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ABSTRACT

In this study, we price options whose underlying asset is raised to a con-
stant using the Fourier-Cosine (COS) method. The valuation is made
within the Black-Scholes environment, where numerical experiments show
that the COS method is more efficient than other known option pricing
techniques.
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1. Introduction

The most standard option is the vanilla option. At its expiration date, T,
for a known underlying share price S and exercise price K, the payoff for an
ordinary vanilla call option is given as such:

max (ST −K, 0) , (1)

while for an ordinary vanilla put option is as follows:

max (K − ST , 0) . (2)

Since first introduced, many modifications have been made to the vanilla op-
tions to cater the needs of investors. These modifications created exotic options,
and one such modification is by taking the underlying share price to a power
of a constant value. This option is what known as a power option.

Power option, also known as a leveraged option, has a non-linear payoff of
the form:

max (SnT −K, 0) , (3)

where n is a constant such that n is larger than 1. The analytical pricing formula
for a power option is as presented in Ibrahim et al. (2012), Tompkins (2000):

PowCT = Snt e
(n−1)

(
r+nσ2

2

)
(T−t)

N(b1)−Ke−r(T−t)N(b2), (4)

where:

b1 =
ln
(
SnT
K

)
+ n

(
r − σ2

2 + nσ2
)
(T − t)

nσ
√
T − t

, (5)

b2 = b1 − nσ
√
T − t. (6)

The advantage of holding a power option is not only because it gives a higher
payoff than the standard vanilla option, but it can also be used to hedge non-
linear risks Tompkins (2000). Bordag and Mikaelyan (2011) also shows that
when trading an underlying within narrow limits, power options can increase
the leverage in the market.

The Monte Carlo simulation (MCS) technique Boyle (1977) has been ex-
tensively used by many practitioners. However, with every increment of the
number of simulations, a larger amount of time is needed to compute a sin-
gle price of an option. Hence, Carr and Madan (1999) introduces the fast
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Fourier transform (FFT) to option pricing. This method has proven to be
computationally efficient and can produce a vector of option prices for a vector
of the corresponding strikes. This method is widely accepted and has been
demonstrated to pricing options under the Black-Scholes environment Ibrahim
et al. (2012, 2014), under a mean-reverting process with jumps and stochastic
volatility Pillay and O’Hara (2011), under double jumps with stochastic inter-
est rate and volatility Zhang and Wang (2013), and recently under the double
exponential jump model with stochastic intensity and volatility Huang et al.
(2014).

Then, Fang and Oosterlee (2008) introduces the Fourier-Cosine series ex-
pansion (COS) method to option pricing problems which has improved the
speed of pricing various types of options, such as vanillas and discrete barrier
options Fang and Oosterlee (2009). The COS method has shown to be more
computationally efficient than the FFT because its convergence rate is expo-
nential, and does not depend on dampening parameters like the FFT does.
Nevertheless, both the FFT and the COS methods require analytical charac-
teristic functions for the underlying asset price process in order to be applied
to option pricing problems.

Under the Black-Scholes environment, Ibrahim et al. (2012) implements the
FFT algorithm to price power options. This paper aims to implement the COS
method to price power options and show the efficiency of the COS method over
the FFT and the MCS techniques in pricing power options.

2. Pricing Power Options using the COS
Method

Consider the payoff of a power option as given in (3). The price of the
power option can be written in integral form as such:

PowCt = Ke−r(T−t)
∫ ∞
0

(est − 1) qT (s)dst, (7)

where st = ln
(
SnT
K

)
. Reference Fang and Oosterlee (2008) suggests that some

values a and b are chosen so that the following integral can be approximated
as follows:

φ1,T =

∫ b

a

eiuxqT (x)dx ≈ φT (u). (8)
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The expansion of the density function qT (s) in the interval [a, b] can be approx-
imated by:

qT (s) ≈ A0

2
+

N−1∑
k=1

Ak cos

(
kπ
x− a
b− a

)
, (9)

for s ∈ [a, b] where:

Ak =
2

b− a
<
[
φ1,T

(
kπ

b− a

)
exp

[
−ia

(
kπ

b− a

)]]
. (10)

Replacing Equation (9) into Equation (7) yields the following approximation
of the power call option price:

PowCt = Ke−r(T−t)
{
A0

2
[χ0(0, b)− ψ0(0, b)]

+

N−1∑
k=1

Ak [χk(0, b)− ψk(0, b)]

}
, (11)

where

χk(c, d) =
1

1 + θ2
{
cos [(d− a)θ] ed − cos [(c− a)θ] ec

θ sin [(d− a)θ] ed − θ sin [(c− a)θ] ec
}
,

and

ψk(c, d) =
1

θ
{sin [(d− a)θ]− sin [(c− a)θ]} ,

for k 6= 0, while for k = 0,

ψk(c, d) = d− c,

with
θ =

kπ

b− a
.

