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Abstract. 

Boron nitride nanoscrolls (BNS) are open-ended, one-dimensional (1D) nanostructures made 

by the process of rolling boron nitride nanosheets (BNNS) into a scroll-like morphology. BNS 

offer a high surface area to volume ratio and possess many unique properties (similar to 

carbon nanotubes (CNT), carbon nanoscrolls (CNS) and boron nitride nanotubes (BNT)) such 

as high resistance to oxidation, chemical stability, increased lubrication, high-temperature 

resistance, electrical insulation, the ability to cap molecules inside and at the ends, and a 

wide band gap regardless of chirality. Despite these attractive features and properties well 

suited for applications in biotechnology, energy storage, and electronics, the true potential of 

boron nitride, and BNS as the next ‘miracle material’ is yet to be fully explored. In this critical 

review, we assess, for the first time, various studies published on the formation, structural 

and dynamic characteristics of BNS, potential routes for BNS synthesis, and the toxicology of 

BNS. Finally, the future perspectives of BNS are discussed in view of its unique and 

exceptional candidacy for many (real-world) applications. 
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1. Introduction. 

Two-dimensional (2D) nanostructures such as graphene[1] have been studied extensively 

over the past decade (or so) for their applications in key areas such as electronic devices[2-4], 

renewable energy[5], biomedical science[6-8], civil engineering[9], and water treatment[10]. 

However, world experts in the field of materials science claim that ‘’the real treasure is yet to 

be explored’’[11]. The significance of these materials can be fathomed by the fact that the 

British government alone has invested up to £50 million in graphene research to date[12],  

and globally, this figure is expected to exceed $1 billion by the year 2025[13]. In addition to 

carbon nanostructures, non-carbon 2D nanomaterials, such as boron nitride (BN), 

molybdenum disulphide (MoS2), molybdenum ditelluride (MoTe2), etc., have also 

demonstrated enormous potential, with state-of-the-art research leading to the exploration 

of over 500 non-carbon 2D materials to date[14]. Figure 1 shows a comparison of research 

conducted on graphene-based 2D materials and one of their respective isoelectric non-

carbon counterparts, i.e., BN which is the main focus of this contemporary review. 
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Figure 1. Graphene and BN research over the last 14 years. (Source: Web of Knowledge/keywords: 
graphene/boron nitride). 

 
Hexagonal boron nitride (hBN) is a structural analog of graphene consisting of a layered 

structure in which strong covalent bonds bind boron and nitrogen atoms, and interplanar 

layers are held together by weak van der Waals forces (VDW). Boron atoms are naturally 

attracted to nitrogen atoms due to their higher electronegativity that typically leads to the 

formation of an ionic character. A band gap lies between the valence and conduction bands, 

and it is due to this phenomenon that hBN is classified as a wide band gap semiconductor 

with excellent thermal and chemical properties [15-17].  Moreover, it has been reported in 

the literature that hBN is highly resistant to oxidation [18], provides corrosion protection at 

elevated temperatures [19], offers good hydrogen storage capacity [20-22], and has 

significant potential for use in biomedical applications, such as drug delivery [23-27], neutron 

capture therapy [28-31], and cell imaging [32-34].  

 

Like many of its nanomaterial counterparts, various synthesis studies on hBN have 

demonstrated that it can indeed exist in various dimensionalities, such as 0D quantum dots 

[35], 1D nanotubes [36, 37], nanoribbons [38], and nanoscrolls[39, 40], 2D nanosheets [41], 

nanomeshes [42], and 3D nanoflowers [43]. Amongst the aforementioned dimensionalities, 

of utmost importance and largely underexplored are boron nitride nanoscrolls (BNS); flat 

boron nitride nanosheets (BNNS) rolled into a spiral-like morphology with a 1D scroll 

structure, and consisting of hollow cores with a unique open-ended morphology, and offering 

a large surface to volume area (see Figure 2a). Essentially, BNS are structural analogs of 

carbon nanoscrolls (CNS) [44-48], possessing exotic physiochemical properties that are 

strikingly dissimilar in electrical and insulating properties  to CNT [49], and CNS [50-52], i.e., in 

contrast to CNTs, the electrical properties and band gap of BNS is independent of their 

chirality [53]. Also, BNS offer tunable interplanar distance by intercalation or doping making 

them a strong candidate for application in hydrogen storage, mass manipulation, and 

targeted drug delivery [54-57]. Therefore, investigating the self-scrolling of BN and 
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developing multi-methods to induce the folding of BN are of great interest and significance 

for the preparation of novel structures beyond conventional material preparation techniques. 

 

 

Figure 2. Schematic representation of hexagonal boron nitride nanostructures: (a) nanosheet rolled-up to form a 

nanoscroll with a core radius 𝑟𝑜, and interlayer spacing ℎ (b) streamlines around a nanoscroll in a viscous liquid. 

Figure (b) adapted from [58], with permission of Springer Nature. 

This paper presents, for the first time, a detailed review of the recent developments and 

published literature related to BNS. In particular, Section 2 provides an insight into the 

structure, Section 3 discusses the synthesis and possible experimental routes, and Sections 4 

shed light on the properties and applications and 5 considers the toxicity potential of BNS.  

Moreover, future directions and suggestions for BNS research have been discussed and 

proposed in Section 6. 

2. Structure and kinetics of BNS formation. 

Intrinsically, graphite and hBN have close bond length values with a similar honeycomb 

arrangement of atoms and possess similar structural and mechanical properties. In this 

regard, the energetics and kinetics used to describe the formation of CNS can also be used to 

describe the formation of BNS. It is well understood that two main contributions dominate 

the interlayer interaction between h-BN sheets; (1) the VDW forces for anchoring the layers 

at a fixed distance, and (2) the electrostatic forces dictating the optical stacking mode [59]. 

Here, it is worth highlighting that hBN is a wide band gap semiconductor with polar bonding 

[53, 60, 61] which typically displays completely different electronic and insulating properties 

in terms of applications such as usage in insulation of electric packaging[62], bandgap 

tailoring[63], and to increase thermal stability of epoxy composites[64]. BNS derivatives can 

exist in lengths ranging from a few hundred nanometers up to several microns with variable 
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diameters, and can be envisaged as rolled up nanosheets in Archimedean spirals described by 

the polar equation [65]: 

                                                                 𝑟 =  𝑟𝑜 +
ℎ

2𝜋
∅,                                                                       (1) 

where 𝑟 is any point that belongs to the scroll for a defined core radius 𝑟𝑜, ℎ is the interlayer 

spacing, ∅ has values ranging from 0 to 2𝜋𝑁, and N is the number of turns made by the 

nanoscroll (Figure 2a). In the case of BNS, the scroll types are defined by an angle 𝜃; for a 

zigzag configuration 𝜃 = 0, for an armchair configuration 𝜃 = 90°, and for chiral nanoscrolls 

0° < 𝜃 < 90°.  

The formation of nanoscrolls is strongly dependent on the process of synthesis of the parent 

material (in this case nanosheets) as this has a significant effect on the overall morphology 

and size distribution. To develop a better understanding of nanoscrolling, we consider 

multiple sheets of a layered material; in this case, hBN nanosheets or plates distributed in a 

liquid, consisting of double stressed layers, as shown in Figure 2b. The exfoliation of the 

external layers in this structure takes place following the intercalation of liquid between the 

internal layers, and the twisting of the exfoliated layer, hence resulting in the formation of a 

nanoscroll; this takes place in a small enough time frame as compared to the diffusion 

growth time. The internal elastic stresses in a nanoscroll are typically much lower when 

taking into account the layers that determine the energy profit of the nanoscroll twisting 

process[58, 66]. Perim and Galvao [67] postulated the minimum requirements for the 

scrolling process to be self-driven, and are as follows: there are two energy contributions 

required for BNS initiation and successful scrolling. 1) an elastic energy increase caused by 

the bending BN layer (decreasing stability), and 2) the free energy decrease generated by the 

VDW interaction of overlapping layers ultimately resulting in increased stability. For a 

nanoscroll to be in an equilibrium state and remain in that state for an indefinite period 

