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Abstract: Flow field-based methods are becoming increasingly popular for the analysis of interfacial
shear rheology data. Such methods take properly into account the subphase drag by solving the
Navier–Stokes equations for the bulk phase flows, together with the Boussinesq–Scriven boundary
condition at the fluid–fluid interface and the probe equation of motion. Such methods have been
successfully implemented on the double wall-ring (DWR), the magnetic rod (MR), and the bicone
interfacial shear rheometers. However, a study of the errors introduced directly by the numerical
processing is still lacking. Here, we report on a study of the errors introduced exclusively by the
numerical procedure corresponding to the bicone geometry at an air–water interface. In our study, we
set an input value of the complex interfacial viscosity, and we numerically obtained the corresponding
flow field and the complex amplitude ratio for the probe motion. Then, we used the standard
iterative procedure to obtain the calculated complex viscosity value. A detailed comparison of the set
and calculated complex viscosity values was made in wide ranges of the three parameters herein
used, namely the real and imaginary parts of the complex interfacial viscosity and the frequency.
The observed discrepancies yield a detailed landscape of the numerically-introduced errors.

Keywords: interfacial rheology; interfacial shear rheometer; bicone interfacial rheometer; flow
field-based data processing

1. Introduction

Complex interfacial fluid systems have received much attention in recent years because of their
interest from, both, a fundamental and applied point of view in living and industrial systems [1].
Systems such as tear film, the lung’s internal fluid film, cell membranes, foams, and emulsions
constitute examples of complex interfacial fluid systems whose dynamical properties play a crucial
role regarding their function or utility. Indeed, knowledge of the mechanical properties of such fluid
interfacial systems is an essential factor in the development of medical therapies in lung [2] or eye
diseases [3], or in the stability and performance of industrial products in the food [4], personal care [5,6],
and oil recovery sectors [7].

The characterization of the rheology (mechanical properties) of complex interfacial fluid systems
is a powerful tool to unravel the physico-chemical phenomena occurring in interfacial processes [1].
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A full characterization of the mechanical properties of plane interfacial systems requires studying
the mechanical response in two deformation modes [8–10], namely shear mode, which keeps the
area constant while allowing for shape changes [9], and dilatational mode, which keeps the shape
unchanged while allowing for area changes [10]. In this report, we will restrict ourselves to the shear
deformation mode.

A very convenient way to characterize the dynamical viscoelasticity properties of complex fluid
interfaces is through the low amplitude oscillatory motion of a probe located at the interface [11],
which allows describing the interface rheology in terms of a complex interfacial dynamic modulus,
G∗s (ω) = G′s(ω) + iG′′s (ω), where G′s(ω) accounts for the elastic component of the response and is
called the interfacial storage modulus, and G′′s (ω) represents the viscous component of the response
and is called the interfacial loss modulus. Alternatively, a complex interfacial viscosity can be defined
as η∗s (ω) = η′s(ω)− iη′′s (ω) = iG∗s (ω)/ω, whose components are related to the interfacial dynamic
moduli by η′s = G′′s /ω and η′′s = G′s/ω.

Many experimental realizations of such oscillating probe techniques have been proposed, and
as of today, three of them emerge as largely popular configurations for interfacial shear rheometers
(ISR). Two of them are built around conventional rotational rheometers by using purposely-designed
fixtures: a bicone bob [12] or a double wall-ring (DWR) [13]. The third configuration uses a magnetic
rod probe whose oscillation is forced by either a suitably-driven Helmholtz coil pair [14] or a mobile
magnetic tweezers actuator [15].

Under oscillatory forcing, the complex interfacial dynamic moduli (respectively, viscosity
components) are obtained through the relationship between the amplitudes of the shear stress
and the shear strain (respectively, rate) and their phase difference. In the rotational displacement
configuration, shear stresses and strains (or rates) are directly related to the driving torque and the
angular displacement. However, subtracting the effect of the subphase drag on the probe motion
is, both, of paramount importance and highly non-trivial. An indication of the relative importance
of the interface and subphase drags on the probe is given by the complex Boussinesq number, Bo∗.
For instance, in the case of an air/water interface, Bo∗ is defined as [16]:

Bo∗ =
η∗s
Lη

, (1)

where η∗s is the complex interfacial viscosity, η is the subphase bulk viscosity, and L is a characteristic
length scale that depends on the geometric configuration of the rheometer.

The pioneering work in [17] opened the way to use computed flow fields in the interpretation of
the interfacial rheology data. A further step forward was taken by introducing an iterative scheme
to recover the value of the complex interfacial viscosity using the computationally-obtained flow
field and the experimental values of the torque and angle amplitudes and relative phase in the DWR
interfacial rheometer [13]. Since then, several flow field-based data processing schemes, adequate for
the magnetic rod ISR [15,18,19] and the bicone ISR [20], have been proposed to take properly into
account the subphase drag on the probe.

Such schemes share a common structure (see Figure 1), starting from a “seed” value of the complex
interfacial viscosity, namely:

1. Solve the Navier–Stokes equations for the subphase flow field with no slip boundary conditions
at the container and probe walls and the Boussinesq–Scriven boundary condition at the interface.

