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Abstract 
 
Objective: Psychiatric symptomatology during childhood predicts persistent mental 

illness later in life. While neuroimaging methodologies are routinely applied cross-

sectionally to the study of child and adolescent psychopathology, the nature of the 

relationship between childhood symptoms and the underlying neurodevelopmental 

processes remains largely unclear. The current study delineates the longitudinal 

relationship between childhood psychiatric problems and brain development using a 

prospective population-based cohort. Methods: 845 children participated in the study. 

Psychiatric symptoms were measured using the parental report Child Behavior 

Checklist at ages 6 and 10 years. Magnetic resonance imaging data were also 

collected at two time-points, at 8 and 10 years of age. Cross-lagged panel models and 

linear mixed-effects models were used to determine the associations between 

psychiatric symptom ratings and quantitative anatomic and white matter 

microstructural measures over development. Results: Higher externalizing and 

internalizing symptoms at baseline predicted smaller increases in both subcortical 

gray matter volume and global fractional anisotropy over time. The reverse 

relationship did not hold: thus, baseline measures of gray matter and white matter 

were not significantly related to changes in symptom scores over time. Conclusions: 

Children presenting with behavioral problems at an early age show differential 

subcortical and white matter development. Most neuroimaging models tend to explain 

brain differences observed in psychopathology as an underlying (causal) 

neurobiological substrate. However, the present work suggests that future 

neuroimaging studies showing effects that are pathogenic in nature should 

additionally explore the possibility of the downstream effects of psychopathology on 

the brain. 
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Introduction 

Given that children who experience psychiatric problems at a young age are at an 

increased risk for impaired functioning and continued psychopathology later in life (1, 

2), characterization of any associated neurodevelopmental features is crucial. 

Neuroimaging offers a unique window into in vivo brain development and the 

associated features of mental illness (3, 4). As the maturation of morphological (5) 

and white matter microstructural (6) features has been demonstrated with 

neuroimaging during childhood, the importance of examining emerging 

psychopathology in the context of typical brain development has been highlighted (7). 

However, limited information exists on the exact interplay between the emergence of 

psychiatric problems and corresponding trajectories of macro- and microstructural 

neurodevelopment. 

 There is a vast literature on structural neuroimaging studies of 

psychopathology. Broadly speaking, externalizing disorders, such as attention 

deficit/hyperactivity disorder, have been frequently tied to anomalies in fronto-

striatal/ fronto-cerebellar circuitry (8, 9), and mood and anxiety disorders have been 

associated with anomalies in cortico-limbic circuitry (10). However, inconsistencies 

exist and multiple psychiatric disorders have been found to display spatial overlap in 

alterations across a broad range of anatomical areas, including those with cortico-

limbic and cortico-striatal components. While highly informative, there are two 

notable limitations to much prior work. First, most studies are cross-sectional, 

limiting the inferences that can be drawn about developmental processes.  

Specifically, it is unclear whether early neural anomalies are associated with later 

psychopathology, or if the reverse relationship also holds (i.e. early psychopathology 
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is tied to later neural anomalies). Longitudinal data, that combines the collection of 

clinical and imaging data at baseline and follow-up, can help disentangle the 

temporality of this relation (11). A second major limitation is that most studies have 

examined clinical samples, comparing cases and controls. However, many psychiatric 

symptoms exist on a continuum in the general population (12). Larger, population-

based studies have demonstrated that symptoms, when considered dimensionally, 

vary with neurobiological features, lending further support for this framework (13, 

14). However, to date, very few studies have examined child psychiatric symptoms 

along a continuum in relation to longitudinal brain development (15, 16). 

The present study examined the bi-directional association of psychiatric 

problems with longitudinal gray and white matter microstructural development in a 

large sample of children from the general population. A dimensional approach was 

applied in the quantification of internalizing and externalizing problems, along with 

continuous measures of DSM symptom classes. We hypothesized that psychiatric 

problems along a continuum would be associated with altered anatomic and white 

matter microstructural development. In order to parse the precise direction of this 

relationship between brain and behavior over time, a cross-lagged panel model was 

utilized. 

