs to be defined. Therefore, the first 

step is to calculate the Euclidean distance between the SHED profile of the query molecule and all 

the target-related SHED profiles. The probability of a compound being active against that target is 

assumed to be related to the degree of similarity relative to the set of known bioactive ligands. 

Accordingly, the scoring of each compound in a chemical library with respect to a given target is 

assigned to the minimum value of all Euclidean distances. In the context of similarity-based virtual 

screening, the approach of combining the scores over multiple bioactive reference molecules has 

been recently referred to as group fusion and proven to give significantly superior results to using 

data fusion strategies on single reference molecules for a wide variety of protein targets [23]. If the 

minimum Euclidean distance is below a certain value, the molecule is annotated to that target. In 

this work, following a previous validation analysis [9], the annotation threshold was set to a 

minimum Euclidean distance value of 0.6. This strategy follows on recent studies suggesting that 

similarity to molecules in the reference set is a good criteria for prediction accuracy of external test 

sets [24]. 

  pEC kEC cEC oEC aGR pGR oGR NR IC TC IN CR 

pEC 70.0% 7,4% 1,8% 12,5% 1,8% 7,0% 6,6% 1,9% 2,4% 0,5% 0,9% 1,0% 

kEC 10,1% 66,9% 3,9% 23,2% 6,9% 9,1% 11,9% 5,4% 7,7% 2,7% 0,5% 9,1% 

cEC 18,0% 31,9% 75.8% 59,4% 29,5% 15,4% 29,1% 30,4% 25,6% 10,8% 0,8% 9,7% 

oEC 12,6% 14,4% 6,5% 72.0% 8,1% 12,1% 14,4% 8,2% 8,0% 2,6% 0,6% 2,9% 

aGR 2,4% 5,8% 4,4% 15,8% 79,4% 23,6% 5,0% 3,6% 13,2% 17,9% 0,1% 0,7% 

pGR 8,7% 6,4% 1,6% 14,5% 14,5% 78,0% 9,5% 3,3% 7,6% 4,3% 0,8% 1,3% 

oGR 14,5% 14,0% 5,2% 30,8% 8,3% 17,8% 77.6% 9,1% 8,7% 4,2% 0,5% 2,9% 

NR 9,4% 15,4% 11,5% 32,8% 10,4% 12,1% 16,5% 83.1% 7,0% 5,4% 0,6% 4,3% 

IC 6,7% 14,0% 5,4% 26,6% 17,9% 17,0% 12,4% 5,0% 71.4% 7,1% 0,3% 3,1% 

TC 1,8% 8,6% 4,6% 17,9% 48,2% 22,9% 5,9% 5,5% 14,1% 77.9% 0,1% 0,5% 

IN 7,4% 2,8% 0,4% 4,9% 0,6% 5,1% 1,2% 0,8% 1,4% 0,1% 68,0% 0,6% 

CR 9,7% 45,1% 3,7% 33,3% 5,4% 13,3% 15,6% 6,0% 10,1% 2,2% 0,3% 59.1% 
 

Table 2. Confusion matrix of cross-annotations among the 12 target classes. The recall values on the 
diagonal are highlighted. Also highlighted are the off-diagonal cross-annotations with percentages over 30% 

Having clarified the process of target annotation to molecules, the degrees of recall and 

selectivity of the ligand-based models were assessed at a target class level. Table 2 summarises 

the confusion matrix resulting from processing all ligand-based target models of a particular target 

class (in columns) against all bioactive molecules of each target class (in rows). A leave-one-out 

procedure was enforced to avoid trivial annotations coming from collisions, implying that each 
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molecule being processed was removed from the respective models. Values on the diagonal reflect 

the level of target-class recall of each model, that is, the proportion of target-class actives 

annotated by the target-class model. Off-diagonal values reflect mainly the level of target-class 

selectivity of each model, that is, the proportion of off-target-class actives annotated by the target-

class model. 