2. Use the obtained flow field to compute the subphase and interface drags on the probe.
3. Use the probe equations of motion to obtain a new prediction for the value of the complex

interfacial viscosity.
4. Go back to Step 1 till convergence is obtained for the value of the complex interfacial viscosity.
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Figure 1. Data analysis scheme flowchart.

Such schemes have rendered excellent results in the DWR [13], the magnetic rod ISRs, both
in the Helmholtz coil [18] and the magnetic tweezers [15] configurations, and the bicone ISR [20],
yielding good values of the complex interfacial viscosity and providing a more realistic separation
of the real and imaginary parts of the complex interfacial viscosity. From a different perspective,
fully-three-dimensional calculations of the flow field corresponding to the knife-edge interfacial shear
rheometer in the case of purely-viscous interfaces have been shown to represent well the rheometer
results both under continuous rotation [21] and oscillatory [22] modes.

From a practical point of view, an essential characteristic of each of the above-mentioned ISRs is
their respective measuring range in a parameter space defined by η′s, η′′s , and ω. In this aspect, assessing
the performance of the flow field based-iterative process is of paramount importance, particularly
in the case of the bicone ISR, due to the comparatively higher role played by the subphase because
of the larger subphase contact with the probe’s lower surface, which renders comparatively lower
values of Bo∗ [9]. Limited studies [20,23] of the available measuring range and the errors introduced
by the iterative process have been made in the case of the bicone ISR. Knowledge of such errors and
on the propagation of experimental errors through the data processing scheme are crucial to delimit
the useful measuring range of the bicone ISR.

Here, we report on a more complete numerical bench-marking of the flow field-based data
processing scheme when applied to the bicone ISR. This study has been made using a software package
that we have recently made publicly available [24]. The software package uses an iterative scheme
defined directly on Bo∗ and makes extensive use of the sparse matrix functions in MATLAB.

To that purpose, we have defined two numerical problems, a direct one (given η′s, η′′s , and ω, find
the complex amplitude ratio, AR∗) and an inverse one (given AR∗ and ω find η′s and η′′s through the
iterative process). The software has been slightly modified so that the the flow field obtained with the
“seed” η′s and η′′s values is used to obtain the complex amplitude ratio, which is the solution of the
direct problem.

Using the output of the direct problem as the input of the inverse one, we have made a detailed
study of the consistency of the iterative data processing scheme in terms of the differences appearing
between the complex viscosity input values of the direct problem and the corresponding output values
of the inverse problem. Further imposing the requirement that the complex amplitude ratio must be
different from the one corresponding to a clean water interface allows us to draw a complete map of the
parameter space available to the bicone ISR when using the flow field-based data processing scheme.
Finally, we show the results of a numerical study of the propagation of the experimental uncertainties
in the modulus and the argument of the complex amplitude ratio through the data processing scheme.
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2. Hydrodynamic Model and Data Analysis Scheme

The hydrodynamic model and data analysis scheme have been fully described elsewhere [23].
We reproduce it here just for the sake of completeness. The geometrical configuration for an air/water
interface is depicted in Figure 2. The system is made from a cylindrical cup of radius Rc, which is at rest,
and a conical bob fixture, with radius Rb, attached to the axis of a rotational rheometer. The subphase
is the bulk fluid phase located below the interface, and it is in mechanical contact with the conical
surface of the bob.

z 

r 

h 

Rc

Rb

Figure 2. Schematic of the bicone geometry.

The interface is considered flat and horizontal, and the flow, both at the subphase and the
interfaces, is considered horizontal and axially symmetric. The angular oscillation of the bicone is
considered periodic, with frequency ω. Hence, the bicone angular oscillation and the velocity at the
bicone rim can be written as:

θ(t) = θ0eiωt; vθ(Rb, h, t) = i Rbωθ0eiωt.

Under such approximations, the spatial dependence of the fluid velocity field can be represented
by a complex amplitude function g∗(r, z) so that:

vθ(r, z, t) = i Rbωg∗(r, z)θ0eiωt, (2)

where the spatial variables have been made non-dimensional taking Rb as the characteristic length
scale. The complex amplitude function must obey Equation (3), derived from the Navier–Stokes
equations, which in non-dimensional form reads:

i Re∗ g∗(r̄, z̄) =
∂2g∗(r̄, z̄)

∂r̄2 +
∂2g∗(r̄, z̄)

∂z̄2 +
1
r̄

∂g∗(r̄, z̄)
∂r̄

− g∗(r̄, z̄)
r̄2 , (3)

where Re∗ is the Reynolds number, Re∗ = ρωR2
c /η∗ (possibly complex if the bulk subphase viscosity is

complex). The boundary conditions are no-slip at the cup and bicone bob walls (Equation (4)), and the
Boussinesq–Scriven boundary conditions (tangential stress balance) at the interface (Equation (5)) are:

g∗(r̄, 0) = g∗(1, z̄) = 0,

g∗(0, z̄) = 0,

g∗(r̄ ≤ R̄b, h̄) =
r̄

R̄b
,

(4)

