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Partially methylated domains are hypervariable
in breast cancer and fuel widespread CpG island
hypermethylation
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Global loss of DNA methylation and CpG island (CGI) hypermethylation are key epigenomic

aberrations in cancer. Global loss manifests itself in partially methylated domains (PMDs)

which extend up to megabases. However, the distribution of PMDs within and between

tumor types, and their effects on key functional genomic elements including CGIs are poorly

defined. We comprehensively show that loss of methylation in PMDs occurs in a large

fraction of the genome and represents the prime source of DNA methylation variation. PMDs

are hypervariable in methylation level, size and distribution, and display elevated mutation

rates. They impose intermediate DNA methylation levels incognizant of functional genomic

elements including CGIs, underpinning a CGI methylator phenotype (CIMP). Repression

effects on tumor suppressor genes are negligible as they are generally excluded from PMDs.

The genomic distribution of PMDs reports tissue-of-origin and may represent tissue-specific

silent regions which tolerate instability at the epigenetic, transcriptomic and genetic level.

https://doi.org/10.1038/s41467-019-09828-0 OPEN

1 Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, PO Box 9101, Nijmegen 6500 HB,
The Netherlands. 2Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. 3 Academic Department of Medical Genetics, University of
Cambridge, Cambridge CB2 0QQ, UK. 4 Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Department of Medical Oncology, Erasmus
University Medical Center, Rotterdam 3015 GD, The Netherlands. 5 Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos,
NM 87545, USA. 6 Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA. 7Division of Oncology and Pathology,
Department of Clinical Sciences Lund, Lund University, Lund SE-223 81, Sweden. 8 Synergie Lyon Cancer, Centre Léon Bérard, 28 rue Laënnec, Lyon Cedex
08, France. 9 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10
1SD, UK. 10 Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo 0310, Norway. 11 K.G.
Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo 0316, Norway. 12 Department of Clinical Molecular Biology
and Laboratory Science (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog 1478, Norway. 13 Centro Nacional de Análisis Genómico
(CNAG), Parc Científic de Barcelona, Barcelona 08028, Spain. 14 Department of Pathology, Academic Medical Center, Meibergdreef 9, Amsterdam AZ 1105,
The Netherlands. 15 Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA. 16 Dana-Farber Cancer Institute, Boston, MA 02215,
USA. 17Present address: Department of Pathology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands.
Correspondence and requests for materials should be addressed to A.B.B. (email: a.brinkman@science.ru.nl) or to H.G.S. (email: h.stunnenberg@ncmls.ru.nl)

NATURE COMMUNICATIONS |         (2019) 10:1749 | https://doi.org/10.1038/s41467-019-09828-0 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/199257204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-9875-1835
http://orcid.org/0000-0002-9875-1835
http://orcid.org/0000-0002-9875-1835
http://orcid.org/0000-0002-9875-1835
http://orcid.org/0000-0002-9875-1835
http://orcid.org/0000-0001-6213-5259
http://orcid.org/0000-0001-6213-5259
http://orcid.org/0000-0001-6213-5259
http://orcid.org/0000-0001-6213-5259
http://orcid.org/0000-0001-6213-5259
http://orcid.org/0000-0001-5254-5115
http://orcid.org/0000-0001-5254-5115
http://orcid.org/0000-0001-5254-5115
http://orcid.org/0000-0001-5254-5115
http://orcid.org/0000-0001-5254-5115
http://orcid.org/0000-0001-5469-8940
http://orcid.org/0000-0001-5469-8940
http://orcid.org/0000-0001-5469-8940
http://orcid.org/0000-0001-5469-8940
http://orcid.org/0000-0001-5469-8940
http://orcid.org/0000-0003-1341-5400
http://orcid.org/0000-0003-1341-5400
http://orcid.org/0000-0003-1341-5400
http://orcid.org/0000-0003-1341-5400
http://orcid.org/0000-0003-1341-5400
http://orcid.org/0000-0003-0985-8460
http://orcid.org/0000-0003-0985-8460
http://orcid.org/0000-0003-0985-8460
http://orcid.org/0000-0003-0985-8460
http://orcid.org/0000-0003-0985-8460
http://orcid.org/0000-0002-3428-3366
http://orcid.org/0000-0002-3428-3366
http://orcid.org/0000-0002-3428-3366
http://orcid.org/0000-0002-3428-3366
http://orcid.org/0000-0002-3428-3366
http://orcid.org/0000-0001-6035-153X
http://orcid.org/0000-0001-6035-153X
http://orcid.org/0000-0001-6035-153X
http://orcid.org/0000-0001-6035-153X
http://orcid.org/0000-0001-6035-153X
http://orcid.org/0000-0002-0066-1576
http://orcid.org/0000-0002-0066-1576
http://orcid.org/0000-0002-0066-1576
http://orcid.org/0000-0002-0066-1576
http://orcid.org/0000-0002-0066-1576
mailto:a.brinkman@science.ru.nl
mailto:h.stunnenberg@ncmls.ru.nl
www.nature.com/naturecommunications
www.nature.com/naturecommunications