(without the energetics of returning to a nanosheet), the essential geometric parameters are 

the scroll width and length. This equilibrium state  can be defined as 𝐸𝑠𝑐𝑟 = 𝐸𝑖𝑛𝑡 + 𝐸𝑏𝑒𝑛𝑑, 

where 𝐸𝑖𝑛𝑡 is the energy arising from the interaction of the interlayers in the overlapping 

regions, and 𝐸𝑏𝑒𝑛𝑑 is the bending energy due to the restoring force of the mechanical strain ( 

which is always higher than the interaction energy (|𝐸𝑖𝑛𝑡|), i.e., 𝐸𝑠𝑐𝑟 > 0 [68]). Although 

there is a critical diameter requirement of ~20Å for scroll stability above which the scrolled 

structures are more stable than their starting material, the self-scrolling process itself is not 

self-initiating, and there must be a starting energy increase which must be provided by some 

external source, i.e., by sonication, microwave irradiation and mechanical triggering or (from 

a kinetic point of view) initiated by stress of either a structure or electrical in nature caused 

by the asymmetry of the layer [69]. The resulting nanoscrolls formed by this energy driven 

mechanism are more stable than the previous state (nanosheets) [70]. Siahlo et al. [71] 

studied the energetics of nanoscrolls using an analytical model, and predicted the initial 

lengths for which stable and energetically favorable nanoscrolls are possible ranging from 7 

to 30 nm for all the nanoscroll types, and the energy barriers to rolling and unrolling of these 
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nanoscrolls are within 10 eV. Furthermore, the authors [71] predicted the lifespan of a 

nanoscroll to be more than 1000 years, based on the following formula: 

                                                                   
1

𝜏
= 𝛺(−

𝐸2
𝑘𝑇⁄ )                                                                       (2) 

where 𝛺 is the frequency multiplier, 𝑘 is the Boltmann constant, 𝑇 is temperature and 𝐸2 is 

the difference of potential energies between the unstable and stable state of the nanoscrolls.  

For a stable nanoscroll, the core radius must be larger than the interlayer spacing, and the 

equilibrium state for the nanoscroll can be described as [72]: 

                                                                  𝑑𝑊𝑏 + 𝑑𝐸𝑠 = 0                                                                    (3) 

where, 𝑑𝑊𝑏 is the work change by the bending force and 𝑑𝐸𝑠 is the change in binding layer 

energy of the nanoscroll. 

3. Synthesis. 

3.1. Methods to synthesize BNS. 

The existence of BNS was first predicted by Perim and Galvao in 2009 [67], and a theoretical 

approach to the synthesis of BNS was proposed by the same group later in 2011[73]. In this 

method, molecular dynamics simulations were carried out to simulate BNNS deposited over a 

rigid SiO2 substrate and with a carbon nanotube placed over the BNNS to trigger the scrolling 

process. The underlying concept of this approach is based on the notion that VDW forces of 

interaction cause the deformation of the sheet to roll itself around the CNT, hence 

maximizing the contact area, and since there is no resistance due to vacuum, the scrolling 

process will subsequently be self-sufficient (see Figure 3a). An improved version of this 

process was further reported by Perim et al. [74] by utilizing a substrate with pits/chambers 

in place of a plain SiO2 substrate. Although a relatively efficient synthesis process, this 

technique presents challenges in terms of up-scaling as it is difficult to overcome the forces 

of interaction between the sheet and the substrate in more realistic environments under 

ambient conditions (see Figure 3 (b)). In another theoretical study based on molecular 

mechanics, BNS formation was shown to depend mainly on the size of the triggering BNNT 

while satisfying other requirements [75]. In this scheme, it was shown that (1) if the width 

(W) of the hBN nanosheet is ≤ 9.232 Å, a helix will form instead of a scroll, (2) if the width of 

the nanosheet is > 17.753 Å, a nanoscroll will form on the BNNT surface, and (3) if the 

nanosheets have widths lying between 9.232 Å and 17.753 Å, they are deemed unstable.  
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Figure 3. Proposed setup of BNS formation using (a) CNT initiated scrolling and (b) CNT initiated scrolling with 
pits/chambers to reduce friction. Figure 3(a) adapted with permission from [73]. Figure 3(b) reproduced from 
[74], with the permission of AIP Publishing. 
 

The first experimental study reporting the successful synthesis of BNS was published in [39] 

by adopting a mechanical approach via a spinning disc processor (SDP) under shear forces at 

ambient conditions (see Figure (4a)). In this top-down method, boron nitride flakes were 

suspended in N-methyl-2-pyrrolidone (NMP), and a jet feed of suspension was directed 

towards a disc rotating at 2500 rpm consequently giving rise to dynamic thin films with a high 

surface area to volume ratio. The shear forces generated in the dynamic thin films resulted in 

the simultaneous peeling off of BN layers and scroll formation. The scrolls formed in this 

process were multilayered, consistent in length with the parent material, and had step-like 

rolling edges along the scroll (see Figure 4(b-c)). One of the advantages of such a process is a 

resulting yield of 5% (depending on the particle size of the parent material) while 

disadvantages include non-uniformity in scrolling with some scrolls lacking an internal hollow 

space. 

In another study, boron nitride nanosheets and nanoscrolls were synthesized using an alkali 

assisted molten hydroxide method [40]. The process presents advantages, such as low cost 

and simple (i.e. single-step method) and uses an autoclave to prepare melts of KOH and 

NaOH at 180 °𝐶 for 2 hours, i.e. the intercalation caused by K+, Na+ and OH- ions causes 

exfoliation of bulk hBN (see figure 4(d)). The author demonstrated that nanosheets and 

nanoscrolls of varying sizes (Figure 4(e-f)) were produced from this process. In addition, the 

products can disperse in a variety of solvents, and the process can be applied to other 

layered materials.  However, there is a significant amount of unreacted hBN, defect 

formation, and impurities during this synthesis process which require extensive cleaning 

strategies.  Other drawbacks of this process include having no control over the size and 

diameter of nanoscrolls, and the overall yield of this process being substantially low 

(nanosheets and nanoscrolls @0.191 %).  
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Figure 4. Experimental methods for BNS synthesized via exfoliation techniques. (a) Schematic of the spinning 
disc processor. (b-c) Scanning electron microscopy (SEM) images of BN nanoscrolls. (a-b) adapted from ref. [39], 
with permission from The Royal Society of Chemistry. (d) Schematics of nanosheets and nanoscrolls synthesized 
using intercalation of molten alkali salts. (e-f) SEM images of typically curved nanosheets several hundred 
nanometers in size (circled in black). (d-f) adapted with permission from ref [40], copyright 2013, John Wiley and 
Sons.  

 

Suh [76] presented an innovative approach to synthesize hBN nanoscrolls based on a density 

gradient method. Firstly, BNNS were prepared by homogenizing BN powder with ortho-

dichlorobenzene (ODCB) followed by heating ODCB with N-(2-(aminoethyl)-3α-hydroxy-5β-

cholan-24-amide) (LCA), and then combining the end product with the initially formed BNNS 

resulting in precipitates of LCA induced BNS. Nanoscrolls of varying diameters were obtained 

using this approach and grouped into two types (small; 20-60 nm, and large; 300 nm up to a 

few micrometers). The increase in the size of nanoscrolls depends on the growth of the LCA 

fiber, and by carefully increasing the amounts of LCA (see Figure 5(a-b)); hollow core BNS are 

obtained by dissolving LCAs in methanol and subsequent washing. Although this relatively 

straightforward process enables the use of template-based growth requiring only the use of 

chemicals, the yield via this process is not easy to determine. Also, excessive washing must be 

carried out for the complete removal of LCAs from BNS. The density gradient method 

adopted by Suh’s group reported in [54] was further used to form BNS-NPs nanocomposites 

(see figure 5(d)) using hBN templates [55]. In a multi-step method, magnetic NP solutions of 

Fe3O4 and Au@Fe3O4 were mixed with exfoliated boron nitride nanosheets and sonicated for 

30 mins. BNS-Fe3O4 and BNS-Au@Fe3O4 formation proceeded by treating the purified h-BN - 

NP sheet solutions (NPs loaded onto hBN nanosheets) in ODCB with a hot solution of LCA in 

ODCB resulting in BNS-Fe3O4 and BNS-Au@Fe3O4 nanoscrolls (see Figure 5(e-f)). BNS-Fe3O4 

nanoscrolls had diameters ranging from 60 – 80 nm and BNS-Au@Fe3O4 with diameters of 10 
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nm, respectively. Moreover, the authors of this research claim that nanoscrolls with high 

yield can be formed by carefully increasing the amount of LCA fibers.     

