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Abstract: Parametrically excited energy harvesters provide a valuable alternative to directly excited ones. However, linear energy 

harvesters subjected to parametric excitation usually suffer from narrow bandwidths. This letter proposes a parametrically excited 

magnetic rolling pendulum (MRP) with intentionally introduced nonlinearity for broadband energy harvesting. The MRP exhibited 

a first-order parametric resonance with a broadened bandwidth as the excitation acceleration is ≥ 0.2 g (g=9.8 m/s2). When excited 

at 0.5 g in experiment, the parametric resonance was observed in the frequency range between 1.2𝑓0 and 4.5𝑓0 with 𝑓0 being the 

natural frequency of 4 Hz. With a peak power output of 3.6 mW, the MRP achieved a half-power bandwidth of 4.8 Hz, which is 

120% of its natural frequency.  Simulation results suggest that the power output, the bandwidth and the resonance frequency can be 

manipulated to by varying the magnet dimensions and positions.  

Parametrically excited systems have been recently attracted the attention of the research community as a means of vibration energy 

harvesting. Such systems usually have rapidly varying coefficients and can be described by a homogeneous differential equation, in 

contrast to directly excitation systems, which lead to inhomogeneous differential equations with constant or slowly varying 

coefficients 1. Vibration amplitudes of a parametric resonance are not limited by the linear damping but constrained by physical 

limits or the nonlinearity at high amplitudes 2. Therefore, a small parametric actuation may produce a large response when the 

excitation frequency is close to double of the natural frequency (first-order parametric resonance). This mechanical amplification 

effect lends parametrically excited energy harvesters (PE-EHs) high electric power outputs. PE-EHs are usually implemented by 

applying an excitation force orthogonal to the displacement, rather than parallel to as of a directly excited one. The most common 

approaches of PE-EHs are vertically driven pendulum2,3 and in-plane driven cantilevers4,5.  However, most of the PE-EHs in the 

literature are linear or with weak nonlinearity 2,4, and have a very limited power bandwidth.  

In recently years, in light of the success in broadband energy harvesting by intentionally introduced nonlinearity6, parametrically 

excited nonlinear energy harvesters (PE-N-EHs) have gradually attracted attention.  Aevras et al. 7 theoretically predicted that a 

parametrically excited nonlinear Mathieu system can exhibit a frequency-response curve resembling that of a monostable Duffing 

energy harvester. Zaghari et al.8 experimentally and analytically proved that increased bandwidth in parametric resonance can be 

obtained when the nonlinear items were properly introduced, although the nonlinearity had a negative effect on the vibration 

amplitude growth. Despite the established theoretic work, the implementation of PE-N-EHs is limited.  Ma et al. 9 observed a 

bandwidth up to 70% of the natural frequency on a parametrically excited pendulum-based energy harvester, which becomes 

nonlinear as the rotation angle is large. In this letter, we propose a magnetic rolling pendulum (MRP) with a strong nonlinearity 

introduced by a nonlinear magnetic force for parametrically excited energy harvesting. When parametrically excited at 0.5 g, the 

MRP produces a peak power of 3.6 mW and a of half-power bandwidth 4.8 Hz, which is 120% of its natural frequency. The 

resonance range and degree of nonlinearity can be manipulated to achieve different power levels and bandwidths to suit different 

vibration characteristics.  

The MRP (FIG. 1 (a)) consists of two coils and four neodymium (N42) magnets magnetized along their thickness direction. The 

dimensions of the magnets and coils are listed in TABLE 1. Magnets B, C and O are fixed to the frame, while magnet A is free to 

move. The polarisation direction of A is the same as B and C but opposite to O. As a result, A is attracted by O but repelled by B 

and C. Magnet O constrains the motion of A on its surface. Magnets B and C provide a nonlinear magnetic spring force, which can 

be adjusted by the dimensions and positions of B and C. When excited, magnet A rolls on the surface of magnet O. Two coils are 

placed symmetrically along the passage of magnet A. As magnet A passes by the coils, it introduces variation in the magnetic flux 

in the coils and thus produces electricity. The MRP can be excited horizontally and vertically. When excited horizontally, it 

represents a nonlinear system subjected to a direct excitation. When excited vertically, the MRP is a parametrically excited nonlinear 

system, which is of interest in this letter.  

