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Abstract

We analyze how the costs of smoothly adjusting capital, such as incentive costs, affect in-
vestment timing. In our model, the owner of a firm holds a real option to increase a lumpy
form of capital and can also smoothly adjust an incremental form of capital. Increasing the
cost of incremental capital can delay or accelerate investment in lumpy capital. Incentive costs
due to moral hazard are a natural source of costs for the accumulation of incremental capital.
When moral hazard is severe, delaying investment in lumpy capital is costly, and it is optimal
to overinvest relative to the first-best case.
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1 Introduction

Financial economists often view patterns of inefficient investment through the prism of agency

conflicts. For example, in his seminal paper, Jensen (1986) posits that managers’ private bene-

fits of investment, i.e., empire-building preferences, cause firms to overinvest relative to outside

shareholders’ preferences. In contrast, a substantial body of literature links underinvestment to

managers’ private costs of firm operations. For example, DeMarzo and Fishman (2007) show that

managers’ ability to divert cash flow decreases the net return of adding new capital and thus lowers

investment. As such, a dichotomy has emerged in the literature: overinvestment is a result of

managers’ private benefits of investment, whereas underinvestment is a result of their private costs

of firm operations.1 The main contribution of this paper is to challenge this dichotomy and show

that a manager’s ability to shirk or divert cash flow, a form of private costs of firm operations, can

accelerate investment when investment technology is lumpy.

We specify a dynamic model of investment in which a firm optimally accumulates two inputs

of production. The firm can smoothly adjust the first input, such as productivity or organization

capital, at a total cost that derives from both direct expenditure and from incentives for the firm’s

manager. Specifically, the manager needs incentives to prevent her from diverting funds allocated

to cover the direct cost. The firm also has an option to invest in a discrete amount of capital, such

as a new factory or an acquisition. The two inputs are complements in the production function:

an increase in the quantity of one in the firm increases the marginal productivity of the other. It is

then optimal to delay exercising the option until the output has reached an endogenous investment

threshold. For convenience, we call the first and second inputs incremental and lumpy capital,

respectively.

An increase in the severity of the moral hazard problem, and thus the cost of incremental

capital investment, has a non-monotonic effect on the optimal investment threshold for the real

option to increase lumpy capital. When the cost is low, increasing it leads to a delay in the optimal

time to exercise the lumpy capital expansion option. The intuition for this case is straightforward.

Increasing the cost of incremental capital reduces both its optimal growth rate and the value of

investing in lumpy capital because the two forms of capital are complements in the production

1Stein (2003) provides a thorough review of the literature on empire building. Tirole (2010) provides a treatment
of the effects of the private costs of firm operations on investment.
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function of the firm. In general terms, the agency conflict makes lumpy capital less productive,

thus curtailing investment, as in much of the literature on operational conflicts and investment,

such as DeMarzo, Fishman, He, and Wang (2012). This intuition only applies to our setting when

the cost of investment in incremental capital is low.

When the cost of investment in incremental capital is high, increasing it can accelerate invest-

ment in lumpy capital. Before the exercise of the option to invest in lumpy capital, the optimal

growth rate of incremental capital takes two benefits into account. First, additional incremental

capital increases contemporaneous cash flow. Second, it increases the value of the option to add

lumpy capital. After investors exercise the option, only the first benefit remains. Thus, the optimal

investment rate in incremental capital can decrease after lumpy capital expansion. When the cost

of investment in incremental capital is large, i.e., when the moral hazard problem is severe, this

decrease is also large. For example, if the cost is large enough the optimal investment rate in

incremental capital is positive before the exercise of the growth option and zero afterward. In this

case, an increase in the cost of investment in incremental capital decreases net cash flow before the

option exercise and leaves net cash flow unchanged afterward. This in turn increases the marginal

cost of delaying the exercise of the real option and lowers the investment threshold.

By treating moral hazard as an additional cost of investing in incremental capital, we can

contribute to the debate on the causes of over- vs. underinvestment. First, our reasoning above

is not specific to moral hazard costs. We can decompose the total cost of investing in incremental

capital into two components: direct costs that are given by the resource expenditure required to

acquire new incremental capital and incentive costs that are given by the additional cost of acquiring

incremental capital through an agent. Increasing the direct costs can have the same effects discussed

above even without moral hazard—in other words, under the first-best case. However, when the

incentive costs are high relative to the direct costs, the investment threshold is lower under moral

hazard than under the first-best case. This behavior is a form of overinvestment in that the firm

exercises the growth option earlier than it otherwise would if not for the incentive costs. In this

way, a manager’s private costs of firm operations—i.e., consuming the resources required to grow

incremental capital on her own account—can cause overinvestment.

Beyond showing that a manager’s private costs of firm operations can cause overinvestment, we

also argue that incentive costs are an empirically relevant source of costs for the smooth accumu-
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lation of capital. Whereas capital investments made in lumpy fashion, such as building an entire

plant, are likely to be readily observable and subject to contracts, investment in small increments,

such as adding or maintaining machinery at existing plants, is more likely to be subject to man-

agerial discretion and hence to moral hazard. Managers can divert resources meant for incremental

investment for their consumption, as such resources are difficult to measure and quantify in real

time. As a result, an empirical examination of the interaction between incremental investment and

the exercise of large real options requires an understanding of the role moral hazard plays in the

accumulation of capital. This stance is broadly consistent with empirical evidence on acquisitions,

such as in Datta, Iskandar-Datta, and Raman (2001) and Harford and Li (2007), showing that

acquisition decisions are related to managerial incentives, both before and after acquisitions.

An important difference between incentive costs and the direct cost of incremental capital lies

in how uncertainty affects the optimal exercise policy for the lumpy capital expansion option. In

our model, uncertainty is represented by the volatility of capital depreciation shocks. The effect

of a change in this volatility acts through two channels. First, as in a classic real option exercise

problem, increasing volatility increases the value of the option to wait to invest and thus lowers

the investment threshold. Second, the moral hazard problem leads to an endogenous link between

volatility and incentive costs. When volatility is higher, providing the manager with incentives

for investment in incremental capital requires her to take on more risk, which in turn increases

incentive costs. When the moral hazard problem is already severe, the second effect dominates the

first, and an increase in volatility decreases the optimal investment threshold. This result cannot

be obtained without moral hazard, as in that case volatility does not affect the cost of incremental

capital investment.

Our results are consistent with several findings in the empirical literature on large investments.

In particular, our model offers a framework for interpreting observed patterns of managerial com-

pensation and firm performance around acquisitions. For example, Harford and Li (2007) study the

dynamics of executive incentives around acquisition events and find that incentives change substan-

tially around merger events with a decrease in pay-performance sensitivity. We can interpret the

lumpy capital investment option in our model as an option to acquire another firm, in which case

our model implies that the strength of incentives should occur post-merger to decrease the optimal

rate of investment in incremental growth. Harford and Li (2007) also find that firm performance
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suffers post-acquisition, which is consistent with a decrease in incremental growth after a large

investment. Titman, Wei, and Xie (2004) find that firms tend to have poor long-term performance

after undertaking large capital expenditures. If large capital expenditures are indicative of the

exercise of growth opportunities, then these results are again consistent with our finding of a drop

in incremental growth following large investments.

Our results also shed light on the choice between innovation through internal investment and

innovation through acquisitions. Importantly, these two forms of innovation are often comple-

ments: more productive firms can more efficiently exploit technology that they acquire externally,

as documented by Cassiman and Veugelers (2006). The complementarity of internal and external

innovation would seem to indicate that firms should actively invest in both forms of innovation.

However, mature firms tend to innovate through acquisitions while young firms tend to innovate

via incremental internal investment (Huergo and Jaumandreu (2004) and Zhao (2009)). This pat-

tern is consistent with our model if more mature firms are subject to more severe agency conflicts.

Relatedly, Balsmeier, Fleming, and Manso (2017) show that agency conflicts negatively affect in-

novation. In this context, the model implies that industries characterized by a large number of

mature firms will feature frequent acquisitions, as is currently the case in the technology industry.2

This paper contributes to the literature on corporate investment under uncertainty. Our model

of real options is based on the seminal work of McDonald and Siegel (1986), Brennan and Schwartz

(1985), and Abel and Eberly (1996). In the classic real options literature, growth, either in cash

flows or productivity, is taken as exogenous. In our model, the firm’s owners and managers must

expend resources to grow the prospects of the firm.

This paper also contributes to the growing literature on the intersection of dynamic agency

conflicts and investment under uncertainty. On the dynamic contracting side, Holmstrom and

Milgrom (1987) and Spear and Srivastava (1987) introduce the notion that agents may be provided

with incentives over many periods. More recently, there has been renewed interest in dynamic

contracting. Biais, Mariotti, Plantin, and Rochet (2007) analyze a rich discrete-time model of a

dynamic agency conflict and its continuous-time limit. We adopt the continuous-time framework

of He (2011).3 On the investment side, DeMarzo and Fishman (2007), Biais, Mariotti, Rochet,

2See, for example, “American tech giants are making life tough for startups” in The Economist, June 2, 2018.
3For more examples of continuous-time dynamic contracting, see Sannikov (2008), DeMarzo and Sannikov (2006),

Piskorski and Tchistyi (2010, 2011), and He (2009).
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and Villeneuve (2010), and DeMarzo et al. (2012) consider dynamic moral hazard with investment.

One important distinction between our paper and both Biais et al. (2010) and DeMarzo et al.

(2012) is that in their models, the first-best effort is optimal even under moral hazard. Malenko

(2018) also studies a dynamic capital-budgeting problem, but in contrast to much of the literature,

directly considers managerial empire-building preferences. Grenadier, Malenko, and Malenko (2016)

study how strategic communication between a firm’s managers and its owners can distort the

optimal timing of real options. Grenadier and Malenko (2011) show that managers may distort

the real option exercise to signal private information to investors. In subsequent work, Gryglewicz,

Hartman-Glaser, and Zheng (2018) use a similar model to the one used in this paper to show that

pay-performance sensitivity can decrease with the increasing intensity of growth options, and they

provide empirical evidence consistent with this prediction.

Grenadier and Wang (2005) study how agency conflicts can affect the exercise of real options.

In their model, the owner of a real option delegates the investment timing decision to a manager

who can exert effort to increase the payoff of the option. The manager also privately observes

this payoff. In this setting, the manager has an incentive to report that the option has low value

and to consume the difference between the true value of the project and her report. Under the

optimal contract, the owner sets the investment threshold for low-value projects higher than in the

first-best case to dissuade the manager from under-reporting project quality. In our model, there

is no conflict of interest between the owner of the firm and the manager over investment timing.

We also assume that the cost of the moral hazard problem depends directly on when the option is

exercised. Importantly, this second feature means that incentivizing managerial effort affects the

real option exercise without assuming any additional conflicts of interest.

Philippon and Sannikov (2007) consider real options in a dynamic moral hazard setting similar

to ours. In their model, cash flows follow an i.i.d. process, and hence there is no real option problem

under the first-best case. That is, in the first-best case, the firm always immediately invests, as

the investment is assumed to have a positive net present value. Introducing the agency problem

in their setting induces a valuable option to delay investment until the agent has sufficiently high

continuation utility and the firm is very unlikely to be liquidated. Consequently, moral hazard can

only delay investment in their setting. In contrast, we model cash flows that grow in expectation,

and as a consequence, optimal managerial effort depends on the level of cash flows where investment
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and effort may serve as substitutes. This difference means that in our model, unlike in that of

Philippon and Sannikov, moral hazard can either raise or lower the investment threshold.

2 A Model of Incremental and Lumpy Investment

In this section, we present a model of investment in which a firm produces cash flow using two

forms of capital. The first form of capital can be adjusted via a neoclassical investment technology.

The second form of capital can be increased by a discrete amount in the manner of a standard real

option to invest. Our analysis characterizes how changes to the cost of investing in the first form

of capital affect the optimal timing of investing in the second.

2.1 Setup

Time is continuous, infinite, and indexed by t. The risk-free rate is r. A risk-neutral investor

owns a firm that produces cash flow Ytdt using lumpy capital Kt, which can only be added in a

discrete amount, and incremental capital Xt, which can be smoothly adjusted according to the

following production function:4

Yt = XtKt. (1)

The firm starts with K0 = ks > 0 units of lumpy capital. The investor has a one-time option to

increase lumpy capital to kb > ks at cost P = p(kb − ks), where p is the per-unit price.5 We let τ

denote the stopping time at which the investor exercises this option.

Incremental capital Xt accumulates according to the following dynamics:

dXt = Itdt+ σXtdZt, (2)

where It ≥ 0 is the investment in incremental capital and Zt is the standard Brownian motion

driving incremental capital depreciation shocks. Investment in X incurs a cost F (I, x, k) = G(I, x)k

per unit of time and can include both the direct price of acquiring the capital and the adjustment

4In Appendix C.3, we consider a version of the model with a single form of capital that can be adjusted using both
investment technologies described above. The results are similar. However, distinguishing between the two forms of
capital facilitates the economic interpretation of the primitives of the model.

5In Appendix C.4, we consider a version of the model in which a firm holds an option to abandon instead of an
option to invest.
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cost. This specification for the cost of investment captures the notion that it is more costly to

increase incremental capital when the firm uses more lumpy capital. It is convenient to represent

investment in incremental capital as a per-unit rate, it = It/Xt, and rewrite the dynamics of Xt as

follows:

dXt = itXtdt+ σXtdZt. (3)

We assume that G(I,X) is homogenous of degree one in I and X, allowing the total investment

cost to be written as follows:

F (I, x, k) = θg(i)xk,

for some function g and some constant θ > 0. We assume that this rate must be positive and

cannot exceed some upper limit such that it ∈ [0, imax], where imax < r. Finally, we assume that F

is such that g(i) is continuous and g(i) ≥ 0, g′(i) > 0. To simplify the analysis, we also assume that

either g′′(i) = 0 or g′′(i) > 0 for all i. Note that this production technology implies that X and

K are complements in the production function in that increasing the quantity of one improves the

marginal productivity of the other. For a more formal discussion of the complementarity between

X and K, see Appendix C.1.

Given the technology described above, the investor’s problem is to choose an investment policy i

in incremental capital and a time τ to exercise the real option to expand lumpy capital to maximize

the present value of the firm’s cash flow net of investment costs:

max
i,τ

E

[∫ ∞
0

e−rt (XtKt − θg(it)XtKt) dt− e−rτP
]
. (4)

2.2 Model Solution

We take the standard dynamic programming approach to solve the investor’s problem in Equa-

tion (4). First, we characterize the optimal investment rate for incremental capital. Over any

region of x such that the investor does not exercise the real option, an application of Ito’s formula

together with the dynamic programming principle implies the following Hamilton–Jacobi–Bellman

(HJB) equation for the value of the firm V (x, k):

rV = max
i∈[0,imax]

{
xk(1− θg(i)) + ix

∂V

∂x
+

1

2
σ2x2∂

2V

∂x2

}
. (5)
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The right-hand side of Equation (5) is the sum of the cash flow generated by the firm net of the cost

of investing in incremental capital and the expected capital gains in firm value from this investment.

Let î(x, k) be the solution to a first-order condition for Equation (5)6:

θg′(̂i)k =
∂V

∂x
. (6)

Then, the optimal investment rate, denoted by i∗(x, k), is given by the following:

i∗(x, k) =


0 if θg′(0)k ≥ ∂V

∂x ,

imax if θg′(imax)k ≤ ∂V
∂x , and

î(x, k) otherwise.