 
Figure 5. Experimental methods for BNS synthesis via template based techniques. (a-b) TEM image of BNS 
produced from (a) LCAs and the exfoliated boron nitride sheets. (b) Small-BNS with partial dissolution of LCA 
inclusion at both end points. (c) Raman spectra of the exfoliated h-BN (red) and BNS at E2g phonon mode 
(black). (a-c) Adapted from ref. [76], with permission of The Royal Society of Chemistry. (d) Schematics of the 
Magnetic BN – nanocomposites. (e) Low-magnification TEM image of the synthesized h-BN–Au@Fe3O4 
nanoscrolls. (f) HR-TEM image of Au@Fe3O4 Janus NPs with corresponding lattice spacing. (d-e) [77], adapted by 
permission of the PCCP Owner Societies. 
 
 

3.2. Strategies for Future BNS synthesis  

As discussed in Section 3.1, various methods have been adopted for the synthesis of BN and 

its derivatives. The purpose of this section is to propose possible BNS synthesis methods 

which have shown success with other layered materials. Based on the available literature, the 

following sub-sections propose various possible experimental routes for the synthesis of BNS. 

Table 1 summarizes the advantages / disadvantages of these experimental routes. 

3.2.1. Physical Approaches 

3.2.1.1. Micromechanical Exfoliation 

Akin to graphite, BN has weak bonding in the direction perpendicular to the plane of the 

sheet which is caused by π orbitals perpendicular to the plane of the BN sheet surfacing due 

to Van der Waals interaction and ultimately leading to BN stacking. Exfoliation, however, 

involves the peeling of individual layers one by one which is typically accomplished by an 

external force; the minimum force required to extract a single layer from the bulk must be 

higher than the corresponding Van der Waals force to peel off the layers successfully. 
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Therefore, employing the scotch tape method to exfoliate BN sheets from powder and 

subsequently using sonication techniques can be a good starting point for fundamental 

research on BNS. A modified form of the scotch tape method presented by Yuan et al. in [78] 

to exfoliate two-dimensional materials could potentially be used for BNS exfoliation followed 

by sonication to induce scrolling. 

3.2.1.2. Ultrasonic Exfoliation 

Solvent-phase exfoliation of bulk BN can obtain single and multi-layer BNS in a highly polar 

solvent medium, such as N-methylpyrrolidone (NMP) [79, 80] and dimethylformamide (DMF) 

[81]. However, it is essential that the energy required to exfoliate BN must be comparable to 

the solvent-BN interaction for exfoliation to occur first followed by scroll initiation later.   

3.2.1.3. Shock Cooling Exfoliation 

Similar to another study by Fan et al. [82], BNS can potentially be formed by a shock cooling 

exfoliation method. Firstly, BN powder is sonicated in water for one hour followed by 

centrifuging the solution to obtain flakes of smaller thickness. Once the flakes are formed, 

the BN colloidal solution can be rapidly cooled by surrounding liquid nitrogen, which in turn 

begins the formation of ice crystals during the shock-cooling step in liquid nitrogen and acts 

as the driving force for the scrolling.  

3.2.2. Chemical Approaches 

The ultrasonication and mechanical exfoliation of bulk BN can produce the highest quality of 

BNS. However, these techniques pose certain limitations such as lower productivity and large 

time frames required to produce adequate quantities of nanoscale materials.   

3.2.2.1. Intercalation and Ultrasonication 

The process of carbon nanoscroll formation using alkali metal intercalation [83] followed by 

subsequent sonication can potentially lead to the formation of high-quality BNS. Attributed 

to its layered structure, BN is readily intercalated by alkali metals such as Li+ [84, 85], Na+ [86], 

and K+ [87] ions, and therefore, potassium intercalation of hBN powder under ambient 

conditions at 200°C overnight can induce a mild relaxation in BN interlayers after the addition 

of ethanol. A possible highly exothermic chemical reaction can potentially cause exfoliation 

based on Eq. (4) below, and upon sonication, the exfoliated hBN sheets can curl themselves 

to form BNS. 

                                𝐾𝐵𝑁 + 𝐶𝐻3𝐶𝐻2𝑂𝐻 → 𝐵𝑁 + 𝐾𝑂𝐶𝐻2𝐶𝐻3 +
1

2
𝐻2                                         (4) 

3.2.3. Chemical Vapour Deposition (CVD) 

A CVD route based on 𝐹𝑒3𝑂4 nanoparticles as a catalyst precursor was proposed by Chen et 

al. to synthesize CNS in [88]. BNS nanoscrolls can potentially be formed in a similar way 

where deposition techniques such as CVD, PECVD, ALD and, PLD could be used to grow hBN 
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over metal oxide nanoparticles which can in turn act as a catalyst. The precursor can be 

deposited over a silicon wafer and hBN could be grown over the reduced FeO by adjusting 

the stoichiometry of the BN source. The precursor gas can be  a compound of diborane + 

ammonia, and borazine [89, 90], and this process can become feasible for mass production of 

BNS with controlled size variation.  

Table 1. The advantages and disadvantages of different BNS synthesis methods.  

Method Advantages Challenges 

Micromechanical 
exfoliation 

Cheap, excellent quality Low yield, limited to fundamental 
research. 

Ultrasonic exfoliation Cheap, medium quality. 
Limited yield. 

Limited size control.  

Shock cooling exfoliation Relatively cheap, no 
inclusion.  

Limited yield, difficult to reproduce. 

Intercalation and 
ultrasonication 

Relatively cheap,  
can Functionalize BN, 

limited yield. 

Difficult to remove impurities. may 
change the BN structure. 

Chemical Vapour 
Deposition 

Scalable, good quality, 
control over size. 

Costly equipment, substrate based 
method. 

 

4. Properties and Applications. 

To develop an understanding of the properties of BNS requires consideration of not only their 

chemical properties and morphology but also critical size distribution parameters, such as the 

length, external and internal diameter. In this regard, 1D-hBN nanoscrolls (essentially 

inherited from 2D hBN) possess various unique properties, including excellent stability, high 

thermal conductivity, electrical insulation, and high elastic modulus, which make them 

promising for a plethora of applications. However, the limited studies conducted on BN 

nanoscrolls so far hinder the exploration of their actual properties. Here, we consider the 

properties of BN nanostructures closely related to BNS and the properties of the basic 

building block of BNS, i.e., BNNS. 

It is well known that defect-free graphene is currently the strongest material, and in this 

regard, the structural similarities of BNNS, such as high Young's modulus, and thermal 

conductivity[91], make them as strong as (and in some cases stronger than) other 2D 

materials. It was shown in [92], that the plane stiffness of monolayer graphene and BNNS are 

267 and 335 𝑁𝑚−1 respectively, and therefore can be used as suitable fillers in polymer 

composites [93]. Building on these findings, it is highly likely that BNS would show an 

increased stiffness owing to their rolled morphology and structural stability. Interestingly, 

BNSs originate from BNNS which have already shown an elastic modulus > 18000 𝑚−1, a 

Young’s modulus of 1.16 ± 0.1 TPa, and excellent thermal properties with a thermal 

conductivity of 600 𝑊𝑚−1𝐾−1 [94-96]. In a molecular dynamics study by Woellner et al [97] 

CNS and BNS were made to strike against solid surfaces at high velocities, and it was 
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observed that CNS and BNS behaved differently at different velocities, a factor related to 

their interlayer interaction [98]. Two types of impact cases were considered in [97], and it 

was observed that in the case of a lateral collision the kinetic energy of the striking nanoscroll 

below a threshold lead to partial or complete unscrolling and, on the contrary, for higher 

kinetic energies the impacts lead to a complete fracture of the nanoscrolls. For vertical 

collisions however, fractures are observed even at lower velocities owing to the 

concentration of stresses in smaller areas and the brittle nature of BN. 

