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Abstract
In multi-agent path finding (MAPF), it is usually assumed that planning is performed centrally

and that the destinations of the agents are common knowledge. We will drop both assumptions
and analyze under which conditions it can be guaranteed that the agents reach their respective
destinations using implicitly coordinated plans without communication. Furthermore, we will an-
alyze what the computational costs associated with such a coordination regime are. As it turns
out, guarantees can be given assuming that the agents are of a certain type. However, the im-
plied computational costs are quite severe. In the distributed setting, we either have to solve a
sequence of NP-complete problems or have to tolerate exponentially longer executions. In the
setting with destination uncertainty, bounded plan existence becomes PSPACE-complete. This
clearly demonstrates the value of communicating about plans before execution starts.

1. Introduction

In a spatial multi-agent environment, e.g., a warehouse (Wurman, D’Andrea, & Mountz, 2008), a
street intersection (Dresner & Stone, 2008), an airport (Hatzack & Nebel, 2013), or a video game
(Lawrence & Bulitko, 2013), agents have to move to different destinations in a collision-free manner.
Such scenarios can be formalized as multi-agent path finding (MAPF) problems.

In its most basic variant, the problem can be described as follows. Given an undirected, simple
graph G = (V,E), a set of agents A, an initial configuration assigning agents to distinct vertices,
and a goal configuration with another assignment of agents to distinct vertices, the question is how
one can transform the initial configuration into the goal configuration by single movements, where
one agent moves from a vertex to an empty adjacent vertex.

Often, the graph is given as a grid map as in Figure 1, where agents can move to orthogonally
adjacent empty grid cells. In the displayed situation, the circular agent C wants to go to the cell
marked by the solid circle and the square agent S wants to reach the place with the solid square (the
empty circle and square will only become important later). One could come up with the following
movements:

1. C moves to v2 and then to v4,
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v1 v2 v3

v4

Figure 1: Multi-agent coordination example

2. S moves to v2 and then to destination field v3, and

3. C finally moves to destination field v2.

This problem, and a number of variants, have been studied quite extensively, the computational
complexity of these problems has been determined, and a number of optimal and sub-optimal al-
gorithms have been proposed. The assumption has usually been that movements are computed
centrally before execution starts. Furthermore, because of this assumption, destinations are consid-
ered to be common knowledge. In this paper we drop both assumptions and analyze whether the
agents are able to coordinate their movements just by observing the movements of the other agents.
Such a scenario is, for instance, plausible in human-robot interactions or when agents do not share
a common communication channel.

As a first step, in Section 3 planning as well as execution are assumed to be distributed with no
communication between the agents. In order to cope with the problem that the generated movement
plans might be incompatible, replanning might be necessary. The question is then whether it is still
possible to guarantee successful executions and what the computational price for such implicitly
coordinated executions is. As we show, success guarantees can be given if we assume all agents to
be eager, i.e., not waiting for others to act first, and acting optimally. Based on known complexity
results concerning solving MAPF optimally, it follows that the planning problem in such an implicitly
coordinated regime is NP-complete. As an alternative we explore the notion of conservative eager
agents which start replanning from the initial situation following the already executed partial plan.
While these agents do not need to solve NP-complete problems and can avoid infinite executions
at the same time, the worst-case execution length can be exponentially longer than the length of a
plan by a single agent.

As a second step, in Section 4 we drop the assumption that destinations are common knowl-
edge. We call the resulting path-finding problem MAPF under destination uncertainty or simply
MAPF/DU. In order to illustrate this point, let us again consider the situation in Figure 1, but
unlike before, let us assume that each agent knows about its own destination with certainty (the
solid circle and square), but there is uncertainty about the destinations of the other agent (the empty
circle and square are considered as additional potential destinations in addition to the solid circle
and square for C and S, respectively).

Here, we first have to come up with a solution concept. We introduce i-strong branching plans
that correspond to implicitly coordinated policies as they have been proposed in the area of epistemic
planning (Engesser, Bolander, Mattmüller, & Nebel, 2017). One interesting property of these plans
is that one can reduce them to skeletons that are composed out of stepping stones, configurations in
which one agent can reach its destination with certainty and success for the rest is guaranteed. Using
this result, one can show that the worst-case execution costs of a branching plan for a MAPF/DU
instance are polynomially bounded.

As a third step, in Section 5, we analyze joint execution of these branching plans as a generaliza-
tion of joint executions for the fully observable case. Since the agents now have different perspectives,
it can happen that some agents can come up with an i-strong plan while others are clueless, i.e.,
cannot form a plan. So, we introduce the stronger notion of objectively strong plans, which can be
executed by any agent.
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As in the fully observable setting, conservative eager agents are guaranteed to succeed, however,
executions can have a length exponentially longer than a plan by a single agent. Since we also want
to guarantee reasonable execution length, optimally eager agents are considered. Unfortunately,
for them success cannot be guaranteed. As we demonstrate, it is possible to get caught in infinite
executions. In order to address this problem, we combine conservative eagerness with optimality.

In Section 6, we have a look at the computational complexity of deciding the existence of bounded
i-strong and objectively strong plans. We show that these problems are PSPACE-complete (in the
number of agents). This demonstrates that communication about destinations pays off significantly.
For the case that we deal only with few agents, we show that deciding existence and bounded
existence can be done in time polynomial in the size of the graph provided the number of agents is
fixed.

In Section 7 we summarize our results and discuss open problems and further research directions.

2. Related Work

There is a very rich body of research on the MAPF problem and its variations. The first paper
in this area with substantial results is the one by Kornhauser, Miller, and Spirakis (1984). They
considered memory contents moving over computer networks, formalized as pebbles. However, the
results apply, of course, to agents in spatial environments represented as graphs as well. The paper
spells out all important ingredients, demonstrates that solvability can be decided in polynomial time,
and sketches an algorithm for generating movement plans. All the important details are, however,
in Kornhauser’s unpublished Master Thesis.

The paper by Ratner and Warmuth (1986) was the first published paper that looked at the
problem of generating optimal movement plans. They showed that the problem of finding minimal
plans for the generalized 15-puzzle is NP-complete. A simpler NP-completeness proof for the general
pebble-movement problem can be found in the paper by Goldreich (2011), which had been written
and circulated already in 1984, as cited in the paper by Kornhauser et al. (1984).

Later, variations of this problem were analyzed, for instance, MAPF with simultaneous moves
(Surynek, 2010), MAPF on strongly bi-connected, directed graphs (Botea, Bonusi, & Surynek,
2018), and variations concerning payload transfers (Ma, Tovey, Sharon, Kumar, & Koenig, 2016).
Furthermore, different metrics were considered (Yu & LaValle, 2013). In all cases, though, the
problem of generating shortest plans remains NP-complete.

Complete MAPF solvers (optimal and sub-optimal) were proposed for different variations of the
problem (Wang & Botea, 2011; de Wilde, ter Mors, & Witteveen, 2014; Luna & Bekris, 2011; Felner
et al., 2017). Taking some of the kinematics of real robots into account, the multi-robot path finding
problem was studied as well (Grady, Bekris, & Kavraki, 2010; Bhattacharya, Kumar, & Likhachev,
2010). Finally, also uncertainty of the position or the movements was taken into account (Wagner
& Choset, 2017).

If optimality and/or completeness is an issue, then central planners are usually used. However,
they have to plan in the product space of the single agent search spaces, which leads to a restriction
on how many agents can be handled. In order to scale better, often decoupled planning approaches
are used that combine plans generated by/for single agents (Silver, 2005; Jansen & Sturtevant, 2008).
However, it is always assumed that the agents can communicate in order to resolve conflicts.

There exist also some truly distributed approaches to the multi-robot path-finding problem.
However, they tend to be reactive and cannot guarantee completeness as we do or they need some
form of minimal communication. The work by van den van den Berg, Lin, and Manocha (2008), for
instance, considers non-communicating robots moving in a plane and uses the notion of reciprocal
velocity obstacle, which anticipates that also other agents react in the same way. Nevertheless,
such an approach will fail, for example in very narrow, complex environments. The work by Cáp,
Vokŕınek, and Kleiner (2015) gives completeness guarantees for “well-formed environments”, but it
needs some minimal form of communication.
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As mentioned in the Introduction, there is almost always the assumption that all agents know
the destinations of the other agents and that they act in a coordinated manner. This means that a
plan can be generated centrally. On the other hand, there is a long tradition of analyzing general
distributed planning and acting, (desJardins, Durfee, Ortiz, & Wolverton, 1999). Brenner and
Nebel (2009), for example, looked at this problem. They also proposed as one of their benchmarks
a problem similar to the MAPF/DU problem. However, their solution, which is a simple self-
interested, greedy plan, did not include the anticipation of goals or actions by other agents as we
consider in this paper. This means that their algorithm is incomplete with respect to our problem
specification.

Distributed POMDPs (decPOMPDs) allow for distributed execution (Goldman & Zilberstein,
2004) and might therefore be considered as providing solutions to the problems such as MAPF/DU.
However, decPOMDPs are based on a central offline planning process. This problem is overcome by
using interactive POMDPs (Gmytrasiewicz & Doshi, 2005). However, it is not immediately clear,
how one could use this framework in order to model and solve the MAPF/DU problem.

A completely different approach to model and solve a problem such as MAPF/DU could be to
use general game playing. Extensions such as the one introducing games with imperfect information
(Schiffel & Thielscher, 2014) could be used to model MAPF/DU instances, which could then be
solved using an GDL-II game solver, e.g., HyperPlay (Schofield & Thielscher, 2017). Since the
solver is sampling based, it is probably incomplete, though.

The approach that comes closest to the one proposed in this paper is epistemic multi-agent
planning (Löwe, Pacuit, & Witzel, 2011; Bolander & Andersen, 2011; Andersen, Bolander, & Jensen,
2012; Muise et al., 2015; Engesser et al., 2017; Bolander, Engesser, Mattmüller, & Nebel, 2018). In
epistemic multi-agent planning, the epistemic states of the other agents are taken into account when
generating a plan. In particular, the notion of implicitly coordinated plan or policy introduced by
Engesser et al. (2017) plays an important role in our paper. Furthermore, we make use of the notion
of joint execution and guarantees of success of the joint execution of epistemic plans as discussed by
Bolander et al. (2018). Since the MAPF/DU problem is much more specialized and simpler than
the general epistemic planning problem (which is undecidable, as shown by Bolander and Andersen
(2011)), it is possible to achieve some positive results. On the other hand, the results in this paper
may be useful for giving inspirations to the research on general epistemic planning. Although some
of the results in our paper are just instantiations of results from epistemic planning, we will prove
them from first principles and point out the parallels to epistemic planning in general.

