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Climate change has significantly altered species distributions in the wild and has

the potential to affect the interactions between pests and diseases and their

human, animal and plant hosts. While several studies have projected changes

in disease distributions in the future, responses to historical climate change are

poorly understood. Such analyses are required to dissect the relative contri-

butions of climate change, host availability and dispersal to the emergence of

pests and diseases. Here, we model the influence of climate change on

the most damaging disease of a major tropical food plant, Black Sigatoka

disease of banana. Black Sigatoka emerged from Asia in the late twentieth

Century and has recently completed its invasion of Latin American and

Caribbean banana-growing areas. We parametrize an infection model with pub-

lished experimental data and drive the model with hourly microclimate data

from a global climate reanalysis dataset. We define infection risk as the sum of

thenumberof modelled hourlyspore cohorts that infect a leaf overatime interval.

The model shows that infection risk has increased by a median of 44.2% across

banana-growing areas of Latin America and the Caribbean since the 1960s,

due to increasing canopy wetness and improving temperature conditions for

the pathogen. Thus, while increasing banana production and global trade have

probably facilitated Black Sigatoka establishment and spread, climate change

has made the region increasingly conducive for plant infection.

This article is part of the theme issue ‘Modelling infectious disease out-

breaks in humans, animals and plants: approaches and important themes’.

This issue is linked with the subsequent theme issue ‘Modelling infectious

disease outbreaks in humans, animals and plants: epidemic forecasting

and control’.

provided by Open Resear
1. Introduction
Over the past century, human activities have dramatically altered the Earth’s

atmospheric composition, with significant consequences for the planet’s climate,

biogeochemistry, ecosystems and societies [1]. Biological processes are strongly

influenced by temperature and water availability, and the influence of recent

anthropogenic climate change on ecosystems is well documented, with hundreds

of examples of latitudinal migrations and changing phenologies in response

to warming [2]. Like other organisms, pests, parasites and diseases are influenced

by abiotic conditions; therefore, climate change is expected to alter the distribution

and impact of these organisms on their human, animal and plant hosts [3–7].

Crop pests and pathogens are spreading rapidly around the world [8], and

latitudinal shifts in the distributions of these organisms since the 1960s [9] are lar-

gely in line with expectations of climate change [10]. These damaging organisms

can have particularly severe economic consequences in the developing world,

given the greater dependence of developing countries’ economies on agriculture,

and the relative lack of resources and technological capacity to control crop dis-

ease [11]. Among the most important tropical crops, as both a dietary staple and

an exported cash crop, is the banana (Musa spp.). Bananas and plantains are the

seventh most important crop by production in the developing world, with India,

China and Brazil being the most important producers [12]. It is therefore of great
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concern that pests and diseases of bananas have been among

the most rapidly spreading of all crops in recent years [3].

The re-emergence of Fusarium Wilt (Fusarium oxysporum f.

sp. cubense), also known as Panama Disease, in the form of

Tropical Race 4 (TR4) from Southeast Asia, is of particular con-

cern to the export industries of Latin America and the

Caribbean, because planted cultivars of Cavendish bananas

are highly susceptible to the disease [13].

While the focus on control of TR4 is justified given potential

production impacts and economic consequences, Fusarium

Wilt is not currently the most important disease in banana

production globally. Another fungal disease, known as Black

Sigatoka or Black Leaf Streak Disease, has recently emerged

from Asia and now causes the greatest yield losses in banana

plantations globally [14]. Black Sigatoka is caused by the

Ascomycete fungus Pseudocercospora fijiensis (formerly

Mycosphaerella fijiensis). P. fijiensis spreads via aerial spores,

infecting banana leaves via the stomata and causing character-

istic streaked lesions and cell death when fungal toxins are

exposed to light [15]. The disease is virulent against a wide

range of banana genotypes, and infected plant yields are

reduced by up to 80% if untreated [14].

