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Differential insular cortex subregional vulnerability to a-synuclein pathology in Parkinson’s

disease and dementia with Lewy bodies

Aim: The insular cortex consists of a heterogenous

cytoarchitecture and diverse connections and is

thought to integrate autonomic, cognitive, emotional

and interoceptive functions to guide behaviour. In

Parkinson’s disease (PD) and dementia with Lewy bod-

ies (DLB), it reveals a-synuclein pathology in advanced

stages. The aim of this study is to assess the insular

cortex cellular and subregional vulnerability to a-synu-
clein pathology in well-characterized PD and DLB sub-

jects. Methods: We analysed postmortem insular tissue

from 24 donors with incidental Lewy body disease, PD,

PD with dementia (PDD), DLB and age-matched con-

trols. The load and distribution of a-synuclein pathol-

ogy and tyrosine hydroxylase (TH) cells were studied

throughout the insular subregions. The selective

involvement of von Economo neurons (VENs) in the

anterior insula and astroglia was assessed in all groups.

Results: A decreasing gradient of a-synuclein pathology

load from the anterior periallocortical agranular towards

the intermediate dysgranular and posterior isocortical

granular insular subregions was found. Few VENs

revealed a-synuclein inclusions while astroglial synucle-

inopathy was a predominant feature in PDD and DLB.

TH neurons were predominant in the agranular and dys-

granular subregions but did not reveal a-synuclein inclu-

sions or significant reduction in density in patient

groups. Conclusions: Our study highlights the vulnera-

bility of the anterior agranular insula to a-synuclein
pathology in PD, PDD and DLB. Whereas VENs and

astrocytes were affected in advanced disease stages, insu-

lar TH neurons were spared. Owing to the anterior insu-

la’s affective, cognitive and autonomic functions, its

greater vulnerability to pathology indicates a potential

contribution to nonmotor deficits in PD and DLB.
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Introduction

Parkinson’s disease (PD) is mainly characterized by

motor symptoms which result from the death of

dopaminergic neurons in the substantia nigra pars

compacta [1]. Yet, nonmotor deficits, including cogni-

tive impairment, autonomic dysfunction and neuropsy-

chiatric symptoms are highly prevalent in PD [2–4].

In addition, dementia with Lewy bodies (DLB), one of

the most common causes of dementia, is defined by

an early onset of fluctuating cognition, visual halluci-

nations and dementia preceding or occurring
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concomitantly within 1 year from the onset of parkin-

sonism [5,6]. PD with dementia (PDD) and DLB show

considerable clinical overlap and may be considered as

two ends of a disease spectrum with different timing of

parkinsonism and dementia [7–9]. In PD and DLB, the

catecholaminergic, dopaminergic and nor-adrenergic

nuclei in the brainstem and cortex are particularly vul-

nerable to a-synuclein pathology and degeneration

[10]. Loss of these monoaminergic neurons most likely

contribute to the cognitive and neuropsychiatric deficits

in these disorders [10,11]. It is therefore imperative to

study the regional and cellular correlates of clinical def-

icits in PD and DLB. Of interest in this respect, the

insular cortex is involved in the integration of

somatosensory and autonomic information with higher

cognitive functions [12–14]. It also plays a role in emo-

tion recognition, cognition and awareness of interocep-

tive information and thus acts as the basis of self-

awareness [15]. It has been associated with multiple

neuropsychiatric disorders, such as anxiety, depression

and bipolar disorder [16]. However, little is known

regarding the selective vulnerability of catecholaminer-

gic and other cells in this region in PD and DLB.

According to Braak staging for PD, a-synuclein
pathological aggregates progress from brainstem to lim-

bic brain regions in the prodromal and early stages of

the disease followed by the neocortex in more advanced

stages. Meanwhile, the insular cortex is affected in

advanced stages of the disease (5 and 6) [17–19]. Atro-

phy of the insula in PD, assessed by neuroimaging, has

also been associated with executive dysfunction, one of

the most common and early cognitive dysfunctions in

PD [20]. Moreover, a reduction in dopaminergic recep-

tor binding and grey matter density have been associ-

ated with mild cognitive impairment in PD [21,22].

Insular atrophy was also found in patients with prodro-

mal DLB and correlates with impairment in attributing

mental states to others in patients with probable DLB

[23,24].

Anatomically, the insula is a heterogeneous region

hidden deep within the Sylvian fissure and is widely con-

nected to the brain. Macroscopically, the insula is

divided into anterior and posterior gyri both constituting

different cytoarchitectures. Microscopically and in order

from ventro-rostral to dorso-caudal, the main subregions

are defined as anterior periallocortical agranular (Ia),

anterior- middle pro-isocortical dysgranular (Id), and

posterior isocortical granular (Ig) and hypergranular (G)

