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Summary. We develop Bayesian state space methods for modelling changes to the mean level
or temporal correlation structure of an observed time series due to intermittent coupling with an
unobserved process. Novel intervention methods are proposed to model the effect of repeated
coupling as a single dynamic process. Latent time varying auto-regressive components are de-
veloped to model changes in the temporal correlation structure. Efficient filtering and smoothing
methods are derived for the resulting class of models. We propose methods for quantifying
the component of variance attributable to an unobserved process, the effect during individual
coupling events and the potential for skilful forecasts. The methodology proposed is applied to
the study of winter time variability in the dominant pattern of climate variation in the northern
hemisphere: the North Atlantic oscillation. Around 70% of the interannual variance in the win-
ter (December–January–February) mean level is attributable to an unobserved process. Skilful
forecasts for the winter (December–January–February) mean are possible from the beginning
of December.

Keywords: Bayesian filtering and smoothing; Non-linear time series; North Atlantic oscillation;
Time varying auto-regressive models

1. Introduction

Intermittently coupled systems can be found in many areas of both the natural and the
social sciences. We define an intermittently coupled system as a system which can be mod-
elled by two or more component processes which interact only at certain times. For example,
many climate processes are active only during certain times of year; and sea ice and snow cover
change the interaction between the surface and the atmosphere (Chapin et al., 2010; Bourassa
et al., 2013). Migrating birds and animals mix only at certain times of year, allowing trans-
mission of disease between populations (Olsen et al., 2006; Altizer et al., 2011). Empirical
models have been applied to forecasting intermittent demand in production economics and
operational research (Croston, 1972; Shenstone and Hyndman, 2005). Interest will often fo-
cus on one component of the system, whereas the others may be impossible or impractical to
observe or even to identify physically. However, physical reasoning or prior knowledge may
support the existence of such components and provide information about their behaviour and
their effect on the component of interest. We refer to these secondary processes as intermit-
tently coupled components, and the times at which the processes interact as coupling events.
By incorporating this information through careful statistical modelling we can separate the
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Fig. 1. NAO: (a) daily time series ( ) and 90-day moving average ( ) of our daily NAO index; (b)
interannual standard deviation of the monthly mean NAO index and (c) the auto-correlation function of the
daily NAO index computed for each month of the year ( , December–March; , April–November) (a linear
trend and annual and semiannual cycles were estimated by least squares and removed before computing
the auto-correlation functions)

effect of intermittently coupled components from the underlying behaviour of the observed
system.

The methodology that is developed in this study was motivated by the problem of diagnosing
unusual persistence in the dominant mode of climate variability in the northern hemisphere,
known as the North Atlantic oscillation (NAO). Because of its effect on European climate, the
ability to forecast the NAO is currently a topic of great interest for the development of new
climate prediction services (Siegert et al., 2016). A daily time series of NAO observations is
shown in Fig. 1. There is a clear annual cycle in the observations. Fig. 1 also indicates that the
NAO exhibits greater interannual variability in the extended winter season (December–March)
than the extended summer season (April–November). At the same time, the auto-correlation
function indicates increased persistence of day-to-day conditions between December and March
than between April and November. Increased persistence implies increased predictability. The
seasonal contrast in interannual variability and auto-correlation that is visible in Fig. 1 could be
caused by a transient shift in the mean, or a change in auto-correlation structure during between
December and March. Climate scientists typically fit separate models to different seasons (e.g.
Keeley et al. (2009) and Franzke and Woollings (2011)). This approach makes it difficult to diag-
nose whether the apparent change in auto-correlation is the cause of the increased interannual
variability, or a symptom of it.

In this study we propose a flexible class of models that are capable of separating variability due
to unobservable intermittent components from long-term variability in the observed process it-
self, accumulated short-term variability and observation errors. We develop tools for diagnosing
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whether the intermittent component acts on the mean or the auto-correlation structure of the
observed system. If we can learn the state of the intermittent component sufficiently quickly,
then it should be possible to make skilful predictions about the remainder of a particular coupled
period. Alternatively, the effect of the intermittent component may be similar between coupling
events. In that case, it should be possible to make predictions about subsequent coupled periods.

State space models, which are also known as structural time series models, provide a flexible
class of models for non-stationary time series (Durbin and Koopman, 2012). By modelling the
system in terms of physically meaningful components we can incorporate expert knowledge to
help to separate the effects of intermittent components from long-term variability elsewhere in
the system. There is an extensive literature on modelling non-stationarity in the mean by state
space methods, particularly where the observed process depends linearly on the state parameters
and the observation and evolution processes are both normally distributed (Harvey, 1989; West
and Harrison, 1997; Durbin and Koopman, 2012). Time varying auto-regressive (TVAR) models
generalize classical auto-regressive models to have time varying coefficients, thus capturing
changes in the auto-correlation structure (Subba Rao, 1970; Kitagawa and Gersch, 1985; Prado
and West, 1997, 2010). In Section 3.1, we propose a class of models containing latent TVAR
components that capture changes in short-term temporal dependence while maintaining the
interpretability of the mean and unobserved intermittent effects.

Smooth changes in the mean or the temporal dependence structure can be captured by sim-
ple random-walk priors on their respective state variables. Rapid changes, such as those that
might be expected due to intermittent coupling, often require explicit interventions in the model
(Box and Tiao, 1975). Intervention methods were extended to state space models by Harvey
and Durbin (1986). Standard intervention approaches (e.g. Harvey (1989), chapter 7.6, West
and Harrison (1997), chapter 11, and Durbin and Koopman (2012), chapter 3.2.5) require the
introduction of separate intervention and effect variables for each event. The effect is usually
assumed to be constant throughout a particular event and independent between events. In the
case of intermittent coupling, the underlying cause of each event will usually be the same, al-
though the effect may vary. In Section 3.2, we model the effect of intermittent coupling as a single
dynamic process, intermittently identifiable through a series of interventions that determine the
timing and duration of the coupling events.