∂g∗

∂z̄
= Bo∗

∂

∂r̄

(
1
r̄

∂

∂r̄
(r̄ g∗)

)
, at R̄b < r̄ < 1, z̄ = h̄, (5)
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where Bo∗ = η∗s /Rcη∗.
The torque balance equation for the ISR rotor yields Equation (6), which relates the

complex amplitude ratio to, both, the Boussinesq number and, implicitly, the velocity amplitude
function g∗(r̄, z̄):

AR∗ = iω2πRbη∗

∫ Rb

0
r2
(

∂g∗

∂z

) ∣∣∣∣∣
z=h

dr− RbRcBo∗

Rb

(
∂g∗

∂r

) ∣∣∣∣∣
r=Rb , z=h

− 1

− Iω2. (6)

Solving for the Boussinesq number allows one to setup a simple iterative procedure, namely,

Bo∗{i+1} =

−AR∗exp − Iω2 + iω2πRbη∗
∫ Rb

0 r2
(

∂g∗{i}
∂z

)∣∣∣∣
z=h

dr

iω2πη∗R2
bRc

(
Rb

(
∂g∗{i}

∂r

)∣∣∣
r=Rb , z=h

− 1
) , (7)

where AR∗exp represents the complex value of the experimentally-obtained amplitude ratio. As the
value of AR∗exp comes directly from the experiments, it seems adequate to establish the convergence
upon the complex amplitude ratio as:∣∣∣∣∣ (AR∗pp)

{i}
calc − (AR∗pp)exp

(AR∗pp)exp

∣∣∣∣∣ ≤ tolMin. (8)

3. Results

In this section, we show the results obtained through extensive numerical calculations aiming at
evaluating the performance of the iterative data processing scheme when applied to a bicone interfacial
rheometer working in oscillatory mode at an air/water interface.

A careful evaluation of the dependence on the mesh size of the spatial velocity gradients’
representation, the number of iterations needed for convergence, and the computational costs of
the procedure was reported in [23], where preliminary explorations of the consistency of the iterative
data processing scheme, by sweeping in the complex interfacial viscosity while keeping ω constant,
were also included.

Here, at variance with respect to [23], we will focus, first, on checking the consistency of the
iterative processing scheme upon changes of the oscillation frequency in the typical range explored in
real experiments and, second, on analyzing the measuring range achievable with a bicone ISR when
using the proposed flow field-based data analysis scheme. This last aspect will be illustrated through
the analysis of the achievable measuring range of a bicone fixture in our Bohlin C-VOR rheometer.

3.1. Consistency of the Iterative Data Analysis Scheme

3.1.1. Consistency over the Frequency Range

We say the iterative procedure is consistent if working on input data (AR∗ values) corresponding
to known values of η∗ yields output values of the interfacial viscosity that are very close to the known
ones. We studied the consistency of the iterative data analysis scheme through the following general
procedure: (i) preset the frequency, ω, and the complex interfacial viscosity, η∗s prog, and solve the direct
problem that yields the corresponding complex amplitude ratio AR∗prog, and (ii) use the obtained value
of the complex amplitude ratio as the input of the inverse problem, and obtain the calculated value
of the complex interfacial viscosity, η∗s calc. The relative difference between the preset and calculated
values of η∗s will give us an idea of the consistency of the numerical scheme.

In Figure 3, we show the results of such a procedure for a frequency sweep in the range 0.06 ≤
ω ≤ 62.83 rad/s. Representative values of the complex interfacial viscosity have been chosen, namely
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a purely-viscous interface (η∗s = η′s, i.e., η′′s = 0), a viscoelastic interface (η∗s = η′s − iη′′s , where η′s = η′′s ),
and a purely-elastic interface (η∗s = −iη′s, i.e., η′ = 0). Three typical numerical values of ηs have been
used in the above-described cases: ηs = 10−6, ηs = 10−4, ηs = 10−2, in units of N s/m.

The graphs in the left column illustrate the results obtained for η′scalc and η′′s calc as a function of
frequency, while the right column holds the graphs of the number of iterations needed for convergence
at each frequency. The graphs in the upper row (Graphs (a) and (b)) pertain to the purely-viscous
interface, those in the middle row (Graphs (c) and (d)) to the viscoelastic interface, and the lower row
graphs ((e) and (f)) the data corresponding to the purely-elastic interface. In the left column graphs,
filled and empty circles are used to represent the values of η′scalc and η′′s calc, respectively. Symbols’
colors of black, red, and blue correspond, respectively, to the high, middle, and low numerical values
of ηs mentioned above.

The agreement between the obtained viscosity component values and the non-null programmed
values was remarkable (in the case of the viscoelastic interface, solid and empty circles superpose, as
expected). However, unavoidable numerical errors and the finite convergence tolerance, given by the
tolMin parameter (Equation (8)), necessarily give rise to non-null values of η′′s calc for the purely-viscous
interface (Graphs (a) and (b)) and η′scalc for the purely-elastic interface (Graphs (e) and (f)). Fortunately,
these pathological non-null values were in all of the cases herein studied more than two orders of
magnitude below their measurable counterparts (η′scalc for the purely-viscous interface and η′′s calc for
the purely-elastic interface).