subregions, based on the cytoarchitecture and number

of layers [25–28]. According to the location and connec-

tivity, the agranular insula mostly relays projections to

limbic regions and the granular insula mostly projects to

cortical areas [12,29]. Preferential projections to the

anterior insula arise from the prepiriform olfactory, orbi-

tofrontal and rhinal cortices. On the other hand, only

the posterior insula receives projections from the sec-

ondary somatosensory areas. The dysgranular insula

represents a transitional zone with a variety of limbic

and cortical connections [29,30] (Figure 1). On the

basis of the current staging criteria and earlier involve-

ment of the limbic cortex compared to the neocortex in

PD, the diversity in cytoarchitecture of the insular subre-

gions could provide insight into the underlying charac-

teristics predisposing to degeneration. Moreover, the

presence of von Economo neurons (VENs), spindle

shaped neurons in layer Vb, mostly in the agranular

insula, adds to the uniqueness of the region. VENs are

implied to play a role in social awareness, emotional pro-

cessing and autonomic control [31,32]. Despite specula-

tions on their role in cognitive decline in disease [23], it

remains unknown if VENs are vulnerable to a-synuclein
pathology in PD and DLB. Moreover, the selective vul-

nerability of catecholaminergic neurons in the insular

cortex subregions remain unknown.

Considering the wide-spread connectivity of the

insula, the cellular heterogeneity and differential func-

tional properties of the insular subregions, we hypothe-

size that the periallocortical agranular subregion of the

insula displays greater vulnerability to a-synuclein
pathology in PD and DLB compared to the isocortical

subregions. To gain insight into the selective vulnera-

bility of the insular subregions and their cell types, we

performed a detailed analysis of the a-synuclein distri-

bution pattern throughout the insular cortex of sub-

jects with incidental Lewy body disease (iLBD), PD and

DLB. Our study provides data on the selective vulnera-

bility of VENs, catecholaminergic neurons and astro-

cytes within the insular subregions.

Materials and methods

Post mortem human brain tissue

Insular post mortem tissues from 21 donors with

iLBD, PD(D) and DLB (range = 60–93 years) and 3

age-matched controls (range = 68–79 years) were
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collected by the Netherlands Brain Bank (www.nbb.nl;

Netherlands) and the Normal Aging Brain Collection

Amsterdam (www.nabca.eu; Netherlands). All donors

had provided written informed consents for donation of

brain tissue and access to clinical and neuropathologi-

cal reports in compliance with ethical and legal guide-

lines. The main inclusion criteria were: (i) clinical

diagnosis of PD(D) or DLB according to revised MDS

diagnostic criteria [6,33] and (ii) pathological confirma-

tion of diagnosis [34]. Subjects were excluded if they

had a long history of neuropsychiatric disorders or

suffered from insular infarcts.

The entire insula was dissected into 0.5–1 cm thick

blocks and defined according to its borders with orbito-

frontal and temporal cortices inferiorly and inferior

frontal gyrus operculum superiorly [35]. Tissue blocks

were cryo-protected with 30% sucrose, frozen and

stored at �30°C until further processing. The tissue

slices were then sectioned, using a sliding microtome,

into 60 lm thick sections.

Neuropathological assessment

For neuropathological diagnosis and staging, 6 lm
paraffin sections from several brain regions of all

donors were stained for a-synuclein, b-amyloid, hyper-

phosphorylated tau, haematoxylin and eosin (H&E),

a-synuclein, TDP-43 and congo-red according to cur-

rent diagnostic guidelines of BrainNet Europe [34].

Confirmation of either iLBD, PD or DLB and concommi-

tant Alzheimer’s disease (AD) pathology was based on

guidelines using Braak staging for neurofibrillary tan-

gles (Braak NFT 0–6), Braak a-synuclein (Braak a-syn
0–6), Thal phase for b-amyloid (0–5), and ABC scoring

system [17,36–39]. Glial tauopathy such as age related

tauopathy of the astroglia (ARTAG) and primary age

related tauopathy were assessed primarily in the tem-

poral cortex, olfactory cortex and amygdala [40,41].

Immunohistochemistry

For a-synuclein immunostaining, free-floating 60 lm sec-

tions were pretreated with 98% formic acid (Sigma-

Aldrich, Darmstadt, Germany) and incubated with pri-

mary antibody mouse anti-a-synuclein (1:2000; 610786;

BD Biosciences, Berkshire, UK), as previously described

[42]. Adjacent sections were pretreated with citrate buffer

pH 6.0 in a steamer (95°C) and stained using antibodies

against tyrosine hydroxylase (TH) antibody (rabbit anti-

TH, 1:1000, incubation for 24 h; AB152, Merck Milli-

pore, Darmstadt, Germany) or astrocytic marker glial fib-

rillary acidic protein (GFAP) (rabbit anti-GFAP 1:4000,

incubation for 72 h; Z0334; DAKO, Glostrup, Denmark).

The sections were incubated in the secondary antibody

biotinylated IgG (1:200, Vector Laboratories, Burlingame,

CA, USA) followed by standard avidin-biotin complex

(1:200, Vectastatin ABC kit, Standard; Vector Laborato-

ries) in TBS or rabbit Envision (DAKO) for 2 h. Then 3,30-
diaminobenzidine (DAB) was used to visualize staining

and sections were mounted and counter-stained with

thionin (0.13%, Sigma-Aldrich, Darmstadt, Germany).

For double staining of TH and a-synuclein, liquid perma-

nent red (DAKO) and DAB were used.

