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towards a rational design of faecal 
transplant analogues
olaf F. A. Larsen  1, Anton H. J. Koning2, peter J. van der spek2 & eric Claassen1

Faecal transplants (microbiota transfer) have shown to be promising therapies having a wide range of 
therapeutic applications. However, current safety considerations hamper further valorisation. As such, 
well designed faecal transplant analogues provide an interesting alternative to minimize possible safety 
aspects. However, to date little knowledge on how to rationally design such analogues exists. Here, we 
show by applying first order basic graph theory that such analogues dedicated to restoring a specific 
physiological functionality (a microbial guild) should consist of 5–6 species to maximize stability, 
efficiency, and minimize safety issues and production costs.

The human microbiota has triggered tremendous interest as its composition is linked to health and disease1. 
Consequently, a human individual must nowadays be considered as an ecosystem comprising not only the human 
cells but also the various microbiotas linked to virtually all body sites ranging from the skin, genitals, to the 
gastro-intestinal tract1. The gastrointestinal microbiota has specifically drawn attention, as a large collection of 
research articles indicates a role of the gut microbiota to a variety of illnesses such as obesity, diabetes, autism 
and Alzheimer’s disease2. This role can be narrowed down to the (mal)functioning of dedicated physiological 
functionalities, reflecting small microbial ecosystems. An example of this is the production of short chain fatty 
acids in type 2 diabetes mellitus3. Although alterations in the gut microbiota and the onset of disease are often 
still associations, there is for many cases increasing evidence that a dysbiosis of the gut microbiota indeed is 
(one of the) initial causes that actually leads to disease4. Hence, modulation of the gut microbiota, for example 
by pre-and probiotics, opens a window of opportunity for both disease prevention and management5. Faecal 
transplant analogues provide as such a probiotic intervention in extremo, by administering donor faeces from 
a healthy subject to a diseased subject, thereby effectively “repoopulating” the entire gastrointestinal tract with 
a new microbiota6. Although spectacular results have been obtained for various conditions such as Clostridium 
difficile infections7, insulin insensitivity8, or even autism9, safety considerations remain and hamper the valori-
sation of these types of intervention10. Hence, it would be desirable to ultimately develop (personalized) faecal 
transplant analogues that provide the necessary microbial ecosystem tailored to rebalance a specific physiological 
functionality within the human body and thereby effectively clearing the associated disease state. In such a way, by 
providing a well-defined and minimal ecosystem, safety can ultimately be guaranteed. To understand and ration-
ally design such transplant analogues (whether these consists of bacterial species or, as more recently suggested, 
bacteriophages11), one should have a thorough understanding of the microbial network and corresponding sig-
nalling pathways that provide the desired physiological effect. Therefore, as a first step, we recently modelled 
small microbial guilds using elementary graph theory12. Microbial guilds are small ecosystems tailored to a single 
functionality13, which are known to exist in the gut microbiota14. Our calculations indicated that the functional 
efficiency of microbial guilds gets higher by introducing more species. Furthermore, redundancy in functional 
efficiency takes place after the diversity of species is sufficiently high. These simulations were performed by mak-
ing use of undirected graphs, meaning that the communication between the microbial entities was either existing 
(in two-ways) or absent. However, microbial interactions are known to be directed15. Therefore, this article pre-
sents simulations on directed microbial guilds. As such, the calculations provide the complete configurational 
landscape possible between the two extremes: only directed interactions and only undirected interactions. Also, 
the efficiency of usage of the building blocks for setting up all configurations to construct actual signalling path-
ways was calculated. By combining these results, a window of opportunity for the future development of faecal 
transplant analogues could be constructed. This window shows that future faecal transplant analogues tailored to 
restore a single specific functionality should consist of 5 to 6 microbial species.
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Methods
In a microbial guild, an initial species gets triggered by some external factor like a dietary component, antibiotics 
or stress. This trigger is then signalled to a subsequent species and ultimately transported to the “target” species 
that produces the associated physiological response. In our simulations we consider species number 1 as the 
starting species and species number n (e.g. species number 5 for a guild consisting of n = 5 species) as the target 
species.

We modelled hypothetical microbial guilds using elementary network theory. As such, a microbial guild can 
be depicted by a graph, in which the nodes represent the microbial species and the arrows (edges) the directed 
communication channels between the microbial species (see Fig. 1).

All graphs we modelled were unweighted, meaning that all communication channels have the same signalling 
strength. Also, the graphs did not contain loops or multiple edges between two species. Only simple paths were 
calculated, hence every node can only be visited once maximally.

To get the total signalling landscape possible, we calculated for a hypothetical guild comprising of n species all 
possible configurations (adjacency matrices). For each adjacency matrix, the density was also calculated. The 
density D of an adjacency matrix (configuration) is defined as: =D E

m
, with E being the number of edges present 

for the specific configuration investigated, and m the maximum number of edges possible for the number of 
nodes given.

For each adjacency matrix, all paths from species 1 to species n were calculated. This exercise was performed 
for hypothetical systems ranging from n = 2 to n = 5 species. For each set of nodes (ranging from n = 1 to n = 5), 
we constructed a heatmap depicting the number of paths from node 1 to n as a function of the density D of the 
adjacency matrix and the number of steps (edges travelled) needed to go from species 1 to species n.

