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This review addresses nuclear SPECT and PET imaging in small animals in relation to

the atherosclerotic disease process, one of our research topics of interest. Imaging

of atherosclerosis in small animal models is challenging, as it operates at the limits

of current imaging possibilities regarding sensitivity, and spatial resolution. Several

topics are discussed, including technical considerations that apply to image acquisition,

reconstruction, and analysis. Moreover, molecules developed for or applied in these small

animal nuclear imaging studies are listed, including target-directed molecules, useful for

imaging organs or tissues that have elevated expression of the target compared to other

tissues, and molecules that serve as substrates for metabolic processes. Differences

between animal models and human pathophysiology that should be taken into account

during translation from animal to patient as well as differences in tracer behavior in animal

vs. man are also described. Finally, we give a future outlook on small animal radionuclide

imaging in atherosclerosis, followed by recommendations. The challenges and solutions

described might be applicable to other research fields of health and disease as well.
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INTRODUCTION

Small Animal Radionuclide Imaging
Nuclear imaging using Single Photon Emission Computed Tomography (SPECT) or
Positron Emission Tomography (PET) allows high-sensitivity and (semi-) quantitative imaging
of physiological processes or molecular targets in vivo. Before clinical application, preclinical
evaluation of novel radiotracers is a requisite to assess tracer characteristics such as in vivo tracer
kinetics, target specificity, stability, and biodistribution. This is greatly facilitated by the wide-
spread use of small animal models of disease as well as the development of state of the art small
animal SPECT and PET systems, which allow tracer examination up to sub-mm resolution (1–6).
However, preclinical nuclear imaging of small animals comes with a particular set of challenges
and opportunities different from clinical nuclear imaging.
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Atherosclerosis
The challenges and opportunities of small animal imaging
become apparent in e.g., atherosclerosis imaging. Atherosclerosis
is an inflammatory disease in which fatty plaques might occlude
an artery through continued lipid deposition or sudden rupture
of vulnerable plaques. Occlusion of an artery can lead to
myocardial infarction, stroke, or limb ischemia. Early detection
and characterization of atherosclerosis is therefore important,
but remains problematic. Many imaging techniques such as
contrast enhanced Computed Tomography (CT) focus on degree
of stenosis, but fail to identify vulnerable plaques. Functional
imaging of biological processes involved in plaque development
or progression may identify and localize plaques at risk of
rupture. Moreover, the characteristics of a vulnerable plaque,
such as the presence of intraplaque hemorrhage, a large influx
of inflammatory cells, neovessel formation, or a thin fibrous
cap (7), provides ample possibilities for nuclear imaging. Yet,
when studying novel tracers that might fulfill this need, research
teams are faced with challenges. Differences between animal
models of atherosclerosis and the human pathophysiology can
make imaging results difficult to interpret. Furthermore, the
small size of the plaques in small animal models, as well as
the low and diffuse density of targets in a plaque, can severely
complicate the evaluation process including quantification
options in vivo.

Nuclear Imaging of Atherosclerosis
2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) has been
extensively studied for the detection and quantification of
inflammatory cells in atherosclerosis (8, 9), and has been shown
an independent predictor of recurrent events after stroke
(10–12). Moreover, differentiation between different plaque
phenotypes in the carotid arteries was successfully investigated
using this tracer (13). However, unspecific uptake of [18F]FDG,
especially in the metabolically active myocardium, limits its use
to detect plaques in coronary arteries. As such more specific
tracers are urgently needed.

In this review, we describe small animal radionuclide
imaging with a strong focus on applications in atherosclerosis.
We discuss differences between the pathophysiology
of human and mouse atherosclerosis, related technical
aspects, and challenges of small animal radionuclide
imaging, as well as atherosclerosis tracer development and
evaluation. Moreover, we discuss the future outlook and
give recommendations.