The graphs in the right column show that in the studied frequency range, convergence in the
inverse problem always occurred in less than 25 iterations. Particularly remarkable is the case with the
higher complex viscosity modulus (ηs = 10−2 N s/m, black symbols), where convergence occurred in
three iterations for the whole frequency range. Interestingly, for intermediate values of the complex
viscosity modulus (red symbols), increasing the frequency had a destabilizing effect (more iterations
were required for convergence), while for a very low complex viscosity modulus (blue symbols), the
effect was just the opposite (less iterations were needed for convergence upon increasing the frequency).

The visual agreement between the obtained viscosity component values and the non-null
programmed values in the graphs in the left column of Figure 3 can be better ascertained calculating the
relative difference between the programmed and calculated values and representing it in a logarithmic
vertical scale. Figure 4 shows such graphs, where row arrangement and symbols’ shapes and colors
maintain the same codding as in Figure 3. To be specific, the relative differences have been calculated as:

δη′ = 100×
∣∣∣∣∣η
′
scalc − η′s prog

η′s prog

∣∣∣∣∣ ; δη′′ = 100×
∣∣∣∣∣η
′′
s calc − η′′s prog

η′′s prog

∣∣∣∣∣
Several common features appear in the three graphs included in Figure 4. First, the relative

differences were overall increasing functions of frequency, although non-monotonic in some cases.
Second, the relative differences were higher the smaller the value of η′s or η′′s . Nonetheless, such
relative differences were of the order of a few percent in the worst case —lowest numerical value
of η′s or η′′s and highest frequency value— and smaller in all of the other cases. In the case of the
viscoelastic interface, the relative differences were very similar in, both, the real and imaginary parts of
the complex viscosity. The physical origin of the general increasing tendency with frequency of the
relative errors shown in Figure 4 is not clear to us. One might guess that rotor inertia might be at play
at high frequency values, but then, an ω2 tendency should be expected, which is not the case.
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Figure 3. Values obtained for the complex interfacial viscosity (left column, (a,c,e)) and number of
iterations needed for convergence (right column, (b,d,f)) as a function of frequency for purely-viscous
interfaces (top row, (a,b)), viscoelastic interfaces (middle row, (c,d)), and purely-elastic interfaces (lower
row, (e,f)). In the graphs in the left column, filled and empty circles refer to the real and imaginary
parts of the complex interfacial viscosity, respectively. Symbols’ colors indicate the numerical value of
ηs, namely ηs = 10−2 (black), ηs = 10−4 (red), and ηs = 10−6 (blue), in units of N s/m.
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Figure 4. Relative errors obtained in the non-null components of the complex interfacial viscosity as a
function of frequency for: (a) purely-viscous interfaces, (b) viscoelastic interfaces, and (c) purely-elastic
interfaces. Filled and empty circles refer to the real and imaginary parts of the complex interfacial
viscosity, respectively. Symbols’ colors indicate the numerical value of ηs, namely ηs = 10−2 (black),
ηs = 10−4 (red), and ηs = 10−6 (blue), in units of N s/m.
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3.1.2. Consistency in the Complex Plane

A complementary view of the consistency problem can be drawn through the percentage modulus
of the complex relative differences between η∗s calc and η∗s prog, i.e.,

δmod = 100×
∣∣∣∣∣η
∗
s prog − η∗s calc

η∗s prog

∣∣∣∣∣
We have calculated the values of δmod at 60× 60 logarithmically-spaced points in the (η′s, η′′s )

plane, in the range 10−6 ≤ η′s, η′′s ≤ 10−3 in units of N s/m, at three representative frequency values,
namely, 0.63, 6.28, and 62.83 rad/s. The values so obtained have been used to construct contour plots
of δmod in the (η′s, η′′s ) plane, which are shown in Figure 5.

The contour lines correspond to the following percentage values of δmod: (a) 0.01, 0.02, 0.04, 0.1;
(b) 0.15, 0.3, 1, 30; (c) 0.2, 0.5, 1, 2. In the three graphs, red dashed lines correspond to the highest δmod
value and continuous light blue lines to the lowest δmod value. Hence, the interpretation of the contour
lines is that, taking as an example the light blue line in Figure 5, at the region to the left and below that
light blue line, the value of η∗s calc differs from the value of η∗s prog by more than 0.2%

The aspect of the contour lines was not smooth, with even the appearance of some islands.
However, it might be possible that such islands were an artifact caused by the limited resolution of
only 60× 60 points in the (η′s, η′′s ) plane, due to the high computational cost of these simulations.

However, some general observations can be made of Figure 5. In the three cases herein considered,
the structure of the contour lines corresponding to the lower values of δmod (continuous light blue lines)
roughly formed a square with the coordinate axes. Strong peaks (red dashed lines) appeared close
to low values of η′s (close to the ordinate axis), i.e., in elasticity-dominated interfaces. No such peaks
appeared close to low values of η′′s (close to the abscissa axis), i.e., in viscosity-dominated interfaces.