Results
In Fig. 2, the heatmap for n = 5 is depicted as an example of all the heatmaps we calculated. For 5 nodes, the 
number of adjacency matrices already equals 1.048.576, and the total number of paths to go from species 1 to 5 
equals 2.490.368.

Analogous to our previous calculations12, we plot the weighted average density as a function of the number 
of nodes. For comparison, we plot both the results earlier obtained for undirected graphs12 as well as the current 
results for directed graphs, see Fig. 3. As such, the configurational space between the two extremes (only directed 
and only undirected interactions) can be depicted.

Figure 1. Graph theoretical representation of a hypothetical microbial guild consisting of 5 different species 
(represented by the nodes). The communication between the species is depicted by the arrows (edges). In this 
example, species 1 cannot exert a signal to species 2, but the other way around is possible. Communication 
between species 3 and 4 is possible in both directions. The associated adjacency matrix is also shown. This 
matrix shows all connections going from species n (the row numbers) to species m (the column numbers), 
by either displaying a “1” (directed connection from n to m) or “0” (no directed connection). In this example, 
species 1 would be the starting node receiving the initial trigger, whereas species 5 would be the target node 
producing the associated physiological response. One of the possible signalling pathways could be: node 1 → 
node 4 → node 5.

Figure 2. Heatmap depicting the number of paths for all configurations (directed adjacency matrices) possible 
for 5 species, as a function of the density and the number of steps needed to go from species 1 to species 5 
(pathlength).
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Subsequently, we calculated the stability, represented by the ratio of the number of paths and adjacency matri-
ces. The stability increases with the number of nodes for both directed and undirected networks. Interestingly, 
there is no difference between undirected and directed networks (see Fig. 4).

Finally, we calculated a metric we call the “building efficiency”. This efficiency was calculated as follows. We 
first summed the numbers of paths for all cells of a heatmap for a specific number of nodes (n). This results in 
all paths possible for going to node 1 to node n originating from all configurations possible (note that identical 
paths will be summed numerous times, we just calculate the total number of paths and not the number of unique 
paths). Subsequently, we calculated the total number of edges necessary for the construction of all configurations 
possible at that specific number of nodes n (note that this sum will also contain edges originating from config-
urations that do not result in a path from 1 to n at all). As an example, for n = 5, using directed edges, the total 
number of paths equals 2.490.368, and the total number of edges equals 10.485.760. Finally, we calculate the ratio 
of all these paths and edges (number of paths divided by number of edges), which equals for n = 5 (using directed 
edges) to 2.490.368/10.485.760 = 0.2375. In Fig. 5, we plotted this building efficiency as a function of nodes for 
both directed and undirected graphs.

Discussion
As can be seen from Fig. 3, for both undirected and directed networks, the weighted average density decreases 
upon introducing more species (nodes). This implies that the maximum signal that can be obtained (highest 
number of paths from node 1 to node n) corresponds to configurations having lower density upon increasing 
the number of nodes. Hence, it is from a “design (evolutionary) point of view” advantageous to have more nodes 
(more diversity) because one can then construct on average networks that still produce the highest signal while 
requiring relatively less interactions for a node with other nodes. Our simulations show that, upon going from 
undirected to directed interactions, this trend is also present, surprisingly, at very low densities. Hence, directed 
interactions result in more efficient systems as compared to undirected interactions. We hypothesize that this 

Figure 3. Weighted average density as a function of the number of nodes. Blue: undirected graphs. Red: 
directed graphs. The results for undirected interactions were already obtained earlier and are plotted here for 
completeness12.

Figure 4. Stability as a function of nodes (species). The stability is defined as the total number of paths divided 
by the total number of adjacency matrices. The red dots represent the results for the directed configurations, that 
overlap with those for the undirected configurations (not shown for n = 1–5). For completeness, the undirected 
stability is also shown for 6 and 7 nodes (blue dots). The line is added as a guide to the eye. Please note that the 
results for the undirected graphs were already obtained earlier and are plotted here for completeness12.
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result, improved efficiency, provides a mathematical rationale why microbial interactions in small ecosystems are 
found to be directed in nature.

A second feature that can be obtained from our simulations and has been discussed earlier12, is that the 
weighted average density levels off at relatively higher numbers of nodes. This feature has been explained in terms 
of redundancy: when surpassing a minimum number of nodes, the total efficiency will not improve anymore (or 
just slightly). This asymptotic trend reflects robustness of the system: species can be taken out of the system with-
out significantly reducing its efficiency. As can be seen from our calculations, it seems that such redundancy takes 
place earlier in ecosystems consisting of (only) directed interactions, starting already at ~5 nodes, as compared to 
ecosystems consisting of (only) undirected interactions (starting at ~6 nodes12). Hence, directed configurations 
are more efficient than undirected configurations.

The fact that the stability as a function of nodes does not change upon switching from undirected to directed 
interactions, implies that one can obtain a higher efficiency (weighted average density) at a specific number of 
nodes when using directed instead of undirected interactions, while still having the same stability. Hence, also 
this result advocates the (evolutionary) advantage of directed microbial interactions as compared to undirected 
interactions.

