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ABSTRACT

We consider a heat conductivity equation with boundary control. The
problems of strong and weak invariance of constant multi-valued map-
ping are analyzed for this equation. The control function is given on
the boundary and the problem is studied under various constraints on
control. We obtain sufficient conditions of strong and weak invariance
for the given multi-valued mapping.
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1. Introduction

In many problems, to keep the controlled objects in desired states is very
important. One of such desired states is a multi-valued mapping (MVM) which
can be strong or weak invariant depending on the realization of admissible con-
trols. Concerning the systems with distributed parameters, important results
were obtained by Feuer and Heymann (1976), Guseinov and Ushakov (1998),
Rettiev (1979), Fazylov (1997), and other researchers for the problem of invari-
ance of given sets.

In the works of Feuer and Heymann (1976), Guseinov and Ushakov (1998),
Kurzhanskii and Filippova (1987), Rettiev (1979), problems in systems with
concentrated parameters were studied, whereas the works of Alimov (2011),
Tukhtasinov et al. (2013), Tukhtasinov and Ibragimov (2011) analysis the sys-
tems with distributed parameters. In particular, the work of Kurzhanskii and
Filippova (1987) is devoted to the problem of keeping the set of trajectories
of a differential inclusion till a specified time in a given MVM. To do this, the
set of attainability of the given system at each time and their dependence on
the survival interval are analytically described. The paper of Satimov (2006)
studies a conflicted situation where control functions are on the right hand
side of the equation. Some partial regularity results for the entropy solution of
the so-called relativistic heat equation are proved in the work of Andreu et al.
(2008). The work of Petter et al. (2017) is devoted to investigation of a synthe-
sis problem for differential and difference equations. In the paper of Fazylov
(1995), a problem on the existence of the kernel of survivability is considered.

A control process described by parabolic equation is investigated by Tukhtasi-
nov and Ibragimov (2011), where the control parameter is on the right hand
side of equation in additive form and subjected to integral constraint. Some
conditions for constant parameters were obtained in that paper to guarantee
strong or weak invariance of the set of interval type.

In the work of Tukhtasinov et al. (2013), similar results were obtained for
the problems formulated in the work of Tukhtasinov and Ibragimov (2011) but
in contrast to the work of Tukhtasinov and Ibragimov (2011) right hand side
of the equation is delaying state of the system.

Interesting applied control problems on heat distribution in a volume by
boundary convector radiator are studied by Alimov (2011). It should be noted
that the Green function was used in that paper to solve the problem and the
result differs from the real solution to within any ε > 0 by increasing the
number of Fourier coefficients.
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In the present paper, the problems of strong and weak invariance of an
MVM, which is a fixed interval of the real line, are studied with respect to
systems in distributed parameters. It is important to note that the control
parameter is given on the boundary, that is, a boundary control problem is
considered. It is crucial that the set of eigenfunctions of corresponding elliptic
operator is complete in the space L2(Ω), but is not so in the space L2(∂Ω).
This considerably complicates the application of the method of separation of
variables, which is the main method of study of present work. To overcome
this situation, we propose to consider a "truncated control", namely, to con-
sider the problem in subspaces of arbitrary dimension of space L2(Ω). In the
work of Alimov (2011), the problem was considered under geometric constraint
on control. However, in the present work, the problem is studied under vari-
ous constraints on the control. We obtain sufficient conditions of strong and
weak invariance of a given multi-valued mapping on a given fixed interval. We
consider various norms on control as well as on the state of the system.

2. Statement of problem

Let

Az =

n∑
i,j=1

∂

∂xi

(
aij(x)

∂z

∂xj

)
, x ∈ Ω,

and
Pz =

∂z

∂ν
+ h(x)z, x ∈ ∂Ω,

with aij(x) = aji(x) ∈ C1(Ω), i, j = 1, ..., n, Ω is a bounded set in Rn with
piecewise smooth boundary, A is elliptic differential operator, that is, for some
positive number γ,

n∑
i,j=1

aij(x)ζiζj ≥ γ
n∑
i=1

ζ2
i ,

for all x ∈ Ω and real numbers ζ1, ..., ζn,
n∑
i=1

ζ2
i 6= 0, h(x) is a given positive

continuous function,
∂z

∂ν
is derivative along the outer normal ν to the boundary

of the set Ω at the point x ∈ ∂Ω.

