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Abstract 

Human population density within 100 km of the sea is approximately three times higher 

than the global average. People in this zone are concentrated in coastal cities that are 

hubs for transport and trade – which transform the marine environment. Here, we 

review the impacts of three interacting drivers of marine urbanization (resource 

exploitation, pollution pathways and ocean sprawl) and discuss key characteristics that 

are symptomatic of urban marine ecosystems. Current evidence suggests these systems 

comprise spatially heterogeneous mosaics with respect to artificial structures, pollutants 

and community composition, while also undergoing biotic homogenization over time. 

Urban marine ecosystem dynamics are often influenced by several commonly observed 

patterns and processes, including the loss of foundation species, changes in biodiversity 

and productivity, and the establishment of novel assemblages, ruderal species and 

synanthropes. Further, we discuss potential urban acclimatization and adaptation among 

marine taxa, interactive effects of climate change and marine urbanization, and 

ecological engineering strategies for enhancing urban marine ecosystems. By 

assimilating research findings across disparate disciplines, we aim to build the 

groundwork for urban marine ecology – a nascent field; we also discuss research 

challenges and future directions for this new field as it advances and matures. 

Ultimately, all sides of coastal city design: architecture, urban planning, and civil and 

municipal engineering, will need to prioritize the marine environment if negative effects 

of urbanization are to be minimized. In particular, planning strategies that account for 

the interactive effects of urban drivers and accommodate complex system dynamics 

could enhance the ecological and human functions of future urban marine ecosystems. 

 

 

Keywords: climate change, ecological engineering, ocean sprawl, pollution pathways, 

resource exploitation 
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1. Introduction 

 

The world’s population is urbanizing rapidly (Bloom 2011, UN 2017) with mass 

migration towards coastlines (Creel 2003) and policy reforms that favour densification 

(Dallimer et al. 2011, Kyttä et al. 2013). Population density at the coast (≤ 100 km from 

the sea) and ≤ 100 m above sea level is approximately three times higher than the global 

average and is increasing (Small and Nicholls 2003). Most people are concentrated in 

coastal cities that, as hubs for trade and/or due to a fertile delta, are frequently situated 

where river and sea meet (Konishi 2000). Many of these cities have expanded into 

megacities of more than ten million people (Nicholls 1995, Li 2003). For ecologists, 

coastal cities are of particular interest and concern, not only from a terrestrial 

perspective, but also in terms of consequences in the marine environment (Dafforn et al. 

2015). 

 

Understanding of the effects of urbanization on marine ecosystems and ecological 

processes is growing (Burt 2014, Mayer-Pinto et al. 2015, Firth et al. 2016). Human 

density is strongly related to resource exploitation, and one of the early effects of 

marine urbanization is the depletion of nearby fishery resources (Li 2003, Kirby et al. 

2004). Coastal cities create marine pollution, including that from sewage and urban 

runoff (Hoffman et al. 1983, Nixon 1995, Cornelissen et al. 2008). They also lead to 

nearshore development, usually starting with a harbour, but also including hard coastal 

defences to reduce erosion of valuable land, whether it be pre-existing or reclaimed 

(Charlier et al. 2005, Lotze et al. 2005, Tian et al. 2016). The combination of 

development and shore protection results in the proliferation of artificial coastal 

structures, such as seawalls, breakwaters, piers, and groynes (Bulleri and Chapman 

2010, 2015). These structures have significant effects on the ecology of shorelines, 

especially when entire habitats are replaced with novel materials such as concrete and 

granite (Firth et al. 2014, Dyson and Yocom 2015, Loke et al. 2019a). 

 

Several recent reviews have separately highlighted urban-related pollution and physical 

modifications of urban shorelines as critical components of urban marine ecosystem 

dynamics (Dafforn et al. 2015, Firth et al. 2016, Heery et al. 2018b), but exploitation of 

marine resources is rarely emphasized in an urban context (though see Li 2003, Baum et 

al. 2016). The overarching characteristics of urban marine ecosystems that result from 

each of these factors and their potential combined effects have yet to be thoroughly A
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considered. There is considerable need to integrate findings relating to marine 

urbanization across subdisciplines of ecology; this effort would be aided by conceptual 

frameworks that integrate multiple variables, identify potential interactions and 

feedbacks, incorporate historical trajectories, and facilitate the development of testable 

hypotheses regarding the response of urban marine ecosystems to further environmental 

change. Frameworks meeting this need would not only broadly support marine research 

in the Anthropocene, as nearly all coastal zones are now strongly impacted by 

anthropogenic stressors, but would also help build a foundation for urban marine 

ecology—a field in its nascence. Inevitably, urban marine ecosystems are coupled 

social-ecological systems and are heavily influenced by what is happening ‘upstream’ in 

the urban fabric, by physical modifications nearshore and offshore, and by current and 

future consequences of climate change, such as sea-level rise and punctuated extreme 

weather events. As such, the dynamics and prevailing ecological paradigms for these 

systems have yet to be tested experimentally, and it is only through expanded field 

manipulations that it will be possible to understand the core properties of urban marine 

ecosystems: how they are structured, how they function, and the key parameters that 

drive the ecosystem services they provide. 

 

In this paper, we outline the primary drivers of marine urbanization and identify the 

known patterns exhibited by marine ecosystems in urban areas. Empirical testing of the 

underlying processes that create these patterns and further research in areas we highlight 

in this paper can help build a framework for understanding multifaceted impacts of 

marine urbanization, and future trajectories of urban marine ecosystems in the face of 

climate change. 

 

2. Three main drivers of marine urbanization 

 

The process of marine urbanization comprises three primary drivers (Fig. 1). The first is 

exploitation of both living and non-living resources (Section 2.1) and includes 

recreational, subsistence and commercial fishing, as well as dredging and mining for 

minerals (Table 1). In post-industrialized nations, this may largely be historical, but 

with long lasting effects that are still relevant today. The second is pollution (Section 

2.2), including sediments, industrial waste (often toxic), municipal waste (e.g. landfill 

leachate), domestic water and waste (baths, washing machines, kitchen waste), 

animal/slaughterhouse waste, fecal matter, street dust, oil from automobiles and other A
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contaminant sources, pharmaceuticals (especially hormones and antibiotics), light 

pollution, and noise pollution (Table 2). The third is the wholesale conversion of natural 

habitats into a different state (Section 2.3), such as reclaimed land, seawalls, jetties, 

piers, marinas, groynes, breakwaters, port and harbor infrastructure and bridges 

(collectively termed as “ocean sprawl”, Table 3). These three drivers are presented in 

the chronological order in which they often begin to occur, though their timing and 

relative scope can vary substantially between cities (Fig. 2). Further, the three drivers 

can have interactive effects, with potential additional consequences for marine 

ecosystems (Section 2.4). Other factors relating to urbanization, such as elevated 

propagule pressure and invasion risk, can also be particularly intense in coastal cities 

(Carlton 1996, Ruiz et al. 1999, 2000, Mineur et al. 2012, but see Tan et al. 2018 and 

Wells et al., 2019), however, we discuss these primarily as they relate to one or more of 

the three drivers presented below.  

 

2.1 Resource exploitation (both living and non-living) 

 

It is increasingly well documented that the overexploitation of living coastal and marine 

resources is one of the earliest observable forms of human disturbance within coastal 

ecosystems (Jackson et al. 2001, Pandolfi et al. 2003, Lotze et al. 2006;). Moreover, 

coastal systems that have endured the longest period of intense human impacts and that 

contain the highest human populations are among the most degraded (Lotze et al. 2006). 

Yet, awareness of the magnitude of changes that previously occurred as a result of the 

exploitation of living and non-living marine resources is generally poor. This is due to 

exploitation usually commencing prior to regular monitoring of these systems, coupled 

with the pervasiveness of the shifting baseline syndrome, where a lack of knowledge of 

past ecological conditions facilitates a gradual ratcheting down of expectations as to 

what constitutes a healthy ecosystem (Pauly 1995, Shepherd 1995).  

 

Coastal population growth and development has impacted a wide variety of living 

marine resources (Table 1). For instance, oyster reefs and maerl beds have dramatically 

declined or been extirpated in coastal ecosystems around the world due to destructive 

fishing methods aimed at providing food and/or building material for increasingly 

urbanized populations (Airoldi and Beck 2007, Claudet and Fraschetti 2010). Human 

population growth facilitated the establishment and expansion of industrialized 

commercial harvesting for marine mammals, turtles and fin-fish species, ultimately A
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resulting in the decline or loss of marine megafauna, and of diadromous and large 

demersal fish species (e.g., Lotze et al. 2005, Van Houtan and Kittinger 2014). Targeted 

fin-fish assemblages, although constrained by environmental factors (e.g., availability of 

suitable habitat), have been shown to decline in abundance and richness along 

increasing gradients of human pressure or proximity to urban centres in a range of 

habitats (e.g., coral reefs: Aswani and Sabetian 2009, Brewer et al. 2009, Williams et al. 

2008; surf zones of exposed sandy beaches: Vargas-Fonseca et al. 2016). Fishing effort 

also impacts intertidal species abundance, for example, the majority of known sandy 

beach invertebrate fishery stocks are fully exploited, overexploited or depleted due to 

commercial, subsistence or recreational harvesting (e.g., Defeo and Alava 1995, Defeo 

2003). 

 

Overexploitation often follows a predictable spatial-temporal pattern that is tied to 

urban growth. This is particularly evident among exploited sessile species. On the East 

Coast of the United States, historical oyster fishery collapses demonstrated sequential 

depletion beginning in urbanized estuaries and spreading along the coast away from 

urban centres (Kirby et al. 2004). Many European native oyster reefs adjacent to urban 

conurbations became ecologically extinct prior to the mid-20
th

 century (Airoldi and 

Beck 2007). Oyster (Ostrea angasi) reefs in South Australia disappeared less than 200 

years after the first records of commercial oyster landings from this region by early 

Europeans (Alleway et al. 2015). A total of five species of giant clam were historically 

recorded in the coastal seas around Singapore, but now only two remain, and these only 

exist in very low abundances. The intensification of giant clam exploitation in the 19
th

 

century, followed by extensive coastal development from the 1960s onwards, are 

considered to be the main drivers in the decline and extirpation of these charismatic 

invertebrates (Guest et al. 2008, Neo and Todd 2012). 