CONSIDERATIONS ON MODELS OF
ATHEROSCLEROSIS

Animal Models of Atherosclerosis
A number of atherosclerotic animal models have been developed,
as reviewed in Getz and Reardon (14). In short, porcine and
primate models resemble human atherosclerosis best, yet are
costly to maintain and are less established with regard to
genetic modification. The plaques in rabbit models resemble
human plaque less, as rabbit plaques mainly contain lipids.
Rabbit models have certain advantages over mouse models,

including the diameter of the abdominal aorta being similar
to human coronary arteries and less subjected to movement.
However, rabbit models are less frequently used since the
introduction of the Apolipoprotein E deficient (ApoE−/−)
and low density lipoprotein receptor knock-out (LDLR−/−)
(KO) mouse models (15). Most atherosclerosis studies therefore
use murine models, as mouse plaques develop faster than
rabbit plaques, the mouse models are well-characterized, have
low costs, and are widely available. Recent developments like
clustered regularly interspaced short palindromic repeats/Cas9
(CRISPR/Cas9) targeted genome editing to create KOs (16),
and pro-protein convertase subtilisin/kexin type 9 (PCSK9)
injection to rapidly induce atherosclerosis (17), have created new
opportunities in modeling human-like atherosclerotic disease in
mice. We refer to Veseli et al. (18) for a more extensive review
of mouse models of atherosclerosis. Besides advantages in using
atherosclerotic mice, there are several considerations to be taken
into account when choosing a mouse model and interpreting
imaging results.

Plaque Location and Composition
Like in humans, atherosclerosis in mice is multifocal and
locates in specific regions of the vasculature, determined by the
hemodynamic environment (19). Pre-clinical imaging studies
generally study plaques located in the inner curve of the
aorta, the carotid arteries, and brachiocephalic artery, while
translating their results to human coronary disease. Plaque
composition as well as plaque stability or vulnerability differ
between mice and men; differences in lipid metabolism lead
to different lipid profiles related to the ratio between high,
very low, and low density lipoprotein (HDL, VLDL, and
LDL) (14, 20). Moreover, thin caps or intraplaque hemorrhage
are rare in traditional mouse models, whereas they are
characteristic of human vulnerable atherosclerosis (21), and
plaque rupture is rarely seen in commonly used mouse models
(22). To create a mouse model with plaque rupture, double
knock outs (23, 24) or invasive experimental interventions are
required, which arguably do not mimic human plaque rupture
mechanisms (25).

Immune Subsets
Inflammatory cells are often used as imaging targets, because
of the important role they have in plaque formation and
progression. Yet, it is reported that human and mouse
macrophage subsets differ (26, 27), which therefore makes
validation in human tissue necessary.

Despite these differences between human and murine
atherosclerosis, mice are valuable in testing radiotracers, as
processes like angiogenesis and inflammation are present
in mouse plaques. Therefore, mice can be used for proof of
concept studies, or to assess tracer behavior in vivo. Moreover,
ex vivo validation by gamma-counting, autoradiography,
and immunohistochemistry allows better quantification of
radiotracers. However, for reasons discussed above, translating
results obtained in mouse models to expect human results should
be done with caution.
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TECHNICAL DEVELOPMENTS AND
APPLICATIONS IN SMALL ANIMAL
RADIONUCLIDE IMAGING

Nuclear Imaging of Mouse and Human
Plaques
SPECT and PET can both provide very high sensitivity, even
suitable for imaging of very small quantities of radiotracers
(nM-pM range), enabling investigation of specific cells or
pathophysiological processes. Developments in these systems for
small animal imaging and in processing of imaging data allow
better examination of novel radiotracers. Moreover, preclinical
systems allow high resolution and sensitive examination of
human tissues (28, 29). When imaging mouse atherosclerosis
challenges become apparent: high spatial resolution is crucial in
small murine plaques. The largest murine plaques are located
in the aorta, which has a diameter of ∼1mm. High sensitivity
is however also very important, as these small plaques contain
relatively few target cells, on which receptor expression can be
low compared to other disease models such as tumor models.

Here we highlight a number of developments in imaging and
image processing, see (30–36) for more extensive reviews on
nuclear imaging methods.