Consider the following heat exchange control problem (Alimov (2011), Egorov
(1978))

∂z(t, x)

∂t
= Az(t, x), 0 < t ≤ T, x ∈ Ω, (1)
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with boundary condition

Pz(t, x) = u(t, x), 0 ≤ t ≤ T, x ∈ ∂Ω, (2)

and initial condition
z(0, x) = z0(x), x ∈ Ω, (3)

where z(t, x) is an unknown function, T is an arbitrary positive number, z0(·) ∈
L2(Ω) is initial function. Controls are assumed to be measurable functions
u(·, ·) ∈ L2(ST), where ST = {(t, x) | t ∈ [0,T], x ∈ ∂Ω}.

It was proved (Ladyzhenskaja, 1973, Ch. III, § 4, Sec. 2, Theorem 4.1)
that for any u(·, ·) ∈ L2(ST) and z0(·) ∈ L2(Ω), problem (1)–(3) has a unique
solution z(t, x) in the Hilbert spaceW 1,0

2 (QT) which consisted of elements of the
space L2(QT) having square summable generalized derivatives zxi , i = 1, ..., n,
over QT, where QT = {(t, x) | t ∈ (0,T), x ∈ Ω}.

Since the elliptic operator A with boundary condition Pz(t, x) = 0, 0 ≤
t ≤ T, x ∈ ∂Ω, has a discrete specter, that is, it has eigenvalues λk that
satisfy the conditions 0 < λ1 ≤ λ2 ≤ ..., and λk → +∞ as k → ∞, and
eigenfunctions ϕk(x), x ∈ Ω, that forms a complete orthonormal system in
L2(Ω) (Ladyzhenskaja et al., 1967, Ch. III, § 6).

We find the solution of problem (1)–(3) by the Fourier method. If zl(·)
denote the coefficients of Fourier of the function z(·, ·) with respect to the
system {ϕl}, then the solution of problem (1)–(3) can be represented as follows:

z(t, x) =

∞∑
l=1

zl(t)ϕl(x), 0 ≤ t ≤ T, x ∈ Ω,

where

zl(t) = z0
l e
−λlt +

t∫
0

∫
∂Ω

u(τ, s)ϕl(s) e
−λl(t−τ)ds dτ, (4)

and z0
l are the Fourier coefficients of the initial function z0(·), that is,

z0
l =

∫
Ω

z0(s)ϕl(s)ds.

Next, let U be the set of control functions which will be specified later by a
number ρ > 0. Set (Alimov (2011))

Hm =

{
z ∈ L2(Ω) | z =

m∑
l=1

αlϕl(x), αl ∈ R

}
.
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Let Sm : L2(Ω)→ L2(Ω) be an orthogonal project mapping on Hm defined by

Smz(t, x) =

m∑
l=1

zl(t)ϕl(x).

Definition 2.1. A MVM F : [0,T] → 2R, where R = (−∞,∞), is called
strong invariant with respect to problem (IWRP) (1)–(3), if for any u(·, ·) ∈ U
and z0(·) ∈ L2(Ω) with 〈Smz0(·)〉L2(Ω) ∈ F (0), the inclusion 〈Smz(t, ·)〉 ∈ F (t)
holds for all t, 0 < t ≤ T, where 〈·〉 denotes the norm, and z(·, ·) is corre-
sponding solution of problem (1)–(3) (Tukhtasinov et al. (2013), Tukhtasinov
and Ibragimov (2011)).

