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Abstract
Li et al. (SIAM J. Sci. Comput. 20:719–738, 1998) used the moving mesh partial
differential equation (MMPDE) to solve a scaled Fisher’s equation and the initial
condition consisting of an exponential function. The results obtained are not accurate
because MMPDE is based on a familiar arc-length or curvature monitor function. Qiu
and Sloan (J. Comput. Phys. 146:726–746, 1998) constructed a suitable monitor
function called modified monitor function and used it with the moving mesh
differential algebraic equation (MMDAE) method to solve the same problem of scaled
Fisher’s equation and obtained better results.
In this work, we use the forward in time central space (FTCS) scheme and the

nonstandard finite difference (NSFD) scheme, and we find that the temporal step size
must be very small to obtain accurate results. This causes the computational time to
be long if the domain is large. We use two techniques to modify these two schemes
either by introducing artificial viscosity or using the approach of Ruxun et al. (Int. J.
Numer. Methods Fluids 31:523–533, 1999). These techniques are efficient and give
accurate results with a larger temporal step size. We prove that these four methods
are consistent for partial differential equations, and we also obtain the region of
stability.
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1 Introduction
Real-life problems are mainly modeled by partial differential equations (PDEs) with ap-
plications to engineering, physics, chemistry, ecology, biology, and other related fields of
science. PDEs can be of different forms:

(i) linear or nonlinear,
(ii) homogeneous or nonhomogeneous,

(iii) elliptic, hyperbolic, or parabolic.
PDEs have some specifications that give the information how smooth the solution is, how
rapid information propagates, and what is the impact of initial and boundary conditions
(which help to find if a particular approach is suitable to the problem being portrayed by
the PDEs). Some examples of modeling real-life problems can be found in [4–7]. Indeed,
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a new model and solution method for wave propagation in compressible two-phase flow
problem were proposed by Zeidan et al. [4]. The model consists of six equations and is
applicable for pure fluid and fluid mixtures. A modern shock-capturing method (total-
variation diminishing (TVD)) slope limiter centered scheme (SLIC)) has been proposed
to solve the problems considered in simple way and with good accuracy. The modeling of a
two-phase gas–magma mixture was made using total-variation diminishing (TVD) slope
limiter centered scheme (SLIC) and the model is based on a nonhomogeneous system of
nonlinear hyperbolic conservation laws [5]. There is strong evidence that the model and
the method used are accurate, robust, and conservative. The study of unsteady cavitation
in liquid hydrogen flows was made in the context of compressible two-phase one-fluid
inviscid solver by Goncalvés and Zeidan [6]. Three conservation laws for mixture mass,
mixture momentum, and total energy alongside with gas volume fraction transport equa-
tion with thermodynamic effect were used. Minhajul et al. [7] investigated the interaction
of weak shocks for widely used isentropic drift-flux equations of two-phase flows. The
existence and uniqueness condition for elementary waves was obtained.

Our study is based on reaction–diffusion equations of the form of PDEs, which are
mostly used in modeling transport of air, adsorption of pollutants in soil, diffusion of
neutrons, food processing, modeling of biological and ecological systems, modeling of
semiconductors, oil reservoir flow transport, among others [8]. Some tangible applica-
tions are modeling amazing patterns and phenomena such as tree–grass interactions in
fire-prone savannas [9], pulse splitting and shedding (the Gray–Scott equation; see [10]).
The Gray–Scott equation has some applications, namely, reaction and competition in ex-
citable systems, autocatalysis, reaction between two chemical species with different diffu-
sivities [11], modeling labyrinthine patterns [12], which are formed in models of catalytic
reactions. There are only a few cases where analytical solutions to such reaction–diffusion
equations exist, and therefore we need to construct accurate and efficient numerical meth-
ods.

In this work, our interest is in Fisher’s equation [13], which describes spontaneous
growth and spread of a dominant gene. Fisher considers a population that is distributed
linearly in an habitat (shore line) with uniform density. If the mutation happens at any
point of the habitat, then the mutant gene is expected to increase at the risk of the allelo-
morphs previously occupying the same position. This occurrence will be first terminated
in a neighborhood of the mutation and later in the adjacent portion of its range. Assuming
the range to be long enough in comparison with the distance separating the locations of
offspring from those of their parents, there will be from the origin a wave of increase in
the gene frequency.

1.1 Background of Fisher’s equation
We consider Fisher’s equation [13]

ut = uxx + u(1 – u), (1)

where x ∈ (–∞, +∞), t > 0, and the boundary and initial conditions are

lim
x→–∞ u(x, t) = 1, lim

x→+∞ u(x, t) = 0, (2)

u(x, 0) = u0(x). (3)
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This problem [13] was solved by Kolmogorov et al. [14] by introducing the concepts of
traveling waves and the existence of wave speed c. Moreover, they showed that the propa-
gation speed c of the waves is greater than two (c ≥ 2) if the initial condition u0(x) is in the
interval [0, 1] and the type of solution is u(x, t) = v(ξ ), where ξ = x – ct satisfying u ∈ [0, 1]
for all ξ . They also proved that such solutions do not exist for c ∈ [0, 1). The studies in
[15] showed that all positive initial data, u0(x), decaying at least exponentially as x → ∞
evolves to a unique travelling wave. If

u0(x) ∼ e–β as x → ∞, (4)

then the solution u evolves a traveling wave speed, which is a function of β , where

c(β) =

⎧
⎨

⎩

β + 1
β

, β ≤ 1,

2, β ≥ 1.
(5)

Furthermore, they proved that if the initial amplitude drops sufficiently quickly as x goes to
infinity, then the propagation speed of the wave (which determines the behavior of initial
condition) has the minimum value, c = 2.

The numerical implementation of Eq. (1) with boundary and initial conditions given,
respectively, by (2) and (3) involving the traveling wave solution is challenging due to the
dependence of sensitive solution on the initial data behavior at infinity. For instance, prob-
lem (1) with initial condition (3) (Cauchy problem) is replaced by an initial and boundary
value problem on the finite spatial domain [xl, xr]. Moreover, Gazdag and Canosa [16] re-
solved this issue by imposing an asymptotic representation of the boundary condition (2)
at x = xl , x = xr . They found that the solution draws toward a traveling wave of the min-
imum speed c = 2. They concluded that the demanding time to change to the minimum
wave speed profile is linked to the right-hand cutoff point x = xr . The same approach was
done by Hagstrom et al. [15] with the wave speed greater than the minimum wave speed
c = 2. They showed that the traveling wave solutions can be interpreted in finite domain
by constructing accurately the asymptotic boundary conditions at x = xl and x = xr . They
obtained good results with u(xl, t) = 1 and u(xr , t) = 0 for t ≥ 0.

Many authors like Canosa [17] and Hagstrom and Keller [15] have worked on the issue
of stability and sensitivity of the solution to the boundary of traveling wave. For instance,
the equilibrium solutions u = 0 and u = 1 of Eq. (1) are, respectively, unstable and stable
to small perturbations. Moreover, they demonstrated that all traveling waves are stable to
small perturbations of compact support but unstable to those of infinite support.

In 2005, Anguelov et al. [18] solved the same problem (Eq. (1)) by using a periodic initial
condition with θ -nonstandard method. They concluded that their method is elementarily
stable in the limit case of space-independent variable, stable with respect to the bounded-
ness and positivity property, and finally stable with respect to the conservation of energy
in the stationary case.

2 Organization of paper
The paper is organized as follows. In Sect. 3, we describe in detail how the moving mesh
method with monitor function is implemented. In Sect. 4, we describe numerical experi-
ments considered as in [1, 2]. In Sects. 5 and 6, the forward in time central space (FTCS)
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and FTCS-ε difference scheme are studied, and numerical results are displayed. Sections 7
and 8 are devoted to derivation and properties of NSFD and NSFD-ε schemes, and results
are presented. In Sect. 9, we add artificial viscosity to both FTCS and NSFD and study
properties of new schemes and present some results. In Sect. 10, we highlight the salient
features of this paper. All simulations are performed using MATLAB R2014a software on
an Intel core2 as CPU.

3 Moving mesh method
Li et al. [1] have considered the scaled Fisher equation

ut = uxx + ρu(1 – u), (6)

where x ∈ (–∞, +∞), t > 0, and ρ is a positive large constant. The boundary condition
and initial condition are given by Eqs. (2) and (3), respectively. The exact solution to this
problem is

u(x, t) =
[

1 + exp

(√
ρ

6
x –

5ρ

6
t
)]–2

, (7)

with wave speed c = 5
√

ρ/6 and the minimum wave speed c = 2√
ρ . Li et al. [1] used the

method called the moving mesh partial differential equation (MMPDE). They obtained
poor results when ρ was chosen to be 104 and concluded that MMPDE is not suitable for
reaction–diffusion equation (in particular, Fisher’s equation) when the reaction term is
much greater than the diffusion term with initial condition consisting of an exponential
function. This is due to the fact that MMPDE is based on familiar arc-length or curvature
monitor function and does not produce accurate results [19]. Qiu et al. [2] improved the
results of Li et al. [1] by constructing a specific monitor function and used the method of
moving mesh differential algebraic equation (MMDAE).