It is evident from our discussions so far on the structure, synthesis, and properties of BN 

nanoscrolls that these nanostructures present huge potential for a wide range of real-world 

applications. Porous nanoscroll structures offer huge potential in environmental applications, 

particularly when used for water cleaning [99]. These porous boron carbon nitride 

nanoscrolls (see figure 6(a)) maintain a very high BET surface area of 890 m2g-1 with 

micropores of 1.4 nm and mesopores of 20 nm width and can retain up to 93% of absorption 

capacity after regeneration, making them strong candidates for water treatment applications 

(see figure 6(b)).  When used for industrially polluted water treatment these nanostructures 

were able to efficiently clean dyes of methylene blue and congo red showing excellent 

absorption capacities of 250 mg g-1 and 620 mg g-1 respectively, hence adding further 

evidence to this proposition.  

 

The power conversion efficiency of solar cells can be enhanced by using nanoscrolls of hBN 

with other 2D materials (by combining spirals of hBN, graphene, and TMDCs), and this can be 

used to construct novel 3D photovoltaic absorbers 6(c-d). These spiral solar cell devices can 

be optimized by tuning the hBN thickness to maximize the optical absorption up to 90% or 

the absorption relative to the number of photoactive materials used, achieving an 

enhancement of 762% [100]. Similarly, the high surface to volume ratio in BNS makes them a 

suitable candidate for energy storage applications, such as hydrogen storage. The dipolar 

nature of B-N bonds in BNS can lead to stronger absorption of hydrogen whereas the 

chemical and thermal stability would ultimately result in a stable, lightweight hydrogen gas 

accumulator. With regards to surface area(which is one of the crucial factors in determining 

hydrogen storage capacity), BNNTs have shown a high hydrogen storage capacity of 3.0 wt.% 

at 298 𝐾, and 100 bar hydrogen pressure [101]. It can be envisaged from these findings that 

the higher specific surface area would ultimately result in an increased hydrogen storage 

capacity which is ideal for energy storage applications. 

In addition to biomedical, water treatment and energy storage applications, BNS also have 

massive potential for use in modern day electronic devices. Xie et al. [46] fabricated a carbon 

nanoscroll (CNS) based electronic device by placing the nanoscroll between two metallic 

contacts over a silicon substrate, and demonstrated that the CNS was able to withstand a 

current density of up to 5x107 A/cm2. Li et al. [102] further demonstrated via a theoretical 

study on the quantum electronic transport of carbon-based nanoscrolls that the conductance 

depends strongly on not only the nanoscroll radius but the temperature as well. It can be 
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deduced from these studies that nanoscrolls are potentially well suited for electronic 

applications especially when compared to their traditional and nanotube counterparts. One 

of the main advantages nanoscrolls present over nanotubes lies in the ability of nanoscrolls 

to carry current through each of their layers as opposed to nanotubes (which only carry 

current through their outermost layer), and it is this property which makes nanoscrolls highly 

suitable for potential use as circuit interconnects in modern day electronic devices.  

 

Figure 6. Applications of BN nanoscrolls. (a) SEM image of BCN nanoscrolls. (b) Nitrogen adsorption/desorption 

isotherms. The inset shows corresponding pore size distributions. Adapted from ref. [99] with permission of The 

Royal Society of Chemistry. (c) Schematic of 'spiral cell structure'; parameters, d, l, and t stand for diameter of 

the roll, length of the cylindrical structure, and thickness of the hBN layer. (d) 'Core–shell structure' of the spiral 

solar cell. Back reflector is connected to the core contact. Gold (aluminum) is chosen as a shell (core) selective 

contact. Adapted from ref. [100] © IOP Publishing. 

 

Finally, it is worth comparing the stability of BNS with its nanomaterial counterparts.  As BNS 

originates from BNNS, they inherit the excellent thermal and chemical resistive properties 

from their parent material discussed in previous sections. However, it should be kept in mind 

that BNS stability is size and chirality dependent with all scrolls obeying a critical internal 

diameter limit. Therefore, once properly scrolled, BNS are considerably stable over a very 

long period of time and even more stable than their parent material i.e. BNNS.  Table 2 

summarizes various literature published on the stability of BNS in comparison to other 

nanomaterials, i.e. CNS, CNT and BNT. 
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Table 2. Comparison of the stability of BNS with other nanomaterials. 

Materials Stability Comments 

BNS(Theoretical) Armchair BNS are most stable. 

Zigzag BNS are metastable 

and Chiral BNS are 

unstable[67]. 

A critical diameter for scroll stability 

exists; beyond this limit the scrolls can 

be even more stable than its parent 

planar structures. 

BNS(Experimental) Very stable, 20 months in 

ethanol [40]. Stable with slight 

reduction in weight up to 

800°C [76]. 

Stability also depends on method of 

production and target solvent.[40] 

Thermogravimteric analysis (TGA) 

studies [76]. 

CNS Stable ambipolar behavior in 

both air and nitrogen [103]. 

Does not mention a stability period 

[103]. 

CNT Very Stable homogeneous 

dispersions of CNT in sodium 

dodecyl sulfate (SDS) [104]. 

Stable in air up to 500 

℃ [105]. 

UV–vis measurements used to 

quantitatively characterize colloidal 

stability of CNT. The supernatant CNT 

concentration only falls 15% after 500 h 

[104]. 

BNT Oxidation temperature of 800 

℃ [106]. Stable in air up to 

1100 ℃.[105] Chemically inert 

and structurally stable [107]. 

Shows higher stability than CNT at 

elevated temperatures.  

 

5. Toxic Potential of BNS 

BNS is an emerging graphene-related material that has attained significant attention owing to 

its excellent features and superior physiochemical, electrical, chemical, and mechanical 

characteristics, as discussed in earlier sections. As graphene has widely been explored for 

environmental and biological applications, therefore, its toxic potential and biocompatibility 

and environmental availability (and adverse effects) have widely been investigated in recent 

years.  

 

Chen et al. [108] reported the first study on the toxicity of BN nanostructured materials in 

2009 which revealed that BN nanotubes could deliver DNA oligomers to the interior of cells 

with no apparent toxicity, and suggested that BN nanotubes are more suitable for use as 

biological probes in biological systems in comparison to CNTs. In another study, Horváth et al. 

[109] studied the toxic impact of BN nanotubes against different cell types (HEK293, A549, 
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3T3-L1, and RAW 264.7 cells) by comparing them with pristine and functionalized carbon 

nanotubes, and found that these nanotubes are more toxic than carbon nanotubes. With the 

increasing exposure of different forms of boron nitride, it is obligatory to explore the 

biological responses of boron nitride, in dose, and in time-dependent manners. The absence 

of toxicity studies on BNS warrants the realization of its commercial and real-world 

applications, and as the number of applications of BNS grows, occupational exposures will 

most likely increase. Recent reports on in-vitro toxic effects of different derivatives of BN 

seem to contradict each other [109-113].  Synthesis routes, chemical reagents, precursors, 

particle size, surface charge, size distribution, sharp edges of scrolls and the two-dimensional 

nature of BN induce adverse effects in biological systems [114, 115], and it is crucial that 

these parameters are taken into account when assessing the bioavailability and 

biocompatibility of BNS. In general, such emerging materials should be investigated in in-vivo 

toxicity models over chronic levels. The generation of reactive oxygen and nitrogen species 

has not been evaluated, given that generation of these oxygen/nitrogen-centered species 

induce inflammation as a result of the loss of primary and secondary anti-oxidants [116-118]. 

Furthermore, administration routes of inhalation in animal models need to be investigated 

since human exposure to various nanomaterials is most likely to occur through inhalation and 

these nanomaterials arise in the form of aerosols and colloidal suspensions[119]. Such 

interactions of BNS with living systems can play a vital role in the understanding of the 

toxicity of nanomaterials and determine their fate to solve real-world problems. 