A schematic of the modelling of the MRP is presented in FIG. 1 (b). 𝐹𝑚𝑡 is the projection of the magnetic force experienced by 

magnet A onto the tangent direction (+t). An inertial force 𝐹𝑖 = 𝑚𝐴0cos⁡(2𝜋𝑓𝑡) appears on magnet A when a harmonic excitation 

with acceleration amplitude of 𝐴0 and frequency 𝑓 is applied.  Magnet A rolls on the surface of magnet O at angular speed of 𝜑̇ 

with respect to its centre O. Assuming magnet A rolls without slipping, 𝜑̇ leads to an angular velocity 𝜃̇ = 2𝜑̇ with respect to O. 

The MRP can be represented by the following equations:  
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⁡⁡𝑀𝜃̈ + 𝑐𝑑𝜃̇ − 𝐹𝑚𝑡 −𝑚𝑔𝑠𝑖𝑛𝜃 = 𝑚𝐴0 cos(2𝜋𝑓𝑡) 𝑠𝑖𝑛𝜃, ( 1 ) 

𝑉𝑂𝐶 = −𝑁𝜃̇ ∙
𝑑Φ𝐵

𝑑𝜃
 

( 2 ) 

𝑃 =
1

𝑇
∫

𝑉𝑂𝐶
2

4𝑅𝑖

𝑇

0

𝑑𝑡. 
( 3 ) 

𝑀 = 2𝑚𝑅2 + 2𝐼𝐴/𝑅2 is the effective mass; 𝐼𝐴 is the moment of inertia of magnet A with respect to its centre; 𝑐𝑑 is the damping 

factor caused by mechanical loss and electromagnetic coupling; 𝑉𝑂𝐶  is the open-circuit voltage produced in the coil with 𝑁 windings 

and average magnetic flux of Φ𝐵 in each winding; 𝑃 is the average power generated in a time period of ⁡𝑇 when a load resistance 

𝑅𝑖 is connected to the coil. 𝜃 is limited by the position angle 𝛼 = 0.43⁡rad to [-1.73, 1.73] rad.  

                   

FIG. 1 (a) A prototype of the magnetic rolling pendulum sitting on the testing setup; (b) a schematic of the modelling 

The magnetic force 𝐹𝑚𝑡  and the magnetic flux Φ𝐵  were simulated by finite element analysis in COMSOL Multiphysics® (see 

supplementary material) and the results are shown in FIG. 2. They can be described by Eq. ( 4 ) and ( 5 ), respectively with the 

parameters listed in TABLE 2.  

 ⁡𝐹𝑚𝑡 = 𝑎𝜃 + 𝑏𝜃3 + 𝑐𝜃5 ( 4 ) 

 

⁡𝛷𝐵 =∑𝐴𝑖 cos(𝑖𝜔1𝜃)

7

𝑖=0

 ( 5 ) 

 

FIG. 2 Comparison of the finite element analysis results and equation fit on (a) magnetic force and (b) average magnetic flux 

Substituting Eq. ( 4 ) into Eq. ( 1 ) and considering⁡𝑠𝑖𝑛𝜃 ≈ 𝜃 −
1

6
𝜃3, the dynamics of the MRP can be re-written as  

𝑀𝜃̈ + 𝑐𝑑𝜃̇ + (−𝑎 − 𝑚𝑔 −𝑚𝐴0 cos(2𝜋𝑓𝑡))𝜃 + (−𝑏 +
1

6
𝑚𝑔 +

1

6
𝑚𝐴0 cos(2𝜋𝑓𝑡)) 𝜃

3 − 𝑐𝜃5 = 0⁡⁡ ( 6 ) 

Eq. ( 6 ) is a nonlinear Mathieu equation with time-varying coefficients in both linear and cubic nonlinear stiffness. Systems 

represented by equations similar to ( 6 ) have been studied experimentally and theoretically by Zaghari et al 8. It was found that 

although the nonlinearity reduced the unbounded amplitude of a linear parametric excited system, it brought in larger power 
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bandwidth, which is beneficial for energy harvesting. In this letter, both numeric simulation and experimental characterisation were 

performed to study the performance of the MRP.  