In general, good recall values are obtained, with percentages over 66% for 11 out of the 12 

target classes. Only for the target class of catalytic receptors, with the lowest number of chemical 

information available, recall falls down to 59%. With respect to selectivity, the ligand-based model 

for proteases (pEC) is an example of a decent sensitive and selective model, with percentages of 

annotation to molecules bioactive to target classes other than proteases below 20%. A good 

selectivity pattern is also observed for the ligand-based model derived for cytochromes (cEC), with 

all cross-annotation values under 12%. Interestingly, the ligand-based model for kinases (kEC) 

annotates also 31.9% and 45.1% of all actives to cytochromes and catalytic receptors (CR), 

although 34.7% of all actives to catalytic receptors were already annotated to kinases originally. In 

contrast, the ligand-based model for the 268 remaining enzymes (oEC) is clearly the most 

promiscuous model, with cross-annotation values above 30% for cytochromes, GPCRs other than 

aminergic and peptidic (oGR), nuclear receptors (NR), and catalytic receptors. Reasonable ligand-

based models are also obtained for all three GPCR target classes. For aminergic GPCRs (aGR), 

the ligand-based model annotates also over 48% of all actives to transporters, an expected cross-

annotation signal since 29.4% of them (essentially serotonin transporters) were already annotated 

to aminergic GPCRs. Also worth stressing is the generally good selectivity profiles obtained for the 

ligand-based models of both peptidic GPCRs (pGR) and GPCRs other than aminergic and peptidic 

(oGR). The remaining ligand-based models derived for nuclear receptors, ion channels (IC), 

transporters (TC), integrins (IN), and catalytic receptors show all low promiscuity levels, the only 

remark being that the nuclear receptor model annotates also over 30% of all actives to 

cytochromes. Therefore, overall, the analysis of the confusion matrix indicates that ligand-based 

protein models can indeed be a promising in silico approach to target profiling, with potential 

applicability in various fields such as targeted library design or drug repurposing. 

In silico target profiling 

With validated ligand-based models for 684 targets, we can now attempt estimating in silico 

the pharmacological profile of drugs to illustrate the scope of applicability for drug repurposing. 

Accordingly, a set of 767 drugs with known affinity for one or more targets was selected. After 

calculation of their respective SHED profiles, each drug was processed against all 684 ligand-

based target models following the procedure described above. In total, we were able to assign at 

least a target annotation to 592 drugs, corresponding to 77.2% of the total number of drugs 

processed. Those 592 drugs received 3,728 annotations to 324 targets, which roughly means that 

on average each drug in this set was annotated to 11 targets. Out of the 3,728 annotations 

assigned, we were able to reproduce 998 of the original annotations, which represents an 
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annotation recall of 55.1% (998 out of 1,810). The validity of many of the remaining 2,730 

additional target annotations cannot be confirmed at this stage due to the lack of completeness in 

the activity data and, thus, a wealth of opportunities may be hiding there. 

The annotations of each drug (in rows) to each target (in columns) are visually summarised in 

Figure 1. For the sake of clarity, labels have been added in columns to locate the regions covered 

by the 12 target classes. In the heatmap shown, cells colored within the red-to-yellow spectra mark 

the drug-target annotations. The colour gradation between red and yellow reflects the value of the 

minimum SHED Euclidean distance between the SHED profile of each drug and the ensemble of 

SHED profiles annotated to each target. Accordingly, distance values close to 0.0 are represented 

in red, those close to 0.3 are seen in orange, and as distance values approach 0.6 they turn into 

yellow and finally green at values above the annotation threshold. 

CR TCNRINICoGRpGRaGRoECpECoECkECoECcECoEC

 

Figure 1. The drug-target interaction heatmap. Annotations between drugs (in rows) and targets (in 
columns) are denoted by cells colored within the red-to-yellow spectra. Colour gradation reflects distance to 
the closest bioactive reference: red, orange, and yellow reflect increasing distance values from 0.0 to 0.6; 
green means distances values above the annotation cut-off. See Table 1 for target class abbreviations. 