Finally, one should mention that one of the key concepts in solving the distributed MAPF and
MAPF/DU problems is replanning. Of course, replanning or continual planning is not new and
is used regularly to deal with contingency problems (Ambros-Ingerson & Steel, 1988; Brenner &
Nebel, 2009; Brafman & Shani, 2012). Our approach uses replanning in a different way, though.
Replanning is only used in order to account for unanticipated actions of the other agents. Since
deviations of other agents are nevertheless part of a successful plan, replanning will never choose
an action leading into a dead end, which might occur in other approaches. By requiring in addition
eagerness and conservatism and/or optimality, we can even guarantee success for some types of
agents. This distinguishes our approach from the usual continual planning approaches.

3. Distributed MAPF

As mentioned in the Introduction, the spatial environment is modeled using a graph G = (V,E).
Throughout the paper, we consider as usual undirected, simple graphs. A configuration of agents
A on the graph G is an injective function α : A→ V . For i ∈ A and v ∈ V , by α[i/v] we refer to the
function that has the same values for all j 6= i as α, but for i it has the value v: α[i/v](i) = v.

Given a movement action of agent i from v to v′ and a configuration α, a successor con-
figuration α′ = α[i/v′] is generated, provided α(i) = v, (α(i), α′(i)) ∈ E, and there exists no
j with α(j) = v′. The MAPF problem is then to generate for a given MAPF instance
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M = 〈A,G, α0, α∗〉 with a given set of agents A, a given graph G, the initial configuration
α0, and the goal configuration α∗, a sequence of movements from α0 to α∗. Such a movement
plan π is written as a sequence of movement triples consisting of the moving agent i and its current
and next location: (i, α(i), α′(i)). We always assume that such movement plans are cycle-free , i.e.,
that during the execution of such a plan no configuration is reached twice. We call a plan successful
for a MAPF instance if it transforms α0 into α∗. Since in the following we only consider successful
movement plans, we just call them plans. If there exists such a plan for a given instance, we call
the instance solvable .

As mentioned in Section 2, solvability on undirected graphs can be decided in polynomial time;
and if a plan exists, then its length can be bounded by a polynomial and it can be generated in
polynomial time. If we are interested in shortest plans, then the corresponding problem of bounded
existence for undirected graphs becomes NP-complete.

3.1 Distributed Planning and Execution

While in MAPF one usually considers the generation of a plan by a central instance and leaves
the distributed execution to the agents, we now consider the setting where each agent generates a
plan—consisting of its own movements and the movements of the other agents, leading to the goal
configuration. We call this setting distributed MAPF We call such a plan implicitly coordinated
since the planning agent presupposes that the other agents behave in a cooperative way. The
underlying basic assumption is, of course, that all agents want to reach the goal configuration. But
it would be a coincidence when all of them came up with the same plan. Nevertheless, if one agent
acts, this will follow a plan towards the goal configuration—and so will never end up in a dead end ,
i.e., a state from which the goal state cannot be reached.1 And if an action by another agent was
not anticipated, then one can replan in order to account for this unanticipated move.

After all agents have planned, we have a family of plans (πi)i∈A. Joint execution of this
family of plans is then performed in an asynchronous, interleaved fashion. From all the agents i
that have as their first action one of their own moves, one agent is chosen and its movement is
executed. This is very similar to what happens in real-time board games, such as Magic Maze.
The player who acts fastest carries out the action. For all the other agents the following happens:
Either the movement was anticipated and then the movement is removed from the plan or the agent
has to replan from the new situation. The interesting question is, whether such an asynchronous,
distributed execution is guaranteed to eventually lead to the desired goal configuration and how
many steps it takes to reach the common goal. The execution length of a joint execution is
defined to be the number of steps that are used to reach the goal configuration.

In the example from the Introduction, sometimes joint execution leads to success. Assume that

v1 v2 v3

v4

πC = 〈(C, v3, v2), (C, v2, v4), (S, v1, v2), (S, v2, v3), (C, v4, v2)〉
πS = 〈(S, v1, v2), (S, v2, v4), (C, v3, v2), (C, v2, v1), (S, v4, v2), (S, v2, v3), (C, v1, v2)〉

Figure 2: Plans for the multi-agent coordination example

1. Note that in the basic and the distributed MAPF setting, there are no dead ends, because all actions are reversible.
For directed graphs or in the setting with destination uncertainty that we introduce later, dead ends are possible.
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the initial plan by agent C is the sketched one, i.e., the plan πC in Figure 2. Now agent S might
have generated the same plan, in which case both agents will reach their destinations. What will
happen, however, if S had chosen a different plan? If agent S had generated a different plan, say
πS in Figure 2, then it may happen that C will be chosen to execute the first action and S is forced
to replan. In this case, it might come up with πC with the first action removed. If, on the other
hand, S is chosen to act first, C needs to replan and might come up with πS with the first action
removed, and joint execution will be successful.

3.2 Success Guarantees for Joint Execution

The interesting question is, whether we can find conditions that guarantee success for such joint
executions with replanning in the general case. In order to demonstrate one of the issues, let us
assume that S comes up with the plan πC (expecting C to act first), and that C comes up with πS
(expecting S to act first). In this case, both agents would wait for each other to act first forever.

Intuitively, we would call these plan lazy, because they put the burden on an agent other than
oneself. Let π be a movement plan. We say that π is a lazy plan with respect to agent i and a
given set Π of plans, if there exists another movement plan π′ ∈ Π that has an identical prefix of
k ≥ 0 actions and the k+ 1th in π is a movement by agent j 6= i, while the k+ 1th action in π′ is by
agent i. We say that i is a lazy agent (wrt. Π) if it sometimes generates lazy plans. Clearly, lazy
agents can produce plans that can lead to deadlock situations, i.e., situations in which all agents
are waiting for each other to act first, as in the scenario described above. Note that a deadlock can
occur although none of the plans contain a dead end.

We call i an eager agent if it never generates lazy plans (with respect to itself and the given
set of plans). Note that if a plan is not lazy, then all of its suffixes started in the situation reached
by the prefix are also not lazy (provided the suffixes also belong to the set of plans). The reason is
that there does not exist any prefix such that after the prefix the agent chooses an action of another
agent if it does not have to in order to reach the goal.

With eager agents, we avoid deadlock situations, since there is always at least one agent that
can act. In our case, if both S and C from our initial example are eager wrt. to all plans, then C
is bound to generate πC and S will necessarily generate πS , leading to a successful execution, since
there are no other possible movement plans.

However, simple eager agents (being eager with respect to the set of all plans) have serious
problems. The first problem is that they may plan to make moves that increase the distance to
the goal configuration, e.g., by moving away from the destination node, as shown in Figure 3. The
second problem, resulting from the first one, is that joint execution with replanning can easily lead
to infinite executions, as demonstrated in Figure 3. Initially, S and C come up with the two plans
π1 (going around clockwise) and π2 (going around couter-clockwise), respectively. As one can easily
verify, both plans are not lazy wrt. the respective agents. Now S starts to execute (moving from
v2 to v3). After that C has to replan (since C did not anticipate S’s move). It comes up with π3

inserting an action into the original plan π2 that undoes S’s action (without leading to a cycle in
the revised plan). Note that the resulting plan is again not lazy for C (since C acts first until S
has to move out of the way). Now, assume that C executes the first action from π3. Since C is not
following S’s plan, S comes up with a new plan π4 going around counter-clockwise. After executing
the first action of π4, C needs again to replan because the executed action deviates from C’s plan
π3. So it comes up with π5 (going around clockwise), which leads to the original configuration, if
the first action of it is executed. From this situation on, they can repeat this forever. Note that
by revising the plans, we have created a cycle in the actual execution, although every plan itself is
cycle-free.

The problem can be addressed by restricting the set of plans Π to shortest plans. We measure the
length of a plan by the number of actions it contains. In principle, we could also allow for general
cost measures, as long as they are strictly positive.
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v1 v2 v3

v4

v5v6v7

v8

π1 (S initially): 〈(S,v2,v3), (S, v3, v4), (S, v4, v5), (C, v6, v7), (S, v5, v6), (C, v7, v8),
(S, v6, v7), (C, v8, v1), (S, v7, v8), (C, v1, v2), (S, v8, v7), (S, v7, v6)〉

π2 (C initially): 〈(C, v6, v5), (C, v5, v4), (C, v4, v3), (S, v2, v1), (C, v3, v2), (S, v1, v8),
(C, v2, v1), (S, v8, v7), (C, v1, v8), (S, v7, v6)(C, v8, v1), (C, v1, v2)〉

π3 (C after (S, v2, v3)): 〈(C,v6,v5), (C, v5, v4), (S, v3, v2), (C, v4, v3), (S, v2, v1), (C, v3, v2),

(S, v1, v8), (C, v2, v1), (S, v8, v7), (C, v1, v8), (S, v7, v6), (C, v8, v1),
(C, v1, v2)〉

π4 (S after (C, v6, v5)): 〈(S,v3,v2), (S, v2, v1), (S, v1, v8), (S, v8, v7), (S, v7, v6), (C, v5, v4),
(S, v6, v5), (C, v4, v3), (S, v5, v4), (C, v3, v2)(S, v4, v5), (S, v5, v6)〉

π5 (C after (S, v3, v2)): 〈(C,v5,v6), (C, v6, v7), (C, v7, v8), (C, v8, v1), (S, v2, v3), (C, v1, v2),
(S, v3, v4), (C, v2, v3), (S, v4, v5), (C, v3, v4), (S, v5, v6), (C, v4, v3),
(C, v3, v2)〉

Figure 3: Example for infinite execution

We call a plan optimally eager with respect to agent i if it is not lazy with respect to agent
i and the set of shortest plans. Agents producing only such plans are called optimally eager
agents (Bolander et al., 2018). As can be easily seen, such agents are always successful, provided
the instance is solvable at all, as spelled out in the next Proposition.2 The reason is that all agents
produce plans of the same length, which in each execution step are shortened.

Proposition 1 For MAPF instances, joint execution and replanning of movement plans generated
by optimally eager agents is always successful, provided the instance is solvable.

Proof: We use induction over the length of the shortest plan. For the base case 0, the proposition is
obviously true. Now assume the proposition is true for all cases with length n or less. We show that
it is true for length n+ 1 as well. If there exists a shortest plan of length n+ 1, then all agents will
generate optimally eager plans with length n + 1 and therefore there is at least one agent who has
generated a plan, where the first movement can be executed by itself. After executing this action,
some of the agents have to replan, coming up with new optimally eager plans of length n. The other
agents just delete the first action of their plan. Since the action was anticipated, the remaining
plans must still be optimally eager from the perspective of those other agents. So all agents have
now optimally eager plans of length n and so the induction hypothesis applies.