Establishment of an emerging plant disease in new terri-

tories requires the presence of the host and a suitable

climate [3]. Thus, while dispersal via international trade

[16] or via spores drifting on the wind [17] may be the

means of arrival, climate change may alter abiotic conditions

that make the establishment of a disease more or less likely.

Studies have attempted to model potential future changes

in plant pest and pathogen distributions and impacts

[18–21], but relatively few have considered how historical cli-

mate change has altered pest and disease burdens on

agriculture. By applying models that estimate disease risk

over time, we can infer whether conditions have become

more or less conducive to particular plant diseases and thus

determine any ‘fingerprint’ of climate change. Here, we

develop epidemiological and statistical models for Black Siga-

toka using published data, and drive these models using

historical climatic data for the banana-growing regions of

Latin America and the Caribbean. We test the hypothesis that

climate change over the past 60 years has increased the risk

of Black Sigatoka outbreaks, and discuss how future climate

change might influence this important disease of bananas.
2. Material and methods
The life cycle of P. fijiensis is strongly determined by weather and

microclimate [22]. Ascospores infect leaves through the stomata,

with infection producing necrotic lesions that eventually develop

conidia that can lead to secondary infections, again via the

stomata. Conidia are not thought to be important sources of infec-

tion, because P. fijiensis forms relatively few of them in comparison

with ascospores. Ascospores are dispersed over long distances by

wind [23], while conidia form readily under wet or humid con-

ditions and are dispersed by rain-splash. Like many foliar fungal

pathogens, P. fijiensis spores require a wet leaf surface or very

high relative humidity (RH) to germinate and infect the leaf, and

the rate of germination and infection during wet or humid periods

is governed by temperature [24].

Several experimental studies have investigated the depen-

dence of spore germination, infection and Black Sigatoka disease

development on microclimate. Uchôa et al. [24,25] measured infec-

tion and disease development rates in relation to temperature

and leaf wetness duration (LWD). We abstracted area under the
disease progress curve (AUDPC) values under a variety of temp-

eratures and LWD from figure 2, p. 83 in [25] to parametrize a

new disease development model. Given that RH was reduced to

around 55% after controlled periods of leaf wetness in that study,

we assume that all germination and penetration occurred during

the wet periods. We interpreted the AUDPC as an outcome of

infection level driven by the germination and penetration of

spores, the rates of which are dependent upon temperature and

LWD. In reality, the AUDPC is monotonically but not necessarily

linearly related to the number of infections, though we assume lin-

earity in the absence of further data. We did not model other

aspects of disease development such as the latent period (but see

electronic supplementary material).

We treated infection as a probabilistic survival process of

spores transitioning to infections, which proceeds over time t
during wet periods and has a Weibull hazard function H depen-

dent upon temperature T (equations (2.1) and (2.2)). The

temperature-dependent rate r is determined by the cardinal temp-

eratures, namely the minimum (Tmin), optimum (Topt) and

maximum (Tmax) (equation (2.3)). Full details of the model are pro-

vided in ref. [26] and in electronic supplementary material. We

estimated the following model parameters by simulated annealing

optimization [27]: Tmin, Topt, Tmax, the scale factor of the Weibull

hazard function a, the shape parameter of the Weibull hazard

function g and a scaling factor b such that bF(t) ¼ AUDPC(t)
where F(t) is the fraction of a cohort of spores that have germinated

by time t.