 

The historical legacy effects of overexploitation, combined with pollution and coastal 

development, means that the present day commercial exploitation of living marine 

resources adjacent to urbanized regions, at least in more economically developed 

countries (MEDCs), is often far lower than its historical peak (Lotze et al. 2005, 2006). 

The search for resources has thus moved further offshore and into less exploited regions 

(Anderson et al. 2011, Swartz et al. 2010). Recreational fishing participation rates in 

MEDCs have also seen a decline in the last two decades as a result of factors related to 

urbanization, such as increased urban sprawl, demographic change, and a reduction in A
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fishable water resources (Poudyal et al. 2011). In contrast, within less economically 

developed countries (LEDCs), small-scale and subsistence fishing often remains a 

significant source of livelihood for coastal communities in or near urban areas (Smit et 

al. 2017). The maintenance of these traditional activities is, however, under pressure 

from factors such as declining water quality and coastal development (Smit et al, 2017), 

as well as enhanced access to education and alternative employment opportunities for 

children of fishing families (Teixeira et al. 2016). In some cases, urbanization may 

enhance economic opportunities for small-scale fishing communities. In southern 

Brazil, for example, the proximity of small-scale fishers to urban centres has expanded 

opportunities for subsistence fishers to access additional markets, as the presence of 

high numbers of fishers enables them to supply enough fish to meet supply chain 

demand (Hellebrandt 2008).  

 

Urbanization also coincides with increases in the exploitation of non-living resources, 

including the extraction of marine aggregates (sand, gravel, rocks) for use in 

construction and beach renourishment, mineral resources for industrial applications, and 

the extraction of energy resources (oil and natural gas, and wave and tidal resources). 

Nearshore aggregate dredging may occur for mud, rock, shells, corals or sand for 

construction purposes, or for the heavy or precious minerals they contain (Charlier and 

Charlier 1992). Potential negative effects arising from the extraction of coastal marine 

aggregates include an increased risk of flood events and coastal erosion. For example, 

aggregate extraction from the coasts of Kiribati in the South Pacific resulted in beach 

structure being degraded, exposing coastal conurbations to enhanced risk of flood 

events (Webb 2005, In: Holland and Woodruff 2006). Similarly, beach mining, 

nearshore dredging and quarrying have contributed significantly to coastal erosion in 

the Marshall Islands (Holland and Woodruff 2006), France, and Bali (Charlier and 

Charlier 1992). The extraction of sand for the renourishment of urban beaches is 

commonly undertaken for aesthetic and erosion control purposes (Fletemeyer et al. 

2018). Knowledge of the direct and indirect effects of this activity on the local biota and 

ecological processes remains incomplete (Peterson and Bishop 200 )  but beach 

renourishment has been shown to negatively impact nearshore coral reefs ( ern ndez-

 elgado and  osado- at as 201 )  marine invertebrate prey availability and nesting 

behavior in sea turtles (Peterson and Bishop 2005). Coastal urbanization also facilitates 

the expansion of maritime port operations, which often dredge nearshore channels to 

maintain deep-water access for commodity and passenger transport (Lemay 1998). A
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Dredging and mining represent a major area of overlap between exploitation and 

pollution (Figure 1) due to the release of toxicants and sediments that occurs during 

these operations.  

 

The establishment of oil and natural gas rigs can be broken down into four stages: 

seismic exploration, exploratory drilling and installation, operation, and 

decommissioning (Khan and Islam 2008). Each of these stages involves some form of 

extractive activity, although the consequences for marine life (with the exception of 

pollution effects, covered in the following section) are particularly strong during the 

installation and decommissioning stages. The installation and decommission of rig 

infrastructure may also degrade or destroy the seabed (Macreadie et al. 2011). However, 

their establishment introduces a source of hard substrate, potentially increasing local 

biodiversity, as well as non-native species, which can alter community dynamics at 

local or regional levels (Burt et al. 2009, Feary et al. 2011, Macreadie et al. 2011). The 

establishment of renewable energy infrastructure presents many of the same ecological 

issues and opportunities as oil and gas, yet the installation of some structures, such as 

tidal barrages, has the potential for generating highly significant physical and thus 

ecological impacts at the local scale, including the loss of intertidal habitats, 

modification of water flow, and sediment resuspension (Gao et al. 2013, Hooper and 

Austen 2013).  

 

2.2 Pollution pathways (both industrial and domestic) 

 

Urbanization and pollution are tightly linked; whereas as air and soil pollution are major 

concerns for terrestrial conurbations, contaminated water and sediments are the main 

pollution issues for coastal cities (Table 2). Originating from both point (e.g. wastewater 

discharge) and non-point (e.g. wind-blown debris and dust) sources, pollution impacts 

marine life at individual, population, and ecosystem levels, often bioaccumulating and 

then biomagnifying up the trophic pyramid (Erftemeijer et al. 2012, Johnston et al. 

2015, Langston 2017). Chronic marine pollution effects tend to be sub-lethal (e.g. 

Browne et al. 2015), but they frequently interact with others stressors in ways that 

ultimately cause mortality (Yaakub et al. 2014, Bårdsen et al. 2018). 

 

Urban sediment pollution, commonly the result of runoff from construction work and 

disturbance via dredging (Rogers 1990, Eggleton and Thomas 2004, Erftemeijer et al. A
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2012), as well as other sources such as beach nourishment and land-use changes that 

alter catchment runoff (Colosio et al. 2007, Zhang et al. 2010), affects marine life in 

multiple ways. The resulting increase in turbidity reduces light penetration, 

photosynthesis (e.g., Falkowski et al. 1990), and the maximum depth at which 

photosynthetic organisms can grow (Heery et al. 2018b). Suspended sediments can also 

reduce fish hatching success and larval survival (Auld and Schubel 1978), impede 

zooplankton feeding (Sew et al. 2018), affect mobile fauna that rely on visual cues 

(Weiffen et al. 2006), and alter a wide range of benthic ecosystem processes and 

patterns (Airoldi 2003), including the settlement and successful recruitment of 

organisms, the diversity of species, and competitive interactions—such as those 

between foundation macrophyte species and low-lying algal turfs (Gorgula and Connell 

2004, Russell and Connell 2005, Gorman and Connell 2009, Knott et al. 2009, Bauman 

et al. 2015). Smothering by sediment further reduces light and physically interferes with 

the functioning of benthic organisms, including corals (Rogers 1990, Junjie et al. 2014), 

seagrasses (Erftemeijer and Lewis 2006), and certain life stages of kelps (Devinny and 

Volse 1978, Geange et al. 2014). 

 

High nutrient concentrations are frequently attendant with sediments but, in urban 

settings, inputs come also from wastewater treatment plants, industrial discharges, 

stormwater runoff, dust from land, domestic detergent use, and human sewage 

(McClelland et al. 1997, Braga 2000, Atkinson et al. 2003, Cole et al. 2004, Gaw et al. 

2014, Vikas and Dwarakish 2015) and can be particularly hazardous in bays and harbors 

with limited circulation (Gomez et al. 1990). Resultant eutrophication can have positive 

feedbacks on nutrient loads and localized acidification (Howarth et al. 2011) and leads 

to many undesirable ecological effects (Bell 1991, Orth 2017), including phytoplankton 

blooms and/or shifts toward noxious cyanobacteria, macroalgal blooms that can 

outcompete foundation species such as corals, and increases in the occurrence and 

severity of marine diseases (Bowen and Valiela 2001, Balestri et al. 2004, Lapointe et 

al. 2005, Reopanichkul et al. 2009, Haapkylä et al. 2011, Redding et al. 2013). Human 

sewage and wastewater creates additional problems due to the release of fecal coliform, 

antibiotics, and other pharmaceuticals (Jiang et al. 2001a, Shibata et al. 2004, Rose et al. 

2009, Jia et al. 2011, Watkinson et al. 2011, Rizzo et al. 2013, Gaw et al. 2014). 

 

Toxic pollutants, including organochlorine compounds (e.g. PCBs and HCH), heavy 

metals, tributyltin (TBT), polybrominated diphenyl ethers (PBDEs) and compounds A
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from oil (e.g. petrogenic PAHs, plastics and microplastics), are strongly associated with 

industrial activities and urban run-off (Kennish 1997, Shazili et al. 2006, Todd et al. 

2010, Cole et al. 2011, Tayeb et al. 2015), as well as from shipping and other sea-based 

sources (Tornero and Hanke 2016). Many of these substances bioaccumulate in animals, 

especially in top predators and humans (Tanabe 1988, Wolff et al. 1993, Bayen et al. 

2003) and can interfere with cellular and biochemical functions and disrupt hormonal, 

reproductive, neurological and nervous systems (Portmann 1975, Wolff et al. 1993, 

Frigo et al. 2002, Bosch et al. 2016). Lead, cadmium, copper, tin, nickel and iron are 

among the metals commonly found in sediments near industrial areas (Williamson and 

Morrisey 2000, Buggy and Tobin 2008, Amin et al. 2009). Copper is especially toxic to 

marine invertebrates, including poriferans, cnidarians, molluscs and arthropods 

(Reichelt-Brushett and Harrison 1999, Johnston and Keough 2000, Reichelt-Brushett 

and Harrison 2000, Brown et al. 2004, Rainbow 2017). The impacts of lead and 

cadmium on economically important invertebrates such as oysters and crabs are also 

well established in the literature (Ramachandran et al. 1997), however, recent studies 

suggest deleterious effects from a wide range of metals (Langston 2017), particularly 

when combined with other anthropogenic stressors (Burton and Johnston 2010). Other 

industrial discharges that can have negative effects, albeit usually localized, include 

brine from desalination plants and heat from industrial cooling. Often the most 

deleterious impacts from these discharges are toxicants (especially metals, hydrocarbons 

and anti-fouling compounds) that enter the sea with the effluent (Lattemann and Höpner 

2008, Roberts et al. 2010).   