(7)

Next, we characterize the optimal time at which to exercise the real option to expand lumpy

capital. As is common in real options to invest, the optimal exercise policy takes the form of a

threshold rule, τ = inf{t : Xt ≥ x̄}. The location of the exercise threshold is identified using the

following value-matching and smooth-pasting conditions:

V (x̄, ks) = V (x̄, kb)− P (8)

∂

∂x
V (x̄, ks) =

∂

∂x
V (x̄, kb). (9)

Finally, the value of the firm must be zero when incremental capital falls to zero:

V (0, k) = 0. (10)

We summarize our results about the firm value function and optimal policies in the proposition

below.

Proposition 1. The value of the firm V (x, k), the optimal investment rate i∗ in incremental capital,

and the optimal exercise time τ of the option to expand lumpy capital are provided by the solution

to Equation (5) with the boundary conditions in Equations (8) to (10).

6If g′′(i) > 0, then Equation (6) has a unique solution. If g′′(i) = 0, then i∗ ∈ {0, imax}.
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V (x, kb) =
1− θg(i∗(x, kb))

r − i∗(x, kb)
xkb, (11)

where i∗(x, kb), if it is interior, solves the following

θg′(i∗) =
1− θg(i∗)

r − i∗
.

Whether analytical solutions for the pre-exercise firm value V (x, ks) and optimal exercise threshold

x̄ exist depends on the structure of the cost of investing in incremental capital. We analyze various

cases in the next sections. In each case, we study the effect of an increase in the cost of investment

in incremental capital on the optimal exercise threshold for the real option.

3 The Cost of Incremental Capital and the Real Option Exercise

In this section, we consider the effect of optimal investment in incremental capital on the optimal

real option exercise policy in the context of increasingly rich specifications of the model that we

describe in Section 2. To begin our analysis, we study a pure real option problem in which the

investment in incremental capital only plays a role after the real option to expand lumpy capital

has been exercised. In the following subsections, we allow investment in incremental capital to

enter the investor’s problem both before and after the exercise of the real option. We show that

the presence of this additional decision means that increasing the cost of incremental capital can

lead to a lower optimal exercise threshold for the option to expand lumpy capital.

3.1 Real Option to Initiate a Project

In this section, we consider the problem in which the firm starts with zero lumpy capital. When

ks = 0, the cost of investment in incremental capital is zero before exercising the real option, and it

is therefore always optimal to set i∗(x, ks) = imax. Here, our model resembles a classic real option

problem of when to initiate a project in the spirit of McDonald and Siegel (1986). The firm starts

life producing zero cash flows and incurring no costs. Incremental capital grows at a fixed rate

imax in expectation. Once the firm has accumulated enough incremental capital, there is a time at

which it is optimal to begin the project by investing in lumpy capital. The main difference between
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our model and the classic real option problem is that in our model, unlike the standard model,

initiating the project substantially changes the cost of future growth in incremental capital. As a

result, the cost of investing in incremental capital has a direct effect on the optimal time at which

to expand lumpy capital.

Intuitively, increasing the cost of incremental capital investment decreases the value of the

project once it has been initiated, which delays the initiation of the project. Given that the post-

exercise firm value is linear in x and that there is zero cash flow before the exercise, a standard

argument allows us to solve for x̄ in closed form; see, for example, Dixit and Pindyck (1994). Guess-

ing the functional form of V (x, 0) and applying the value-matching and smooth-pasting conditions

given in (8) and (9) shows that x̄ solves the following equation

(η − 1)

(
1− θg(i∗(x, kb))

r − i∗(x, kb)

)
x̄kb︸ ︷︷ ︸

marginal cost
of delaying investment

= ηpkb︸︷︷︸
marginal benefit

of delaying
investment

, (12)

where η > 1 is a constant that depends on r, imax, and σ. Equation (12) states that at the

optimal investment threshold x̄, the marginal cost of delaying investment in lumpy capital must

equal the marginal benefit. More specifically, the left-hand side is the marginal cost of delay due

to postponing the increase in cash flows that results from investment in new lumpy capital. The

right-hand side is the marginal benefit of delay that results from postponing the expenditure of

pkb.

The effect of an increase in incremental investment costs θ on the optimal lumpy capital invest-

ment threshold x̄ is determined by how such an increase affects the marginal benefit and cost of

delaying investment. Differentiating both sides of (12) with respect to θ shows the following:

∂x̄

∂θ
= x̄

(
1− θg(i∗(x, kb))

r − i∗(x, kb)

)−1( g(i∗(x, kb))

r − i∗(x, kb)

)
≥ 0.

In words, increasing the cost of investing in incremental capital decreases the marginal cost of delay

because it lowers the present value of the cash flows that result from investment in lumpy capital.

At the same time, such an increase does not affect the marginal benefit of delay. As a result,

increasing θ delays investment in lumpy capital. Formally, we have the following result.
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Proposition 2. Suppose that ks = 0. An increase in θ increases the optimal exercise threshold x̄.

Note that Proposition 2 holds for any weakly convex g(i) such that the result is not driven by

the shape of the cost of incremental capital. Rather, the driving force behind the above result is

that the cost only affects the optimal accumulation of incremental capital, and hence the value of

the firm, after the exercise of the real option. As we show below, once this cost directly affects the

pre-exercise accumulation of incremental capital, the sign of the effect of an increase in θ on the

optimal exercise boundary x̄ can change.

3.2 Linear Incremental Investment Cost

In this section, we analyze the case in which a firm begins with a positive amount of lumpy

capital, ks > 0, and pays a linear cost to add incremental capital, g(i) = i. We analyze this case

for two reasons. First, this specification has a natural interpretation. When g(i) = i, θ represents

the unit price of x scaled by k. Second, linear investment costs allow for closed-form solutions that

yield transparent results. As we show in the subsequent analysis, the intuition and results from the

linear cost case carry over to specifications with richer cost functions.

Given the linear cost function, the optimal investment rate i∗ is either 0 or imax. Indeed, the

marginal benefit of an additional unit of incremental capital is ∂
∂xV (x, k) such that if the marginal

cost of this unit is constant, it is optimal to invest either as much as possible (i.e., set i = imax) or

as little as possible (i.e., set i = 0). After the exercise of the option to expand lumpy capital, the

marginal benefit of incremental capital is expressed as follows:

∂

∂x
V (x, kb) =

1− θi
r − i

kb.

Thus, if θ < 1
r , it is optimal to set i = imax. This condition is independent of the amount of

incremental capital. The option to increase lumpy capital provides an additional benefit from

investing in incremental capital. Consequently, it must also hold that it is optimal to select imax

before the exercise of the option to expand lumpy capital whenever θ < 1
r . Thus, it is natural to

consider two separate cases within the set of feasible parameters. First, we analyze the problem

when θ < 1
r and thus i(x, ks) = i(x, kb) = imax. Next, we analyze the problem when θ > 1

r . In this

case, it is optimal to set i(x, kb) = 0. However, before the exercise of the option to expand lumpy
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capital, the additional benefit of incremental capital implied by the option to expand means that

for some regions of x, it is optimal to set i(x, ks) = imax.

First consider the case in which θ < 1
r . In this case, the optimal incremental capital investment

is imax regardless of the current stock of k. It follows that the cash flow per unit of k and cash

flow growth are the same both before and after the firm exercises the option to increase k. As in

the previous section, applying the value-matching and smooth-pasting conditions shows that the

optimal exercise boundary x̄ is given by equating the marginal cost and the marginal benefit of

delaying investment

(η − 1)

(
1− θimax

r − imax

)
(kb − ks)x̄︸ ︷︷ ︸

marginal cost
of delaying investment

= ηp(kb − ks)︸ ︷︷ ︸
marginal benefit

of delaying
investment

. (13)

The left-hand side of Equation (13) is the marginal cost of delaying lumpy capital investment

and, as is also the case in Equation (12), is proportional to the increment (1 − θimax)(kb − ks)x̄

in the level of cash flows that results from investing in lumpy capital. An increase in the cost of

incremental capital investment θ leads to decreases in cash flow both before and after lumpy capital

investment proportional to the stock of lumpy capital and therefore decreases the cash flows that

result from lumpy capital investment. As a result, an increase in θ lowers the marginal cost of

delaying investment:

∂

∂θ

[
(η − 1)

(
1− θimax

r − imax

)
(kb − ks)

]
= −(η − 1)

(
imax

r − imax

)
(kb − ks) < 0. (14)

At the same time, such an increase in θ does not affect the marginal benefit of delaying investment

ηp(kb − ks). In sum, an increase in θ lowers the marginal cost of delaying investment in lumpy

capital and does not affect the marginal benefit, and it therefore increases x̄ and delays investment

in lumpy capital.

Now consider the case in which θ > 1
r . In this case, as we argue above, it is not optimal to

invest in incremental capital after the exercise of the real option. Prior to the exercise of the lumpy

capital growth option, incremental capital growth increases both current cash flows and the value

of the option to expand lumpy capital. When the current stock of incremental capital is small, the

likelihood that it will grow to the point where it is optimal to expand lumpy capital is so remote
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that investment in incremental capital is not optimal. However, when x is sufficiently close to x̄, an

increase in incremental capital leads to a substantial increase in the value of the option to expand

lumpy capital, and it is optimal to set i∗(x, ks) = imax if θ ≤ kb
ks

(
1
r

)
. The intuition is that close to

the exercise boundary x̄, the cost of investment in incremental capital is proportional to ks, but the

benefit is proportional to kb. In this case, the optimal exercise boundary x̄ satisfies the following

optimality condition

(η − 1)

(
kb
r
−
(

1− θimax

r − imax
−m(x̄)

)
ks

)
x̄︸ ︷︷ ︸

marginal cost
of delaying investment

= ηp(kb − ks)︸ ︷︷ ︸
marginal benefit

of delaying investment

, (15)

where m(x̄) is a term that accounts for the fact that prior to investment in lumpy capital, the firm

does not invest in incremental capital when x is small.

Comparing Equation (15) to Equation (13), we see that the key difference is in the marginal

cost of delaying investment in lumpy capital. This term now accounts for the fact that net cash

flows per unit of capital change from (1 − θimax)x to x and cash flow growth changes from imax

to zero. Both of these changes occur because the optimal investment rate in incremental capital

changes from imax to zero at the moment the firm invests in lumpy capital.

Again, the effect of an increase in θ on the threshold x̄ operates through the marginal cost of

delaying investment. Now, an increase in θ increases the cash flows that result from investment in

lumpy capital because such an increase does not affect the cash flow after the investment in new

lumpy capital, and it decreases the cash flow beforehand. One can show that the effect that θ has

on m(x) is small, and thus an increase in θ leads to an increase in the marginal cost of delaying

investment

∂

∂θ

[
(η − 1)

(
kb
r
−
(

1− θimax

r − imax
−m(x̄)

)
ks

)]
=

(
imax

r − imax
+

∂

∂θ
m(x̄)

)
ks > 0. (16)

Thus, when θ ≥ 1/r, an increase in θ decreases the marginal benefit of delaying investment and

lowers x̄. We formalize these results in the proposition below.

Proposition 3. Suppose that g(i) = i. The optimal investment threshold increases with θ if θ is

low and decreases with θ if θ is high. That is, ∂x̄
∂θ > 0 if θ < 1

r and ∂x̄
∂θ ≤ 0 if 1

r < θ < 1
r

(
kb
ks

)
.
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The important new result here lies in the effect of the cost of investing in incremental capital

θ on the optimal threshold at which to invest in lumpy capital. Intuitively, increasing the cost of

incremental capital should decrease the value of investment in lumpy capital and hence raise the

threshold x̄. However, this intuition ignores the effect that the increase in lumpy capital has on

the optimal investment policy in incremental capital. If the cost of incremental capital is relatively

low, then it is optimal to invest in x at the maximum rate both before and after exercising the real

option. In this case, an increase in the cost of incremental capital would have a larger marginal

effect on post-expansion firm value than on pre-expansion firm value, and the preceding intuition

is correct. We illustrate this intuition in Figure 1 Panel A. Alternatively, if the cost of incremental

capital is relatively high, then it is optimal to invest in x at the maximum rate before exercising the

real option and to forgo investment afterward. In this case, an increase in the cost of incremental

capital has a greater marginal effect on the pre-investment firm than on the post-investment firm.

In other words, further increasing the cost of incremental capital decreases the value of the pre-

investment firm and does not change the post-investment value of the firm. Hence, the optimal

investment threshold decreases. We illustrate this intuition in Figure 1, Panel B.

The intuition we outline above underlies the deep mechanism of our model. Although the linear

specification of the cost of incremental capital growth is both tractable and economically relevant,

the question remains whether this mechanism is generalizable to richer specifications of this cost

function. In the next section, we demonstrate that this effect persists even when the cost function

is strictly convex and the optimal investment rate in incremental capital is interior.

3.3 Convex Adjustment Costs

Our linear specification for the costs of investing in incremental capital in the preceding section

has the advantage of allowing closed-form solutions and analytical comparative statics. However,

it is somewhat restrictive in that it implies that the investment rate in incremental capital is either

maximal or zero. One may then be concerned that our results are an artifact of this feature of the

model. To allay such concerns, in this section, we analyze the cost of investment that includes a

convex adjustment cost and stipulates interior investment rates.

To illustrate the model’s implications, we use a particular parameterization. Following He

(2011), we use a risk-free rate of r = 5% and a standard deviation of productivity growth of σ = 0.25.
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x

Vs(x), Vb(x)− P

−P

x̄(θ2)x̄(θ1)

Panel A. Delayed investment

x

Vs(x), Vb(x)− P

−P

x̄(θ2) x̄(θ1)

Panel B. Accelerated investment

Figure 1. Effect of the cost of investment in incremental capital on the first-best
investment threshold. This figure illustrates the optimal investment threshold for two possible
costs of investment in incremental capital, θ1 < θ2. In both panels, the solid curves represent the
value functions for the pre-exercise (upper solid curve) and post-exercise (lower solid curve) firm
when θ = θ1. The dashed curves represent the value functions for the pre-exercise (upper dashed
curve) and post-exercise (lower dashed curve) firm when θ = θ2. In Panel A, which illustrates a
low cost of investment in productivity growth, increasing the cost from θ1 to θ2 decreases both
the pre- and post-exercise firm values but has a larger effect on the latter. Thus, such an increase
leads to an increase in x̄. In Panel B, which illustrates a high cost of investment in incremental
capital, increasing the cost from θ1 to θ2 decreases the pre-exercise firm value but has no effect on
the post-exercise firm value, as the post-exercise investment in incremental capital is zero. Thus,
such an increase in θ leads to a decrease in x̄.

15



The maximum growth rate of incremental capital needs to be less than the risk-free rate to ensure

finite valuations for all levels of θ. We choose an upper bound on the growth rate of x of imax = 3%.

This choice is below that in He (2011) and reflects the fact that in our model, the growth rate of

productivity is bounded below by 0 because of the non-negativity of incremental capital investment

and the multiplicative specification for the effect of incremental capital on productivity. The cost

of investment in incremental capital includes a quadratic adjustment term, g(i) = i+ 1
2ψ
(

i
imax−i

)2
,

where we use ψ = 0.05. The denominator of the adjustment cost, imax − i, ensures that the

marginal cost of incremental investment is infinite at imax so that non-zero investment rates are

interior. Lumpy capital increases at the time of investment from ks = 1 to kb = 2 at cost p = 10

per unit of new capital.