Preclinical SPECT
SPECT systems require a collimator to obtain directional
information on gamma rays emitted from within the animal or
patient sample to be imaged. Traditional clinical SPECT systems
generally use a parallel hole collimator, which limits resolution
and sensitivity in comparison to clinical PET systems that do
not require a collimator (Table 1) (44). The choice of collimator
heavily depends on the imaging task at hand because of the
classic trade-off between resolution and sensitivity in collimator
design. Regarding spatial resolution, major improvements have
been made in preclinical SPECT by the introduction of pinhole
cameras, in which magnified projection data can be acquired
by choosing the right positions of the pinholes between the
scintillation crystal and the animal (45), enabling sub-mm
resolutions (Table 1 and Figure 1). Such high spatial resolutions
can be achieved by decreasing the diameter of the pinhole, but

TABLE 1 | Shows a tabulated overview of properties of clinical and preclinical PET and SPECT.

Small Animal Scanners Standard Clinical Scanners

Resolution [mm] Sensitivity ** [%] Resolution [mm] Sensitivity [%]

SPECT 99mTc 0.38–0.76 (37) 0.07–0.39 (37) ∼10 ∼0.01

SPECT 111 In 0.71-0.85 (37) – – ∼0.01

Pinhole PET 18F <0.85* (38) 0.37 (38) – –

Coincidence PET 18F 1.61–2.34 (39) 1.19–6.72 (39) 6.4 (40) 1.33–2.29 (41)

Coincidence PET 68Ga 2.19 (42), 2.2 (43) – 7 (40) –

*Resolution was determined by visual assessment of a Jaszczak phantom instead of measuring the FWHM of a line source. **Values for sensitivity should be interpreted with care, as no

standard method exists to directly compare SPECT and coincidence PET sensitivity quantitatively. When covering a FOV the size of a PET FOV, the effective sensitivity of SPECT could

well be several factors lower.

Green colour indicates which modality performs better in a certain area, red indicates lower performance.

FIGURE 1 | Panel (A) illustrates the principle of pinhole imaging. The collimator can be placed close to the source of radiation in preclinical imaging, resulting in a

magnifying effect on the detector. The limited sensitivity is improved by using multiple pinholes and different pinhole geometries. Clinical SPECT mostly uses parallel

hole collimators, which directly limits spatial resolution. Pinhole magnification can also achieve a higher spatial resolution for positron emitting isotopes In comparison

to traditional coincidence PET (Image reproduced from thesis O. Ivashchenko, LUMC, ISBN 978-94-92516-35-0). Panel (B) shows the principle of PET coincidence

detection. Two opposing detectors simultaneously measure a gamma photon providing the line along which the positron annihilated with an electron. This line does

not coincide with the location the positron was emitted, because the positron travels a finite range before it annihilates. Especially for high energy positrons, e.g., 68Ga

[mean positron range of 2.9mm (46)], the positron range may limit spatial resolution in both pinhole PET and coincidence PET. Image adapted with permission from

Fontaine et al. (47).
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comewith the obvious trade-off of lower sensitivity.Multipinhole
cameras combat the very low sensitivity of a single pinhole (39),
and can reduce or even eliminate the need of rotating detectors
or movement of the bed if only a small field of view (FOV) is
required to answer the research question (48, 49). This greatly
improves temporal resolution, offers the possibility of 3D gated
imaging of the heart, and enables imaging of fast tracer kinetics
(50). High sensitivity collimators have been developed (51), but
the sensitivity of SPECT systems remains limited in comparison
to that of PET because of the relatively low fraction of photons
transmitted through the collimators.

Preclinical PET
The sensitivity of PET scanners is at least an order of magnitude
higher than SPECT cameras [>10 times (52), see Table 1],
since no physical collimator is needed. In preclinical PET
(ring diameter < 20 cm), the resolution is mostly limited by
the positron range and the size of the detector elements. For
low energy positron emitters (18F) both factors limit spatial
resolution, for high energy positron emitters (68Ga) the positron
range is the main limiting factor (40, 52, 53).

Positron emitting radionuclides can be imaged with a
traditional coincidence based PET system and also with special
pinhole collimation (54, 55). Traditional ring PET systems can
achieve a better image quality in very low count rate studies, for
higher count rate studies amulti-pinhole systemmay yield higher
quality images due to the higher spatial resolution that can be
achieved by pinhole magnification.