Definition 2.2. A MVM F : [0,T]→ 2R is called weak IWRP (1)–(3), if for
any z0(·) ∈ L2(Ω) with 〈Smz0(·)〉 ∈ F (0) there exists a control u(·, ·) ∈ U for
which 〈Smz(t, ·)〉 ∈ F (t) for all t, 0 < t ≤ T, where 〈·〉 denotes the norm, and
z(·, ·) is corresponding solution of problem (1)–(3).

In the present paper, we study weak and strong invariance of constant
MVMs of the form F (t) = [0, b], 0 ≤ t ≤ T, for a positive number b.

3. Sufficient conditions of strong and weak
invariance

In this section we obtain some relations between the parameters T, b, ρ,
and λi under which MVM F (t), t ∈ [0,T], is strong or weak IWRP (1)–(3).
Let

‖Smz(t, ·)‖ =

∫
Ω

|Smz(t, s)|2ds

1/2

=

(
m∑
l=1

z2
l (t)

)1/2

, 0 ≤ t ≤ T,

‖Smz(·, ·)‖ =

√√√√√ T∫
0

‖Smz(t, ·)‖2dt =

√√√√√ m∑
l=1

T∫
0

z2
l (t)dt,
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U1 =

u(·, ·) |
m∑
l=1

∫
∂Ω

u(t, s)ϕl(s)ds

2

≤ ρ2, t ∈ [0,T]

 ,

U2 =

u(·, ·) |
m∑
l=1

T∫
0

∫
∂Ω

u(τ, s)ϕl(s)ds

2

dτ ≤ ρ2

 .

We consider four cases and for each case give sufficient conditions of strong
and weak invariance.

3.1 The case of norm ‖Smz(t, ·)‖ and the set of controls U1

Let the norm is defined by 〈Smz(t, ·)〉 = ‖Smz(t, ·)‖, 0 ≤ t ≤ T, and control
set be U = U1. We prove the following statement.

Theorem 3.1. If
ρ ≤ λ1b, (5)

then MVM F (t), t ∈ [0,T], is strong IWRP (1)–(3).

Proof. Let ρ ≤ λ1b. Show strong invariance of MVM F (t), 0 ≤ t ≤ T, with
respect to problem (1)–(3). Indeed, for any Smz(0, ·) and u(t, ·) with

‖Smz(0, ·)‖ =

(
m∑
l=1

|z0
l |2
)1/2

≤ b, ‖u(t, ·)‖ ≤ ρ,

we obtain from (4) that

‖Smz(t, ·)‖2 =

∫
Ω

∣∣Smz(t, x)
∣∣2dx =

m∑
l=1

z2
l (t)

=

m∑
l=1

(
z0
l e
−λlt +

t∫
0

e−λl(t−τ)

∫
∂Ω

u(τ, s)ϕl(s)dsdτ

)2

=

m∑
l=1

(
|z0
l |2e−2λlt + 2z0

l e
−λlt

t∫
0

e−λl(t−τ)

∫
∂Ω

u(τ, s)ϕl(s)dsdτ

+
( t∫

0

e−λl(t−τ)

∫
∂Ω

u(τ, s)ϕl(s)dsdτ
)2
)
. (6)
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Since λl ≥ λ1, the right hand side of (6) can be estimated from above as
follows

m∑
l=1

|z0
l |2e−2λ1t + 2e−λ1t

t∫
0

e−λ1(t−τ)

(
m∑
l=1

|z0
l |

∣∣∣∣∣
∫
∂Ω

u(τ, s)ϕl(s)ds

∣∣∣∣∣
)
dτ

+

m∑
l=1

( t∫
0

e−λl(t−τ)

∫
∂Ω

u(τ, s)ϕl(s)dsdτ

)2

. (7)

Estimate the third term of (7). Since λl ≥ λ1, then using the Cauchy-
Schwartz inequality we obtain for any function u(·, ·) ∈ U1 that

m∑
l=1

( t∫
0

∫
∂Ω

e−λl(t−τ)u(τ, s)ϕl(s)dsdτ

)2

=

m∑
l=1

( t∫
0

e−
λl
2 (t−τ)