 

Urban noise pollution usually originates from boat traffic and in-water construction 

(Middel and Verones) while urban light pollution comes from street lights, buildings, 

shipping, airports, and vehicle headlights (Hölker et al. 2010). For fish and some marine 

mammals, noise pollution can potentially inhibit communication, affect predator-prey 

interactions, and have negative effects on growth and reproduction (Slabbekoorn et al. 

2010, Houghton et al. 2015). It may also impact various other taxa that are sensitive to 

sound, including oysters (Charifi et al. 2017), clams (Mosher 1978, Peng et al. 2016), 

mussels (Roberts et al. 2015), cephalopods (André et al. 2011, Fewtrell et al. 2012), 

shrimp and other invertebrates (Solan et al. 2016). Night lighting includes both direct 

glare and overall increased illumination, and can disrupt marine ecosystems in a number 

of ways (Hölker et al. 2010). Organisms that use light to navigate, such as birds and sea 

turtles, can become disorientated (Davies et al. 2014), as can fish and fish larvae. A
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Artificial lighting can also affect predator and prey behavior, disrupt larvae settlement, 

alter distribution patterns, and de-synchronize broadcast spawning species from normal 

lunar phases (Becker et al. 2013, de Soto et al. 2013, Wale et al. 2013, Navarro-

Barranco and Hughes 2015, Bolton et al. 2017). 

 

A gradient of decreasing levels of various pollutants with increasing distance from 

urban sources has been described multiple times, for example: heavy metals (Qiao et al. 

2013), sediments (Todd et al. 2004), marine debris (Evans et al. 1995, Andrades et al. 

2016), and PAHs (Assunção et al. 2017). Whereas the effects of urban (land-based) 

light and noise pollution and some contaminants are limited to a few decimeters to 

kilometers from the source (Zaghden et al. 2005, Burton and Johnston 2010), other 

pollutants can have impacts that extend much further (Heery et. al. 2017). For example, 

PCBs have been found in Arctic waters far from any urban or industrial centres, albeit at 

very low levels (Gioia et al. 2008). An important example of urban pollution being 

transported huge distances but still having a substantial negative impact is marine 

debris, especially plastics. Like other forms of marine debris, plastics have a very high 

dispersal potential (Carlton et al. 2017), particularly as they can take decades to 

biodegrade (Moore 2008) and are often buoyant. They can maintain their structural 

integrity for many years, resulting in negative effects, via ingestion or entanglement, to 

animals such as seabirds, turtles, marine mammals, crustaceans and cnidrians (Azzarello 

and Van Vleet 1987, Moser and Lee 1992, Bjorndal et al. 1994, Jones 1995, Laist 1997, 

Lamb et al. 2018, Mecali et al. 2018) far from their point of origin. Due to ultraviolet 

rays, mechanical and microbial degradation, plastics eventually fragment into 

microplastics (Barnes et al. 2009) that are bioavailable to suspension feeding marine 

organisms, including zooplankton (Wright et al. 2013, Barboza et al. 2018, Botterell et 

al. 2018). 

 

2.3 Ocean sprawl (both coastal and offshore) 

 

“Ocean sprawl” is a term used to describe the proliferation of human-made hard 

structures in the marine environment (Firth et al. 2016, Table 3). This includes offshore 

infrastructure (e.g. wind farms, oil and gas platforms, aquaculture facilities, submarine 

cables/pipes) and coastal infrastructure such as artificial shore defences (e.g. seawalls, 

breakwaters, groynes), as well as facilities associated with ports, docks and marinas. 

Ocean sprawl is a fundamental and dominant feature of urbanized marine environments A
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(Bulleri and Chapman 2010, Duarte et al. 2013, Dafforn et al. 2015, Firth et al. 2016). 

Artificial structures comprise the bulk of shorelines in many coastal cities (Lai et al. 

2015, Dafforn et al. 2015) and modify benthic habitats well into the subtidal zone 

(Airoldi and Beck 2007, Heery et al. 2018a, Heery and Sebens 2018). 

 

As a habitat, artificial shorelines are quite distinct from natural rocky shores (Glasby 

and Connell 1999, Rilove and Benayahu 2000, Perkol-Finkel and Benayahu 2004, 

Bulleri et al. 2005, Moschella et al. 2005, Clynick et al. 2008, Lam et al. 2009, Bulleri 

and Chapman 2010, Lai et al. 2018). One of the most obvious differences is the slope of 

hard substrates; while shoreline armoring structures such as seawalls are generally very 

steep, natural rocky shores tend to be more gently sloping with longer and wider 

intertidal areas (Gabriele et al. 1999, Knott et al. 2004, Andersson et al. 2009, Chapman 

and Underwood 2011, Firth et al. 2015). The smaller area of intertidal zone typical of 

seawalls is probably an important contributor to species loss (Chapman and Underwood 

2011, Perkins et al. 2015). It can also lead to greater overlap in the distribution of 

individuals (Klein et al. 2011) or to superimposed distributions of species that normally 

would not overlap (Loke et al. 2019b). Wave impact is also more intense on steep 

shores (Gaylord 1999, Cuomo et al. 2010), potentially dislodging intertidal organisms 

and/or impeding their settlement (Blockley and Chapman 2008, Iveša et al. 2010). 

Compared to natural hard-bottom habitats, seawalls have few microhabitats, such as 

pits, rock-pools, overhangs and crevices (Chapman 2003, Chapman and Bulleri 2003, 

Moreira et al. 2007), which are important for the occurrence and survival of many 

intertidal and benthic species (Chapman and Underwood 2011, Loke and Todd 2016, 

Loke et al. 2017). When considering these multiple effects in combination, it is 

unsurprising that many direct comparisons between rocky shores and seawalls often 

reveal the latter host lower species richness, reduced functional and genetic diversity, 

and different community compositions (e.g. Chapman 2003, Bulleri et al. 2005, 

Moschella et al. 2005, Fauvelot et al. 2009, Lai et al. 2018). 

 

The consequences of ocean sprawl at large spatial scales are not yet well understood, 

but they are likely to be considerable given its prominence and extent (Lotze et al. 2006, 

Airoldi and Beck 2007). In some heavily urbanized regions, entire habitats have been 

lost as artificial structures proliferate over vast distances (Dong et al. 2016). Even where 

coastal transformation is not ubiquitous, clusters of artificial structures can serve as 

corridors that facilitate species invasions (Airoldi et al. 2015) and alter ecological A
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connectivity, with significant impacts on marine assemblages (Bishop et al. 2017). The 

spatial scale of impacts from artificial structures depends on the type of impact in 

question, the type of structure, local hydrodynamic conditions, and a variety of other 

parameters (summarized by Heery et al. 2017). For instance, fluxes of exogenous 

detritus from artificial structures typically affect marine communities within meters to 

tens of meters only (Heery and Sebens 2018), while infrastructure that creates major 

impediments to circulation and sediment transport tends to impact marine assemblages 

across a much larger area (Bishop et al. 2017).  

 

2.4 Overlap, interactions, and feedbacks 

 

The three key drivers described above are not limited to urban areas, yet their relative 

magnitude and spatial and temporal overlap is often augmented near high-density 

coastal development (Jiang et al. 2001b, Kennish 2002, Finkl and Charlier 2003, Mayer-

Pinto et al. 2015). This overlap can have important consequences for marine organisms 

and communities, as effects from multiple anthropogenic stressors are often cumulative 

and non-linear in the marine environment (Adams 2005, Crain et al. 2008, 2009), 

leading to complex changes in ecosystem condition (Conversi et al. 2015, Halpern et al. 

2015, Mollmann et al. 2015). It can also feedback to influence the key drivers 

themselves, which are each the result of dynamic, interacting socioeconomic and 

biophysical forces (sensu Alberti et al. 2003), and closely interrelated in the coupled 

social-ecological systems that characterize coastal cities (Liu et al. 2007, Alberti 2008, 

Grimm et al. 2008a, Pickett et al. 2011). Such feedbacks and interactions are widely 

recognized as shaping urban ecosystem function (Wu 2014, McPhearson et al. 2016), 

and are central in nearly all current models of urban ecosystem dynamics (e.g. Pickett et 

al. 2001, Alberti et al. 2003, Grimm et al. 2013). In this section, we highlight some 

known and likely interactions among the three drivers (exploitation, pollution, and 

ocean sprawl) of marine urbanization. Each interaction fits conceptually within the 

overlapping regions of the Venn diagram in Fig. 1. 

 

One of the best examples of complex interactions and feedbacks among the drivers of 

marine urbanization and ecosystems is the relationship between habitat conversion, 

contaminants, and invasion risk. Artificial structures associated with port infrastructure 

and shoreline protection tend to both concentrate environmental contaminants by 

altering hydrodynamics patterns and reducing water movement (Waltham et al. 2011, A
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Rivero et al. 2013), and by facilitating increased contaminant influx, for instance from 

antifouling paints (Schiff et al. 2004, 2007, Warnken et al. 2004, Sim et al. 2015). 

Copper emissions from antifouling paints then have both direct and indirect 

consequences for marine organisms (Rygg 1985, Perrett et al. 2006). The toxin enters 

the food web by accumulating in algal tissues (Johnston et al. 2011) or being consumed 

directly by non-selectively feeding animals, which can additionally accelerate the 

leaching and burial process in adjacent sediments (Turner 2010). While toxic effects 

from copper negatively impact many marine organisms and reduce diversity (Rygg 

1985), differential responses to copper contamination among invertebrates (Piola and 

Johnston 2006) combined with the novel colonization habitat that is provided by 

floating docks and other marina structures can disproportionately favor non-indigenous 

taxa, thus facilitating marine invasions (Piola and Johnston 2008, Dafforn et al. 2009, 

Piola et al. 2009, Airoldi and Bulleri 2011, Edwards and Stachowicz 2011, Cordell et al. 