Hybrid Imaging
Use of hybrid systems, providing an anatomical reference by
(contrast-enhanced) CT or MRI (1, 2, 39, 56), are crucial
in atherosclerotic mouse studies because the small plaques
are located close to other tissues. MRI has the major
advantage of providing soft tissue contrast, which is crucial
to distinguish arteries from surrounding tissue. However, the
better resolution and faster scanning time of CT make this
method preferable in many instances, especially if contrast
agents can be used. Moreover, CT provides direct means for
attenuation correction (57), whereas an MR image is usually
segmented into different tissue classes to obtain an estimate
of the amount of attenuating material. New opportunities are
opened by the combination of more modalities, such as optical
tomography, or integrating PET and SPECT to allow dual-tracer
imaging. Moreover, dual tracer imaging is also explored in PET
(reviewed in Walrand et al. (58), allowing further possibilities in
tracer imaging.

Preclinical vs. Clinical Imaging
Preclinical SPECT can achieve a higher spatial resolution than
preclinical PET platforms, whereas this is the other way round in
clinical imaging (seeTable 1). The higher resolution of preclinical
SPECT often makes it the imaging method of choice for imaging
of atherosclerotic mice because of the small sized plaques.
Preclinical visualization of plaques with PET isotopes can further
be complicated by positron range, as this can exceed the size
of a plaque [e.g., 68Ga has a mean positron range of 2.9mm

(46)]. Image quality of clinical PET can be improved by Time
of Flight (ToF), which reduces image noise by incorporating
the time difference of the detected annihilation photon pair in
the reconstruction. Clinical systems obtain a timing resolution
of ∼300 ps (59). In a preclinical system image quality did
not improve for a timing resolution of 260 ps (60). Another
difference comprises the small deviation from 180◦ between
the annihilating photon pair (non-collinearity) that reduces the
spatial resolution for systems with a larger PET ring diameter.
This becomes a major limiting factor in clinical PET (52), whilst
this effect is negligible in small animal PET. Also, in clinical
practice gated imaging is used to improve image quality of
moving structures like the heart and its coronary arteries (61,
62). A trade-off has to be made between scan time and image
quality to obtain sufficient count statistics in each gate. Using
image registration techniques, motion-free static images can be
obtained without affecting count statistics (63). This application
is thus far not commonly applied in preclinical imaging. Finally,
the high sensitivity and simultaneous acquisition of all projection
angles in whole body PET makes it superior over SPECT with
regard to temporal resolution, as the time needed to obtain
sufficient counts directly determines scanning time.

Image Reconstruction
Virtually all preclinical and clinical images are reconstructed by
an iterative reconstruction algorithm. These algorithms rely on a
model of the physics in the imaging process, where improvement
of the model improves the quality of the reconstructed images.
For example, spatial resolution can be improved by including
the point spread function in the model (64). Monte Carlo based
methods can improve scatter estimation and can include depth
of interaction effects for PET in the iterative reconstruction
(65, 66). Efficient algorithms can reduce reconstruction
time while preserving image quality even in low count
studies (67).

Quantification
Besides visualizing the radiotracer distribution, most
atherosclerosis imaging studies perform (semi-) quantitative
Volume Of Interest (VOI) or voxel based measurements. This
is expressed in percentage injected dose per gram, standardized
uptake value, or target to background ratio (%ID/g, SUV, or
TBR). It is important to consider against which background a
target tissue is visualized. Plaque to blood ratio is usually a useful
TBR in atherosclerosis imaging, as blood signal can interfere with
plaque signal. The myocardium would be a suitable background
when using a radiotracer such as [18F]FDG in the coronary
arteries. Images can be quantified when applying a suitable
predetermined calibration factor to convert counts per volume to
activity per volume (Bq/ml). Attenuation and scatter correction is
less important in preclinical imaging due to the smaller amount
of attenuating material, but their application still improves
quantification accuracy (57, 68–70). When imaging structures
with sizes around or below the resolution of the camera, like
plaques in mice, it is important to realize that partial volume
effects can cause a substantial underestimation of the true value
(71, 72). This makes absolute quantification accuracy dependent
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TABLE 2 | Shows radiotracers applied in a selection of preclinical in vivo atherosclerosis imaging studies from 2008 to 2018, and mentions potential clinical follow-up

studies.