For immunofluorescent double staining of a-synuclein
and GFAP, immunostaining was performed as above for

72 h at 4°C followed by incubation with donkey anti-

mouse coupled with Alexa Fluor 488 (1:400; Molecular

Probes, Waltham, MA, USA), donkey anti-rabbit coupled

with Alexa Fluor 594, and diamidino-2-phenylindole

Figure 1. Macroscopy of the insular cortex subregions and

corresponding connections. The insular cortex is seen within the

sylvian fissure. The agranular insula (A-Ia) is seen ventro-

anteriorly (red), is connected to the olfacotory cortex,

orbitofrontal, amygala and temporopolar region. While the

dysgranular insula (A-Id) is seen dorsally (orange) and is

connected to various limbic and neocortical regions. Although the

granular insula (P-Ig) (green) is mostly present within the

posterior insula. It is preferentially connected to the

somatosensory cortex, parietal cortex and cingulate. Some regions

are coloured to outline connections to the insular subregions

including the prefrontal cortex and temporopolar cortex. Amyg,

amygdala; Cing, cingulate gyrus; Ent, entorhinal cortex; Ofg,

orbitofrontal gyrus; PC, parietal cortex; Prec, precentral sulcus;

Prefr, prefrontal cortex; Pre-olf, prepiriform part of olfactory

cortex; SS, somatosensory cortex; STS, superior temporal sulcus;

Tp, temporopolar cortex.
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(4,6)dihydrochloride (DAPI; Sigma) for 2 h. The tissue sec-

tions were then mounted on glass slides and cover-slipped

withmowiol as mountingmedium (4-88 Calbiochem).

Bright-field and confocal laser scanning microscopy

Digital images of the immuno-stained slides were made

with a photomicroscope (Leica DM5000) equipped with

colour camera DFC450, Leica LASV4.4 software and

639 oil objective lens. Immunofluorescent labelling was

visualized using confocal laser scanning microscopy

(CLSM) LEICA TCS SP8 (Leica Microsystems, Jena, Ger-

many). Image acquisition was done using 1009/1.4 NA

objective lens, 405 nm diode, and pulsed white light laser

(80 Hz) with excitation wavelengths 405, 499 and

598 nm. Afterwards, deconvolution of image stacks was

performed using Huygens Professional software (Scien-

tific Volume Imaging, Hilversum, the Netherlands). Colo-

calization analyses to assess the co-occurrence and

correlation of GFAP and a-synuclein were performed

using Imaris software 8.3 (Bitplane, South Windsor, CT,

USA). Deconvolved fluorescent images acquired using

CLSM were used and a region of interest (ROI) was out-

lined for colocalization. The correlation between both

channels was determined using Pearson’s correlation coef-

ficient and Mander’s overlap coefficient (MOC) as well as

the percentage of ROI colocalized (http://www.bitplane.c

om/imaris/imariscoloc).

Definition of insular subregions

The anatomical and cytoarchitectural characteristics of

the insular subregions were identified in Nissl stained

sections by YF and WvdB based on the granularity and

density of layers II and IV. For simplicity, definitions

were based on the four known subregions: agranular,

dysgranular and granular/hypergranular insula [12].

The agranular insula was defined based on its ventral

anterior location, absence of layers II and IV, and clus-

ters of VENs in layer Vb. The dysgranular region is dorsal

to the agranular and has more distinguished layers II

and IV. The granular and hypergranular regions were

defined based on their dorso-caudal and mid to posterior

location and consisted of increasingly dense and granu-

lar layers II and IV [28] (Figure 2). VENs and fork cells

were assessed in layer V of the agranular insula and

VENs were defined based on their spindle-shaped mor-

phology and anatomical location [43]. a-Synuclein
inclusions in the insular cortex were assessed using an

ordinal semiquantitative score, ranging from 0 to 3 in

60 lm sections. The scoring criterium was: 0 = absent,

1 = few dot-like deposits or sparse LNs present + 1–5

LB, 2 = Moderate LN present in all layers + 5–10 LB,

3 = Severe LNs present in all layers + >10 LB in 209

objective field. a-synuclein deposits were counted in all

layers and ≥3 frames. The subregions were first defined

and the scoring was performed by YF and EO as described

(Table S1). Kruskal–Wallis test was conducted to evalu-

ate differences in the distribution pattern of a-synuclein
pathology between the three insular subregions (agranu-

lar, dysgranular, and granular) and across groups

(Figure S1). Statistical significance was set at 0.05.

Quantification of the density of TH-immunoreactive
neurons in insular subregions

In total, 12 PD(D) and DLB subjects, from which the

entire insula was available, were included for

(a) (b) (c)

Figure 2. Definition of insular subregions in 60 lm thick sections. (a) Granular insular grey matter shows uniform and well defined

granular layers II and IV in an iLBD case. (b) Dysgranular insula shows less dense and granular layers II and IV. (c) Agranular insula

grey matter is shown lacking layers II and IV. iLBD, incidental Lewy body disease; II, layer two; III, layer three; IV, layer four.