 

Methods 

Participants 

The current study is part of the Generation R Study, a population-based cohort 

study of maternal and child health from fetal life onwards, in Rotterdam, the 

Netherlands (17). In addition to an age 5-to-6 behavioral assessment (Figure 1, 18), a 

sub-sample of 1,070 children were recruited for MRI scanning (referred to as time 1) 
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(19). As part of the age-10 assessment (referred to as time 2), 520 children who had a 

scan at time 1 also visited our research-dedicated imaging facility for MRI scanning at 

time 2. Figure 1 outlines the timeline of the various data collection efforts, and the 

flow chart depicted in Supplemental Figure S1 illustrates the exclusion of MRI data 

for both time points. The final sample consisted of 845 usable T1-weighted scans and 

715 usable diffusion tensor imaging (DTI) datasets at time 1, and 480 T1-weighted 

scans and 361 DTI datasets at time 2. The Medical Ethics Committee of the Erasmus 

Medical Center approved all study procedures, and all parents provided written 

informed consent. 

 

Child psychiatric symptom assessment 

Child psychopathology was assessed using the Child Behavior Checklist 

(CBCL). The CBCL is a widely-used 100-item inventory that provides parental report 

information on a wide array of behavioral problems in young children (20). The 

instrument is reliable, valid, and has been used internationally (20, 21). We utilized 

the broadband scales (internalizing and externalizing) and 4 DSM-oriented scales 

(affective problems and anxiety problems scales, which correspond to DSM 

internalizing disorders, and the attention deficit/hyperactivity problems and 

oppositional defiant problems scales, which correspond to DSM externalizing 

disorders). The DSM-oriented scales were developed to view the rated problems in 

the context of a formal diagnostic system (20), and have been shown to correspond to 

actual clinical diagnoses (22). We administered the preschool CBCL/1½-5, even 

though some children were older than 5 years at time 1, as the children had not yet 

received any formal schooling. Cronbach’s alphas were the same in 5 year-old 

children and children older than 5 years, indicating problems were reliably measured 
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in all children (23). At time 2, the children completed the CBCL 6-18 (24). For all 

analyses, raw scores (square-root transformed) were used to preserve the natural 

variation in the data from this non-clinical sample, as T-scores require truncation of 

values. The average age at the time 1 behavioral assessment was 5.9 years, and the 

average age of assessment at time 2 was 9.7 years. At baseline, the CBCL was 

administered prior to the MRI scan in all children, and at time 2 a small number of 

participants (n=9) received the behavioral assessment after the MRI scan. The 

percentage of participants meeting borderline and clinical cutoff thresholds for the 

broadband and DSM-oriented scales is presented in Supplemental Table S1. 

 

Image acquisition  

Prior to scanning, all children underwent a 30-minute mock scanning session 

for acclimation to the MR-environment (19). Data were acquired on 3 Tesla General 

Electric scanners (at time 1: MR750, at time 2: MR750w, GE, Milwaukee, WI). Both 

systems utilized an 8-channel receive-only head coil. T1-weighted structural images 

were acquired with an IR-prepared Fast Spoiled Gradient Recalled sequence. 

Diffusion MRI data were collected with 3 B=0 volumes and 35 non-colinear diffusion 

encoded volumes using an echo-planar imaging sequence (see Supplemental Material 

for details). 

 

Morphological Image Processing 

Structural MRI data were processed through the FreeSurfer analysis suite 

(v5.3, 25). Briefly, non-brain tissue was removed, voxels intensities were normalized 

for B1 inhomogeneity, whole-brain tissue segmentation was performed, and a surface-

based model of the cortex was reconstructed. Global metrics of volume were 
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extracted (e.g., total brain volume and subcortical volume), and a number of 

subcortical and cortical structures were automatically labeled (e.g., amygdala, 

orbitofrontal cortex, etc.). 

 

Diffusion Image preprocessing 

Image preprocessing was conducted using the Functional MRI of the Brain’s 

Software Library (FSL, version 5.0.5, 26) and the Camino Diffusion Toolkit (27). 

Non-brain tissue was removed, and diffusion images were corrected for eddy current-

induced artifacts and translations/rotations resulting from head motion. In order to 

account for rotations applied to the diffusion data, the resulting transformation 

matrices were used to rotate the diffusion gradient direction table. The diffusion 

tensor was fit at each voxel, and common scalar metrics (e.g., fractional anisotropy, 

mean diffusivity) were subsequently computed. 

 Probabilistic tractography was run on each subject’s diffusion data using the 

fully automated FSL plugin, “AutoPtx” (see Supplemental Material, 28). Connectivity 

distributions were estimated for 12 fiber bundles (Figure 2). Using the connectivity 

distributions, average fractional anisotropy and mean diffusivity values were then 

computed for each fiber bundle (29). 