Looking at the heatmap in Figure 1 from a drug perspective, perhaps the most significant 

observation is that the drugs that appear to be more promiscuous are by far those being annotated 

to aminergic GPCRs (aGR). To examine this aspect further, drugs were given a target promiscuity 

index according to the number of annotations assigned. A selection of the top 100 most 

promiscuous drugs with indices ranging from 34 to 15 is presented in Figure 2. Unfortunately, full 

assessment of the validity of these results cannot be performed because, as highlighted already 
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above, activity data available for drugs is not complete. Chlorpromazine is one of the few examples 

for which we have been able to confirm that it binds to 26 receptors with affinities (Ki) below 1 μM 

[3]. In our in silico target profiling exercise, chlorpromazine is found among the most promiscuous 

drugs (rank #6 of 592) with a promiscuity index of 31. Ranking drugs according to this target 

promiscuity index could be used as a means to estimate their liability due to residual off-target 

affinities and thus anticipate potential side effects.  
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Figure 2. Target promiscuity index for drugs. Examples of promiscuous drugs and their calculated target 
promiscuity index. 

142



In this respect, we were able to identify two drugs that can be considered representative of the 

two possible scenarios. One of them is pergolide, a drug used for the treatment of Parkinson’s 

disease that was recently withdrawn from the market due to latest findings of residual off-target 

affinity for 5-HT2B, a serotonin receptor expressed in cardiac valves, the activation of which is 

known to be associated with developing drug-induced valvular heart disease [25]. Pergolide was 

originally designed as a dopaminergic D1/D2 agonist. However, when tested against an extended 

panel of aminergic GPCRs, it has a rather promiscuous profile with micromolar affinities for D3, D4, 

and D5 dopamine receptors, as well as for the 5-HT1A, 5-HT1B, 5-HT1D, 5-HT2A, 5-HT2B and 5-HT2C 

serotonin receptors [26]. The results of our in silico target profiling of pergolide are summarised in 

Figure 3. Next to the structure of pergolide, the structures of the 5 annotated reference compounds 

having a SHED Euclidean distance below the annotation cut-off of 0.6 have been collected and 

their respective literature-extracted annotations shown. For example, the closest compound to 

pergolide was found at a distance of 0.29 and reported to be active to dopamine D2 and serotonin 

5-HT1A. Therefore, these two annotations will be assigned to pergolide and the two of them can be 

confirmed experimentally. Overall, pergolide received 6 annotations to dopamine D2, D3, and D4, 

serotonin 5-HT1A, 5-HT1B, 5-HT1D for which experimental evidence could be found [26]. But, in 

addition to those, 3 plausible annotations to the δ, κ, and μ opioids were assigned, for which we 

were unable to find confirmation in the literature. Regrettably, we were unable to annotate 

pergolide to 5-HT2B. In spite of this, in silico target profiling provided a clear signal that pergolide 

could have residual affinities for at least 3 serotonin receptors. Knowing the intrinsic promiscuity of 

serotonin receptors, that signal could have triggered an early alert to test pergolide against a panel 

of serotonin receptors, which could have lead to a much earlier detection of the unwanted 5-HT2B 

agonism. The other drug is celecoxib, a drug used to control the pain and inflammation associated 

with chronic inflammatory diseases such as rheumatoid- and osteo-arthritis. Celecoxib was 

originally conceived as a selective COX-2 inhibitor. The results of our in silico target profiling of 

celecoxib are summarised in Figure 4. For this drug, only two compounds were found to have a 