The construction of the NAO time series that is shown in Fig. 1 and analysed in Section 6 is
described in Section 2. Following the methodological developments that were outlined above,
we discuss efficient posterior inference for the resulting class of models in Section 5. Section 6
contains the results of our study of the NAO. Section 7 concludes with a discussion.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

https://rss.onlinelibrary.wiley.com/hub/journal/14679876/series-
c-datasets

2. The North Atlantic oscillation

The NAO is the name that is given to the difference in surface pressure between the Azores
high and the Icelandic low (Walker, 1924). The NAO is important because it affects the strength
of the prevailing westerly winds and the position of the storm track, strongly influencing the
winter climate of the UK and Europe (Hurrell, 1995). The NAO varies on timescales from a
few days to several decades (Hurrell, 1995; Kushnir et al., 2006). Statistical studies have hinted
at the potential to predict the NAO on seasonal timescales (Keeley et al., 2009; Franzke and
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Woollings, 2011). This potential predictability is often attributed to forcing by slowly varying
components of the climate system, including sea surface temperatures, the stratosphere and
snow cover (Kushnir et al., 2006). Climate models have recently begun to show significant skill
in forecasting the winter NAO one season ahead (Scaife et al., 2014). However, the physical
mechanisms behind the predictability remain unclear and the size of the predictable signal
appears to be underestimated by the models (Scaife et al., 2014; Eade et al., 2014). Careful
statistical modelling may lead to additional insights. If a predictable signal can be extracted
from the observations, then it may be possible to identify the source of the forcing effect.

Following Mosedale et al. (2006), we construct a simple NAO index as the area-weighted sea
level pressure difference between two boxes, one stretching from 20◦ to 55◦ N, the other from
50◦ to 90◦ N, both spanning from 90◦ W to 60◦ E, using pressure data from the ERA-Interim
data set (Dee et al., 2011). The resulting daily time series, shown in Fig. 1, spans the period from
January 1st, 1979, to December 31st, 2017: a total of T =14 245 observations.

3. Modelling intermittently coupled systems

In complex systems such as the Earth system, it is reasonable to consider that all components of
the system (e.g. mean, seasonality and temporal dependence) may evolve slowly over time. We
begin by outlining a general model to capture gradual changes in the underlying components of
the observed process. We then propose explicit intervention models to represent rapid transient
changes due to intermittent coupling.

3.1. Latent time varying auto-regressive component models
Classical auto-regressive models require that we redefine the mean of the observed process,
if the mean is non-zero. This makes it difficult to specify physically meaningful models for
the time evolution of the mean and the effect of intermittently coupled components. Latent
auto-regressive components remove the need to redefine the mean level of the observed time
series (Harvey (1989), chapter 2). To allow for possible changes in the mean, seasonal and auto-
correlation structure of an observed process, we propose the following latent TVAR component
model with observation equation

Yt =μt +
K∑

k=1
ψkt +Xt +vt vt ∼N.0, V/, k =1, : : : , K, .1/

and evolution equations

μt =μt−1 +βt +wμt wμt ∼N.0, Wμ/, .2a/

βt =βt−1 +wβt wβt ∼N.0, Wβ/, .2b/

ψkt =ψk,t−1 cos.kω/+ψÅ
k,t−1 sin.kω/+wψkt wψkt ∼N.0, Wψ/, k =1, : : : , K, .2c/

ψÅ
kt =ψÅ

k,t−1 cos.kω/−ψk,t−1 sin.kω/+wψÅ
k t wψÅ

k t ∼N.0, Wψ/, k =1, : : : , K, .2d/

Xt =
P∑

p=1
φptXt−p +wXt wXt ∼N.0, WXt/, .2e/

φpt =φp,t−1 +wφpt wφpt ∼N.0, Wφ/, p=1, : : : , P , .2f/

where ω= 2π=365:25. The observed process Yt is modelled as the sum of mean, seasonal and
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auto-regressive components. The variable μt represents the mean level of the observed process.
Any local-in-time systematic trend is captured by the variable βt . The harmonic components
ψkt and ψÅ

kt (k =1, : : : , K) represent seasonal behaviour. The local trend and seasonal variables
are assumed to be time varying, evolving according to independent normal evolution processes
wμt , wβt , wψkt and wψÅ

k t (k =1, : : : , K). The irregular component Xt represents short-term vari-
ability in the observed process and is modelled as a latent TVAR process of order P with normal
evolution process wXt . The auto-regressive coefficientsφpt are assumed to be time varying, evolv-
ing according to independent normal evolution processes wφpt (p=1, : : : , P). The independent
residual vt represents observation or measurement error.

In the case of the NAO, the variance WXt of the evolution process wXt is expected to vary
systematically with the solar cycle and is modelled as

WXt =WX +√
.a2 +b2/+a sin.ωt/+b cos.ωt/ WX > 0: .3/

The other evolution and error variances Wμ, Wβ , Wψ, Wφ and V are assumed constant over
time. Model (2) is intended to capture gradual changes in the structure of the observed process.
Therefore, the evolution variances Wμ, Wβ , Wψ and Wφ are expected to be small, in particular
Wμ, Wβ , Wψ, Wφ � WXt . The evolution and error variances are assumed unknown and must
be inferred from the data. The variance parameters WX, a and b of the irregular component in
model (3) must also be inferred from the data. Expert judgement about the scale of the evolution
variances can be incorporated through appropriate prior probability distributions.

The model defined by expressions (1) and (2) is quite general and could be applied to a range
of climate, economic or environmental time series. Examination of the sample periodogram
for our NAO index showed clear evidence of 6- and 12-month cycles, suggesting a model with
K = 2 harmonic components. Examination of the sample auto-correlation and partial auto-
correlation functions suggest a latent TVAR process with P = 5 coefficients (after removing a
linear trend, and constant annual and semiannual cycles estimated by least squares).

3.2. Intervention methods for intermittent coupling
The change in the auto-correlation structure of the NAO index in Fig. 1 appears to involve two
distinct states, i.e. coupled or not. We model the change from the uncoupled to the coupled state
by introducing an intervention variable

λt =
{

0 if t �∈τ ,
1 if t ∈τ

where τ is the set of times t where the observed system is believed to be coupled to the un-
observed process, e.g. τ ={December, January, February, March}. We assume that the timing
and duration of the coupling events is constant between events but not known precisely. We
model the intervention λt by introducing two hyperparameters α and γ representing the start
and duration of the coupled period τ respectively (Fig. 2). In practice, we do not expect an
instantaneous change in the behaviour of the system. Therefore, we linearly taper the interven-
tion λt from 0 to 1 over a period γ1 at the start of the coupled period and from 1 to 0 over a
period γ2 at the end of the coupled period. In the absence of stronger beliefs, we assume that the
tapering is symmetric (i.e. γ1 =γ2) and accounts for a proportion ρ= .γ1 +γ2/=γ of the duration
γ. The hyperparameters α, γ and ρ are assumed to be unknown and must be inferred from the
data.