 

Image quality assurance 

FreeSurfer reconstructions were visually inspected using a protocol similar to 

previously reported methods (30). Raw and processed diffusion image quality was 

assessed using a combination of automated and manual methods. Further details of 

the quality assurance procedure are available in the Supplemental Material, and the 

flow chart in Supplemental Figure S1 outlines the number of datasets excluded. 



	 8	

 

Statistical Analysis 

 Statistical analyses were conducted using the R Statistical Computing software 

(v3.2.3, 'Wooden Christmas Tree', 31). The Lavaan package (32) was used to fit 

cross-lagged panel models to study the associations between longitudinal measures of 

brain and behavior. Cross-lagged panel models allow associations between two or 

more repeatedly measured variables to be investigated contemporaneously. Figure 3A 

depicts the general modeling strategy utilized. The first cross-lagged coefficient βCL-1 

represents the association between psychiatric problems measured at time 1 and brain 

metrics measured at time 2 that have been adjusted for baseline brain metrics 

measured at time 1. Similarly, the other cross-lagged coefficient, βCL-2, represents the 

association between brain metrics measured at time 1 and psychiatric problems 

measured at time 2 that have been adjusted for baseline psychiatric problems 

measured at time 1. Cross-sectional associations between brain metrics and 

psychiatric problems are also modeled, though only the association at time 1 

(coefficient βCL-Baseline) is reported, given the association at time 2 represents the 

correlation in the residual terms and is not straightforward to interpret. Lastly, 

autoregressive coefficients βAR-CBCL and βAR-MRI, representing the stability of psychiatric 

problems and brain metrics from time 1-to-time 2, respectively, are modeled. While 

cross-lagged models are able to provide information on associations that relate to 

inter-individual variability in two repeatedly measured variables, they do not provide 

an explicit metric of change. Thus, significant cross-lagged associations were 

followed up with linear mixed-effects models in order to obtain an explicit 

interpretation of within-subject change. These models are described in detail in the 
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Supplemental Material. Further, the correlations between behavioral and MRI metrics 

for time 1 and time 2 are presented in Supplemental Tables S2 and S3. 

 A hierarchical approach was imposed where broad/global metrics were first 

examined using cross-lagged panel models, in order to gain a comprehensive picture 

of the time 1 and time 2 associations. These models were subsequently followed by 

more refined metrics, honing in on the associations of interest using linear mixed-

effects models (33). First, we tested whether broadband behavioral measures were 

associated with global MRI metrics (e.g., total brain volume and global fractional 

anisotropy). If an association was observed with one of the broadband behavioral 

measures (p < 0.05), follow-up associations between the corresponding DSM-oriented 

sub-scales and MRI metrics were then tested. This approach was utilized in order to 

determine whether specific psychiatric traits account for any observed association 

between a broadband scale and brain metrics. Second, along similar lines, in order to 

determine whether the effects on the brain were global (i.e., wide-spread in the brain) 

or focal (i.e., limited to a particular set of regions/tracts), behavioral broadband scores 

showing a relationship with global MRI metrics were also tested for associations with 

changes in MRI metrics from more focal regions of interest. When examining 

individual regions rather than global metrics, each region of interest was z-

transformed within the time-point to control for confounding effects of MR-scanner. 

Further, given the number of statistical tests examined with individual regions of 

interest, a false discovery rate (FDR) correction was applied to control for Type-I 

error (34). 

 

Global macro- and microstructural brain metrics 
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The anatomic metrics used were provided by FreeSurfer and included total 

brain, total cortical, subcortical, lateral ventricular and white matter volume. For DTI 

data, rather than computing a simple average, latent factors were used to represent 

global DTI metrics (i.e., across multiple tracts) within the cross-lagged panel model 

(29, 32). Thus, all tract metrics were summarized by a single, 'global' factor. For each 

DTI scalar metric, the tracts depicted in Figure 2 were used to model the latent 

factors. Latent global DTI factors were modeled separately for time 1 and for time 2, 

given the two waves were acquired on different MR-scanners, and were normally 

distributed. A visual depiction of the standardized factor loadings for the time 1 and 

time 2 global fractional anisotropy metric is available in Supplemental Figure S2. 

 

Covariates 

 All models were adjusted for age at assessment (behavioral and MRI, as the 

two assessments were conducted at different times), sex, and ethnicity (reference-

coded with the Dutch population as the reference group). 

