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Abstract

We prove that every connected graph can be edge-decomposed into a spanning
tree, an even graph, and a star forest.

Mathematics Subject Classifications: 05C05, 05C38

1 Introduction

All graphs in this paper are simple and finite. A decomposition of a graph G is a collection
of edge-disjoint subgraphs whose union is G. A graph is called even if every vertex
has even degree. It is easy to see that every graph can be decomposed into a forest
and an even graph. In 1979, Malkevitch [9] studied cubic graphs which admit such a
decomposition where the forest is a spanning tree. In this case it is equivalent to the
existence of a spanning tree containing no vertices of degree 2. Such a spanning tree is
called homeomorphically irreducible, or a HIST.

For general graphs, the existence of a HIST is much less restrictive than the existence
of a decomposition into a spanning tree and an even graph. However, even the existence of
a HIST is not guaranteed by large connectivity or regularity, as was shown by Albertson
et al. [3]. Douglas [5] showed that it is NP-complete to decide whether a planar subcubic
graph contains a HIST.

In cubic graphs, the removal of the edges of a spanning tree results in a collection of
cycles and paths. Hoffmann-Ostenhof [4] (see also [6]) conjectured that the spanning tree
can be chosen such that the collection of paths is a matching.
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Conjecture 1 (3-Decomposition Conjecture). Every connected cubic graph can be de-
composed into a spanning tree, a collection of cycles, and a matching.

Akbari, Jensen, and Siggers [2] showed that any cubic graph has a decomposition into
a spanning forest, a collection of cycles, and a matching. Abdolhosseini et al. [1] verified
the 3-Decomposition Conjecture for traceable cubic graphs and Ozeki and Ye [10] verified
it for 3-connected planar cubic graphs. The latter was extended by Hoffmann-Ostenhof,
Kaiser, and Ozeki [7] to all planar cubic graphs. The following theorem is the main result
of our paper and is in some sense a generalization of the 3-Decomposition Conjecture to
the class of all connected graphs.

Theorem 2. Every connected graph can be decomposed into a spanning tree, an even
subgraph, and a star forest.

As a special case our result implies that every cubic graph has a decomposition into
a spanning tree, a collection of cycles, and a collection of paths of length at most 2. This
was previously shown by Li and Cui [8].

One might be tempted to think that every connected graph admits a decomposition
into a spanning tree, an even graph, and a matching. However, this is easily seen to
be false since the complete bipartite graph K2,n has no such decomposition. Such a
decomposition is also not guaranteed if we restrict our attention to regular graphs.

Theorem 3. For each r > 4, there exists an r-regular connected graph which has no
decomposition into a spanning tree, an even graph, and a matching.

Proof. Let r > 4 be given and let G be the graph obtained from Kr+1 by subdividing
each edge once. Let G′ be a graph obtained from Kr+1 by subdividing r − 2 edges once
and adding an edge between each pair of vertices of degree 2. For each vertex v of degree
2 in G, let Gv denote a copy of G′. Now let G′′ be obtained from the disjoint union of G
and all the graphs Gv by adding edges between v and the vertices of degree r − 1 in Gv,
for each vertex v of degree 2 in G. Note that G′′ is r-regular and any decomposition of G′′

into a spanning tree, an even graph, and a matching also induces such a decomposition
of G. Clearly, the even graph cannot contain any edges of G, therefore this corresponds
to a decomposition of G into a spanning tree and a matching. The graph G has r(r + 1)

edges, and every spanning tree of G has r+ r(r+1)
2

edges, thus the matching has to contain

at least r(r−1)
2

> r + 2 edges. However, the size of a maximal matching in G is r + 1, so
G cannot be decomposed into a spanning tree and a matching.

The construction in the proof above shows that for r-regular graphs the size of the
stars in the forest in Theorem 2 grows at least linearly in r.

2 Proof of Theorem 2

Before we begin the proof of our main theorem, we introduce a few definitions.
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Definition 4 (separating cycle). A cycle C in a connected graph G is called separating
if G− E(C) is disconnected.

Note that in the literature a cycle is called separating in a graph if the removal of
its vertex-set results in a disconnected graph, while for us the removal of its edge-set is
relevant. In particular, every cycle containing a vertex of degree 2 is separating.

Definition 5 (fragile). A graph G is called fragile, if G is connected and every cycle of
G is separating.

Fragile graphs have also been investigated in the context of planar graphs by Hoffmann-
Ostenhof et al. [7]. Their 2-Decomposition Conjecture, which is equivalent to Conjec-
ture 1, states that every subcubic fragile graph can be decomposed into a spanning tree
and a matching.
Note that if we remove an even subgraph H such that G− E(H) is connected and if we
choose such a subgraph of maximal size, then G − E(H) is fragile. In particular, every
connected graph decomposes into an even graph and a fragile graph. Therefore it is suf-
ficient to prove that every fragile graph has a decomposition into a spanning tree and a
star forest. For brevity, we introduce the following notation.

Definition 6 (starlit). A spanning tree T of a graph G is called starlit if G−E(T ) is a
star forest.

All we need to show is that every fragile graph contains a starlit spanning tree. We
prove an even stronger result, where we prescribe that all edges at a specified vertex
belong to the spanning tree in the decomposition.

Definition 7 (v-full). A spanning tree T of a graph G is called v-full for some vertex v
in G, if all edges incident with v in G are also in T .

We can now state the theorem we are going to prove.

Theorem 8. If v is a vertex in a fragile graph G, then G has a starlit v-full spanning
tree.

As already discussed, Theorem 2 follows immediately from Theorem 8. We finish this
section by proving Theorem 8.

Proof of Theorem 8. Let G be a counterexample of minimal size.

Claim 1: G is 2-connected.