F(t, T) ¼ 1� e�H(t,T): ð2:1Þ

H(t,T) ¼ r(T)
t
a

� �g

: ð2:2Þ

and r(T) ¼ Tmax � T
Tmax � Topt

� �
T � Tmin

Topt � Tmin

� �Topt�Tmin=Tmax�Topt

: ð2:3Þ

As previously [26,28], we employed the Japanese Meteorolo-

gical Agency 55-Year reanalysis (JRA55) to model the role of

weather on infection [29]. We obtained 3-hourly JRA55 estimates

at 0.56258 � 0.56258 resolution (approx. 60 km grid) for plant

canopy temperature, canopy surface water and RH at 2 m above

the ground, from the US National Center for Atmospheric Research

(NCAR) [30], for the period 1958–2017 inclusive. Our region of

interest was tropical Latin America and the Caribbean, 32.6258W

to 109.68758 W and 23.06258 S to 23.06258N, a grid of 82 rows

and 137 columns containing 3907 land pixels. Of these, we selected

830 pixels estimated to contain greater than 0.1% banana-growing

area (of the pixel area) in the SPAM dataset of global crop pro-

duction [31] for further analysis. In Latin America, bananas tend

to be grown at low elevations, reducing the within-pixel variability

in temperature due to topography, so we did not correct for the

elevational lapse rate (see electronic supplementary material).

For each pixel, we linearly interpolated the 3-hourly micro-

climate data to hourly, then modelled cumulative infection

probabilities for hourly cohorts of spores, with rates determined

by our temperature response function. The hazard function was

calculated piecewise by the temperature in each hour of each wet

period. We assumed that ascospores had identical temperature

requirements to conidia, as ascospore data are unavailable.

Cohorts were assumed not to accumulate on leaves during dry

periods, i.e. only one cohort began to germinate in each hour

under conditions of leaf wetness or with RH greater than or

equal to 98%. Cohorts were assumed to stop germinating and

die under drier conditions. The cumulative number of infections

was summed over all preceding cohorts for each hour to give infec-
tion risk, our metric for disease pressure in relation to weather.

These were summed to give annual infection risk in each pixel.

Further details of data and analyses are given in the electronic

supplementary material, including details of the infection risk

model and its parametrization (with computer code examples),
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Figure 1. Temperature and LWD response functions for AUDPC. Points show data from [25], coloured by (a) temperature and (b) LWD. Lines show modelled
responses, fitted by optimization of a temperature-dependent Weibull survival function, scaled to the units of AUDPC. The cardinal temperatures are Tmin ¼

16.6, Topt ¼ 27.2 and Tmax ¼ 30.38C. The Weibull parameters are a ¼ 32.6, g ¼ 1.76, and the scaling parameter b ¼ 37.6.
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additional data sources, details of the JRA55 dataset and consi-

deration of sub-pixel variation in microclimate estimates, the

geographical distribution of banana production and an analysis of

the effects of weather on the disease incubation and latent periods.
3. Results
The best-fitting model parameters for the Uchôa et al. [24,25]

disease development data were Tmin ¼ 16.6, Topt ¼ 27.2

and Tmax ¼ 30.38C, a ¼ 32.6, g ¼ 1.76, and scaling parameter

b ¼ 37.6 (figure 1). Thus, at Topt, a cohort of spores would

reach 50% of maximum infection after around 26 h of moist

conditions, and 98% of maximum infection after around 72 h

of moist conditions. Considering the entire Latin American

and Caribbean land surface over the period 1958–2017, suit-

ably moist conditions (RH greater than or equal to 98% or

liquid water present) were most frequent in the western

Amazon basin of Brazil and Colombia, the Andean regions

of Bolivia, Peru, Ecuador and Colombia, and southern

Panama, while dry conditions occurred in southern Brazil,

Mexico, Cuba, coastal Venezuela, northern Colombia

(figure 2a). Over the study period, the central area comprising

western Brazil, Venezuela, southern and central Colombia,

much of Ecuador and Peru, and the Dominican Republic

became wetter, while Mexico, Central America, Cuba and

southern Brazil became drier (figure 2b). The canopy tempera-

ture suitability for Black Sigatoka infection, as defined by the

beta function r(T ), was greatest on average in the Amazon

basin, Panama and eastern Nicaragua, and lowest in Mexico

and high-elevation regions of the Andes and the Guiana

Shield (figure 2c). The canopy temperature suitability for

infection increased over much of Latin America and the

Caribbean, particularly in the Amazon basin, coastal Ecuador

and Dominican Republic (figure 2d ).