TABLE 1 Parameters of the prototype 

 Description symbol value unit 

 

Magnets  

A and O 

inner radius   𝑅1 4.75 mm 

outer radius 𝑅2 9.55 mm 

thickness 𝑡𝐴 6.4 mm 

mass 𝑚 13.8 gram 

 

Magnets  

B and C 

inner radius  𝑟1 2 mm 

outer radius 𝑟2 6 mm 

thickness 𝑡𝐵 4 mm 

 

 

Coils  

1 and 2 

inner radius  𝑅𝑐1 3 mm 

outer radius 𝑅𝑐2 7.9 mm 

thickness 𝑡𝑐 7 mm 

Coil position 𝑑𝑔𝑎𝑝 1.7 mm 

Coil resistance 𝑅𝑖 10 Ω 

TABLE 2 Parameters of the magnetic force and magnetic flux 

parameters values parameters values parameters values 

𝑎 -0.58 𝐴1 2.12×10-6 𝐴5 -3.95×10-7 

𝑏 0.83 𝐴2 4.20×10-6 𝐴6 -2.75×10-7 

𝑐 -0.54 𝐴3 1.96×10-6 𝐴7 -8.4×10-8 

  𝐴4 1.02×10-7 𝜔1 1.636 

 

To test the performance, the MRP was installed on an electromagnetic shaker (V20, Data Physics), as shown in FIG. 1 (a). The 

shaker provides a vertical harmonic excitation at constant acceleration amplitudes range from 0.2 to 0.7 g (g=9.8 m/s2). Each coil 

of the MRP was connected to a 10 Ω load resistor, which matches the internal resistance of the coils. The voltages across the load 

resistors were measured to calculate the average power generation. The camera of a smart phone (iPhone 6S) was used to record the 

motion of magnet A at 240 frames per second. When taking the video, one coil was removed to fully expose magnet A to the camera. 

The video footage was processed by Tracker 5.0 (Open Source Physics) to extract the displacement of magnet A. The process to 

extract the displacement from the video footage is described in the supplementary material.  

In the numerical simulation, Eq. (6) was solved by an ordinary differential equation solver (ODE23) in Matlab with excitation 

frequency varying from 4 to 20 Hz. At each excitation frequency, 𝜃 and 𝜃̇⁡were solved for 50 seconds to allow magnet A to achieve 

a steady state. 𝜃 and 𝜃̇ in the last 10 seconds of each frequency were input to Eq. (2-3) to calculate the steady-state voltage and 

power output. Depending on the initial disturbances, the MRP may (1) produce a high-amplitude steady-state response or (2) be 

trapped at the low-amplitude state. In this study, the MRP was tested and simulated in an upward frequency sweep to study its high-

amplitude response and its potential for energy harvesting. The initial conditions required to produce the high-amplitude response 

need further investigation and thus are not discussed in this letter.  

FIG. 3 (a) shows the measured and simulated electric power output of the MRP in an upward frequency sweep when 𝐴0= 0.3 g. The 

power-frequency curve resembles that of a monostable nonlinear energy harvester 10—the response curve is bended to the right and 

resonance is shifted to higher frequency range due to the strong hardening nonlinearity, giving rise to an increased power bandwidth. 

The resonance of the MRP observed is the first-order parametric resonance. This can be verified by the steady-state displacement 

of the MRP shown in (b), (c) and (d). When exited at 6, 10 and 14 Hz, the MRP shows displacement response at 3, 5 and 7 Hz, 

respectively, i.e. the displacement response frequency is always half of the excitation frequency as of the first-order parametric 

resonance. The main frequency of the voltage (shown in (e), (f) and (g)) is twice of the displacement, which is expected because 

each cycle the motion introduces two cycles of flux variations in the coils. Good agreement between simulation and experiment is 

observed in voltage, displacement and electric power. The parametric resonance in experiment starts at 4.8 Hz, which is 1.2𝑓0 (𝑓0 =

4 Hz). The power then increases with frequency until a steep jump-down is observed at 15 Hz.  The steep jump-down is a 

phenomenon associated with systems with hardening nonlinearity. The parametric resonance is therefore covers a frequency range 

between 1.2𝑓0 and 3.75𝑓0.  
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FIG. 3 Measured and simulated performance of the MRP when 𝐴0=0.3 g: (a) power output at different frequencies; (b), (c) and (d) 

steady-state displacements when 𝑓=6, 10 and 14 Hz, respectively; (e), (f) and (g) steady-state voltages across the 10 Ω load 

resistor when 𝑓 =6, 10 and 14 Hz, respectively. All time-domain results were aligned to 0 to 1 s.  