Proof. Suppose the claim is false and u is a cutvertex in G. Let K be a component of
G − u, let G1 denote the subgraph of G induced by V (K) ∪ {u}, and let G2 denote the
graph induced by the edges in G − E(G1). We can assume that v ∈ V (G1). Clearly G1

and G2 are fragile and contain fewer edges than G, so G1 contains a starlit v-full spanning
tree T1, and G2 contains a starlit u-full spanning tree T2. Now the union of T1 and T2 is
a starlit v-full spanning tree in G.
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Note that Claim 1 implies that the minimum degree of G is at least 2.

Claim 2: There are no adjacent vertices of degree 2 in G.

Proof. Suppose x and y are two adjacent vertices of degree 2 and let z denote the neighbour
of y different from x. We may assume without loss of generality that v 6= y. The graph
G′ = G− xy is fragile, so by minimality of G there exists a starlit v-full spanning tree T ′

of G′. If v 6= x, then T = T ′ is also a starlit v-full spanning tree of G. If v = x, then we
choose instead a starlit z-full spanning tree T ′′ of G′. Now T ′′ + xy− yz is a starlit v-full
spanning tree of G.

Let H be the subgraph of G induced by the vertices of degree at least 3.

Claim 3: H contains no isolated vertices and no cycles of length 3.

Proof. Suppose u is an isolated vertex in H. That is, u is a vertex of degree at least 3 in
G all of whose neighbours have degree 2.
First, suppose u = v. Let x be a neighbour of u, and y the neighbour of x different from
u. By Claim 2, y has degree at least 3 and is therefore not adjacent to u. Let G′ be
the graph obtained from G by removing x and adding the edge uy. Since u has only one
neighbour of degree greater than 2 in G′, every cycle through u is still separating. Thus,
G′ is fragile and contains a starlit u-full spanning tree T ′. Now T = T ′ − uy + ux + xy is
a starlit u-full spanning tree of G.
Thus we can assume u 6= v. The graph G′ = G− u is connected by Claim 1. Clearly G′

is fragile and therefore contains a v-full starlit spanning tree T ′. If v is a neighbour of u,
then T = T ′ + uv is a starlit v-full spanning tree of G. If v is not a neighbour of u, then
adding an arbitrary edge incident with u to T ′ results in a starlit v-full spanning tree of
G. This contradiction shows that the minimum degree of H is at least 1.
Finally, suppose H contains a cycle C of length 3. Since every vertex of C has degree
at least 3, and since G is 2-connected, it is easy to see that C is not separating, which
contradicts G being fragile.

For u ∈ V (H), we write dH(u) to denote the degree of u in H and dG(u) for its degree
in G.

Claim 4: If u is a vertex in H different from v, then dH(u) > 2.

Proof. Suppose u is a vertex of degree 1 in H, u 6= v, and x is the neighbour of u in H.
Let G′ = G − u. First, suppose that v is not a degree 2 vertex adjacent to u in G. By
Claim 1, the graph G′ is fragile, so it has a starlit v-full spanning tree T ′ by minimality
of G. Now T = T ′+ ux is a v-full starlit spanning tree of G. Thus, we can assume that v
has degree 2 and is a neighbour of u in G. Let T ′′ be a starlit x-full spanning tree of G′.
Clearly T = T ′′ + uv is a v-full spanning tree of G. Since T ′′ is x-full, the spanning tree
T is also starlit, contradicting our choice of G.
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Claim 4 implies that there exists a cycle in H. The following claim shows that there
are at most two vertices in H which have degree less than 3 in H.

Claim 5: If u ∈ V (H) and dH(u) = 2, then either u = v or dG(v) = 2 and uv ∈ E(G).

Proof. Suppose u is a vertex of degree 2 in H, u 6= v, and dG(v) > 3 or uv /∈ E(G). Let
x and y denote the neighbours of u in H. Note that all other neighbours of u in G have
degree 2. Let G′ be the graph obtained from G−u by adding the edge xy. Claim 1 implies
that G is connected and Claim 3 implies that G′ has no multiple edges. For a cycle C ′ in
G′ containing xy, the corresponding cycle C in G, which is obtained from C ′ by replacing
xy with the path xuy, is separating if and only if C ′ is separating. Thus, G′ is fragile and
contains a starlit v-full spanning tree T ′. If xy ∈ E(T ′), then T = T ′ − xy + ux + uy is a
starlit v-full spanning tree in G. Thus, we can assume xy /∈ E(T ′). Since G′ −E(T ′) is a
star forest, at least one of x and y has degree 1 in G′ − E(T ′), say x. Now T = T ′ + uy
is a starlit v-full spanning tree in G.

Let C be a cycle in H for which the component of G − E(C) containing v has max-
imal size. Note that C is induced. Let K denote the component of G−E(C) containing v.

Claim 6: H ⊆ K ∪ C.

Proof. Since C is chordless, it suffices to show V (H) ⊆ V (K ∪C). Suppose u is a vertex
in H which is not in K or C. Let L denote the component of G − E(C) containing
u. There exists no cycle in L ∩ H since that cycle would contradict the choice of C.
Claim 4 now implies that L contains a path P joining two vertices a and b on C such
that all intermediate vertices are in V (H) \V (C). Let P1 and P2 be the two edge-disjoint
subpaths of C joining a and b. We may assume that P2 contains a vertex of K. Now the
cycle formed by the union of P and P1 contradicts the choice of C.

Since G is fragile, the graph G − E(C) is disconnected so there is a vertex u on C
which is not in K. Since C is induced, the vertex u has exactly two neighbours on C.
Claim 6 implies that all neighbours of u not on C have degree 2. Now dH(u) = 2 and
u 6= v. By Claim 5, we have dG(v) = 2 and uv ∈ E(G), which implies that u is in K,
contradicting our choice of u.
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