Its potential for use as an antimicrobial agent is yet to be fully explored. Among the excellent 

properties BNS possess, their effect on microbial growth or survival remain largely unknown, 

although it may be related to colonic bacterial metabolism for the future biomedical 

application of these emerging 2D miracle nanostructures. Furthermore, it may be possible to 

exploit the properties of BNS much like we have begun to utilise graphene nanoplatelets in 

antimicrobial work [120]. Here it was demonstrated that graphene nanoplatelet-loaded 

polymeric fibres produced by novel pressurised gyration [121] showed significant 

antimicrobial potential when the graphene nanoplatelet loading was increased to 8 wt %. The 

surface of the fibres with protrusions of graphene nanoplatelets played a key role, also 

hydrophobic π regions and functional groups, including carboxylic and hydroxyl groups at the 

surface of graphene improves its interactions via hydrophobic and electrostatic mechanisms 

[122]. BNS and its analogues may be incorporated on the surface of the fibres in a similar way 

and may will extend the family of nanocomposites as antimicrobial agents [123]. 

 

6. Summary and Future Perspectives. 

Ever since the groundbreaking and Nobel prize-winning discovery of graphene in 2004, 

research on graphene and graphene-based 2D materials has increased exponentially with an 

estimated average of more than 40 academic papers published a day in this field [124]. 

However, more recently the trend has shifted to other 2D and 1D materials out of which 

hexagonal boron nitride holds exceptional potential for a wide range of exciting applications, 

as discussed in previous sections. Due to the difficulty in separating hBN layers (without 
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compromising quality and quantity), there has been a lack of research on how BN compares 

to graphene, especially with regards to nanoscrolls, and the few methods that have been 

published suggest sonication, intercalation, and template-based techniques for synthesis. 

Triggering of a CNT based BNS is more appropriate for proof-of-principle research activities 

but scaling up is challenging with a requirement for an elaborate experimental setup. 

Nanoscrolls produced via intercalation would ultimately cause defects, a significant amount 

of unreacted media, and unwanted impurities produced which would require time-

consuming cleaning procedures and may ultimately affect the overall quality and yield of the 

end product. In addition, peeling off BN layers to directly from nanoscrolls via mechanical 

procedures would induce metallic impurities from the spinning disc, and subsequently, affect 

achieving overall control and uniformity. A template-based approach seems to be a relatively 

useful method to synthesize scrolls efficiently but removing the fiber cores would be a 

cumbersome task and will again limit the formation of defect-free scrolls. Moreover, there is 

still a need for advanced research that can enable the availability of efficient methods for 

mass production of defect-free nanoscrolls. Altogether, there is currently a lack of studies 

indicating the direct or indirect application of BNS. In such a scenario, a better understanding 

of the underlying mechanism in the production and functionalization of BNS based materials 

to overcome limitations is crucial and needs extensive theoretical and experimental 

understanding.  

One-dimensional nanomaterials such as CNT, CNS, and BNS entail unique functionalities, 

which allow them to be potential candidates in in-vivo and in-vitro studies. However, the 

toxic nature and potential anti- or pro-bacterial actions of carbon-based materials hinder 

their use as biomaterials. On the contrary, hexagonal boron nitride and its derivatives show 

excellent biocompatibility [125-128] and could be used as biomarkers, templates for DNA 

self-assembly and sequencing, and carriers for targeted drug delivery. In this regard, doping 

with magnetic nanomaterials can be an excellent choice to guide BNS to release drugs for 

cancer treatment magnetically. Porous BN nanoscrolls can also be an excellent choice as 

water cleaning materials benefiting from their higher surface to volume ratio. Attributing to 

the fact that BN nanosheets, nanotubes, nanomeshes, nanoribbons and nanoflowers have 

many similarities of chemical and insulating behavior, it may be presumed that enhanced 

performance is demonstrated when BNS are used for fillers in polymer nanocomposites [129, 

130]. Furthermore, BNS can also be used in polymeric biomaterials, which can ultimately 

result in a more extended degradation rate, and enhanced properties without any adverse 

effects [131, 132]. BNS also find future applications in areas of sensing devices similar to the 

studies carried on BNNTs [133, 134], which for instance can combine with other 

nanomaterials to construct novel devices for biological and medical diagnostics.  

Deducing from the most up-to-date literature on BNS, it is evident that BNS possess unique 

properties that could potentially lead to significant evolution and growth in environmental 

and biological applications. For instance, despite the technological advancements made in 

the health sector, global diseases such as cancer remain extensive challenges for humanity, 



16 
 

affecting developed and developing countries equally. It may be too early but not too 

propitious to assume that BNS might have an answer to this menacing problem. BNS with 

excellent biocompatibility can be made able to wrap a significant amount of drug that can be 

magnetically guided to pinpoint a specific cancerous cell, thereby irradiating the disease 

without affecting standard cellular functions. 

Conflict of Interest. 

There are no conflicts to declare. 

 

Acknowledgments. 

The authors would like to thank Mari-Ann Einarsrud for proofreading, commenting, and 

adding valuable suggestions and insights to the manuscript.  

 

References. 

[1] K. S. Novoselov et al., "Electric field effect in atomically thin carbon films," science, vol. 306, 
no. 5696, pp. 666-669, 2004. 

[2] Z. Gao, C. Bumgardner, N. Song, Y. Zhang, J. Li, and X. J. N. c. Li, "Cotton-textile-enabled 
flexible self-sustaining power packs via roll-to-roll fabrication," Nature communications, vol. 
7, p. 11586, 2016. 

[3] K. Choi, Y. T. Lee, and S. J. N. T. Im, "Two-dimensional van der Waals nanosheet devices for 
future electronics and photonics," Nano Today, vol. 11, no. 5, pp. 626-643, 2016. 

[4] J. Son et al., "Atomically precise graphene etch stops for three dimensional integrated 
systems from two dimensional material heterostructures," Nature communications, vol. 9, 
no. 1, p. 3988, 2018. 

[5] Q. Li, N. Mahmood, J. Zhu, Y. Hou, and S. J. N. T. Sun, "Graphene and its composites with 
nanoparticles for electrochemical energy applications," Nano Today, vol. 9, no. 5, pp. 668-
683, 2014. 

[6] C. Chung, Y.-K. Kim, D. Shin, S.-R. Ryoo, B. H. Hong, and D.-H. J. A. o. c. r. Min, "Biomedical 
applications of graphene and graphene oxide," Accounts of chemical research, vol. 46, no. 
10, pp. 2211-2224, 2013. 

[7] V. Georgakilas et al., "Noncovalent functionalization of graphene and graphene oxide for 
energy materials, biosensing, catalytic, and biomedical applications," Chemical reviews, vol. 
116, no. 9, pp. 5464-5519, 2016. 

[8] Y. Chen, C. Tan, H. Zhang, and L. J. C. S. R. Wang, "Two-dimensional graphene analogues for 
biomedical applications," Chemical Society Reviews, vol. 44, no. 9, pp. 2681-2701, 2015. 

[9] K. Gong et al., "Reinforcing effects of graphene oxide on portland cement paste," Journal of 
Materials in Civil Engineering, vol. 27, no. 2, p. A4014010, 2014. 

[10] D. H. Seo et al., "Anti-fouling graphene-based membranes for effective water desalination," 
Nature communications, vol. 9, no. 1, p. 683, 2018. 

[11] A. C. Neto and K. Novoselov, "New directions in science and technology: two-dimensional 
crystals," Reports on Progress in Physics, vol. 74, no. 8, p. 082501, 2011. 

[12] J. Carpenter. (2011, 28 June). UK invests in graphene technology. Available: 
https://www.bbc.com/news/science-environment-15152609 

https://www.bbc.com/news/science-environment-15152609


17 
 

[13] D. K. Ghaffarzadeh. (2015, 28 June). How will graphene market change in the future? 
Available: https://www.printedelectronicsworld.com/articles/8655/how-will-the-graphene-
market-change-in-the-future 

[14] E. Gibney. (2015, November 11). The super materials that could trump graphene. Available: 
https://www.nature.com/news/the-super-materials-that-could-trump-graphene-1.17775 

[15] G. Cassabois, P. Valvin, and B. Gil, "Hexagonal boron nitride is an indirect bandgap 
semiconductor," Nature Photonics, vol. 10, no. 4, p. nphoton. 2015.277, 2016. 