This means that a form of implicit coordination can be achieved by observation and replanning
under the assumption that everybody acts rationally in the sense that only shortest plans are con-
sidered. In our example from Figure 3, for instance, C will replan to move clockwise after the first
move of S moving clockwise.

While this is good news, the bad news is that this implies that the agents have to solve an
NP-hard problem (generating a shortest eager plan) not only once, but potentially after each action
execution. Note that eagerness does not simplify the problem because any shortest plan for n agents

2. Note that this a special case of Proposition 9 in the paper by Bolander et al. (2018).
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could be transformed into an eager plan for an additional agent that sits on an isolated destination
node. On the other hand, the problem of deciding whether there exists an eager plan of length k or
less (the decision problem corresponding to the optimization problem) is not harder than deciding
whether there exists any plan of length k or less. The reason is that eagerness is defined on a set of
plans, e.g. the ones with length k or less, i.e., if there are plans of length k, then there also eager
ones.

Now the question may come up whether a computationally simpler version would be possible,
using the fact that sub-optimal plans for the MAPF problem can be generated in polynomial time as
pointed out in Section 2. Instead of trying to find the shortest, eager plan in order to avoid infinite
executions, one can restrict replanning in a way such that already executed actions have to be part
of an updated plan. In other words, when an agent has to replan, it creates the plan from the initial
configuration α0 and starts with the already executed actions.3 Agents that replan in this way are
called conservative agents. An agent is a conservative eager agent if it is eager with respect
to the agent and the set of plans containing the already executed plan as a prefix.

This way, one never will create a cyclic execution (since we assumed that plans are never cyclic),
hence, executions are always finite. Note that this condition will never lead to a dead end, because
an acting agent has always a valid plan to reach the goal configuration. Furthermore, this positive
result does not depend on generating shortest plans, so we are not forced to solve NP-hard problems.
Unfortunately, however, the polynomial upper bound for the number of movements goes out of the
window. In fact, it is easy to construct an example where the entire (exponentially sized) state space
is visited. This means, agents also have to remember exponentially many steps. Such an example
is shown in Figure 4, where dots are empty nodes, boxes denote agents occupying a node, and
destinations for the agents are specified by providing their identifiers after node names separated by
a colon.

1

v1,1

2

v2,1

3

v3,1

n
vn,1

v1,2:1 v2,2:2 v3,2:3 vn,2:n

Figure 4: Example, which may result in an exponentially long execution

In this example, each agent i wants to move from its initial location vi,1 to its destination vi,2.
An eager plan for agent 1 could look like as follows. Agent 1 moves down to v1,2. Since cycles are
not allowed, now another agent has to move, say 2. After that, 1 needs to move again (because it
is eager), and then 3 could move to its destination. All in all, the shortest eager plan will have a
length of 2n − 1 if n is odd and 2n − 2 if n is even. In general, each agent will generate a plan in
which it moves first, provided the entire configuration is not the goal configuration.

When it comes to joint execution, it could happen that the order of execution is chosen in a
way that corresponds to the bit change in a Gray counter (Gray, 1953). A Gray counter visits all
possible bit configurations but in each transition only one bit is changed. In our case, this would
amount to a move by the corresponding eager agent for each such transition. In other words, the
agents will explore the entire state space of 2n states before they stop in the goal configuration.

Proposition 2 For MAPF instances, joint execution and replanning of movement plans gener-
ated by conservative eager agents is always successful, provided the instance is solvable. However,
executions can have a length exponentially longer than the plan by a single agent.

3. This is somewhat similar to tabu search (Glover, 1986).
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Thus, it appears to be the case that when communication between the agents in the form of pub-
lishing a common plan is not possible, one has to tolerate high worst-case computational costs, either
in form of solving NP-hard problems or in producing and remembering potentially exponentially long
plans.

4. MAPF with Destination Uncertainty

Let us generalize the MAPF problem to a setting where the agents are only partially informed about
the destinations of the other agents. This means that the goal configuration α∗ is not common
knowledge any longer, but only the agent itself knows its own destination. Common knowledge
are the possible destinations for each agent, formalized by a destination function β : A → 2V ,
with the constraint that for all i ∈ A either the real destination is among the possible ones, i.e.,
α∗(i) ∈ β(i), or β(i) = ∅, because agent i already arrived (and is not allowed to move anymore). We
require further that all combinations of possible destinations are consistent, i.e., β(i) ∩ β(j) = ∅ for
all i 6= j ∈ A.4 We, of course, still assume that all agents are cooperative, i.e., that they want to
reach the goal configuration α∗.

Furthermore, we add a success announcement action for each agent. This action can be executed
when the agent has reached its destination. Only by using such an action, the agents can establish
common knowledge that they all have reached their respective destinations. We require that after
the announcement the agent is not allowed to move anymore. However, an agent might visit its
true destination without revealing it. We call this variation of the MAPF problem the multi-agent
path-finding with destination uncertainty or MAPF/DU problem .

One may question whether the condition of requiring the agent not to move after its success
announcement is reasonable from a practical point of view and one may want to know whether
other options are possible. First, when considering robots moving in an open space where they can
observe each other, it is often very obvious when they have arrived at their destination. For example,
logistics robots may load or unload packages, which is observable by the other robots. Airplanes
moving on the ground stop moving either when they have arrived at a gate or after they leave the
system via a runway.

Second, one could, of course, consider other options for the rules around a success announcement.
For example, one could impose that an agent has to stop and announce success whenever it is on
a node that is the actual destination of the agent. This would render many problem instances
unsolvable, e.g. the one in Figure 1. A more liberal version would be to allow an agent to announce
their destination when they are on the node without being forced to stay put. While it is not obvious
whether the results in this section all apply to these two variations of the problem, it is obvious from
the proof of Theorem 11 that the PSPACE-hardness result applies.

4.1 State Space and Solution Concept

In the original MAPF problem, the state space for the planning process is simply the space of all
configurations α of the agents in the graph. For the MAPF problem with destination uncertainty
we also have to take into account the possible belief states of all the agents. For this reason, we have
to make the possible destination function part of the state space as well, i.e., an objective state is
now the tuple s = (α, β), which captures the common knowledge of all agents.

A MAPF/DU instance MDU = 〈A,G, s0, α∗〉 is given by the set of agents A, the graph
G = (V,E), the initial objective state s0 = (α0, β0), and the goal configuration α∗. Movement
actions change the configuration α, while success announcements change the destination function

4. Without this constraint, we either would allow for inconsistent potential goal configurations or, excluding them,
we would introduce a form of disjunction over goal configurations concerning more than one agent. By that, the
analysis of the problem would become much more involved, leading to complications with perspective shifting and
the reduction to stepping stones as spelled out in Lemma 4.
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β. If an agent i makes a success announcement while being in location v, we change the destination
function to β[i/∅], signaling that the agent has reached its destination and is not allowed to move
anymore. The goal state is reached if for all agents i, α(i) = α∗(i) (the destination has been reached)
and β(i) = ∅ (success has been announced).

When an agent i is starting to generate a plan, the agent knows, of course, its true destination
α∗(i). The subjective view of the world is captured by the tuple (α, β, i, α∗(i)), which we call sub-
jective state of agent i. Given a subjective state (α, β, i, α∗(i)), we call (α, β) the corresponding
objective state . Using its subjective state, agent i can plan to make movements that eventually
will lead to a goal state. Most probably, it will be necessary to plan for other agents to move out
of the way or to move to their destination. So, the planning agent has to put itself into the shoes
of another agent j: i must make a perspective shift taking j’s view. Since i does not know the true
destination of j, i must take all possibilities into account and plan for all of them. In other words, i
must plan for j using all possible subjective states of j: sjv = (α, β, j, v) for v ∈ β(j). When planning
for each possible destination of j, the planning agent i must pretend not to know the true destination
of itself because it plans with the knowledge of agent j, which is uncertain about i’s destinations.

All in all, a plan in the context of MAPF with destination uncertainty is no longer a linear
sequence, but a branching plan. Furthermore, it is not enough to reach the true goal state, but the
plan has to be successful for all possible destinations of all the agents (except for the starting agent
i, who knows its own destination). Such a branching plan is formally defined as follows. Let ak
be an basic action . This can be a movement action , as before, i.e., (i, x, y) for agent i moving
from x to y. In addition, there are success announcement actions by agent i, denoted by (i,S).
Using basic actions ak, one can form a (perhaps empty) action sequence :5

σ ::= a1, . . . , an (with n ≥ 0)

A branching plan π is now such a sequence σ, followed perhaps by a perspective shift δ to another
agent j:

π ::= σ | σδ,

with
δ ::= [j : (?vj1 : π1, . . . , ?vjm : πm)] | [j : π].

If a perspective shift has the first form, then one branches over all possible destinations of j:
β(j) = {vj1 , . . . , vjm}, i.e., agent i considers all destination possibilities for agent j. We call such a
perspective shift branching point of the plan. If a perspective shift has the second form, then the
perspective is shifted to agent j, but no branching on the possible destinations of j is performed.

Such branching plans correspond roughly to what has been termed policy in the more general
context of implicitly coordinated epistemic planing (Bolander et al., 2018; Engesser et al., 2017). In
order to illustrate the concept of a branching plan, let us consider a simplification of our example
from the Introduction (see Figure 5). Let us assume that S moves first to v4. Now S puts itself

v1 v2

v3v4

Figure 5: Small example

(S, v1, v4), [C: (?v1 : (C, v2, v1), (C,S), [S : (?v2 : (S, v4, v3), (S, v3, v2), (S,S))
(?v3 : (S, v4, v3), (S,S))])

(?v4 : (C, v2, v1), [S : (?v2 : (S, v4, v3), (S, v3, v2), (S,S),
[C: (?v4 : (C, v1, v4), (C,S))

(?v1 : (C,S))])
(?v3 : (S, v4, v3), (S,S),

[C: (?v4 : (C, v1, v4), (C,S))
(?v1 : (C,S))])])]

Figure 6: Branching plan for this example

5. We use BNF-like rules to introduce the language of branching plans, using “::=” as the meta-symbol for a syntactic
definition and “|” as a meta-symbol for disjunction.
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into the shoes of C and reasons about what C would do, if v1 is C’s destination, and how C would
continue if v4 is C’s destination. In the former case, C moves to v1 and announces that it has
reached its destination. In the other case, it will also move to v1, offering S the possibility to move
to its destination, whether it is v2 or v3. After that, C could move to its destination. All in all,
a branching plan could look as depicted in Figure 6. A visualization of the branching plan that is
much easier to read is the plan tree as depicted in Figure 7.