Regarding the performance of the iterative data processing scheme, it is important to look at the
numerical values of δmod in each of the graphs having in mind that it represents the modulus of the
relative difference between two values of the complex interfacial viscosity: the programmed value at
the start of the direct problem and the calculated value at the end of the inverse problem.

In Graph (a), δmod takes very low values. all of them being lower than 0.2%, while δmod ≤ 0.1%
in the region such that η′s ≥ 2× 10−6 and η′′s ≥ 10−5 in units of N m/s. This means that the iterative
process introduced very small errors (≤ 0.1%) in the interfacial viscosity measurements within most
of the (η′s, η′′s ) range herein considered, provided they were made at low oscillation frequencies
(0.63 rad/s in the top graph).

In Graph (b) of Figure 5, the values of δmod are much higher (up to 60% at the peak), while
δmod ≤ 0.15% in the region such that η′s ≥ 10−5 and η′′s ≥ 3× 10−5. Hence, the (η′s, η′′s ) range in
which the iterative process introduces small errors decreased significantly at an oscillation frequency
of 6.28 rad/s.

This tendency is again clear in Graph (c) of Figure 5. Although the values of δmod were lower than
in the previous case (about 2.5% at the peak), the low error region (δmod ≤ 0.2%) shrank again to values
such that η′s ≥ 10−4 and η′′s ≥ 10−4 in units of N m/s.

3.2. Estimation of the Achievable Measuring Range

To elucidate which is the achievable measuring range of a bicone ISR when using the proposed
flow field-based data analysis scheme, two main aspects have to be considered: on the one hand,
the instrumental errors, i.e., the unavoidable dispersion in the torque and angular displacement data
measured by the rheometer; on the other hand, the rheometry point of view, i.e., the fact that for
the measurements to be acceptable, they must be distinguishable from those pertaining to a clean
water interface. The interplay between these two aspects is illustrated here through the analysis of the
achievable measuring range of a bicone fixture in a Bohlin C-VOR rheometer.
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Figure 5. Contour plots of δmod in the (η′s, η′′s ) plane at the frequency value indicated in the
corresponding legend. The contour lines correspond to the following percentage values of δmod:
(a) 0.01, 0.02, 0.04, 0.1; (b) 0.15, 0.3, 1, 30; (c) 0.2, 0.5, 1, 2. In the three graphs, red dashed lines
correspond to the highest δmod value and continuous light blue lines to the lowest δmod value.
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In oscillatory measurements, the output of the rheometer comprises the amplitudes of the torque
and the angular displacement and their relative phase, which are used to determine the experimental
value of the amplitude ratio, AR∗exp. Given a surfactant laden interface, the instrument can resolve
its complex viscosity if the corresponding complex amplitude ratio can be distinguished from that
pertaining to a clean water interface. In [20], this condition was formally expressed as two inequalities
that, both, had to be fulfilled simultaneously.∣∣∣∣∣∣AR∗exp

∣∣∣− |AR∗clean|
∣∣∣ ≥ σ (|AR∗clean|) ;

∣∣∣arg(AR∗exp)− arg(AR∗clean)
∣∣∣ ≥ σ (arg(AR∗clean)) . (9)

In order to apply Equation (9), we have calculated both AR∗exp and AR∗clean for different
η′s, η′′s combinations. At variance with respect to [20], where only a few combinations of η′s, η′′s
values were investigated, here, a thorough exploration of the (η′s, η′′s ) has been performed by using
all the combinations of 120 values logarithmically spaced in each axis and different frequencies.
The corresponding values for the uncertainties σ(

∣∣AR∗clean

∣∣) and σ(arg(AR∗clean) were taken from
experiments performed on clean water interfaces of the Bohlin C-VOR rheometer.

In Figure 6a, we show the lines satisfying the equality in Equation (9), i.e., the lower resolvable
limit, for frequencies in the range 0.63 ≤ ω ≤ 628.32 rad/s. For a clearer view, the lines corresponding
to three representative frequencies, namely, ω = 0.63, 6.28, and 62.83 rad/s, are shown in Figure 6b.
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Figure 6. Boundaries separating the regions of the (η′s, η′′s ) plane where the interface can be
distinguished from a clean air–water interface, under the fulfillment of both conditions in Equation (9).
(a) Lines at frequencies indicated by the line labels in the frequency range 0.63 ≤ ω ≤ 628.32 rad/s.
(b) Lines at representative frequencies: ω = 0.63 rad/s (black continuous line), ω = 6.28 rad/s (blue
dash-dot line), and ω = 62.83 rad/s (red dotted line).

The structure of the non-measurable region had some common features at all frequencies, such
as the spiky tongue that widened at lower values of the real and imaginary parts of the viscosity.
The island-like structures at the tips of the tongues were artifacts caused by the width of the tongue
being comparable to the distance between sampled points in the (η′s, η′′s ) plane. In fact, such islands
should actually correspond to points corresponding to a continuous tongue that is getting thinner and
thinner. The tongues shift to cover larger values of η′s and η′′s as the frequency increases.