To further investigate plausible evolutionary drivers for the construction of small ecological systems like 
microbial guilds, we calculated a ratio called the building efficiency (see results section, Fig. 5). As such, this 
ratio provides us with information on the efficiency of usage of the building blocks provided in an evolutionary 
process. In other words: for a fixed number of nodes, when one can utilize all evolutionary building blocks (the 
edges) needed to construct all possible configurations for the number of nodes provided, this number provides 
the “building efficiency” expressed as the number of actual paths for node 1 to node n per edge.

Strikingly, the building efficiency goes down when starting from two nodes up to a minimum at 4 nodes, and 
then goes up again. This building efficiency is overall lower for directed interactions with respect to undirected 
interactions but displays the same trend. The shape of these curves strongly resembles a so called “smiling curve” 
which has been described earlier for manufacturing processes16. The smiling curve for manufacturing processes 
shows how added value varies within different stages of a production process. In the early stages of the production 
process (R&D phases), added value is going down, whereas added value is going up again at later stages (e.g. the 
phase when the product is launched, and marketing is key). Our results can be explained in a similar fashion. 
Construction of microbial guilds in “early stages” (not enough nodes yet), results in poor added value (and an 
initial decline of value when more nodes are added). However, when the number of nodes reaches a critical point, 
the microbial guilds constructed are getting mature and will gain in added value (in our simulations: building 
efficiency). This explanation is supported by the fact that stability only starts to significantly rise after 4 nodes, 
and that redundancy also comes into play after 5 nodes. Consequently, being two sides of the same coin, loss of 
diversity gives problems.

From these results, we have constructed a panel that summarizes our results and provides us with the window 
of opportunity for the construction of faecal transplant analogues, see Fig. 6.

As can be seen from Fig. 6, the window of opportunity for the construction of faecal transplants lies within 
the domain between 5 and 6 nodes. After 6 nodes, one will have still more stability, but redundancy has set in 
already at 6 nodes. Hence, from a cost and safety aspect, one would like to strive for a minimum number of 
microbial species. Hence, as such 6 different species provide the upper limit. From a building efficiency point of 
view, 4 nodes provide the lower limit, because from that number of nodes the building efficiency (added value) 
is starting to rise. However, redundancy has not set in yet at 4 nodes, and at 4 nodes the stability is also still very 
limited. Redundancy does set in at 5 nodes for directed interactions, which is the type of interactions utilized 
in nature (contrary to undirected interactions, where redundancy sets in at 6 nodes12). Hence, by combining all 
aforementioned considerations, 5–6 nodes seem to be optimal for the construction of faecal transplant analogues.

Figure 5. Building efficiency as a function of nodes. Note that the building efficiency is calculated up to 5 nodes 
for directed graphs due to computational constraints. The minimum at n = 4 and the upward trend after n = 4 
like for the undirected configurations is, however, also still clearly visible for the directed configurations. Please 
note that the building efficiency for undirected interactions is calculated using results we obtained earlier12.
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Interestingly, the building efficiency is structurally lower for directed interactions as compared to undirected 
interactions. At a first glance, this result would plead for usage of undirected interactions when constructing 
faecal transplant analogues. However, one should realize that the overall building efficiency as depicted here is 
built up from all possible configurations and should be envisioned in an evolutionary perspective. From a rational 
design point of view, however, only one configuration will eventually be utilized as the faecal transplant analogue. 
As such, the smiling curves only provide us with the minimum number of nodes needed to have an “evolutionary 
process” in the laboratory when seeking for a feasible faecal transplant analogue to be efficient.

It is interesting to note that this perspective to envision physiological functionalities within the gut microbiota 
provides us with arguments pleading for the usage of both single-strain as well as multi-strain probiotic prepa-
rations. When a microbial guild is misfunctioning (dysbiosis) due to the absence of only one species within the 
guild, application of the proper single strain probiotic could be sufficient to restore its functionality. When more 
species are absent or when the whole guild is absent, application of the proper multi-strain preparations (up to a 
faecal transplant analogue in case all species are absent) could restore the functionality of the guild. As an exam-
ple, one could envision repairing a microbial guild responsible for maintaining the integrity of the epithelial cell 
layer of the gut. Loss of this integrity would result in a “leaky gut”, resulting in penetration of lumen contents into 
the body that could cause inflammation.

It is important to mention that all the simulation results presented here are generic, although they are here 
being discussed within the framework of microbial guilds residing in the human gastrointestinal tract. Being 
generic results, they can also be used for microbial communities in, for example, soil, water, or fermented foods. 
Bioremediation could be a possible application area as well, provided that the removal of the toxic compounds 
can indeed be achieved by a relatively small ensemble (guild) of collaborating microorganisms.

In short, we have shown by first principle graph theory that the window of opportunity for the construction 
of faecal transplant analogues lies optimally between 5–6 microbial species. These results should be the starting 
point for the rational design of probiotics, ranging from single strain up to complete faecal transplant analogues.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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