(S, v1, v4)

C:

(C, v2, v1) (C, v2, v1)

S:

?v1 ?v4

(C,S) (S, v4, v3)

?v2

(S, v4, v3)

?v3

(S,S)

C:

(C, v1, v4)

?v4

(C,S)

?v1

(C,S)

S:

(S, v4, v3) (S, v4, v3)

?v2 ?v3

(S, v3, v2) (S,S)

(S,S)

(S, v3, v2)

(S,S)

C:

(C, v1, v4)

?v4

(C,S)

(C,S)

?v1

Figure 7: Branching plan depicted as a plan tree

An execution trace of a branching plan π is a sequence of basic actions and destination
assumptions of the form (i : vi) for agent i with destination vi. An execution trace of the plan
π = σ is formed by the sequence σ of basic actions. If the plan contains also a perspective shift, i.e.,
π = σδ, and δ = [j : (?vj1 : πj1 , . . . , ?vjm : πjm)], then one execution trace of π is σ followed by the
destination assumption (j : vk), followed by an execution trace of πjk , for some k ∈ {1, . . . ,m}. If we
have an unconditional perspective shift δ = [j : π], then we use the destination assumption (j : ⊥),
i.e., j does not make any assumption about its destination. Using again our example, one execution
trace of the branching plan depicted in Figure 7 formed by following the leftmost branches would
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look as follows:

(S, v1, v4), (C : v1), (C, v2, v1), (C,S), (S : v2), (S, v4, v3), (S, v3, v2), (S,S). (1)

Such an execution trace describes one possible execution of the plan. Movements change the config-
uration α, success announcements change the common knowledge β, and destination assumptions
change the subjective perspective from one agent to another one. In order to be able to say when
such an execution is successful, we define the subjective view of executing a trace formally.

The subjective semantics of an execution trace is defined by mapping the subjective state of the
acting agent i and a given execution trace to a subjective state of an agent j (where i = j is possible).
Given a graph G = (V,E), a subjective state si = (α, β, i, v) and an execution trace χ of a plan
π, we define the subjective outcome of executing a trace χ in si as follows (where we assume
that a;χ′ is the trace formed by action a followed by the trace χ′):

sexec(si, χ) =

{
si, if χ = 〈 〉
sexec(sexec(si, a), χ′), if χ = a;χ′.

(2)

In other words, if the execution sequence is empty, then the subjective state is mapped to itself. If
it is non-empty, then a new subjective state is computed based on the first action of the trace and
then the subjective outcome function is applied to the new subjective state and the remaining part
of the trace. The subjective outcome of executing a single action a in si = (α, β, i, w) is then
defined as:

sexec((α, β, i, w), a) =



(α[i/v′], β, i, w) if a = (i, v, v′),
β(i) 6= ∅,
α(i) = v, (v, v′) ∈ E,
and there is no j : α(j) = v′,

(α, β[i/∅], i, w), if a = (i,S) and α(i) = w,
(α, β, j, v) if a = (j : v),
undefined otherwise.

(3)

The first clause in Eq. 3 applies to executing movement action (i, v, v′) and requires that the
moving agent i is the one mentioned in the subjective state, that the agent should be allowed to
move according to β(i) and that the move should be legal. The effect is that the configuration α
changes. Applied to our example in Figure 5 and assuming that the initial subjective state of agent
S is (α0, β0, S, v3), then executing the first action (S, v1, v4) of our trace (1) leads to the following
subjective state:

sexec((α0, β0, S, v3), (S, v1, v4)) = (α0[S/v4], β0, S, v3). (4)

The second clause in Eq. 3 describes under which conditions a success announcement can be made
and what the result of it is. The third clause describes the effect of executing a destination as-
sumption. Let us again apply it to our example and compute the subjective state that results from
applying the second action of our trace (1) to the subjective state (α0[S/v4], β0, S, v3):

sexec((α0[S/v4], β0, S, v3), (C : v1)) = (α0[S/v4], β0, C, v1) (5)

An execution trace is called successful if its outcome is defined and in the resulting state it is
common knowledge that all destinations have been reached, i.e., β(i) = ∅ for all agents i. We call
a plan i-successful , if when started in the subjective state (α0, β0, i, α∗(i)), all its execution traces
are successful.

Furthermore, we call a plan i-covering , if for each configuration α′ with α′(j) ∈ β(j), for all
j, and α′(i) = α∗(i), there exists a successful execution trace ending in the configuration α′, when
execution is started in (α0, β0, i, α∗(i)).
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Note that in principle an i-successful branching plan does not need to be i-covering, because
there may be some combinations of destinations missing. Neither is an i-covering plan necessarily
i-successful, because it could be that some traces lead, e.g., to undefined results.

Finally, we say that an execution trace is cycle-free if it never visits the same objective state
(α, β) twice. This implies that one could revisit a configuration α if the uncertainty had been reduced
meanwhile. A plan is said to be cycle-free , if all of its execution traces are cycle-free.

In analogy to the notion of strongness in planning under partial observability for one agent
(Bertoli, Cimatti, Roveri, & Traverso, 2006), we call a branching plan i-strong for an objective
state (α, β), if it is i-covering, i-successful and cycle-free. If such an i-strong plan exists for a
MAPF/DU instance MDU , then MDU is said to be i-solvable. Note that in our setting, i-success
already implies i-covering, because we require that at all branching perspective shifts all possible
destinations of an agent are considered.

Proposition 3 If a plan is i-successful then it is also i-covering.

Proof: LetMDU = 〈A,G, (α0, β0), α∗〉 be a MAPF/DU instance, π be an i-successful plan, and α′

a configuration such that α′(j) ∈ β(j), for all j, and α′(i) = α∗(i). Extract an execution trace χ from
π by selecting at each branching point with a perspective shift to agent j the branch corresponding
to α′(j). This is possible since we required that for each perspective shift to agent j, the split is
either on all possible destinations β0(j) or the shift is unconditional (j : ⊥). Since π is i-successful, χ
is successful. Because of the semantics of success announcements (j,S), agent j can only announce
its destination if it is on the vertex that had been mentioned in the last destination assumption
(j : α′(j)), which implies that in the resulting state of χ, all agents j have reached their respective
destinations α′(j). Since α′ was chosen arbitrarily, this holds for all possible α′.

The plan shown in Figure 6 (depicted as a tree in Figure 7) is an S-strong plan, because it is
cycle-free, all its execution traces lead to states in which all destinations are common knowledge,
and all possible destinations of C are covered. Some of the execution traces look peculiar, though.
If we follow the rightmost branches in Figure 7, we notice that after the move by S, we make the
assumption that C’s destination is v4. Further down in the plan tree, we then make the assumption
that C’s destination is v1. While this sounds inconsistent, and in fact no possible execution will
follow this path, it is nevertheless necessary to consider this case, because when S plans from
the perspective of C after having made it success announcement, it cannot know what the right
assumption is, and so it has to consider both possibilities (again).

Defining a cost measure for branching plans is not as straight-forward as it is for linear plans.
First of all, we only assign costs to basic actions and not to perspective shifts. Second, we are
interested in the worst-case costs, i.e., the longest execution. We define the execution costs of a
branching plan to be the number of basic actions (movements and success announcements) of the
longest execution trace. As mentioned above, there exist execution traces of a branching plan with
inconsistencies concerning the assumptions about the destinations of the agents as in the rightmost
path of the plan in Figure 7. We consider these traces as relevant, though, because they reflect the
belief about possible executions from a subjective point of view.

4.2 Stepping Stones and a Polynomial Cost-Bound

When solving a MAPF/DU instance, one encounters configurations that are a great step forward to
a solution. In a configuration, where an agent i can reach all its possible destinations without the
necessity that other agents have to move out of the way, the agent has the freedom to move to its true
destination and to announce its success. If one can now guarantee that for each possible destination
of i, the remaining problem can be solved, then one has made a significant step ahead. We call such
situations stepping stone configurations. Formally, an objective state (α, β) is a stepping stone for
i if:
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1. For each v ∈ β(i), the node v can be reached by i from the configuration α without the
necessity that other agents have to move, resulting in α[i/v];

2. for all v ∈ β(i), there exists an i-strong plan from the objective state (α[i/v], β[i/∅]).

An example for a stepping stone for agent S appears during the execution of the plan in Figure 7
after having made a perspective shift to C assuming that the destination is v4 and having executed
(C, v2, v1). S can now freely move to v2 or v3 and in each case the remaining problem is solvable.
We call the perspective shift to agent S and the following movements up to the announcements a
stepping stone utilization .

Stepping stone utilization is actually the backbone for solving MAPF/DU problems. As a matter
of fact, a branching that is not a stepping stone utilization can be simplified. In a non-stepping stone
branching point, it is enough to consider one branch that does not end in a success announcement
and to prune the other branches away, as spelled out in the next Lemma.

Lemma 4 Let π be an i-strong branching plan for a MAPF/DU instance 〈A,G, (α0, β0), α∗〉 and let
π′ = σ[j : (?vj1 : σ1δ1), . . . , (?vjm : σmδm)] be a sub-plan of π, such that for some k, 1 ≤ k ≤ m, σk
does not end in a success announcement action. Then the plan π∗, where π′ is replaced by σ[j : σkδk],
is still an i-strong plan.

Proof: Assume π and π′ as in the proposition. Assume χ is the execution trace leading to π′.
Shifting the perspective to j results in the subjective states (α, β, j, vl), 1 ≤ l ≤ m.

If β(j) = ∅, then j has already announced success and cannot move anymore. This means that
all σl must be empty (and none of them ends in an announcement). Since all execution traces of
π are successful, starting at the subjective state of i, all execution traces of δl for all 1 ≤ l ≤ m
concatenated to χ must be successful. So we can simply choose one and replace π′ by σ[j : σkδk],
for any k. The resulting plan will be still i-successful.

If β(j) 6= ∅, then j still has to move to its destination. Let σk be a sequence not ending in
(j,S). This means that σk does not affect β. Since all execution traces of σkδk concatenated to χ
are successful, these traces will lead to β(h) = ∅ for all agents h. So it is enough to use the sub-plan
σ[j : σkδk] instead of π′ inside π, resulting in π∗, which is then still i-successful.

Since by removing parts of the plan, we never can add an execution cycle, the plan will still
be cycle-free. Because i-success implies i-covering (Proposition 3), the resulting plan will still be
i-strong.

As an example application of the Lemma, consider again the plan in Figure 7. The first split on
destinations of C is actually not necessary. We could simply use the right branch unconditionally
and prune away the left branch. All in all, this means that the only necessary branching points in
a plan are stepping stone utilizations.