2012, MacKenzie et al. 2012).  

 

The trajectory of marine resource exploitation in urban areas is also closely tied to that 

of pollution pathways and marine habitat conversion (Inglis and Kross 2000, Jiang et al. 

2001b, Cundy et al. 2003) (Fig. 2). In the early developmental stages of many cities, 

shoreline habitats were converted by artificial structures to facilitate resource 

exploitation industries and the economic growth they fueled (Squires 1992). Overwater 

structures that housed cannery facilities and seafood markets were prominent drivers of 

early waterfronts in San Francisco (Walker 2001), Singapore (Chang and Huang 2010), 

and many other coastal cities globally (West 1989, Portman et al. 2011). Various 

shoreline armoring structures were also part of facilities for resource exploitation 

industries, such as oil and gas (Minca 1995), and remain important drivers in adaptation 

plans for protecting these industries from future sea level rise (French et al. 1995, Ng 

and Mendelsohn 2005). Pollution associated with resource exploitation and habitat 

conversion continues to be problematic in many urban and suburban areas, for instance 

surrounding shellfish aquaculture farms, oil refineries, port infrastructure, and dredged 

waterways that harbor contaminants (Board 1997, Pereira et al. 1999, Jones 2001, 

Strand and Asmund 2003, Tolosa et al. 2004, Medeiros et al. 2005, Casado-Martinez et 

al. 2006, Paisse et al. 2008, Knott et al. 2009), and alters system dynamics via multiple 

biogeophysical pathways, trophic levels, and functional groups (Paisse et al. 2008, Weis 

et al. 2017). 
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As coastal cities grow, and effects from various aspects of marine urbanization 

increasingly overlap (Fig. 2), the system’s potential for feedbacks appears to intensify 

(Fernando 2008, Grimm et al. 2008b). For instance, as impervious surfaces proliferate 

on land, increased delivery of stormwater can accelerate the accumulation of 

contaminants in receiving waterbodies (Lee et al. 2006, Jartun et al. 2008, 2009, Jartun 

and Pettersen 2010, Walsh et al. 2012). Similarly, as resource exploitation and shoreline 

alteration expand, so too does the spatial extent and magnitude of marine debris and 

contaminants (Garcia-Sanda et al. 2003, Wake 2005, Ng and Song 2010, Märkl et al. 

2017), which can in turn impact exploitable marine resources (Islam and Tanaka 2004). 

Additional biogeochemical and ecological feedbacks have also been important 

historically, in some cases leading to losses in a system’s capacity to absorb urban 

impacts over time (Cloern 2001, Nyström et al. 2012). For instance, the loss of oyster 

reefs due to overharvest and eutrophication is thought to have reduced the filtration 

capacity of urban estuaries in the United States (Zimmerman and Canuel 2000, Kemp et 

al. 2005, Wilberg et al. 2011, zu Ermgassen et al. 2013), potentially inhibiting their 

ability to accommodate further pollution influx. Similar feedbacks surrounding 

challenges such as harmful algal blooms and marine diseases may be increasingly likely 

as ecosystems are further altered by marine urbanization (Prins et al. 1998, Sunda et al. 

2006, Heisler et al. 2008, Crain et al. 2009). However, such feedbacks can be difficult to 

predict and may obfuscate efforts to effectively anticipate ecosystem response to further 

environmental change (Elmgvist et al. 2003). 

 

3. Key ecological patterns 

 

The convergence of exploitation, pollution and ocean sprawl that typifies urban marine 

environments may lead to shifts in ecosystem characteristics and several key ecological 

patterns, which are just beginning to emerge in the literature.  

 

3.1 Homogenized systems, comprising heterogeneous mosaics  

 

A common theme in the terrestrial urban ecology literature is the spatial heterogeneity 

that occurs across landscapes as a result of urbanization (Pickett et al. 1997, Dow 2000, 

Cadenasso et al. 2009, Pickett and Cadenasso 2008). The resulting “mosaics” of habitat 

types, biophysical characteristics, and land use are temporally dynamic and influenced 

by multiple interacting social and ecological drivers (Pickett et al. 2017). At the same A
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time, there are considerable similarities across cities in the underlying processes and 

trajectory of urbanization, leading to an overall homogenization among urban 

ecosystems regionally and globally (Alberti 2005, McKinney 2006). Even though 

research supporting these concepts is far more comprehensive in terrestrial 

environments, there are several indications of comparable patterns among urban marine 

ecosystems based on the current literature (Dafforn et al. 2015). 

 

Most coastal cities are positioned in estuaries and bays that were historically dominated 

by soft sediments. As artificial structures are added to these sedimentary environments, 

a checkerboard of hard and soft habitats is created, with each supporting distinct biotic 

assemblages (Connell and Glasby 1999, Glasby 2000, Connell 2001, Barros et al. 

2001). This can alter ecosystem dynamics in several ways. In some regions, artificial 

structures can support a larger standing stock of benthic macroalgae and other hard-

bottom organisms, which then enter adjacent sediments as detritus and may alter 

sedimentary community dynamics (Boehlert and Gill 2010, Heery and Sebens 2018, 

Heery 2018). Artificial structures can also act as “stepping stones” for dispersal, 

particularly of non-indigenous taxa (Bulleri and Airoldi 2005, Glasby et al. 2007, 

Vaselli et al. 2008, Sheehy and Vik 2010, Airoldi et al. 2015, Foster et al. 2016) and 

alter genetic population structure of marine fauna (Fauvelot et al. 2012). Marine species 

vary in dispersal potential, and many taxa encounter barriers to dispersal at relatively 

small spatial scales (Darling et al. 2009, Costantini et al. 2013, Maas et al. 2018, 

Sefborn et al. 2018). Dispersal limitation can therefore also interact with local stressors 

and abiotic conditions to result in compositionally very different assemblages across 

patches of hard substrata (Bulleri and Chapman 2004, Munari 2013). This may be 

accentuated where urban habitat conversion has significantly altered hydrodynamic 

patterns or created other additional barriers to dispersal and subsequent settlement 

(Bishop et al. 2017).  

 

Spatially heterogeneous mosaics also form in urbanized seascapes as a result of fine-

scale gradients in nutrient enrichment and sediment pollution (Airoldi 2003, Baumet et 

al. 2015, Ling et al. 2018), particularly in low flow environments and enclosed estuaries 

and embayments (Balls 1994, Dauer et al. 2000). For instance, physical disturbance 

from swing moorings, which are ubiquitous in shallow sedimentary environments in 

Sydney Harbor, leads to depressed concentrations of metal contaminants within a highly 

localized area (Hedge et al. 2017). This may result in complex, fine-scale spatial A
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patterns in microbial, meiofaunal, and macrofaunal taxa that are sensitive to metal 

contamination (Coull and Chandler 1992, Stark 1998, Lindegarth and Hoskin 2001, 

Mucha et al. 2003, Gillan et al. 2005, Sun et al. 2012). It is likely this is complicated 

further by localized gradients in other abiotic conditions, such as granularity, that 

commonly occur in the vicinity of artificial structures (Martin et al. 2005, Seitz et al. 

2006). While swing moorings and other structures that increase physical disturbance 

and scour increase sediment grain size (Hedge et al. 2017), structures such as pilings 

that reduce flow speeds and increase deposition tend to reduce the grain size of nearby 

sediments (Heery et al. 2018c). Grain size, contaminant concentrations, and a variety of 

other flow-related metrics are known to have strong effects on sedimentary composition 

and diversity (Mannino and Montagna 1997, Hewitt et al. 2005), which likely therefore 

varies considerably in urban seascapes over small spatial scales. 

 

Studies of marine diversity and connectivity relative to urbanization remain relatively 

limited, and there is need for expanded work in this area. In particular, study designs 

that allow for the assessment of alpha, beta, and gamma diversity could be helpful for 

beginning to distinguish between the ecological processes that shape marine 

assemblages in spatially heterogeneous urban seascapes. In their eDNA study on 

seagrass beds, Kelly et al. (2016) found decreases in beta diversity even while species 

richness increased with the intensity of urbanization. Landscape-scale homogenization 

in urban assemblages has some precedents in freshwater and terrestrial systems 

(McKinney and Lockwood 1999, Holway and Suarez 2006, Urban et al. 2006, 

Groffman et al. 2017), but less so in the marine literature (Balata et al. 2007). For 

instance, by creating urban freshwater reservoirs/dams many cities have inadvertently 

fragmented their catchments and resulted in biotic homogenization (Olden and Rooney 

2006, Olden et al. 2008). The straightening or “linearization” of shorelines through 

armoring (Dyl 2009) may homogenize intertidal communities at certain scales, though 

this has not been demonstrated empirically. Sedimentation may also cause marine 

communities to become more homogenous under certain conditions (Balata et al. 2007). 

However, more thorough characterization of diversity measures relative to resource 

exploitation, pollution, and ocean sprawl should advance understanding of ecological 

processes in urban marine environments. 