SHED Euclidean distance below the annotation cut-off. The closest one is in fact a structural 

analogue of celecoxib and is the one responsible for annotating the drug to COX-2. But most 

interestingly, just under 0.6, a compound active to carbonic anhydrase II (CA-II) is found and, 

consequently, this annotation is transferred to celecoxib. Providentially, clear evidence could be 

found in the literature, not only reporting that celecoxib was indeed a nanomolar inhibitor of CA-II 

but also providing a crystal structure of the interaction of celecoxib in the active site of CA-II [27]. In 

this case, the CA-II annotation assigned to celecoxib is an example of how in silico target profiling 

can provide new opportunities for old drugs. 
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Figure 3. Pergolide’s in silico pharmacology profile. Set of reference compounds responsible for each 

annotation and the respective SHED Euclidean distance to pergolide. 
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Figure 4. Celecoxib’s in silico pharmacology profile. Set of reference compounds responsible for each 

annotation and the respective SHED Euclidean distance to celecoxib. 
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Looking at the heatmap in Figure 1 from a target perspective, one can clearly detect a similar 

pharmacological pattern among drugs for targets belonging to different target classes. Perhaps the 

most striking pattern observed is the cross-pharmacology signal obtained between aminergic 

GPCRs, some peptidic GPCRs (opioid and sigma receptors), some ion channels (NMDA and 5-

HT3 receptors). Beyond any phylogenetic relationship, these targets appear to be related 

pharmacologically by the fact that drugs active on any of them may be likely to have some residual 

affinity for the others. Evidences of cross-pharmacologies involving these receptors are plentiful in 

the literature. One example is the antitussive dextromethorphan, the neuroprotective properties of 

which have been recently associated to its action as NMDA receptor antagonist, sigma-1 receptor 

agonist, and voltage-gated calcium channel antagonist [28]. Another concrete example is the 

analgesic tramadolol, which has been shown to have micromolar affinities for the muscarinic M1 

and M3, serotonin 5-HT2C, opioid receptors, and the NMDA receptor, a multi-receptor profile that 

might shed some light into elucidating the mechanism of action of its analgesic effect [29]. And a 

more generic example can be found in the fact that structurally different types of antidepressants 

(such as imipramine and mirtazepine) and antipsychotics (such as clozapine and haloperidol), 

commonly thought to exert their pharmacological action mainly through dopamine and serotonin 

receptors, have been proven to be functional antagonists at the ligand-gated ion channel serotonin 

5-HT3 receptor [30,31]. 

 

Figure 5. The pharmacological network of drugs. The network was constructed by linking all targets 
sharing at least ten drugs. Target color coding: aminergic GPCRs (dark green), peptidic GPCRs (light green), 
other GPCRs (light blue), nuclear receptors (dark blue), transporters (white), ion channels (grey), cytochromes 

(yellow), kinases (red), other enzymes (brown). The linkage map was constructured with Cytoscape [32]. 
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The pharmacological network established between the aminergic GPCRs, the opioid and 

sigma peptidic GPCRs, and the NMDA and 5-HT3 ligand-gated ion channels is illustrated in Figure 
5. In order to enhance the target connectivity signal, the network was constructed by linking all 

targets sharing at least ten drugs. The center and most connected part of the network is composed 

by all aminergic GPCRs (in dark green). This is in good agreement with a previous analysis 

suggesting that aminergic GPCRs are among the most promiscuous human proteins [33]. In turn, 

aminergic GPCRs appear highly connected, on one side, to opioid and sigma receptors (in light 

green) and, on the other side, to NMDA (in grey) and 5-HT3 (in white). Although to a much lesser 

extent, connections between aminergic GPCRs and other GPCRs (light blue), cytochromes 

(yellow), kinases (red), as well as other enzymes (brown), are also visible. The family of nuclear 

receptors (dark blue) is the only target class disconnected from the rest, again very much in 

agreement with previous findings [33].  