G lobal loss of methylation was among the earliest recog-
nized epigenetic alterations of cancer cells1. It is now
known to occur in large genomic blocks that partially lose

their default hypermethylated state, termed partially methylated
domains (PMDs)2–6. PMDs have been described for a variety of
cancer types and appear to represent repressive chromatin
domains that are associated with nuclear lamina interactions, late
replication, and low transcription. PMDs are not exclusive to
cancer cells and have also been detected in normal tissues2,7–12,
but are less pronounced in pluripotent cells and brain tissue12–14.
PMDs can comprise up to half of the genome3,4,12, and it has
been suggested that PMDs in different tissues are largely
identical3,12. PMDs have been shown to harbor focal sites of
hypermethylation that largely overlap with CGIs3. Questions
remain as to what instigates such focal hypermethylation, whe-
ther loss of methylation inside PMDs is linked to repression of
cancer-relevant genes and whether the genomic distribution of
PMDs is invariant throughout primary tumors of the same type,
perhaps determined by tissue-of-origin. In breast cancer, PMDs
have been detected in two cultured cancer cell lines5, but their
extent and variation in primary tumors is hitherto unknown. A
major limitation of most DNA methylation studies is that only a
small subset of CpGs are interrogated. This prevents accurate
determination of the extent and location of PMDs. Few samples
of a certain tissue/tumor have typically been analyzed using
whole-genome bisulfite sequencing (WGBS). Thus, observations
cannot be extrapolated to individual cancer types. Here, we
analyzed DNA methylation profiles of 30 primary breast tumors
at high resolution through WGBSs. This allowed us to delineate
breast cancer PMD characteristics in detail. We show that PMDs
define breast cancer methylomes and are linked to other key
epigenetic aberrations such as CGI hypermethylation.

Results
Primary breast tumors show variable loss of DNA methylation.
To study breast cancer epigenomes we performed WGBS in 30
primary breast tumors, encompassing ~95% of annotated CpGs
(Supplementary Fig. 1A, Supplementary Data 1). For 25/30 of
these tumors we previously analyzed their full genomes15,16

and transcriptomes17, respectively. Of the 30 tumors, 25 and 5
are ER-positive and ER-negative, respectively (Supplementary
Fig. 1B, Supplementary Data 2).

To globally inspect aberrations in DNA methylation patterns
we generated genome-wide and chromosome-wide methylome
maps by displaying mean methylation in consecutive tiles of 10
kb (see Methods section). These maps revealed extensive inter-
tumor variation at genome-wide scale (Fig. 1a). At chromosome
level, we observed stably hypermethylated regions next to
regions that were hypomethylated to various extents and across
tumors (Fig. 1b). Chromosomes 1 and X were exceptionally
prone to methylation loss, the latter of which may be related
to epigenetic aberrations of the inactive X-chromosome in
breast cancer observed by others18. At megabase scale (Fig. 1c)
DNA methylation profiles showed that the widespread loss
of methylation occurred in block-like structures previously
defined as PMDs2. Across primary breast tumor samples, DNA
methylation levels and genomic sizes of PMDs differ extensively
between tumors and PMDs do appear as separate units in some
tumors and as merged or extended in others, underscoring
the high variation with which methylation loss occurs. Despite
this variation, however, we observed common PMD boundaries
as well.

Given the variation between tumors, we asked whether the
patterns of methylation loss were associated with distribution
of copy-number variations (CNVs) throughout the genome.

We found no evidence for such association (Pearson R= 0.17),
although we noticed that chromosomes with the most pro-
nounced loss of methylation (chr1, chrX, and chr8-p) frequently
contained amplifications (Supplementary Fig. 1C). Next, we asked
whether loss of methylation was associated with aberrant
expression of genes involved in writing, erasing, or reading the
5-methylcytosine modification. However, we found no such
correlation (Supplementary Fig. 1D). Finally, we assessed whether
mean PMD methylation was associated with the fraction of
aberrant cells within the sample (ASCAT19). However, no such
correlation was evident (Pearson R=−0.03, Supplementary
Fig. 1E).