 

3.2 Loss of foundation species 
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Urban stressors can be particularly detrimental for sensitive foundation species such as 

oysters, reef-building corals, seagrasses, mangroves, and canopy-forming kelps, which 

structure marine ecosystems via the provisioning of biogenic habitat (Dayton 1972, 

Bertness and Callaway 1994). Even though the dynamics of decline vary across taxa 

and across locations (Terrados et al. 1998, Waycott et al. 2009, Polidoro et al. 2010, 

Heery et al. 2018b), loss in foundation species is generally tied to one or more of the 

three major drivers of marine urbanization (Rogers 1990, Hastings 1995, Airoldi 2003, 

Balesetri et al. 2004, Kirby et al. 2004, Connell et al. 2008, Strain et al. 2014, Alleway 

and Connell 2015). In temperate areas, nutrient-rich, high sedimentation conditions can 

limit the recruitment and survival of canopy-forming kelps while supporting 

opportunistic, turf-forming algal species that can act as kelp competitors (Airoldi 1998, 

Bendetti-Cecchi et al. 2001, Gorgula and Connell 2004, Russell and Connell 2005, 

Coleman et al. 2008, Gorman and Connell 2009). Similarly, in the tropics, sediment 

pollution has multiple negative effects on corals. These decrease coral cover and 

disproportionately impact competitive, branching coral genera such as Acropora, which 

ultimately lowers reef complexity in urban areas (Heery et al. 2018b). Ocean sprawl can 

also be an important driver of foundation species loss. For instance, despite the 

numerous ecosystem services they provide to urban communities (Benzeev et al. 2017), 

mangrove forests are cleared in many coastal areas to make way for urban development 

(Harper et al. 2007, Martunizzi et al. 2009, Lai et al. 2015, Richards and Friess 2016). 

Where urban mangroves are left intact, they are often heavily impacted by artificial 

structures constructed nearby; mangrove forests adjacent to seawalls tend to be 

narrower, with less leaf litter and fewer saplings than those without seawalls 

(Heatherington and Bishop 2012). Coral reefs and seagrass beds are also frequently 

built over (Chou 2006, Burt et al. 2013, Yaakub et al. 2014). Furthermore, urban losses 

in foundation species often involve feedbacks that prevent subsequent population 

recovery (Altieri and Witman 2006, de Boer 2007, Moore et al. 2013). For instance, 

seagrass loss can be tied to sediment pollution and eutrophication (Waycott et al. 2009, 

Orth et al. 2017) and deforestation and altered hydrodynamic regimes from coastal 

construction (Silva et al. 2004), as well as possible indirect effects from top-down 

reductions in grazers that control seagrass epiphyte loads (Duffy et al. 2005, Myers et 

al. 2007). The reduction of seagrass bed cover can lead to destabilization of sedimentary 

substrata, which can then further increase turbidity (de Boer 2007) and potentially 

inhibit recolonization (Moore et al. 2013). 
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There is increasing evidence that multiple, often interacting, urban-related drivers affect 

both foundation species and ecological response to foundation species loss (Lenihan and 

Peterson 1998, Jackson 2008, Claudet and Fraschetti 2010, Nyström et al. 2012, Strain 

et al. 2014, Ferrario et al. 2016, Orth et al. 2017), although studies evaluating multiple 

stressors simultaneously are rare (O’Brien et al. In press). The abundance of kelps and 

other important habitat-forming macroalgae is negatively correlated with human 

population density in several regions, including temperate coasts in Australia and North 

America (Connell et al. 2008, Scherner et al. 2013, Feist and Levin 2016), and this is 

likely linked to gradients in sedimentation and nutrients (Fowles et al. 2018). Yet, ocean 

sprawl may also be an important factor in macroalgal community dynamics. Reduced 

topographic complexity, changes in substrate type, and altered substrate profiles are all 

factors that can limit kelp abundance (Toohey 2007, Schroeter et al. 2015) and correlate 

with urban habitat conversion. Artificial structures not only support distinct macroalgal 

assemblages compared with natural rocky shores (Glasby 1999) – the kelps that inhabit 

them also support distinct epifaunal and microbial communities and erode at different 

rates (Marzinelli et al. 2009, 2018, Mayer-Pinto et al. 2018). Habitat conversion thus 

likely influences ecological processes in urban areas where canopy-forming kelps 

persist. The interaction of resource extraction, pollution, and ocean sprawl as drivers of 

foundation species loss, and the ecological responses to this loss, are important future 

areas of research. Importantly, these processes are highly dynamic, with ecological 

legacies from past impacts, and future scenarios linked to rising temperatures and pCO2, 

that are challenging to ascertain (Ramalho and Hobbs 2011, Davis et al. 2017, Gao et al. 

2017, Heldt et al. 2018, Fig. 2). 

 

3.3 Changes in biodiversity and productivity 

 

Patterns of biodiversity in urban marine environments are complex. Resource 

extraction, sediment pollution, and habitat modification are important drivers of marine 

biodiversity declines globally (Sala and Knowlton 2006), and there are many examples 

from the literature of reduced species richness and altered community composition at 

heavily urbanized sites (Pearson and Rosenberg 1978, Long et al. 1995, Lindegarth and 

Hoskins 2001, Lotze et al. 2006, Airoldi and Beck 2007, Poquita-du 2019). Even 

through the diversity of marine assemblages in some regions is negatively correlated 

with human population density (Scherner et al. 2013, Neo et al. 2017), this pattern is not 

universal, and varies considerably between regions, cities, the taxa and type of diversity A
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considered, and the methods used. For instance, using eDNA from water samples, Kelly 

et al. (2016) found that species richness was positively correlated with land-based 

urbanization in intertidal seagrass beds. Similarly, while some studies have reported 

higher species diversity on artificial shorelines than on their natural counterparts (Chou 

and Lim 1986, Connell and Glasby 1999, Munsch et al. 2015), others have found 

artificial shorelines to be relatively depauperate (Firth et al. 2013, Aguilera et al. 2014, 

Lai et al. 2018).  

 

There are similar complexities surrounding productivity in urban marine environments. 

In nutrient-rich marine estuaries, like those in most coastal cities, climate variables, 

such as major precipitation events and interannual fluctuations in weather patterns, tend 

to be particularly important drivers of temporal patterns in primary production (Mallin 

et al. 1993, Rodrigues and Pardal 2015), as these events deliver land-based sources of 

nitrogen to coastal waters. However, the relationship between nutrient load and primary 

production is highly variable (Borum and Sand-Jensen 1996), and urban-related 

increases in nutrient loads can have different effects depending on tidal regimes, the 

system’s trophic structure, as well as other factors (Alpine and Cloern 1992, Monbet 

1992). Nutrient loading therefore does not manifest comparable, elevated marine 

production across cities. Moreover, broader ecosystem responses to primary production 

also vary across urban marine ecosystems. In some locations, nutrient enrichment can 

trigger micro- and macroalgal blooms that are highly detrimental to important 

foundation species (McGrathey 2001) while, in other places, the same process may 

increase secondary production (Leslie et al. 2005) and species richness (Whittaker and 

Heegaard 2003). 

 

3.4 Novel assemblages 

 

Novel assemblage structure tends to emerge as species move and change in abundance 

and dynamics in response to environmental change (Hobbs et al. 2018). The most 

obvious manifestation of this phenomenon in urban marine environments is among 

sessile assemblages on artificial shorelines. Conversion from natural shores to hard 

artificial structures creates new habitats for colonization and supports novel 

assemblages of hard-bottom organisms (Chou and Lim 1986, Connell and Glasby 1999, 

Bulleri et al. 2005, Moschella et al. 2005, Clynick et al. 2008, Lam et al. 2009, Airoldi 

et al. 2015, Munsch et al. 2015). These assemblages differ from nearby rocky shores A
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with respect to composition (Chapman 2003, Bulleri and Chapman 2010, Airoldi et al. 

2015, Lai et al. 2018) and genetic diversity (Fauvelot et al. 2009). Differences in species 

abundance between artificial and natural rocky shores may be biased towards some 

functional groups, such as mobile primary consumers (Chapman 2003, Pister 2009). 

However, human-made habitats in urban areas also provide a foothold for a variety of 

non-indigenous species, many of which are non-motile (Glasby et al. 2007, Vaselli et al. 

2008, Ruiz et al. 2009, Sheehy and Vik 2010, Simkanin et al. 2012, Airoldi et al. 2015, 

Foster et al. 2016).  

 

3.5 Ruderal species and potential synanthropes 

 

On land, urbanization is strongly associated with the proliferation of ruderal and 

synanthropic species (McKinney 2006). Ruderal species, those that grow in 

contaminated soils or human wastes, typically include a variety of weedy plant species 

( aigh 1980)  while “synanthropes” is a term typically applied to mid-level consumers, 

such as raccoons and coyotes, that have higher densities and abundances in cities than in 

adjacent rural areas (McKinney 2002). Although not well studied, there is evidence of 

analogue taxa exploiting urban marine environments. Polluted sediments in urban areas 

appear to generate opportunities for certain marine microbes (Córdova-Kreylos et al. 

2006  Cetecioğlu et al. 2009  Nogueira et al. 201 ). For instance  Alteromonadales, 

Burkholderiales, Pseudomonadales, Rhodobacterales, and Rhodocyclales bacteria that 

are involved in the degradation of hydrocarbons, were found to be more abundant in 

polluted urban mangrove forests in Brazil (Marcial Gomes et al. 2008). Some 

macroalgae also respond opportunistically to polluted urban waters (Valiela et al. 1997, 

Raven and Taylor 2003). For instance, transplant experiments have demonstrated that 

the photosynthetic capacity of sea lettuce Ulva lactuca increases while that of canopy-

forming brown seaweed Sargassum stenophyllum decreases in response to urban waters 

(Scherner et al. 2012). Differential photosynthetic responses to copper contaminants 

among different species of Ulva may connote a competitive advantage in contaminated 

urban areas (Han et al. 2008). Similarly, the combination of elevated sediment and 

nutrient loads increases the cover of filamentous turf-forming macroalgae in field 

manipulations (Gorgula and Connell 2004) and is thought to be central to turf 

proliferation in metropolitan areas (Airoldi 1998, Connell et al. 2008, Strain et al. 2014).  
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Evidence for synanthropic marine consumer species is more limited. Most of the studies 

on fish distribution patterns in urban areas and relative to coastal population density 

suggest primarily negative impacts of urbanization on major fish groups (Toft et al. 

2007, Williams et al. 2011, Kornis et al. 2017, Munsch et al. 2017, Cinner et al. 2018). 