The technique of the MMPDE method has been utilized broadly over the last few years
to find a solution to time-dependent partial differential equations (PDEs). The method
consists of moving the mesh points as time change with motion designed to minimize
some measurement in computational error [2].

We consider the variables ζ and t with ζ defined by a one-to-one coordinate transfor-
mation of the form

x = x(ζ , t), ζi = 1 +
2i
N

, i = 0, . . . , N , (8)

where ζi are spaced nodes in the interval [–1, 1] to the nodes {xi}N
i=0 in the interval [xl, xr],

with

xl = x0(t) < x1(t) < · · · < xN (t) = xr , ∀t ≥ 0.

We can rewrite (6) in a semidiscrete form such that

u̇i – ẋi
ui+1 – ui–1

xi+1 – xi–1
=

2
xi+1 – xi–1

(
ui+1 – ui

xi+1 – xi
–

ui – ui–1

xi – xi–1

)

+ ρui(1 – ui) (9)
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for i = 1, 2, . . . , N – 1 by using the Lagrangian form [19]

u̇ – ẋ∂ux = ∂uxx + ρu(1 – u). (10)

Moreover u̇, ẋ are the derivatives respect to t, independent of ζ , and {xi}N
i=0 and {ui}N

i=0
are the time-dependent vectors for approximations. To adjust the mesh to the solution as
presented in [20], they introduced the equidistribution principle

∫ x(ζ ,t)

xl

M(s, t) ds = ζ

∫ x(xr)

xl

M(s, t) ds, (11)

where M > 0 indicates the monitor function that has to be equally distributed between the
nodes xl , xr . Differentiation of Eq. (11) with respect to ζ gives

∂ζ

[
M

(
x(ζ , t)

)
∂ζ x(ζ , t)

]
= 0. (12)

Furthermore, Eq. (12) has been used in [20] to derive a collection of moving meshs, and
the most accurate of this collection is [21]

∂ζζ ẋ = –
1
τ

∂ζ (M∂ζ x), (13)

denoted by MMPDE6 with small positive parameter τ 
 1. Under the condition that the
discretization has been done on the grid ζi and using the second-order central differences
leads to a semidiscrete form of moving mesh equation:

ẋi–1 – 2ẋi + ẋi+1 = –
1
τ

[
M′

i+1/2(xi+1 – xi) – M′
i+1/2(xi – xi–1)

]
(14)

for i = 1, 2, . . . , N – 1 with M′
i+ 1

2
being a smoothed monitor function given in [19, 20] by

M′
i+ 1

2
=

∑i+p
k=i–p M2

k+1/2( q
q+1 )|k–i|

∑i+p
k=i–p( q

q+1 )|k–i| , (15)

where q is a positive real number, and p is a nonnegative integer. Furthermore, setting

M′
i+1/2(xi+1 – xi) – M′

i+1/2(xi – xi–1) = 0 (16)

in Eq. (14) leads to the moving mesh differential-algebraic equation (MMDAE) developed
by Mulholland et al. [19]. This method combines systems (9) and (16). The difference be-
tween MMPDE6 and MMDAE is that MMPDE6 accommodates the parameter τ , which
shows the time used to attain equidistribution from some initial state, whereas MMDAE
enforces the approximate equidistribution condition (16) at each moment of time in the
time discretization.

Each problem has its own choice of a monitor function. This makes the choice of a mon-
itor function an open question. Following [2, 19, 20], the monitor function (arc-length) is
defined by

M(x, t) =
√

1 + α2(∂xu)2 (17)
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with its discrete approximation Mi+1/2 being

Mi+ 1
2

=

√

1 + α2
(

ui+1 – ui

xi+1 – xi

)2

, (18)

where the parameter α measures the amplitude to which the solution slope has control
over the mesh location.

It has been shown in [2] that moving mesh based on the arc-length and curvature mon-
itor function is not convenient for the computational solution of Eq. (6). Indeed, firstly,
the computed solution at t = 2.5 × 10–3 is susceptible to the choice of τ (at values 10–3,
10–5, 10–7 with α fixed at 2 and xl = –0.2, xr = 0.8) in Eq. (13) in the moving mesh using
the arc-length monitor function. Secondly, in the common monitor function utilized, the
first derivative in (17) is substituted by the second derivative, and we have

M(x, t) =
(
1 + α2(∂xxu)2)1/4 (19)

with its discrete approximation

M4
i+ 1

2
= 1 + α2

[
1

xi+1 – xi

(
ui+2 – ui

xi+2 – xi
–

ui+1 – ui–1

xi+1 – xi–1

)]2

. (20)

The results show the same sensitivity as in the case of arc-length monitor function. There
is oscillation of the solution at the front of wave. In the quest for obtaining the accurate
result, Qiu et al. [2] introduced the modified monitor function.

3.1 Modified monitor function
The modified monitor function is constructed to give a great nodal density and hence a
better accuracy at the wave front. It has been shown by Hagstrom and Keller [15] and
Gazdag and Canosa [16] that the difficulties that occur in simulating numerically the trav-
eling waves for Fisher’s equation come from the front of the wave. This is why significant
care should be taken in formulation of boundary conditions at x = xr . Furthermore, the
results in [16] showed that the numerical solution of all traveling wave are stable to small
disturbances with compact support and unstable with infinite extent especially to trunca-
tion errors inserted at the wave front. Consequently, it is an origin of inaccuracy of trun-
cations errors rather than similar truncations errors introduced at the back of the wave.
In this regard, the modified monitor function is

M(x, t) =
[
1 + α2(1 – u)2 + β2(a – u)2(uxx)2]1/2, (21)

where α, β , and a are real specific carefully chosen parameters. The expressions (1 – u)2

and (a – u)2 are designed to give more influence of the curvature region at the front of the
wave than that of the corresponding curvature region at the back of the wave.

With α = 1.5, β = 0.1, a = 1.015, and t = 2.5 × 10–3 in the computations of MMDAE and
the modified monitor function given by Eq. (21), the maximum pointwise error 9.25×10–3

is much smaller than the corresponding error O(1) using the arc-length monitor function.
With the method of MMPDE6, the situation is less improved than with the method of
MMDAE, which is also far better than the method of arc-length monitor function. Indeed,
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Table 1 Computation of L1 and L∞ errors using MMPDE and MMDAE methods with
ρ = 104,α = 1.5,β = 0.1,a = 1.015,τ = 10–7,N = 50, at time t = 2.5× 10–3

Methods L1 error L∞ error CPU

MMPDE O(1) 4.29× 10–2 ext
MMDAE 9.25× 10–3 k × 10–2 0.86ext

with the parameter τ = 10–7 and time t = 2.5 × 10–3, the L∞ error is 4.29 × 10–2. For
the values greater than N = 50 with τ = 10–7 and time t = 2.5 × 10–3, the error is not
diminished. Whenever the reduction is applied to the value of τ , we have the reduction in
the L∞ error. L1 and L∞ errors for MMPDE and MMDAE are displayed in Table 1.

4 Numerical experiments
We consider two problems. Firstly, we consider the same problem as in Qiu et al. [2], which
involves solving the following:

Problem 1

ut = uxx + 104u(1 – u)

for x ∈ [–0.2, 0.8] with boundary conditions limx→–∞ u(x, t) = 1 and
limx→+∞ u(x, t) = 0 and time 2.5 × 10–3.

The initial condition is

u(x, 0) =
[

1 + exp

(√
ρ

6
x
)]–2

. (22)

Secondly, we consider a slight modification of Problem 1. We use a larger domain with the
same boundary and initial conditions and the same propagation time.

Problem 2

ut = uxx + 104u(1 – u)

for x ∈ [–10, 90] with boundary conditions limx→–∞ u(x, t) = 1 and limx→+∞ u(x, t) = 0
and time 2.5 × 10–3.

The initial condition is

u(x, 0) =
[

1 + exp

(√
ρ

6
x
)]–2

. (23)

In the next sections, we present the numerical methods used and study the properties.

5 Forward in time central space (FTCS)
The forward in time central space (FTCS) scheme, when used to discretize Eq. (6), gives
[22]

un+1
m – un

m
k

=
un

m+1 – 2un
m + un

m–1
h2 + ρun

m
(
1 – un

m
)
. (24)

A single expression for the FTCS scheme is

un+1
m = (1 – 2R)un

m + kρun
m
(
1 – un

m
)

+ R
(
un

m+1 + un
m–1

)
, (25)
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where R = k
h2 . The time-step size and spatial mesh are denoted by k and h, respec-

tively.