Using these parameter values, Figure 2 Panel A presents the effects of the cost of incremental

capital on the investment threshold. As is the case with linear investment costs, an increase in the

cost of incremental capital measured by θ can lead to either an increase or decrease in the threshold

to exercise the option to invest in lumpy capital. When the investment cost θ is relatively low, an

increase in θ leads to an increase in the investment threshold. If θ is somewhat higher, an increase

in θ leads to a decrease in the investment threshold. The level of θ at which x̄ starts to decrease

is denoted by θ∗. Figure 2, Panel B shows that introducing and increasing the convex adjustment

cost expands the region in which x̄ decreases with θ. The figure plots the cutoff level θ∗ for various

levels of ψ, the parameter scaling the adjustment cost. As ψ increases, θ∗ decreases, which increases

the parameter space in which x̄ decreases.

Figure 2, Panel C shows the investment rates in incremental capital just before and after the

exercise of the real option, i∗(x̄, ks) and i∗(x̄, kb), respectively. When θ is small enough and both

i∗(x̄, ks) and i∗(x̄, kb) are high, x̄ increases with θ. Consistent with the intuition in the linear cost

case, for x̄ to decrease with θ, the investment rate in incremental capital must drop at the moment

of investment. If this drop is sufficiently large, then increasing θ decreases pre-investment firm

value more than post-investment firm value, and the optimal x̄ decreases. This occurs when θ is

large enough to generate a non-monotonic relation between x̄ and θ. Finally, Figure 2, Panel D

demonstrates that the accumulation of incremental capital intensifies as x approaches the exercise

threshold x̄ because the growth option becomes more valuable closer to x̄, increasing the benefits

of investing in incremental capital.
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Figure 2. Adjustment costs of incremental capital and the investment threshold x̄.
Panel A plots the real option exercise threshold x̄ for different levels of θ. The cutoff level θ∗

separates the regions of delayed and accelerated investment in lumpy capital. Panel B plots θ∗ for
different levels of the adjustment costs of investing in incremental capital ψ. Panel C plots the
investment rates in incremental capital at x̄ before and after the exercise of the real options using
solid and dashed curves, respectively. Panel D plots the investment rates in incremental capital
as a function of x for various values of θ. The constant parameter values are r = 0.05, σ = 0.25,
imax = 0.03, ψ = 0.05, ks = 1, kb = 2, and p = 10.
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4 Investment in Incremental Capital and Moral Hazard

The results of the previous section highlight a new relation between investment in a capital

stock that can be adjusted smoothly, i.e., incremental capital, and one that can be adjusted only

in a lumpy fashion, i.e., lumpy capital. Although it is perhaps counterintuitive that increasing

the cost of accumulating incremental capital can accelerate the exercise of a real option to expand

lumpy capital, this result depends on the cost being high. This calls into question whether the

result is empirically relevant.

In this section, we extend the model to include moral hazard over investment in incremental

capital. This extension is natural to consider for a variety of reasons. First, investment in in-

cremental capital is difficult to observe in reality and is thus likely to be subject to moral hazard.

Second, this moral hazard problem can increase the cost of incremental capital such that even when

the real cost of incremental capital is low, the total cost to the investor is high. Third, variation in

moral hazard provides an empirically relevant source of variation to study in the data. Indeed, two

firms that operate in the same line of business can face identical direct costs of incremental capital

accumulation yet substantially different amounts of moral hazard, leading to different investment

patterns. Finally, moral hazard provides an endogenous link between volatility and the cost of

incremental capital that overturns a classic result in real option theory.

4.1 Moral Hazard Problem

We consider the model setup that we described in Section 2.1 with one important difference. We

now assume that although the investor can directly control the exercise of the real option to expand

lumpy capital, she must contract with a manager to implement investment in incremental capital.

We further assume that the investor does not observe depreciation shocks to incremental capital.

The total cost of investment in incremental capital is the same as before, but because the investor

cannot observe investment in incremental capital, the manager can divert funds allocated to cover

these costs for her own consumption. The manager has CARA preferences over consumption and

values a stream of consumption {c̃t}:

E

[∫ ∞
0
−1

γ
e−γc̃t−rtdt|{i}

]
,
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where γ is a measure of risk aversion. In addition, the manager can save and borrow at the risk-free

rate r. We assume that the manager begins with zero savings.

We use the manager’s coefficient of risk aversion γ to measure the severity of the moral hazard

problem because, as we show below, γ scales the cost of providing the manager with incentives to

implement a given incremental capital investment policy. In an extended version of our model that

includes shocks to incremental capital that are observable to the investor, it can be shown that

the degree of observability of the manager’s effort works in the same way as the coefficient of the

manager’s risk aversion. The former measure of the moral hazard problem has some advantages in

that it is easier to estimate and varies more between firms and across time. We use γ as a measure

of the severity of the moral hazard problem for its simplicity. Appendix C.2 presents the extension

with partially observable shocks to incremental capital.

A contract consists of a compensation rule, a recommended investment rate in X, and a stopping

time denoted by Π = (c, i, τ). The compensation rule {ct}t≥0 and recommended investment rate

{it}t≥0 are stochastic processes adapted to the filtration of public information, Ft. For simplicity,

we drop the subscript t whenever we refer to the entire process of consumption or incremental

investment. The investment policy τ is Ft-stopping time, which dictates when the firm exercises

the option to increase capital.

Given an initial outside option of the manager w0, the investor solves the following problem:

max
c,i,τ

E

[∫ ∞
0

e−rt (XtKt − θg(it)XtKt − ct) dt− e−rτP
]
, (17)

such that

i ∈ arg max
ĩ

{
max
s̃
E

[∫ ∞
t
−1

γ
e−γ(ct+θ(g(it)−g(̃it))XtKt−s̃t)−r(s−t)ds

]}
, (18)

where st is the amount the manager adds to her savings at time t. The key difference between the

investor’s problem under no moral hazard given in Equation (4) and the problem given in Equation

(17) is that in addition to the direct cost of investing in incremental capital, the investor must also

compensate the manager. This compensation, ct, must in turn provide the manager with incentives

to choose the recommended investment rate i.

In Appendix A.1, we provide a detailed analysis of the solution to the optimal contracting prob-
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lem. The key outcome of that analysis for the current problem is that the manager’s continuation

utility (i.e., the present value of all future consumption at any point in time) must be sufficiently

sensitive to innovations in X. This incentive compatibility condition in turn implies that the man-

ager’s compensation ct is risky. As the manager is risk-averse and the investor is risk-neutral, risk

in ct causes a loss in the form of forgone risk-sharing benefits. This loss acts as an extra cost of

investment in incremental capital. We solve for these costs in the closed form in Appendix A.1.

This allows us to show that the solution to the investor’s problem in Equation (17) is given by the

solution to the following HJB equation:

rV = max
i∈[0,imax]

{
xk(1− θg(i)) + ix

∂V

∂x
+

1

2
σ2x2∂

2V

∂x2
− ρ(i, x, k)

}
, (19)

where

ρ(i, x, k) =
1

2
1(i > 0)γr

(
θσg′(i)xk

)2
(20)

represents the incentive cost of investment in X. The HJB equation in (19) is identical to that in

Equation (5) up to the additional cost given by ρ. The optimal investment policy is again defined

by a threshold x̄ at which it is optimal for the investor to increase lumpy capital. The value function

must satisfy the same standard value-matching and smooth-pasting conditions as in the first-best

case. We verify that this approach indeed yields the optimal contract in the proof of the following

proposition in Appendix B.

Proposition 4. The optimal contract under moral hazard is given by the solution to Equation (19)

with the boundary conditions in Equations (8)-(10).

4.2 Incentives and Real Option Exercise: Linear Investment Cost

In this section, we return to the linear investment cost specification we study in Section 3.2.

As in that section, we consider g(i) = i. We also restrict attention to θ ≤ 1
r . Recall that without

moral hazard, this restriction implies that the firm always sets i = imax and that an increase in

the cost of incremental capital thus delays the exercise of the real option to expand lumpy capital.

With moral hazard, investment in incremental capital entails an additional incentive cost that is

increasing and convex in x. As such, it is not always optimal to invest in incremental capital at the
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maximal rate. This implies that even when the direct cost of investment in x is low, an increase

in the total cost via an increase in the severity of the moral hazard problem γ can decrease the

exercise threshold x̄.

We first consider the optimal investment rate after the exercise of the option to expand lumpy

capital. Given that the total cost of investment in incremental capital is convex in x, we hypothesize

that there is a threshold x∗b below which the contract recommends maximal investment and above

which it recommends zero investment:

i∗(x, kb) =


imax if x ≤ x∗b

0 otherwise.

(21)

The explicit solutions for x∗b are provided in Appendix A.2. This control satisfies Equation (19)

and is therefore optimal.

Before exercising the option to expand lumpy capital, it is optimal to implement maximal

investment in incremental capital as long as the price p of the new lumpy capital is sufficiently

small. Thus, there are two natural cases to consider. In the first case, investment in lumpy capital

leads to no change in the current rate of investment in incremental capital—that is, x̄ ≤ x∗b. In the

second case, when investment in lumpy capital leads to a decrease in the current rate of investment

in incremental capital—that is, x̄ ≥ x∗b. In the appendix, we show that x̄ ≤ x∗b if and only if γ ≤ γ1

for some constant γ1. Intuitively, when γ is small, incentives are relatively inexpensive, and a high

rate of incremental capital investment will be optimal even after the exercise of the option to invest

in lumpy capital.

When investment in lumpy capital leads to no change in the current rate of investment in

incremental capital, we can combine the value-matching and smooth-pasting conditions to obtain

(η − 1)

(
1− θimax

r − imax

)
(kb − ks)x̄︸ ︷︷ ︸

marginal cost
of delaying increase in cash flow

=

ηp(kb − ks)︸ ︷︷ ︸
marginal benefit

of delaying
investment expenditure

+ (η − 2)

(
γr(θσ)2

2(r − 2imax − σ2)

)
(k2

b − k2
s )x̄2︸ ︷︷ ︸

marginal benefit of delaying increase
in incentive costs

. (22)
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Comparing Equation (22) with Equation (13), we see that incentive costs, represented by the second

term on the right-hand side of Equation (22), create an additional marginal effect of delaying

investment in lumpy capital. In the Appendix, we show that η−2 and r−2imax−σ2 have the same

sign, and thus the incentive cost term is always positive and represents a marginal benefit from

delaying investment. In other words, investing in lumpy capital increases the flow of incentive costs

given the optimal incremental investment policy. This intuition follows the standard narrative in

the literature: increasing moral hazard decreases the net return of new capital and therefore curtails

investment. As a result, increasing γ, i.e., the severity of the moral hazard problem, increases the

marginal benefit of delay that is due to incentive costs and thus raises x̄ and delays investment in

lumpy capital.

When investment in lumpy capital leads to a decrease in the current rate of investment in

incremental capital, the flow of incentive costs decreases once the new lumpy capital is installed.

In this case, we can combine the value-matching and smooth-pasting conditions to obtain

(η − 1)

(
1− θimax

r − imax

)
(d1(x̄)kb − ks)x̄︸ ︷︷ ︸

marginal cost
of delaying increase in cash flow

=

ηp(kb − ks)︸ ︷︷ ︸
marginal benefit

of delaying
investment expenditure

+ (η − 2)

(
γr(θσ)2

2(r − 2imax − σ2)

)
(d2(x̄)k2

b − k2
s )x̄2︸ ︷︷ ︸

marginal effect of delaying change in incentive costs

, (23)

where d1(x) and d2(x) account for the fact that for small x, the firm will invest in incremental

capital even after the exercise of the lumpy capital expansion option.7 It is possible to show that

d2(x̄)k2
b− k2

s > 0 if and only if γ < γ2 for some constant γ2. Thererfore, when γ < γ2, the marginal

effect of delaying investment in lumpy capital that is due to the change in incentive cost represents

a marginal benefit of delay. This effect is due to the fact that although the flow of incentive costs

decreases at the moment of investment, they increases if x falls below x∗b. In this case, an increase

in γ delays investment for the same intuition we give above.

When γ > γ2, the marginal effect of delaying investment in lumpy capital due to the change

in incentive costs represents a marginal cost of delay. As a result, increasing the moral hazard

7The explicit solutions for d1(x) and d2(x) and are given in Appendix A.2.
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problem by increasing γ increases the marginal cost of delaying investment in lumpy capital and

lowers the investment threshold x̄. In other words, investing in lumpy capital leads to a decrease

in the flow of incentive costs, which makes investment more attractive. This effect is missing from

the standard intuition for the effect of moral hazard on investment because that intuition relies on

incentive costs remaining proportionally constant in capital under the optimal contract.

Proposition 5. Suppose that θ ≤ 1
r and g(i) = i. The optimal exercise threshold increases with

the severity of the moral hazard problem when γ is small and decreases when γ is large. That is,

there exists γ2 <∞ such that ∂x̄
∂γ < 0 if and only if γ > γ2.

The explicit expression for γ2 is given in the proof of Proposition 5. It is worth noting that

while γ2 is finite, it need not be positive. However, γ2 > 0 whenever kb is large relative to ks or

imax is small relative to r.

Proposition 5 gives the effect of moral hazard on investment in the case of a marginal increase

in the severity of the moral hazard problem. The effect of an increase in γ on x̄ operates through a

similar mechanism as the comparative static of x̄ with respect to the θ determined in Section 3.2.

In both cases, increasing the cost of investment in incremental capital (either direct or incentive

costs) changes the optimal investment policy after the exercise of the real option, which can increase

the benefit of expanding lumpy capital and lower the exercise threshold for the real option. In this

sense, moral hazard amplifies the effect of incremental investment costs on the optimal exercise

threshold.

In addition to amplifying the mechanism through which incremental investment costs affect the

optimal lumpy investment policy, moral hazard can also cause the investment threshold x̄ to fall

below what it would have been without moral hazard, which we call x̄FB. Intuitively, the investment

threshold does not depend on γ when there is no moral hazard problem, whereas an increase in

γ decreases x̄ when there is moral hazard. This result stands in stark contrast to the literature,

which has shown that moral hazard typically leads to underinvestment. In our model, moral hazard

erodes option value and can lead to a form of overinvestment in that investors optimally exercise

a growth option at a lower threshold than they would if there were no moral hazard problem. The

following proposition formally states this result.

Proposition 6. Suppose that θ ≤ 1
r and g(i) = i. The investment threshold under moral hazard
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is below that of the first-best case if and only if the moral hazard problem is severe. That is, there

exists γ3 <∞ such that x̄ < x̄FB if and only if γ > γ3.

4.3 Volatility and Real Option Exercise

A well-known finding in the real options literature is that an increase in volatility increases

the value of the option to wait and thus increases the optimal exercise threshold. Without moral

hazard, this result also applies to our model. However, moral hazard creates an endogenous link

between volatility and the cost of investment in incremental capital through the incentive cost term

ρ. Keeping everything else constant, incentive costs increase when volatility is high because the

manager needs to be compensated for risk exposure. Increasing volatility thus has two effects in

our model. First, increasing volatility increases the value of the option to wait to invest, as in a

standard real options model. This effect operates through the dependence of Equations (22) and

(23) on the term η. Second, when γ ≥ γ2, incentive costs create an additional cost of delaying

invest in lumpy capital relative to the first-best case. In this case, increasing volatility amplifies

the effect that incentive costs have on the marginal cost of delaying investment in lumpy capital.