 

Results 

Sample Characteristics 

 Table 1 presents information on the characteristics of the sample. Children 

were approximately 8 years of age at the time 1 MRI, and 10 years of age at the time 

2 MRI.  

 

Neuroanatomical Macrostructure 

Table 2 outlines associations between global cortical brain metrics and 

psychiatric problem scores. Coefficient labels in the model illustration (see Figure 
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3A) correspond to the headings used in Table 2. Cross-sectionally at baseline, higher 

broadband externalizing scores were associated with smaller total brain volume, 

cortical gray matter volume, white matter volume and subcortical volume (Table 2). 

Higher externalizing scores at time 1 were related to smaller subcortical volumes at 

time 2, after adjusting for time 1 volumes (Table 2, Figure 3B). Baseline externalizing 

scores predicted smaller increases in subcortical volume over time with linear mixed-

effects models, and results remained consistent after adjusting for intracranial volume 

(Supplemental Table S4). Interestingly, the path testing whether baseline 

neuroanatomical features predicted time 2 externalizing scores was non-significant 

(Table 2).  

For broadband internalizing scores, cross-sectionally at baseline there were no 

significant associations with any of the macrostructural features. However, higher 

internalizing scores at time 1 were associated with smaller subcortical volumes at 

time 2, after adjusting for volumes at time 1 (Table 2). Similar to externalizing, the 

subcortical association was consistent in linear mixed-effects models, even after 

further adjusting for intracranial volume (Supplemental Table S4). The path testing 

associations between global metrics of cortical morphology at time 1 and internalizing 

scores at time 2 was non-significant (Table 2). 

In order to better characterize the regionally specificity of the significant 

subcortical volume analyses outlined above, linear mixed-effects models were run 

predicting change in the individual regions that comprise the total subcortical volume. 

Following adjustment for multiple comparisons, psychiatric problems at time 1 were 

not related to changes in any of the regions over time. 

 

White matter microstructure  



	 12	

 Externalizing scores at time 1 were not associated cross-sectionally with 

global DTI measures at time 1. However, externalizing scores at time 1 were 

negatively associated with global fractional anisotropy at time 2, after adjusting for 

global fractional anisotropy at time 1 (Table 2). Linear mixed-effects analyses were 

consistent, with higher baseline externalizing scores predicting smaller increases in 

global fractional anisotropy over time (Figure 4, Supplemental Table S5). Baseline 

global DTI measures were not associated with externalizing scores at time 2. 

 Internalizing scores at time 1 were also not cross-sectionally associated with 

global DTI measures at time 1. Broadband internalizing scores were negatively 

associated with global fractional anisotropy at time 2, after adjusting for global 

fractional anisotropy at time 1 (Table 2, Figure 3C). Further, linear mixed-effects 

models showed higher baseline internalizing scores predicted smaller increases in 

global fractional anisotropy over time (Figure 4, Supplemental Table S5). Similar to 

what was observed with the neuroanatomical features, time 1 global fractional 

anisotropy did not predict time 2 internalizing problems (Table 2). 

 Given associations were observed between time 1 behavioral measures and 

time 2 DTI metrics, individual tracts were examined to determine whether there was 

any regional specificity in the white matter associations. Higher externalizing scores 

at time 1 were associated smaller increases in fractional anisotropy in the superior 

longitudinal fasciculus (Supplemental Table S6). Higher broadband internalizing 

scores at time 1 were associated with smaller increases in fractional anisotropy in the 

right cingulum and bilateral superior longitudinal fasciculus (Supplemental Table S6). 

Significant associations presented above were adjusted further for potential 

confounders (e.g., IQ and motion), and results are presented in the Supplemental 

Data. 
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DSM-oriented subscales 

 In order to further characterize the global associations, we examined the 

individual DSM-oriented subscales when broadband scales showed significant 

associations with changes in global MRI metrics. Higher baseline scores on both the 

DSM-oriented attention and oppositional defiant disorder subscales predicted smaller 

increases in total subcortical volume and global fractional anisotropy over time 

(Supplemental Table S7). Further, higher baseline affective subscale scores were 

associated with smaller increases in global fractional anisotropy (Supplemental Table 

S7). 

 

Stability of psychiatric scores and brain metrics over time 

Auto-regressive coefficients in Table 2 demonstrate that psychiatric scores 

measured at time 1 are positively associated with those measured at time 2 (roughly 

0.65 for externalizing and 0.56 for internalizing), suggesting stability in the measure 

and also some inter-individual variability over time. Similarly, brain metrics at time 1 

were positively associated with those measured at time 2, suggesting a relatively high 

stability though some inter-individual variability over time, particularly in global 

fractional anisotropy.  