Magnification: 25 9, scale bar 500 lm.
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quantitative analysis of the TH immunoreactive (TH-ir)

neuronal density (neurons/mm2) in the agranular and

dysgrnaular subregions. The granular insula did not

reveal TH-ir neurons and was not included in the density

assessment. The insular subregions were defined and all

layers were evaluated by YF and EO for presence of TH-ir

neurons. A region of interest (ROI) was then defined at

259 magnification from midlayer III to midwhite matter

layer where most TH-ir neurons were located, using the

stereoinvestigator software (11.06.200; MBF Bioscience,

Delft, The Netherlands). TH-ir neurons had a diameter

range from 7 to 29 lm, consistent with data available in

the literature [44]. As only few TH-ir neurons were

observed in the insular subregions, we determined the

local density in the agranular and dysgranular subre-

gions within the anterior insula in one section per case.

Table 1. Subject demographics and neuropathological staging

Subject ID Gender

Age

death

(year) Diagnosis

Age at

onset

(year) DD

Braak

a-syn
Braak NFT &

tauopathy

Thal

phase ABC Cognitive and psychiatric deficits

HC

HC_1 M 68 Control N/A N/A 0 I, ARTAG 2 A1B1C0 N/A

HC_2 M 74 Control N/A N/A 0 II 3 A2B1C1 N/A

HC_3 F 79 Control N/A N/A 0 II 3 A2B1C0 N/A

iLBD and PD

iLBD-1 F 88 iLBD N/A N/A 4 III 2 A2B2C1 N/A

PD-1 M 78 PD 75 3 3 I 0 A0B1C0 N/A

PD-2 F 93 PD 91 2 3 II 2 A1B1C0 Depression

PD_3 M 77 PD 66 11 5 II 1 A1B1C0 Word-finding difficulties, poor attention

& concentration

PD_4 F 68 PD 52 16 5 II 1 A1B1C0 MCI

PD_5 F 73 PD 70 3 4 II 2 A1B1C0 Anhedonia and apathy

PDD

PDD-1 F 88 PDD 73 15 5 II, ARTAG

and PART

0 A0B1C0 Delirium, anxiety, RBD, &

hallucinations

PDD-2 M 74 PDD 67 7 6 II, ARTAG 3 A2B1C0 Depression, panic attacks, &

hallucinations

PDD-3 F 74 PDD 61 13 6 III 3 A2B2C1 Delirium and hallucinations

PDD-4 F 81 PDD 73 8 6 II, ARTAG 3 A2B1C1 Delirium, hallucinations, & MCI

PDD-5 M 75 PDD 69 6 6 II, ARTAG 1 A1B1C0 RBD, depression, MCI

PDD-6 M 70 PDD 51 19 6 III, ARTAG 3 A2B2C0 Cognitive impairment and delirium

PDD-7 F 88 PDD 82 6 6 II, ARTAG 1 A1B1C0 Hallucinations & memory complaints

PDD_8 M 81 PDD 63 18 6 III, ARTAG,

PART

0 A0B2C0 Delirium, hallucinations, anxiety

PDD_9 F 83 PDD 69 14 6 IV, ARTAG,

PART

0 A0B2C0 Delirium, hallucinations, dementia

PDD_10 M 71 PDD 45 26 5 II, ARTAG 1 A1B1C0 Hallucinations, delirium, disturbed

speech & concentration

DLB

DLB-1 M 67 DLB 64 3 6 V, ARTAG 5 A3B3C3 RBD, hallucinations, apraxia, &

Capgras syndrome

DLB-2 M 75 DLB 73 2 6 III, ARTAG 4 A2B2C3 Paranoia, psychosis, hallucinations &

Charles Bonnet syndrome

DLB-3 M 81 DLB 77 4 6 III 3 A2B2C0 RBD, anxiety, depression, disinhibition,

& hallucinations

DLB_4 M 78 DLB 72 6 6 I, ARTAG 3 A2B1C0 Memory complaints & Dementia

DLB_5 M 60 DLB 53 7 6 0 0 A0B0C0 Impaired memory, language,

concentration, & psychosis

ABC score, A–C (0–3); ARTAG, ageing-related tau astrogliopathy; Braak NFT, 0–6; Braak a-syn, 0–6; DLB, dementia with Lewy bodies;

DD, disease duration; HC, Healthy control; iLBD, incidental Lewy body disease; MCI, mild cognitive impairment; NFT, neurofibrillary tan-

gles; PART, primary age-related tauopathy; PD, parkinson’s disease; PDD, PD dementia; RBD, REM sleep behavioural disorder; Thal

phase, 0–5; a-syn, a-synuclein; N/A, not applicable.
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The TH-ir neurons were included in the density assess-

ment when they met the following criteria: (i) soma with

diameter >7 lm; (ii) (part of) neurites visible; (iii) soma

was located within or intersecting the lines of the ROI.

TH-ir neurons were then counted at 4009 using the

Meander scan. The local density of TH-ir neurons (neu-

rons/mm2) was calculated per subregion for each case as

previously described by others [10].