5.1 Stability
Equation (6) is nonlinear, and hence Fourier series stability analysis cannot be applied di-
rectly. We need to freeze the coefficients before applying von Neumann stability analysis
[23]. Taha and Ablowitz [24] obtained the stability of a method proposed by Zabusky and
Krustal [25] for Korteweg–de Vries (KdV) equation using the method of freezing coeffi-
cients and von Neumann stability analysis. The scheme derived by Zabusky and Kuskal
for the KdV equation ut + 6uux + uxxx = 0 is

un+1
m – un–1

m
2k

+ 6
(

un
m+1 + un

m + un
m–1

3

)(
un

m+1 – un
m–1

2h

)

+
1

2h3

(
un

m+2 – 2un
m+1 + 2un

m–1 – un
m–2

)
= 0. (26)

To obtain stability, Taha and Ablowitz [24] express uux as umaxux and use the ansatz un
m =

ξneImw, where w is the phase angle. They obtain the following equation:

ξ – ξ–1

2k
+

6|umax|
h

I sin(w) +
1

2h3

(
e2Iw – 2eIw + 2e–Iw – e–2Iw)

= 0,

which can be rewritten as

ξ = ξ–1 –
12k|umax|

h
I sin(w) –

k
h3

(
e2Iw – 2eIw + 2e–Iw – e–2Iw)

.

The linear stability requirement is

k
h

∣
∣
∣
∣

1
h2 – 2|umax|

∣
∣
∣
∣ ≤ 2

3
√

3
. (27)

Appadu et al. [26] used the method of freezing coefficient and von Neumann stability
analysis to obtain the region of stability of some schemes for Eq. (6). We use the same idea
to obtain the stability region of the FTCS scheme. We rewrite Eq. (25) as

un+1
m =

(

1 –
2k
h2

)

un
m +

k
h2

(
un

m+1 + un
m–1

)
+ kρun

m –
(
kρun

m
)|umax|, (28)

where umax is a frozen coefficient. It follows by using Fourier series analysis for Eq. (28)
that the amplification factor is given by

ξ = 1 +
2k
h2

(
cos(w) – 1

)
+ kρ

(
1 – |umax|

)
. (29)

In our numerical experiment, umax = 1 and ρ = 104. Hence we obtain

ξ = 1 –
4k
h2 sin2

(
w
2

)

. (30)
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For stability, we must have |ξ | ≤ 1 for w ∈ [–π ,π ], and therefore

–1 ≤ 1 –
4k
h2 sin2

(
w
2

)

≤ 1, (31)

which leads to

k ≤ h2

2
. (32)

For h = 0.01, we obtain k ≤ 5 × 10–5. The time of the experiment is Tmax = 2.5 × 10–3, and
for the stability, the temporal step size is less than or equal to 5 × 10–5 or Tmax/50.

For the accuracy order of FTCS, we use the Taylor series expansion about point (n, m)
of (25):

u + kut +
k2

2
utt +

k3

6
uttt + O

(
k4)

=
(

1 –
2k
h2 + kρ

)

u – kρu2

+
k
h2

(

u + hux +
h2

2
uxx +

h3

6
uxxx +

h4

24
uxxxx + O

(
h5)

)

+
k
h2

(

u – hux +
h2

2
uxx –

h3

6
uxxx +

h4

24
uxxxx + O

(
h5)

)

, (33)

which gives

ut – uxx – ρu(1 – u) = –
k
2

utt –
k2

6
uttt +

h2

12
uxxxx + O

(
k4) + O

(
h5). (34)

The FTCS scheme has the first-order accuracy in time and the second-order accuracy in
space.

5.2 Numerical results using FTCS
We tabulate the L1 and L∞ errors and display CPU times when Problems 1 and 2 are solved
using FTCS at some different values of time-step size with spatial step size h = 0.01. The
errors are displayed in Tables 2 and 3.

We observe from Tables 2 and 3 that the L1 and L∞ errors are almost the same with
different computational times, which was expected since as we increase the length of the
domain, the computational time increases. As we decrease the time-step size, the L1 and
L∞ errors initially decrease and reach minimum when k � Tmax/1300, and then the er-
rors increase again. For k close to Tmax/50, the dispersion error is quite large. Comparing
Tables 2 and 3 to Table 1, we notice that the L1 and L∞ errors from the FTCS method at
an optimal temporal step size are quite smaller than the L1 and L∞ errors from MMPDE
and MMDAE methods. Some plots of u against x are depicted in Fig. 1 using h = 0.01 and
some different values of k.

6 FTCS-ε scheme
In this section, we modify the FTCS scheme to obtain FTCS-ε . Ruxun et al. [3] have de-
signed a new scheme by modifying Lax–Wendroff (LW) scheme used to discretize the
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Table 2 L1 and L∞ errors and CPU time at some different values of time-step size k for Problem 1
with ρ = 104 at time 2.5× 10–3 with spatial mesh size h = 0.01 using FTCS scheme, where
Tmax = 2.5× 10–3

Time step (k) L1 error L∞ error CPU (s)

Tmax/52 2.8968× 10–1 1.5200 0.648
Tmax/100 6.5144× 10–2 6.9877× 10–1 0.719
Tmax/200 3.2980× 10–2 3.9927× 10–1 0.672
Tmax/300 2.0727× 10–2 2.5613× 10–1 0.693
Tmax/400 1.4262× 10–2 1.7830× 10–1 0.708
Tmax/500 1.0268× 10–2 1.2943× 10–1 0.730
Tmax/600 7.5557× 10–3 9.5605× 10–2 0.770
Tmax/700 5.5929× 10–3 7.1038× 10–2 0.791
Tmax/800 4.1068× 10–3 5.2473× 10–2 0.816
Tmax/900 2.9425× 10–3 3.7988× 10–2 0.866
Tmax/1000 2.0059× 10–3 2.6389× 10–2 0.904
Tmax/1100 1.2404× 10–3 1.6901× 10–2 0.932
Tmax/1200 6.2983× 10–4 9.0013× 10–3 1.233

Tmax/1300 1.9347× 10–4 2.3240× 10–3 1.055

Tmax/1400 4.2509× 10–4 4.3458× 10–3 1.141
Tmax/1500 8.3336× 10–4 8.7691× 10–3 1.245
Tmax/1600 1.1913× 10–3 1.3138× 10–2 1.366

Table 3 L1 and L∞ errors and CPU time at some different values of time-step size k for Problem 2
with ρ = 104 at time 2.5× 10–3 with spatial mesh size h = 0.01 using FTCS scheme, where
Tmax = 2.5× 10–3

Time step (k) L1 error L∞ error CPU (s)

Tmax/52 2.8667× 10–1 1.5040 1.368
Tmax/100 6.5144× 10–2 6.9877× 10–1 2.183
Tmax/200 3.2980× 10–2 3.9927× 10–1 4.532
Tmax/300 2.0727× 10–2 2.5613× 10–1 7.689
Tmax/400 1.4262× 10–2 1.7830× 10–1 11.509
Tmax/500 1.0268× 10–2 1.2943× 10–1 16.099
Tmax/600 7.5557× 10–3 9.5605× 10–2 22.270
Tmax/700 5.5929× 10–3 7.1038× 10–2 28.343
Tmax/800 4.1068× 10–3 5.2473× 10–2 35.383
Tmax/900 2.9425× 10–3 3.7988× 10–2 43.181
Tmax/1000 2.0059× 10–3 2.6389× 10–2 51.644
Tmax/1100 1.2404× 10–3 1.6901× 10–2 61.532
Tmax/1200 6.2983× 10–4 9.0013× 10–3 71.195

Tmax/1300 1.9347× 10–4 2.3240× 10–3 82.456

Tmax/1400 4.2509× 10–4 4.3458× 10–3 94.146
Tmax/1500 8.3336× 10–4 8.7691× 10–3 107.725
Tmax/1600 1.1913× 10–3 1.3138× 10–2 118.352

linear advection equation

ut + cux = 0, c > 0. (35)

We briefly describe their approach. To solve Eq. (35), a simple explicit consistent scheme
can be constructed:

un+1
m = a1un

m+1 + a0un
m + a–1un

m–1. (36)
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Figure 1 Plot of u against x for Problem 1 using FTCS scheme at time 2.5× 10–3 at some different values of k
and h = 0.01, Tmax = 2.5× 10–3

The Taylor series expansion of (36) gives

(

1 + �tDt +
�t2

2!
D2

t + · · ·
)

un
i =

[

(a1 + a0 + a–1) + �x(a1 – a–1)Dx

+
�x2

2!
(a1 + a–1)D2

x +
�x3

3!
(a1 – a–1)D3

x + · · · + un
i

]

,

where Dt = ∂/∂t and Dx = ∂/∂x. Ruxun et al. [3] arrive at the following theorem.

Theorem 6.1 Assume that the solution u(x, t) of Eq. (35) is smooth enough and the scheme
given by (36) is consistent with the original partial differential Eq. (35) and that the spatial



Agbavon et al. Advances in Difference Equations        (2019) 2019:146 Page 12 of 33

mesh size h is small enough. Then

a1 + a0 + a–1 = 1,

a1 – a–1 = c
k
h

.
(37)

The Lax–Wendroff (LW) scheme discretizing Eq. (35) is given by

un+1
m =

1
2
(
r2 – r

)
un

m+1 +
(
1 – r2)un

m +
1
2
(
r2 + r

)
un

m–1, (38)

where r = c k
h . By the CFL condition the scheme is stable if 0 < r ≤ 1.