Conclusion 

The generation of safer and more efficacious drugs for the treatment of diseases is one of the 

main concerns in current pharmaceutical research. In part, this involves the ability of anticipating 

the pharmacological profile of drug candidates across multiple targets. In this respect, the capacity 

of high-throughput screening technologies for testing thousands of small molecules against 

hundreds of protein targets is still nowadays limited and thus novel in silico target profiling methods 

are emerging as a cost-effective alternative to reduce both the chemical and biological space to 

explore experimentally. Among those, this work has explored the performance of a ligand-based 

approach to predict the pharmacological profile of drugs. The results are highly encouraging, as 

demonstrated for the concrete cases of pergolide and celecoxib. In addition, cross-pharmacologies 

among proteins belonging to different target classes were detected, some of which could be 

confirmed in the scientific literature. Although the recall and selectivity rates evidence that there is 

still room for improvement, a detailed analysis of all the target annotations assigned might bring in 

the near future interesting new uses for old drugs. Further research in this direction is underway in 

our laboratory. 
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To the editor: 

The use of network-based approaches to visualise and analyse different types of biologically-

relevant interaction data has become increasingly popular in recent years. Topological studies of 

these interaction networks offer a means to assess the interconnectivity structure established 

among and between diseases, genes, proteins, and molecules from which influential conclusions 

and global trends in biology and drug discovery can be derived [1-3]. However, in spite of its 

indubitable value, currently available interaction data is far from being complete and the portion 

accessible is often non-homogeneous and biased toward certain areas of interest [4]. This situation 

results in sample networks that may not be representative of the whole network and thus caution 

on the conclusions drawn should be highlighted. 

Here, we are particularly interested in assessing current levels of completeness in available 

drug-target interaction data, the potential implications for the topology of the networks derived from 

them, and the impact that changes in network topology may have on the view of the current status 

of drug discovery. In this respect, it is widely recognised that, due to limited time and resources, 

small molecules are usually not screened systematically through a large panel of protein targets for 

the sake of acquiring knowledge about their complete pharmacological profile but solely to the few 

targets of interest for the particular project at work. The consequences are that the drug-target 

interaction data currently available from public bibliographic sources and stored in annotated 

chemical libraries are largely incomplete and biased toward targets of common therapeutic interest. 

For example, while in DrugBank [5] the typical antipsychotic drug chlorpromazine is connected to 

two primary aminergic G protein-coupled receptor (aGPCR) targets (namely, dopamine D2 and 

serotonin 5-HT2A), and in Wombat [6] it is annotated to another three aGPCRs (namely, dopamine 

D1 and D3, and serotonin 5-HT1A), a more complete receptorome profiling of this drug [7] shows that 

it actually has sub-micromolar affinity for at least 19 additional aGPCRs. 

To gain a deeper insight on the effect that data completeness may have on the topology of 

drug-target interaction networks, we took a set of 829 small molecule approved drugs from 

DrugBank and complemented systematically the original interaction data, first, with additional 

literature-based experimental data available in Wombat and, second, with estimated data obtained 
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from an in silico target profiling method. On the basis of the three sets of interaction data compiled 

with increased levels of completeness, drug-target (DT) networks were constructed, in which a 

drug and a protein are connected to each other if the protein is a known target of the drug (Fig. 1). 

The topology of the three DT networks was compared in terms of the fraction of nodes belonging to 

the largest connected component (nLCC) in the corresponding drug (D) network, in which nodes 

are drugs connected if they share at least one target, and target (T) network, in which nodes are 

targets connected if they share at least one drug. 

The first DT network was thus based on the 1,445 drug-target interactions available in 

DrugBank connecting the 829 drugs to 314 protein targets (Fig. 1A), resulting in an average 

number of target proteins per drug of 1.7. The topology of this DT network reveals a well-organised 

modular structure, with many proteins naturally clustering around phylogenetic families. The nLCC 

values for the corresponding D and T networks are 0.60 and 0.42, respectively, both numbers 

being significantly smaller than the values of 0.90 and 0.78 obtained from randomising the 

networks while keeping the number of nodes and links unchanged. The two nLCC values are also 

found very much in agreement with those reported recently from networks derived using the same 

data [8]. However, since DrugBank contains mainly information on the primary targets of drugs 

(that is, those proteins formally accepted by the originators as being targeted by drugs), its 

interaction data suffers from the incompleteness and bias issues emphasised above [9]. In fact, a 

DT network derived solely on the basis of DrugBank interaction data may actually be more 

representative of the target space explored historically by pharmaceutical industry rather than 

being a true reflection of drug polypharmacology. 