When incentive costs are sufficiently large, i.e., when γ ≥ γ4 for some constant γ4, the second effect

dominates the first and an increase in volatility accelerates investment. We formalize this intuition

in the following proposition.

Proposition 7. Suppose that θ ≤ 1
r , g(i) = i, and r > 2imax + σ2. The optimal exercise boundary

x̄ decreases with volatility σ when γ is large. That is, there exists γ4 < ∞ such that ∂x̄
∂σ < 0 for

γ > γ4.

4.4 Incentives with Convex Adjustment Costs

In this section, we generalize the cost of investing in incremental capital to a convex function

that includes direct-cost and adjustment-cost terms. As in Section 3.3, we assume that the cost

function takes the following form: g(i) = i+ 1
2ψ
(

i
imax−i

)2
. This generalization allows us to analyze

investment rates i away from the corner imax and verify the robustness of the tractable linear model

of the preceding sections. In addition, the added flexibility enables a more convincing quantitative

analysis than would be possible with simple linear investment costs. This allows us to evaluate the
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Figure 3. Moral hazard and optimal investment. Panel A plots the real option exercise
threshold x̄ as a function of the severity of the moral hazard problem γ (the dashed line represents
the first-best level for γ = 0). Panel B plots the investment rates in incremental capital at x̄ before
and after the exercise of the real options using solid and dashed curves, respectively. Panel C plots
the investment rates in incremental capital as a function of x for various values of γ. The constant
parameter values are r = 0.05, σ = 0.25, imax = 0.03, θ = 8, ψ = 0.05, ks = 1, kb = 2, and p = 10.

relevance of the incentive costs for investment behavior.

We solve the model numerically using the parameter values introduced in Section 3.3. Figure 3

Panel A illustrates the effect of moral hazard on the exercise threshold. As is the case with linear

costs (see Proposition 5), an increase in the severity of the moral hazard problem can lead to either

an increase or decrease in the investment threshold. When the moral hazard problem measured

by γ is relatively low, then an increase in γ leads to an increase in the investment threshold and

underinvestment relative to the first-best case. If γ is somewhat higher, an increase in γ leads to

a decrease in the investment threshold. Consistent with the result in the case of linear cost (see

Proposition 6), if γ is sufficiently high, the investment threshold is below that of the first-best case.

The incentive cost in Equation (20) generates an additional cost of investing in incremental

capital and thus decreases the rate of investment i relative to the first-best case. Next, we show that

the incentive cost also has an important qualitative effect on the rate of investment in incremental

capital. In the model without moral hazard, the rate i increases with x; see Figure 2, Panel D.

This is a growth option effect in that the benefit of investing in x increases as the value of the

growth option increases closer to the exercise threshold. In the model with moral hazard, there is

an opposing effect. As it becomes increasingly expensive to incentivize the manager as the amount

of incremental capital increases, the incentive cost is convex in x. Figure 3, Panel C demonstrates

that for our parameter values and various values of γ, the incentive cost effect dominates the real
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Cost of incremental
investment

x̄/x̄FB θ = 6 θ = 8 θ = 10

Adjustment cost
ψ = 0.02 1.10 1.20 1.16
ψ = 0.05 1.07 1.05 0.92
ψ = 0.08 1.06 0.93 0.88

Table 1. Under- and overinvestment due to agency conflicts. This table reports the ratios
of the investment thresholds under agency to the investment thresholds in the first-best case. Values
above one represent underinvestment and those below one represent overinvestment. The constant
parameter values are r = 0.05, σ = 0.25, imax = 0.03, γ = 0.5, ks = 1, kb = 2, and p = 10.

option effect, and the investment rate i decreases with x as x approaches the exercise threshold.

The last observation indicates the possibility that even in cases in which optimal investment

in lumpy capital is at a lower threshold under moral hazard than under the first-best case, moral

hazard may delay exercise when measured in time units as the rate of investment in x decreases. We

verify this by numerically analyzing the expected time to exercise the growth option under moral

hazard and in the first-best case. We find that the expected exercise times are always consistent

with the relation of the exercise threshold for our baseline parameter values (for brevity, the results

are not reported here). That is, a lower threshold is always associated with an earlier time to invest.

This implies that the effect of moral hazard on the exercise threshold must be relatively large and

dominate the weakened growth in x.

Indeed, quantitatively, the under- and overinvestment effects on the exercise threshold are large.

To assess the magnitudes in greater detail, we examine a range of costs of investing in incremental

capital. For the other parameters of the model, we use the values specified in Section 3.3. Table 1

presents the ratios of the investment thresholds under moral hazard to the investment thresholds

in the first-best case. Values above one represent underinvestment and values below one represent

overinvestment. Overinvestment is associated with low efficiency of investment in incremental

capital (high θ and ψ). The threshold under agency is 12% smaller than in the first-best case with

high costs of investment in incremental capital of θ = 10 and ψ = 0.08. Underinvestment tends to

be the highest with low costs of investment in incremental capital. For instance, when θ = 8 and

ψ = 0.02, the investment threshold under agency exceeds the first-best case by 20%.

We close this subsection by showing that the results discussed above do not depend on incre-

26



0 0.25 0.5 0.75 1
1.12

1.125

1.13

γ2

Moral hazard, γ

E
x
er

ci
se

th
re

sh
ol

d
,
x̄

Panel A

0 0.25 0.5 0.75 1

0

0.5

1

1.5
·10−2

k = ks

k = kb

γ2

Moral hazard, γ

In
ve

st
m

en
t

in
x

at
x̄

Panel B

Figure 4. Moral hazard and optimal investment with interior incremental investment.
Panel A plots the real option exercise threshold x̄ as a function of the severity of the moral hazard
problem γ (the dashed line represents the first-best level for γ = 0). Panel B plots the investment
rates in incremental capital at x̄ before and after the exercise of the real options using solid and
dashed curves, respectively. The constant parameter values are r = 0.05, σ = 0.25, imax = 0.03,
θ = 8, ψ = 0.1, ks = 1, kb = 2, and p = 10.

mental investment reaching zero. Note that the direct linear cost of investing in incremental capital

introduces a fixed incentive cost for non-zero investment levels.8 This fixed cost can cause large

firms to stop investing in x, as is the case in the example in Panel B of Figure 3. To eliminate the

influence of zero investment, we remove the linear cost from g(i) and consider g(i) = 1
2ψ
(

i
imax−i

)2
.

We use the same parameter values as in Figure 3 except that ψ is increased from 0.05 to 0.1 to

compensate for the removal of the direct cost of investment. The results presented in Figure 4,

Panel A show that the non-monotonic relation between x̄ and γ is also present in this case. Panel

B shows that investment in incremental capital drops at x̄ but remains positive. This suffices to

generate accelerated investment in lumpy capital. Specifically, when γ is large, lumpy investment

creates a sufficiently large drop in the incentive cost to induce a lower threshold x̄.

5 Discussion and Empirical Predictions

In this section, we discuss the empirical relevance of our model. We first discuss some examples

of specific instances in which incentive costs could affect the timing of investment. Next, we discuss

industrial settings in which the forces that we identified above should be particularly salient and

8Specifically, the incentive cost, which is given in Equation (20), is a function of g′(i), which has a constant term
if g(i) includes a linear component.
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provide empirical predictions to guide future work.

5.1 Incremental and Lumpy Capital Investment in Practice

In this section, we give practical examples of the types of investment that we consider in

our model. One example of a capital stock that managers must often develop is organization

capital, as in the literature founded by Prescott and Visscher (1980). In particular, our model

applies to incremental investment in organization capital that increases the productivity of physical

capital that can only be added in a lumpy fashion. A large body of literature demonstrates the

importance of organization capital for firm outcomes and includes Atkeson and Kehoe (2005),

Carlin, Chowdhry, and Garmaise (2012), and Lustig, Syverson, and Van Nieuwerburgh (2011). Our

model demonstrates that the moral hazard associated with the smooth accumulation of organization

capital has important implications for investment in lumpy physical capital (for example, factories).

To be concrete, consider gains in efficiency that are the result of process innovations, i.e., the

organizational capital associated with the knowledge of how to best use physical capital.9 To

accumulate this type of organizational capital, the manager makes a number of changes to the

firm’s manufacturing processes that increase the efficiency (i.e., the productivity) of the existing

machinery—for example, co-locating all of the machinery needed to complete one unit of output

within a factory (cellular manufacturing). Finding the particular production process that maximizes

the efficiency of a given firm’s capital requires the manager to experiment and learn. This on its own

may not be related to the amount of physical capital installed at the firm; however, as implementing

changes requires the manager to communicate them to the many levels of workers involved in

production, it is clear that a variety of control costs will be incurred. In this way, a manager can

treat a small firm as a laboratory in which to hone her knowledge. Then, any new factories can

begin operations with the benefit of the firm’s accumulated knowledge or organizational capital.

A second example of the type of investment that we consider in our model is internal investment

in innovation, which we contrast with external and lumpy investment in innovation via acquisitions.

Evidence documented by Cassiman and Veugelers (2006) suggests that in general, internal and ex-

ternal innovation are complements, which is consistent with our model. For example, consider

Facebook’s acquisition of Instagram in 2006. In this case, Facebook engaged in internal innovation

9See, for example, the lean production process described by Shah and Ward (2007).
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by improving its own product to grow its user base and deepen the network of connections therein.

Facebook then purchased Instagram, which increased users. The incremental revenue from new

users from Instagram was magnified by the depth and size of Facebook’s existing network. How-

ever, the question remains as to why Facebook purchased Instagram at such an early stage in

Instagram’s development rather than internally growing its own network of users and waiting to

acquire Instagram. While anti-competitive forces may have played a role, our results provide an

alternative explanation. At the point of acquisition, Facebook had developed to a point at which

further internal innovation and growth carried significant incentive costs, which eroded its option

value to wait to acquire Instagram and thus hastened its acquisition.

Facebook’s acquisition of Instagram is one example of numerous instances of external innovation

acquisitions by mature firms in the information technology industry. Many such acquisitions are

surprising to market observers. In light of our model, the agency conflicts inherent in mature

technology firms and the resulting high incentive costs of internal innovation make early external

innovation acquisitions optimal.

5.2 Empirical Predictions

We now discuss the empirical implications of our model. As in the first setting discussed above,

lumpy capital can refer to larger physical capital investments; in such cases, incremental capital

corresponds to organization capital. Alternatively, as in the second setting discussed above, lumpy

capital can refer to external acquisitions and incremental capital to internal growth.

We begin with two direct implications of our main results:

Prediction 1. Lumpy investment is delayed (accelerated) in response to an increase in the cost of

acquiring incremental capital for low (high) measures of the cost.

Prediction 2. Lumpy investment is delayed (accelerated) in response to an increase in incentive

costs for low (high) measures of the cost.

One distinguishing feature between the models with and without moral hazard can be seen in

Figures 3 Panel C and 2 Panel D. In these figures, we plot the relation between the investment

rate in incremental capital and its current level. Without moral hazard, the investment rate in

incremental capital increases. When moral hazard is included, the investment rate in incremental
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capital decreases. The reason for this difference is that moral hazard introduces an extra cost to the

accumulation of incremental capital (the cost is quadratic in the level of incremental capital). When

the moral hazard problem is severe, this cost dominates and the investment rate in incremental

capital decreases. This leads to the following prediction:

Prediction 3. For firms with substantial (negligible) moral hazard, incremental capital growth is

negatively (positively) correlated with the level of capital.

6 Conclusion

We present a model of investment in lumpy and incremental capital. In our model, physical

capital productivity is determined by a stock of incremental capital. The owners of a firm can

accumulate incremental capital subject to a cost. We show that this cost is naturally affected by

the presence of managerial moral hazard. We find that the effect of the costs of accumulating

incremental capital on the timing of real option exercise depends on the magnitude of these costs.

When the cost of investing in incremental capital is low, for example, because the moral hazard

problem is not severe, it is optimal to implement high investment in incremental capital, and an

increase in the cost raises the threshold for exercising the real option. When the cost of accumulating

incremental capital is high, the opposite effect is obtained. The finding that a manager’s ability to

shirk or divert cash flow can increase investment is new, and it provides an alternative to empire-

building and managerial hubris-based explanations of overinvestment.

Our model can be extended and applied to specific contexts in the real option literature without

agency conflicts (e.g., mergers and acquisitions, real estate development, IPOs, and venture capital

financing). In each case, we have omitted important institutional details from the model for clarity.

However, an examination of these details may provide interesting new results and implications.

For example, in mergers and acquisitions, investment may depend on the productivity of both the

bidding and target firms. An important feature of real estate development that may interact with

the agency conflict is that investment typically requires time to build. Finally, in IPOs and venture

capital financing, the manager may have private information that affects the value of the growth

option.
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Appendix A: Solving the Moral Hazard Problem

In this appendix, we provide the solution to the optimal contracting problem in Section 4 and

the value functions used in Section 4.2.

A.1 Optimal Contract

Because the manager can privately save, the compensation specified by the contract ct need not

be equal to the manager’s consumption at time t. The manager’s accumulated savings is denoted

by St, her actual time t consumption by c̃t, and her incremental investment by ĩt. Given a contract,

the manager chooses a consumption and incremental investment plan to maximize her utility from

the contract:

Wt(Π, {Xs,Ks}s≤t;S) = max
c̃,̃i

E

[∫ ∞
t

e−r(s−t)u(c̃s)ds

]
, (A.1)

where the manager’s instantaneous utility is

u(c̃) = −1

γ
e−γc̃,

such that Xt, St,, and Kt have the dynamics induced by consumption and the incremental invest-

ment plan (c̃, ĩ):

dSs = rSsds+ (c̃s − cs + θ(g(̃i)− g(i))XsKs)ds, St = S,

dXs = ĩsXsds+ 1(̃is > 0)σXsdZs,

Ks =


ks + (kb − ks)1(t ≥ τ) if K0 = ks

kb otherwise.

Wt is the manager’s continuation utility at time t. Following Sannikov (2008), this continuation

utility is a natural state variable for the dynamic contracting problem that we consider below.

We call a contract Π incentive-compatible and zero-savings if the solutions {c̃t} and {ĩt} to

the manager’s problem (A.1) are equal to the payment rule and the recommended incremental

investment plan given in the contract. As is standard in the literature, without loss of generality,
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we focus on contracts in which the solution to problem (A.1) is to follow the recommended action

level and maintain zero savings by virtue of the following version of the revelation principle.

Lemma A1. For an arbitrary contract Π̃, there is an incentive-compatible and zero-savings contract

Π that delivers at least as much value to the investor.

Next, we derive the necessary and sufficient conditions for a contract to be incentive-compatible

and zero-savings. Following He (2011), we use the following intuition to first characterize the zero-

savings condition. Suppose that (č, ǐ) solves problem (A.1) for a given contract that implements

zero savings. Further suppose that we simply endow the manager with savings S > 0 at some time

t > 0. How would her consumption and incremental investment plans respond? Because of the

absence of wealth effects implied by the manager’s CARA preferences, the optimal consumption

plan for s ≥ t would be čs + rS, and the incremental investment plan would remain unchanged.