We consider two alternative models for the effect of intermittent coupling. First, coupling
may lead to a transient change in the mean of the observed process; second, coupling may lead
to a transient change in the temporal dependence structure of the observed process. If coupling



6 P. G. Sansom, D. B. Williamson and D. B. Stephenson

γ2 γ1

αγ

Jan Mar May Jul Sep NovFeb Apr Jun Aug Oct Dec

0.0

0.2

0.4

0.6

0.8

1.0

Date

In
te

rv
en

tio
n 

λ t

Fig. 2. Example of the form and parameterization of the intervention λt: parameters α and γ represent the
start and duration of the coupled period, whereas ρD .γ1 Cγ2/=γ controls the transition

is believed to induce a change in the mean, then the forecast equation (1) is modified to include
the intervention as follows:

Yt =μt +
K∑

k=1
ψkt +Xt +λtδt +vt vt ∼N.0, V/: .4/

The effect δt is modelled as

δt =ϕδt−1 +wδt wδt ∼N.0, Wδ/: .5/

We interpret the effect δt as a change in the mean level, since we expect the effect variance to be
small, i.e. Wδ �WXt . However, when λ>0, the day-to-day variability of the observed process Yt

will increase slightly, in addition to any systematic change that is captured by WXt in expression
(3).

If coupling is believed to induce a change in the auto-correlation structure, then we modify
the forecast equation (1) again,

Yt =μt +
K∑

k=1
ψkt +Xt +λt

P∑
p=1

δptXt−p +vt vt ∼N.0, V/, .6/

and we define P effects δpt , modelled as

δpt =ϕδp,t−1 +wδpt wδpt ∼N.0, Wδ/, p=1, : : : , P , .7/

with common hyperparameters ϕ and Wδ.
Most of our prior knowledge about coupling events is likely to be about their timing and

will be expressed through priors on the hyperparameters α, γ and ρ. Therefore, it is difficult to
justify a complex form for the effects δt or δpt . However, a variety of behaviours can be captured
depending on the values of the coefficient ϕ and variance Wδ.

As noted in the previous section, the mean, trend, seasonal and auto-regressive parameters are
expected to vary only slowly. Therefore, we can learn their states outside the coupled period and
identify the coupling effects δt or δpt (p=1, : : : , P) whenλt >0. The form and parameterization of
the coupling interventionλt in Fig. 2 reflect our physical intuition about the likely influence of an
unobserved process on the NAO. For other applications, different forms might be appropriate,
e.g. no tapering, non-symmetric tapering or non-linear tapering. We recommend keeping 0 �
λt � 1, to make the coupling effect easily interpretable. The only other restriction is that the
intervention should be transient, not permanent. Permanent changes can be modelled in the
same way, but the effects should be fixed to be identifiable, i.e. ϕ=1 and Wδ =0.
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4. State space form and prior assessment

The model that was proposed in Section 3.1 can be written in state space form as

Yt =f.θt , vt/ vt ∼N.0, V/,

θt =g.θt−1, wt/ wt ∼N.0, W/

for t = 1, : : : , T with θ0 ∼ N.μ0,Σ0/, where θt = .μt ,βt ,ψ1t ,ψÅ
1t , : : : ,ψKt ,ψÅ

Kt , Xt , : : : , Xt−P+1,
φ1t , : : : ,φPt/

′ and wt = .wμt , wβt , wψ1t , wÅ
ψ1t , : : : , wψKt , wÅ

ψKt , wXt , wφ1t , : : : , wφP t/
′. The forecast

function f.θt , vt/ is given by equation (1). The evolution function g.θt−1, wt/ is given by expres-
sion (2). The evolution covariance matrix W is diagonal with main diagonal Wt = .Wμ, Wβ , Wψ,
Wψ, : : : , Wψ, Wψ, WXt , Wφ, : : : , Wφ/′. The coupling effect δt or effects δpt (p = 1, : : : , P) can be
appended to the state vector θt . The evolution process vector wt and covariance matrix W
can also be extended to include the coupling effect evolution process wδt or processes wδpt

(p=1, : : : , P) and variance Wδ respectively.
The prior distribution θ0 ∼ N.m0,Σ0/ specifies our beliefs about the state variables at time

t =0. We also need to specify priors for the collection of hyperparameters Φ= .V , Wμ, Wβ , Wψ,
Wφ, WX, a, b,α,γ,ρ,ϕ, Wδ/

′.

4.1. Priors for the state variables
Independent normal priors were assigned to each component of the state vector θ at time
t =0. The prior means and variances are listed in Table 1. We use previous studies of the NAO
to define informative priors for the mean μ0 (Hsu and Wallace, 1976), seasonal components
ψ1,0,ψÅ

1,0,ψ2,0 and ψÅ
2,0 (Chen et al., 2012) and TVAR coefficients φ1,0, : : : ,φ5,0 (Masala, 2015).

The prior on the local trend β0 is based on our judgement that the NAO mean is very unlikely
to experience a local change that is equivalent to more than 1 hPa year−1. The daily NAO in
Fig. 1 has a range of approximately 40 hPa. Therefore, the TVAR residuals X−4, : : : , X0 were
assigned independent normal priors with mean 0 hPa and standard deviation 10 hPa, based on
a range of four standard deviations.

In Fig. 1, the NAO index has an interannual standard deviation of 5–6 hPa between December
and March. Therefore, in the model with a mean intervention, the coupling effect δ0 was assigned
a normal prior with mean 0 hPa and standard deviation 5 hPa. The partial auto-correlation
functions (not shown) for December–March and April–November suggest that the change in
the auto-correlation structure that is represented by the coefficients φ1,0, : : : ,φPt is quite small.

Table 1. Prior probability distributions for the state variables θ0,
all normally distributed

Component Parameter Mean Variance

Mean level μ0 6.0 hPa 12

Local trend β0 0:0 hPa year−1 0:0022

Annual cycle ψ1,0 3.6 hPa 1:02

Annual cycle ψÅ
1,0 1.0 hPa 1:52

Semiannual cycle ψ2,0 1.3 hPa 0:92

Semiannual cycle ψÅ
2,0 0.7 hPa 1:32

Irregular component X−4,: : : , X0 0.0 hPa 102

TVAR coefficients φ1, 0,: : : ,φ5,0 1:8,−1:3, 0:7, 0:22

−0:3, 0:1
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Therefore, in the model with an intervention on the auto-correlation structure, the coupling
effects δ1,0, : : : , δP ,0 were assigned normal priors with mean 0.0 hPa and standard deviation 0.2
hPa.