Model simulations for infection in hourly cohorts of spores

from 00.00 on 1 January 1958 to 23.00 on 31 December 2017

indicated the greatest mean infection risk in eastern Nicaragua,

Panama and coastal Guyana (figure 2e), with up to 2000

cohorts of spores infecting per year. In context, the model

would allow for up to 8760 cohorts to infect per year (this
being the number of hours per year). Potential infection risk

increased most rapidly across the Amazon basin, and parts of

Nicaragua, Ecuador, Guyana, Suriname, French Guiana and

the Dominican Republic, and decreased in southern Brazil,

much of Central America, and the north coast of Colombia

(figure 2f ). Considering only the banana-growing pixels with

greater than 0.1% banana-growing area per pixel (approx.

20% of the region), the median annual average infection

number was 234, with a median trend ofþ0.32 (table 1). Mod-

elled infection risk per pixel in banana-growing areas increased

by a median of 44.2% (interquartile range 22.7–95.2%) over

that period (table 1). For the top 10 banana-producing nations,

Panama had the highest mean annual infection score, followed

by Brazil and Colombia, while Brazil had the most rapid

increase in infection risk in banana-growing regions (table 1;

electronic supplementary material, figure S7). For the entire

region, the infection risk trend was somewhat more strongly

related to trends in annual temperature-dependent rate (corre-

lation 0.80) than trends in the fraction of time the canopy was

wet (correlation 0.71).
4. Discussion
Our analysis shows that Black Sigatoka infection risk has

increased significantly across the banana-growing regions of

Latin America and the Caribbean, increasing by a median of

44.2% per pixel from the 1960s to the 2010s. This increase in

risk was caused by climate change that improved the tempera-

ture conditions for spore germination and growth and made

crop canopies wetter. In some parts of Mexico and Central

America, a drying trend has reduced infection risk. Black

Sigatoka was first reported from Honduras in 1972 [32],

spreading throughout the region to reach Brazil in 1998 [33]

and the Caribbean islands of Martinique, St Lucia and

St Vincent and the Grenadines in the late 2000s [34]. The dis-

ease now occurs as far north as Florida. While P. fijiensis
is likely to have been introduced into Honduras on plants

imported from Asia for breeding research [35], our models

indicate that climate change of the past 60 years has

exacerbated the impact of this pathogen.
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Figure 2. Climate and infection risk in Latin America and the Caribbean, 1958 – 2017. (a) Mean fraction of time during which the canopy was wet enough for
P. fijiensis infection to occur, i.e. RH greater than or equal to 98% or canopy surface moisture greater than 0. (b) Linear annual trend in canopy wetness fraction.
(c) Mean temperature-dependent rate for P. fijiensis infection. (d ) Linear annual trend in temperature-dependent rate. (e) Mean annual infection events derived from
infection risk model. ( f ) Linear annual trend in mean annual infection events. Results for the entire region are shown, not only banana-growing areas. Trends should
be multiplied by 60 to estimate mean change over the study period.

Table 1. Black Sigatoka disease pressure for banana-growing areas. Summaries are for the top 10 banana-producing countries, and the entire region. Pixels
gives the number of pixels in the analysis, containing greater than 0.1% banana-growing area according to the SPAM dataset. Mean and trend give the median
and interquartile ranges of mean and trend in P. fijiensis modelled annual infection intensity (see main text for details). Change gives the median and
interquartile ranges of the relative change in annual infection intensity between the 1960s and the 2000s.

country pixels mean trend change (%)

Brazil 533 331 (150, 564) þ1.66 (20.28, þ5.38) 39.5 (28.5, þ91.0)

Colombia 79 89 (12, 271) þ0.18 (þ0.01, þ1.00) 62.2 (29.1, 159.4)

Costa Rica 6 109 (42, 206) þ0.57 (þ0.22, þ0.93) 88.5 (75.4, 91.4)

Dominican Republic 12 71 (38, 112) þ0.61 (þ0.36, þ0.98) 40.4 (34.1, 51.7)

Ecuador 42 84 (3, 241) þ0.54 (þ0.01, þ2.05) 95.0 (66.2, 246.5)