Accordingly, a second DT network was constructed by supplementing the original interaction 

data in DrugBank with additional literature-based affinity data available in Wombat, resulting in 

2,117 drug-target interactions connecting the 829 drugs to 409 protein targets (Fig. 1B). This 

means that the networks derived from these data will account for 672 extra drug-target interactions 

and 95 proteins relative to the original data present in DrugBank, increasing the average number of 

target proteins per drug to 2.7. The topology of the DT network is visibly affected, becoming more 

complex and interconnected. Quantitatively, this is reflected by nLCC values of 0.79 and 0.64 for 

the corresponding D and T networks, respectively, a situation that becomes much closer to the 

topology of a randomised network than envisaged from DrugBank data only. 

A final third DT network was derived by complementing the literature-based experimental data 

accumulated from DrugBank and Wombat with annotations assigned using a recently reported 

ligand-based approach to in silico target profiling [10], leading to a total of 5,215 drug-target 

interactions connecting the 829 drugs to 557 targets (Fig. 1C). These results project the average 

number of target proteins per drug up to 6.3. Even though the number of drug-target interactions 

obtained at this stage might seem quite large compared to the previous two cases considering 

literature-based experimental data only, the projection obtained agrees well with the value of 6.8 

reported recently for the average number of targets being hit under a 10 μM cut-off for a set of 89 
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drugs tested against more than 60 targets [11]. Back to the example of chlorpromazine, 10 

additional annotations to aGPCRs (M1, α1A, α2A, α2C, D4, D5, H1, H2, 5-HT2C, and 5-HT7) were 

correctly assigned by this computational approach on top of the 5 connections reported in 

DrugBank and Wombat, only 9 short from all interactions to aGPCRs confirmed in the literature [7]. 

Taking this step as an in silico estimate to full completion of interaction data involving those 829 

drugs, the resulting DT network looses its original modular structure to collapse in an unexpectedly 

dense topology, with nLCC values for the corresponding D and T networks of 0.96 and 0.92, 

respectively, very close to the those obtained for the corresponding randomised networks. 

In conclusion, it has been shown that systematic completion of drug-target interaction data 

leads to more complex and disordered network topologies with significantly increased graph 

density, suggesting that the well-defined separation between hub-related modules obtained when 

using highly incomplete data is likely to break down with increased completeness. Therefore, any 

conclusions derived from the analysis of network topologies obtained from incomplete data should 

be taken with caution. It is thus becoming urgent to support some global coordinated initiatives 

aiming at generating complete, homogeneous, unbiased drug-target interaction matrices [12] as a 

means to ensure solid progress in all integrative scientific areas relying on interaction data. In the 

meantime, the unexpectedly complex picture of the DT network generated from a projection of 

complete interaction data obtained in silico provides an entirely different perspective of the 

druggable target space. In the last years, the pharmaceutical and biotechnology industries have 

been alarmed by the fact that as low as 3000 druggable targets may be present in the human 

genome [13]. Given the high level of interconnectivity observed in DT networks, the question may 

no longer be how many druggable targets are present in the human genome but rather how many 

combinations of those druggable targets result in therapeutically-acceptable pharmacological 

profiles, opening a wealth of possibilities for the future of multitarget drug discovery. 
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Figure 1 Changes in network topology under different levels of completeness for drug-target interaction data. 