To provide a reference for the observed patterns of methylation
loss we compared WGBS profiles of primary breast tumors to
that of 72 normal tissues (WGBS profiles from Roadmap
Epigenomics Project and in ref. 10, Supplementary Fig. 2A,B).
In sharp contrast to breast cancer, most normal tissues were
almost fully hypermethylated (except for pancreas and skin), with
heart, thymus, embryonic stem cell(-derived), induced pluripo-
tent stem cells and brain having the highest levels of methylation.
Importantly, inter-tissue variation was much lower as compared
to breast tumors (p < 2.2e−16, MWU-test on standard devia-
tions). The variation observed among breast tumors was also
present when we reproduced Fig. 1a–c using only solo-WCGW
CpGs (CpGs flanked by an A or T on both sides), which were
recently shown to be more prone to PMD hypomethylation12

(Supplementary Fig. 3). Thus, breast tumors show widespread
loss of DNA methylation in PMDs, and the extent and patterns
appear to be hypervariable between tumor samples. In line with
this, principal component analysis confirmed that methylation
inside PMDs is the primary source of variation across full-
genome breast cancer DNA methylation profiles (Fig. 1d): the
first principal component (PC1) is strongly associated with mean
PMD methylation (p= 3.2e−0720, see Methods section). The
second-largest source of variation, PC2, is associated with ER
status (p= 2.7e−07, Fig. 1d, Supplementary Fig. 4A, see Methods
section) and to a lesser extent with intrinsic AIMS subtypes
(Absolute assignment of breast cancer Intrinsic Molecular
Subtypes, p= 4.2e−04, see Methods section, Supplementary
Fig. 4A)21,22, although the latter is likely confounded with ER
status. Successive PCs were not significantly associated with any
clinicopathological feature. It should be noted that with 30
tumors only very strong associations can achieve statistical
significance. Taken together, breast tumor whole-genome DNA
methylation profiles reveal global loss of methylation in features
known as PMDs, the extent of which is hypervariable across
tumors and represent the major source of variation between
tumors.

Distribution and characteristics of breast cancer PMDs. We set
out to further characterize breast cancer PMDs and their varia-
tion (see Methods: data availability). The genome fraction cov-
ered by PMDs varies greatly across our WGBS cohort of 30
tumors, ranging between 10 and 50% across tumors, covering
32% of the genome on average (Fig. 2a). We define PMD fre-
quency as the number of tumors in which a PMD is detected. A
PMD frequency of 30 (PMDs common to all 30 cases) occurs in
only a very small fraction of the genome (2%), while a PMD
frequency of 1 (representing the union of all PMDs from 30
cases) involves 70.2% of the genome (Fig. 2b). Similar results were
obtained with PMDs called on only solo-WCGW CpGs12 (Sup-
plementary Fig. 4B,C), and comparison of these solo-CpG PMDs
with “all-CpG” PMDs revealed high overlap (92%) between their
individual unions (Supplementary Fig. 4D). We further compared
our PMD calling with aggregate PMD calling based on cross-
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sample standard deviation (s.d.) of methylation in 100-kb geno-
mic bins12. This method segments the genome according to
common PMDs across multiple samples, and we found that our
PMDs are all contained within this aggregate PMD track (Sup-
plementary Fig. 4E,F).

Given the inter-tumor variation of PMDs we tested to which
extent PMD distribution is random by counting PMD borders in
30-kb genomic tiles (Fig. 2c). Randomly shuffled PMDs yield
a normal distribution centered at a PMD frequency of four. In
contrast, observed PMDs show a skewed distribution: the mode
was for a PMD frequency of 0 suggesting that many tiles (23,492,
25%) do not coincide with any PMD borders. The majority of
tiles (62%) had a low PMD border frequency (1–10). The tail
represents low numbers of tiles with up to maximal PMD
frequency of 30. We conclude that PMD distribution is not
random: part of the genome appears not to tolerate PMDs while
PMDs occur in a large fraction of the genome with varying
frequencies.

PMDs have been shown to coincide with lamin-associated
domains (LADs)3,4: large repressive domains that preferentially
locate to the nuclear periphery23. LADs are characterized
by low gene density and late replication23,24. Accordingly we
found that PMDs show reduced gene densities (Fig. 2e), have high
LaminB1 signals (associated with LADs23, Fig. 2d), are late
replicating (ENCODE data, Fig. 2d) and have a low frequency of
(Hi-C) 3D loops25, an indicator of lower levels of transcription.
Finally, we observed a local increase in binding of the
transcription factor CTCF at the borders of PMDs (Fig. 2d) as
shown in previous reports3,23,26–28.