Guatemala 14 43 (7, 144) 20.31 (21.20, 20.08) 240.7 (257.9, 231.2)

Honduras 21 40 (21, 57) 20.34 (20.59, 20.08) 254.6 (260.7, 226.7)

Mexico 51 88 (19, 241) 20.01 (20.44, þ0.22) 39.9 (21.8, 71.4)

Panama 15 785 (559, 1199) 20.52 (23.05, 0.77) 2.8 (23.6, 15.5)

Venezuela 29 99 (50, 175) þ0.59 (þ0.10, þ1.33) 173.8 (71.8, 238.8)

Region 830 234 (91, 462) þ0.32 (20.23, þ3.63) 44.2 (22.7, 95.2)
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The spread of Black Sigatoka across Latin America and

the Caribbean provides an example of the Biotic–Abiotic–

Migration (BAM) framework of Sobéron and colleagues

[36], in which the observed distribution of a species is the

intersection of biologically and climatically suitable regions

which have been reached by a species. The area under

banana cultivation has increased over time, the climate has

improved and growing international trade and transport

have made these suitable areas accessible to the pathogen.

While there have been many projections of future changes

in plant disease distributions [18–21], investigations of his-

torical changes in plant pathogen distributions and impacts

due to climate change are rare [3], and this is also the case

with human infectious diseases, where analysis of empirical

relations between climatic variables and disease is not often

followed by modelling the consequences of changing climate

on disease [5]. Given that we have more certainty about

historical climate change and disease incidence than we do

about the future, further investigations of the consequences

of twentieth Century changes may help us to disentangle

the relative importance of abiotic, biotic and migratory

factors on emerging diseases.

We employed a ‘forward modelling’ approach [37] in

which experimentally determined physiological responses

are used to estimate infection risk given appropriate weather

data [38]. A potential weakness of this approach is that the be-

haviour of an organism in the laboratory may differ from that

in the field, where numerous other environmental and biologi-

cal factors may be at play [39]. For example, a study of the

wheat pathogens Phaeosphaeria nodorum and Zymoseptoria tritici
in the UK revealed air pollution as the main driver of their

relative abundance [40], invalidating any model based purely

on climate responses for periods over which air quality has

changed significantly. Our model considered only the spore

germination and infection processes, which decades of

research have found are controlled primarily by temperature

and water availability [14,22,41–43]. Hence, it is unlikely that

we have omitted other important drivers. Nevertheless,

detailed observational studies of disease incidence over a

wide geographical area would be valuable for validation of

our model predictions, though sufficiently detailed historical

records do not exist. We did not attempt to model the processes

of spore production, release and dispersal, which are governed

by wind, rain and sunlight, and therefore our results should

only be interpreted as relative estimates of infection risk.

We did not model host phenology and assumed a constant

availability of leaves over time.

Other potential weaknesses of our approach include local

evolutionary adaptation, as observed in Z. tritici [44], which

would widen the climatic niche of the species as a whole. An

extreme example is the failure of a species distribution model

to predict the range expansion of the Colorado Potato Beetle Lep-
tinotarsa decemlineata into China, due to the evolution of

burrowing behaviour that was not considered in the model

[3]. Though some comparison of microclimate responses

among P. fijiensis populations has been made (see electronic sup-

plementary material), we have insufficient information on

adaptation to adjust our model accordingly. Our modelling

used the JRA55 climate reanalysis dataset, which may be subject

to biases, particularly in the hydrological cycle [29]. The JRA55

model is among the most sophisticated and data-rich climate

reanalyses, employing four-dimensional variational assimila-

tion and extensive bias correction. Comparison with other
reanalyses and observational data has shown JRA55 to be

among the most accurate and unbiased datasets available [45].

Additionally, JRA55 is the only four-dimensional reanalysis

that explicitly estimates biologically relevant parameters such

as canopy temperature and canopy surface water, enhancing

its utility for modelling plant pathogen epidemiology.