 

Discussion 

In this large population imaging study of children, we demonstrate a link between 

psychiatric problems along a continuum and a differential pattern of brain changes 

over time. Even in the general population, psychiatric problems were related to 

altered trajectories of both macro- and microstructural brain development. 
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Interestingly, baseline brain metrics measured during childhood did not predict 

changes in psychiatric symptom ratings over time; instead, psychiatric problems at a 

young age predicted an altered pattern of brain changes over a 2½-year interval. 

Consistent with existing literature, this study shows facets of psychopathology 

are related to smaller subcortical volumes and lower fractional anisotropy. The 

subcortex has been implicated to some degree in nearly all psychiatric disorders, and 

brain imaging studies have revealed evidence for its involvement in, for example, 

depression, attention deficit/hyperactivity disorder, and obsessive compulsive disorder 

(8, 35, 36). Similarly, numerous studies have also demonstrated the potential role of 

white matter microstructure in psychopathology (10, 37). The present study expands 

upon this existing literature by demonstrating that dimensionally-assessed psychiatric 

problems are related to smaller changes in brain volume and fractional anisotropy 

over time. Most subcortical structures show increases in volume that peak during late 

childhood and into adolescence, followed by decreases in volume into adulthood (38). 

The age-range of the present sample shows an association that is consistent with this, 

and additionally shows attenuated increases that are related to both externalizing and 

internalizing problems. Fractional anisotropy in white matter has shown largely linear 

increases over time within this restricted age-range (6). Data from the present study fit 

with the literature, again additionally showing that these trajectories are potentially 

modified by the presence of psychiatric symptoms at an early age. Fractional 

anisotropy, but not mean diffusivity, showed a differential pattern of change. This 

could suggest differences in, for example myelination or axonal packing. 

Limited specificity was observed, as both externalizing and internalizing 

symptoms were associated with differential macro- and microstructural changes over 

time. Further, three of the four DSM scales were associated with changes in white 
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matter microstructure. As the two broadband domains are relatively highly correlated 

(20), it is possible that the overlapping variance in these scales best explains the 

differential changes in the brain. Alternatively, given the relatively young age of this 

sample, it is also possible that domain-specific patterns of development become more 

apparent at older ages. In terms of symptom assessment, this study utilized a parental 

report of children's psychiatric symptoms. It is likely that combining data from 

multiple informants (i.e., the parents, teachers and children themselves) will provide a 

more robust and accurate picture of their symptom profile, which may in turn help to 

elucidate more specific correlates with neuroimaging features (39). Along similar 

lines, though this study utilized high-resolution anatomical data and diffusion tensor 

imaging data, the two modalities were examined separately. It is possible that a 

multimodal approach where both pieces of information are elegantly combined into a 

single analysis could help to disentangle unique neurobiological features in both 

categories of disorders (40). 

In the context of psychopathology, the most widely applied model in the field 

of neuroimaging has focused on identifying associated, underlying neurobiological 

substrates of potential etiological significance. However, we did not find that early 

brain metrics predicted changes in psychiatric problems over time. There are several 

potential explanations for this. As this is not a clinical sample, it is possible that such 

processes are not part of a continuum and are not present in sub-clinical presentation 

of psychiatric constructs in the general population. It is thus a priority to see if these 

findings hold in large cohorts that are enriched for psychiatric disorders. 

Alternatively, the underlying neurobiological predictors of the emergence and 

development of psychopathology may be spatially or temporally heterogeneous, 

particularly during brain development, and that more sophisticated image-analysis 
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methods are needed to better characterize them (e.g., machine learning)(41). It is also 

possible that the responsible underlying brain features are detectable at higher spatial 

resolution or perhaps using alternative imaging modalities (e.g., MR-spectroscopy, 

MR-perfusion, task-based or resting-state functional MRI). 

The bulk of the findings in the present study consisted of early measures of 

psychiatric problems predicting differential patterns of both macro- and 

microstructural brain development. This suggests that, in addition to the standard 

model of the ‘brain shaping behavior’ discussed above, perhaps ‘behaviors also 

shape the brain’ (42). While there are undoubtedly underlying neurobiological 

explanations for the emergence of psychopathology in children, the data in the present 

study suggest psychiatric symptoms in children may also contribute to some of the 

macro- and microstructural abnormalities reported in the literature; a potentially 

cascading interaction between psychopathology and the brain. Take the example 

obsessive-compulsive disorder where the symptomatology originates in a particular 

set of brain areas (e.g., fronto-striatal circuitry), but over time the symptoms 

themselves could modulate structural brain development (e.g., repetitive motor 

behaviors leading alterations in motor cortex) (42). A similar extension can be drawn 

to, in for example anxiety disorders, the potential effect of increased hypothalamic-

pituitary-adrenal axis activity on the brain through downstream hormonal exposure 