Disease characteristic Target Ligand Radionuclide Animal studies Clinical studies

Inflammation Macrophages FDG 18F (13) (11) retrospective, n = 513

Macrophages, SST2 DOTATATE 68Ga (75) (76) retrospective, n = 70

(77)

Prospective, n = 20

(78)

Prospective, n = 42

Macrophages, MR FDM

Tilmanocept

18F
111 In

(79)

(80)

Macrophages, FR EC20

ECO800

FOL

99mTc
111 In
18F

(81)

(82)

(83)

Macrophages, CXCR4 Pentixafor 68Ga (84) (85)

Retrospective, n = 38

(86)

Retrospective, n = 51

Leukocytes, LFA-1 DANBIRT 111 In (87)

Macrophage proliferation FLT 18F (88)

Chemokine receptors DOTA-vMIP-II 64Cu (89, 90)

DOTA-DAPTA 64Cu (91)

LOX-1 Liposome-LOX-1 111 In (92)

Camelid antibody fragment 99mTc (93)

TSPO PK11195

Ge-180

11C
18F

(94)

Prospective, n = 15

(95)

Prospective, n = 32

(96)

Macrophage phagocytosis TNP

Macroflor
64Cu
18F

(97)

(98)

Apoptosis Apoptosis and Necrosis AnxAF568

Hypericin

99mTc,
124 I

(99)

Apoptosis Duramycin 99mTc (100)

Apoptosis Duramycin and Annexin V 99mTc (101)

Angiogenesis αvβ3 integrin NC100692 99mTc (102)

NOTA-RGD 68Ga (103) (103)

Prospective, n = 4

Flotegatide 18F (104)

Galacto-RGD 18F (105) (106)

Prospective, n = 10

NOTA-3-4A 64Cu (107)

Maraciclatide 99mTc (108)

IDA-D-[c(RGDfK)]2
99mTc (109)

VEGF 1 and 2 scV/Tc 99mTc (110, 111)

Proteolysis MMP activation RP805 99mTc (112, 113)

RP782 111 In (114, 115)

GPVI GPVI-fragment crystallized 64Cu (116)

Endothelial activation P-selectin P-selectin antibody 64Cu (117)

Fucoidan 68Ga (118)

VCAM-1 cAbVCAM1-5 99mTc
18F (119–121)

(122)

4V 18F (123)

Hypoxia Redox FMISO 18F (124)

SST2, somatostatin receptor subtype 2; MR, Mannose Receptor; FR, Folate Receptor; CXCR4, C-X-C Chemokine Receptor type 4; LFA-1, Leukocyte Function associated Antigen-1;

LOX-1, oxidized LDL receptor 1; TSPO, Translocatio Protein; VEGF, Vascular Endothelial Growth Factor; MMP, Matrix Metalloprotease; GPVI, Platelet Glycoprotein VI; VCAM-1, Vascular

Cell Adhesion Molecule-1.
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FIGURE 2 | Two cases which exemplify the opportunities and challenges in preclinical imaging using multi-pinhole collimators. Panel (A) shows a contrast enhanced

SPECT/CT scan of the thoracic region of an ApoE−/− mouse (on 20 weeks high fat diet), imaged with [111 In]In-DANBIRT, which targets leukocytes via Leukocyte

Function associated Antigen 1 (LFA-1). LFA-1 is expressed in a high-affinity state on leukocytes near regions of inflammation, and can therefore be used to visualize

inflamed plaque. The image shows uptake in plaque regions in the inner curve of the aortic arch and near the aortic leaflets. These common sites of plaque formation

in this mouse model are visible in the excised, opened Oil Red O stained artery of an ApoE−/− mouse on the right (B). Panel (A) shows the high resolution which can

be achieved with preclinical SPECT, considering the mouse aorta is ∼1mm in diameter. This case also illustrates some of the challenges in preclinical imaging as the

small size of the plaque and the presence of few target cells require a state of the art imaging system with high resolution and sensitivity. Moreover, the recommended

injection dose of 20 µL contrast agent per 5 g bodyweight (Exitron nano 12000) can be challenging, as the combined injection volume of contrast agent and

radiotracer injection can easily exceed the recommended injection volume for mice, which can have adverse effects on the animal health and experimental outcome.