(A) DrugBank, (B) DrugBank+Wombat and (C) DrugBank+Wombat+InSilico estimate. Here drugs and 

proteins are indicated as black and white balls, respectively. Also included (bottom right) are the statistical 

patterns displayed by the drug (DN) and target (TN) networks (see text). The parameter <k>, measuring the 

average number of links in the network, grows with completeness. Of mention is the fact that <k> doubles its 

value for protein targets upon addition of the drug-target interaction data from Wombat. We also estimated the 

degree distributions P(k) measuring the probability of finding a node having k links. In order to have a clean 

plot, we used the cumulative degree distribution P>(k)= P(i). The plots fall off as exponential laws of the form 

P>(k) = N exp(-k/kc) thus indicating the presence of a characteristic degree kc  (N is a normalization constant). 

Here we estimated the characteristic values kc using least squares. For the DN we obtained (A) kc =28.57, (B) 

kc = 37.03 and (C) kc = 100.0 whereas for the TN the cut-off values are (A) kc = 6.66, (B) kc = 12.98 and (C) kc 

= 43.47. These values are consistent with the distribution of links being best described by an exponential 

shape rather than a scale-free architecture.  
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In order to apply all the methodologies developed and presented all along this thesis, a stand-

alone application called ViSCA has been developed. It is organized in several modules, each of 

which enables to performance a set of related functions. This piece of software permits performing 

from very simple file management operations to the already presented virtual ligand screening and 

virtual target profiling methodologies. 

Chapter III.5 – ViSCA
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Introduction 

We present ViSCA, a software framework presented as a stand-alone application that 

facilitates managing chemical databases in different formats. Additionally, ViSCA integrates the 

diverse methodologies developed in our laboratory, enabling to apply them to any input database. 

Calculating 1D descriptors and applying filters, calculating SHED descriptors for the input 

database, using them for virtual ligand screening or virtual target profiling and calculating the 

unique identifiers or hierarchical classification schemes for chemical annotation are other possible 

uses of ViSCA. 

ViSCA architecture 

ViSCA has been implemented as a collection of python modules integrated in a stand-alone 

application through a user interface. The following sections will present each of the modules and 

their capabilities. 

The file management module 

In the first place, ViSCA can be used as a file management tool that is able to parse chemical 

libraries in SD [1], mol [1], mol2 [2] and PDB [3] formats. It can be used for simple tasks such as 

counting the number of compounds in the library, extracting a subset of compounds given a list of 

identifiers and splitting the library in either a fixed number of files or in several files containing a 

fixed number of compounds. 

Other features are specifically related to SD file management, as they deal with the 

information contained in the information fields that are specific to this format. In enables to remove 

all or a user-provided set of fields, add information contained in a plain text table to the SD file by 

adding it into each molecule’s fields or put the information contained in these fields to a plain text 

file so it can be better analysed. It also enables to put the information contained in a field as the 

molecule identifier or sort the molecules according to the content of a user-defined field. 
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The properties module 

This module included in the ViSCA suite is the calculation of the one-dimensional properties of 

each of the molecules in the input library. These include simple and fast to calculate descriptors 

that can be extracted directly from the atoms count of each molecule like molecular weight, 

hydrogen bond donors and acceptors and number of halogen atoms, but also more sophisticated 

descriptors based on the topology of the molecule, like the number of rotatable bonds, rings and 

ring systems or even the presence and number of reactive groups. All these descriptors can be 

used to apply diverse filters to the database, like an organic filter that discards molecules 

containing atoms others than those considered organic (C, N, O, H, S, P, Cl, Br, I, F). Other filters 

are those for reactive molecules, or descriptors-based drug-like filters [4]. 

The SHED module 

The calculation of the SHED [5], a set of topological descriptors developed in our laboratory, 

can be easily done using the ViSCA command line. 