We employed a mechanistic model (i.e. based on math-

ematical abstractions of biological processes) driven by high

temporal resolution (but relatively coarse spatial resolution)

historical weather estimates. An alternative would have been

a statistical model that correlated historical disease incidences

with weather. Such observational data are not, to our knowl-

edge, available, although we attempted to model the disease

latent period in this way (see electronic supplementary

material). Hence, our reliance on experimental data to parame-

trize the infection process in relation to temperature. Both

process-based and statistical models (and models combining

elements of both approaches) are widely used to model cli-

matic effects on species distributions, biological invasions

and the epidemiology and occurrence of human, animal and

plant pathogens [37,39,46]. Each approach has strengths and

weaknesses, and choice of a method will depend upon the

data sources available, the degree of knowledge of the biologi-

cal processes involved and the specific aims of the study.

Statistical models are advantageous in requiring little knowl-

edge of the biology of the system, but this simplicity makes

them vulnerable to spurious extrapolations outside the range

of the parametrizing data. Mechanistic models attempt to cap-

ture causality in a system and so may be more appropriate for

extrapolation but can be harder to parametrize and may be

highly complex for systems with many interacting processes.

Correlative models have been far more prevalent for mod-

elling of human infectious diseases in relation to climate

change [46]. For example, a linear model using growing

degree days, mean saturation deficit, cumulative precipitation

and distance to the ocean has been used to project future

changes in Lyme disease outbreaks in the USA [47]. Appli-

cation of mechanistic models to climate change effects on

human disease remains relatively uncommon, perhaps

because of the lack of sufficient calibration data, with only cer-

tain vector-borne and faecal-oral transmission diseases having

been sufficiently studied to enable model development and

parametrization [46]. The sensitivity of arthropods to weather

may make vector-borne diseases particularly responsive to

climate change [48].

A vector-borne human disease with a long history of

mechanistic modelling is malaria [49]. The importance of deter-

mining thermal response functions for the numerous vector

and parasite life cycle parameters is a key challenge to improv-

ing understanding of climate change impacts on malaria

distribution, but until recently, all models used monotonically

increasing functions of temperature, or ignored temperature

completely [49]. Mordecai et al. [50] published the first unimo-

dal response function for the basic reproductive number of

malaria, determined by minimum, optimum and maximum

temperatures. Unlike our beta function for P. fijiensis infection,

quadratic and Briére functions were fitted to data from labora-

tory studies. The beta function was introduced for crop

physiology in 1995 [51] and crop disease in 2005 [38], so it is

surprising that nonlinear temperature responses have only

recently been introduced into malaria modelling. As in our

Black Sigatoka model, the malaria model was driven using cli-

mate reanalysis data [50], but at coarser spatial and temporal



royalsocietypublishing.org/journal/rstb
Phil.Trans.R

6
resolution reflecting the very different infection dynamics of

the two diseases. Model validation was possible using a pub-

licly available observational dataset on rates of biting by

infectious mosquitoes. Such observational datasets are lacking

for many plant diseases, particularly in the developing world.

On the other hand, the malaria life cycle is more complex than

our fungal disease, and vector-borne disease models require

consideration of factors such as vector and host behaviour,

habitat–weather interactions (e.g. how precipitation creates

breeding areas), host immunity and socioeconomic effects

(e.g. control measures) [48,49].

We did not attempt to model the potential effects of

future climate on Black Sigatoka distribution and impact.

Based upon temperature ranges (25–288C) and RH (greater

than 90%), declines in the area favourable to the pathogen

globally and within Latin America and the Caribbean by

2080 have been projected using earlier climate projections
[52]. A potential corollary of deteriorating conditions for

Black Sigatoka is that growth of the host plant may also be

affected. Bananas grow best in warm, moist conditions

favoured by the pathogen [53]. Future drying may reduce dis-

ease risk but will also require investment in irrigation systems

that could put pressure on freshwater resources [53]. Thus,

the impact of future climate change on banana production

from the perspective of management must consider both

the disease and the host.
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