Clearly, LW is not monotonic and is not a positive scheme. A simple approach to con-
struct a monotonic scheme is to reform the LW scheme. Ruxun et al. [3] constructed the
LW-ε scheme given by

un+1
m =

(
r2 – r

2
+ ε1

)

un
m+1 + (1 – r + ε2)un

m +
(

r2 + r
2

+ ε3

)

un
m–1. (39)

For consistency, we set ε1 + ε2 + ε3 = 0 and ε1 – ε3 = 0. Hence ε2 = –2ε1. We let ε2 = –ε.
Therefore LW-ε scheme is

un+1
m =

(
r2 – r

2
+

ε

2

)

un
m+1 + (1 – r – ε)un

m +
(

r2 + r
2

+
ε

2

)

un
m–1 (40)

with 0 ≤ ε 
 1. By working with dissipation and dispersion remainders, they found that
ε = 1/4 gives rise to a positive monotonic scheme, which still has the second-order accu-
racy.

We attempt to derive the FTCS-ε scheme by adding numerical dissipation to the scheme
to reduce numerical dispersion in the profile. We propose the following scheme:

un+1
m =

(

1 –
2k
h2 + kρ

)

un
m +

k
h2 un

m+1 +
k
h2 un

m–1 – kρ
(
un

m
)2

+ ε1un
m–1 + ε2un

m + ε3un
m+1. (41)

The Taylor series expansion about point (n, m) gives

u + kut +
k2

2
utt +

k3

6
uttt + O

(
k4)

=
(

1 –
2k
h2 + kρ

)

u – kρu2

+
k
h2

(

u + hux +
h2

2
uxx +

h3

6
uxxx + O

(
h4)

)

+
k
h2

(

u – hux +
h2

2
uxx –

h3

6
uxxx + O

(
h4)

)

+ ε1

(

u – hux +
h2

2
uxx –

h3

6
uxxx + O

(
h4)

)
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+ ε3

(

u + hux +
h2

2
uxx +

h3

6
uxxx + O

(
h4)

)

+ ε2u, (42)

which simplifies to

u + kut +
k2

2
utt +

k3

6
uttt + O

(
k4)

= (1 + kρ + ε1 + ε2 + ε3)u + (–ε1 + ε3)hux – kρu2

+
(

k +
ε1

2
h2 +

ε3

2
h2

)

uxx +
(

–
ε1

6
+

ε3

6

)

h3uxxx + O
(
h4). (43)

On rearranging, we get

u – (1 + ε1 + ε2 + ε3)u + kut – h(ε3 – ε1)ux – kuxx – kρu + kρu2

= –
k2

2
utt –

k3

6
uttt +

h3

6
(ε3 – ε1)uxxx +

h2

2
(ε1 + ε3)uxx + O

(
h4) + O

(
k4). (44)

We recall that we are solving Eq. (6). Therefore, for consistency, we must have ε1 +ε2 +ε3 =
0 and ε3 – ε1 = 0. We thus have ε3 = ε1 = ε and ε2 = –2ε1 = –2ε. Hence the FTCS-ε scheme
is given by

un+1
m = un

m +
k
h2

(
un

m+1 – 2un
m + un

m–1
)

+ kρun
m – kρ

(
un

m
)2 + ε

(
un

m+1 – 2un
m + un

m–1
)
, (45)

and the scheme is consistent.
For order of accuracy, we consider Eq. (44), replace ε3 = ε1 = ε and ε2 = –2ε1 = –2ε, and

we have

kut – kuxx – kρu + kρu2 = –
k2

2
utt –

k3

6
uttt + h2εuxx + O

(
h4) + O

(
k4). (46)

Dividing by k gives

ut – uxx – ρu + ρu2 = –
k
2

utt –
k2

6
uttt +

h2

k
εuxx +

h2

12
uxxx + O

(
h4

k

)

+ O
(
k3). (47)

The FTCS-ε scheme has the first-order accuracy both in time and in space.
For stability analysis, we apply Fourier series analysis, and we obtain the amplification

factor

ξ = 1 –
2k
h2 +

2k
h2 cos(w) + kρ – kρumax + ε

(
2 cos(w) – 2

)
. (48)

We choose umax = 1, ρ = 104, and therefore,

ξ = 1 – 4 sin2
(

w
2

)(

ε +
k
h2

)

. (49)
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Table 4 L1 and L∞ errors and CPU time at some different values of time-step size k for Problem 1
and spatial mesh size h = 0.01, ε = 0.01 using FTCS-ε , where Tmax = 2.5× 10–3

Time step (k) L1 error L∞ error CPU (s)

Tmax/53 2.8025× 10–1 1.5265 0.764
Tmax/100 5.9959× 10–2 6.6244× 10–1 0.783
Tmax/200 2.1273× 10–2 2.6296× 10–1 0.796
Tmax/300 2.4401× 10–3 3.1737× 10–2 0.928
Tmax/310 9.7448× 10–4 1.3521× 10–2 0.850

Tmax/315 3.2771× 10–4 4.7040× 10–3 0.799

Tmax/320 4.6757× 10–4 4.6218 ×10–3 0.814
Tmax/325 1.1657× 10–3 1.2769× 10–2 0.902
Tmax/350 4.5061× 10–3 5.3608× 10–2 0.821
Tmax/375 7.6305× 10–3 9.1590× 10–2 0.927
Tmax/400 1.0576× 10–2 1.2682× 10–1 0.927
Tmax/500 2.1076× 10–2 2.4515× 10–1 0.925
Tmax/600 3.0241× 10–2 3.4502× 10–1 0.868

Table 5 L1 and L∞ errors and CPU time at some different values of time-step size k and spatial mesh
size h = 0.01, ε = 0.01 of Problem 2 using FTCS-ε , where Tmax = 2.5× 10–3

Time step (k) L1 error L∞ error CPU (s)

Tmax/53 2.8025× 10–1 1.5265 1.488
Tmax/100 5.9959× 10–2 6.6244× 10–1 2.265
Tmax/200 2.1273× 10–2 2.6296× 10–1 4.704
Tmax/300 2.4401× 10–3 3.1737× 10–2 7.819
Tmax/310 9.7448× 10–4 1.3521× 10–2 8.154

Tmax/315 3.2771× 10–4 4.7040× 10–3 8.429

Tmax/320 4.6757× 10–4 4.6218 ×10–3 8.537
Tmax/325 1.1657× 10–3 1.2769× 10–2 8.732
Tmax/350 4.5061× 10–3 5.3608× 10–2 9.779
Tmax/375 7.6305× 10–3 9.1590× 10–2 10.678
Tmax/400 1.0576× 10–2 1.2682× 10–1 11.692
Tmax/500 2.1076× 10–2 2.4515× 10–1 16.319
Tmax/600 3.0241× 10–2 3.4502× 10–1 21.644

For stability, we take |ξ | ≤ 1, which gives

2
(

ε +
k
h2

)

sin2
(

w
2

)

≤ 1 (50)

and finally yields

k
h2 ≤ 1

2
– ε. (51)

For h = 0.01 and ε = 0.01, we have the stability region given by k ≤ 4.90 × 10–5.
We tabulate the L1 and L∞ errors and display CPU times for Problems 1 and 2 using

FTCS-ε at some different values of time-step size with spatial step size h = 0.01 and ε =
0.01. The errors are displayed in Tables 4 and 5. The time is Tmax = 2.5 × 10–3, and the
time-step size is less than or equal to 4.90 × 10–5. Plots of u vs x at time Tmax = 2.5 × 10–3

are displayed in Fig. 2.
We observe from Tables 4 and 5 that the L1 and L∞ errors are the same and the CPU

times are different. As we increase the length of the domain, it is obvious that CPU time
must increase. As we decrease the time-step size, the L1 and L∞ errors initially decrease
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Figure 2 Plot of u against x for Problem 1 using FTCS-ε scheme at time 2.5× 10–3 and some different values
of k and h = 0.01, ε = 0.01, Tmax = 2.5× 10–3

and reach the minimum when k � Tmax/315, and then the errors increase again. For k
close to Tmax/100, the dispersion error is quite large.

Comparing Tables 2 and 3 to Table 1, we notice that the L1 and L∞ errors from the
FTCS-ε method at an optimal step size are quite smaller than those obtained using the
MMPDE and MMDAE methods.