Thus, an increase in savings from zero to S increases the manager’s utility flow by a factor of e−γrS

forever.10 Put differently, the manager’s marginal utility for an additional unit of savings when

she currently has none is −γr multiplied by her current continuation utility. Moreover, for the

manager to have no incentive to save, her marginal utility of consumption u′(c̃t) must be equal to

her marginal utility of savings −γrWt. This implies the following lemma:

Lemma A2. A contract is zero-savings if and only if

u(c̃t) = rWt. (A.2)

For a given compensation ct, recommended rate i, and actual rate ĩt, the zero-savings condition

implies that the manager’s consumption is c̃t = ct + θ(g(it)− g(̃it))XtKt.

We now consider the incentive-compatibility condition. Standard martingale representation

arguments suggest that the investor provides incentives by making the manager’s continuation

utility Wt contingent on unexpected performance (see, e.g., Sannikov (2008)). For an arbitrary

incentive-compatible and zero-savings contract, consider the following process:

Mt = Et

[∫ ∞
0

e−rsu(cs)ds

]
.

10As utility is always negative, the factor e−γrS < 1 represents an increase in utility.
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This process is clearly a martingale with respect to the filtration of public information Ft; thus, the

martingale representation theorem implies that progressively measurable processes βt exists such

that the following holds:

dMt = −γrWte
−rtβt (dXt − itXtdt) . (A.3)

Mt is related to the manager’s continuation utility Wt (under the recommended consumption and

investment plans) as follows:

dWt = (rWt − u(ct))dt+ ertdMt. (A.4)

Combining the zero-savings condition (A.2) with Equations (A.3) and (A.4) gives the following

dynamics for the manager’s continuation utility:

dWt = −γrWtβt (dXt − itXtdt) . (A.5)

As a deviation from the recommended policy results in an unexpected (from the investor’s perspec-

tive) shock to the growth of incremental capital, βt measures the manager’s incentives to deviate

from the contract’s recommended policy.

For a given contract, problem (A.1) implies that the manager chooses the current rate of in-

vestment in incremental capital to maximize the sum of her instantaneous utility u(ct)dt and the

expected change in her continuation utility Wt.
11 The manager’s expected change in continuation

utility from deviating from the recommended policy it to ĩt is expressed as follows:

E[dWt |̃i] = βt(−γrWt)(̃i− it)Xtdt.

Thus, incentive compatibility requires the following:

it = arg max
ĩ

{
u(c̃t) + βt(−γrWt)(̃i− it)Xt

}
, (A.6)

where c̃t = ct + θ(g(it) − g(̃it))XtKt. Taking a first-order derivative of the objective function in

11This argument is only heuristic. We provide a formal verification argument in the proof of Proposition A3.
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problem (A.6) with respect to ĩ and evaluating it at ĩ = i yields the following:

∂

∂ĩ
u(ct) + βt(−γrWt)Xt.

As ∂
∂ĩ
u(ct) = −u′(ct)θg′(it)XtKt and the zero-savings condition is u′(ct) = −γrWt, we can simplify

the first-order derivative above and find that it is constant in i:

γrWtθg
′(it)XtKt + βt(−γrWt)Xt.

If this expression is strictly negative (positive), then only a minimal (maximal) investment rate

is incentive-compatible. If this expression is zero, the manager is indifferent between all levels of

i in [0, imax]. We follow the usual convention that indifferent managers choose the recommended

incremental investment rate. Thus, we obtain the following condition on incentive-compatible βt:

βt


≤ θg′(it)Kt if it = 0

= θg′(it)Kt if it ∈ (0, imax)

≥ θg′(it)Kt if it = imax.

(A.7)

Intuitively, incentive compatibility requires the sensitivity of the manager’s continuation utility to

unexpected output shocks to be greater than or equal to her marginal cost of incremental investment

θg′(it)XtKt scaled by the marginal effect of incremental investment on output Xt. Lemma A3

characterizes an incentive-compatible zero-savings contract.

Lemma A3. A contract is incentive-compatible and zero-savings if and only if the solution Wt to

problem (A.1) has the dynamics given by (A.5), where βt satisfies (A.7).

It is useful to represent the manager’s continuation utility Wt in terms of its certainty equivalent,

Yt = −1/(γr) ln(−γrWt). Note that we can use Yt as a state variable for the investor’s problem in

place of Wt, as Yt is a deterministic function of Wt. Applying Ito’s lemma to (A.5) and combining it

with Lemma A3 demonstrates that the dynamics of Yt under an incentive-compatible zero-savings

contract are given by the following:

dYt =
1

2
γrσ2β2

tX
2
t dt+ σβtXtdZt. (A.8)
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The drift term in Equation (A.8) comes from the difference in risk aversion between the investor

and the manager. As the manager is risk averse, the certainty equivalent of W must have additional

drift for each additional unit of volatility. As W is a martingale, the drift term in Y is entirely

due to this effect. This positive drift shows up in the investor’s Hamilton–Jacobi–Bellman (HJB)

equation as the cost of providing incentives. We also impose an integrability restriction on βt,

which is detailed in the proof of Proposition 4 in Appendix B.

Next, we characterize the payment rule to the manager. Recall that the zero-savings condition

in equation (A.2) provides a link between instantaneous utility and continuation utility. This

allows us to express the manager’s compensation as a function of the current state of the certainty

equivalent of her continuation utility Yt as follows:

ct = rYt. (A.9)

The first term in equation (A.9) is the cost of investing in incremental capital and the second is the

risk-free rate times the certainty equivalent of her continuation utility. In other words, the contract

pays the manager investment expenses at the recommended level plus the yield on her continuation

utility. Given Equations (A.8) and (A.9), we can describe any incentive-compatible zero-savings

contract by (β, i, τ).

We now move to the investor’s problem. Denote by v(x, y, k) the investor’s value that solves

objective (17). The problem can be simplified by noting that due to the absence of wealth effects

implied by the CARA preferences of the manager, maximizing the investor’s payoff is equivalent

to maximizing the value function of the investor plus the certainty equivalent of the manager’s

continuation utility. Thus, rather than dealing directly with the investor’s value function, we

maximize the total firm value V (x, k):

V (x, k) = v(x, y, k) + y.

The dependence on y cancels out, as the risk-neutral investor values the manager’s consumption

stream at exactly its certainty equivalence. An application of Ito’s formula then yields that over

any interval of time in which there is no investment in physical capital, V (x, k) must satisfy the
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HJB equation, Equation (19). We also observe that due to the concavity of the value function, the

investor would never expose the manager to more risk than is required to provide incentives. Thus,

the optimal contract would always set βt = 0 for it = 0, and βt = θg′(it)Kt otherwise.

A.2 Solutions for Value Functions in Section 4.2

In this appendix, we solve the value function and optimal contract for the model given in

Section 4.2. The derivation follows the standard methods for solving real option exercise problems

(see Dixit and Pindyck (1994) for an introduction to the topic). For ease of exposition, we assume

that θ < 1
r ; the case of θ > 1

r is similar.

First, consider the optimal contract after the real option has been exercised. We hypothesize

that there exists a threshold x∗b such that the optimal incremental capital investment rate is given

by Equation (21). The threshold x∗b and firm value after the exercise of the real option are given

by the solution to the following equations:

rV (x, kb) = xkb(1− θimax)− 1

2
γr (θσxkb)2 + imaxxVx(x, kb)

+
1

2
σ2x2Vxx(x, kb) for x < x∗b (A.10)

rV (x, kb) = xkb +
1

2
σ2x2Vxx(x, kb) for x ≥ x∗b (A.11)

lim
x→x∗−b

V (x, kb) = lim
x→x∗+b

V (x, kb), (A.12)

lim
x→x∗−b

xVx(x, kb) = lim
x→x∗+b

xVx(x, kb) (A.13)

lim
x→x∗−b

x2Vxx(x, kb) = lim
x→x∗+b

x2Vxx(x, kb). (A.14)

Equations (A.12) and (A.13) are the value-matching and smooth-pasting conditions, respectively.

Equation (A.14) is a hyper-contact condition that guarantees the optimality of x∗b. Equations

(A.14)-(A.14) imply that the hypothesized control satisfies the HJB equation given in Equation

(19) and must therefore be optimal.
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The solution to Equations (A.10)-(A.14) is given by

V (x, kb) =


(
ε+1
η+ε

)
h1(x)Bxkb −

(
ε+2
η+ε

)
h2(x)Ax2k2

b for x ≤ x∗b((
ε+1
η+ε

)
1
rB +

(
η−1
η+ε

)
d1(x)

)
Bxkb −

(
η−2
η+ε

)
d2(x)Ax2k2

b for x > x∗b,

where

A =
γr(θσ)2

2(r − 2imax − σ2)
, (A.15)

B =
1− θimax

r − imax
, (A.16)

h1(x) =

(
η + ε

ε+ 1

)
+

(
1

rB
− 1

)(
x

x∗b

)η−1

, (A.17)

h2(x) =

(
η + ε

ε+ 2

)
−
( x
x∗

)η−2
, (A.18)

d1(x) =

(
1

rB

)
+

(
1− 1

rB

)(
x

x∗b

)−(ε+1)

, (A.19)

d2(x) =

(
x

x∗b

)−(ε+2)

, (A.20)

x∗b =

(
η − 1

η − 2

)(
ε+ 1

ε+ 2

)(
B − 1

r

)(
1

Akb

)
, (A.21)

ε = −1

2
+

√
1

4
+

2r

σ2
, (A.22)

and

η = −
(
imax

σ2
− 1

2

)
+

√(
imax

σ2
− 1

2

)2

+
2r

σ2
. (A.23)

Note that x∗b solves the following first-order condition

(η − 1)B
∂d1(x)

∂x∗b
xkb − (η − 2)A

∂d2(x)

∂x∗b
x2k2

b = 0. (A.24)

Next, we characterize the value function for the firm before investment, along with the optimal

investment threshold x̄. As discussed in Section 4.2, we restrict our attention to the parameters

that imply that the optimal contract recommends a full rate of investment in incremental capital

for all x ≤ x̄.
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Assumption A1. The price of new capital is not too high relative to the severity of the moral

hazard problem:

p ≤ L

γ
, (A.25)

where L is the positive constant given in Equation (B.45) of Appendix B. The expansion option is

not too small.

kb

ks
> rB. (A.26)

The above assumption directly implies that the optimal contract calls for maximal investment

in incremental capital before expansion, as stated in the following Lemma.

Lemma A4. If Assumption A1 holds, then i∗(x, ks) = imax for all x ≤ x̄.

Two important aspects of Assumption A1 require more explanation. First, the constant L is

such that the assumption is not overly restrictive. Indeed, all of the numerical examples that we

consider below parameterize the model so that it satisfies the assumption. Second, the assumption

is not necessary to guarantee that i∗(x, ks) = imax for all x ≤ x̄. Restricting the parameters to the

case in which the optimal contract calls for i = imax for all x ≤ x̄, the value function is given by

the following:

rV (x, ks) = xks(1− θ)−
1

2
γr (θσxks)

2 + imaxxVx(x, ks) +
1

2
σ2x2Vxx(x, ks), (A.27)

V (x̄, ks) = V (x̄, kb)− p(kb − ks), (A.28)

Vx(x̄, ks) = Vx(x̄, kb). (A.29)

The solution to Equations (A.27)-(A.29) is of the form

V (x, ks) = Bxks −Ax2k2
s + Csx

η,

where Cs is a constant and A and B are as defined in Equations (A.16) and (A.15). Moreover,

if there are multiple solutions to the boundary conditions given in Equations (A.28) and (A.29),

then each solution yields a candidate value function. These candidates differ only in the constant

coefficient Cs. Thus, the optimal value function is given by the solution with the largest such

constant.
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We can combine conditions (A.28) and (A.29) to obtain

(η − 1)B(kb − ks)x̄− (η − 2)A(k2
b − k2

s )x̄2 = ηp(kb − ks), if i∗(x̄, kb) = imax (A.30)

(η − 1)B(d1(x̄)kb − ks)x̄− (η − 2)A(d2(x̄)k2
b − k2

s )x̄2 = ηp(kb − ks), if i∗(x̄, kb) = 0 (A.31)

The final step to determining the solution to Equations (A.27)-(A.29) is to determine i∗(x̄, kb).

If i∗(x̄, kb) = imax, Equation (A.30) either has two positive roots or no real roots. If there are no

real roots, then i∗(x̄, kb) = imax is not optimal. By solving Equation (A.28) for Cs, we obtain the

following:

Cs = Cs2 =

(
B

((
ε+ 1

η + ε

)
h1(x̄)kb − ks

)
x̄−A

((
ε+ 2

η + ε

)
h2(x̄)k2

b − k2
s

)
x̄2 − p(kb − ks)

)
x̄−η).

Taking the derivative of Cs2 with respect to x̄ yields the following:

∂Cs2

∂x̄
=
(
−(η − 1)B(kb − ks)x̄+ (η − 2)A(k2

b − k2
s )x̄2 + ηp(kb − ks)

)
x̄−(η+1) (A.32)

If there are no real roots of Equation (A.30), then Equation (A.32) is positive for any x̄ ≥ 0.

Thus, the value function Vs, which depends on x̄ only via Cs, increases in x̄, and it is optimal to

postpone option exercise until x reaches x∗b when i∗(x̄, kb) = 0. It follows that i∗(x̄, kb) = 1 cannot

be optimal. Now consider the case in which the roots of Equation (A.30) are positive. To find the

optimal threshold from the two positive roots, note that Equation (A.32) is negative between the

two roots, and so Cs2 is decreasing between the two candidate thresholds. Thus, the smaller root

of Equation (A.30) is the only possible candidate for an optimal threshold. This root is given by

x̄1 =
(η − 1)B −

√
((η − 1)B)2 − 4η(η − 2)pA(kb + ks)

2(η − 2)A(kb + ks)
. (A.33)

If i∗(x̄, kb) = 0, then Equation (A.31) either has two positive roots or no real roots. In the

event that Equation (A.31) has two positive roots, the smaller root is always less than x∗b, and thus

the larger root, which we denote by x̄2, is the only candidate solution. If x̄1 is real, then x̄2 ≤ x̄1

because the left-hand side of Equation (A.30) is always weakly smaller than the left-hand side of

Equation (A.31). This implies that if x̄1 ≤ x∗b, then x̄2 ≤ x∗b and thus i∗(x̄2, kb) = 1, which implies
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that x̄2 is not optimal, and x̄1 must be the optimal threshold.

To summarize, if x̄1 ≤ x∗b, then x̄2 is not a solution to Equations (A.28) and (A.29), and x̄1

is the optimal investment threshold. If x̄1 ≥ x∗b, then x̄1 is not a solution to Equations (A.28)

and (A.29), and x̄2 is the optimal investment threshold. To determine when x̄1 ≤ x∗b, note that

when γ is small (large), x∗b is large (small) and x̄1 is small (large), and x̄1 (x̄2) will be the optimal

threshold. We state this result in the following lemma.

Lemma A5. There exists γ1 such that the optimal investment threshold is given by

x̄ =


x̄1 if γ ≤ γ1

x̄2 otherwise.

(A.34)

Finally, we introduce some additional notation that will be helpful in the proofs of our main

results. Let f1(x) and f2(x) be given by

f1(x) = (η − 1)B(kb − ks)x− (η − 2)A(k2
b − k2

s )x2 − ηp(kb − ks)

f2(x) = (η − 1)B(d1(x̄)kb − ks)x̄− (η − 2)A(d2(x̄)k2
b − k2

s )x̄2 − ηp(kb − ks).