For viscosity-dominated interfaces (very low η′′s ), there was, at each frequency, a well-defined
threshold interfacial viscosity, below which the interface was non-distinguishable from a clean water
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interface. Roughly speaking, those thresholds were (in N s/m units) 2× 10−6 for ω = 0.63 rad/s,
3× 10−5 for ω = 6.28 rad/s, and 3× 10−3 for ω = 62.83 rad/s. A similar behavior was illustrated in
Figure 7.c of [20], although there, sweeping was done only in η‘s.

A different behavior was seen for viscoelastic interfaces. Let us consider viscoelastic interfaces
with η′s = η′′s (points at the bisectrix of Figure 6, either (a) or (b)). For low values of ηs, the points lied
in the base of the tongue, and therefore, the interface was non-distinguishable from a clean water one.
Increasing in η′s = η′′s , the tongue crossed below the bisectrix, and therefore, the points at the bisectrix
became distinguishable from clean water interfaces. Upon further increasing η′s = η′′s , the tongue
turned up and crossed again the bisectrix in a region in which the tongue was already very narrow.
Hence, a very narrow window appeared in which the interface was again non-distinguishable from a
clean water one. For η′s = η′′s values larger than those at the above-mentioned window, the interface
was again distinguishable from clean water. A similar behavior was illustrated in Figure 7.b of [20],
although there, sweeping was made only along the bisector of the plane (η‘s = η′′s ).

For elasticity-dominated interfaces (η′′s � η′s), one finds (see the lines corresponding to ω = 0.63
and 6.28 rad/s) that at low values of η′′s , the interface was not distinguishable from a clean water one,
and there was, at each frequency, a well-defined threshold interfacial elastic component (η′′s ) below
which the interface was non-distinguishable from a clean water interface. Above the threshold value,
the interfacial viscoelasticity can be measured. This scenario was similar to the one illustrated in
Figure 4c,e of the Supporting Information of [20], made by sweeping only in η′s, except that in those
figures, narrow tongues appeared, in which the interface was again non-distinguishable from a clean
water one. This means that the sampling of the (η′s, η′′s ) plane in Figure 6 is not enough to represent the
narrow parts of the tongues fully.

All of the above-mentioned features came from the non-fulfillment of the condition on the moduli.
At large frequencies, however, the non-fulfillment of the condition on the arguments in Equation (9)
caused an additional enlargement of the non-distinguishable region in elasticity-dominated interfaces.
For instance, the line corresponding to ω = 62.83 rad/s in Figure 6b shows a bump at high values of
η′′s and comparatively lower values of η′s. Actually, in our numerical simulations, that bump appeared
at all frequency values above 15.7 rad/s and shifted upwards and rightwards upon increasing the
frequency (see Figure 6a). Indeed, as from our simulations, it cannot be discarded that for lower
frequencies, similar bumps appeared as well at values η′s < 10−6 N s/m.

The distinguishability criterion based on simultaneous fulfillment of the two inequalities in
Equation (9) was, however, somewhat too strict. In fact, when any of the two inequalities was fulfilled,
the interface was already distinguishable from the clean water interface. If we use this relaxed criterion
with the output of our simulations, the picture so obtained is as shown in Figure 7, where both the
resonance tongues, due to the condition on the moduli, and the bumps at the elasticity dominated
region, due to the condition on the arguments, have disappeared.

The distinguishability criterion based on simultaneous fulfillment of the two inequalities in
Equation (9) was, however, somewhat too strict. In principle, when any of the two inequalities was
fulfilled, the interface was already distinguishable from the clean water interface. If we impose
this relaxed criterion on the output of our simulations, we obtain the picture shown in Figure 7.
Some features are noticeable here. Generally speaking, the non-distinguishable region takes now a
rectangular form, and the boundaries in η′s and η′′s at each frequency have shifted to lower values.
Two other main effects can be observed. Both the resonance tongues, for viscoelastic interfaces, and
the bumps, for mainly elastic interfaces, disappeared. For frequencies smaller than those present in the
labels of the contour lines in Figure 7, the boundaries of the non-distinguishable regions lied below the
lower limits of the axis shown in the figure.
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Figure 7. Boundaries separating the regions of the (η′s, η′′s ) plane where the interface can be distinguished
from a clean air–water interface, under the fulfillment of either one of the conditions in Equation (9).
Lines at frequencies indicated by the line labels in the frequency range 0.63 ≤ ω ≤ 628.32 rad/s.

The resonance tongues are regions in which the inequality concerning the arguments is fulfilled
while the one involving the moduli of the amplitude ratio is not. The bumps are just the opposite,
namely regions in which the inequality concerning the moduli of the amplitude ratio is fulfilled while
the one involving the argument is not.

From the experimental point of view, two important consequences can be derived from the
differences between Figures 6 and 7. For purely-viscous interfaces (very low η′′s ), the differences
between Figures 6 and 7 indicate that, in an experiment increasing η′s from negligible values, one
should expect going through three stages: from a low viscosity region, in which none of the inequalities
will be fulfilled, to a second region, in which the argument inequality will be fulfilled, but not the
amplitude’s, to a third regime, in which both inequalities will be fulfilled. In other words, for mainly
viscous interfaces, the increase of viscosity should be perceived first as an increase in the argument of
the amplitude ratio, and not as a decrease of the modulus of the amplitude ratio.