7 Nonstandard finite difference schemes (NSFD)
The nonstandard finite difference scheme (NSFD) has been widely used this past three
decades. The concept of NSFD method has been introduced by Ronald Mickens [27] to
approximate solutions of several partial differential models. The derivations are generally
based on the notion of dynamical consistency [28]. The concept of dynamical consistency
performs an important role in the construction of discrete models, which provide a sig-
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nificant difficulty in the computation of numerical solutions. This difficulty is numerical
instabilities. Indeed, numerical instabilities are solutions to discrete equations that do not
link to any solutions of the original differential equations [29]. The dynamical consistency
is defined with respect to peculiar properties of a physical system, which vary mostly from
one system to another. These properties must preserve positivity, boundedness, mono-
tonicity of the solutions, correct number and stability of fixed-points, and other special
solutions. The importance of dynamical consistency is to be taken as general standard
used to restrain the possible forms for constructing an NSFD scheme [28].

7.1 Construction of NSFD schemes
The NSFD schemes are especially based upon two fundamental principles:

(1) Replacing the denominator of the discrete derivative by a more general function.
(2) Nonlocal representation of both linear and nonlinear terms:

x → 2xk – xk+1, (52)

x3 →
(

xk+1 + xk–1

2

)

x2
k , (53)

x3 → 2x3
k – x2

kxk+1, (54)

x2 →
(

xk+1 + xk + xk–1

3

)

xk . (55)

The selection of the functions φ(k) for time derivatives has no general rule. Nevertheless,
particular forms for precise equation can be easily found. The common functions usually
used in [29] are

φ(k) =
1 – e–λk

λ
, (56)

where λ is some parameter emerging in the differential equation. For partial differential
equation, a suitable generalization can be made. For instance, in the nonlocalization, the
nonlinear terms [29] are

[
u(x, t)

]2 → uk
m–1uk+1

m , (57)

where x → xm = (�x)m and t → tk = (�t)k. The utility and strength of NSFD procedures
are that they do not need any a priori knowledge of the exact solutions to the differential
equation. They come from the enforcement of certain physical system necessities on the
discrete model equations as found by dynamical consistency. In conclusion, the lack of
dynamical consistency leads to numerical instability. This practically appears for some
values of the parameters or step-sizes [28].

Diverse explicit NSFD schemes have been suggested for Fisher’s equation with respect
to their performances [18, 29, 30]. These performances are the stability of fixed points,
positivity, boundedness of solutions, and so on. Following the idea of Mickens [31], a non-
standard finite difference scheme for Eq. (6) is

un+1
m – un

m
φ(�t)

–
un

m+1 – 2un
m + un

m–1
[ψ(�h)]2 = ρun

m – ρ

(
un

m+1 + un
m + un

m–1
3

)

un+1
m , (58)
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where the simple choice was made for the two denominator functions,

φ(�t) = �t = k; ψ(�x) = (�x)2 = h2, (59)

and where nonlocal representation was used for the u2 terms;

u2 →
(

un
m+1 + un

m + un
m–1

3

)

un+1
m . (60)

A single expression of the scheme is

un+1
m =

(1 + kρ – 2k
h2 )un

m + k
h2 (un

m+1 + un
m–1)

1 + kρ( un
m+1+un

m+un
m–1

3 )
. (61)

7.2 Positivity and boundedness: relation between time and space step-sizes
In this subsection, we study the positivity and boundedness properties of NSFD.

From the initial data, if u(x, 0) = f (x) such that 0 ≤ f (x) ≤ 1, then we have 0 ≤ u(x, t) ≤ 1
[30]. If the quantity un+1

m from Eq. (61) is required to satisfy the positivity condition (un+1
m ≥

0) if un
m ≥ 0, then we must have

Γ = 1 + kρ – 2R ≥ 0, R =
k
h2 . (62)

It follows that

1 – Γ = 2R – kρ. (63)

We have

0 ≤ 2R – kρ ≤ 1, (64)

which gives

0 ≤ k
[

2
h2 – ρ

]

≤ 1. (65)

It follows that

k ≤ h2

2

[
1 – Γ

1 – ρh2

2

]

and 0 ≤ Γ < 1, (66)

which is the condition required for positivity [30].
For stability, the amplification factor ξ is given by

ξ =
1 + kρ – 2k

h2 (1 – cos(w))
1 + kρumax

=
1 + kρ – 4k

h2 sin2( w
2 )

1 + kρumax
. (67)

We require |ξ | ≤ 1. Since umax = 1, we have

2k
h2 sin2

(
w
2

)

≤ 1 + kρ. (68)



Agbavon et al. Advances in Difference Equations        (2019) 2019:146 Page 18 of 33

For w ∈ [–π ,π ], we have

2k
h2 ≤ 1 + kρ ⇒ k ≤ h2

2

[
2R – kρ

1 – ρh2

2

]

, (69)

which yields, using Eq. (63),

k ≤ h2

2

[
1 – Γ

1 – ρh2

2

]

and 0 ≤ Γ < 1. (70)

Note that we get the same inequality between h and h for stability and positive definiteness
to be satisfied. For h = 0.01 and ρ = 104, we have k ≤ 10–4 or k ≤ Tmax

25 .
We next study the boundedness. We assume that 0 ≤ un

m ≤ 1. We rewrite Eq. (61) as

un+1
m =

Γ un
m + R(un

m+1 + un
m–1)

1 + ( ρk
3 )(un

m+1 + un
m + un

m–1)
. (71)

From [30], Eq. (71) takes the symmetric form if Γ = R. It follows that

k =
h2

3

[
1

1 – ρh2

3

]

. (72)

Hence

R =
k
h2 =

(
1
3

)[
1

1 – ρh2

3

]

. (73)

Taking into account the symmetric condition (73), Eq. (71) can be rewritten as

un+1
m =

R(un
m + un

m+1 + un
m–1)

1 + ( kρ

3 )(un
m+1 + un

m + un
m–1)

. (74)

We know that 0 ≤ un
m ≤ 1. It follows that

0 ≤ un
m + un

m+1 + un
m–1

3
≤ 1. (75)

Multiplying Eq. (75) by 1 – ρh2

3 and dividing by 1 – ρh2

3 , we have

[

1 –
ρh2

3

]
un

m + un
m+1 + un

m–1

3[1 – ρh2

3 ]
≤ 1, (76)

which can be rewritten

un
m + un

m+1 + un
m–1

3[1 – ρh2

3 ]
–

[
ρh2

3

]
un

m + un
m+1 + un

m–1

3[1 – ρh2

3 ]
≤ 1. (77)

It follows that

un
m + un

m+1 + un
m–1

3[1 – ρh2

3 ]
≤ 1 +

h2

3

[
1

1 – ρh2

3

](
ρ

3

)
(
un

m + un
m+1 + un

m–1
)
. (78)
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Table 6 L1 and L∞ errors and CPU time at some different values of time-step size k for Problem 1 at
time 2.5× 10–3 with spatial mesh size h = 0.01 using NSFD scheme, where Tmax = 2.5× 10–3

Time step (k) L1 error L∞ error CPU (s)

Tmax/25 1.9125× 10–1 9.8876× 10–1 0.683
Tmax/50 1.2304× 10–1 9.2384× 10–1 0.743
Tmax/100 7.0554× 10–2 7.0761× 10–1 0.689
Tmax/200 3.6165× 10–2 4.1770× 10–1 0.724
Tmax/300 2.3031× 10–2 2.7850× 10–1 0.738
Tmax/400 1.6095× 10–2 1.9599× 10–1 0.758
Tmax/500 1.1808× 10–2 1.4689× 10–1 0.831
Tmax/600 8.8945× 10–3 1.1268× 10–1 0.814
Tmax/700 6.7864× 10–3 8.7538× 10–2 0.854
Tmax/800 5.1909× 10–3 6.8368× 10–2 0.900
Tmax/900 3.9428× 10–3 5.3310× 10–2 0.960
Tmax/1000 2.9430× 10–3 4.1187× 10–2 0.972
Tmax/1100 2.1324× 10–3 3.1229× 10–2 0.939
Tmax/1200 1.4815× 10–3 2.2908× 10–2 0.995
Tmax/1300 9.7728× 10–4 1.5854× 10–2 1.034
Tmax/1400 6.3200× 10–4 9.8018× 10–3 1.077

Tmax/1500 4.5216× 10–4 4.5522× 10–3 1.175

Tmax/1600 5.0673× 10–4 5.3751× 10–3 1.210
Tmax/1700 8.4460× 10–4 7.6933× 10–3 1.263
Tmax/1800 1.1475× 10–3 1.0160× 10–2 1.298

Using Eqs. (73) and (72), we have

R
(
un

m + un
m+1 + un

m–1
) ≤ 1 +

kρ

3
(
un

m + un
m+1 + un

m–1
)
, (79)

which gives

0 ≤ un+1
m =

R(un
m + un

m+1 + un
m–1)

1 + ( kρ

3 )(un
m+1 + un

m + un
m–1)

≤ 1. (80)

Hence the boundedness of un+1
m .