∫
∂Ω

e−
λl
2 (t−τ)u(τ, s)ϕl(s)dsdτ

)2

≤
m∑
l=1

( t∫
0

e−λl(t−τ)dτ ·
t∫

0

e−λl(t−τ)
(∫
∂Ω

u(τ, s)ϕl(s)ds
)2

dτ

)

≤

 t∫
0

e−λ1(t−τ)dτ

2

ρ2 =

(
1− e−λ1t

λ1

)2

ρ2. (8)

Applying the Cauchy inequality to the second term of (7) and using (6) and
(8), we get

‖Smz(t, ·)‖2 ≤ b2e−2λ1t + 2 bρe−λ1t

t∫
0

e−λ1(t−τ)dτ +

(
1− e−λ1t

λ1

)2

ρ2.

Therefore,

‖Smz(t, ·)‖ ≤ be−λ1t + ρ
1− e−λ1t

λ1
. (9)

Inequalities (5) and (9) imply that

‖Smz(t, ·)‖ ≤ b.
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This means that MVM F (t), 0 ≤ t ≤ T, is strong IWRP (1)–(3). Proof of
Theorem 3.1 is complete.

Remark 3.1. It can be shown that MVM F (t), 0 ≤ t ≤ T, is weak IWRP
(1)–(3).

To verify this we have to show that, for any z0(·) ∈ L2(Ω) with ‖Smz0(·)‖ ≤
b, one can choose a control u(·, ·) ∈ U so that MVM F (t), 0 ≤ t ≤ T, is weak
IWRP (1)–(3).

Indeed, let u(t, x) = 0, t ≥ 0, x ∈ ∂Ω. Then for any z0(·) ∈ L2(Ω) with
‖Smz0(·)‖ ≤ b, we have

‖Smz(t, ·)‖2 =

m∑
l=1

(
z0
l e
−λlt +

t∫
0

e−λl(t−τ)

∫
∂Ω

u(τ, s)ϕl(s) ds dτ

)2

=

m∑
l=1

(
z0
l e
−λlt

)2

≤
m∑
l=1

|z0
l |2 ≤ b2,

which is the desired conclusion.

3.2 The case of norm ‖Smz(·, ·)‖ and the set of controls U2

Let 〈Smz(·, ·)〉 = ‖Smz(·, ·)‖, and U = U2. Prove the following statement
of strong invariance.

Theorem 3.2. If ρ ≤ b
√

2λ1(1− T)/T, then MVM F (t), 0 ≤ t ≤ T, is
strong IWRP (1)–(3).

Proof. Let ρ ≤ b
√

2λ1(1− T)/T. Assume that z0(·) is an element of the space
L2(Ω) which satisfies the condition ‖Smz0(·)‖ ∈ F (0), that is, ‖Smz0(·)‖ ≤ b.
Let u(·, ·) be any admissible control, that is, u(·, ·) ∈ U2. Derive an estimate
for ‖Smz(t, ·)‖.

Using the inequalities λl ≥ λ1 and the Cauchy-Schwartz inequality, we can
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estimate the right hand side of the inequality (6) from above as follows

m∑
l=1

(
|z0
l |2e−2λ1t + 2e−λ1t|z0

l |

√√√√√ t∫
0

e−2λ1(t−τ)dτ

√√√√√ t∫
0

( ∫
∂Ω

u(τ, s)ϕl(s) ds
)2

dτ

+

t∫
0

e−2λ1(t−τ)dτ

t∫
0

( ∫
∂Ω

u(τ, s)ϕl(s) ds
)2

dτ

)

≤ b2e−2λ1t + 2 b ρ e−λ1t

√√√√√ t∫
0

e−2λ1(t−τ)dτ + ρ2

t∫
0

e−2λ1(t−τ)dτ

=

be−λ1t + ρ

√√√√√ t∫
0

e−2λ1(t−τ)dτ


2

Therefore,

‖Smz(t, ·)‖ ≤ b e−λ1t +
ρ√
2λ1

√
1− e−2λ1t. (10)

To estimate the right hand side of (10), denote

f(t) = b e−λ1t +
ρ√
2λ1

√
1− e−2λ1t, t ≥ 0.