[16] Y. Wang et al., "High temperature thermal management with boron nitride nanosheets," 
Nanoscale, vol. 10, no. 1, pp. 167-173, 2018. 

[17] L. H. Li and Y. Chen, "Atomically thin boron nitride: unique properties and applications," 
Advanced Functional Materials, vol. 26, no. 16, pp. 2594-2608, 2016. 

[18] L. H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, and Y. Chen, "Strong oxidation resistance of 
atomically thin boron nitride nanosheets," ACS nano, vol. 8, no. 2, pp. 1457-1462, 2014. 

[19] Z. Liu et al., "Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron 
nitride," Nature communications, vol. 4, p. 2541, 2013. 

[20] X. Chen et al., "Preparation and electrochemical hydrogen storage of boron nitride 
nanotubes," The Journal of Physical Chemistry B, vol. 109, no. 23, pp. 11525-11529, 2005. 

[21] A. Tokarev, E. Kjeang, M. Cannon, and D. Bessarabov, "Theoretical limit of reversible 
hydrogen storage capacity for pristine and oxygen-doped boron nitride," International 
Journal of Hydrogen Energy, vol. 41, no. 38, pp. 16984-16991, 2016. 

[22] P. Fu, J. Wang, R. Jia, S. Bibi, R. I. Eglitis, and H.-X. Zhang, "Theoretical study on hydrogen 
storage capacity of expanded h-BN systems," Computational Materials Science, vol. 139, pp. 
335-340, 2017. 

[23] Q. Weng et al., "Highly water-soluble, porous, and biocompatible boron nitrides for 
anticancer drug delivery," ACS nano, vol. 8, no. 6, pp. 6123-6130, 2014. 

[24] G. Ciofani et al., "Boron nitride nanotubes: a novel vector for targeted magnetic drug 
delivery," Current nanoscience, vol. 5, no. 1, pp. 33-38, 2009. 

[25] X. Li et al., "Multimodal luminescent-magnetic boron nitride nanotubes@ NaGdF 4: Eu 
structures for cancer therapy," Chemical Communications, vol. 50, no. 33, pp. 4371-4374, 
2014. 

[26] X. Li, C. Zhi, N. Hanagata, M. Yamaguchi, Y. Bando, and D. Golberg, "Boron nitride nanotubes 
functionalized with mesoporous silica for intracellular delivery of chemotherapy drugs," 
Chemical Communications, vol. 49, no. 66, pp. 7337-7339, 2013. 

[27] G. Ciofani, V. Raffa, A. Menciassi, and A. J. N. T. Cuschieri, "Boron nitride nanotubes: an 
innovative tool for nanomedicine," Nano Today, vol. 4, no. 1, pp. 8-10, 2009. 

[28] J. Li, R. Dahal, S. Majety, J. Lin, and H. Jiang, "Hexagonal boron nitride epitaxial layers as 
neutron detector materials," Nuclear Instruments and Methods in Physics Research Section 
A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 654, no. 1, pp. 
417-420, 2011. 

[29] T. H. Ferreira, M. C. Miranda, Z. Rocha, A. S. Leal, D. A. Gomes, and E. Sousa, "An Assessment 
of the Potential Use of BNNTs for Boron Neutron Capture Therapy," Nanomaterials, vol. 7, 
no. 4, p. 82, 2017. 

[30] G. Ciofani, V. Raffa, A. Menciassi, and A. Cuschieri, "Folate functionalized boron nitride 
nanotubes and their selective uptake by glioblastoma multiforme cells: implications for their 
use as boron carriers in clinical boron neutron capture therapy," Nanoscale research letters, 
vol. 4, no. 2, p. 113, 2009. 

[31] T. H. Ferreira et al., "Folate-grafted boron nitride nanotubes: possible exploitation in cancer 
therapy," International journal of pharmaceutics, vol. 481, no. 1-2, pp. 56-63, 2015. 

[32] M. Nurunnabi, M. Nafiujjaman, S.-J. Lee, I.-K. Park, K. M. Huh, and Y.-k. Lee, "Preparation of 
ultra-thin hexagonal boron nitride nanoplates for cancer cell imaging and neurotransmitter 
sensing," Chemical Communications, vol. 52, no. 36, pp. 6146-6149, 2016. 

https://www.printedelectronicsworld.com/articles/8655/how-will-the-graphene-market-change-in-the-future
https://www.printedelectronicsworld.com/articles/8655/how-will-the-graphene-market-change-in-the-future
https://www.nature.com/news/the-super-materials-that-could-trump-graphene-1.17775


18 
 

[33] Y. A. Wu et al., "Utilizing boron nitride sheets as thin supports for high resolution imaging of 
nanocrystals," Nanotechnology, vol. 22, no. 19, p. 195603, 2011. 

[34] J. Peng, S. Wang, P.-H. Zhang, L.-P. Jiang, J.-J. Shi, and J.-J. Zhu, "Fabrication of graphene 
quantum dots and hexagonal boron nitride nanocomposites for fluorescent cell imaging," 
Journal of biomedical nanotechnology, vol. 9, no. 10, pp. 1679-1685, 2013. 

[35] B. Liu et al., "One‐Step Synthesis of Boron Nitride Quantum Dots: Simple Chemistry Meets 
Delicate Nanotechnology," Chemistry–A European Journal, vol. 22, no. 52, pp. 18899-18907, 
2016. 

[36] A. L. Tiano et al., "Boron nitride nanotube: synthesis and applications," in Nanosensors, 
Biosensors, and Info-Tech Sensors and Systems 2014, 2014, vol. 9060, p. 906006: 
International Society for Optics and Photonics. 

[37] C. H. Lee, M. Xie, V. Kayastha, J. Wang, and Y. K. J. C. o. M. Yap, "Patterned growth of boron 
nitride nanotubes by catalytic chemical vapor deposition," Chemistry of Materials, vol. 22, 
no. 5, pp. 1782-1787, 2010. 

[38] H. Zeng et al., "“White graphenes”: boron nitride nanoribbons via boron nitride nanotube 
unwrapping," Nano letters, vol. 10, no. 12, pp. 5049-5055, 2010. 

[39] X. Chen, R. A. Boulos, J. F. Dobson, and C. L. Raston, "Shear induced formation of carbon and 
boron nitride nano-scrolls," Nanoscale, vol. 5, no. 2, pp. 498-502, 2013. 

[40] X. Li et al., "Exfoliation of hexagonal boron nitride by molten hydroxides," Advanced 
Materials, vol. 25, no. 15, pp. 2200-2204, 2013. 

[41] Y. Wang, Z. Shi, and J. Yin, "Boron nitride nanosheets: large-scale exfoliation in 
methanesulfonic acid and their composites with polybenzimidazole," Journal of Materials 
Chemistry, vol. 21, no. 30, pp. 11371-11377, 2011. 

[42] C. Ohata, R. Tagami, Y. Nakanishi, R. Iwaki, K. Nomura, and J. Haruyama, "Hexagonal boron-
nitride nanomesh magnets," Applied Physics Letters, vol. 109, no. 13, p. 133110, 2016. 

[43] G. Lian, X. Zhang, M. Tan, S. Zhang, D. Cui, and Q. Wang, "Facile synthesis of 3D boron nitride 
nanoflowers composed of vertically aligned nanoflakes and fabrication of graphene-like BN 
by exfoliation," Journal of Materials Chemistry, vol. 21, no. 25, pp. 9201-9207, 2011. 

[44] G. Carotenuto, A. Longo, S. De Nicola, C. Camerlingo, and L. Nicolais, "A simple mechanical 
technique to obtain carbon nanoscrolls from graphite nanoplatelets," Nanoscale research 
letters, vol. 8, no. 1, p. 403, 2013. 

[45] M. E. Schmidt et al., "Controlled fabrication of electrically contacted carbon nanoscrolls," 
Nanotechnology, vol. 29, no. 23, p. 235605, 2018. 