Statistical analysis

SPSS version 22 (IBM, Armonk, New York, USA) was

used for all statistical analyses. One-way ANOVA (multi-

ple group comparison) with Bonferroni post hoc test was

used to examine differences in subject demographics

between groups. The Kruskal–Wallis test was used to

compare the TH density of the agranular and dysgranu-

lar insula. Differences in TH density per subregion

between the PD, PDD, DLB patients and controls were

analyzed using one-way ANOVA. Furthermore, the cor-

relation between TH density per subregion and a-synu-
clein was examined using Spearman’s rho. Statistical

significance was set at 0.05.

Results

Clinical and neuropathological characteristics of PD
and DLB donors

All PD(D) and DLB donors included in this study had

Braak a-synuclein stages ranging from III to VI and dis-

ease duration ranged from 2 to 26 years. The PDD and

DLB donors had advanced Braak a-synuclein stages

(5–6), moderate to severe cognitive impairments with

memory, attention, language problems and REM sleep

behavioural disorder. Several neuropsychiatric symptoms

were reported including visual hallucinations, delirium,

depression, anxiety and panic attacks. Moreover, ARTAG

was present in all PDD cases except for PDD_3 who

showed severe astroglial degeneration instead. NFT and

b-amyloid plaques were most severe in DLB-1 and DLB-2

who had a short disease duration (2–3 years) as well as a

family history of AD and early dementia. The demograph-

ics and neuropathological staging of all donors included

in this study are summarized in Table 1.

Distribution pattern of a-synuclein pathology in the
insular cortex of iLBD, PD and DLB

We observed a decreasing gradient of a-synuclein
pathology load from the ventral anterior agranular

subregion to the dorsal dysgranular and posterior

dorso-caudal granular subregions. In iLBD and PD(D),

a-synuclein deposits were present in all layers of the

agranular insula, whereas in the dorsal dysgranular

less immunoreactivity was observed. In the granular

insula, a-synuclein immunoreactivity was minimal or

absent. LNs were present in all layers while LBs were

predominantly found in the deep layers V and VI.

The iLBD insular cortex (iLBD-1), Braak a-synuclein
stage 4/6, showed few LN in both agranular and dys-

granular regions and very mild immunoreactivity in

the granular insula. a-Synuclein immunoreactive fea-

tures consisted of dot-like deposits, few LNs, sparse LBs

and astroglial deposits (Figure 3a–c). PD-1, Braak

a-synuclein stage 3/6, revealed very sparse a-synuclein
inclusions in all subregions (Figure 3d–f). PD-2, Braak

a-synuclein stage 3/6, showed moderate to severe LN

and few LBs in the deep layers of the agranular insula.

The granular and dysgranular subregions contained

bulgy LNs as well as a mild to moderate number of

LNs and LBs, respectively (Figure 3g–i).

Figure 3. Distribution pattern of a-synuclein in insular subregions. iLBD shows mild LNs and astroglial a-synuclein inclusions in layer I

of agranular insula (a), few glial inclusions in dysgranular insula (b), and sparse dot-like aggregates in granular insula (c). PD-1

agranular insula shows a LB-like inclusion and dot-like aggregates (d), the dysgranular insula shows bulgy LNs in layer I (e), and the

granular insula shows an intracellular LB inclusion (f). PD-2 shows many LNs inclusions in agranular insula and glial a-synuclein (g)

and less but bulgy LN in dysgranular (h) and granular regions (i). In PDD-2 severe astroglial a-synuclein inclusions are shown in

agranular insula (j) few LBs and LNs in dysgranular insula (k). The granular insula shows dot-like aggregates and astroglial a-synuclein
(l). In PDD-1 agranular insula, very long LNs and some dot-like aggregates are seen in layer I (m). Dysgranular insula in PDD-1 shows

granular cytoplasmic inclusions in neurons and a LB (n) while the granular insula shows less aggregates and a LB in the infragranular

layer (o). In DLB-1, severe a-synuclein inclusions are seen in agranular insula throughout all layers (p). Severe astroglial inclusions are

seen in the supragranular layers of dysgranular and granular insula (q,r). In DLB-2, a cluster of dystrophic LNs and glial inclusions are

shown in layer II of the agranular insula (s). The dysgranular insula contains LNs and dot-like structures (t) also abundant in the

granular insula superficial layers (u). DLB, dementia with Lewy bodie; iLBD, incidental Lewy body disease; LB, Lewy bodies; LN, Lewy

neurites; PD, Parkinson’s disease; PDD, Parkinson’s disease dementia. Magnification: 630 9 , scale bar 50 lm.
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(m) (n) (o)

(p) (q) (r)

(s) (t) (u)
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In PDD 1-2, Braak a-synuclein stage 6/6, the same

gradient of a-synuclein immunoreactivity was present

with highest load of pathology in agranular insula.

PDD-1 showed very long LNs in the superficial layers

of the agranular insula and a mild to moderate a-synu-
clein load in the granular and dysgranular insula,

respectively. Astroglial a-synuclein inclusions were also

found (Figure 3j–o). Other PDD cases showed similar

distribution of pathology throughout the subregions as

well as astroglial synucleinopathy and degeneration.