Although several well-recognized terrestrial synanthropes, such as raccoons and rats, 

are known forage in intertidal habitats (Carlton and Hodder 2003), degraded intertidal 

resources in urban areas are unlikely to be a major driver of synanthropic distribution 

patterns for these species. There is at least one record, however, of rats occurring in 

higher densities on artificial breakwaters than on natural shorelines (Aguilera 2018). 

Heery et al. (2018a) recently found that giant Pacific octopus that inhabit relatively deep 

subtidal environments (< 24m) were more common in urban areas than in rural areas in 

Puget Sound (northeast Pacific), while also demonstrating that octopus abundance was 

positively correlated with the density of anthropogenic structures on the seafloor. 

Artificial structures, such as floating docks and buoys, are also widely used as haul out 

sites for urban pinnipeds (Heath and Perrin 2009), and may play a key role in 

facilitating jellyfish blooms, by expanding the available habitat for polyp recruitment 

(Duarte et al. 2013). These lines of evidence suggest that, where synanthropic 

distribution patterns do exist among marine consumers, ocean sprawl may be an 

important underlying mechanism (Heery et al. 2018a).  

 

In addition to ruderal macrophytes and synathropic consumers, the interacting drivers of 

marine urbanization appear to facilitate the establishment of opportunistic sessile 

invertebrates, many of which are non-indigenous. Opportunistic responses to multiple 

urban drivers may provide a particular advantage. For instance, the bryozoans, Bugula 

neritina and Watersipora subtorquata, and the ascidian, Botrylloides violaceus, have 

particularly high tolerances for copper toxicity (Piola and Johnston 2006), which may 

partially explain their successful invasion of urban marine environments beyond their 

endemic range (Piola et al. 2009, McKenzie et al. 2011, Osborne et al. 2018). In 

addition, larval dispersal for these taxa is aided by shipping activities between coastal 

cities, and they readily utilize artificial structures, such as floating docks, as habitat for 

settlement (Lambert and Lambert 1998, 2003, Piola and Johnston 2008, Dafforn et al. 

2009, Piola et al. 2009, Airoldi and Bulleri 2011, Edwards and Stachowicz 2011, 

Gittenberger and van der Stelt 2011, Cordell et al. 2012, MacKenzie et al. 2012, 

Simkanin et al. 2012, Zhan et al. 2015).  In this way, simultaneous positive responses to 

multiple urban drivers may help to facilitate invasion success in urban areas, although A
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the strength of these responses likely vary between cities, taxonomic groups, and 

latitudes (Canning-Clode et al. 2011).  

 

3.6 Acclimatization and adaptation 

 

Urbanization is considered a major selective pressure (Alberti 2015, Donihue and 

Lambert 2015) leading to phenotypic changes at both the organismal and species levels 

(Alberti et al. 2017a). These changes may be phenotypically plastic (i.e. within-lifetime) 

responses such as acclimatization, or (population-level) adaptation via genetic change 

over multiple generations (Alberti et al. 2017b, Johnson and Munshi-South 2017). 

Recent advances in understanding evolutionary responses to urbanization have been 

driven largely by work in terrestrial systems (Partecke et al. 2006, Miranda et al. 2013, 

Johnson and Munshi-South 2017). However, there is ample precedent for rapid 

evolutionary change and phenotypic plasticity in response to anthropogenic stressors in 

the marine environment (Todd 2008, Sanford and Kelly 2011). 

 

All three of the key drivers of marine urbanization are known to structure population 

genetics among a variety of marine taxa (examples – Resource exploitation: Smith et al. 

1991, Hauser et al. 2002; Pollution: Suchanek 1993, López-Barea and Pueyo 1998, 

Nacci et al. 1999, Ma et al. 2000, Virgilio et al. 2003, Virgilio and Abbiati 2004, 

McMillan et al. 2006, Galletly et al. 2007, Moraga and Tanguy 2009; Ocean sprawl: 

Street and Montagna 1996, Fauvelot et al. 2012). In many cases, resource exploitation, 

pollution, and ocean sprawl lead to population bottlenecks and reduced genetic diversity 

(Nevo et al. 1986, Maltagliati 2002, Fauvelot et al. 2009, Ungherese et al. 2010, Neo 

and Todd 2012, Pinsky and Palumbi 2014). Yet evidence of micro-evolution in urban 

marine environments has been limited. Some of the best examples come from the 

ecotoxicology literature (Medina et al. 2007). For example, McKenzie et al. (2011) 

showed heritable copper tolerance in the bryozoan Watersipora subtorquata. Similarly, 

Galletly et al. (2007) found a significant geneotype × environment interaction in 

hatching success of the ascidian, Styela plicata, under different copper concentrations, 

yet hatching success at high concentrations had a different genetic basis than that at low 

concentrations, suggesting different genetic mechanisms for adaptation depending on 

pollution levels. 
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Trait plasticity in response to marine urbanization has been much more widely 

documented. Many marine organisms exhibit substantial capacity for acclimatization 

that may provide a fitness advantage; this could include changes in morphology, 

physiology, behavior, and/or life history (West-Eberhard 1989, Foo and Byrne 2016). 

Goiran et al. (2017) observed melanism in sea snakes inhabiting urban sites that may 

facilitate the excretion of trace pollutants. Phenotypically plastic responses to light in 

corals are well documented and can benefit colonies where sediment pollution and 

associated turbidity is prevalent (Hoogenboom et al. 2008, Todd et al. 2003, Ow and 

Todd 2010). Some marine invertebrates also exhibit transgenerational plasticity, 

wherein parents alter the phenotypes of gametes in response to factors such as copper 

and salinity to maximize gamete performance (Marshall 2008, Jensen et al. 2014). 

Several other examples of trait plasticity from natural rocky shores may be additionally 

relevant in the abiotically stressful environments created by seawalls and other artificial 

structures (Strain et al. 2018). For example, dog whelks Nucella lapillus and other 

gastropods have larger feet in high wave energy environments so they can adhere better 

to the substrate (Etter 1988, Trussell 1997), potentially an advantage on steep seawalls 

that intensify wave shock. Similarly, local adaptation for thermal tolerance in acorn 

barnacles Semibalanus balanoides (Bertness and Gaines 1993) and acclimatization to 

high temperatures in various intertidal gastropods (Williams and Morritt 1995, Marshall 

et al. 2010) may facilitate survival in novel thermal environments associated with ocean 

sprawl.   

 

Urbanization-driven trait changes can have important effects on community interactions 

(Palkovacs et al. 2012, Alberti 2017a), yet much work remains to understand the nature 

of these effects in the marine environment, as well as their ultimate consequences for 

functioning in urban marine ecosystems. This work needs to be conducted across 

multiple organismal scales to account for potential urban-related acclimatization at the 

level of holobionts – host-microbial assemblages that function as an ecological unit 

(Ziegler et al. 2016, Evans et al. 2017). Further, the heritability of urban-driven 

adaptation should be considered through both genetic and epigenetic approaches, as 

acclimatization responses can be inherited via transgenerational maternal effects and 

methylation patterns (Sun et al. 2014, Suarez-Ulloa et al. 2015).   

 

4. Climate change and marine urbanization 
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The effects of climate change interacting with marine urbanization range from 

reasonably established to complex and speculative possibilities. Atmospheric warming 

from greenhouse gases leads to the thermal expansion of the oceans and melting of 

glacial and polar ice, and is well-documented as the cause of current and predicted sea-

level rise (Neumann et al. 2015). Increases in the severity, and possibly occurrence, of 

major storms have also been attributed to global warming (Walsh et al. 2016). This 

combination of rising seas and extreme weather pose direct flooding and erosion threats 

to coastlines and, together with coastal development, represent the main drivers of the 

current proliferation of sea defenses (Dafforn et al. 2015). Elevated temperatures, 

altered rainfall patterns, and other changes associated with climate change (Donat et al. 

2016, Duffy et al. 2015) pose challenges for marine organisms that inhabit coastal 

defense structures (Ng et al. 2017), as well as for marine communities that provide 

sources of food and natural defenses for coastal cities, such as coral reefs and mangrove 

forests (Hoegh-Guldberg et al 2017, Ward et al 2016). Of course, coastal cities are also 

part of the problem as they contribute to climate change via high levels of greenhouse 

gas emissions, energy consumption, and changes in land use, hydrology and 

biodiversity (Grimm et al. 2008a), but these additional impacts of marine urbanization 

are beyond the scope of the current review.  

 

One of the better studied interactions between urbanization and climate change is 

“coastal squeeze” first reported by Doody (2004), but later refined and defined by 

Pontee (2013, pg 206) as: “one form of coastal habitat loss  where intertidal habitat is 

lost due to the high water mark being fixed by a defence or structure (i.e. the high water 

mark residing against a hard structure such as a sea wall) and the low water mark 

migrating landwards in response to SL ” (sea level rise). Loss and/or fragmentation of 

tidal wetlands means a concomitant reduction in ecosystem services, including flood 

and erosion abatement, biodiversity support, water quality, carbon sequestration, and 

benefits to coastal fisheries (Torio and Chmura, 2013). Managed retreat (or 

realignment), where infrastructure is relocated inland to escape the effects of erosion 

and flooding (Alexandrea al. 2012), can alleviate coastal squeeze by moving back or 

removing hard artificial defences, thereby elimitaing the fixed high water mark back-

stop. However, the distances required for coasal habitats to successfully move inland 

can be considerable—potentially being meters per year depending on rate of sea level 

rise (Pethick 2001).  
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Climate change will have a variety of effects on urban shoreline and nearshore 

environments, including increasing air and water temperature (both relevant for 

intertidal organisms) and altering rainfall (Wallace et al. 2014), and therefore possibly 

urban runoff patterns. Temperature is a critical stressor on rocky shores (Helmuth and 

Hofmann 2001) but little is known regarding the thermal landscape of artificial coast 

defenses (Zhao et al. 2019). The homogeneity of artificial structures may create thermal 

barrens that challenge intertidal organisms (Perkins et al. 2015) or, alternatively, 

provide refugia from thermally-limited predators. Helmuth et al. (2006), based on a 

comprensive study of the spatial and temporal patterns in the body temperature of the 

mussel Mytilus californianus on natural rocky shores, concluded that interacting factors 

such as tidal regime and wave splash can create complex thermal mosaics of 

temperature that are potentially more important locally than those of large-scale (e.g. 

latitudinal) climate effects. Hence, it will be difficult to predict or measure the broader 

impacts of global warming on the intertidal area of seawalls and similar structures. 