[46] X. Xie et al., "Controlled fabrication of high-quality carbon nanoscrolls from monolayer 
graphene," Nano letters, vol. 9, no. 7, pp. 2565-2570, 2009. 

[47] D. Xia et al., "Fabrication of carbon nanoscrolls from monolayer graphene," Small, vol. 6, no. 
18, pp. 2010-2019, 2010. 

[48] Y. Wang and Y. Zhang, "Superior thermal conductivity of carbon nanoscroll based thermal 
interface materials," in Electronic Components and Technology Conference (ECTC), 2015 IEEE 
65th, 2015, pp. 1234-1239: IEEE. 

[49] G. W. Hanson, "Fundamental transmitting properties of carbon nanotube antennas," in 
Antennas and Propagation Society International Symposium, 2005 IEEE, 2005, vol. 3, pp. 
247-250: IEEE. 

[50] M. Hassanzadazar, M. Ahmadi, R. Ismail, and H. Goudarzi, "Electrical property analytical 
prediction on archimedes chiral carbon nanoscrolls," Journal of Electronic Materials, vol. 45, 
no. 10, pp. 5404-5411, 2016. 

[51] M. Rahmani, H. Ghafoori Fard, M. T. Ahmadi, and K. Rahmani, "Analytical prediction of 
carbon nanoscroll-based electrochemical glucose biosensor performance," International 
Journal of Environmental Analytical Chemistry, vol. 97, no. 11, pp. 1024-1036, 2017. 

[52] T. Zhang, Q. Xue, S. Zhang, and M. J. N. T. Dong, "Theoretical approaches to graphene and 
graphene-based materials," Nano Today, vol. 7, no. 3, pp. 180-200, 2012. 



19 
 

[53] X. Blase, A. Rubio, S. Louie, and M. Cohen, "Stability and band gap constancy of boron nitride 
nanotubes," EPL (Europhysics Letters), vol. 28, no. 5, p. 335, 1994. 

[54] S.-H. Jhi and Y.-K. Kwon, "Hydrogen adsorption on boron nitride nanotubes: a path to room-
temperature hydrogen storage," Physical Review B, vol. 69, no. 24, p. 245407, 2004. 

[55] R. Ma, Y. Bando, H. Zhu, T. Sato, C. Xu, and D. Wu, "Hydrogen uptake in boron nitride 
nanotubes at room temperature," Journal of the American Chemical Society, vol. 124, no. 26, 
pp. 7672-7673, 2002. 

[56] E. S. Permyakova et al., "Synthesis and characterization of folate conjugated boron nitride 
nanocarriers for targeted drug delivery," The Journal of Physical Chemistry C, vol. 121, no. 
50, pp. 28096-28105, 2017. 

[57] X. Li et al., "Hollow boron nitride nanospheres as boron reservoir for prostate cancer 
treatment," Nature communications, vol. 8, p. 13936, 2017. 

[58] S. Chivilikhin, I. Y. Popov, and V. Gusarov, "Dynamics of nanotube twisting in a viscous fluid," 
in Doklady Physics, 2007, vol. 52, no. 1, pp. 60-62: Springer. 

[59] N. Marom et al., "Stacking and registry effects in layered materials: the case of hexagonal 
boron nitride," Physical review letters, vol. 105, no. 4, p. 046801, 2010. 

[60] D.-H. Kim, H.-S. Kim, M. W. Song, S. Lee, and S. Y. Lee, "Geometric and electronic structures 
of monolayer hexagonal boron nitride with multi-vacancy," Nano convergence, vol. 4, no. 1, 
p. 13, 2017. 

[61] K. Ba et al., "Chemical and bandgap engineering in monolayer hexagonal boron nitride," 
Scientific Reports, vol. 7, p. 45584, 2017. 

[62] J. Bao et al., "Two-dimensional hexagonal boron nitride as lateral heat spreader in 
electrically insulating packaging," Journal of Physics D: Applied Physics, vol. 49, no. 26, p. 
265501, 2016. 

[63] M. Uddin, T. Doan, J. Li, K. Ziemer, J. Lin, and H. Jiang, "Electrical transport properties of 
(BN)-rich hexagonal (BN) C semiconductor alloys," AIP Advances, vol. 4, no. 8, p. 087141, 
2014. 

[64] W. Zhou, J. Zuo, X. Zhang, and A. Zhou, "Thermal, electrical, and mechanical properties of 
hexagonal boron nitride–reinforced epoxy composites," Journal of Composite Materials, vol. 
48, no. 20, pp. 2517-2526, 2014. 

[65] E. Perim, L. D. Machado, and D. S. Galvao, "A brief review on syntheses, structures, and 
applications of nanoscrolls," Frontiers in Materials, vol. 1, p. 31, 2014. 

[66] S. Chivilikhin, I. Y. Popov, A. Svitenkov, D. Chivilikhin, and V. Gusarov, "Formation and 
evolution of nanoscroll ensembles based on layered-structure compounds," in Doklady 
Physics, 2009, vol. 54, no. 11, p. 491: Springer. 

[67] E. Perim and D. S. Galvao, "The structure and dynamics of boron nitride nanoscrolls," 
Nanotechnology, vol. 20, no. 33, p. 335702, 2009. 

[68] S. Chang, C. Chiang, and S. Lin, "Feature-rich Geometric and Electronic Properties of Carbon 
Nanoscrolls," arXiv preprint arXiv:1607.00452, 2016. 

[69] C. Yan, J. Liu, F. Liu, J. Wu, K. Gao, and D. Xue, "Tube formation in nanoscale materials," 
Nanoscale research letters, vol. 3, no. 12, p. 473, 2008. 

[70] S. F. Braga, V. R. Coluci, S. B. Legoas, R. Giro, D. S. Galvão, and R. H. Baughman, "Structure 
and dynamics of carbon nanoscrolls," Nano letters, vol. 4, no. 5, pp. 881-884, 2004. 

[71] A. I. Siahlo et al., "Structure and energetics of carbon, hexagonal boron nitride, and 
carbon/hexagonal boron nitride single-layer and bilayer nanoscrolls," Physical Review 
Materials, vol. 2, no. 3, p. 036001, 2018. 

[72] Z. Liu, J. Gao, G. Zhang, Y. Cheng, and Y.-W. Zhang, "From two-dimensional nano-sheets to 
roll-up structures: expanding the family of nanoscroll," Nanotechnology, vol. 28, no. 38, p. 
385704, 2017. 

[73] D. S. E. G. Perim, "Boron Nitride Nanoscrolls," in Physicæ Proceedings, march. 2012. 



20 
 

[74] E. Perim, R. Paupitz, and D. S. Galvao, "Controlled route to the fabrication of carbon and 
boron nitride nanoscrolls: A molecular dynamics investigation," Journal of Applied Physics, 
vol. 113, no. 5, p. 054306, 2013. 

[75] Y. Li, "Boron-nitride nanotube triggered self-assembly of hexagonal boron-nitride 
nanostructure," Physical Chemistry Chemical Physics, vol. 16, no. 38, pp. 20689-20696, 2014. 

[76] D. H. Suh, "Formation of hexagonal boron nitride nanoscrolls induced by inclusion and 
exclusion of self-assembling molecules in solution process," Nanoscale, vol. 6, no. 11, pp. 
5686-5690, 2014. 

[77] K. H. Choi, J. E. Park, and D. H. Suh, "Evolution of magnetism by rolling up hexagonal boron 
nitride nanosheets tailored with superparamagnetic nanoparticles," Physical Chemistry 
Chemical Physics, vol. 19, no. 5, pp. 4048-4055, 2017. 

[78] L. Yuan et al., "A reliable way of mechanical exfoliation of large scale two dimensional 
materials with high quality," AIP Advances, vol. 6, no. 12, p. 125201, 2016. 

[79] Y. Hernandez et al., "High-yield production of graphene by liquid-phase exfoliation of 
graphite," Nature nanotechnology, vol. 3, no. 9, p. 563, 2008. 