4.2. Priors on the hyperparameters
The prior distributions that were assigned to the hyperparameters V , Wμ, Wβ , Wφ and WX, a

and b are listed in Table 2. In the case of the NAO, the variability in the mean and seasonal
components will be driven primarily be solar forcing; therefore we assume equal error vari-
ances, i.e. Wψ = Wμ. The observation and evolution variances V , Wμ, Wβ and Wφ are all ex-
pected to be very small, but non-zero. Therefore, boundary avoiding priors were specified in
the form of normal distributions on the logarithm of each variance parameter. Simulation
studies of the individual components in expression (2) were used to assign priors that reflect
the range of variability that we consider plausible for each component. We expect the annual
cycle in the day-to-day variance WXt to peak during the winter season (December–January–
February) with an amplitude of up to 5 hPa2. Corresponding uniform priors were assigned to
the amplitude and phase of WXt and transformed to approximate normal priors for a and b by
simulation.

Table 3 lists the priors for the intervention parameters α, γ and ρ and the coupling effect
parametersϕ and Wδ. Our beliefs about the timing of the intervention λt are the same regardless
of whether coupling affects the mean or the auto-correlation structure. Vague triangular priors
are specified for the beginning α and duration γ of the coupled period. These suggest a coupled

Table 2. Prior densities for hyperparameters

Component Parameter Prior ≈95% interval

Observation variance log.V/ N.−10, 32/ .−16,−4/
Mean variance log.Wμ/ N.−12, 32/ .−18,−6/
Trend variance log.Wβ/ N.−28, 32/ .−34,−22/
Irregular variance log.WX/ N.0:0, 12/ .−2:0, 2:0/
Irregular variance a N.0:5, 12/ .−1:5, 2:5/
Irregular variance b N.2:0, 12/ .0:0, 4:0/
Coefficient variance log.Wφ/ N.−18, 32/ .−24,−12/

Table 3. Prior densities for intervention hyperparameters

Component Parameter Prior ≈95% interval

Coupling start α−120 Tri.0, 365, 185/ .40, 325/
Coupling length γ Tri.0, 365, 180/ .40, 325/
Tapered proportion ρ beta.4, 6/ .0:15, 0:70/
Mean effect variance log.Wδμ / N.−8, 42/ .−16, 0/
Mean effect coefficient ϕμ beta.4, 1/ .0:4, 1:0/
Auto-correlation effect log.Wδφ / N.−16, 42/ .−24,−8/

variance
Auto-correlation effect ϕφ beta.45, 1/ .0:9, 1:0/

coefficient
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period with total length around 180 days, beginning around November 1st. A mildly informative
prior is specified for the tapering parameter ρ to reflect our physical reasoning that the influence
of the unobserved process is unlikely to be constant throughout the coupled period. The coupling
coefficients ϕμ and ϕX are expected to be positive and close to but not exceeding 1. The mean
coupling effect variance Wδμ is expected to be greater than the mean variance Wμ, but still small
compared with WXt . Similarly, the auto-correlation coupling effect variance WδX is expected to
be greater than the coefficient evolution variance Wφ.

5. Posterior inference

We want to evaluate the joint posterior of the model components θ1, : : : , θT and the hyper-
parameters Φ:

Pr.θ1:T ,Φ |Y1:T /=Pr.θ1:T |Φ, Y1:T /Pr.Φ |Y1:T /:

If both f.θt , vt/ and g.θt−1, wt/ were linear functions, then, conditionally on Φ, we could
sample from the marginal posterior of the state variables Pr.θ1:T |Φ, Y1:T / by using the well-
known forward filtering–backward sampling algorithm (Frühwirth-Schnatter, 1994). However,
the evolution function g.θt−1, wt/ that is defined by expression (2) is non-linear because of the
combination of φp and Xt−p in expression (2e). The form of the observation equation (6) also
contains a non-linear combination of δpt and Xt−p. Therefore, we use linear approximations of
the observation and state equations:

Yt ≈f.θ̂t , v̂t/+ @f

@θ

∣∣∣∣
θ̂t , v̂t

.θt − θ̂t/+ @f

@v

∣∣∣∣
θ̂t , v̂t

.vt − v̂t/,

θt ≈g.θ̂t−1, ŵt/+ @g

@θ

∣∣∣∣
θ̂t−1, ŵt

.θt−1 − θ̂t−1/+ @g

@w

∣∣∣∣
θ̂t−1, ŵt

.wt − ŵt/

where θ̂t−1 =E.θt−1/, θ̂t =E.θt/, ŵt =E.wt/ and v̂t =E.vt/. This linearization leads to approx-
imate forward filtering–backward sampling recursions, detailed in Appendix A.

In general, we expect the TVAR evolution variance Wφ to be small, so the coefficients
φ1t , : : : ,φPt will be only weakly correlated with the other state variables and our uncertainty
about the coefficients will decrease rapidly over time. Since the other components of the evolu-
tion function g.θt−1, wt/ are linear and the observation errors vt and joint state evolution process
wt are normal, forward filtering and backward sampling based on the linear approximation are
expected to be very accurate. A simulation study showed that the linear approximation pro-
vides excellent filtering and smoothing performance, even when all components of the model
evolve much more rapidly than expected (see the on-line supplementary material). The linear
approximation sometimes struggles to distinguish the TVAR coefficients φ1t , : : : ,φPt from the
intervention effects δ1t , : : : , δPt in the auto-correlation intervention model when both sets of
coefficients evolve rapidly. In the case of the NAO, we expect only slow evolution of the TVAR
coefficients, and little or no change in the intervention effects. In this scenario, the linearized
approximation performs very well.

The marginal posterior of the hyperparameters Pr.Φ |Y1:T / is proportional to

Pr.Φ |Y1:T /∝Pr.Y1:T |Φ/Pr.Φ/:

The marginal likelihood Pr.Y1:T |Φ/ can be decomposed as

Pr.Y1:T |Φ/=Pr.Y1 |Φ/
T∏

t=2
Pr.Yt |Y1:t−1,Φ/:
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The forward filtering recursions in Appendix A include an expression for the one-step-ahead
forecast distribution Pr.Yt |Y1:t−1,Φ/. So the marginal likelihood can be evaluated analytically.
Therefore, the joint posterior Pr.θ1:T ,Φ |Y1:T / can be efficiently sampled by combining for-
ward filtering–backward sampling with a Metropolis–Hastings scheme targeting Pr.Φ |Y1:T / as
follows.

(a) Let j denote a sample index, at j =1;
(i) sample starting values Φ.1/;
(ii) sample θ

.1/
1:T |Φ.1/, Y1:T by backward sampling.