Theorem 5 (Stepping Stone) If there exists an i-strong plan with execution costs k, then there
exists an i-strong plan with execution costs k or less such that the only branching points are stepping
stone utilizations.

Proof: Let π be an i-strong plan with execution costs k. By Lemma 4, all branching points of π
that are not stepping stone utilizations can be removed. Since pruning a branching plan can only
decrease execution costs, the resulting plan cannot have higher execution costs than the original
plan.

One interesting consequence of the Stepping-Stone Theorem is that if an instance is solvable,
then it is possible to generate a branching plan such that none of its execution traces will contain
inconsistent destination assumptions, because each execution trace contains only one destination
assumption different from⊥ for each agent. Another consequence is an upper bound for the execution
costs of branching plans.
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Theorem 6 (Polynomial cost bound) IfMDU = 〈A, (V,E), (α0, β0), α∗〉 is i-solvable, then there
exists an i-strong branching plan with execution costs bounded by O(|V |4).

Proof: By Theorem 5, we only need to consider branching plans that split on destinations when
it is a stepping stone utilization. This means that each execution trace proceeds from one stepping
stone to the next one. As Kornhauser et al. Kornhauser et al. (1984) have shown, there are at most
O(|V |3) many movements necessary to transform one configuration into another one. So, if there
exists any i-strong branching plan, then, since |A| < |V |, there will be one that has a worst-case
execution trace of length O(|V |4).

5. Joint Execution of MAPF/DU Branching Plans

As in the case with full information, we would like to execute branching plans jointly and guarantee
that we reach the goal state after finitely many steps—perhaps using replanning on the way. Joint
execution should mean here that all agents follow their plans using their own perspective. In par-
ticular, when an agent i comes to the point where its plan branches according to its own possible
destination, it should follow its private knowledge α∗(i). As in the full information case, we will
assume an asynchronous execution regime, where one of the agents that wants to act is chosen and
its movement or announcement is executed. Afterwards the other agents follow their original plans,
if they are still compatible, or they have to replan.

In order to make this notion of joint execution more precise, let us first introduce the notion
of an observed action sequence ω, which is the finite sequence of basic actions executed by the
agents so far. The semantics of such a sequence is given by the objective outcome of executing
ω in objective state s = (α, β):

oexec(s, ω) =

{
s, if ω = 〈 〉
oexec(oexec(s, a), ω′), if ω = a;ω′,

(6)

where the objective outcome of executing a in (α, β) is defined as:

oexec((α, β), a) =



(α[i/v′], β) if a = (i, v, v′),
β(i) 6= ∅,
α(i) = v, (v, v′) ∈ E,
and there is no j : α(j) = v′,

(α, β[i/∅]) if a = (i,S),
undefined otherwise.

(7)

Comparing the subjective semantics (Eq. 2–3) with the objective one (Eq. 6–7), one notes that
the only difference is the absence of destination assumptions in the objective semantics, both as part
of the state and as a possible action.

We say that an observed sequence ω matches an execution trace χ of a plan π, if the action
sequence is a prefix of the execution trace, ignoring all destination assumptions. The remaining part
of the trace is called the unmatched tail , denoted by χ\ω. Further, an i-compatible execution
trace is a trace such that all destination assumptions for i use the actual destination of agent i, i.e.,
they are of the form (i : α∗(i)).

Joint execution of MAPF/DU branching plans now proceeds as follows. All agents i that
have formed an i-strong plan πi from some objective state (αi, βi) consider all i-compatible execution
traces χi

k that match the observed action sequence ωi, which started in (αi, βi). If for agent i, the
first action of all unmatched tails χi\ωi

k is one of i’s basic actions, we say that agent i wants to
act . One of these agents that want to act is then chosen and the corresponding action, say a, is
executed modifying the current objective state (α, β) to (α′, β′) = oexec((α, β), a) and extending
the individual observed action sequences to ω′i = ωi; a for all agents i. All agents that have a plan

511



Nebel, Bolander, Engesser & Mattmüller

that contains i-compatible execution traces matching ω′i do not need to replan. All others have to
replan from (α′, β′). This continues until no agent wants to act any more.

Hopefully, an objective state (α∗, β) with β[i] = ∅ for all i has been reached by then. However,
while such a goal state might not be reached, because, e.g., all agents want others to act or agents go
into infinite execution cycles, it is clear that the outcome of executing an observed action sequence
of finite length ω generated by joint execution of i-strong plans is always defined (because ω is
always the prefix of an execution trace of some i-strong plan). Moreover, if an objective state is
reached such that all agents have announced success, then the agents must have reached the goal
configuration α∗ (because all agents use only i-compatible execution traces to choose their actions).

Proposition 7 Let ω be the observed action sequence resulting from joint execution of i-strong plans
on the MAPF/DU instance 〈A,G, (α0, β0), α∗〉 that cannot be extended any more by the execution
process. Then oexec((α0, β0), ω) is defined. Further, if (α, β) = oexec((α0, β0), ω) and β(i) = ∅ for
all i, then α = α∗.

5.1 Objective and Subjective Solvability

In contrast to the full information case, it now can happen that agents have a different perspective
and therefore judge the solvability differently. Consider the example in Figure 8, where our usual
suspects are joined by triangular agent T .

v1 v2 v3 v4 v5

v6

Figure 8: Subjectively but not objectively solvable MAPF/DU instance

From T ’s perspective, the instance does not appear to be solvable, i.e., there is no T -strong plan.
The reason is that from T ’s perspective, it could be possible that S has to move to the empty square
and C has to move to the empty circle, and there is no way that the two agents can both reach these
destinations. However, S is able to form an S-strong plan: First go to v1, then announce success.
This results in a stepping stone for C, so that C can reach its destination and announce success,
after which T finally can make the last move and announce success as well. From C’s perspective,
it looks similar. So, this instance is S- and C-solvable, but not T -solvable. We call an instance
subjectively solvable , if it is i-solvable for some agent i. In contrast, we also consider objective
solvability , which means that the objective state (α0, β0) is solvable without having information
about the destination of the agent that moves first. A branching plan accomplishing that, i.e., a plan
that is i-strong for every agent i, is called objectively strong plan .6 Clearly, objective solvability
implies subjective solvability, but not the other way around.

Note that plans that are i-strong but not objectively strong have a special structure. They
consist of an initial movement sequence by agent i, followed by a success announcement, followed by
a perspective shift to another agent. The reason for the success announcement immediately before
the perspective shift is that without it, the plan would be objectively strong, which we assumed it
is not.

One question that may come up in this context is whether it could happen, that a MAPF/DU
instance is i-solvable for all agents i, but not objectively solvable. The example in Figure 8 can
be easily modified to arrive at such an example. Let us eliminate agent T . Then it is clear that

6. Note that a problem being objectively solvable does not mean that it is only solvable when the destinations are
known, that is, it is not planning from an omniscient, centralized perspective. It is still planning under destination
uncertainty, it just means that it is planning where all destinations are taken to be uncertain.
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the instance is S- and C-solvable. However, there does not exist an objectively strong plan. In
order to show this, let us consider plans, where agent C starts to move. We could initially split on
C’s destinations. If it is v5, then C moves there, announces success, and then S could move to its
destination. If instead C’s destination is v2, then it could move to v6. However, this is not a stepping
stone for S, because if C’s destination is v5, then this might not be reachable after S moved to v4.
So, there is no objectively strong plan.

One might argue, however, that after agent C moved to v6, agent S knows that C’s destination
cannot be v5. Otherwise it would have moved there immediately and had announced success,
enabling S to complete the task. Based on the conclusion that C’s destination cannot be v5, S can
move to its destination (whether it is v1 or v4) announcing success, and then wait for C to complete
the task. While this sounds rational, it is not a objectively strong plan in the sense we defined
it here. The reason is that we took into account information from the history in order to prune
possible destinations. This appears to be very similar to what has been called forward induction in
game theory (Battigalli & Siniscalchi, 2002), however, it is not clear how to incorporate this into
our framework in a general way.

5.2 Success Guarantees for Conservative Eager MAPF/DU Agents

As in the full information case, lazy agents will probably be able to provoke a deadlock. So, what is
a lazy plan in this context? It is a plan where at some point an action of another agent is planned
for, although an action by the original agent would have been possible. So, formally, an i-strong
plan is a lazy branching plan relative to agent i and a set of plans if it contains an execution
trace such that the k+ 1th action is by agent j 6= i and there exists another i-strong plan in this set
of plans containing an execution trace that is identical up to the kth action, but the k + 1th action
is one by agent i. The branching plan depicted in Figure 7 is lazy with respect to agent S and all
S-strong plans since S could have moved to v3 after its first move, and still one could extend this
plan successfully to an S-strong plan. As in the full information case, agents that could generate
lazy plans are called lazy agents. Agents that do not generate lazy plans are called again eager
agents.

That eager agents avoid deadlocks may be less obvious than in the full information case. However,
assume that we have a deadlock for an objectively solvable instance. Then there must be an agent
i which prescribes the execution of an action of agent j, which in turn has a plan that prescribes
that another agent should act. However, the plan by i, which must be an objectively strong plan,
could obviously be executed by j. Since j is eager, it should have adapted this plan instead of one,
where it does not act. In case of instances that are only subjectively solvable, one agent i must have
formed an i-strong plan, and so no deadlock is possible.

However, we run into the same problem as in the full information case, i.e., joint executions
with replanning might lead to non-terminating executions. In the full information case, one way to
guarantee termination of executions was to insist on conservatism. In the new setting, we require that
for an agent i to be conservative it needs to replan from the initial configuration (α0, β0) generating
a conservative i-compatible branching plan , i.e., a plan that contains an i-compatible execution
trace that matches the observed action sequence.

This requirement, however, is not enough. In order to account for instances that are only
subjectively solvable as in Figure 8, which we want to be able to deal with, we need to redefine
the notion of conservatism somewhat. In order to be able to generate a conservative plan for T in
Figure 8 after S has announced success, we need to modify the initial belief state. Changing the
initial belief state in a form so that the true destination of S is known in the initial state, would be
enough.

So, for conservative replanning , we require that after each success announcement of an agent
i, the initial objective state (α0, β0) will be modified to an objective state such that all agents know
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the destination of agent i who just announced success:

(α′0, β
′
0) =

(
α0, β0

[
i/{α∗(i)}

])
. (8)

This permits all agents to form a plan that contains as an initial part the already executed actions
and will perhaps prune away some branches of the original plan, potentially reducing the execution
costs. Agents using this replanning scheme and are eager with respect to conservative plans are
called again conservative eager agents.