Show that for any positive parameters b and ρ,

max
t≥0

f(t) = f(t0) =

√
b2 +

ρ2

2λ1
, t0 =

1

2λ1
ln
(

1 +
ρ2

2λ1b2

)
.

Indeed, we have

f ′(t) =
λ1e
−λ1t

√
2λ1

√
1− e−2λ1t

(
ρ e−λ1t − b

√
2λ1

√
1− e−2λ1t

)
.

We can see that

f ′(t) ≥ f ′(t0) = 0, 0 < t ≤ t0,
f ′(t) < f ′(t0) = 0, t0 < t.
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Hence,

max
t>0

f(t) = f(t0) =

√
b2 +

ρ2

2λ1
.

Thus,

‖Smz(t, ·)‖ ≤

√
b2 +

ρ2

2λ1
. (11)

It follows from (10) and (11) that

‖Smz(·, ·)‖2 =

T∫
0

‖Smz(t, ·)‖2dt ≤
T∫

0

|f(t)|2dt

≤
T∫

0

|f(t0)|2dt =
(
b2 +

ρ2

2λ1

)
T ≤ b2.

Therefore, ‖Smz(·, ·)‖ ∈ F (t) for all 0 ≤ t ≤ T, that is, F (t) is strong IWRP
(1)–(3), which proves the theorem.

Theorem 3.3. If 2λ1 ≥ 1, then MVM F (t), 0 ≤ t ≤ T, is weak IWRP
(1)–(3).

Proof. Let 2λ1 ≥ 1. Show that MVM F (t), 0 ≤ t ≤ T, is weak invariant.
Indeed, for any z0(·) ∈ L2(Ω) with ‖Smz0(·)‖ ∈ F (0), we choose the control
u(t, x) = 0, t ∈ [0,T], x ∈ ∂Ω, and so

∫
∂Ω

u(t, s)ϕl(s)ds = 0, l = 1, 2, .... Then,

‖Smz(·, ·)‖2 =

T∫
0

‖Smz(t, ·)‖2dt =

m∑
l=1

T∫
0

(
z0
l e
−λlt

)2

dt

≤ b2
1− e−2λ1T

2λ1
≤ b2

2λ1
≤ b2.

This implies that ‖Smz(·, ·)‖ ∈ F (t) for all 0 ≤ t ≤ T, and hence F (t), 0 ≤ t ≤
T, is weak IWRP (1)–(3). This is our assertion.

3.3 The case of norm ‖Smz(·, ·)‖ and the set of controls U1

Let 〈Smz(·, ·)〉 = ‖Smz(·, ·)‖, and U = U1. Prove theorems on strong and
weak invariance.
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Theorem 3.4. If either ρ ≤ λ1b, T ≤ 1, or

1 < ρ/(λ1b) ≤ (1−
√
Te−λ1T)/(

√
T(1− e−λ1T)), (12)

then MVM F (t), 0 ≤ t ≤ T, is strong IWRP (1)–(3).

Proof. Establish that, for any z0(·) ∈ L2(Ω) with ‖Smz0(·)‖ ≤ b and ‖u(·, ·)‖ ≤
ρ, the inclusion ‖Smz(·, ·)‖ ∈ F (t), 0 ≤ t ≤ T holds. Consider the function

g(t) = b e−λ1t + ρ
1− e−λ1t

λ1
, t ≥ 0. (13)

It is not difficult to verify that

max
0≤t≤T

g(t) =

{
g(0) = b, ρ ≤ λ1b,

g(T) = ρ
λ1

+
(
b− ρ

λ1

)
e−λ1T, ρ > λ1b.

(14)

Observe that (9), (13), and (14) imply the following relations

‖Smz(·, ·)‖2 =

T∫
0

‖Smz(t, ·)‖2dt ≤
T∫

0

g2(t)dt ≤
(

max
0≤t≤T

g(t)
)2

T.