Note that f1(x) is concave because (η − 2)A > 0 and using the definitions of d1(x), d2(x), and x∗b,

we have

f ′′2 (x) = 2(η − 1)Ak2
s + ε

(
ε+ 1

ε+ 2

)
(η − 1)

(
B − 1

r

)
x∗b

(
x

x∗b

)−(ε+2)

> 0 (A.35)

and thus f2(x) is convex. Moreover, f1(x̄1) = f2(x̄2) = 0.

Appendix B: Proofs

Appendix B is divided into two parts. Section B.1 contains the proofs of the results presented

in the main text of the paper. Section B.2 contains the proofs of the supporting results used

throughout the appendix.
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B.1 Proofs of Main Results

Proof of Proposition 1. By the verification argument we provide in the proof of Proposition 4,

Equation (5) with boundary conditions (8)-(10) is sufficient for optimality.

Proof of Proposition 2. The proof is in the text preceding the statement of the propositions.

Proof of Proposition 3. The case of θ < 1
r is covered in the text. In the case of 1

r < θ <
(
kb
ks

)
1
r ,

first note that

V (x, kb) =
xkb

r
.

Thus, the smooth-pasting condition in Equation (9) for x̄ implies that

∂

∂i
(−θix̄ks + ix̄Vx(x̄, ks)) = x̄

(
−θks +

kb

r

)
> 0

and Equation (7) implies that i∗(x̄, ks) = 1. Differentiating the smooth-pasting condition with

respect to θ yields the following:

∂x̄

∂θ
(Vxx(x̄, kb)− Vxx(x̄, ks)) = Vxθ(x̄, ks). (B.1)

Vxx(x, kb) = 0, and by the ODE in Equation (5), we obtain the following:

Vxx(x̄, ks) =
rV (x̄, ks)− x̄ks(1− θimax)− imaxx̄Vx(x̄)

1
2σ

2x̄2
, (B.2)

=
x̄kb

(
1− 1

r imax

)
− x̄ks(1− θimax)

1
2σ

2x̄2
, (B.3)

>
x̄kb (1− θimax)− x̄ks(1− θimax)

1
2σ

2x̄2
> 0, (B.4)

such that we can rearrange Equation (B.1) and apply the one-sided version of l’Hôpital’s rule to

obtain the following:

∂x̄

∂θ
=

Vxθ(x̄, ks)

Vxx(x̄, kb)− Vxx(x̄, ks)
= lim

x↑x̄

Vxθ(x̄, ks)

Vxx(x̄, kb)− Vxx(x̄, ks)
= lim

x↑x̄

Vθ(x̄, ks)

Vx(x̄, kb)− Vx(x̄, ks)
. (B.5)

By the ODE given in Equation (5), Vθ(x, ks) < 0. Moreover, we claim that there exists ε > 0 such

that Vx(x, kb)− Vx(x, ks) > 0 for all x ∈ (x̄− ε, x̄). This claim implies that there exists ε > 0 such
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that

Vθ(x, ks)

Vx(x, kb)− Vx(x, ks)
< 0

for all x ∈ (x̄− ε, x̄), which in turn implies the following:

lim
x↑x̄

Vθ(x, ks)

Vx(x, kb)− Vx(x, ks)
≤ 0,

as Vθ(x, ks) and Vx(x, kb)− Vx(x, ks) are nonzero and continuous. Thus, ∂x̄
∂θ ≤ 0.

We now prove the claim that there exists ε > 0 such that Vx(x, kb) − Vx(x, ks) > 0 for all x ∈

(x̄− ε, x̄) by contradiction. Suppose that there does not exist ε > 0 such that Vx(x, ks) < Vx(x, kb)

for all x ∈ (x̄− ε, x̄); then, for all ε > 0, there exists x ∈ (x̄− ε, x̄) such that Vx(x, ks) ≥ Vx(x, kb).

As Vx(x̄, ks) ≥ Vx(x̄, kb), Vx(x, kb), and Vx(x, kb) are continuous, this implies that there exists ε > 0

such that Vx(x, ks) ≥ Vx(x, kb) for all x ∈ (x̄ − ε, x̄). This implies that for x ∈ (x̄ − ε, x̄), we have

the following:

V (x, kb)− V (x, ks) = V (x̄, kb)− V (x̄, ks)−
∫ x̄

x
(Vx(z, kb)− Vx(z, ks))dz ≥ p(kb − ks),

which contradicts the definition of x̄.

Proof of Propositions 1 and 4 . We first prove Proposition 4. The argument for Propisition 1 is a

special case. The proof proceeds in three steps. In Step 1, we show that we can replace the investor’s

maximization problem (problem (B.7)) with one in which we maximize a function independent of

Yt (problem (B.9)). In Step 2, we fix an exercise threshold and verify that the solution to the

HJB equation solves problem (B.9) for this investment policy. In Step 3, we show that the optimal

investment policy must be a threshold rule that satisfies the boundary conditions given in Equations

(8)-(10). Finally, we have already verified that the proposed contract is incentive-compatible and

zero-savings in the proof of Lemma A3. Before we complete these steps, we make the following

technical assumption on βt:

E

[∫ ∞
0

β2
tX

2
t dt

]
<∞, (B.6)

where the expectation is computed with respect to the measure induced by the incentive-compatible

dynamics ofXt given βt. This restriction rules out contracts under which the manager has incentives
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to exert maximal effort forever. However, such contracts would be infinitely costly to implement,

so this is without loss of generality.

Step 1: Let v(x,w, k) be the value to the investor under a given incentive-compatible zero-

savings contract (c, i, τ) with X0 = x and W0 = w. Formally, v(x,w, k) solves

v(x,w, k) = max
c,i,τ

E

[∫ ∞
0

e−rt (XtKt − θg(it)XtKt − ct) dt− e−rτP
]
, (B.7)

such that dXt = ĩtXtdt+ σXtdZt, X0 = x,

Kt =


ks + (kb − ks)1(t ≥ τ) if k = ks

kb otherwise,

w ≤ E
[∫ ∞

0
−1

γ
e−γc̃t−rtdt

]
,

where (c̃, ã) solves problem (A.1). Lemmas A2 and A3 imply that the compensation process ct

must be given by Equation (A.9). The investor’s value is the present value of the cash flows of the

firm net of compensation to the manager; thus, we have the following:

v(x,w, k)

= E

[∫ ∞
0

e−rt(XtKt(1− θg(it))− ct)dt− e−rτP
∣∣∣X0 = x, Y0 = − 1

γr ln(−γrw),K0 = k

]
= E

[∫ ∞
0

e−rt(XtKt(1− θg(it))− rYt)dt− e−rτP
]

= E

[∫ ∞
0

e−rtXtKt(1− θg(it))dt− e−rτP
]

+ E

[∫ ∞
0

re−rt
(
Y0 +

∫ t

0

1

2
γrσ2β2

sX
2
sds+

∫ t

0
σβsXsdZs

)
dt

]
,

where the last line follows from the dynamics of Yt given in Equation (A.8) and the conditioning

is suppressed for clarity. Separately evaluating the three terms of the last expectation above, we

obtain the following:

E

[∫ ∞
0

re−rtY0dt

]
= Y0,
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E

[∫ ∞
0

re−rt
∫ t

0

1

2
γrσ2β2

sX
2
sdsdt

]
= E

[∫ ∞
0

∫ ∞
s

re−rt
1

2
γrσ2β2

sX
2
sdtds

]
= E

[∫ ∞
0

e−rs
1

2
γrσ2β2

sX
2
sds

]
,

and

E

[∫ ∞
0

re−rtσβtXtdZtdt

]
=

∫ ∞
0

re−rtE

[∫ t

0
σβtXtdZt

]
dt

= 0.

We can exchange the order of integration in the second and third steps above by Fubini’s theorem

and the assumption given in Equation (B.6). Collecting the terms yields the following:

v(x,w, k) = E

[∫ ∞
0

e−rt
(
XtKt(1− θg(it))−

1

2
γrσ2β2

tX
2
t

)
dt− e−rτP

]
− y,

where y = −1
2γr ln(−γrw). Combining the above arguments with Lemma A3, problem (B.7) is

equivalent to

V (x, k) = max
β,λ,i,τ

E

[∫ ∞
0

e−rt
(
XtKt(1− θg(it))−

1

2
γrσ2β2

tX
2
t

)
dt− e−rτP

]
, (B.8)

such that dXt = itXtdt+ σXtdZt, X0 = x,

Kt =


ks + (kb − ks)1(t ≥ τ) if k = ks

kb otherwise

and the incentive-compatibility condition, Equation (A.7). From problem (B.8), it is clear that it is

optimal to set βt as low as possible in absolute value so that the incentive-compatibility constraints

in (A.7) are binding for non-zero levels of i and βt = 0 when i equals 0, as setting βt larger than

necessary to provide incentives can only decrease the objective function. Thus, problem (B.8)

further simplifies to the following:

V (x, k) = max
a,τ

E

[∫ ∞
0

e−rt
(
XtKt(1− θg(it))−

1

2
γrσ2β2

tX
2
t

)
dt− e−rτP

]
, (B.9)
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such that

dXt = ĩtXtdt+ σXtdZt, X0 = x,

Kt =


ks + (kb − ks)1(t ≥ τ) if k = ks

kb otherwise

,

βt = θg′(it)Kt1(it > 0).

Step 2: Fix an arbitrary investment rule τ̂ and let V̂ and î solve the following:

rV̂ = max
i
L(x, k, V̂ ; i), (B.10)

where

L(x, k, V ; i) = xk(1− θg(i))− 1

2
γrσ2β2x2 + ix

∂V

∂x
+

1

2
σ2x2∂

2V

∂x2
,

such that

β = θg′(i)k1(i > 0), (B.11)

V̂ (Xτ , ks)
a.s
= V̂ (Xτ , kb)− P. (B.12)

In words, (̂i, τ̂) is the proposed optimal incentive-compatible zero-savings effort contract fixing the

investment time τ̂ and V̂ is the corresponding value function. Let (̃i, τ̂) be an arbitrary incentive-

compatible zero-savings contract with the same investment time τ̂ and let

Gt =

∫ t

0
e−rs

(
X̃sK̃s(1− θg(̃is))−

1

2
γrσ2β̃2

s X̃
2
s

)
ds+ e−rtV̂ (X̃t, K̃t)− 1(t ≤ τ̂)e−rτ̂P, (B.13)

where Gt measures the gain in present value at time t = 0 using the contract (̃i, τ̂) until time t and

then following the proposed optimal contract (̂i, τ̂). X̃t and K̃t are the productivity and capital,
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respectively, induced by the contract (̃i, τ̂). An application of Ito’s lemma yields the following:

ertdGt =
(
L(X̃t, K̃t, V̂ ; ĩt)− rV̂

)
dt+ σX̃t

∂V̂

∂x
dZt + (V̂ (Xt, kb)− V̂ (Xt, ks)− P )1(t = τ̂). (B.14)

The drift term given in (B.14) is always weakly negative by Equation (B.10) and the last term of

(B.14) is always zero. Thus, Gt is a supermartingale.

Consider the value from choosing the contract (̃i, τ̂). We have the following:

E

[∫ ∞
0

e−rs
(
X̃sK̃s(1− θg(̃is))−

1

2
γrσ2β̃2

s X̃
2
s

)
ds− e−rτ̂P

]
= E [Gt] + e−rtE

[∫ ∞
t

e−r(s−t)
(
X̃sK̃s(1− θg(̃is))−

1

2
γrσ2β̃2

s X̃
2
s

)
ds− V̂ (X̃t, K̃t)

]
≤ G0 + e−rtE

[∫ ∞
t

e−r(s−t)
(
X̃sK̃s(1− θg(̃is))−

1

2
γrσ2β̃2

s X̃
2
s

)
ds− V̂ (X̃t, K̃t)

]
.

The inequality follows from the fact that Gt is a supermartingale. As g(̃is) ≥ 0 and β̃2
s X̃

2
s > 0, we

obtain the following:

E

[∫ ∞
t

e−r(s−t)
(
X̃sK̃s(1− θg(̃is))−

1

2
γrσ2β̃2

s X̃
2
s

)
ds

]
≤ E

[∫ ∞
t

e−r(s−t)X̃sK̃sds

]
≤ E

[∫ ∞
t

e−r(s−t)X̃skbds

]
≤ X̃tkb

r − imax
,

as the greatest possible expected present value of the gross (of effort and incentive cost) cash flow

X̃tK̃ is achieved when ĩt = imax and Kt = kb for all t. Note that

V̂ (x, k) ≥ xk

r
> 0
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by Equation (B.10). Thus,

E

[∫ ∞
0

e−rs
(
X̃sK̃s(1− θg(̃is))−

1

2
γrσ2β̃2

s X̃
2
s

)
ds− e−rτ̂P

]
≤ G0 + e−rtE

[
X̃tkb

r − imax

]

≤ G0 + e−(r−imax)t X0kb

r − imax
,

where the last step again follows from the fact that the largest possible expected value for X̃t is

achieved by setting is = imax for all s ≤ t under which X̃t is a geometric Brownian motion so that

E[X̃t] = X0e
imaxt. Taking the limit as t→∞ of both sides yields the following:

E

[∫ ∞
0

e−rs
(
X̃sK̃s(1− θg(̃is))−

1

2
γrσ2β̃2

s X̃
2
s

)
dt− e−rτ̂P

]
≤ G0 = V̂ (X0,K0).

Thus, the contract (̃i, τ̂) yields a weakly lower value than the contract (̂i, τ̂).

Next, we show that there is no loss of generality if we restrict our attention to solutions to

Equations (B.10)-(B.12) with i ∈ {0, imax} when g(i) = i. Suppose that i ∈ (0, imax) solves

Equation (B.10); then, i must satisfy the following first-order condition:

0 =
∂L(x, k, V̂ ; i)

∂i
= −θxk + x

∂V̂

∂x
.

However, this implies that L(x, k, V̂ ; i) = L(x, k, V̂ ; i′) for all i, i′ > 0, which implies that there is

no loss of generality if we restrict our attention to the solution with i ∈ {0, imax}.

Step 3: Having established Steps 1 and 2, the resulting investment problem is a one-dimensional

optimal stopping problem that satisfies standard Lipschitz and growth conditions. Thus, Theorem

4 of Strulovici and Szydlowski (2015) applies, and the value function is smooth and satisfies the

boundary conditions given in Equations (8) and (9). The verification argument of Proposition 7

of Strulovici and Szydlowski (2015) applies, as the terminal payoff V (x, kb) is twice continuously

differentiable as established in Appendix A.2.

If we impose the constraint βt = 0 on problem (B.7), then we are left with problem (4). Nothing

in the above argument relies on βt 6= 0, so it also applies to problem (4), thus proving Proposition

1.
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Proof of Proposition 5. First consider γ ≤ γ1. Lemma A5 then implies x̄ = x̄1. Differentiating

Equation (A.30) with respect to γ and solving then gives

∂x̄

∂γ
= − 1

f ′1(x̄1)

(
∂f1(x̄1)

∂γ

)
. (B.15)

Because x̄1 is the smaller root of the concave function f1(x), we have

f ′1(x̄1) > 0. (B.16)

Next, we have

∂f1(x̄1)

∂γ
= −1

γ
(η − 2)A(k2

b − k2
s )x̄2

1 < 0 (B.17)

Because (r − 2imax − σ2)(η − 2)−1 = imax + 1
2(η + 1)σ2 > 0 by the definition η, so (η − 2)A > 0.