Given the risk-neutral probability measure Q, the share price follows an expo-
nential Lévy form as such:

SnT = Snt e
n
(
r−σ22

)
(T−t)+nσWt , (12)

and the characteristic function of st = lnSnt is given as follows:

φT (u) = e[iu(st+n(r−
1
2σ

2)(T−t))− 1
2n

2σ2u2(T−t)]. (13)
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Following Fang and Oosterlee (2008), the truncation range is chosen as such:

[a, b] =

[
c1 − L

√
c2 +

√
c4, c1 + L

√
c2 +

√
c4

]
, (14)

where cn is the nth cumulant of ln
(
SnT
K

)
given by:

c1 = ln

(
Snt
K

)
+ n

(
r − σ2

2

)
(T − t),

c2 = n2σ2(T − t),
c4 = 0.

3. Numerical Experiments

In this section, we present the numerical results. We price the power op-
tion using the analytical solution (1), the Monte Carlo simulation (MCS), the
fast Fourier transform (FFT) method and the Fourier-Cosine expansion (COS)
method. We compare the computational speed and accuracy among these
methods. In order to understand whether the COS method is good or not, we
calculate the percentage relative error, taken relative to the COS method.

Let n = 2. Table 1 documents the power option prices and computa-
tional times using the analytical solution, across a range of strike prices K =
{5, 6, 7, 8, 9, 10} for a given S = 3, r = 0.03, σ = 0.25, and T = 1. For the MCS,
we implement Euler discretization (MCSE) and the Milstein scheme (MCSM),
and use N = 100, 000 simulations with 100 time steps. The prices and com-
putational times obtained via MCSE and MCSM are documented in Tables 2
and 3, respectively.
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Figure 1: FFT Convergence: α.

Figure 2: COS Convergence: L.

Moreover, the power option is priced via two Fourier-based methods–the
FFT and the COS, where we use N = 210. Figure 1 shows the convergence of
the FFT price with respect to the dampening factor α, while Figure 2 shows the
convergence of the COS price with respect to the truncation range L. Therefore,
we take α = 3, and δ = 0.7 for the FFT approach, and L = 30 for the COS
method. Recall that the Fourier-based approaches produce a range of option
prices for a range of strike prices. Hence, we apply a simple linear interpolation
to produce a single price for the corresponding strike price. We document the
prices and computational times obtained via the FFT and the COS techniques
in Tables 4 and 5, respectively.
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The analytical solution, the MCSE and the MCSM produce a single price
for the power option. On average, the analytical solution produces the prices in
0.0228 seconds (see Table 1), whereas MCSE takes 52.9311 seconds (see Table
2) and MCSM takes 68.5561 seconds (see Table 3). On the other hand, the
FFT approach takes on average 0.0367 seconds (see Table 4), while the COS
method takes 0.0018 seconds (see Table 5). Even if the FFT takes a longer
time than the analytical solution, the FFT and the COS methods produce a
range of option prices for a range of strike prices.

Therefore, it shows that the COS method is more efficient in pricing power
options than the rests of the option pricing techniques that we use in this study.
Furthermore, using the MCS as the benchmark, the COS method produces
accurate approximation of the power option prices because the percentage rel-
ative error is less than 1% for each of the prices corresponding to each strike
price. This is shown in Table 6. Figure 3 plot the prices obtained using all the
methods in this study.

Figure 3: Power Option Prices via Analytical Solution, MCS-Euler, MCS-Milstein, FFT and COS.

Table 1: Power Option Prices using Analytical Solution

Strike, K Prices Time (sec)
5 5.1386 0.0294
6 4.3275 0.0222
7 3.6088 0.0217
8 2.9871 0.0221
9 2.4593 0.0182
10 2.0173 0.0230
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Table 2: Power Option Prices using MCSE

Strike, K Prices Time (sec)
5 5.1772 60.0176
6 4.3081 49.8158
7 3.5867 49.8673
8 2.9880 49.4707
9 2.4440 50.9218
10 2.0008 57.4937

Table 3: Power Option Prices using MCSM

Strike, K Prices Time (sec)
5 5.1220 75.6438
6 4.3033 71.1997
7 3.5816 66.8861
8 2.9764 68.6406
9 2.4426 64.5755
10 2.0234 64.3907

Table 4: Power Option Prices using FFT

Strike, K Prices Time (sec)
5 5.1386 0.0407
6 4.3275 0.0322
7 3.6088 0.0377
8 2.9871 0.0322
9 2.4593 0.0386
10 2.0174 0.0388

Table 5: Power Option Prices using COS

Strike, K Prices Time (sec)
5 5.1386 0.0019
6 4.3275 0.0016
7 3.6088 0.0019
8 2.9871 0.0017
9 2.4593 0.0019
10 2.0173 0.0019
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Table 6: Percentage Relative Error (%) : COS vs MCS

Strike, K ε, (MCSE) ε, (MCSM)
5 0.7512 0.3230
6 0.4483 0.5592
7 0.6124 0.7537
8 0.0301 0.3582
9 0.6221 0.6791
10 0.8179 0.6791

4. Conclusion

In this paper, we have applied the COS method to price power options,
and compare its accuracy and efficiency with other well-known methods, which
are the Monte Carlo simulation and its competitor, the FFT method. We also
price the power option using its analytical pricing solution. Despite the non-
linearity of the payoff of a power option, our numerical experiments show that
the COS method is computationally more efficient than the FFT, and produces
more accurate price approximations than the Monte Carlo simulation, either
via Euler discretization or the Milstein scheme, for the power options.
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