Reduction of the injection volume of the radiopharmaceuticals can be achieved by using smaller tubing during radiolabelling. The timing of injection is also important,

as blood signal of radiotracers can be high after injection, yet the amount of activity reduces with radionuclide half-life. Moreover, many contrast agents circulate a

limited period in the vasculature. Optimization before an experiment, considering the dose and timing of injection, is therefore crucial. In this example, we injected 50

MBq (200 pmol) [111 In]In-DANBIRT 2 h before SPECT imaging, and the contrast agent directly at the start of CT imaging. Scale bar = 2mm [reproduced from

Meester et al. (87), no permissions required]. (C–F) depict an example of a high resolution dual-isotope preclinical SPECT/CT scanning protocol applied to diseased

human arterial tissue. Examination of the local differences in dual-radiotracer uptake with respect to the atherosclerotic pathophysiology was performed on (C) a

human carotid endarterectomy slice of 2mm thickness, which was incubated for 60min with [111 In]In-DANBIRT (targeting leukocytes) and [99mTc]Tc-DEMOTATE

(targeting activated macrophages; both 1 nmol, 100 MBq/nmol). [99mTc]Tc-DEMOTATE targets somatostatin receptor subtype 2, which is expressed on activated

macrophages. (D) Functional plaque morphology was resolved with high resolution µCT (15min scan, full scan angle, 0.24mA, 50 kV, 75ms, 500µm reconstructed

resolution), where calcifications are denoted by the bright white regions. The asterisk (*) marks the sample holder. µCT was co-registered to SPECT (90min scan)

reconstructions of (E) [111 In]In-DANBIRT and (F) [99mTc]Tc-DEMOTATE. The two radioisotopes can be separated by selecting the correct energy windows for the

photon peaks of 111 In and 99mTc (111 In photopeaks 171 and 245 keV, energy windows 158–187 keV and 219–267 keV. 99mTc photopeak 140 keV, energy window

125–152 keV). This hybrid functional imaging approach can be used to gain greater insights into radiotracer uptake in diseased tissues. Plaque status can be

assessed via the presence of calcifications, whereas [111 In]In-DANBIRT and [99mTc]Tc-DEMOTATE ascertain inflammatory status by visualizing total inflammation and

activated macrophages, respectively. Such scans could lead to a better risk stratification of atherosclerotic patients. It is interesting to see the different distribution

patterns of these inflammation-targeted tracers within the plaque, which indicates that plaque detection alone gives only limited information when making a risk

stratification of atherosclerotic patients. The timing of imaging is important as the radionuclides have different half-lives, and correct separation of the photon peaks

requires sufficient counts to be acquired. Another challenge is to examine which incubation time allows the radiotracers to diffuse into the tissue, while keeping tissue

degradation at a minimum (Courtesy H.E.B, Erasmus MC).
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on the imaging task. Numerous compensation techniques for
partial volume effects have been described (73), but none have
been validated or used in preclinical arthrosclerosis imaging yet.

RADIOTRACERS AND THEIR TARGETS

Radiotracers and Radionuclides
Radiotracers should target processes relevant to disease, which
in atherosclerosis are e.g., inflammation, endothelial dysfunction,
neovascularization, hypoxia, cell death, or microcalcification.
Moreover, the target should ideally be abundantly expressed and
specifically localized in plaques and not in surrounding tissues.
Also, blocking studies should be performed, as non-specific
uptake in the arterial wall could complicate plaque visualization.
Radiotracers need to be stable in vivo without pharmacological
or toxic effects, and should be labeled with an appropriate
radionuclide, matching the pharmacokinetics of the tracer.
Radiotracers labeled with short-lived PET radionuclides should
have a fast clearance to prevent blood signal from interfering with
plaque visualization. Moreover, it is advantageous if radiotracers
show rapid diffusion into tissues. If a radiopharmaceutical is
being developed with the objective of use in humans, then the
radionuclide intended for human use should be used in the
animal studies if at all possible as this will simplify translation
of preclinical data. In some cases, however, the use of a different
radionuclide for some of the preclinical studies is unavoidable or
even preferable, as it can be preferred to label radiotracers with
SPECT radionuclides for high-resolution preclinical evaluation
vs. PET radionuclides for clinical use.