In contrast, DLB-1 and 2, Braak a-synuclein stage

6/6, showed severe a-synuclein inclusions in all layers

of the agranular/dysgranular insula and severe proto-

plasmic astroglial a-synuclein inclusions. In the granu-

lar insula, a high load of a-synuclein inclusions with

relative sparing of layers III/IV was observed

(Figure 3p–u). Other DLB cases showed a-synuclein
distribution similar to PD(D).

Assessment of the semiquantitative scores of a-synu-
clein between the three insular subregions showed a sig-

nificant difference [v2 (2, N = 63) = 9,099, p = 0.011].

To assess pairwise differences across the three subre-

gions, follow-up tests were performed. Pairwise compar-

isons between the subregions showed further significant

differences between the agranular and granular

subregions as well as dysgranular and granular subre-

gions (P = 0.005 and 0.043, respectively) (Figure 4).

Morphology of a-synuclein immunoreactive
structures in the insular subregions

In PDD and DLB, severe synucleinopathy was observed

in astrocytes (Figure 5a–c). The supragranular layers

I–III, showed moderate to severe LNs variable in shape

and size, thread-like, bulgy and long. Layers V and VI

contained a predominance of cortical LBs, which

increased in gradient from agranular to granular subre-

gions. Astroglial degenerative changes in the form of

detached astroglial processes with bulbous and dough-

nut-shaped end-feet were present in superficial layers

in P DD and DLB. Fuzzy astrocytes, with granular

accumulations along their processes were also seen in

PDD with ARTAG (Figure 5d–f).

Neuronal vulnerability to a-synuclein pathology in
insular subregions

TH-ir interneurons were predominantly present in the

deeper layers (V–VI) of the agranular and dysgranular

subregions of the insular cortex and occasionally in

layer III and white matter. The granular insular cortex

did not contain TH-ir neurons. These neurons were

unipolar, bipolar, tripolar and multipolar. They were

also usually surrounded by a mesh of beaded dopamin-

ergic fibres. Assessment of TH and a-synuclein did not

reveal any colocalization. Furthermore, there were no

significant differences in the density of TH-ir neurons

between groups for both agranular and dysgranular

subregions (P = 0.56 and P = 0.82, respectively) (Fig-

ure 6). No significant correlation was found between

subregional TH-ir density and a-synuclein scores.

Only few VENs and fork cells in layer V of fronto-

insular region revealed a-synuclein inclusions in PD-2

and PDD 1 and 2. VENs showed granular cytoplasmic

a-synuclein inclusions and LBs. They were also fre-

quently surrounded by astroglial cells showing thorn-

shaped a-synuclein immunoreactivity (Figure 7).

Relationship between astrocytes and a-synuclein
pathology

Double labelling of GFAP and a-synuclein was per-

formed to examine the relationship between astrocytes

Figure 4. Semiquantitative analysis of a-synuclein pathology

across the insular subregions. The local density of a-synuclein
wass assessed at 200 9 magnification. A significant difference in

subregional distribution of a-synuclein pathology was observed

[v2 (2, N = 63) = 9099, P = 0.011]. Pairwise comparison

between different subregions showed a significant difference

between the agranular and granular subregions as well as

dysgranular and granular subregions (P = 0.005 and 0.043,

respectively).
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and a-synuclein inclusions. Astrocytes with multiple

varicosities were predominantly found in the agranular

and to a lesser extent in the dysgranular insula, in

both controls and patients, possibly representing vari-

cose projection astrocytes (VPA). A VPA in the infra-

granular layer in PD-2 was found containing a cluster

of cytoplasmic a-synuclein forming a mesh-like struc-

ture (Figure 8a). Other protoplasmic and interlaminar

astrocytes examined in PDD and DLB showed a-synu-
clein deposits around the cell body and processes (Fig-

ure 8). Further colocalization analysis in VPA showed

a positive correlation between a-synuclein and GFAP

(MOC for channels A and B = 0.94 and 0.27, repec-

tively) (Figure S2). Analysis and reconstruction indicate

possible compartmentalization of the a-synuclein within

the astrocytic cell body (Figure S2).

Discussion

In this case series, we observed a decreasing gradient

in the load of a-synuclein immunoreactivity from the

anterior periallocortical agranular subregion to the

intermediate pro-isocortical dysgranular and posterior

isocortical granular insula in iLBD, PD and DLB sub-

jects. This was particularly evident in iLBD and PD(D)

with the highest load of neuropathological inclusions

in the agranular insula. In DLB with high AD patho-

logical stages, there was also extensive a-synuclein
immunoreactivity in the granular region with an abun-

dance of LBs in the infragranular layers V/VI, and rela-

tive sparing of layers III/IV. Some VENs, but not TH-ir

neurons, in the anterior insula revealed a-synuclein
inclusions in PD(D). Astrocytes were also vulnerable to

a-synuclein inclusions and showed degenerative

changes at all disease stages, yet most prominent in

PDD and DLB.