We tabulate the L1 and L∞ errors and CPU time when Problems 1 and 2 are solved
using the NSFD scheme at some different values of time-step size k, with spatial step size
h = 0.01. The errors are displayed in Tables 6 and 7. As the time-step size is reduced, the
errors initially decrease, and optimal k is approximately equal to Tmax/1500. On further
decreasing k, the errors start to increase. Plots of u vs x at some values of time-step size
are displayed in Fig. 3.

8 NSFD-ε schemes
We construct the NSFD-ε by adding the expression ε1un

m+1 + ε2un
m + ε3un

m–1 to un+1
m to

Eq. (61). We thus have

un+1
m =

(1 + kρ – 2k
h2 )un

m + k
h2 (un

m+1 + un
m–1)

1 + kρ( un
m+1+un

m+un
m–1

3 )
+ ε1un

m+1 + ε2un
m + ε3un

m–1. (81)

Using the Taylor series expansion about (n, m), we have

u + kut +
k2

2
utt +

k3

6
uttt + O

(
k4)
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Table 7 L1 and L∞ errors and CPU time at some different values of time-step size k for Problem 2 at
time 2.5× 10–3 with spatial mesh size h = 0.01 using NSFD scheme, where Tmax = 2.5× 10–3

Time step (k) L1 error L∞ error CPU (s)

Tmax/25 1.9125× 10–1 9.8876× 10–1 1.130
Tmax/50 1.2304× 10–1 9.2384× 10–1 1.470
Tmax/100 7.0554× 10–2 7.0761× 10–1 2.280
Tmax/200 3.6165× 10–2 4.1770× 10–1 4.844
Tmax/300 2.3031× 10–2 2.7850× 10–1 7.950
Tmax/400 1.6095× 10–2 1.9599× 10–1 12.219
Tmax/500 1.1808× 10–2 1.4689× 10–1 17.052
Tmax/600 8.8945× 10–3 1.1268× 10–1 22.408
Tmax/700 6.7864× 10–3 8.7538× 10–2 28.688
Tmax/800 5.1909× 10–3 6.8368× 10–2 35.804
Tmax/900 3.9428× 10–3 5.3310× 10–2 44.176
Tmax/1000 2.9430× 10–3 4.1187× 10–2 52.029
Tmax/1100 2.1324× 10–3 3.1229× 10–2 61.695
Tmax/1200 1.4815× 10–3 2.2908× 10–2 77.506
Tmax/1300 9.7728× 10–4 1.5854× 10–2 97.953
Tmax/1400 6.3200× 10–4 9.8018× 10–3 98.065

Tmax/1500 4.5216× 10–4 4.5522× 10–3 110.000

Tmax/1600 5.0673× 10–4 5.3751× 10–3 110.565
Tmax/1700 8.4460× 10–4 7.6933× 10–3 115.565
Tmax/1800 1.1475× 10–3 1.0160× 10–2 118.565

=
kuxx + (1 + kρ)u

1 + kρu + kρh2

3 uxx
+ (ε1 + ε2 + ε3)u

+ h(ε3 – ε1)ux +
h2

2
(ε1 + ε2)uxx +

h3

6
(ε3 – ε1)uxxx + O

(
h4), (82)

which can be written as

(

1 + kρu +
kρh2

3
uxx

)

ut +
(

k
2

+
k
2
ρu +

k2

6
ρh2uxx

)

utt

+
(

k2

6
+

k3

6
ρu +

k3

18
ρh2uxx

)

uttt + ρu2 +
ρh2

3
uuxx

= uxx + ρu + (ε1 + ε2 + ε3)u
(

1
k

+
ρh2

3
uxx

)

+ (ε3 – ε1)ux

(
h
k

+ hρu
ρh3

3
uxx

)

+ (ε1 + ε2)uxx

(
h2

k
+ h2ρu +

ρh4

3
uxx

)

+ (ε3 – ε1)uxxx

(
h3

k
+ h3ρu

ρh5

3
uxx

)

+ O
(
k4) + O

(
h4). (83)

As k, h → 0, we recover

ut = uxx + ρu(1 – u) (84)

if ε1 + ε2 + ε3 = 0 and ε1 – ε3 = 0. It thus follows that ε1 = ε3 = ε and ε2 = –2ε.
For accuracy, we next consider Eq. (83) with ε1 = ε3 = ε and ε2 = –2ε. It follows that

(

1 + kρu +
kρh2

3
uxx

)

ut +
(

k
2

+
k
2
ρu +

k2

6
ρh2uxx

)

utt
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Figure 3 Plot of u against x for Problem 1 using NSFD scheme at time 2.5× 10–3 at some different values of k
and h = 0.01

+
(

k2

6
+

k3

6
ρu +

k3

18
ρh2uxx

)

uttt + ρu2 +
ρh2

3
uuxx

= uxx + ρu – εuxx

(
h2

k
+ h2ρu +

ρh4

3
uxx

)

+ O
(
k4) + O

(
h4). (85)

We rewrite Eq. (85) in the form

ut – uxx – ρu + ρu2

= –
(

kρu +
kρh2

3
uxx

)

ut –
(

k
2

+
k
2
ρu +

k2

6
ρh2uxx

)

utt

– ε

(
ρh2

3
u +

h2

k
+ h2ρu +

ρh4

3
uxx

)

uxx –
(

k2

6
+

k3

6
ρu +

k3

18
ρh2uxx

)

uttt



Agbavon et al. Advances in Difference Equations        (2019) 2019:146 Page 22 of 33

+ O
(
k4) + O

(
h4). (86)

We conclude that NSFD-ε has the first-order accuracy in time and the first-order accuracy
in space.

8.1 Positivity and boundedness
We study the positivity of the method. We rewrite Eq. (81) as

un+1
m =

Γ un
m + R(un

m+1 + un
m–1)

1 + kρ( un
m+1+un

m+un
m–1

3 )
, (87)

where

Γ = 1 + kρ –
2k
h2 – 2ε

[

1 + kρ

(
un

m+1 + un
m + un

m–1
3

)]

and

R =
k
h2 + ε

[

1 + kρ

(
un

m+1 + un
m + un

m–1
3

)]

.
(88)

We assume that 0 ≤ un
m ≤ 1. Then un+1

m is positive if

Γ = 1 + kρ –
2k
h2 – 2ε

[

1 + kρ

(
un

m+1 + un
m + un

m–1
3

)]

≥ 0. (89)

By taking the maximum of un
j , j = m – 1, m, m + 1, we have

Γ = 1 + kρ –
2k
h2 – 2ε

(

1 + kρ
3|umax|

3

)

≥ 0, (90)

which gives

Γ = 1 + kρ –
2k
h2 – 2ε(1 + kρ) ≥ 0, (91)

since umax = 1. It follows from Eq. (91) that

1 – 2ε – Γ = k
[

2
h2 – ρ(1 – 2ε)

]

≤ 1 – 2ε. (92)

Hence un+1
m is positive if

k ≤ h2

2

[
1 – 2ε – Γ

1 – ρh2

2 (1 – 2ε)

]

and 0 ≤ Γ < 1 – 2ε. (93)

For stability analysis, we apply Fourier series analysis to Eq. (87) to obtain the amplifi-
cation factor ξ . Thus

ξ =
1 + kρ – 2k

h2

1 + kρ|umax| – 2ε + 2
[ k

h2

1 + kρ|umax| + ε

]

cos(w). (94)
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For the stability, we have |ξ | ≤ 1. Since umax = 1, we solve

–2 ≤ –2
[

2ε +
2k
h2

1 + kρ

]

sin2
(

w
2

)

≤ 0 (95)

and obtain that, for w ∈ [–π ,π ],

k ≤ h2

2

[
1 – 2ε

1 – ρh2

2 (1 – 2ε)

]

. (96)

Hence

k ≤ h2

2

[
1 – 2ε – Γ

1 – ρh2

2 (1 – 2ε)

]

. (97)

Since ε = 0.01 and h = 0.01, we have k ≤ 9.6078 × 10–5 or k ≤ Tmax/26 for positivity or
stability.