Shifts in patterns of rainfall and runoff, e.g. heavier rainfall and/or more prolonged 

rainfall (Wallace et al. 2014), could overwhelm drainage systems leading to peaks in the 

influx of pollutants. These unusual pollution spikes would likely be concurrent with 

increased sedimentation, eutrophication and low salinity, all of which could moderate 

species and community response and the toxicity of pollutants (Pearson and Rosenberg 

1978, Šolić and Krstulović 1992  Verslycke et al. 2003). 

 

Climate change is also likely to impact natural coastal defenses. Healthy coral reefs and 

mangrove forests are effective at protecting coastlines from wave impact and associated 

erosion in tropical and subtropical regions, but both are vulnerable to climate change. 

Extended periods of warmer than average sea temperatures causes coral bleaching that, 

when severe, kills colonies (Hoegh-Guldberg 1999) resulting in the loss of wave-

absorbing complexity (Alvarez-Filip et al 2009, Graham and Nash 2013). As mangroves 

live within a narrow band of suitable habitat determined by local tidal regimes, they are 

susceptible to sea level rise if it exceeds the rate of soil accumulation, leading to 

shoreline retreat (Lovelock et al. 2015). Many tropical and subtropical towns and cities 

benefit from the protection that coral reefs and mangroves provide (Ferrario et al. 2014), 

and their loss may lead directly to the installation of alternative coastal defense 

measures, of which hard amour such as seawall, rip-rap and gabion are frequently 

chosen. There is also strong potential for additive or synergistic effects as coral reefs 

and mangroves near urban areas are likely to be heavily exploited as well as impacted A
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by pollution (Wells and Ravilious 2006). In addition to these rather more predictable 

consequences of climate change, urban marine environments—as part of urban 

ecosystems—are shaped by a multitude of interacting social and ecological drivers 

(Alberti 2003) and are likely to exhibit non-linear dynamics characteristic of complex 

adaptive systems (Scheffer et al. 2001, Alberti 2008). The three major drivers of marine 

urbanization have gradually altered urban marine ecosystems in ways that may have 

reduced their capacity to absorb disturbance; for instance to a 100-year storm event, a 

sudden change in socio-economic variables such as a rapid loss in food security, a major 

marine disease epidemic, or various other pulse perturbations. Without considerably 

more research, it is unclear how urban marine ecosystems will respond to such 

disturbances, whether they are susceptible to future phase shifts, and what such shifts 

might mean for ecosystem functions and ecosystem services. While these should be 

focal points of future research (discussed below), approaches such as scenario planning 

(Peterson et al. 2003) that integrate and accommodate uncertainties directly into 

management of urban marine environments may be highly beneficial (Alberti et al. 

2003).  

 

5. Ecological engineering 

 

It is predicted that by the next decade approximately three quarters of the world’s 

population will reside in coastal zones (Small and Nicholls 2002, Bulleri and Chapman 

2015). Coastal land is therefore in high demand and development and reclamation are 

occurring at unprecedented scales (Yeung 2001, Duarte et al. 2008). In addition, the 

risks of climate change, as outlined in the previous section, have resulted in an urgent 

need for greater shoreline protection, especially in low-elevation coastal zones (LECZ) 

(sensu Neumann et al. 2015). For instance, in China, Japan and Korea alone, 28% of the 

global population are currently living in LECZ and it is predicted that by 2070, 37 

million people and assets worth $13 trillion are going to be exposed to coastal hazards 

such as storms, flooding and climate variability (Nicholls et al. 2013). Strategies that 

mitigate risk and help coastal cities adapt to sea level rise and climate change are 

already being implemented in many parts of the world (Zimmerman and Faris 2010, 

Hayes et al. 2018) and are predicted to increase in the coming decades (Neumann et al. 

2015, Dangendorf et al. 2017). Such strategies, though multifaceted, include expanded 

coastal armoring and human-made structures such as seawalls (French and Spencer 

2001, Hinkel et al. 2014), the integration of new stormwater capture and treatment A
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systems, and a wide variety of other modifications to expand the capacity and resilience 

of urban infrastructure (Zimmerman and Faris 2010). 

 

If the past is any indication, future proliferation of marine urbanization will further 

facilitate the formation of novel assemblages of marine organisms on an unprecedented 

scale. Currently, there is considerable debate in ecology regarding the concept of ‘novel 

ecosystems’ (Hobbs et al. 2014, Murcia et al. 2014), i.e. ecosystems shaped by human 

intervention that are distinct from their historical state, and that cannot be returned to 

their historical trajectory (Hallett et al. 2013). It is presently unclear whether urban 

marine ecosystems meet all criteria of ‘novel ecosystems’ (Morse et al. 2014), but their 

trajectory is undeniably shaped by the way in which coastal cities develop and modify 

the marine environment (Dafforn et al. 2015). Given the potential of marine 

assemblages to provide ecosystem services to urban populations, as well as recent 

success in the realm of eco-shoreline design (Morris et al. in press), it may be more 

helpful to consider urban marine ecosystems and their future trajectory within the 

framework of ‘designed ecosystems’ (Higgs 2017) or ‘reconciliation ecology’ 

(Rosenzweig 2003). While both of these frameworks arose with the realization that 

some systems have been so severely altered and/or degraded it is practically impossible 

to apply conventional restoration practices (or expect the system to shift back towards a 

“historic” or “pre-disturbed” state), conceptually they are fundamentally different in 

their intent, starting point and developmental trajectory (Hunter and Gibbs 2007, Higgs 

201 ). For instance  ‘designed ecosystems’ often involve large-scale intervention efforts 

to create and sustain the system whereas ‘reconciliation ecology’ is less reliant on long-

term intervention and more based on the idea that “if you build it  they will come” 

( osenzweig 2003  p 6). ‘Ecological engineering’  i.e. the design and engineering of 

urban infrastructure congruent with ecological principles, can be viewed as straddling 

between these frameworks, as it often requires huge initial intervention but with less 

emphasis on subsequent management and maintenance (see recent review by Loke et al. 

2019a).   

 

Ecological engineering is currently being trialed, or attempted in earnest, in many 

locations around the world (Chapman and Blockley 2009, Mitsch 2012, Strain et al. 

2018). Nature-based or soft-engineering approaches using “green infrastructure” for 

coastal defense are preferred over hard engineering approaches in many coastal cities as 

they have been shown to be more cost-effective in the longer term and can serve A
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multiple functions in addition to flood risk reduction (Spalding et al. 2014, Temmerman 

et al. 2013, Reguero et al. 2018). However, these solutions are often not adopted due to 

feasibility (e.g. mangrove planting at sites with high wave energy or flow) or socio-

economic reasons (e.g. lack of political will, support or resources). In addition, hard 

artificial coastal defenses have frequently already been built and cannot realistically be 

removed. Given that more human-made shorelines are expected to be built in the 

foreseeable future, it is critical to find ways to increase their ecological and social value 

while maintaining their engineering function (Borsje et al. 2011, Loke et al. 2019a). The 

ecological engineering of human-made shoreline structures is a new but dynamic field, 

and there is often a trade-off between taking time to understand these habitats as a 

system, and the urgency or desire to implement practical solutions (Morris et al. in 

press). Knowledge of urban shoreline ecosystems and of strategies that effectively 

enhance ecosystem functioning and services should improve over time, as ecological 

enhancement and blue/green infrastructure projects become more common and are 

applied in a broader variety of urban marine environments (Pontee et al. 2016). 

Developing and maintaining research collaborations with industry will be essential to 

ensure that lessons from each of these projects are shared and translated into subsequent 

designs and engineering solutions (Mayer-Pinto et al. 2017). Further, partnerships with 

city governments and planners will be needed to ensure that ecological enhancement 

projects are applied concurrently with broader improvements in water quality and at a 

sufficient scale to have long-standing benefits, and then carefully monitored over time.   

 

6. Critical challenges and research directions 

 

Awareness of the impacts of overexploitation, marine pollution, and ocean sprawl is 

growing (Chapman and Underwood 2011, Lotze et al. 2018). However, there remain 

many emerging issues, knowledge gaps, and research needs at numerous scales for 

understanding the dynamics of urban marine ecosystems (Airoldi et al. 2005, Kueffer 

and Kaiser-Bunbury 2014) and building urban marine ecology as a discipline. Here, we 

offer some critical research questions and areas for investigation that have yet to be 

fully addressed. 

 

1. What are the interactive effects of multiple stressors, including feedbacks and 

changes over time? 
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2. Stronger characterization of spatial and temporal patterns of biodiversity in 

urbanized marine environments. 

 

3. What are the mechanisms driving marine synanthropy? 

 

4. Key ecosystem functions, their most essential drivers, and likely future 

trajectories—including implications for current and future provisioning of 

ecosystem services. 

 

5. Assessment of the evidence for urban-driven trait selection in the marine 

environment. 

 

6. What ecological enhancement approaches (ecological engineering, green- and 

blue-infrastructure, etc.) are most effective in urban settings? 