The presence of a gradient for a-synuclein pathology

across the insular cortex, from the anterior agranular

to posterior granular subregions, has previously been

documented for NFT and b-amyloid pathology in post

mortem insular tissue of AD patients [45]. This

decreasing pathological gradient appears to be

(a) (b) (c)

(d) (e) (f)

Figure 5. Cell specific morphology and inclusions in Lewy body diseases. In PDD-2 with astroglial tauopathy, infragranular layer of

agranular insula show astroglial-to-neuronal a-synuclein inclusions (a), an elongated a-synuclein positive process with bulbous endings

(possibly glial) surrounded by astroglial a-synuclein inclusions (*) and LNs (b). DLB-2 shows LB inclusions, LNs and astroglial a-synuclein
(*) within the deep infragranular layers (c). Loose GFAP + astrocytic processes are shown containing bulbous end feet and donut-shaped

structures in the supragranular layers of the agranular insula in DLB-2 (d). PDD-1 with astroglial tauopathy shows small and

dysmorphic astrocytes containing multiple varicosities within their processes, possibly representing fuzzy astrocytes (e). A

GFAP + astrocyte is shown surrounded by disorganized processes in DLB-2 (f). Magnification: 630 9 , scale bar 50 lm. DLB, dementia

with Lewy bodie; LB, Lewy bodies; LN, Lewy neurites; PDD, Parkinson’s disease dementia; GFAP, glial fibrillary acidic protein.
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consistent with differences in cytoarchitecture, cell

types and myelination in the insular subregions [28].

Accordingly, the agranular insula comprises the high-

est density of acetylcholinesterase and lowest density of

myelinated fibres while the opposite exists in the granu-

lar subregions [46]. The vulnerability of the agranular

insula relative to the late and sparse involvement of

the granular insula corresponds with an inverse rela-

tionship between myelination and neuropathological

lesions in both AD and PD [47]. The agranular insula

also comprises of preferential connections to the olfac-

tory and rhinal cortices which are affected in the early

stages of PD and show a similar allocortical cytoarchi-

tecture [18,29]. In line with this, the granular insula

connects to the isocortical somatosensory and cingulate

cortices and is affected in later stages of the disease

[29]. Considering the insular phylogenetic and ontoge-

netic variations [48], the insular subregions reflect the

global regional involvement in PD, as described by

Braak and colleagues. Moreover, cognitive and neu-

ropsychiatric deficits were prominent in our cohort and

particularly with more advanced Braak stages. Consider-

ing the anterior insular cortex connectivity, a-synuclein

pathology and cell death in the agranular insula may

contribute to autonomic, cognitive and psychiatric

symptoms in PD(D) and DLB [49].

TH-ir neurons ranged from bipolar to multipolar,

predominantly resided in the deeper layers of the

agranular and dysgranular insular cortex subregions

and did not show any a-synuclein deposits. Generally,

catecholaminergic neurons in the brain stem are

known to be selectively vulnerable to Lewy pathology

in PD [50]. Yet, cortical TH-ir neurons remain mysteri-

ous and show substantial differences in distribution

pattern across the brain. Although the lowest density is

present within the somatosensory cortex, the highest is

present in the cingulate cortex [11]. This variation is

also represented by the insula with a decreasing gradi-

ent of TH-ir neurons from agranular/dysgranular to

granular/hypergranular insula, adding to the variation

in cellular compositions across the insular subregions.

Although a previous study showed reduction in TH-ir

neurons in PD compared to controls in multiple cortical

brain regions [10], we did not find a significant reduc-

tion, which may be the result of a limited sample size.

We also show that VENs are vulnerable to a-synuclein

Figure 6. Morphological characteristics of tyrosine hydroxylase immunoreactive (TH-ir) neurons, distribution pattern, and relationship

with a-synuclein deposits in the Insular cortex subregions. TH-ir neurons were predominant in layers V and VI, and were mostly bipolar

in morphology and few multipolar (a,b). No a-synuclein deposits (*) were present within the TH-ir neurons (brown) or their neurites;

these TH-ir neurons were often found surrounded by beaded dopaminergic fibres (c,d). There were no significant differences in TH-ir

neurons between groups in the agranular and dysgranular subregions (e,f). Magnification: 630 9 , scale bar: 50 lm.
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pathology in advanced PD(D). VENs have been impli-