We previously analyzed the full transcriptomes (RNA-seq) in a
breast cancer cohort of 266 cases17 from which our WGBS cohort
is a subset. We determined the mean expression of genes as
a function of PMD frequency in the overlapping subset of 25
tumors. Genes inside PMDs are expressed at consistently lower
levels than genes outside of PMDs (Fig. 2f, p < 2.2e−16, t-test),
with a tendency towards lower expression in highly-frequent
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Fig. 2 Characterization of breast cancer PMDs. a Fraction of the genome covered by PMDs. Each dot represents one tumor sample, the boxplot
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PMDs (p < 2.2e−16, linear regression). Given the variable nature
of DNA methylation patterns of PMDs, we also determined the
variation (s.d.) in gene expression as a function of PMD
frequency and found higher variation for genes inside PMDs
(Fig. 2f, p < 2.2e−16, MWU-test). When extending this analysis
to the full set of 266 cases from the transcriptome cohort we
observed the same (Supplementary Fig. 5A, p < 2.2e−16, t-test
for expression; p < 2.2e−16, MWU-test for variation). Given the
observed variability of DNA methylation and gene expression
inside PMDs, we asked whether genetic stability, i.e., the number
of somatic mutations, was also altered within PMDs. In the
25 overlapping cases between our WGBS cohort and the WGS
cohort15, substitutions, insertions, and deletions occur more
frequently within than outside PMDs (p < 0.0005 for each
mutation type, logistic regression), with a (slight) increase in
highly frequent PMDs (p < 2.2e−16 for substitutions, p= 0.37 for
insertions, p= 1.6e−05 for deletions, logistic regression, Fig. 2g).
In contrast, rearrangements are more abundant outside of PMDs
(p= 1.1e−09, logistic regression), in keeping with the hypothesis
that regions with higher transcriptional activity are more
susceptible to translocations29. We extended this analysis to
the full cohort of 560 WGS tumor samples15, which confirmed
these observations while showing much stronger effects in
highly frequent PMDs (p < 2.2e−16 for all mutation types and
rearrangements, logistic regression, Supplementary Fig. 5B).
Taken together, breast cancer PMDs share key features of PMDs
including low gene density, low gene expression, and colocaliza-
tion with LADs, suggesting that they reside in the B (inactive)
compartment of the genome30. Importantly, in addition to
epigenomic instability, breast cancer PMDs also tolerate tran-
scriptomic variability and genomic instability.

CpG island methylation in breast cancer PMDs. To determine
how PMDs affect methylation of functional genomic elements we
accordingly stratified all CpGs from all tumors and assessed the
methylation distribution in these elements (Fig. 2h). We found
that the normally observed near-binary methylation distribution
is lost inside PMDs; the hypermethylated bulk of the genome and
hypomethylated CGIs/promoters acquire intermediate levels of
DNA methylation inside PMDs. DNA methylation deposition
inside PMDs thus appears incognizant of genomic elements,
resulting in intermediate methylation levels regardless of the
genomic elements’ functions. Among all elements, the effect of
incognizant DNA methylation deposition is most prominent for
CGIs as they undergo the largest change departing from a strictly
hypomethylated state. This has been described also as focal
hypermethylation inside PMDs3.

We further focused on methylation levels of CGIs. When
indiviual PMDs are regarded, CGIs inside of them lose their
strictly hypomethylated state and become more methylated to a
degree that varies between tumors (Fig. 3a). Across all tumors and
all CGIs, this effect is extensive (Fig. 3b, c), affecting virtually all
CGIs inside PMDs: on average 92% of CGIs lose their
hypomethylated state and gain some level of methylation (Fig. 3b,
left panel). Outside of PMDs only 25–30% of the CGIs is
hypermethylated, although to a higher level (Fig. 3b, right panel).
Thus, incognizant deposition of DNA methylation inside PMDs
results in extensive hypermethylation of virtually all PMD-CGIs.

Concurrent hypermethylation of CGIs in cancer has been
termed CIMP31, and in breast cancer this phenomenon has been
termed B-CIMP32–34. To determine whether CIMP is directly
related to PMD variation we defined B-CIMP as the fraction of
CGIs that are hypermethylated (>30% methylated), and deter-
mined its association with the fraction of CGIs inside PMDs.
Regression analysis (see Methods) showed that this association is
highly significant (Fig. 3f, p= 2.1e−08, R2= 0.51, n= 30). The

fraction of hypermethylated CGIs is generally higher than
the fraction of hypermethylated CGIs in PMDs, suggesting
that CGI hypermethylation is not solely dependent on PMD
occurrence. However, CGI methylation levels outside PMDs
are far more stable than inside PMDs (Fig. 3e), which likely
represents an invariably methylated set of CGIs (Supplementary
Data 3).

We applied the same regression analysis to 14 other tumor
types (TCGA35, BLUEPRINT36–38, Fig. 3g). Although sample
sizes were small, we found significant CIMP-PMD associations
for lung adenocarcinoma (LUAD), rectum adenocarcinoma
(READ), uterine corpus endometrial carcinoma (UCEC), and
bladder urothelial carcinoma (BLCA). We did not find significant
associations for other tumor types (ALL, BL, ALL, CLL, FL,
LUSC, lung, TPL, STAD, MCL, BLCA, see Fig. 4b for their
abbreviations) and glioblastoma (GBM), even though for the
latter G-CIMP has been previously described39. Taken together,
we conclude that PMD occurrence is an important determinant
for CIMP in breast cancer and a subset of other tumor types.