 

There are also numerous questions related to the key ecological processes in Section 3 

that need to be elucidated, especially disentangling the many co-varying stressors and 

determining the long-term responses of organisms and populations to marine 

urbanization. Ultimately, all sides of coastal city design: architecture, urban planning, 

and civil and municipal engineering, will need to prioritize the marine environment if 

the negative effects of urbanization are to be minimized. In particular, planning 

strategies that account for the interactive effects of drivers and accommodate complex 

system dynamics could enhance the ecological and human functions of future urban 

marine ecosystems. 
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Figure Legends 

 

Figure 1. Activities, installations, processes and issues that represent instances of 

overlap and interaction among the three major drivers of marine urbanization: resources 

exploitation, ocean spread and pollution pathways. 
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Figure 2. The trajectories of the three key drivers of marine urbanization over time are 

difficult to hindcast (or forecast) and are likely to be city-specific. However, they will 

almost certainly overlap, potentially creating non-linear interactions that are even more 

challenging to predict (and are not represented here). For illustration purposes only: (a) 

the exploitation of living resources could accelerate rapidly during the early 

development of many coastal cities, yet decrease in intensity as the resource is 

overexploited or inaccessible due to other factors, such as contaminants. Conversely, 

ocean sprawl may be more likely to follow an asymptotic trajectory, which reaches 

saturation as an increasingly large percentage of natural habitats are converted by the 

installation of artificial structures. (b) A possible alternative configuration of driver 

trajectories in a younger city with a shorter but equally intense history of marine 

urbanization.  
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Table Legends 

 

Table 1. Types of marine exploitation, their scale and scope, and their impacts. 

Exploitatio

n type 

Scope and 

scale 

Potential effects on marine life and habitats 

Recreationa

l fishing 

 

 

Estuarine, 

inshore, 

offshore; scale 

can range from 

hundreds to 

tens of 

thousands of 

participants in 

a region. 

Removal of target fish and shellfish, potentially leading 

to population- and/or ecosystem-wide impacts. Delayed 

mortality from catch and release practices; mortality of 

bycatch species; mortality or injury from boat 

collisions. Damage or degradation of sensitive habitats 

from contact fishing gear or the launching/recovery of 

boats. Lost and abandoned fishing gear issues (see 

Table 2).  

Subsistence 

fishing and 

gleaning 

 

 

Estuarine, 

intertidal, 

inshore; 

numbers 

unknown but 

likely to vary 

greatly by 

region. 

Removal of target fish and shellfish, potentially leading 

to population- and/or ecosystem-wide impacts; 

mortality of bycatch species; mortality or injury from 

boat collisions. Damage or degradation of sensitive 

habitats from contact fishing gear and the 

launching/recovery of boats. Impacts from practices 

such as cyanide or dynamite fishing. Lost and 

abandoned fishing gear issues (see Table 2). 

Commercia

l fisheries 

 

 

Estuarine, 

inshore, 

offshore; scale 

variable by 

fishery and 

region but can 

range from 

tens to 

thousands of 

participants. 

Removal of large numbers of target species, potentially 

leading to major population- and/or ecosystem-wide 

impacts; mortality of bycatch species; mortality or 

injury from boat collisions; damage or degradation of 

sensitive habitats from contact fishing gear and the 

launching/recovery of boats. Lost and abandoned 

fishing gear issues (see Table 2). 

Mariculture 

 

 

Estuarine, 

inshore 

(offshore in the 

future); scale 

varies widely 

and depends 

upon the 

species being 

farmed. 

Transmission of disease and parasites between farmed 

and native species; eutrophication due to addition of 

nutrients (although shellfish farms may remove 

nutrients from water column); smothering of benthic 

fauna due to build-up of organic material (also leading 

to changes to sediment type/chemistry). 

Dredging 

for 

minerals/ 

aggregates 

 

Inshore and 

offshore; scale 

variable but 

can range from 

tens to 

hundreds of 

km
2
. 

Physical disturbance and removal of the substrate and 

associated benthic biota; changes to the composition of 

the sediment/substrate; changing bathymetry and 

sediment transport patterns; smothering of biota; 

reduced light and enhanced turbidity due to sediment 

suspension, toxicant release (see Table 2). 

Beach 

mining 

 

 

Inshore; 

usually 

conducted at 

the local scale 

Direct removal of species and substrate; loss of soft-

sediment habitat; lowering/loss of beach leading to 

erosion, changing sediment transport patterns, increased 

turbidity, changing conditions for fauna/flora and/or A
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but with 

possible 

regional-scale 

effects. 

saline water intrusion. 

Oil and gas 

extraction  

 

 

Inshore and 

offshore 

(mostly 

offshore in 

recent years); 

local to 

regional-scale 

effects. 

Direct removal of species and substrate; 

smothering/physical alterations to habitat/substrate type 

(i.e., replacement of soft with hard substrate); chronic 

and acute toxic pollution events; noise pollution (see 

Table 2). 

Water 

extraction 

for cooling 

and 

desalinatio

n 

Inshore, 

generally 

localized 

effects.  

Fish and plankton killed during intake and processing 

(impingement and entrainment). Brine and heated water 

(thermal pollution) can impact communities near 

outflows, changing behavior and physiology. Toxicants 

can also be released with the effluent. 
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Table 2. Pathways and potential effects of pollution on marine life. 

  

Pollutant 

type 

Main urban 

pathways 

Potential effects on marine life 

Sediments  Construction sites (on 

the coast and within 

inland urban areas), 

dredging, land 

reclamation. 

Turbidity resulting in less light for photosynthesis 

and visual predators/prey. Down welling 

sediments smother benthic organisms and create a 

substrate unsuitable for settling larvae.  

Nitrogen 

and 

phosphoru

s 

Industrial discharge, 

human and animal 

waste, detergents, 

mariculture. 

Eutrophication leading to both micro and macro 

algal blooms, reduced water clarity (see 

“sediments”), shifts toward noxious cyanobacteria 

and reduced fertilization success in corals. 

Plastics 

(macro 

and 

micro), 

lost and 

abandoned  

fishing 

gear 

Resin pellets and 

discarded end-user 

products. Fishing 

activities.  

Ingestion and/or entanglement, leading to internal 

blockages/injuries, toxic poisoning, starvation due 

to false ‘stomach filling’  suffocation  lacerations  

infections, reduced ability to swim. 

Compound

s from oil 

Motor vehicles, 

shipping, industry. 

Impairment of growth and developmental rates, 

reduced reproductive output and recruitment 

rates, increased susceptibility to disease. 

Carcinogenic.  

Heavy/trac

e metals 

Industrial and vehicle 

emissions, leaching 

from landfills, urban 

runoff, sewage. 

Can inhibit fertilization, recruitment, 

development, growth in marine microorganisms, 

invertebrates and vertebrates. Carcinogenic. 

Prone to undergo food chain magnification. 

Tributyltin  Antifouling paint used 

in the maritime 

industry. 

Causes imposex, and reduces growth and larval 

success, in various crustaceans and molluscs. 

Biomagnifies, leading to endocrine disruption in 

fishes, marine mammals and humans. 

PCBs and 

PBDEs 

Discharge from 

industry, especially 

electronics. Used in 

plastics, fire 

retardants and 

lubricants. 

Prone to biomaginification. Interferes with 

neurological and hormonal systems of marine 

organisms and humans. Can lead to decreases in 

reproductive capabilities and pose immunotoxic 

risk in marine mammals.  

Pharmaceu

ticals 

Industrial, hospital 

and domestic waste. 

Interferes with reproduction and development in 

both animals and plants. Perturbs fish physiology. 

Bacteria 

and 

viruses 

Sewage (from land 

and boats/ships), 

runoff, aquaculture. 

Diseases, especially acute gastrointestinal 

illnesses, e.g. salmonellosis. Viruses can cause 

hepatitis and respiratory infections. 

Light Streets, private and 

commercial buildings, 

vehicle headlights, 

airports. 

Encourages unwanted fouling, affects migration, 

predator and prey behavior. Disrupts larval 

settlement. De-synchronization of broadcast 

spawning from lunar phase (e.g. corals).  

Noise Boat traffic, 

construction, machine 

operation. 

Disrupts behavior (e.g. ability to find food, mates 

or avoid predators), reduces growth and 

fecundity.  
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Table 3. Types of human-made structures comprising ocean-sprwal, their functions and 

potential impacts. Note; all of these structures require some alteration and/or loss of 

natural habitat. 

 

 

Structu

re type 

Function Potential effects on marine habitats 

Reclai

med 

land 

and 

artificia

l 

islands 

Alleviation of 

coastal squeeze 

and expansion of 

land for industry 

and development. 

Directly results in habitat loss, and fragmentation. 

Sedimentation during construction, altered 

hydrodynamics interferes with connectivity at landscape 

and local scales. 

Artifici

al 

coastal 

defense

s 

Engineered to 

protect shorelines 

from shoreline 

erosion, flooding, 

and impacts from 

waves. 

Reduced intertidal extent and results in steeper slopes. 

Footprint of the structure removes existing natural 

habitat but effects may extend beyond structure (halo 

effect). Change in substrate material and altered 

hydrodynamics could result in different colonizing 

assemblages.  

Comme

rcial 

ports, 

docks 

and 

marinas 

Industry, services, 

and recreation. 

Elevated risk of species invasions, contaminants (oil, 

antifouling coatings, noise, light), disturbances 

associated with shipping (sediment resuspension, 

propeller injuries, etc.).  

Oil 

shippin

g and 

refinery 

infrastr

ucture 

Non-renewable 

resource mining 

for energy. 

Footprint of the structure removes existing natural 

habitat but effects may extend beyond structure (halo 

effect). Contaminants, risk of oil spills, noise and light 

pollution. 

Tidal 

and 

wind 

energy 

infrastr

ucture 

Energy 

production. 

Footprint of the structure removes existing natural 

habitat but effects may extend beyond structure (halo 

effect). Noise and light pollution, electromagnetic fields. 

Submar

ine 

cables 

and 

pipeline

s 

Telecommunicatio

ns, power, water, 

oil. 

Concrete mattresses are often used to stabilize and 

position cables on seafloor. Fragmentation of soft-

sediment habitats due to introduction of hard substrates. 

Noise and light pollution during construction phase. 

Electromagnetic fields. 
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