For the boundedness of NSFD-ε, we use the symmetric condition by taking R = Γ from
Eq. (87). It follows that

1 + kρ –
2k
h2 –

k
h2 = 3ε

(

1 + kρ
3|umax|

3

)

. (98)

With umax = 1, we have

k =
h2

3

[
1 – 3ε

1 – ρh2

3 (1 – 3ε)

]

(99)

and

k
(1 – 3ε)h2 =

1
3

[
1

1 – ρh2

3 (1 – 3ε)

]

, (100)

which is a symmetric condition. Using Eq. (100), Eq. (87) becomes

un+1
m =

Γ (un
m+1 + un

m + un
m–1)

1 + kρ( un
m+1+un

m+un
m–1

3 )
. (101)

We know that 0 ≤ un
j ≤ 1, j = m – 1, m, m + 1. It follows that

un
m+1 + un

m + un
m–1

3
≤ 1. (102)

Multiplying and dividing Eq. (102) by (1 – ρh2

3 (1 – 3ε)), we have

[

1 –
ρh2

3
(1 – 3ε)

]
un

m+1 + un
m + un

m–1

3[1 – ρh2

3 (1 – 3ε)]
≤ 1. (103)
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It follows that

un
m+1 + un

m + un
m–1

3[1 – ρh2

3 (1 – 3ε)]
≤ 1 +

ρ

3

(
h2

3

)[
1 – 3ε

1 – ρh2

3 (1 – 3ε)

]
(
un

m+1 + un
m + un

m–1
)
. (104)

From Eq. (99) and the symmetry condition (100) we have

Γ
(
un

m+1 + un
m + un

m–1
) ≤ 1 +

kρ

3
(
un

m+1 + un
m + un

m–1
)
. (105)

It follows that

0 ≤ un+1
m =

Γ (un
m+1 + un

m + un
m–1)

1 + kρ

3 (un
m+1 + un

m + un
m–1)

≤ 1. (106)

Hence the boundedness of NSFD-ε method. Generally without symmetry condition (100),
we consider the boundedness of un+1

m in case of NSFD, and we find the boundedness of
NSFD-ε by stating from Eq. (81) that

0 ≤ un+1
m ≤ 1 + ε

(
un

m–1 – 2un
m + un

m+1
)
. (107)

We rewrite ε(un
m+1 – 2un

m + un
m–1) as

ε
(
un

m–1 – 2un
m + un

m+1
)

= ε
(
un

m–1 + un
m+1

)
– 2εun

m. (108)

Since un
j , j = m – 1, m, m + 1, are bounded (0 ≤ un

j ≤ 1), and hence from Eq. (108) we have

ε
(
un

m–1 + un
m+1

)
– 2εun

m ≤ 2ε – 2εun
m, (109)

due to the fact ε(un
m–1 + un

m+1) ≤ 2ε. It follows that

ε
(
un

m–1 + un
m+1

)
– 2εun

m ≤ 2ε – 2εun
m = 2ε

(
1 – un

m
)
. (110)

The quantity 1 – un
m in Eq. (110) is bounded by

0 ≤ (
1 – un

m
) ≤ 1. (111)

It follows from Eqs. (110) and (111) that

ε
(
un

m–1 – 2un
m + un

m+1
)

= ε
(
un

m–1 + un
m+1

)
– 2εun

m ≤ 2ε. (112)

Hence the boundedness of un+1
m for NSFD-ε method from Eq. (107):

0 ≤ un+1
m ≤ 1 + 2ε. (113)

We tabulate the L1 and L∞ errors and CPU time when Problems 1 and 2 are solved
using the NSFD-ε scheme at some different values of time-step size k with spatial step
size h = 0.01. The errors are displayed in Tables 8 and 9. We obtain plots of u vs x at some
value of time-step size with h = 0.01 in Fig. 4.
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Table 8 L1 and L∞ errors and CPU time at some different values of time-step size k for Problem 1 at
time 2.5× 10–3 with spatial mesh size h = 0.01, ε = 0.01 using NSFD-ε scheme, Tmax = 2.5× 10–3

Time step (k) L1 error L∞ error CPU (s)

Tmax/26 1.8636× 10–1 9.8705× 10–1 0.653
Tmax/50 1.2102 ×10–1 9.1868× 10–1 0.662
Tmax/100 6.5470× 10–2 6.7456× 10–1 0.670
Tmax/200 2.4582× 10–2 2.9094× 10–1 0.682
Tmax/300 4.8806× 10–3 5.9139× 10–2 0.699
Tmax/333 1.0091× 10–3 9.5627× 10–3 0.715

Tmax/334 9.9448× 10–4 1.0714× 10–2 0.707

Tmax/335 1.0119× 10–3 1.1866× 10–2 0.787
Tmax/400 8.5987× 10–3 1.0311× 10–1 0.722
Tmax/500 1.9385× 10–2 2.2445× 10–1 0.780

Table 9 L1 and L∞ errors and CPU time at some different values of time-step size, k for Problem 2 at
time 2.5× 10–3 with spatial mesh size, h = 0.01, ε = 0.01 using NSFD-ε scheme, Tmax = 2.5× 10–3

Time step (k) L1 error L∞ error CPU (s)

Tmax/26 1.8636× 10–1 9.8705× 10–1 1.137
Tmax/50 1.2102 ×10–1 9.1868× 10–1 1.485
Tmax/100 6.5470× 10–2 6.7456× 10–1 2.391
Tmax/200 2.4582× 10–2 2.9094× 10–1 4.880
Tmax/300 4.8806× 10–3 5.9139× 10–2 8.207
Tmax/333 1.0091× 10–3 9.5627× 10–3 9.437

Tmax/334 9.9448× 10–4 1.0714× 10–2 9.534

Tmax/335 1.0119× 10–3 1.1866× 10–2 9.540
Tmax/400 8.5987× 10–3 1.0311× 10–1 12.181
Tmax/500 1.9385× 10–2 2.2445× 10–1 17.074

9 Artificial viscosity
We observe from the numerical results of FTCS and NSFD that the schemes are plagued
by dispersion at time step size quite close to the stability limit of the temporal step size
at h = 0.01. We propose to use the artificial viscosity approach. The method of arti-
ficial viscosity has been first introduced by Neumann et al. [32], who explicitly added
a viscosity term to the inviscid gas dynamics equations to allow the computation of
shock waves. Their approach was to change the momentum and energy equations by
adding dissipation in the form of viscosity term to the pressure that would give the
thickness of shock waves and also to space out the computational mesh. The artifi-
cial viscosity was purposely made proportional to the second derivative uxx (which is
positive in compression and negative in expansion) to ensure the mathematical consis-
tency. It should satisfy some constraints: the modified equation must possess solutions
without any discontinuities, the Rankine–Hugoniot conditions must hold (for conserva-
tion equations), and the dissipative term must be negligible outside of the shock waves
[33].

It is also known that artificial viscosity can be expressed implicitly following the work of
Noh et al. [34], who was the first to present an analysis of the implicit artificial viscosity
of the upwind method applied to linear advection equation. It has been proved that, for
a given unstable numerical method, in general, for first-order linear equations, it can be
stabilized by adding a sufficiently large viscosity term. Other forms of artificial viscosity
can be found in Landshoff [35] and Wilkins [36], who attribute it to Kurapatenko [37].



Agbavon et al. Advances in Difference Equations        (2019) 2019:146 Page 26 of 33

Figure 4 Plot of u against x for Problem 1 using NSFD-ε scheme at time 2.5× 10–3 at some different values
of k and h = 0.01, ε = 0.01

Finally, it has been specified by Caramana et al. [38] that an artificial viscosity should
have the following properties:

1. Dissipativity: The artificial viscosity must only act to decrease the kinetic energy.
2. Galilean invariance: The viscosity should vanish smoothly as the velocity field

becomes constant.
3. Self-similar motion invariance: The viscosity should vanish for uniform contraction

and rigid rotation.
4. Wave-front invariance: The viscosity should have no effect along a wave front of

constant phase on a grid aligned with shocks.
5. Viscous force continuity: The viscous force should go to zero continuously as

compression vanishes and remain zero for expansion.
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We start with a simple linear advection equation, ut + ux = 0 (Eq. (35) with c = 1). We
add the artificial viscosity σhuxx to obtain

ut + ux = σhuxx. (114)

As h → 0, we recover the initial linear advection equation ut + ux = 0, and σ is a real
parameter. The numerical discretization for Eq. (114) is

un+1
m – un

m
k

+ D0un
m = σhD+D–un

m, (115)

where D+un
m = un

m+1–un
m

�x , D–un
m = un

m–un
m–1

�x , and D0un
m = un

m+1–un
m–1

2�x are respectively forward,
backward, and centered differencing operators. Rewriting Eq. (115), we have

un+1
m = un

m – kD0un
m + σkhD+D–un

m. (116)

As h → 0, the scheme given by Eq. (116) is a consistent approximation of Eq. (35) with
c = 1.