PMD demethylation effects on gene expression. To assess
whether widespread hypermethylation of CGI-promoters within
PMDs instigates gene repression we analyzed expression as a
function of gene location inside or outside of PMDs. Overall,
CGI-promoter genes showed a mild but significant down-
regulation when inside PMDs (p= 4.5e−12, t-test), while strong
downregulation was specifically restricted to low-frequency
PMDs (Fig. 3h). For non-CGI-promoter genes this trend was
very weak or absent (Supplementary Fig. 6A). As healthy controls
were not included in transcriptome analysis of our cohort17 we
used gene expression (RNA-seq) profiles from breast tumors
(769) and normal controls (88) from TCGA. Similar to our
cohort (see Fig. 2f) we found that overall gene expression for the
TCGA tumors is lower inside PMDs, with lowest expression for
genes inside high-frequent PMDs (Fig. 3i, p < 2.2e−16, linear
regression). However, the expression of genes in tumor PMDs is
very similar to healthy control samples (p= 0.807, linear
regression). To analyze this in more detail we selected normal/
tumor matched pairs (i.e., from the same individuals, n= 86) and
analyzed the fold change over the different PMD frequencies
(Fig. 3j). As in our cohort, downregulation is restricted to genes
with low PMD-frequency (p < 2.2e−16 for PMD frequency 1–3,
linear regression). No obvious changes occur in high-frequency
PMD genes, nor in non-CGI-promoter genes (Supplementary
Fig. 6B). Taken together, widespread cancer-associated repression
of all genes inside PMDs is limited: downregulation is restricted
to low-frequency (i.e., the more variable) PMDs and affects only
CGI-promoter genes, which undergo widespread hypermethyla-
tion inside PMDs.

Given the widely accepted model of hypermethylated
promoter-CGIs causing repression of tumor suppressor genes
(TSGs) we determined whether breast cancer PMDs overlap with
these genes to instigate such repression. For non-TSGs as a
reference we found that 64% (14,037) are located outside of
PMDs (Fig. 3k), while 36% are located inside, (see also Fig. 2e).
Strikingly, TSGs (Cancer Gene Census) overlap poorly with
PMDs: most TSGs (218/254, 86%) are located outside of PMDs.
Only 14% overlap with mostly low-frequency PMDs, implying
exclusion of TSGs from PMDs (p= 8.8e−16, hypergeometric
test). When we specifically focused on breast cancer-related TSGs
(Cancer Gene Census), this exclusion was even stronger:
practically all (27/28, 96%) breast cancer TSGs are located
outside of PMDs (p= 3.5e−06, hypergeometric test). Similarly,
from our previously identified set of genes containing breast
cancer driver mutations15: 86/93 (92%) were located outside of
PMDs (p= 2.0e−11, hypergeometric test). Alltoghether, only 31
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breast cancer-mutated genes were not excluded from PMDs. We
assessed whether these genes are downregulated in tumors when
inside PMDs. 24/31 (74%) genes were downregulated (Supple-
mentary Fig. 7A, B), and an overall negative correlation between
CGI-promoter methylation and expression was evident

(Supplementary Fig. 7C). For 16 out of these 24 genes we
confirmed that significant downregulation also takes place in
cancer relative to normal in an independent breast cancer
expression dataset (TCGA, see examples in Supplementary
Fig. 7D). Among the downregulated genes in PMDs are EGFR
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(epidermal growth factor receptor) and PDGFRA (platelet-
derived growth factor receptor α) that have tumor promoting
mutations (Supplementary Fig. 7A–C). Paradoxically, both genes
are significantly downregulated in our as well as the TCGA breast
cancer dataset (Supplementary Fig. 7D). Taken together, despite
the large number of hypermethylated CpG islands inside breast
cancer PMDs (13,013 CGIs; 47%, Fig. 3d), these CGIs do not
generally co-occur with TSGs and other breast cancer-relevant
genes. Repression of these genes through classical promoter-

hypermethylation in PMDs does not occur at large scale, and is
likely limited to a few genes.

We next identified genes that are downregulated when inside
PMDs regardless of any documented TSG function or mutation
in breast cancer. Four hundred genes were downregulated at least
2.5 log2-fold (Supplementary Data 4). Gene set enrichment
analysis showed that these genes were involved in processes such
as signaling and adhesion (Supplementary Fig. 8A). In addition,
there is a significant enrichment of genes downregulated