Combining Equations (B.16) and (B.17) gives ∂x̄
∂γ > 0.

Now consider γ > γ1. Lemma A5 then implies that x̄ = x̄2. Differentiating Equation (A.31)

with respect to γ and solving then gives

∂x̄

∂γ
= − 1

f ′2(x̄2)

(
∂f2(x̄2)

∂γ

)
. (B.18)

Because x̄2 is the larger root of the convex function f2(x), we have

f ′2(x̄2) > 0. (B.19)

Next, we have

∂f2(x̄2)

∂γ
=

(
(η − 1)B

∂d1(x̄2)

∂x∗b
x̄2kb − (η − 2)A

∂d2(x̄2)

∂x∗b
x̄2

2k
2
b

)
∂x∗b
∂γ

− 1

γ
(η − 2)A(d2(x̄2)k2

b − k2
s )x̄2

2. (B.20)
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Substituting the optimality condition for x∗b given in Equation (A.24) into (B.20) gives

∂f2(x̄2)

∂γ
= −1

γ
(η − 2)A(d2(x̄2)k2

b − k2
s )x̄2

2. (B.21)

Because (η − 2)A > 0, the sign of ∂f2(x̄2)
∂γ is determined by the sign of d2(x̄2)k2

b − k2
s . For γ = γ1,

we have x̄2 = x∗b, so [
d2(x̄2)k2

b − k2
s

]
γ=γ1

= kb − ks > 0. (B.22)

Next, we have limγ→∞ x
∗
b = 0 and limγ→∞ x̄2 > 0, so

lim
γ→∞

(
d2(x̄2)k2

b − k2
s

)
= −ks. (B.23)

Now, let γ2 solve

d2(x̄2

∣∣
γ=γ2

)k2
b − k2

s = 0. (B.24)

Rearranging Equation (B.24) gives that

x̄2

∣∣
γ=γ2

= x∗b
∣∣
γ=γ2

(
ks

kb

)− 2
ε+2

. (B.25)

Substituting Equations (B.24) and (B.25) into Equation (A.31) yields

x∗b
∣∣
γ=γ2

=
p(kb − ks)

(
η
η−1

)(
ks
kb

) 2
ε+2(

1
r +

(
B − 1

r

) (
ks
kb

) ε+2
ε+1

)
kb −Bks

, (B.26)

which together with Equation (A.21) gives the following unique solution for γ2

γ2 =


(

1
r +

(
B − 1

r

) (
ks
kb

) ε+2
ε+1

)
kb −Bks

p(kb − ks)
(

η
η−1

)(
ks
kb

) 2
ε+2

(η − 1

η − 2

)(
ε+ 1

ε+ 2

)(
B − 1

r

)(
2(r − 2imax − σ2)

kb(θσ)2

)
.

(B.27)

Note that γ2 < ∞ because kb > ks and (r − 2imax − σ2)(η − 2)−1 = imax + 1
2(η + 1)σ2 by the

52



definition of η. Note that γ2 > 0 if and only if

1

r
+

(
B − 1

r

)(
ks

kb

) ε+2
ε+1

kb ≥ B
(
ks

kb

)
. (B.28)

Because d2(x̄2) is continuous in γ, Equations (B.22) and (B.23) then imply that d2(x̄2)kb − ks ≤ 0

if and only if γ ≥ γ2. Moreover, note that [d2(x̄2)kb − ks]γ=γ1 > 0, so γ1 < γ2. As a result,

∂x̄

∂γ


≤ 0 if γ < γ2

> 0 otherwise,

(B.29)

which completes the proof.

Proof of Proposition 6. First note that x̄|γ=0 = x̄FB. Thus, if γ2 ≤ 0, then x̄ < x̄FB for all γ by

Proposition 5. In this case, γ3 = 0.

If γ2 > 0, then let γ3 > 0 be a constant such that

f2(x̄FB)
∣∣∣
γ=γ3

= 0. (B.30)

Note that f2(x̄FB)
∣∣∣
γ=0

= 0, x̄ is increasing for 0 < γ < γ2, and f2(x) is decreasing in x, so

f2(x̄FB)
∣∣∣
γ=0

> f2(x̄)
∣∣∣
γ=0

= 0 and γ3 > γ2. Next note that f2(x) is decreasing in γ for all x and

that limγ→∞ f2(x) = −∞, so there is a unique finite solution for γ3 in Equation (B.30).

Proposition 5 implies that x̄ is decreasing in γ for all γ ≥ γ3 because γ3 > γ2. Moreover, by

the definition of γ3, xFB is the larger root of Equation (A.31), and thus x̄ = x̄FB. Because x̄ is

decreasing for all γ ≥ γ3, it must be that x̄ < x̄FB for γ > γ3.

Proof of Proposition 7. Note that r > 2imax + σ2 implies A > 0 and η > 2. Let

γ4 = max

γ2,

(
σηp(kb − ks)

imax + 1
2(2η − 1)σ2

)[(
p(kb − ks)ks

Bkb

)(
imaxr(θσ)2

(imax + 1
2(η + 1)σ2)2

)]−1
 .

and let γ ≥ γ4. First note that i∗(x̄, kb) = 0, so x̄ is given by Equation (A.31). Differentiating both
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sides of Equation (A.31) and solving for ∂x̄
∂σ gives

∂x̄

∂σ
= − 1

f ′2(x̄2)

(
∂f2(x̄2)

∂σ

)
. (B.31)

In the proof of Proposition 5, we show that f ′2(x̄2) > 0. We claim that γ > γ4 implies ∂f2(x̄2)
∂σ > 0

and thus also implies ∂x̄
∂σ < 0. We have

∂f2(x̄2)

∂σ
=
∂η

∂σ

(
B(d1(x)kb − ks)x̄−A(d2(x̄)k2

b − k2
s )x̄2 − P

)
− (η − 2)

∂A

∂σ
(d2(x̄)k2

b − k2
s )x̄2

+ (η − 1)B

(
∂d1(x)

∂ε

∂ε

∂σ
+
∂d1(x)

∂x∗b

∂x∗b
∂σ

)
xkb

− (η − 2)A

(
∂d2(x)

∂ε

∂ε

∂σ
+
∂d2(x)

∂x∗b

∂x∗b
∂σ

)
x2k2

b .

∂f2(x̄2)

∂σ
=
∂f2(x̄2)

∂x∗b

∂x∗b
∂σ

+
∂f2(x̄2)

∂ε

∂ε

∂σ
+
∂f2(x̄2)

∂A

∂A

∂σ
+
∂f2(x̄2)

∂η

∂η

∂σ

The optimality condition for x∗b given in Equation (A.24) gives ∂f2(x̄2)
∂x∗b

= 0. Next, we have

∂f2(x̄2)

∂ε
=

(
(η − 1)B

∂d1(x)

∂ε
xkb − (η − 2)A

∂d2(x)

∂ε
x2k2

b

)
∂ε

∂σ

= −
(

(η − 1)

(
B − 1

r

)
− (η − 1)Ax∗bkb

)(
x̄

x∗b

)−ε
log
( x̄
x∗

)
x∗bkb

∂ε

∂σ

= −
(
η − 1

ε+ 2

)(
B − 1

r

)(
x̄

x∗b

)−ε
log
( x̄
x∗

)
x∗bkb

∂ε

∂σ
(B.32)

where the last step follows from the definition of x∗b. Observe that ε > 0, η > 1, B > 1
r , x̄ > x∗b,

and ∂ε
∂σ < 0, so Equation (B.32) implies

∂f2(x̄2)

∂ε

∂ε

∂σ
> 0. (B.33)

We can use the definition of A to obtain

∂f2(x̄2)

∂A

∂A

∂σ
= −(η − 2)

(
2(r − 2imax)

σ(r − 2imax − σ2)

)
A(d2(x̄)k2

b − k2
s )x̄2 > 0, (B.34)
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because γ > γ2 implies d2(x̄)k2
b − k2

s < 0.

Next, we have

∂f2(x̄2)

∂η
= B(d1(x̄)kb − ks)x̄−A(d2(x̄)k2

b − k2
s )x̄2 − p(kb − ks)

=

(
1

η − 1

)(
−A(d2(x̄)k2

b − k2
s )x̄2 + p(kb − ks)

)
(B.35)

where the last step follows from applying Equation (A.31). We thus have

∂f2(x̄2)

∂A

∂A

∂σ
+
∂f2(x̄2)

∂η

∂η

∂σ
= −

(
(η − 2)

(
2(r − 2imax)

σ(r − 2imax − σ2)

)
+

1

η − 1

∂η

∂σ

)
A(d2(x̄)k2

b − k2
s )x̄2

+
p(kb − ks)

η − 1

∂η

∂σ
(B.36)

We have

∂η

∂σ
= − ση(η − 1)

imax + 1
2(2η − 1)σ2

,

r − 2imax − σ2 = (η − 2)(imax +
1

2
(η + 1)σ2)),

r − 2imax = (η − 2)imax +
1

2
η(η − 1)σ2,

which together imply

(η − 2)

(
2(r − 2imax)

σ(r − 2imax − σ2)

)
+

1

η − 1

∂η

∂σ
=

2(η − 2) imax
σ + η(η − 1)σ

imax + 1
2(η + 1)σ2

− ησ

imax + 1
2(2η − 1)σ2

≥ 2(η − 2)imax + η(η − 1)σ − ησ
imax + 1

2(η + 1)σ2

≥ 2(η − 2)imax

imax + 1
2(η + 1)σ2

> 0 (B.37)

since η > 2. Substitution (B.37) into (B.36), and using d2(x̄) ≥ 0, we have

∂f2(x̄2)

∂A

∂A

∂σ
+
∂f2(x̄2)

∂η

∂η

∂σ
≥

(
2(η − 2)imax

imax + 1
2(η + 1)σ2

)
Ax̄2k2

s −
σηp(kb − ks)

imax + 1
2(2η − 1)σ2

. (B.38)
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Finally note that x̄ ≥ p(kb−ks)
Bkb

, so

∂f2(x̄2)

∂A

∂A

∂σ
+
∂f2(x̄2)

∂η

∂η

∂σ
≥

(
2(η − 2)imax

imax + 1
2(η + 1)σ2

)
A

(
p(kb − ks)ks

Bkb

)2

− σηp(kb − ks)

imax + 1
2(2η − 1)σ2

,

> 0, (B.39)

by the definition of γ4. Thus ∂f2(x̄2)
∂σ > 0 which completes the proof.

B.2 Proofs of Supporting Results

Proof of Lemma A1. Consider an arbitrary contract Π = ({ct, it}, τ) and suppose that the solution

to the manager’s optimization problem (A.1) for this contract is given by {c̃t, ĩt} and that the

manager’s associated value for this contract is W̃0.

Now, consider the alternative contract Π̃ = ({c̃t, ĩt}, τ). Under this contract, the manager again

obtains utility W̃0 from the consumption effort pair {c̃t, ãt}. We claim that the solution to the

manager’s optimization problem (A.1) is again {c̃t, ĩt}. Suppose that it is not and that there is an

alternative feasible pair {čt, ǐt} such that this policy yields the utility W̌0 > W̃0 to the manager.

The consumption effort pair {čt, ǐt} is also feasible under the original contract Π as

lim
t→∞

E

[
e−rt

∫ t

0
(cs − čs)ds

]
= lim

t→∞

(
E

[
e−rt

∫ t

0
(ct − c̃t)dt

]
+ E

[
e−rt

∫ t

0
(c̃s − čs)ds

])
= lim

t→∞
E

[
e−rt

∫ t

0
(cs − c̃s)ds

]
+ lim
t→∞

E

[
e−rt

∫ s

0
(c̃s − čs)ds

]
= 0.

Thus, the manager could achieve utility W̌t > W̃t under the original contract Π, a contradiction.

Finally, the investor achieves the same value under the new contract Π̃ as under the original

contract Π, as effort and investment are unchanged, and the transversality condition implies that

the two consumption streams have the same present value.

Proof of Lemma A2. Consider the manager’s problem (A.1) and denote its optimal consumption-

investment solution by (c∗, i∗) given savings St = S and associated value Wt(Π, {Xs,Ks}s≤t;S).

We claim that for S = 0, a feasible plan (c∗ − rS, i∗) solves problem (A.1). It then holds that
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Wt(Π, {Xs,Ks}s≤t; 0) = eγrSWt(Π, {Xs,Ks}s≤t;S). Suppose that there is some alternative (č, ǎ)

that yields a higher utility to the manager with zero savings. That is, W̌t(Π, {Xs,Ks}s≤t; 0) >

Wt(Π, {Xs,Ks}s≤t; 0). Now, consider the plan (č+ rS, ǐ) and note that this plan is feasible under

St = S, but that under this plan, the manager can achieve the following utility:

W̌t(Π, {Xs,Ks}s≤t;S) = e−γrSW̌t(Π, {Xs,Ks}s≤t; 0)

≥ e−γrSWt(Π, {Xs,Ks}s≤t; 0)

= Wt(Π, {Xs,Ks}s≤t;S).

This contradicts the optimality of (c∗, i∗). Thus, (c∗ − rS, i∗) is indeed optimal, and

Wt(Π, {Xs,Ks}s≤t; 0) = eγrSWt(Π, {Xs,Ks}s≤t;S).

This implies the following:

∂

∂S
Wt(Π, {Xs,Ks}s≤t; 0) = −γrWt(Π, {Xs,Ks}s≤t; 0). (B.40)

In any optimal consumption-savings plan, the manager’s marginal utility of consumption must

equal her utility of savings, or u′(c̃t) = ∂
∂SWt(Π, {Xs,Ks}s≤t; 0). Substituting Equation (B.40) into

this last condition and noting that u′(c̃t) = −γu(c̃t) gives the desired result.

Proof of Lemma A3. We restrict the manager’s consumption plan to satisfy the following integra-

bility and transversality conditions:

E

[∫ ∞
0
−e−rsu(c̃s, ĩs)ds

]
<∞, (B.41)

lim
t→∞

St
a.s
= 0. (B.42)

Consider an arbitrary contract (β, i, τ) and note that if Wt solves Equation (A.5), then Wt is

equal to the manager’s continuation utility from choosing savings St = 0 and investment rate it by

construction. Suppose that βt and it satisfy Equation (A.6) and consider an arbitrary policy (c̃, ĩ).
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Let

Gt =

∫ t

0
e−rsu(c̃s, ĩs)ds+ e−rte−γrStWt, (B.43)

where St =
∫ t

0 e
r(t−s)(cs − c̃s)ds is the manager’s accumulated savings when she chooses the alter-

native consumption plan. An application of Ito’s lemma yields the following:

ert+γrStdGt =
(
−γrWt(ct − c̃t)− γrWtβt(̃it − it)Xt + eγrStu(c̃t, ĩt)

)
dt− γrWtβtdZt.

The c̃t and ĩt that maximize the drift term above must satisfy the following first-order conditions:

γrWt = −eγrStuc(c̃t, ĩt),

γrWtβtXt = −θg′(i)XtKte
γrStuc(c̃t, ĩt),

as ui(ct, it) = −uc(ct, it)θg′(it)XtKt. These first-order conditions are solved for c̃t = ct + rSt

and ĩt = it, as rWt = u(ct, it). Moreover, for c̃t = ct + rSt and ĩt = it, the drift term is zero.