Conversely, for purely-elastic interfaces (very low η′s), the differences between Figures 6 and 7
indicate that, in an experiment increasing η′′s from negligible values, the results obtained will go
through three stages: from a low elasticity region, in which none of the inequalities will be fulfilled,
to a second region, in which the inequality involving the moduli will be fulfilled, but not the one
involving the arguments, to a third regime, in which both inequalities will be fulfilled. In other words,
for mainly elastic interfaces, the increase of elasticity should be perceived first as a decrease in the
modulus of the amplitude ratio, and not as an increase of the argument.

3.3. Global Relative Errors

In the previous subsections, we illustrated separately the errors introduced by the iterative
process and the regions where the interface can be distinguished from a clean water one. However,
in actual experiments, these two effects are coupled, because what one has as the result of an
experiment is the values of the modulus and argument of the complex amplitude ratio,

∣∣∣AR∗exp

∣∣∣ and

δexp = arg(AR∗exp), each one of which is then affected by its own experimental uncertainty, σ
(∣∣∣AR∗exp

∣∣∣)
and σ

(
arg(AR∗exp)

)
. Therefore, the problem here is how the small area around the experimental values

defined by the rectangle defined by the points
(∣∣∣AR∗exp

∣∣∣± σ
(∣∣∣AR∗exp

∣∣∣) , δexp ± σ
(

arg(AR∗exp)
))

transforms under the application of the iterative procedure, i.e., how the uncertainties in the modulus
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and the argument of the amplitude ratio obtained experimentally propagate through the iterative data
processing scheme.

In order to estimate that transformation, we programmed 60× 60 η′s prog and η′′s prog values in a

logarithmic mesh in
(

η′s prog, η′′s prog

)
, and used them as input values for the direct problem, having

as output the values of
∣∣∣AR∗prog

∣∣∣ and δprog. For each of those data, we used as uncertainty the
experimental uncertainty measured for a clean water interface at the corresponding frequency and
defined an enclosing rectangle with the points

(∣∣∣AR∗prog

∣∣∣± σ
(∣∣AR∗clean

∣∣) , δprog ± σ
(
arg(AR∗clean)

))
.

Next, we used the corners of such a rectangle plus the middle points of the four rectangle faces as the
input of the inverse problem. Then, for each point in the plane

(∣∣∣AR∗prog

∣∣∣ , δprog

)
, we now have eight

images in the plane (η′siter, η′′s iter), which we label η∗s
i
rect; i = 1, ..., 8, corresponding to the pertaining

eight points that define the corresponding rectangle given by experimental uncertainties. Now, we
define as a global error indicator, ε(η∗s prog), the maximal percentage relative difference between the

programmed value of the complex interfacial viscosity, η∗s prog, and the eight points η∗s
i
rect, i.e.,

ε(η∗s prog) = 100×max

{∣∣∣∣∣η
∗
s prog − η∗s rect

i

η∗s prog

∣∣∣∣∣
}

, (10)

The results of the application of such a procedure are shown in Figure 8, for three representative
frequencies, namely ω = 0.63 rad/s, ω = 6.28 rad/s, and ω = 62.83 rad/s. In all three graphs,
the contour lines, from right to left and top to bottom, correspond to the values ε(η∗s prog) = 1%, 5%,
10%, 20%.

Loosely speaking, if we take the 5% line as an acceptable error, the bicone fixture mounted
in a Bohlin C-VOR rheometer with the flow field data processing scheme proposed in [20] can be
expected to measure complex interfacial viscosities accurately (in Ns/m units) down to 2× 10−5, for
ω = 0.63 rad/s, 3× 10−4, for ω = 6.28 rad/s, and 4× 10−3, for ω = 62.83 rad/s. Consequently,
we can conclude that the resolution in the interfacial viscosity measurements is better the lower
the frequency. More modern rheometers having better resolution for the torque and/or angular
displacement measurements might give reliable measurements below the limits herein obtained.
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Figure 8. Contour plots of ε(η∗s prog) in the (η′s, η′′s ) plane at the frequency value indicated in the
corresponding legend. The contour lines correspond to the following percentage values of ε(η∗s prog),
and the values are 1, 5, 10, 20. Graphs correspond to frequencies: (a) 0.63 rad/s, (b) 6.28 rad/s, and
(c) 62.8 rad/s. In the three graphs, red dashed lines correspond to the highest ε(η∗s prog) value and
continuous light blue lines to the lowest ε(η∗s prog) value.

4. Discussion

Apart from the comments already made while describing the results, several general questions
deserve further discussion. First of all, why do the solutions to the direct and the inverse problems
differ? In our opinion, the answer is that the direct and the inverse problems do not correspond to
the same type of experiment. On the one hand, in the direct problem, the angular displacement of the
probe is prescribed, which means the strain is prescribed, and the probe equation of motion is used
merely to obtain the corresponding complex amplitude ratio, i.e., the torque, which is directly related
to the shear stress. In this sense, the direct problem appears to be a strain-controlled experiment.