Fig. 3 CpG island hypermethylation inside PMDs. a Representative 2.1-Mb genomic region. Red bars, PMDs for each tumor; below, CGI methylation per
tumor (same ordering). Green bars, CGIs. b CGI methylation as the fraction of all CGIs (x-axis). Horizontal bars represent individual tumors. c Methylation
over CGIs inside/outside PMDs, averaged over all 30 tumors. Black/red lines, median; gray/pink area, 1st and 3rd quartiles. d CGI counts inside and
outside of breast cancer PMDs. “in”, CGIs inside PMDs in at least one tumor sample. e Variation of CGI methylation (standard deviation) as a function of
PMD frequency. f Regression analysis of B-CIMP (y-axis) as a function of the fraction CGIs inside PMDs (x-axis). B-CIMP: the genome-wide fraction of
hypermethylated CGIs (>30% methylation). g Summary of regression analyses as in (F), for additional cancer types. n, the number of samples for each
type. For abbreviations of cancer type names, see Fig. 4b. h Expression change of CGI-promoter genes inside vs. outside of PMDs, as a function of PMD
frequency. i Gene expression as a function of PMD frequency in TCGA breast cancer data. PMD frequency was derived from our own methylation data.
j Expression change of CGI-promoter genes as a function of PMD frequency in matched breast cancer tumor/normal pairs (TCGA). PMD frequency was
derived from our own methylation data. k Tumor-suppressor genes (TSGs) are excluded from PMDs. PMD frequency was determined for each TSG
and the resulting distribution was plotted. Main plot, relative distribution; inset, absolute gene count. “Non-TSGs”, genes not annotated as TSGs;
“TSGs all cancers”, genes annotated as TSGs regardless of cancer type; “TSGs breast cancer”, genes annotated as TSG in breast cancer; “Nik-Zainal breast
cancer driver mutations”, genes with driver mutations in breast cancer15. l Expression of X-linked genes when inside or outside PMDs. Genes were
grouped according X-inactivation status (E, escape; S, subject to XCI; VE, variably escaping; PAR, pseudoautosomal region)41. All boxplots in this figure
represent the median and 25th and 75th percentiles, whiskers 1.5 times the interquartile range, outliers are not shown
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in luminal B breast cancer (and upregulated in basal breast
cancer)40. This suggests that PMDs are involved in down-
regulation of luminal B-specific genes. Examples of luminal
B-downregulated genes include CD3G, encoding the gamma
polypeptide of the T-cell receptor-CD3 complex (gene sets
“signaling” and “adhesion”), and RBP4, encoding retinol binding
protein 4 (gene set “signaling”) (Supplementary Fig. 8B).
Stratification of tumors according to low and high median
expression of the 400 PMD-downregulated genes revealed
significant differences in overall survival of the corresponding
patients (p= 2.6e−03, chi-square test, Supplementary Fig. 8C),
suggesting clinical significance of PMD-associated gene repres-
sion. Taken together, downregulation of genes inside PMDs
occurs rarely and is restricted to low-frequency PMDs. However,
these rare cases include genes relevant to breast cancer given the
overlap with previously identified luminal B breast cancer-
relevant genes and differential overall survival. We finally focused
on expression changes of X-linked genes, since the
X-chromosome is exceptionally prone to methylation loss (Fig. 1a,
Supplementary Fig. 3A). To assess whether this is associated with
altered expression of genes involved in the process of
X-inactivation (XCI) we regarded XIST and genes encoding
PRC2 subunits. Multivariate regression revealed that expression
of XIST, EED, and EZH1/2 is associated with the fraction of chrX
inside PMDs (p= 4.8e−05, Supplementary Fig. 6C, D). To
further analyze the effect of PMDs on expression on X-linked
genes we stratified X-linked genes according their consensus
X-inactivation status (E, escape; S, subject to XCI; VE, variably
escaping; PAR, pseudoautosomal region)41. Notably, among these
categories, escape (E) genes are strongly affected when inside
PMDs (Fig. 3l), suggesting a specific sensitivity of escape genes to
become repressed when inside PMDs. This was unrelated to
altered copy number status of these genes (Supplementary Fig. 6E,
see also Supplementary Fig. 1C). Taken together, the fraction of
chrX inside PMDs is associated with expression levels of key XCI
inactivation genes, and escape genes are specifically sensitive to
repression inside X-linked PMDs.

Reduced DNA methylation in PMDs is a feature of many
cancers. To assess the generality of PMD occurrence in cancer,
we extended our analysis to other cancer types and normal
tissues. We performed PMD detection in a total of 320 WGBS
profiles (133 tumors and 187 normals, from TCGA35, BLUE-
PRINT36, the Roadmap Epigenomics Project (http://www.
roadmapepigenomics.org), and refs. 10,37,38). Although PMDs
are detectable in virtually all tumors and normal tissues (see
Methods: data availability), mean DNA methylation inside PMDs
is much lower in tumors as compared to normal tissues (Fig. 4a,
Supplementary Fig. 9A, p < 2.2e−16, t-test). PMD methylation
levels are not tumor tissue-type specific, as most types display the
same range of PMD methylation. However, some tumor tissue
types have exceptional low methylation inside PMDs (bladder
urothelial carcinoma (BLCA), lung), or lack any loss of methy-
lation (glioblastoma multiforme (GBM), acute lymphoblastic
leukemia (ALL), and acute myeloid leukemia (ALL)). Thus,
regardless of these extreme cases, absolute levels of PMD
methylation do not typify tumor tissue origin, underscoring the
variable nature of methylation within PMDs. To assess whether
CGI hypermethylation in PMDs is as extensive in these additional
tumor types as in breast cancer, we analyzed CGI methylation
of these 103 additional tumor samples (Supplementary Fig. 9B,
see Methods: data availability). As in breast cancer, extensive
hypermethylation of CGIs inside PMDs was consistent in most
tumor types, with levels of hypermethylation in Burkitt’s lym-
phoma (BL)37 being among the highest of all tested tumors