Interestingly, this will lead to the following behavior when replanning conservatively on instances
that are only subjectively solvable. If an instance is not objectively but only subjectively solvable,
this means that all of the agents that have an i-strong plan will have planned to move to their
known destination α∗(i) and announce success, as mentioned in Section 5.1. Now, if one agent i is
chosen to make the first move, no other agent will be able to replan conservatively, i.e., the other
agents “loose” their solutions. The reason is that after the first move of i, all of the other agents
have to replan starting from the initial state for i to move first, implying a perspective shift to i
initially. Since the instance is not objectively solvable, the other agents cannot find such a plan and
the only agent with a plan will be agent i which moved first. Only, after i reaches its destination
and announces success, then the remaining configuration is objectively solvable, because i had to
plan for all possible destinations of the other agents. And now all other agents can come up with a
conservative plan using the modified initial objective state.

This behavior can be seen in the example of Figure 8. After S moves to v1, C needs to replan.
Replanning conservatively, it tries to find a plan with S making the first move, but will not find it.
Only after the success announcement by S on v1, both C and T are able to form a plan starting at
the modified initial state.

Since the state space is finite, and all acting agents know how the plan can be completed,
conservative replanning is always successful. However, since distributed MAPF as characterized
in Section 3 is a special case of MAPF/DU, executions can, of course, grow to a length that is
exponentially larger than the execution costs of the shortest plan.

Proposition 8 For MAPF/DU instances, joint execution and replanning of movement plans gen-
erated by conservative eager agents is always successful, provided the instance is solvable. However,
executions can be exponentially longer than the execution costs of an i-strong plan.

5.3 Optimally Eager MAPF/DU Agents

In the full information case, focusing on minimal-length plans saved us. The hope could be that it
is possible to generalize this to branching plans with minimal execution costs. Agents that are eager
with respect to plans with minimal execution costs are called optimally eager agents, as in the
full information case.

In the more general case of epistemic planning it has been shown that optimally eager agents can
still end up in infinite executions (Bolander et al., 2018). Whether it leads to infinite executions in
our more specialized setting case is not immediately clear. We will now show that indeed this can
happen.

Consider the MAPF/DU instance in Figure 9 with two agents named 1 and 2 initially located
at v1 and v6, respectively. The non-actual possible destinations are marked by agent identifiers
in parenthesis after the colon, while the actual destinations are shown without parenthesis. Edges
labelled by numbers are shorthand for simple paths of that length. For each agent i and configuration
α, we define dist(i, α) as the length of the shortest unblocked path from α(i) to the actual destination
of agent i. Some relevant values of dist(i, α) are provided in Table 1. Furthermore, for each
agent i and all vertices vj we define maxdist(i, vj) to be the maximal distance from vj to any
possible destination of agent i. All values of maxdist(i, vj) are provided in Table 2. We also define
dist+(i, α) = dist(i, α) + 1 and maxdist+(i, vj) = maxdist(i, vj) + 1.
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v3 : 1

v2 : (2) 2
v6

1v1

v5

v4 : 2

v7 v8 v9 : (1)
6 3 6

Figure 9: Counter example: Initial state

i α(1) α(2) dist(i, α)
2 v1 v6 3
1 v1 v7 6
1 v5 v6 8

Table 1: Some relevant values of dist(i, α).

vj maxdist(1, vj) maxdist(2, vj)
v1 9 4
v2 9 4
v3 10 5
v4 9 4
v5 8 3
v6 8 3
v7 7 2
v8 6 3
v9 10 9

Table 2: All values of maxdist(i, vj).

In any configuration, agent i can consider three different types of strategies:

MoveToGoal Agent i moves directly to its actual destination, announces success and then agent
3− i completes the task.

MoveToTemp Agent i moves to some temporary position after which agent 3− i executes its first
action. After this, there can be any interleaving of actions between the two agents until the
goal is reached.

Wait Agent i waits for agent 3− i to execute the first action. After this first action, there can be
any interleaving of actions between the two agents until the goal is reached.

Now note that when agent i considers any optimally eager strategy from a configuration α, the
worst-case total number of actions of agent 3− i must be at least maxdist+(3− i, α(3− i)): agent
i doesn’t know the true destination of agent 3 − i, so in the worst case agent 3 − i has to move
to its furthest possible destination followed by an announcement of success. When i in particular
considers the MoveToGoal strategy, the worst-case number of actions of agent 3 − i is exactly
the value maxdist+(3 − i, α(3 − i)): Agent i first moves to its actual destination and announces
success, and thereafter agent 3− i moves to its furthest possible destination and announces success
(this rests on the property that no shortest path to any free vertex is blocked when agent i is in
its actual destination). So the execution costs of the full MoveToGoal strategy for agent i in a
configuration α must be dist+(i, α) + maxdist+(3 − i, α(3 − i)). Table 3 provides some relevant
values of the execution costs of the MoveToGoal strategy, derived from Tables 1 and 2.

When agent i considers the MoveToTemp and Wait strategies, the worst-case total number
of actions of i itself must be at least maxdist(i, α(i)): Agent i moves to its destination after at least
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i α(1) α(2) dist+(i, α) +maxdist+(3− i, α(3− i))
2 v1 v6 14
1 v1 v7 10
1 v5 v6 13

Table 3: Some execution costs of the MoveToGoal strategy

α(1) α(2) maxdist+(1, α(1)) +maxdist+(2, α(2))
v1 v6 14
v1 v7 13
v5 v6 13
v5 v7 12
v5 v8 13

Table 4: Some lower bounds on the execution costs of the MoveToTemp and Wait strategies.

one action of agent 3− i, and the number of actions of i will hence be assessed from the perspective
of agent 3 − i. So optimally eager MoveToTemp or Wait strategies from a configuration α will
have a execution costs of at least maxdist+(1, α(1)) + maxdist+(2, α(2)). In Table 4 we provide
some relevant values of this lower bound on the MoveToTemp and Wait strategies, derived from
Table 2.

We now demonstrate that for optimally eager agents it is possible to create an execution sequence
that leads to an execution cycle in the objective state space. We start by considering the initial
configuration α from Figure 9.

α(1) = v1, α(2) = v6: We consider the possible strategies of agent 2 in this configuration. From
Table 4 we can conclude that the MoveToTemp and Wait strategies have at least execution costs
14. The execution costs of the MoveToGoal strategy are also 14, according to Table 3. Hence
an optimally eager agent 2 will choose the MoveToGoal strategy, and in the execution where it
gets to move first, it will move to the first vertex on the shortest unblocked path to its destination,
which is v7. This leads to the following configuration.

α(1) = v1, α(2) = v7: We consider the possible strategies of agent 1 in this configuration. From
Table 4 we can conclude that the MoveToTemp and Wait strategies have at least execution costs
of 13. The execution costs of the MoveToGoal strategy are 10, according to Table 3. Hence an
optimally eager agent 1 will choose the MoveToGoal strategy, and in the execution where it gets
to move first, it will move to the first vertex on the shortest unblocked path to its destination, which
is v5. This leads to the following configuration.

α(1) = v5, α(2) = v7: We consider the possible strategies of agent 2 in this configuration. This case
is more involved. Agent 2 cannot follow a MoveToGoal strategy, as all paths to its destination
are blocked. So agent 2 has to follow either a Wait or MoveToTemp strategy. We first consider
Wait. By the Wait strategy, agent 1 first executes a number of action k for some k ≥ 1. Since
agent 2 is blocking access to one of the possible destinations of agent 1, these k actions doesn’t
bring agent 1 to its destination in the worst case. Afterwards, agent 2 executes l actions for some
l ≥ 1. These l actions are seen from the perspective of agent 1, since agent 2 acts after agent 1.
In the worst case, these l actions can then not end with agent 2 announcing success, since one of
the possible destinations of agent 2 is blocking the destination of agent 1. Hence, after these first
l + k actions leading to a configuration α′, there are still execution costs of maxdist+(1, α′(1)) +
maxdist+(2, α′(2)). Note that the first k moves of agent 1 cannot have led it to any vertex on
the path from v7 to v9 since this path was blocked by agent 2 when agent 1 had moved. Hence
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maxdist+(1, α′(1)) ≥ 9, according to Table 2. From the same table we get that maxdist+(2, α′(2)) ≥
3. Hence the total execution costs of the Wait strategy are at least l+k+9+3 ≥ 1+1+9+3 = 14.

Consider now the possible MoveTemp strategies of agent 2. A concrete MoveTemp strategy for
agent 2 is to move to v6, followed by 1 moving to its destination and announcing success, followed by 2
completing the task. The execution costs of this strategy are 1+maxdist+(1, v5)+maxdist+(2, v6) =
14, using Table 4. We will now show that this strategy has minimal execution costs among the
MoveTemp strategies. Consider any MoveTemp strategy where agent 2 initially makes k moves.
Now note that since the shortest path between v2 and v4 (the two possible destinations of agent 2)
is 4, then maxdist(2, vj) ≥ 2 for all nodes vj . Then depending on the value of k, we can give the
following lower bounds on the execution costs:

• k = 1: We already considered the case of agent 2 moving to v6. The only other option is
moving to v8. This gives a lower bound on the execution costs of k + maxdist+(1, v5) +
maxdist+(2, v8) = 1 + 13 = 14, using Table 4.

• k ≥ 2: A lower bound on the execution costs is k +maxdist+(1, v5) +min{maxdist+(2, vj) |
vj is any node} ≥ 2 + 9 + 3 = 14, consulting Table 2.

This proves that moving to v6 is optimal among the MoveToTemp strategies of agent 2. Since
the Wait strategy has the same costs, moving to v6 is the first step on an optimally eager plan for
agent 2. An execution where this move is made by agent 2 leads to the following configuration.

α(1) = v5, α(2) = v6: We consider the possible strategies of agent 1 in this configuration. From
Table 4 we can conclude that the MoveToTemp and Wait strategies have at least execution costs
of 13. The execution costs of the MoveToGoal strategy is also 13, according to Table 3. Hence
an optimally eager agent 1 will choose the MoveToGoal strategy, and in the execution where it
gets to move first, it will move to the first vertex on the shortest unblocked path to its destination,
which is v1. This finally brings the execution back to its initial state.

We have now shown how it is possible to create an execution cycle in the objective state space.
So, in contrast to our positive result for distributed MAPF in Proposition 1, we now have a negative
result.

Proposition 9 For MAPF/DU instances, joint execution and replanning generated by optimally
eager agents is not always successful, even when the instance is objectively solvable.

5.4 Conservative, Optimally Eager MAPF/DU Agents

The above example highlights two problems. First, since an acting agent knows its actual destination
in the beginning, it considers the execution costs differently from all the other agents. Second, by
replanning from a configuration another agent has created, it can happen that the execution costs
increase, leading to the cycle shown above.