cated in consciousness, emotion, cognition and social

awareness [31,43,51]. In this study, few VENs showed

a-synuclein inclusions relative to the greater involve-

ment of pyramidal neurons within the agranular

insula. Previous studies assessing VENs found hyper-

phosphorylated tau inclusions as well as significant cell

loss in Pick’s disease compared to AD [52,53]. Further-

more, VENs are known to be selectively vulnerable to

degeneration early in frontotemporal dementia as well

as early onset schizophrenia [31]. Other studies, how-

ever, have shown that VENs show a reduced density as

well as NFT in AD particularly in late stages of the dis-

ease compared to cognitively normal elderly controls

and super-agers, elderly who performed average for

their age group or above average for individuals in

their 50s and 60s, repectively [54,55]. VENs are uniqe

spindle shaped projection neurons with sparse dendritic

branching. They are therefore thought to function in

the rapid relay of inputs from the insula and anterior

cingulate cortex to other brain regions. This in turn

would allow rapid control of behavior during changing

social situations [56]. Recent biochemical analyses

showed that these neurons may also possess a novel

type of cortical monoaminergic function due to their

expression of VMAT2 which packages monoamines

into vesicles [57]. Moreover, assessment of the func-

tional connectivity of regions containing VENs showed

their involvement in networks involved in salience pro-

cessing, allowing for rapid relay of information to other

brain regions and thus controlling attention [58]. The

salience network, formed of anterior ventral frontoinsu-

lar region and anterior cingulate cortex, is presumed to

play a role in detecting salient stimuli and directing

attention to such stimuli by coordinating between

other brain networks to facilitate a goal-directed beha-

viour [59,60]. The salience network has been impli-

cated in PD where patients showed reduced

dopaminergic receptors within the network which con-

sequently could play a role in memory and executive

dysfunctions [61]. Despite previous implications on the

possible role of VENs in PD, our study is the first to

show their involvement in PD(D) and DLB. Future stud-

ies focusing on the loss of VENs in Lewy body diseases

Figure 7. a-synuclein deposits in VENs. (a) PD-2 shows granular LB inclusions (brown) along a VEN. (b) LB in VEN and surrounding

astrocytes in PD-2. (c) PDD-2 shows a VEN containing a large LB and multiple granular inclusions within the cell body, astroglial a-
synuclein inclusions are also seen. (d) PDD-1 shows LB in the soma and dendrite of a VEN. (e) a-synuclein inclusions are shown in a

fork cell in PDD-1. (f) DLB-2 agranular insula shows many deposits surrounding pyramidal neurons and rod shaped VEN. Magnification:

630 9 , scale bar 50 lm. PDD, Parkinson’s disease dementia; LB, Lewy bodies; DLB, dementia with Lewy bodie; VENs, von Economo

neurons.
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(a)

(b)

(c)

(d)

(e)

Figure 8. Relationship between a-synuclein immunoreactivity and astrocytes in insular cortex in PD(D) and DLB. a-synuclein (green) is

present within varicose projection astrocyte (GFAP, red) cell body in deep layer in the anterior insula in PD-2 (a). In PDD-2, an astrocyte

is shown containing a-synuclein aggregates and surrounded by a cluster of nuclei in the anterior insula (b). In DLB-3, a protoplasmic

astrocyte is shown surrounded by multiple a-synuclein aggregates but no inclusions were present within the astrocyte (c). DLB-1 shows

a-synuclein deposits surrounding the cell body of an interlaminar astrocyte in layer I (d) and similar inclusions are shown within a

protoplasmic astrocyte, its processes, and the surrounding clustered nuclei in the posterior insula in DLB-2 (e). Magnification 100 9 ,

Scale bar: 10 lm. DLB, dementia with Lewy bodie; PDD, Parkinson’s disease dementia; GFAP, glial fibrillary acidic protein.
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may provide some insight into their contribution to

autonomic and neuropsychiatric symptoms.

Other cells such as astrocytes have been previously

shown to contain a-synuclein inclusions in advanced

PD and parallel to the neuronal involvement in disease

[42]. However, minimal astrocytic activation and cyto-

plasmic a-synuclein inclusions were observed in PD

compared to other neurodegenerative diseases [62]. In

our series, we observed the enwrapment of astrocytic

cell bodies and processes with a-synuclein. Protoplas-

mic and interlaminar astrocytes showed extensive

synucleinopathy most severe in the agranular insula,

particularly in PDD with glial tauopathy (ARTAG).

However, it remains unknown what role astroglial

a-synuclein plays in disease progression and its rela-

tionship with other pathologies. Moreover, whether

astroglial tauopathy could play a role in the vulnerabil-

ity of astroglia to synucleinopathy and degeneration

remains unclear [63,64]. Another novel feature of the

agranular insula, is the presence of VPA. These

recently discovered astrocytes with varicosities along

their processes were found only in higher order pri-

mates and humans [65]. Recent studies proposed that

they may provide alternative pathways for long dis-

tance communication through cortical layers [65,66].

We report the presence of intracellular a-synuclein
inclusions within these VPA cells. Future studies study-

ing these cells in more detail may provide more insight

into their selective vulnerability and functional corre-

lates in PD and DLB. This is the first study to assess the

subregional neuropathological characteristics and selec-

tive vulnerability of the insular cortex in PD(D) and

DLB. The limitations of this study include a limited

sample size. Our study also does not include quantita-

tive data on the density of VENs in PD and DLB. Attri-

butable to the presence of VENs primarily within the

agranular insula and particularly perpendicular to the

pia, it requires a dissection approach different from that

used in the present study [53]. Future large clinico-

pathological studies including longitudinal data and

insular subregional analysis will aid in our understand-

ing of the impact of insular neurodegeneration on the

cognitive and psychiatric deficits in PD and DLB.

In conclusion, the distribution pattern of a-synuclein
pathology revealed a decreasing anterior-to-posterior

gradient in the insular cortex, representative of the dif-

ferential cytoarchitectural vulnerability in PD and DLB.

Our study also shows that VENs and astroglia are

vulnerable to a-synuclein pathology, particularly in

advanced Braak stages in PDD and DLB. These results

elucidate variations in the selective vulnerability of

neurons and astrocytes as well as the pathological dis-

tribution pattern between the allocortical and isocorti-

cal subregions of the insular cortex.
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