Possibly, these differences are linked to tumor cellularity of the
samples. In two GBM and some AML samples, CGI hyper-
methylation was not restricted to PMDs, which is suggestive of
inaccurate PMD detection due to high methylation inside these
tumors’ PMDs (see Fig. 4a). Importantly, these results extend
the observed tendency of CGI hypermethylation inside PMDs
to other tumors.

Lastly, to assess whether the distribution of tumor PMDs
reflects tissue of origin we scored the presence of PMDs in
genomic tiles of 30 kb and subsequently clustered the resulting
binary profiles. The analysis showed that the majority of tumors
of the same type clustered together, although not fully accurately
(Fig. 4b), suggesting that the genomic distribution of PMDs
is linked to tissue of origin. Thus, even though methylation levels
of PMDs are mostly independent of tissue-of-origin (Fig. 4a),
the distribution of PMDs associates with tissue of origin, likely
reflecting differences in the genomic parts that tolerate PMDs.

Discussion
In this study we analyzed breast cancer DNA methylation profiles
to high resolution. The main feature of breast cancer epigenomes
is the extensive loss of methylation in PMDs and their hyper-
variability. Directly linked to this is the concurrent CGI hyper-
methylation, which inside PMDs affects 92% of all CGIs.
Although various features of PMDs have been described before,
our study is the first to include a larger WGBS cohort from one
tumor type, while integrating WGBS data from other tumor
types. PMDs may be regarded as tissue-type-specific inactive
constituents of the genome: the distribution shows tissue-of-
origin specificity, gene expression inside PMDs is low and they
are late replicating. Inside PMDs the accumulation of breast
cancer mutations is higher than outside of them. The resulting
domain-like fluctuation in mutation density is likely related to the
fluctuating mutational density along the genome in cancer cells
observed by others42–44. The phenomena observed in breast
cancer extend to tumors of at least 16 additional tissue types
underscoring the generality of our findings. We conclude that loss
of methylation in PMDs and concurrent CGI hypermethylation is
a general hallmark of most tumor types with the exception of
AML, ALL, and GBM.

The phenomena that we describe for breast cancer have
remained elusive in genome-scale studies that only assessed
subsets of the CpGs; the sparsity of included CpGs does not allow
accurate PMD detection. Typical analysis strategies include tumor
stratification by clustering of the most highly variable CpGs
which at least in our breast cancer cohort are located in PMDs.
In effect such approaches are biased towards CGIs due to
their design and consequently, the hypermethylation groups
represent tumors in which PMDs are highly abundant (e.g., see
refs. 39,45–53). It is very likely that for some tumor types hyper-
methylation groups associate with clinicopathological features,
amongst which a positive association with tumor cellularity is
recurrent46,50–52. This suggests that PMDs are more pronounced
in tumor cells than in the non-tumor tissue of a cancer sample.
This makes hypermethylated CGIs useful diagnostic markers
but less likely informative as prognostic markers informing about
tumor state, progression and outcome.

Since PMDs are domains in which instability at the genetic,
epigenetic, and transcriptome level is tolerated, they may provide
plasticity that is beneficial for the heterogeneity of tumor cells.

Methods
Sample selection, pathology review, and clinical data. Sample selection,
pathology review, and clinical data collection for this study has been described in
the ref. 15. Internal Review Boards of each participating institution approved
collection and use of samples of all patients in this study. Samples had previously

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09828-0

8 NATURE COMMUNICATIONS |         (2019) 10:1749 | https://doi.org/10.1038/s41467-019-09828-0 | www.nature.com/naturecommunications

http://www.roadmapepigenomics.org
http://www.roadmapepigenomics.org
www.nature.com/naturecommunications


been subjected to pathology review and only samples assessed as being composed
of >70% tumor cells, were accepted for inclusion in the study. Two independent
pathologists assessed paraffin-embedded and frozen sections for all samples, where
histological slides were available. Additionally, clinical data was recorded according
to the proforma specified by the International Cancer Genome Consortium (ICGC)
where possible.