(b) For j =2, : : : , J :
(i) sample new values ΦÅ from proposal q.ΦÅ |Φ/;
(ii) accept ΦÅ with probability

min
{

Pr.Y1:T |ΦÅ/Pr.ΦÅ/q.Φ |ΦÅ/

Pr.Y1:T |Φ/Pr.Φ/q.ΦÅ |Φ/
, 1

}
;

(iii) sample θ
.j/
1:T |Φ.j/, Y1:T by backward sampling.

In practice, it is not necessary to perform backward sampling for the state θ1:T for every sample
.j/. As with any Markov chain Monte Carlo approach, there is likely to be significant auto-
correlation between subsequent samples of the hyperparameters Φ.j/. In the interest of saving
storage and computation time, it is sufficient to sample the state θ1:T for a subset of the Φ.j/.

5.1. Alternative approaches
Conditionally on the TVAR coefficients φ1t , : : : ,φPt , the model defined by expressions (1)
and (2) is a normal dynamic linear model. We could split the state vector θt into two parts
θÅ

t = .μt ,βt ,ψ1t ,ψÅ
1t , : : : ,ψKt ,ψÅ

Kt , Xt , : : : , Xt−P+1/′ and φÅ
t = .φ1t , : : : ,φPt/

′, and then alternate
between forward filtering and backward sampling for each part, conditionally on the other.
Gibbs sampling steps could be used to sample the hyperparameters Φ (West and Harrison
(1997), chapter 15). This approach provides exact sampling from the required posterior dis-
tribution but has two drawbacks compared with the approximate approach that is proposed
here. First, backward sampling must be performed at every iteration, making this approach
computationally expensive. Second, Gibbs sampling based on the full conditional distributions
of the hyperparameters will tend to mix very slowly, especially for long time series where the
data completely overwhelm the prior.

Particle filtering methods provide tools for inference in general non-linear and non-normal
state space models (Doucet and Johansen, 2011). However, particle filters are computationally
expensive and suffer from problems of ‘particle degeneracy’, i.e. the state θt will eventually be
represented by a single particle at times t � T . Since we are interested in what happened at
all times t = 1, : : : , T , we also require particle smoothing to overcome the degeneracy problem
(Godsill et al., 2004; Briers et al., 2010). Particle smoothing is even more computationally
expensive, making an alternative approach highly desirable. The problem of efficient inference
for unknown hyperparameters also remains an active topic for research in sequential Monte
Carlo methods (Chopin et al., 2013).

5.2. Model selection
For some applications, it will be possible to choose between the mean and auto-correlation
intervention models on the basis of posterior predictive diagnostics, i.e. whether the model
reproduces the observed behaviour. The posterior distributions of the hyperparameters Φ can
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also be useful for choosing between models; for example, is the coupling effect variance Wδ negli-
gible? More formally, we can compare the two intervention models by evaluating the Bayes factor

B= Pr.Y1:T |Mμ/

Pr.Y1:T |MX/
=

∫
Pr.Y1:T |Φ, Mμ/Pr.Φ |Mμ/ dΦ∫
Pr.Y1:T |Φ, MX/Pr.Φ |MX/ dΦ

.8/

where Mμ is the model including an intervention on the mean, and MX is the model including an
intervention on the temporal dependence structure. The Bayes factor is defined as the ratio of the
marginal likelihoods of the competing models (Kass and Raftery, 1995). Values of B greater than
1 indicate support for the mean intervention model Mμ and values of B less than 1 indicate sup-
port for the auto-correlation intervention model MX. The conditional likelihoods Pr.Y1:T |Φ, M/

can be evaluated by using the filtering recursions in Appendix A. The marginal likelihoods
Pr.Y1:T |M/ can be evaluated by using the posterior samples Φ.j/ |Y1:T , M .j = 1, : : : , J/ by
bridge sampling (Gronau et al., 2017).

5.3. What is the effect of the coupling?
Given posterior samples θ

.j/
1:T |Φ.j/, Y1:T , M, we can make inferences about any function of the

state variables θt for any time period τ of interest, e.g. τ = {December 2009–March 2010}.
It is useful to define ηt = μt + Σkψkt , which we refer to as the systematic component of the
observed process. The relative contributions to the variability between coupled periods of the
systematic component ηt , the irregular component Xt , the coupling effects δt or δpt .p=1, : : : , P/

and observation error vt are of particular interest. The means of the systematic and irregular
components during period τ in the jth sample are

η̄.j/
τ = 1

n

∑
t∈τ

η
.j/
t ,

X̄
.j/
τ = 1

n

∑
t∈τ

X
.j/
t

.9/

where n is the number of time steps in τ . The means of the coupling effects during period τ in
the mean and auto-correlation models respectively are

δ̄
.j/
μτ = 1

n

∑
t∈τ

λtδ
.j/
t ,

δ̄
.j/
Xτ = 1

n

∑
t∈τ

λt

P∑
p=1

δ
.j/
pt X

.j/
t−p:

.10/

The contribution due to observation error is

v̄.j/
τ = Ȳτ − η̄.j/

τ − δ̄
.j/
τ − X̄

.j/
τ

where Ȳτ =Σt∈τ Yt=n. The prior expectations of the irregular component Xt and the coupling
effects δt or δpt (p = 1, : : : , P) during any period τ are 0 by expressions (2e), (5) and (7), i.e.
E.Xt/=0 and E.δt/=E.δpt/=0 for all t. In general E.ηt/ �=0, so for the systematic component
ηt it is more useful to consider the anomalies over all similar periods:

η̄Å.j/
τ = η̄.j/

τ − 1
|D|

∑
t′∈D

η
.j/
t′
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where D={t ∈1, : : : , T :d.t/=d.s/ and s∈τ} and d.t/ is the day of the year at time t. The sample
means

η̄Å
τ = 1

J

∑
j

η̄Å.j/
τ , δ̄τ = 1

J

∑
j

δ̄
.j/
τ , X̄τ = 1

J

∑
j

X̄
.j/
τ , v̄τ = 1

J

∑
j

v̄.j/
τ .11/

provide a summary of the posterior expected contribution of each component during the pe-
riod τ . Quantiles can also be computed over the samples to form credible intervals for the
contribution of each component.

5.4. Analysis of variance
In a stationary model, elements of the marginal posterior Pr.Φ |Y1:T , M/ would summarize the
relative contributions of each model component to the observed variability in the index Yt .
However, since our model is non-stationary, we require an alternative summary of the variance
components. In particular, we are interested in the proportion of the interannual variance of the
winter (December–January–February) mean of the NAO index explained by each component.
Let τ i be the ith winter period. We propose to perform an analysis of variance of the observed
means ȳτi = .1=Ni/Σt∈τi yt for each sample j by using the component means η̄.j/

τ i , δ̄
.j/
τ i

and X̄
.j/
τ i

defined in expressions (9) and (10) as explanatory variables. The analysis of variance leads to four
sums of squares for each sample j, corresponding to the sum of squared deviations explained
by the systematic ηt- and irregular Xt-components, the coupling effects δt or δpt (p= 1, : : : , P)
and observation errors vt in each sample trajectory. Posterior summaries over the J samples
summarize the overall contributions of each component to the variability between coupled
periods.