Beyond [18F]FDG
[18F]FDG PET has shown major promise in atherosclerosis
imaging (8). [18F]FDG, being a glucose analog, is taken up by
metabolically active cells such as macrophages in plaque, and
can therefore be used for PET imaging of atherosclerosis. Plaque
inflammation can be quantified using [18F]FDG, plaques can be
monitored over time, and the effect of treatment can be visualized
(74). However, unspecific myocardial uptake of [18F]FDG limits
the applicability of imaging in coronary artery disease. Therefore,
novel radiotracers targeting different disease processes with a
higher specificity are being developed and evaluated. Table 2 lists
a number of radiotracers and their targets tested in preclinical
in vivo imaging studies in the past 10 years, and potential
clinical follow up studies. Figure 2 includes 2 cases in which
the possibilities and challenges of small radionuclide imaging
of atherosclerosis are exemplified. Reference (125) reviews older
studies performed with PET.

Currently, [68Ga]Ga-Pentixafor (84, 85), [68Ga]Ga-
DOTATATE (75, 78), and [18Na]NaF (reviewed in Mckenney-
drake et al. 9) show very promising results in patients. Recent
successful mouse studies have been performed on other tracers
such as [111In]In-DANBIRT (87), [111In]In-Tilmanocept (80),
or [99mTc]Tc-Maraciclatide (108). Direct comparisons between
radiotracers as performed in Rinne et al. (75), are lacking
however, which makes it difficult to see where radiotracers can
complement each other, or which radiotracer is most suitable for
different aspects of plaque visualization.

PERSPECTIVES AND
RECOMMENDATIONS

Risk Stratification in Atherosclerosis
The development of non-invasive imaging techniques visualizing
atherosclerosis and particularly vulnerable plaque is a major aim
in cardiovascular imaging (126). The individual and societal
impact of such imaging tools can be substantial. They could
contribute to current risk stratification, which is based on
conventional cardiovascular risk factors and non-traditional
risk factors such as biomarkers and coronary artery calcium
score. Recent clinical trials focus on the importance of anti-
inflammatory strategies for treatment of cardiovascular disease
(127, 128). Biomarkers (e.g., hsCRP, IL-6) are mostly used
for assessment of inflammation, and might be complemented
by non-invasive molecular imaging of arterial inflammation
in guiding treatment with these new anti-inflammatory drugs.
Novel tracers therefore could provide extra prognostic value, and
aid in further risk-stratification by identifying plaques at risk and
patients in need of treatment.

Crossing Borders
Diagnostic imaging tools developed for other (non-cardiac)
diseases such as oncology have been shown to be of significance
in atherosclerosis research (129). Somatostatin receptor
imaging using 68Ga-DOTATATE, developed for diagnosis
of neuro-endocrine tumors, has been validated as a novel
marker of atherosclerotic inflammation via overexpression
of the somatostatin receptor subtype 2 (SST2) on activated
macrophages. This has led to better discriminating power of
high risk coronary lesions compared to [18F]FDG (75, 78).
Similarly, imaging of macrophages with 68Ga-Pentixafor also
originates from oncology (84, 85). Furthermore, technical
challenges in image post-processing in atherosclerosis
might be improved by developments from other research
fields (130, 131). Vice versa, research on other diseases
can benefit from our increased knowledge, as diagnosis
of other inflammatory diseases such as arthritis can be
difficult and hampered by similar challenges encountered
in atherosclerosis.

CONCLUSION

Developments in animal models and imaging systems have
facilitated and enhanced the opportunities for small radionuclide
imaging and will likely continue to do so in the foreseeable future.
These advances have been essential in preclinical imaging of
atherosclerosis, which requires high resolution and sensitivity,
and has resulted in a large number of novel radiotracers being
evaluated. This allows ample opportunity for clinical translation,
where more insight into atherosclerosis, as well as relevant
imaging targets, are highly required.
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