Thus, for all other choices of consumption and effort, the drift term is weakly negative and Gt is a

supermartingale.

The manager’s value from choosing the policy (c̃, ĩ) is expressed as follows:

E

[∫ ∞
0

e−rsu(c̃s, ĩs)ds

]
= E[Gt] + E

[∫ ∞
t

e−rsu(c̃s, ĩs)ds− e−rt−γrStWt

]
≤ G0 + E

[∫ ∞
t

e−rs(u(c̃s, ĩs)− eγrStu(cs, is))ds

]
. (B.44)

Now note that limt→∞ St
a.s.
= 0 such that limt→∞ |c̃t− ct|

a.s.
= 0, which in turn implies the following:

lim
t→∞

∫ ∞
t

e−rs(u(c̃s, ĩs)− eγrStu(cs, is))ds
a.s
= 0.

Finally, by the condition given in Equation (B.41) and Fubini’s theorem, we can take the limit as

t→∞ of both sides of Equation (B.44) to obtain the following:

E

[∫ ∞
0

e−rsu(c̃s, ĩs)ds

]
≤ G0 + lim

t→∞
E

[∫ ∞
t

e−rs(u(c̃s, ĩs)− eγrStu(cs, is))ds

]
= G0 = W0.
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Thus, all other consumption and effort plans (c̃t, ĩt) yield no more utility than (ct, it), and the

contract is incentive-compatible and zero-savings.

The conditions given are necessary for a contract to be zero-savings according to Lemma A2.

To see that the conditions are also necessary for incentive compatibility, consider any contract such

that βt does not satisfy the condition given in Equation (A.6). The same argument given above

would show that the optimal response to such a contract would be to choose ĩt 6= it.

Proof of Lemma A4. Let

L =

(
η − 1

η

)(
kb

ks

)2(kb

r
−Bks

)(
γx∗b

kb − ks

)
(B.45)

Note that L does not depend on γ because the dependence on γ in the term γx∗b cancels out.

Let V̂ solve

rV̂ = xks(1− θimax) + imaxxV̂x +
1

2
x2V̂xx, (B.46)

such that

V̂ (0) = 0, (B.47)

V̂ (X̂) = V (x, kb)− p(kb − ks), (B.48)

V̂x(X̂) = Vx(x, kb). (B.49)

Observe that x̂ is finite, as kb(r − imax) > ksr(1 − θimax). Suppose that x̂ ≥ x∗b; then, we can

combine Equations (B.48) and (B.49) to obtain the following:

(
kb

r
−Bks

)
x̂+

(
η + ε

η − 1

)
Cb2x̂

−ε = p

(
η

η − 1

)
(kb − ks). (B.50)
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As η > 1, ε > 0, and Cb2 > 0, Equation (B.50) implies the following:

x̂ ≤ p
(

η

η − 1

)
(kb − ks)

(
kb

r
−Bks

)−1

≤
(
L

γ

)(
η

η − 1

)
(kb − ks)

(
kb

r
−Bks

)−1

=

(
kb

ks

)2

x∗b.

As V̂ (x) ≥ V (x, ks), x̄ ≤ x̂ ≤
(
kb
ks

)2
x∗b. Furthermore, imaxx

∗
bV (x∗b, kb) = θimaxx

∗
bkb +

1
2γr(θσx

∗
bkb)2 and V (x, kb) is convex for x > x∗b. Thus, the smooth-pasting condition for x̄ in

Equation (A.13) implies the following:

imaxx̄Vx(x̄, ks) = imaxx̄Vx(x̄, kb)

≥ imaxx̄Vx(x∗b, kb)

=
x̄

x∗b

(
imaxθx

∗
bkb +

1

2
γr(θσx∗bkb)2

)
= imaxθx̄kb +

1

2
x̄x∗bγr(θσkb)2

≥ imaxθx̄ks +
1

2
γr(θσx̄ks)

2,

which implies that i∗(x̄, ks) = imax, the desired result.

Proof of Lemma A5. First, note that it is straightforward to see from Equation (A.33) that x̄2 is

increasing in γ and from Equation (A.21) that x∗b is decreasing in γ. Moreover, x̄1

∣∣
γ=0

= x̄FB <

limγ→0 x
∗
b = ∞ and limγ→∞ x

∗
b = 0 < limγ→0 x̄1 = ∞. Thus, there exists a unique γ1 such

that x̄1 ≤ x∗b if and only if γ ≤ γ1 and x̄1

∣∣
γ=γ1

= x∗b
∣∣
γ=γ1

. Note that x̄1

∣∣
γ=γ1

= x∗b
∣∣
γ=γ1

also

implies that d1(x̄1

∣∣
γ=γ1

) = d2(x̄1

∣∣
γ=γ1

) = 1, so that Equations (A.30) and (A.31) are equivalent

and x̄1

∣∣
γ=γ1

= x̄2

∣∣
γ=γ1

. If γ > γ1, then the only possible solution is x̄2.
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Appendix C: Additional Results

C.1 The Complementarity of Incremental and Lumpy Capital

Our goal here is to clarify that the results of the paper are due to the dynamics of the problem

rather than simply due to a technological assumption of substitutability between inputs in our

production and profit functions. To this end, we show that incremental and lumpy capital are

production complements in the static version of the investment problem faced by investors. Consider

the following problem

max
i≥0,K∈{ks,kb}

{X(1 + i)K − θg(i)XK − P1(K = kb)} , (C.1)

where i is investment in X and g(i) an investment cost function for X with g′(i) ≥ 0 and g′′(i) ≥ 0

for i ≥ 0. This problem assumes that the firm is endowed with ks units of capital and can add

kb − ks units of capital at total cost P . We want to determine how the value of the additional

kb− ks units of capital, denoted by ∆KV , depends on the cost of investment in X given by θ. It is

optimal to invest in additional capital if and only if ∆KV ≥ P . Thus, if ∆KV is decreasing in θ,

then X and K are complements in that raising the cost of investment in X decreases investment

in K.

First, we take a first-order condition of Problem (C.1) with respect to i to determine the optimal

investment in X

g′(i∗) =
1

θ
.

Note that optimal investment in X, i∗, does not depend on K. Moreover, this first-order condition

implies that i∗ is decreasing in θ because g′′(i) ≥ 0. Next, we take the difference of the production

function X(1 + i∗)K − θg(i∗)XK evaluated at kb and ks to obtain

∆KV = (X(1 + i∗)− θg(i∗)X)(kb − ks).

Finally, we take a derivative of ∆KV with respect to θ and apply the first-order condition for i∗ to
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obtain

d

dθ
∆KV =

(
∂i∗

∂θ
X − g(i∗)X − θg′(i∗)∂i

∗

∂θ
X

)
(kb − ks) = −g(i∗)X(kb − ks) ≤ 0,

so that ∆KV is decreasing in θ. This implies that increasing θ decreases optimal investment in

both X and K for all θ, and thus the two inputs are complements. The intuition is that with larger

θ, the firm will optimally operate at a lower productivity X, which makes capital less productive

and hence reduces investment in capital.

Note that we reach the same conclusion by considering the cross effect of inputs on the value

function. The marginal effect of X on the incremental benefit of investment in K, given by

d

dX
∆KV = (1 + i∗ − θg(i∗))(kb − ks),

is always positive at the optimal i∗ assuming that the value function is weakly positive. Thus,

the incremental benefit of investment in K increases in the amount of X, in other words, the

value function is supermodular in X and K, which indicates that the two inputs are production

complements.

C.2 Partially Observable Shocks to Incremental Capital

We assume that shocks to incremental capital Zt are given by the following:

dZt =
√
αdZ1

t +
√

1− αdZ2
t ,

where Z1
t and Z2

t are independent Brownian motions. Importantly, the investor observes Z2
t but

not Z1
t . Thus, α measures the severity of the moral hazard problem that the manager faces. When

α = 0, the manager’s actions are perfectly observable and there is no moral hazard problem. When

α = 1, the manager’s actions are as unobservable as possible and the moral hazard problem is

severe. We can think of Z2
t as an industry- or market-wide shock to productivity, whereas Z1

t is a

shock idiosyncratic to the firm.

The solution to the optimal contracting problem with partially observable shocks is similar to

the one of the baseline moral hazard model in Appendix A.1. In the following, we highlight the
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necessary adoptions.

Lemmas A1 and A2 hold in the current setup. To derive the dynamics of Wt in an incentive-

compatible zero-savings contract with partially observable shocks, the martingale representation

theorem implies that there exist two progressively measurable processes βt and λt such that the

following holds:

dMt = −γrWte
−rt (βt (dXt − itXtdt− σ

√
1− αXtdZ

2
t

)
+ λtσ

√
1− αXtdZ

2
t

)
.

This yields the following dynamics for the manager’s continuation utility under the recommended

consumption and investment plan:

dWt = −γrWt

(
βt
(
dXt − itXtdt− σ

√
1− αXtdZ

2
t

)
+ λtσ

√
1− αXtdZ

2
t

)
. (C.2)

Because a deviation from the recommended i offers the same costs and benefits as those in Appendix

A.1, it can be readily verified that the incentive-compatible, zero-savings βt must satisfy condition

(A.7), whereas λt is any progressively measurable process.

It is again convenient to use the certainty equivalent of the manager’s continuation utility as

a state variable for the investor’s problem. Applying Ito’s lemma to Yt = −1/(γr) ln(−γrWt) and

Equation (C.2) yields that the dynamics of Yt under an incentive-compatible zero-savings contract

are given by the following:

dYt =
1

2
γrσ2(αβ2

t + (1− α)λ2
t )X

2
t dt+ σXt(

√
αβtdZ

1
t +
√

1− αλtdZ2
t ),

where βt is given by Equation (A.7).

The remaining steps of Appendix A.1 are easily adapted. As before, the investor would never

expose the manager to more risk than is required to provide incentives. Thus, the sensitivity to

observable shocks λt is always zero. It follows that the total firm value function under the optional

contract must satisfy the HJB equation, Equation (19), where the incentive cost is given by the

following:

ρ(i, x, k) =
1

2
1(i > 0)αγr

(
θσg′(i)xk

)2
,
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which differs from the incentive cost in the baseline moral hazard model in Equation (20) by

the linear dependence on α. This shows that the observability parameter α affects the contract

in exactly the same way as the coefficient of the manager’s risk aversion γ. A straightforward

adaptation of Proposition 4 verifies the optimality of the proposed contract under the partial

observability of shocks.

C.3 Single-capital Version of the Model

In this appendix, we analyze the version of the model of Section 2 with only one form of

capital and abstract away from incremental capital. Consider a firm that can invest in capital K

continuously at rate I subject to adjustment cost F (I, k) and discretely with a one-time increase

by fraction ∆ subject to a fixed cost P . In addition, capital K depreciates at rate δ. Thus, the

capital stock evolves as follows:

dKt = (It − δtKt)dt+ σKtdZt + ∆Kt1(t = τ),

where σ is the volatility of the capital accumulation shock. Using it = It/Kt, dKt can be written

as follows:

dKt = (it − δ)Ktdt+ σKtdZt + ∆Kt1(t = τ).

We assume that the choice of i is constrained to [0, imax] for some positive imax < r. One unit of

capital generates one dollar of cash flow. The firm’s cash flows net of the investment costs are then

given by the following:

Ktdt− θG(it,Kt)dt− P1(t = τ),

where G(i, k) = F (I, k). The problem is very similar in its structure to that of Section 2. Under

some regularity condition, the optimal policy for lumpy investment takes the form of an upper

threshold k̄. Denote the time to invest by τ = inf{t : Kt ≥ k̄}.

For simplicity, assume that δ = 0. Standard arguments suggest that post-lumpy-investment

firm value, denoted by Vb(k), must satisfy the following HJB equation:

rVb = max
i
k − θG(i, k) + ikV ′b +

1

2
σ2k2V ′′b . (C.3)
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Pre-lumpy-investment firm value, denoted by Vs(k), solves a similar HJB equation:

rVs = max
i
k − θG(i, k) + ikV ′s +

1

2
σ2k2V ′′s , (C.4)

subject to boundary conditions at k = k̄:

Vs(k̄) = Vb((1 + ∆)k̄)− P, (C.5)

V ′s (k̄) = (1 + ∆)V ′b((1 + ∆)k̄). (C.6)

If interior, the optimal investment rate i∗j solves the following:

θGi(i
∗
j , k) = kV ′j (k), (C.7)

where the subscript j ∈ {s, b} denotes the pre- and post-lumpy-investment values.

It is common to assume that F (I, k) is homogeneous of degree one in I and k, which means

that G(i, k) is separable in i and k, G(i, k) = g(i)k. As in the model of Section 2, the cost function

g(i) can encompass the direct and adjustment costs of investment. If g(i) = i, it captures only the

direct cost of investment in capital. An increasing and convex g(i) captures the adjustment costs.

Problem (C.3)-(C.6) is isomorphic to the one studied in Sections 2 and 3. Thus, we can readily

obtain results analogous to Propositions 2 and 3. The model can also be extended to incorporate

moral hazard analogous to Section 4.

C.4 Option to Abandon

In this section, we consider a firm that holds an option to abandon its operations. The setup

is identical to that in Sections 2.1 and 4.1, except that instead of holding an option to increase

capital, the firm starts with lumpy capital k0 and can now liquidate and sell all of its capital for

a fixed price Q. We assume that the firm honors the promised obligations to the manager after

liquidation. The problems of investment in incremental capital and of providing the manager with

incentives are essentially identical to those one analyzed in the main text for the case of a growth

option. The total value of the firm before liquidation is denoted by V (x). Before liquidation, the
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value of the firm and optimal contract are given by the solution to the following HJB equation:

rV = max
i∈[0,imax]

{
xk0(1− θg(i)) + ixV ′ +

1

2
σ2x2V ′′ − ρ(i, x)

}
, (C.8)

where

ρ(i, x) =
1

2
1(i > 0)γr

(
θσg′(i)xk0

)2
. (C.9)

The equation is essentially the same as Equation (19), but it requires a set of different boundary

conditions that are consistent with the option to abandon. As expected, the optimal exercise policy

takes the form of a lower threshold x such that the firm liquidates the first time that Xt is at or

below x. At x = x, the following value-matching and smooth-pasting conditions must hold:

V (x) = Q (C.10)

V ′(x) = 0. (C.11)

As x approaches infinity, the probability of abandonment approaches zero. As the incentive cost

of effort ρ (quadratic in x) increases more rapidly than cash flows (linear in x), i approaches zero.

Thus, V (x) becomes a linear function consistent with i = 0 as x approaches infinity:

lim
x→∞

V ′(x) =
1

r
. (C.12)

The optimality of the solution to Equations (C.8)-(C.12) can be verified by a straight-forward

adaptation of the proof of Proposition 4.

The main takeaway of this model is that an increase in the severity of the moral hazard problem

increases the optimal liquidation threshold x. This result is intuitive, as an increase in moral hazard

decreases the value of the firm before liquidation but does not affect the liquidation value Q and

thus makes early liquidation more attractive. This intuition mirrors the intuition that we present

in the main model with a growth option in that the effect of moral hazard on the timing of the

option exercise depends on the differences in sensitivity to the moral hazard of the values before

and after the option exercise. In the case of an option to abandon, this mechanism leads to the

unambiguous acceleration of liquidation with the increasing severity of moral hazard. We interpret
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this type of early liquidation as a form of underinvestment due to moral hazard.
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