5.5. Can we make predictions using unobserved components?
Knowledge of the unobserved component through the intervention effect δt should provide
useful predictability within coupled periods. The model that was proposed in Section 3.2 also
allows for dependence between successive coupled periods, so knowledge of the unobserved
component during one coupled period may also be useful for predicting the next. The k-step-
ahead forecast distribution given data up to time t can be sampled exactly by using the recursions
in Appendix A. The correlation between the data and the forecast means provides a simple
measure of forecast performance.

6. Results

The Metropolis–Hastings sampler that was outlined in Section 5 was used to draw 1000 samples
from each of the joint posteriors Pr.θ1:T ,Φ |Y1:T , Mμ/ and Pr.θ1:T ,Φ |Y1:T , MX/. Full details of
the sampling design, proposal distributions, diagnostic trace plots and posterior density plots
are given in the on-line supplementary material. Both models converge to stable distributions
and mix efficiently; however, the burn-in period can be very long depending on the initial values
of the hyperparameters Φ.

Despite deliberately vague prior distributions, the posterior distributions of the intervention
parameters α and γ are quite sharp for both models. Fig. 3 visualizes the posterior distribution
of the intervention λt for each model. In the mean intervention model Mμ, an unobserved
component acts strongly on the NAO between December and February and into March. There
is almost no evidence of coupling between May and October. In the auto-correlation intervention
model MX the situation is reversed. The inverted intervention structure is unexpected but still
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Fig. 3. Posterior of the intervention λt ( , random sample of 10 realizations of the intervention λ.j/
t

based on the posterior samples of α, γ and ρ; , pointwise posterior mean over all 1000 realizations of
λ.j/

t ): (a) model with an intervention on the mean Mμ; (b) model with an intervention on the auto-correlation
structure MX

consistent with a marked difference in behaviour between the extended winter (December–
March) and extended summer (April–November) seasons. Prior sensitivity analysis showed
that the posterior distributions of the hyperparameters Φ, including α and γ, are insensitive to
the choice of priors in Tables 2 and 3 (see the supplementary material).

To assess the identifiability of the various model components, particularly the coupling effects,
we computed correlation matrices for the states θ

.j/
1:T |Φ.j/, Y1:T for each sample j. On average

across the 1000 sample covariance matrices, the state variables in both models are all uncorrelated
with one another. In particular, the mean intervention effect δt is almost completely uncorre-
lated with the irregular component Xt (90% credible interval of correlation .−0:02, 0:06/), and
only ever weakly correlated with the mean component μt (90% credible interval .−0:28, 0:20/).
Whereas the auto-correlation intervention effects δ1t , : : : , δ5t are uncorrelated with the other state
variables on average, they may be strongly correlated or anticorrelated with the mean μt and the
auto-correlation coefficientsφ1t , : : : ,φ5t . Further investigation showed that these strong associa-
tions were the result of the slow rate of change of these parameters, since sampling multiple state
trajectories θ1:T from any single sample of the hyperparameters Φ.j/ produced a similar range
of sample correlations.

Posterior predictive diagnostics were used to check the performance of each model in captur-
ing the observed structure of the NAO. In particular, we are interested whether the model can
reproduce the seasonal contrast in the interannual variance and auto-correlation structures in
Fig. 1. For each sample θ

.j/
1:T ,Φ.j/ |Y1:T from each model we simulate a new sequence of states

θ
Å.j/
τ |Φ.j/, Y1:T and observations Y

Å.j/
τ for the period τ ={January 1988–December 2017}. Fig.

4 compares the annual cycle in the interannual standard deviation and the seasonal auto-
correlation functions of the observed data Yτ and the samples Y

Å.j/
τ for j = 1, : : : , 1000. The

mean intervention model Mμ can reproduce both the interannual variability and the seasonal
auto-correlation function. There is a clear difference in the auto-correlation functions simu-
lated between April and November, and between December and March. However, the auto-
correlation intervention model MX cannot reproduce the seasonal auto-correlation behaviour
and does not reproduce the interannual variability as well as the mean intervention model Mμ.
There is a small difference between the extended summer (April–November) and extended win-
ter (December–March) auto-correlation functions, but much less than observed in the data.
The inverted intervention structure in Fig. 3 is an attempt to exploit the extended summer
(April–November) period to distinguish the small intervention effects δp. Similar checks (which
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Fig. 4. Posterior predictive checks: (a), (b) model with an intervention on the mean Mμ; (c), (d) model
with an intervention on the auto-correlation structure MX ( , December–March; , April–November) (before
computing the auto-correlation, the mean, a linear trend and annual and semiannual cycles were estimated by
least squares and removed; , observed statistics; , posterior mean; , pointwise 90% posterior
credible intervals; , overlap between credible intervals)

are not shown) suggest that both models can adequately capture the annual cycle in the NAO,
indicating that our choice of K =2 harmonics was reasonable.

The posterior predictive checks strongly favour the mean intervention model over the auto-
correlation intervention model. The mean intervention can reproduce the observed behaviour;
the auto-correlation intervention cannot. The Bayes factor of B=1096 also provides extremely
strong evidence in favour of the mean intervention model, i.e. the observed data are over 1000
times more likely to have arisen from the mean intervention model. We conclude that the most
likely explanation for the observed behaviour of the NAO index is a transient change in the mean
level during the extended winter (December–March) season. The remainder of our analysis
focuses on interpreting only the mean intervention model.