On the other hand, in the inverse problem, the complex amplitude ratio is prescribed, and the
iterative process yields the value of the complex interfacial viscosity and the complex velocity
amplitude function that are compatible with the prescribed complex amplitude ratio. At each step of
the iterative process, rotor inertia is taken into account, and more importantly, changes in the complex
velocity amplitude involve changes in the subphase and interface drag terms in Equation (7). Therefore,
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the inverse problem appears to correspond closely to a stress-controlled experiment. Hence, it is not so
surprising that the solutions of the direct and inverse problems might differ somewhat.

Another aspect that deserves a comment is the remarkable frequency dependence of the peak
values of δmod in Figure 5, which might be its origin. At low frequency values, fluid and rotor inertia do
not play any role, and the velocity profile at the subphase and interface is linear. Hence, both the direct
and the inverse problems have to give solutions very close to the linear velocity profile solution [20],
and therefore, the relative difference between their results must be small. At large frequency values,
rotor inertia (the Iω2 term in Equations (6) and (7)) dominates the dynamics, and the subphase and
the interface do not play a leading role. Hence, the solutions of the direct and inverse problems must
be again very similar, so that the values of the relative difference must be small here as well. On the
contrary, at intermediate frequency values, fluid inertia plays an essential role, the velocity profiles
being strongly nonlinear, and more importantly, the inverse problem allows for variations in the
velocity profile g∗(r̄, z̄) as iterations proceed, which may strongly affect the converged value of Bo∗

and, hence, the value of η∗s calc.
When resonance phenomena [20,23] appear, large amplitudes, nonlinear behavior, and instabilities

may occur. It is important to realize that the ansatz (Equation (2)) and the hydrodynamic model
described in Section 4 allow us to obtain periodic solutions fulfilling the ansatz. However, it is not
guaranteed that such solutions are the only possible ones, neither that they are stable. Fully-dynamical
simulations of the probe equation of motion coupled to the hydrodynamic model should shed light on
other possible existing solutions and their stability.

5. Materials and Methods

5.1. Parameters for the Numerical Calculations

In the present report, we have used the geometrical parameters corresponding to the experimental
setup of [20]. Accordingly, we used a cup with radius Rc = 0.04 m and a single-cone bob with radius
Rb = 0.034 m and vertical distance to the cup bottom h = 0.022 m. The water subphase physical
parameters used were ρb = 1000 kg m−3 and ηb = 10−3 Pa s.

For the dynamical parameters of the rheometer, we used the measured values [20] corresponding
to the Bohlin C-VOR rheometer in our lab, namely the moment of inertia of the rotor + bicone assembly,
I = (2.42± 0.02)× 10−5 kg m2, and the coefficient of the frictional torque of the rheometer (C-VOR,
Bohlin Instruments), b = (3.2± 0.5)× 10−8 N m s.

Equation (3) was solved with a mesh having N = 480 sub-intervals in the radiate coordinate, r̄,
and M = 240 sub-intervals in the vertical coordinate z̄. The value of the tolerance parameter used in
Equation (8) to define the convergence of the iterative process was tolMin = 10−5, and the maximum
number of iterations allowed was 100. According to the results in [23], such values yielded good
resolution of the spatial velocity gradients and reasonable convergence times.

5.2. Definition of the Direct and Inverse Numerical Problems

The direct problem merely consists of finding the value of the complex amplitude ratio that
corresponds to the programmed values of the frequency, ω, and the complex interfacial viscosity,
η∗s prog. Hence, it suffices to calculate the corresponding values of the complex Reynolds and Boussinesq
numbers, respectively, Re∗prog and Bo∗prog, and to solve Equation (3) with the boundary conditions
specified by Equations (4) and (5). Then, the numerically-obtained complex velocity amplitude
function, g∗prog(r̄, z̄), was used to calculate the value of the complex amplitude ratio, AR∗prog(ω, η∗s prog).

Conversely, the inverse problem starts from the numerically-obtained values of the complex
amplitude ratio, AR∗prog(ω, η∗s prog), and a suitable seed value of Bo∗, that was obtained using a linear
approximation in which the complex velocity amplitude function, g∗clean(r̄, z̄), corresponding to a
clean interface was used as a first approximation (see [23] for details). Then, Equation (7) was
used to obtain a new calculated value of the Boussinesq number, Bo∗calc, and this new value of the
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Boussinesq number was re-injected into the Boussinesq–Scriven boundary condition, Equation (5).
Solving the hydrodynamic problem again (Equations (3)–(5)), a new flow field configuration (a new
complex velocity amplitude function) was obtained, which allowed us to compute an iterated value of
the complex amplitude ratio through Equation (6). This procedure was repeated until convergence
according to condition Equation (8). Then, Equation (7) was used to obtain a converged value of the
complex Boussinesq number, Bo∗calc, and a converged value of the complex interfacial viscosity just
using the expression η∗s calc = Rcη∗Bo∗calc. Throughout this work, we have used a convergence tolerance
of tolMin = 10−5.

The comparison of the complex viscosity values set at the start of the direct problem with
the values obtained from the final solution of the inverse problem gave us a way to evaluate the
performance of the iterative data processing scheme.
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