One way to address this problem is conservatism. As was noted above in Proposition 8, conser-
vatism alone is already enough for eager agents to guarantee success. However, we want, of course,
to get rid of the exponential execution length! And so we consider conservative, optimally eager
agents which plan conservatively as described above and among the conservative i-compatible plans
only consider those with the lowest execution costs. While one would expect that in this case the
execution length is bounded polynomially, this is not immediately obvious. In particular, one might
fear that with each replanning step, the execution length could increase. However, it is possible to
show that this cannot happen. The main argument is that after the initial movements of one agent
i, all still active agent have to create objectively strong plans, because of the initial perspective shift
to i. This forces them to align their perspectives and so they might generate different plans, but all
plans will have the same execution costs.
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Theorem 10 For solvable MAPF/DU instances, joint execution and replanning by conservative,
optimally eager agents is always successful and the execution length is polynomial.

Proof: Since the instance is solvable, there is at least one agent which has formed an i-strong plan.
Moreover, since all agents are eager, there must be one that wants to execute an action. Assume that
agent i is chosen to execute its action. After the action, the other agents will have to replan coming
up either with no plan (e.g., if the instance was only locally solvable) or with an objectively strong
plan with an initial perspective shift to agent i. These objectively strong plans will all have the same
execution costs because all agents k 6= i plan optimally and have the same knowledge when planning
since they are now planning with an initial perspective shift to agent i, which makes them“forget”
their own destinations. Agent i may be chosen to execute further actions (provided the initial action
was not a success announcement), leading to further replanning for the remaining agents. However,
assuming n to be the number of vertices in the graph, no more than n − 1 movement actions in a
row by agent i are possible, because otherwise the plan by i would not be cycle-free. So, after at
most n − 1 movement actions by agent i, (1) either another agent j will act or (2) i will announce
success.

In case (1), replanning will lead to objectively strong plans with making a perspective shift to i
for all agents k 6= i as described in the previous paragraph. Agent i will form a plan with an initial
sequence of its own actions (knowing his own destination), then shifting the perspective to agent j.
This plan must also be an objectively strong plan, because after its first perspective shift to j, it
must cover all possible destinations of i. For this reason, all agents, planning optimally and using
the same prefix, will come up with plans having the same execution costs m.

In case (2), the initial objective state is modified according to Equation 8. After that, because i
had an i-strong plan, all remaining agents k 6= i agents are guaranteed to find an objectively strong
plan (with an initial perspective shift to i). Again, all these plans will have the same execution costs
m, because the agents have the same knowledge and plan optimally.

In future replanning steps, the execution costs of the plans can never increase because all agents
follow these plans, so in replanning it must always be possible to find a plan with execution costs of
at most m.

In summary, this means that no more than n+m steps will be executed, where m has an upper
bound of O(n4) by Theorem 6.

Let us reconsider the example from Section 5.3. We showed that optimally eager agents could
end in an infinite cyclic execution. By the theorem above, this cannot happen when the agents
are conservative, optimally eager. Let us illustrate that on this example starting from the initial
configuration in Figure 9.

α(1) = v1, α(2) = v6: As before, agent 2 will choose the strategy MoveToGoal, and when acting
first it will move to v7, leading to the next configuration, which is the same as in the counter example.

α(1) = v1, α(2) = v7: Now agent 1 might replan and has to take into account the prefix of agent 2
moving to v7 (thereby forgetting its own actual destination).

As we know from Theorem 5, we only need to consider plans where all branching points are
stepping stones. Since there are no stepping stones for agent 2 initially (because one possible
destination of agent 1 is blocked by one possible destination of agent 2), any objectively strong
plan will consists of movements by the two agents creating a stepping for agent 1 followed by agent
1 moving to its destination and then agent 2 moving to its destination. Interestingly, the initial
movement of agent 2 destroyed the stepping stone for agent 1. However, agent 1 now has to consider
to move first or to let agent 2 continue in order to create a stepping stone (followed by the rest).

Let us consider the case that agent 1 waits for agent 2 to create a stepping stone. Note that
moving back to v6 is not an option for agent 2, because it would create a cycle. Agent 2 could
move to v5 and then to either v4 or the first anonymous node below v5 (which we will call v′5)
(all in all 2 actions). After that, agent 1 could move to its destination and announce success
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(maxdist+(1, v1) = 10 actions). If agent 2 needs to move from v4, we have another 5 actions
(including the success announcement). From v′5 the maximum number of actions is 4. So the
maximum execution costs would be 16, assuming agent 1 initially waits.

Let us now consider the case that agent 1 moves. It could move to the first anonymous node
below v1 (which we call v′1) or to v5 (1 action). Since the former move will increase the maximal
distance for agent 1 from 9 to 10, we will not consider it. Now agent 2 needs to act and go to v6

and then to the first anonymous node above v6, which we call v̂6 (2 actions), creating the stepping
stone for agent 1, who needs in the worst case maxdist+(1, v5) = 9 actions to reach its destination
and announce success. Then agent 2 needs another 3 moves in the worst case and the success
announcement (4 actions). All in all, 16 actions. Being eager, agent 1 clearly chooses to move to v5.
Since this is the worst case for the scenario, let us assume that this happens. Again, we reach the
same configuration as in the counter example.

α(1) = v5, α(2) = v7: In so far, we have replicated the movements from our counter example.
However, from now on, since both agents have acted now, both agents will only generate objectively
strong plans with the same execution costs and both will avoid cycles. So, agent 2 will plan to go
back to v6 (as in our counter example), but agent 1 will never even consider to move back to v1.
Rather, it will wait for agent 2 to create a stepping stone by moving to v̂6. From then on, there will
not be any conflict any longer.

6. Computational Complexity of MAPF/DU Planning

It looks as if MAPF/DU planning is harder than MAPF planning. In fact, bounded plan existence
for strong plans is PSPACE-complete.

Theorem 11 Deciding whether there exists a MAPF/DU i-strong or objectively strong plan with
execution costs k or less is PSPACE-complete.

Proof: Membership in NPSPACE follows from Theorem 6. If there exists a plan with execution
costs k, then we can guess all its traces and verify that they are successful in polynomial space.
Since NPSPACE=PSPACE, the problem is in PSPACE.

We prove hardness by a reduction from QUANTIFIED 3SAT, which is known to be PSPACE-
complete (Stockmeyer & Meyer, 1973). Given the quantified Boolean formula

Ψ = ∀x1∃x2 . . . φ(x1, x2, . . . , x`),

with ` variables, `e existentially quantified, `u universally quantified, where φ(x1, x2, . . . , x`) is in
conjunctive normal form and contains m clauses Cj with exactly three literals, we construct a
MAPF/DU instance with the property that there exists a (globally or x2-) strong plan with execution
costs

k = [`·(`+1)/2]+[(m+m·`)·`]+[m·(2+`e)]+[m·(m+1)/2]+[`e ·(`e+1)/2]+[`e+`+m+m·`] (9)

if and only if Ψ is true.
We proceed by constructing three gadgets, which we call choice sequencer, clause evaluator, and

collector, respectively. We illustrate the construction using the example in Figure 10.
The task of the choice sequencer is first of all to enforce the sequence of truth-value choices of

the variables corresponding to the quantifier sequence. Each of the variable agents xi have to go
to one of the nodes vTi,2 or vFi,2. Note that for the universally quantified variables, there are two
possible destinations and a branching plan needs to consider both possibilities. For the existentially
quantified variable, there is just one destination, which is occupied by an shadow agent. Here we
only have to plan for one of the two possibilities. Once the choices have been made, the clause agents
cj can move to the left until they are ready to enter the clause evaluator. The clause evaluator is
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Figure 10: Example construction for ∀x1∃x2∀x3 : (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)

created in a way so that a clause agent cj can move through it from right to left, provided one of the
literals of the corresponding clause is true according to the truth-value choices made by the variable
agents. Finally, the collector contains the destination nodes for all clause agents and for the shadow
agents. The overall effect of the construction is that for all satisfying truth assignment, the number
of steps in one execution trace is bounded by k. For unsatisfying assignments, there might still be
successful execution traces, but they are necessarily longer.

The choice sequencer consists of a sub-graph with ` + m(` + 1) nodes, which are named v1 to
v`+m(`+1). These nodes are connected linearly, i.e., there is an edge between vi+1 and vi. The
nodes v1 to v` are occupied by variable agents named x1 to x`. In addition we have clause agents
cj , 1 ≤ j,≤ m on the nodes v`+j(`+1), respectively. The rest of the nodes are filled with filler agents
fp for all the not yet occupied nodes. The (deterministic) destination for each filler agent fp is the
node with an index ` lower than the one fp is starting from. These filler agents are necessary to
enforce that the clause agents enter the clause evaluator only after the variable agents have made
their choices.

The clause evaluator contains for each variable xi two pairs of nodes: vFi,1, v
T
i,2, and vTi,1, v

F
i,2 with

an edge between each pair. For a universally quantified variable xi, the nodes vFi,2 and vTi,2 are the
two potential destinations of variable agent xi. Note that we do not care what the actual destination
is because we are interested in x2-strong plans or objectively strong plans (implying that the agent
moving first does not know any of the true destinations). These destination nodes represent the
truth assignment false and true, respectively. For each existentially quantified variable xi, there
exists an additional node v∃i , which is connected to both vFi,2 and vTi,2 and which is the deterministic

destination for agent xi. Initially, another shadow agent x′i occupies v∃i .
The node v1 has edges to the nodes vFi,2 and vTi,2 of the choice sequencer. Since the shadow agents

x′i do not have any place they can immediately go to without blocking the way for the clause agents
to their final destination, this implies that in the beginning the variable agents x1 to x` will all move
to vFi,2 or vTi,2, whereby for the universally quantified variables, both choices have to be considered in
evaluating whether the plan is a strong plan. Furthermore, the choices have to be made in the same
order as in the quantifier prefix of the formula. Once all the xi agents have reached their nodes, the
remaining agents in the choice sequencer can move ` nodes to the left, i.e., from vp to vp−` bringing
all the filler agents fp to their respective destinations. Further, all clause agents cj have to go from
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v`+j(`+1) to vj(`+1), whereby these latter nodes are connected to the clause evaluator in the following
way. The node vj(`+1), which will hold clause agent cj after all agents moved ` steps to the left, is
connected to vTi,1 iff the clause Cj contains xi positively and it is connected to vFi,1 iff Cj contains xi
negated.

Finally, the collector gadget provides the destinations for all the clause agents cj and the shadow
agents. Assuming we have the the set of existentially quantified variables {xj1 , . . . , xj`e }, we create

the following sequence of nodes v′∃j`e , . . . , v
′∃
j1
, vcm , . . . , vc1 , connected linearly. From all nodes vFi,2,

vTi,2 and v∃i there is an edge to v′∃j`e . If there is no existential variable, then the nodes are connected
directly with vcm .