Let ρ ≤ λ1b, T ≤ 1. Then using (14) we obtain

‖Smz(·, ·)‖ ≤ max
0≤t≤T

g(t)
√
T = g(0)

√
T = b

√
T ≤ b.

Let now (12) be satisfied. Then

‖Smz(·, ·)‖ ≤ max
0≤t≤T

g(t)
√
T = g(T)

√
T

=
[
b e−λ1T +

ρ

λ1
(1− e−λ1T)

]√
T ≤ b.

Thus, F (t), t ∈ [0,T], is strong invariant and the theorem follows.

Theorem 3.5. If 2λ1 ≥ 1, then MVM F (t), 0 ≤ t ≤ T, is weak IWRP
(1)–(3).

The theorem can be proved similar to Theorem 3.3.
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3.4 The case of norm ‖Smz(t, ·)‖ and the set of controls U2

Let 〈Smz(t, ·)〉 = ‖Smz(t, ·)‖, and U = U2. Denote ξl(t) =

√
t∫

0

e2λlτdτ .

Prove the following statement.

Theorem 3.6. Let for a number t∗ ∈ (0,T) that satisfies the inequality

ρ > λm(bξm(t∗) + ρξ2
m(t∗)) (15)

there exist a control u(·, ·) ∈ U such that
∫
∂Ω

u(τ, s)ϕi(s)ds = 0, 0 ≤ τ ≤ T, i 6=

l,∫
∂Ω

u(τ, s)ϕl(s)ds =
ρ

ξl(t∗)
eλlτ , 0 ≤ τ ≤ t∗,

∫
∂Ω

u(τ, s)ϕl(s)ds = 0, t∗ < τ ≤ T,

at some l ∈ {1, ...,m}. Then MVM F (t), t ∈ [0,T], is not strong IWRP
(1)–(3) on [0,T].

Proof. The fact that values of the control on some small time interval can be
made as big as we wish plays key role in the proof of the theorem. To construct
such a control, take z0

l = b, z0
i = 0, i 6= l. Then, using (4) we obtain

Smz(t) =

e−λltz0
l +

t∫
0

e−λl(t−τ) e
λlτ

ξl(t∗)
ρdτ

ϕl, 0 ≤ t ≤ t∗.

Hence,

||Smz(t)|| = e−λlt
(
b+ ρ

ξ2
l (t)

ξl(t∗)

)
. (16)

Letting χ(t) = ||Smz(t)|| we can see from (16) that χ(0) = b and

χ′(t) = e−λlt
(
−λlb−

λlρ

ξl(t∗)
ξ2
l (t) + ρ

e2λlt

ξl(t∗)

)
≥ e−λlt

(
−λlb− λlρξl(t∗) + ρ

e2λlt

ξl(t∗)

)
.

Since λl ≤ λm, then in view of (15) we get χ′(t) > 0 for all t ∈ [0, t∗] and hence
χ(t) > b, t ∈ [0, t∗]. Therefore we can conclude that ||Smz(t|| ∈ F (t) not for all
t ≥ 0. The proof of the theorem is complete.

Remark 3.2. It can be shown that MVM F (t), 0 ≤ t ≤ T, is weak IWRP
(1)–(3).
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4. Conclusion

We have studied the problems of strong and weak invariance of an MVM
that is a fixed interval of the real line. The boundary control problems have
been studied with respect to systems in distributed parameters under integral
and geometric constraints on control function. The circumstance that the set
of eigenfunctions of elliptic operator in the equation is complete in the space
L2(Ω), but is not so in the space L2(∂Ω), considerably complicates the appli-
cation of the method of separation of variables. To overcome this situation,
we have proposed to consider a "truncated control". Sufficient conditions of
strong and weak invariance of a given fixed interval have been obtained.

To maintain the amount of heat in a volume within a certain range is of
great practical importance. To solve such problems by means of control of
boundary ingress of air heat, the method proposed in the present paper can be
used.
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