9.1 FTCS with artificial viscosity
We need to solve

ut = uxx + ρu(1 – u). (117)

We add σhuxx and obtain the new equation

ut = uxx + ρu(1 – u) + σhuxx. (118)

The numerical scheme used to discretize Eq. (118) is

un+1
m – un

m
k

=
un

m+1 – 2un
m + un

m–1
h2 + ρun

m
(
1 – un

m
)

+ σh
(

un
m+1 – 2un

m + un
m–1

h2

)

, (119)

which can be rewritten as

un+1
m =

[

1 –
2k
h2 (1 + σh)

]

un
m + kρun

m
(
1 – un

m
)

+
k
h2 (1 + σh)

(
un

m+1 + un
m–1

)
. (120)

For the order of accuracy, the Taylor series expansion about the point (n, m) of (120) gives

u + kut +
k2

2
utt +

k3

6
uttt

=
(

1 –
2k
h2 (1 + σh)

)

u + kρu(1 – u)

+
k
h2 (1 + σh)

(
2u + h2uxx

)
+ O

(
k4) + O

(
h4), (121)
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Table 10 L1 and L∞ errors CPU time at some different values of time-step size k for Problem 1 with
ρ = 104 at time 2.5× 10–3 with spatial mesh size σ = 2.0 and h = 0.01 using FTCS with artificial
viscosity

Time step (k) L1 error L∞ error CPU (s)

Tmax/53 2.6947× 10–1 1.5155 0.737
Tmax/100 6.2546× 10–2 6.8175× 10–1 0.737
Tmax/200 3.0034× 10–2 3.6771× 10–1 0.742
Tmax/300 1.7645× 10–2 2.1809× 10–1 0.758
Tmax/400 1.1108× 10–2 1.3983× 10–1 0.782
Tmax/500 7.0695× 10–3 8.9529× 10–2 0.800
Tmax/600 4.3263× 10–3 5.5222× 10–2 0.847
Tmax/700 2.3414× 10–3 3.0552× 10–2 0.856
Tmax/800 8.5592× 10–4 1.2040× 10–2 0.907
Tmax/850 3.1048× 10–4 4.4291× 10–3 0.913
Tmax/860 2.2700× 10–4 3.0141× 10–3 0.918
Tmax/870 1.6308× 10–4 1.8608× 10–3 0.923

Tmax/880 1.3833× 10–4 2.3032× 10–3 0.926

Tmax/890 2.3267× 10–4 2.9465× 10–3 0.930
Tmax/900 3.3881× 10–4 3.6042× 10–3 0.951
Tmax/1000 1.2861× 10–3 1.4273× 10–2 0.967
Tmax/1100 2.0648× 10–3 2.3789× 10–2 1.001
Tmax/1200 2.7162× 10–3 3.1756× 10–2 1.042
Tmax/1300 3.2692× 10–3 3.8522× 10–2 1.071
Tmax/1400 3.7445× 10–3 4.4336× 10–2 1.124
Tmax/1500 4.1573× 10–3 4.9385× 10–3 1.142

which gives

ut – uxx – ρu(1 – u) = –
k
2

utt –
k2

6
uttt + σhuxx + O

(
k3) + O

(
h4

k

)

. (122)

We conclude that FTCS with artificial viscosity has the first-order accuracy in time and
the first-order accuracy in space.

If σ = 0, then we recover the FTCS scheme. The amplification factor ξ of the FTCS
scheme with artificial viscosity is

ξ = 1 +
2k
h2 (1 + σh)

(
cos(w) – 1

)
+ kρ

(
1 – |umax|

)
. (123)

We choose umax = 1 based on the numerical experiment chosen and have

ξ = 1 –
4k
h2 (1 + σh) sin2

(
w
2

)

. (124)

The stability region is

k <
h2

2

[
1

1 + σh

]

. (125)

We choose σ = 2.0 and h = 0.01 and obtain k < 4.9020 × 10–5 or Tmax/51.
We tabulate the L1 and L∞ errors and CPU time when Problem 1 is solved using FTCS

with artificial viscosity at some different values of time-step size k with spatial step size
h = 0.01,σ = 2.0. The errors are displayed in Table 10. Plots of u vs x are displayed in Fig. 5.

From Table 10 we deduce that FTCS with artificial viscosity can give accurate results at
a smaller CPU as compared to FTCS, provided that σ is correctly chosen.



Agbavon et al. Advances in Difference Equations        (2019) 2019:146 Page 29 of 33

Figure 5 Plot of u against x for Problem 1 using FTCS with artificial viscosity at time 2.5× 10–3 at some
different values of k and h = 0.01, σ = 2.0, Tmax = 2.5× 10–3

9.2 Nonstandard finite difference method with artificial viscosity
The nonstandard finite difference scheme with artificial viscosity to discretize Eq. (118) is

un+1
m – un

m
k

=
un

m+1 – 2un
m + un

m–1
h2 + ρun

m – ρ

(
un

m+1 + un
m + un

m–1
3

)

un+1
m

+ σh
(

un
m+1 – 2un

m + un
m–1

h2

)

. (126)

A single expression for the scheme is

un+1
m =

(1 + kρ – 2β)un
m + β(un

m+1 + un
m–1)

1 + kρ( un
m+1+un

m+un
m–1

3 )
, where β =

k
h2 (1 + σh). (127)
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The Taylor series expansion of this scheme about (m, n) gives

(

u + kut +
k2

2
utt +

k3

6
uttt

)(

1 + kρu + kρ
h2

3
uxx

)

= (1 + kρ)u + kuxx + O
(
k4) + O

(
h4), (128)

which can be written as

ut – uxx – ρu + ρu2 – σhuxx

= –
(

ρu
h2

3
– σh

)

uxx – k
(

ρu
3

+
ρh2

3
uxx

)

ut

–
(

k
3

+
k2

2

(
ρu
3

+
ρh2

3
uxx

))

utt

–
(

k2

6
+

k3

6

(
ρu
3

+
ρh2

3
uxx

))

uttt

+ O
(
k4) + O

(
h4). (129)

We conclude that NSFD with artificial viscosity has the first-order accuracy in time and
the first-order accuracy in space.

9.2.1 Positivity and boundedness
The scheme given by Eq. (127) is positive if Γ = 1 + kρ – 2k

h2 (1 +σh) ≥ 0. Hence the scheme
is positive definite under the conditions

k ≤ h2

2

[
1 – Γ

1 + σh – ρh2

2

]

and 0 ≤ Γ < 1. (130)

For h = 0.01 and σ = 2.0, we have k ≤ 9.6154 × 10–5.
For boundedness, we start by assuming that 0 ≤ un

m ≤ 1. We apply the same steps as in
case of NSFD without artificial viscosity by letting

Γ = 1 + kρ – 2R, R = β =
k
h2 (1 + σh), (131)

and we use the symmetric condition

R =
k
h2 =

(
1
3

)[
1

1 + ρσ

3 – ρh2

3

]

. (132)

This gives

0 ≤ un+1
m ≤ 1. (133)

Hence the boundedness of un+1
m .

We tabulate the L1 and L∞ errors, CPU time when Problem 1 is solved using NSFD with
artificial viscosity scheme at some different values of time-step size k with spatial step size
h = 0.01, σ = 2.0. The errors are displayed in Table 11. Plots of u vs x using NSFD with
artificial viscosity are displayed in Fig. 6.
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Figure 6 Plot of u against x for Problem 1 using NSFD with artificial viscosity at time 2.5× 10–3, at some
different values of k and h = 0.01, σ = 2.0, Tmax = 2.5× 10–3

10 Conclusion
In this work, we have initially used the FTCS and NSFD schemes to solve Fisher’s equation
when the coefficient of diffusion is much less than the coefficient of reaction term and the
initial condition consists of an exponential function. The time-step size must be relatively
small to obtain accurate results, and the CPU time becomes large if the domain is large.

We propose four schemes, namely FTCS-ε, NSFD-ε, FTCS with Artificial Viscosity, and
NSFD with artificial viscosity, which give quite accurate results at larger time-step size and,
consequently, a smaller CPU time as compared to the FTCS and NSFD methods. Also, the
L1 and L∞ errors at optimal time step size and h = 0.01 are smaller than when using the
MMPDE and MMDAE methods.
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Table 11 L1 and L∞ errors and CPU time at some different values of time step size k for Problem 1 at
time 2.5× 10–3 with spatial mesh size h = 0.01, σ = 2.0 using NSFD with artificial viscosity method

Time step (k) L1 error L∞ error CPU (s)

Tmax/25 1.8982× 10–1 9.8811× 10–1 0.891
Tmax/50 1.2102× 10–1 9.1869× 10–1 0.893
Tmax/100 6.8010× 10–2 6.9128× 10–1 0.897
Tmax/200 3.3252× 10–2 3.8653× 10–1 0.928
Tmax/300 1.9973× 10–2 2.4143× 10–1 0.998
Tmax/400 1.2961× 10–2 1.5892× 10–1 0.999
Tmax/500 8.6255× 10–3 1.0838× 10–1 1.019
Tmax/600 5.6799× 10–3 7.3290× 10–2 1.041
Tmax/700 3.5494× 10–3 4.7746× 10–2 1.089
Tmax/800 1.9544× 10–3 2.8406× 10–2 1.355
Tmax/900 8.4110× 10–4 1.3294× 10–2 1.355
Tmax/950 5.2648× 10–4 7.1035× 10–3 1.564

Tmax/1000 4.4308× 10–4 5.5908× 10–3 1.664

Tmax/1050 7.8758× 10–4 8.5810× 10–3 1.683
Tmax/1100 1.1865× 10–3 1.1836× 10–2 1.684
Tmax/1200 1.8866× 10–3 1.9106× 10–2 1.687
Tmax/1300 2.4809× 10–3 2.5706× 10–2 1.688
Tmax/1400 2.9918× 10–3 3.1732× 10–2 1.690
Tmax/1500 3.4356× 10–3 3.6977× 10–2 1.745
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