Surprisingly for such a complex phenomenon, the mean, trend and seasonal components of
the NAO index show very limited evidence of non-stationarity. Fig. 5 shows some posterior
trajectories θ

.j/
1:T from each component. There is evidence of a fairly constant trend leading

to a reduction in the mean level of the NAO of around 0.8 hPa between 1979 and 2017. The
posterior distribution of the trend itself suggests that the rate of decrease in the NAO mean
peaked around 1993–1994 at around 0:03 hPa year−1 (−0:07, 0:01), since when the trend has
gradually weakened. The amplitudes of the annual and semiannual cycles are almost constant
(likewise the phases). The 0.95-quantile of the posterior distribution of the mean evolution
standard deviation

√
Wμ is 0.005 hPa, so changes in excess of 0:2 hPa year−1 to the mean and

seasonal components are not ruled out under the random-walk hypothesis. There is no evidence
of non-stationarity in the auto-regressive coefficients φ1, : : : ,φ5 which are effectively constant
throughout the study period. This suggests that the day-to-day variation in the NAO can be
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Fig. 5. Posterior distributions of model components ( , pointwise posterior mean; , pointwise
90% credible intervals; , random sample of 10 trajectories θ.j/

1:T jΦ.j/, Y1:T ): (a) mean μt; (b) trend βt;
(c) amplitudes of seasonal harmonics ψ1 and ψ2; (d) TVAR coefficients φ1t,. . . ,φ5t

Table 4. Analysis of variance†

Season Mean Coupled Irregular Error
component component

Winter (December– 0.00 (0.00,0.05) 0.66 (0.52,0.77) 0.33 (0.23,0.47) 0.00 (0.00,0.00)
January–February)

Summer (June– 0.15 (0.06,0.22) 0.00 (0.00,0.00) 0.85 (0.78,0.94) 0.00 (0.00,0.00)
July–August)

†Values in parentheses indicate 90% credible intervals.

adequately represented by an auto-regressive process rather than a TVAR process. However,
this is a useful conclusion given the observed seasonal auto-correlation structure in Fig. 1.

6.1. Quantifying the effect of coupling
The posterior mean estimate of the intervention effect standard deviation

√
Wδμ is 0.43 (0.33–

0.53), indicating a very active process, contributing substantial additional interannual variability
during the extended winter season (December–March). Table 4 contains the results of the anal-
ysis of variance that was proposed in Section 5 for the mean intervention model Mμ. The effect
of coupling δt explains around 66% of the observed variation in the winter (December–January–
February) means. Accumulated short-term variability that is captured by the TVAR residuals
Xt explains around 33% of the interannual variability. Despite the trend that is visible in Fig. 5,
the contribution of the mean and seasonal components is negligible. Together they account for
a maximum of 5% of the interannual variability in winter (December–January–February). In
contrast, the mean and seasonal components account for around 15% of interannual variability
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Fig. 6. Contribution of individual model components: posterior mean estimates of the winter (December–
January–February) mean levels of the systematic component η̄ .�/, the irregular component X̄ ( ), the
coupling effect Nδ ( ) and the observation error v̄ ( )

in summer (June–July–August) when coupling has no effect and the day-to-day variability is
reduced. The contribution of measurement error is negligible.

Fig. 6 shows the posterior mean contribution of each component to each observed winter
(December–January–February) mean level. This is an important and useful advance over ex-
isting methods in climate science that estimate only the fraction of total variance explained by
each component. The weak negative trend in the mean component μt is clearly visible. Both
the absolute and the relative contributions of the irregular component Xt and the coupling ef-
fect δt vary between years, but both components usually have the same sign. This is a product
of the limited data that are available to estimate the components during each extended winter
(December–March). If the coupling signal cannot be clearly identified during a particular sea-
son, then the contribution to the seasonal mean will be split approximately according to the
analysis of variance in Table 4 and the two components will have the same sign. The fact that
the relative contribution of each component varies widely in Fig. 6 indicates that the model can
separate the coupling effect from the noise of the irregular component.

6.2. Forecasting the winter North Atlantic oscillation
The posterior mean estimate of the coupling effect coefficient ϕμ is 0.994 (90% credible interval
0.991–0.997). In terms of interannual variability, this is equivalent to a correlation of around
0.19 (0.05–0.38) between December–January–February means, suggesting limited evidence of
persistence and therefore predictability between seasons. However, if we can learn about the
coupling effect sufficiently quickly during a specific coupled period, then we can use that knowl-
edge to provide more skilful forecasts for the rest of the period. Fig. 3 suggests that the system
is at least partially coupled from the beginning of November until around the middle of April.
Using the forecasting recursions in Appendix A, we obtained forecasts beginning each day from
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Fig. 7. Predictability of winter (December–January–February) NAO: (a) correlation between the observa-
tions and forecasts initialized on each day between November and February, for the mean level over the
remainder of the period to February 28th; (b) observations (x) and forecasts ( ), for the mean NAO between
December 1st and February 28th each year, given data up to November 30th
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Fig. 8. Deseasonalized observations Yt �E.ηt j Y1:T / for the winters (December–January–February) of (a)
2009–2010 and (b) 2010–2011: , random sample of 10 posterior trajectories for the coupling effect
δ.j/
t jΦ.j/, Y1:T ; , posterior mean for the coupling effect; , pointwise 90% credible interval for the

coupling effect

November 1st to February 1st until the end of the fully coupled period on February 28th for
every winter between 1987 and 2016. Fig. 7 shows the correlation between the forecast and
observed means. By the beginning of December, the correlation approaches 0.5 for the 92-day
forecast of the mean NAO to February 28th. This correlation approaches that achieved by com-
putationally expensive numerical weather prediction models (Scaife et al., 2014; Siegert et al.,
2016). The correlation increases slightly as more observations are assimilated during December.
However, as more observations are assimilated, the forecast period decreases and we are essen-
tially predicting weather noise, so the correlation does not increase further.

Fig. 7 also compares forecasts of the 92-day December–January–February winter mean,
initialized on December 1st each year, with the observed mean NAO index for the same periods.
The model predicts the 2010, 2011 and 2012 winter seasons with remarkable accuracy and
captures the general pattern during the 1990s. However, it fails to predict the extreme winter
of 2009–2010. Fig. 8 plots deseasonalized observations of winter 2009–2010 .Yt −E.ηt |Y1:T //.
Deseasonalizing the observations leaves only the contributions from the irregular component
Xt and the coupling effect δt , which represent processes on different timescales. The irregular
component Xt captures high frequency fluctuations, whereas the coupling effect δt captures any
overall departure from the seasonal mean. From the middle of December onwards, the mean
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of the deseasonalized data is clearly negative, which the model attributes to the coupling effect
δt . Since the seasonal forecasts in Fig. 7 were based on information up to November 30th, it is
unsurprising that a fairly normal winter was forecast. In contrast, in winter 2010–2011 (Fig. 8),
a strong negative signal is visible in November which the model can exploit to forecast skilfully
the remainder of the December–January–February season. Winter 2010 also illustrates the time
varying nature of the coupling effect δt , which starts strongly negative early in the season but
weakens from mid-January onwards.