Now, any successful execution trace must at least contain the following actions:

• all of the ` variable agents xi have to move to their truth value choice node vXi,2, which takes

i moves for agent xi:
∑`

i=1 i = ` · (`+ 1)/2 moves;

• all of the m clause agents xj and m · ` filler agents fl have to move ` nodes to the left in the
choice sequencer gadget: (m+m · `) · ` moves;

• all of the m clause agents have to move through the clause evaluator gadget to the first node
in the collector gadget (3 moves) and then to the node just before the first destination for the
clause agents (`e − 1 moves): m · (2 + `e) moves;

• next, all of the clause agents have to move to their destination:
∑m

j=1 j = m · (m+ 1)/2 moves;

• all of the ne shadow agents x′i have to move to their destinations:
∑`e

i=1 = `e · (`e + 1)/2
moves;

• and, all of the agents have to announce their success once they have reached their destination:
`e + `+m+m · ` announcements.

This adds up to k actions as specified in Equation (9). This is clearly a lower bound. If the path of
one of the clause agents is blocked by all variable agents, then one needs more actions.

This construction is obviously polynomial in the size of the QBF formula. We now have to show
that it is indeed a reduction.

Assume that the QBF formula is true. Then we can generate an objectively strong plan with
execution costs of k as follows. The universally quantified variable agents move to their respective
destinations branching on their destinations. These are stepping stone utilizations, provided that
the formula is true. The existentially quantified variables choose one of vFi,2 and vTi,2 as the temporary
location. After all variable agents are in place, the clause agents can move one after the other to
their destinations in the collector gadgets. Since the formula is true, we know that for each choice
of the universal variable agents and for appropriate choices of the existential variable agents, each
clause contains one true literal corresponding to an unblocked path through the clause evaluator to
the destination. After the clause agents have reached their destination, the shadow agents x′i have to
go to their respective destinations, which makes room for the existentially quantified variable agents
xi move to their destinations, after which all agents have reached their destinations and have not
used more than k actions.

Conversely, assume that there exists an objectively strong plan (or an x2-strong plan) with
execution costs k. Then the movements and branching points are as above and if the clause agents
can pass through the clause evaluator to the collector with an overall execution costs of k, it means
that the choices made by the variable agents led to a satisfying assignment. Since the plan is strong,
this holds for all possible assignments, hence the formula must be true.

As in the fully observable case, adding eagerness does not change the picture. Since eagerness
is defined on the set of plans, i.e., the set of plans with execution costs less then k, the decision
problem does not becomes harder.

521



Nebel, Bolander, Engesser & Mattmüller

This increase in computational complexity when going from distributed MAPF to MAPF/DU
probably does not come as a surprise, and it seems to rule out applications as the ones envisioned
in the Introduction, namely, implicit coordination in a human-robot context or when agents are not
able to communicate. However, when looking at the reduction, one sees that it is very involved and
does not seem to be close to situations one encounters in real life. In particular, it is probably very
seldom that one encounters `+m · (`+ 1) agents (for moderately large ` and m) at the same time.
For a fixed number of agents, the problem is fortunately solvable in polynomial time.

Proposition 12 For a fixed number c of agents, deciding whether there exists a MAPF/DU i-strong

or objectively strong plan with execution costs of k or less can be computed in time O(nc
2+c), where

n is the number of nodes in the graph.

Proof: Given a MAPF/DU instance MDU = 〈A, (V,E), (α0, β0), α∗〉 with |V | = n and a fixed
number of agents c = |A|, the following algorithm returns the execution costs of an optimal plan in

T (n, c) = O(nc
2+c) steps:

If c = 1, return the length of a shortest path for the agent to its goal position. For example, using
Dijkstra’s algorithm this can be done in O(n2). In the case of c > 1, proceed as follows:

1. Check for each of the O(nc) possible placements αi whether for one agent all possible destina-
tions are reachable without moving the other agents. Memorize the shortest path length for
each agent/destination pair. Again, using Dijkstra this can be done in O(nc ·c ·n2) = O(nc+2).

2. For each such possible stepping stone, compute a shortest movement plan to reach it from α0.
This can be done by computing shortest paths on the product graph in time O(nc · (nc)2) =
O(n3c).

3. For each such possible stepping stone and the respective agents that can reach all their desti-
nations from there, apply our algorithm recursively. The subproblems are the ones where the
agent has already reached its destination and announced success. The number of subproblems
which have to be solved is bounded by c · nc, so the runtime for solving all the subproblems is
O(nc)T (n, c− 1).

4. Add the path lengths from steps (2) and (3) to the recursively obtained execution costs.
Maximize over the destination candidates for each agent. Memoize these costs for all stepping
stone/agent pairs and return the minimum. This can be done in O(nc · c · n) = O(nc+1).

Our algorithm has a runtime of T (n, c) = O(nc)T (n, c− 1) +O(n3c), with T (n, 1) = O(n2). We

can expand this to T (n, c) = O(nc)c−1O(n2) +O(nc)c−2O(n3c) = O(nc
2+c).

For two agents, this would result in a runtime of O(n6). However, one would probably expect a
significantly lower practical runtime, provided the environment is not too complicated.

7. Summary and Outlook

We have generalized the well-known MAPF problem to a distributed setting with uncertainty about
the destinations of the other agents. First we considered the case, where the agents have common
knowledge about their destinations, but have to plan in a distributed fashion, cannot communicate,
and have to execute their plan in a distributed way. As we have shown, agents are guaranteed
to succeed, provided they are eager and either conservative when replanning or they are planning
optimally. However, in the first case executions might last exponentially long while in the latter
case the agents have to solve a sequence of NP-hard problems. All in all this demonstrates the value
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of communicating about plans. When such communication is possible, planning and/or execution
time can be significantly shortened.

Going one step further, we dropped the assumption that destinations are common knowledge,
resulting in the MAPF/DU problem. In order to solve this problem, one first has to come up with
a reasonable solution concept. We propose to use branching plans, which branch on the possible
destinations of the executing agent. In particular, these plans anticipate actions of the agents,
although these anticipation might turn out to be wrong. Branching plans that for a subjective
state of agent i are successful for all branches are called i-strong and capture what has been termed
implicitly coordinated plans or policies (Engesser et al., 2017). One important result of this paper is
the identification of stepping stone configurations as a backbone for generating i-strong plans. Using
this result, we can show that the execution costs of such plans are polynomially bounded.

Similar to the distributed MAPF setting, we investigate under which conditions we can guarantee
success. It turns out that in the MAPF/DU setting, agents have to be eager and conservative.
Because of non-uniform knowledge, optimally eager agents are not universally successful, as we have
demonstrated. Nevertheless, if we add conservatism, we can show again that success is guaranteed
and that the worst-case execution length is bounded polynomially.

While this success guarantee is encouraging, the computational costs are unfortunately even
worse than in the distributed MAPF setting. Deciding the bounded i-strong and objectively strong
plan existence problem is PSPACE-complete. This reinforces the conclusion above: Communication
can have a significant effect on lowering computational costs. Furthermore, it suggests that this
technique is probably not meant to be used in a real-time, online fashion. However, if there are only
a few agents present in the environment, things look much more promising. For a fixed number of
agents the bounded MAPF/DU plan existence problem is polynomial.

The paper gives a first idea of what issues arise when solving the MAPF/DU problem. However,
there are also a number of open problems. First of all, all results were proven for general undirected
graphs. Whether the results also hold for planar graphs or for graphs resulting from a grid map
is not obvious. Second, although we have proven only PSPACE-completeness for the bounded
plan existence problem, it seems likely that also the general plan existence problem is PSPACE-
complete. However, it is not obvious how to prove it. Third, one might ask whether the non-
overlapping constraint for possible destinations is really necessary. Perhaps, one can even allow
for more expressive goal configuration descriptions. Fourth, one may want to relax the solvability
constraints. For example, it might be considered desirable to find plans for situations, when no strong
plans exist. Fifth, one might argue that the asynchronous execution model is unrealistic. Whether
one could come up with a reasonable parallel execution model is not obvious, though. Sixth, we
have just started to explore the space of implicit coordination. The only kind of communication
currently allowed is the announcement of success. Perhaps, with more communication other success
guarantees could be established. In particular, one could imagine that the agents could signal each
other their destination by using a particular protocol (similar to a bee dance). However, we prefer
to make minimal assumptions about the knowledge the agents share. Seventh, it is conceivable
that agents could be more aggressive in making conclusions from the movements of other agents.
Something similar to forward induction known from game theory (Battigalli & Siniscalchi, 2002)
might help in order to coordinate implicitly. Finally, it would be interesting to look into more
efficient solutions for the MAPF/DU problem as the one presented in Proposition 12 and to explore
how large an environment and agent group can become for the distributed MAPF problem and the
MAPF/DU problem.
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Appendix A. Terminology Index

action sequence, 506
agent, 500
agent wanting to act, 511

basic action, 506
branching plan, 506
branching point, 506

configuration of agents, 500
conservative i-compatible branching plan, 513
conservative agent, 504, 513
conservative eager agent, 504, 514
conservative replanning, 513
conservative, optimally eager agent, 517
cycle-free branching plan, 509
cycle-free execution trace, 509
cycle-free plan, 501

dead end, 501
deadlock, 502
destination assumption, 507
destination function, 505
distributed MAPF problem, 501

eager agent, 502, 513
execution costs, 509
execution length, 501
execution trace, 507

family of plans, 501

goal configuration, 501

i-compatible execution trace, 511
i-covering branching plan, 508
i-solvability, 509
i-strong branching plan, 509
i-successful branching plan, 508
implicitly coordinated plan, 501
initial configuration, 501

joint execution, 501, 511

lazy agent, 502, 513
lazy branching plan, 513
lazy plan, 502

MAPF instance, 500
MAPF problem, 500
MAPF/DU instance, 505
MAPF/DU problem, 505
match of execution trace by observation

action sequence, 511
movement action, 500
movement plan, 501

objective outcome of executing a sequence,
511

objective outcome of executing an action, 511
objective solvability, 512
objective state, 505
objectively strong plan, 512
observed action sequence, 511
optimally eager agent, 503, 514
optimally eager plan, 503

perspective shift, 506

solvability of MAPF instance, 501
stepping stone, 509
stepping stone utilization, 510
subjective outcome of executing a trace, 508
subjective outcome of executing an action,

508
subjective solvability, 512
subjective state, 506
success announcement action, 506
successful execution trace, 508
successful plan, 501
successor configuration, 500

unmatched tail of execution trace, 511
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