The virtual screening module 

For virtual ligand screening, ViSCA enables to prioritise an input database in terms of SHED 

Euclidean distance in either of the accepted formats with respect to a reference database, which 

can consist on a single compound or a set of compounds. If the SHED descriptors for both libraries 

are not provided, they will be calculated on the fly. 

The virtual profiling module 

This module enables to build a SHED-based model starting from an annotated chemical 

library in SD format, where the information on the targets associated to each molecule has to be in 

a field. Once the model is built, it also enables to profile any input database, in any of the input 

formats accepted, for all the generated models or for a list of models that can be provided by the 

user. The output of this profiling are several files, one containing the list of the identifiers of the 

molecules with some annotation and the list of targets to which they are annotated. Other output 

files are an SD file containing each annotated molecule followed by the closest reference, a matrix 

containing the closest distance to each model for each molecule and finally a heatmap to visually 

inspect the results. 

The chemical annotation module 

The chemical annotation module enables to calculate either a unique molecule graph identifier 

or a hierarchical classification scheme [6], both developed in our laboratory, for the whole input 

database. These unique codes and structure-based classification schemes can help organizing 

and analysing the actual contents and diversity of even big databases. Based on these unique 

codes, the user can extract unique compounds, scaffolds or frameworks from the input database.  
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This section summarizes the main achievements of the work presented in this thesis: 

1. A new set of topological atom-centred feature-based descriptors called Shannon entropy 

descriptors (SHED) has been developed. 

2. On the basis of pharmacological data extracted directly from bibliographical sources, a 

ligand-based descriptor model has been generated based on SHED descriptors derived 

from bioactive ligands. This opens the possibility to extend in silico the profiling of large 

chemical libraries against those protein targets for which structural information is not 

available yet in an efficient manner. 

3. This in silico profiling towards a single target of interest (virtual ligand screening) has been 

tested and proven to perform well in terms of absolute enrichment in the top ranked 

compounds and in terms of novel structures enrichment (scaffold hopping). This has been 

validated not only with academic exercises but also with “real” drug discovery projects as 

part of the collaborations that Chemotargets has with several pharmaceutical companies. 

4. Ligand-based virtual target profiling examples are provided and their performance 

assessed and compared to well-established methodologies. It has shown that, provided 

the annotated chemical space for the protein family of interest is sufficiently well saturated, 

the model attains a decent degree of both internal consistency and external predictability. 

Again, this has been validated not only with academic exercises but also with “real” library 

design projects as part of the collaborations that Chemotargets has with several chemical 

companies. 

5. The virtual target profiling approach developed during this thesis has been proven to be 

sensible enough to achieve significant discriminative power when applied to external 

chemical libraries designed for a priori unrelated protein families, opening an avenue for its 

use in the selection and design of targeted libraries. 

6. Examples of the applicability of the methodology to targeted library design are provided. 

Furthermore, the need for a deeper study on the objective quality assessment of the 

targeted libraries is highlighted. In this respect, in silico target profiling methods provide a 

means to analyse both chemical and target diversity in terms of the projected 

pharmacological promiscuity of compound libraries. 

Conclusions
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7. The models developed so far served also to construct an interaction network from which 

potential cross-pharmacologies between proteins emerge.  

8. It has been shown that any conclusions derived from the analysis of network topologies 

obtained from incomplete data should be taken with caution. Consequently, the systematic 

completion of ligand-target interaction data has shown to lead to more complex and 

disordered network topologies with significantly increased graph density. 

9. Based on ligand-based protein network analysis, a shift of perspective in drug discovery is 

proposed. Beyond targeting individual proteins, a wealth of possibilities emerge by 

combining those druggable proteins that result in a therapeutically-acceptable 

pharmacological profiles. This opens the way to future systems chemical biology 

approaches. 

10. All the algorithms developed within this thesis have been implemented in an integrative 

package called ViSCA, which is not only the framework onto which all developments within 

the Chemogenomics Laboratory are being implemented but it is already being used within 

pharmaceutical industries. 
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