7. Discussion

In this study we have developed Bayesian state space methods for diagnosing predictability in
intermittently coupled systems. Coupling is represented by a transient intervention whose timing
and duration are inferred from the data. Interventions to either the mean or temporal depen-
dence structure are considered. The effect of intermittent coupling is modelled as a dynamic
process rather than a sequence of constant and independent effects. Latent TVAR components
are proposed to capture any inherent non-stationarity in the temporal dependence structure.
A linearized approximation is proposed that allows efficient forward filtering and backward
sampling for models containing latent TVAR components, without requiring complicated and
computationally expensive sequential Monte Carlo methods. In addition, we develop tools for
posterior inference in intermittently coupled systems, including evaluating the evidence of a
coupling effect, attribution of historical variation in the system and demonstrating potential
predictability.

We applied the proposed model and inference methods to diagnose excess winter time vari-
ability in the NAO. Existing methods in climate science cannot distinguish between transient
changes in the mean or temporal dependence structure. The model strongly points to transient
changes in the mean level of the NAO during a period beginning sometime in November and
ending around the middle of April. This is an important conclusion given that the excess winter
time variability in the NAO is usually characterized by increased temporal dependence. The
mean level of the NAO also appears to change on decadal timescales, in addition to a fairly
stable annual cycle and the transient changes in winter time. The model can also separate the
coupling effect from accumulated day-to-day variability in individual seasons. For the NAO,
the two effects actually oppose each other in some seasons.

Like latent auto-regressive components, latent TVAR components improve the interpret-
ability of structural time series models by avoiding the need to redefine the mean level of the
observed process. In addition, latent TVAR components permit efficient recursive estimation
of the auto-regressive parameters and include standard latent auto-regressive components as a
special case when the evolution variance is 0. For the NAO, we found little evidence of changes
in the auto-regressive structure throughout the study period, so a standard latent auto-regressive
component could be used to represent day-to-day variability. However, the fact that we can con-
firm that auto-regressive structure is constant on decadal timescales is also a useful conclusion.

The model proposed for intermittently coupled systems differs from standard intervention
analysis by modelling the effect of repeated coupling events as a dynamic process, rather than a
series of independent events. This allows knowledge that is gained during one coupled period to
inform inferences for the next. By modelling the coupling effect as a dynamic process, the effect
can also vary within individual coupled periods rather than being assumed constant. Climate
scientists usually assume that any coupling effect is constant throughout an arbitrarily defined
season. We have shown that the coupling effect on the NAO can vary substantially throughout
a single season.
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Modelling the effect of coupling as a dynamic process also makes the model robust to mi-
nor variations in the timing and duration of the coupled period. However, the specification of a
fixed coupling period remains a limitation. Hidden Markov and semi-Markov models are widely
used in similar seasonal state switching scenarios to allow for changes in onset and duration (e.g.
Carey-Smith et al. (2014)). Standard hidden Markov models assume instantaneous switching
between states. Although such an assumption may be acceptable for some applications, we do
not consider it plausible for the NAO. A completely general alternative would be a reversible
jump Markov chain Monte Carlo scheme (Green, 1995). In such a scheme, coupling events could
be estimated with varying onset, duration or other parameterized structural changes. However,
unless the timing of coupling events varies dramatically, the additional cost and complexity of
a reversible jump scheme seems unnecessary. The on-line Bayesian change point methods that
were proposed by Fearnhead and Liu (2011) might provide a more efficient approach.

In the methodology that was developed here, we have allowed for non-stationarity in the mean
and the temporal dependence structure, but not in the variance. Stochastic volatility mod-
els and related auto-regressive conditional heteroscedasticity and generalized auto-regressive
conditional heteroscedasticity models have been widely studied and applied, particularly in
economics. Masala (2015) applied a generalized auto-regressive conditional heteroscedasticity
model to stochastic modelling of the NAO but found that its performance was poor. Efficient
filtering and smoothing is possible for time varying observation error variance (West and Har-
rison (1997), chapter 10.8). However, fully conjugate models that admit analytic filtering and
smoothing for time varying state evolution variances are not possible, even in the linear normal
case. Of particular interest are changes in the residual TVAR evolution variance WXt that drives
short-term variability in the system. Sequential Monte Carlo methods or further approximations
are required to model time varying evolution variances.

Acknowledgements

The authors gratefully acknowledge the support of Natural Environment Research Council
grant NE/M006123/1. We also thank two reviewers and the Associate Editor for their helpful
comments.

Appendix A: Forward filtering–backward sampling and forecasting

A.1. Forward filtering
The sequence of posterior distributions {θt |Y1:t ,Φ : t =1, : : : , T} can be approximated as follows.

Before observing yt , the predictive distributions at time t −1 are

Yt |Y1:t−1,Φ∼N.ft , Qt/,

θt |Y1:t−1,Φ∼N.at , Rt/

with

at =g.mt−1, 0/,

Rt =GtCt−1G′
t +HtWtH′

t ,

ft =f.at , 0/,

Qt =F′
tRtFt +JtVtJ′

t ,

where
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Gt = @g

@θ

∣∣∣∣
θ̂t−1, ŵt

,

Ht = @g

@w

∣∣∣∣
θ̂t−1, ŵt

,

Ft = @f

@θ

∣∣∣∣
θ̂t , v̂t

,

Jt = @f

@v

∣∣∣∣
θ̂t , v̂t

After observing Yt , the posterior distribution of the state vector at time t is

θt |Y1:t ,Φ∼N.mt , Ct/

with

mt =at +Atet ,

Ct =Rt −AtQtA′
t

where et =Yt −ft and At =RtFt=Qt .

A.2. Backward sampling
The joint posterior θ1:T |Y1:T ,Φ can be sampled recursively as follows.

(a) Sample θ
.j/
T from θT |Y1:T ,Φ∼N.mT , CT /.

(b) For k =1, : : : , T −1: sample θ
.j/
T−k from θ

.j/
T−k |θ.j/

T−k+1, Y1:T ,Φ∼N{hT .k/, HT .k/} where

hT .k/=mT−k +BT−k.θ
.j/
T−k+1 −aT−k+1/,

HT .k/=CT−k −BT−kRT−k+1B′
T−k

and BT−k = CT−kG′
T−k+1R−1

T−k+1. The quantities mt , Ct , at , Rt and Gt are obtained from the
filtering recursions.

A.3. Forecasting
The k-step-ahead forecast distribution given data up to time t can be sampled sequentially as
follows.

(a) Sample θ
.j/
t from θt |Y1:t , M ∼N.mt , Ct/.

(b) For i=1, : : : , k:
(i) sample θ

.j/
t+i from g.θ

.j/
t+i−1, wt+i/;

(ii) sample Y
.j/
t+i from f.θ

.j/
t+i, vt+i/.
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