(43). A child with psychopathology may also experience his or her environment 

differently as a result of the disorder, which could consequently influence how the 

brain is shaped during development (e.g., reduced novelty seeking). The cofounding 

effect of psychiatric treatment could also be playing a role (i.e., children with more 

psychiatric symptoms seek treatment, which subsequently influences brain 

development over time), however additional analyses in this study did not show that 
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psychiatric medication status explained the association (see Supplementary Data). 

Future studies should not rule out the possibility that, in addition to a preceding/causal 

factor, observed neuroimaging associations with a given disorder could also be a 

downstream effect of the disorder. 

Despite the large population-based sample, longitudinal design, and 

dimensional assessment of psychiatric symptoms, this study has important limitations. 

First, though data from this study are part of a larger population-based study, 

representativeness is important to discuss. While many features of this sample are 

representative of the catchment area (e.g., ethnicity), some potentially are less so. For 

example, mean non-verbal IQ in this sample was a few points above the population 

average. Though models adjusted for IQ proved to be similar to unadjusted models 

(see Supplemental Data), IQ remains an important consideration in child psychiatric 

studies as it is often intertwined with clinical diagnosis and is related to many 

neuroimaging features. Next, as a hierarchical approach was implemented, some 

associations at a more focal/specific level could have been missed and future work 

will benefit from analyzing brain and behavior at a more focal level. Regarding data 

acquisition, imaging data were acquired on two separate MRI scanners, possibly 

introducing problems with the longitudinal interpretation of results. However, 

acquisitions were made as similar as possible (e.g., gradient table, head coil, etc.) and 

a number of steps were introduced to mitigate such problems, including within-

scanner normalization of MRI metrics (e.g., latent factor modeling within scanner, 

and Z-score standardization), which should attenuate the effects of scanner difference. 

Additionally, the statistical models used in the present study to test the association 

between psychiatric problems and change in macro- and microstructural brain 

features operate on a relative, rather than absolute, scale further ameliorating concerns 
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over the effect of scanner. Lastly, only linear models were tested as data were only 

acquired at two points in time. Gray matter morphological studies have previously 

shown the importance of nonlinear trajectories, and future work with additional time-

points should address this in more detail. 

In conclusion, we demonstrate internalizing and externalizing problems are 

related to altered macro- and microstructural changes in a large sample of children 

from the general population. Tracking the emergence of psychopathology in children, 

both in terms of symptomatology and neurobiology, may help guide not only 

diagnosticians, but also improve the selection and timing of treatments. It is important 

to appreciate that this study does not challenge the causal role of neural changes in the 

pathogenesis of psychiatric disorders. Nonetheless, our findings raise the intriguing 

possibility that some emergent neuroimaging features of psychopathology may be 

partly a consequence of the disorder.
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Figure captions 
Figure 1. Timeline of the study data collection points 
Figure indicates the age ranges of study participants during each type of assessment 
  
Figure 2. Depiction of the tracts used in the global DTI metric 
Note: Tracts are group average representations in standard MNI coordinate space. 
Blue indicates the cingulum bundle, gray the forceps major, tan the forceps minor, 
red the inferior longitudinal fasciculus, orange the superior longitudinal fasciculus, 
and green the uncinate fasciculus. 
 
Figure 3. Cross-lagged panel models. 
A.) The general modeling strategy used for cross-lagged panel models, B.) Cross-
lagged panel model where total subcortical volume was associated with broadband 
externalizing problems, and C.) Cross-lagged panel model where global fractional 
anisotropy was associated with broadband internalizing problems. FA = Fractional 
anisotropy and CBCL = Child behavior checklist.  *p < 0.05, **p < 0.01 
 
Figure 4. Association between high and low levels of psychopathology and 
changes in white matter microstructure 
Figure represents predicted model estimates derived from linear mixed effects 
models. The top panel shows broadband internalizing problems and the bottom panel 
shows broadband externalizing problems. Separate lines for 1 standard deviation 
above the mean problem score (“high”) and 1 standard deviation below the mean 
problem score (“low”), with the Y-axis representing the predicted global FA value 
based on model estimates. Note: Fractional anisotropy is a unit-less measure.  
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