FIG. 4 (a) shows the measured electric power outputs of the MRP when different acceleration levels are applied. The parametric 

resonance is observed when 𝐴0 ≥ 0.2 g. This means the excitation amplitude has to overcome a threshold prior to triggering 

parametric resonance, which is a characteristic of parametrically excited system 4. As 𝐴0 increases from 0.2 to 0.5 g, the jump-down 

frequency increases from 10.1 Hz to 18 Hz. As 𝐴0 further increases, the jump-down frequency maintains around 18 Hz. This is 

because the displacement of the MRP reaches the position limit: magnet A collides with magnets B and C. This can be verified by 

the audio observation in experiment and the displacement amplitude in simulation (FIG. 4 (b)). The displacement reaches the limit 

of 1.73 rad at 18 Hz when 𝐴0 ≫ 0.5⁡g. In each collision, the MRP losses a fraction of its kinetic energy and finally jumps to the low 

energy state. With a peak power of 3.6 mW, the maximum parametric resonance zone is from 5 to 18 Hz, i.e. from 1.25𝑓0 to 4.5𝑓0. 

The maximum half-power bandwidth measured is 4.8 Hz, covering from 13.2 to 18 Hz.    

 

FIG. 4 (a) Measured electric power outputs and (b) simulated displacement amplitudes of the MRP subjected to different 

acceleration amplitudes 𝐴0 
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It can also be observed from FIG. 4 (b) that once the parametric resonance is sustained, the displacement amplitude and the power 

output is independent of the excitation amplitudes, which is caused by the strong nonlinearity and was also reported in 11. Although 

the displacement amplitude (FIG. 4 (b)) in the parametric resonance increases with frequency at a decreasing rate because of the 

increasing magnetic repulsive force, the power goes up progressively with the excitation frequency. This is because the power output 

is proportional to the square of velocity, which is proportional to frequency with the same displacement. Therefore, operating the 

MRP at higher frequencies might be beneficial in power generation.  To verify this, we simulated the performance of the MRP with 

two more configurations (TABLE 3). Compared to the original MRP, both Config.1 and 2 has a position angle increased from 25º 

to 60º. This limits the displacement amplitudes to 1.1 rad but increases the natural frequency because of the smaller distance between 

magnets. In addition, Config. 2 has a doubled thickness for magnets B and C, which further increases the magnetic force and the 

natural frequency. FIG. 5 compares the electric power output of different configurations. The applied acceleration amplitudes are 

the minimum level required by each configuration to achieve the maximum power output and bandwidth, i.e. when magnet A 

collides with magnets B and C. Config. 1 produced 6.1 mW at 27.3 Hz with a half-power bandwidth of 6.2 Hz covering from 21 to 

27.3 Hz, while Config. 2 produced 9.74 mW at 34.3 Hz with a bandwidth of 7.6 Hz covering from 26.7 to 34.3 Hz. Therefore, the 

peak power and the bandwidth of the MRP can be increased by increasing the magnetic spring force. In addition, the frequency 

range covered by the bandwidth can be manipulated to the frequency of interest.    

TABLE 3 Parameters of different configurations of the MRP 

Config. 𝛼 (º) 𝑡𝐵 (mm) 𝑎 𝑏 𝑐 𝑓0(Hz) 

original 25 4 -0.58 0.83 -0.54 4.0 

1 60 4 -1.0 1.8 -3.8 7.1 

2 60 8 -1.6 1.8 -4.9 9.3 

 

 

FIG. 5 Electric power outputs of the MRP with different configurations  

In conclusion, we presented the experimental and simulation results for a parametrically excited magnetic rolling pendulum for 

broadband energy harvesting. Because of the strong nonlinearity introduced by the magnetic spring force, the parametric resonance 

of the MRP, which can be excited with acceleration larger than 0.2 g, demonstrated broadband characteristics as of a monostable 

nonlinear oscillator. When the resonance is sustained, the power output is independent of the excitation amplitude. The present 

prototype exhibited a power output of 3.6 mW and bandwidth of 4.8 Hz covering from 13.2 to 18 Hz, which can be further increased 

by design optimisation. The frequency range covered by the bandwidth can be manipulated to suit different vibrations sources with 

different frequency spectrums.  

See supplementary material for the finite element modelling method and the process to extract displacement from the video footage.   
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