Processing of whole-genome bisulfite sequencing data. WGBS library pre-
paration, read mapping, and methylation calling was done as described before11,54:
genomic DNA (1–2 µg) was spiked with unmethylated λ DNA (5 ng of λ DNA
per microgram of genomic DNA; Promega). DNA was shared by sonication to
50–500 bp in size using a Covaris E220 sonicator, and fragments of 150–300 bp
were selected using AMPure XP beads (Agencourt Bioscience). Genomic DNA
libraries were constructed using the Illumina TruSeq Sample Preparation kit fol-
lowing Illumina’s standard protocol. After adapter ligation, DNA was treated with
sodium bisulfite using the EpiTect Bisulfite kit (Qiagen), following the manu-
facturer’s instructions for formalin-fixed, paraffin-embedded tissue samples. Two
rounds of bisulfite conversion were performed to ensure full conversion. Enrich-
ment for adapter-ligated DNA was carried out through seven PCR cycles using
PfuTurboCx Hot-Start DNA polymerase (Stratagene). Library quality was mon-
itored using the Agilent 2100 Bioanalyzer, and the concentration of viable
sequencing fragments was estimated using quantitative PCR with the library
quantification kit from Kapa Biosystems. Bisulfite converted libraries were paired-
end sequenced (2 × 100 nt) on an Illumina Hi-Seq2000. Reads were aligned against
the human genome (hg19/GRCh37) using the rmapbs-pe tool from the MethPipe
package (v3.0.0)55 allowing a maximum of 10 mismatches and a maximum frag-
ment length of 600 bp. Adapter sequences were clipped. Mapped reads were sorted
according genome position, and duplicates were removed using the duplicate-
remover tool from MethPipe (v2.03). Cytosine methylation levels were determined
using the methcounts tool from MethPipe (v2.03). All code used for this mapping
strategy is made available (see bioinformatic analysis code availability).

Principal component analysis of WGBS data. For principal component analysis
(PCA) of WGBS profiles, CpGs with coverage of at least 10 were used. Subse-
quently, the top 5% most variable CpGs were selected. We used the FactoMineR
package20 for R to perform PCA, to determine association of principal components
with clinicopathological features, and to perform the corresponding significance
testing.

Detection of PMDs. Detection of partially methylated domains (PMDs) in all
methylation profiles throughout this study was done using the MethylSeekR
package for R56. Before PMD calling, CpGs overlapping common SNPs (dbSNP
build 137) were removed. The alpha distribution56 was used to determine whether
PMDs were present at all, along with visual inspection of WGBS profiles. After
PMD calling, the resulting PMDs were further filtered by removing regions
overlapping with centromers (undetermined sequence content).

Mean methylation in PMDs and genomic tiles. Wherever mean methylation
values from WGBS were calculated in regions containing multiple CpGs, the
“weighted methylation level”57 was used. Calculation of mean methylation within
PMDs or genomic tiles involved removing all CpGs overlapping with CpG island
(-shores) and promoters, as the high CpG densities within these elements yield
unbalanced mean methylation values, not representative of PMD methylation.
For genome/chromosome-wide visualizations (Fig. 1), 10-kb tiles were used. For
visualization, the samples were ordered according hierarchical clustering of the
tiled methylation profiles, using “ward.D” linkage and [1-Pearson correlation] as
a distance measure.

Clustering on PMD distribution. For each sample, the presence of PMDs was
binary scored (0 or 1) in genomic tiles of 5 kb. Based on these binary profiles, a
distance matrix was calculated using [1-Jaccard] as a distance metric, which was
used in hierarchical clustering using complete linkage.

Tumor suppressor genes and driver mutations. For overlaps with tumor
suppressor genes, Cancer Gene Census (http://cancer.sanger.ac.uk/census, October
2017) genes were used. Overlaps with genes containing breast cancer driver
mutations were determined using the list of 93 driver genes as published previously
by us15.

CIMP. To determine the association between B-CIMP (fraction of CGIs that are
hypermethylated, >30% methylated) and PMD occurrence we used beta-regression
using the betareg package in R58.

Survival analysis. Survival analysis of patient groups stratified by expression of
genes downregulated in PMDs. For each tumor sample of our breast cancer tran-
scriptome cohort (n= 26617), the median expression of all PMD-downregulated
genes (Supplementary Data 4) was calculated. The obtained distribution of these

medians was used to stratify patient groups, using a two-way split over the median
of this distribution. Overall survival analysis using these groups was done using the
“survival” package in R, with chi-square significance testing.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Tables containing CpG methylation values (bigwig), genomic coordinates and mean
methylation values of PMDs and CGIs are available via https://doi.org/10.5281/
zenodo.1467025 or https://doi.org/10.17026/dans-276-sda6. Raw data for whole-genome
bisulfite sequencing of the 30 breast tumor samples of this study is available from the
European Genome-phenome Archive (https://www.ebi.ac.uk/ega) under dataset
accession EGAD00001001388 (Study EGAS00001001195, Data Access Committee
EGAC00001000010). External data resources used in this study are listed in
Supplementary Data 5.

Code availability
All code for analyses of this study is available on https://github.com/abbrinkman/
brcancer_wgbs.git.
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