[80] Y.-Z. Wang, T. Chen, X.-F. Gao, H.-H. Liu, and X.-X. Zhang, "Liquid phase exfoliation of 
graphite into few-layer graphene by sonication and microfluidization," Materials Express, 
vol. 7, no. 6, pp. 491-499, 2017. 

[81] B. Tang, X. Yun, Z. Xiong, and X. Wang, "Formation of Graphene Oxide Nanoscrolls in Organic 
Solvents: Toward Scalable Device Fabrication," ACS Applied Nano Materials, vol. 1, no. 2, pp. 
686-697, 2018. 

[82] T. Fan et al., "Fabrication of high-quality graphene oxide nanoscrolls and application in 
supercapacitor," Nanoscale research letters, vol. 10, no. 1, p. 192, 2015. 

[83] L. M. Viculis, J. J. Mack, and R. B. Kaner, "A chemical route to carbon nanoscrolls," Science, 
vol. 299, no. 5611, pp. 1361-1361, 2003. 

[84] Z. Ding et al., "Lithium intercalation and exfoliation of layered bismuth selenide and bismuth 
telluride," Journal of Materials Chemistry, vol. 19, no. 17, pp. 2588-2592, 2009. 

[85] X. Fan et al., "Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by 
sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase 
reversion," Nano letters, vol. 15, no. 9, pp. 5956-5960, 2015. 

[86] Q. Li et al., "Intermediate phases in sodium intercalation into MoS2 nanosheets and their 
implications for sodium-ion batteries," Nano Energy, vol. 38, pp. 342-349, 2017. 

[87] E. Ziambaras, J. Kleis, E. Schröder, and P. Hyldgaard, "Potassium intercalation in graphite: A 
van der Waals density-functional study," Physical Review B, vol. 76, no. 15, p. 155425, 2007. 

[88] X. Chen, L. Li, X. Sun, H. G. Kia, and H. Peng, "A novel synthesis of graphene nanoscrolls with 
tunable dimension at a large scale," Nanotechnology, vol. 23, no. 5, p. 055603, 2012. 

[89] A. Ismach et al., "Toward the controlled synthesis of hexagonal boron nitride films," ACS 
Nano, vol. 6, no. 7, pp. 6378-6385, 2012. 

[90] K. K. Kim et al., "Synthesis and characterization of hexagonal boron nitride film as a dielectric 
layer for graphene devices," ACS nano, vol. 6, no. 10, pp. 8583-8590, 2012. 

[91] C.-W. Chang, W.-Q. Han, and A. Zettl, "Thermal conductivity of BCN and BN nanotubes," 
Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 
Processing, Measurement, and Phenomena, vol. 23, no. 5, pp. 1883-1886, 2005. 

[92] H. Şahin et al., "Monolayer honeycomb structures of group-IV elements and III-V binary 
compounds: First-principles calculations," Physical Review B, vol. 80, no. 15, p. 155453, 
10/28/ 2009. 

[93] Y. Lin and J. W. Connell, "Advances in 2D boron nitride nanostructures: nanosheets, 
nanoribbons, nanomeshes, and hybrids with graphene," Nanoscale, 10.1039/C2NR32201C 
vol. 4, no. 22, pp. 6908-6939, 2012. 

[94] L. Lindsay and D. Broido, "Enhanced thermal conductivity and isotope effect in single-layer 
hexagonal boron nitride," Physical Review B, vol. 84, no. 15, p. 155421, 2011. 



21 
 

[95] L. Lindsay and D. Broido, "Theory of thermal transport in multilayer hexagonal boron nitride 
and nanotubes," Physical Review B, vol. 85, no. 3, p. 035436, 2012. 

[96] S. M. Kim et al., "Synthesis of large-area multilayer hexagonal boron nitride for high material 
performance," Nature communications, vol. 6, p. 8662, 2015. 

[97] C. F. Woellner, L. D. Machado, P. A. S. Autreto, J. M. de Sousa, and D. S. Galvao, "Structural 
transformations of carbon and boron nitride nanoscrolls at high impact collisions," Physical 
Chemistry Chemical Physics, 10.1039/C7CP07402F vol. 20, no. 7, pp. 4911-4916, 2018. 

[98] Y. Li, W. Zhang, B. Guo, and D. Datta, "Interlayer shear of nanomaterials: Graphene—
graphene, boron nitride—boron nitride and graphene—boron nitride," acta mechanica 
solida sinica, vol. 30, no. 3, pp. 234-240, 2017. 

[99] J. Wang et al., "Flower stamen-like porous boron carbon nitride nanoscrolls for water 
cleaning," Nanoscale, vol. 9, no. 28, pp. 9787-9791, 2017. 

[100] M. H. Tahersima and V. J. Sorger, "Enhanced photon absorption in spiral nanostructured 
solar cells using layered 2D materials," Nanotechnology, vol. 26, no. 34, p. 344005, 2015. 

[101] A. L. M. Reddy, A. E. Tanur, and G. C. Walker, "Synthesis and hydrogen storage properties of 
different types of boron nitride nanostructures," international journal of hydrogen energy, 
vol. 35, no. 9, pp. 4138-4143, 2010. 

[102] T. Li, M. Lin, Y. Huang, and T. Lin, "Quantum transport in carbon nanoscrolls," Physics letters 
A, vol. 376, no. 4, pp. 515-520, 2012. 

[103] J. Zheng et al., "Production of High‐Quality Carbon Nanoscrolls with Microwave Spark 
Assistance in Liquid Nitrogen," Advanced materials, vol. 23, no. 21, pp. 2460-2463, 2011. 

[104] L. Jiang, L. Gao, and J. Sun, "Production of aqueous colloidal dispersions of carbon 
nanotubes," Journal of colloid and interface science, vol. 260, no. 1, pp. 89-94, 2003. 

[105] D. Golberg, "Synthesis and characterization of ropes made of BN multiwalled nanotubes," 
Scripta Materialia, vol. 44, no. 8, pp. 1561-1565, 2001. 

[106] Y. Chen, J. Zou, S. J. Campbell, and G. Le Caer, "Boron nitride nanotubes: pronounced 
resistance to oxidation," Applied physics letters, vol. 84, no. 13, pp. 2430-2432, 2004. 

[107] C. Zhi, Y. Bando, C. Tang, S. Honda, H. Kuwahara, and D. Golberg, "Boron nitride 
nanotubes/polystyrene composites," Journal of Materials Research, vol. 21, no. 11, pp. 
2794-2800, 2006. 

[108] X. Chen et al., "Boron nitride nanotubes are noncytotoxic and can be functionalized for 
interaction with proteins and cells," Journal of the American Chemical Society, vol. 131, no. 
3, pp. 890-891, 2009. 

[109] L. Horvath et al., "In vitro investigation of the cellular toxicity of boron nitride nanotubes," 
ACS nano, vol. 5, no. 5, pp. 3800-3810, 2011. 

[110] N. Wang et al., "Toxicity evaluation of boron nitride nanospheres and water-soluble boron 
nitride in Caenorhabditis elegans," International journal of nanomedicine, vol. 12, p. 5941, 
2017. 

[111] M. Rasel, T. Li, T. Nguyen, and Y. Gu, "The Assessment of Toxicity of Boron Nitride 
Nanoparticle Using Atomic Forced Microscopy," in 7th WACBE World Congress on 
Bioengineering 2015, 2015, pp. 31-34: Springer. 

[112] G. Ciofani, S. Danti, G. G. Genchi, B. Mazzolai, and V. Mattoli, "Boron nitride nanotubes: 
biocompatibility and potential spill‐over in nanomedicine," Small, vol. 9, no. 9‐10, pp. 1672-
1685, 2013. 

[113] V. K. Kodali et al., "Acute in vitro and in vivo toxicity of a commercial grade boron nitride 
nanotube mixture," Nanotoxicology, vol. 11, no. 8, pp. 1040-1058, 2017. 

[114] Y. Volkov, J. McIntyre, and A. Prina-Mello, "Graphene toxicity as a double-edged sword of 
risks and exploitable opportunities: a critical analysis of the most recent trends and 
developments," 2D Materials, vol. 4, no. 2, p. 022001, 2017. 



22 
 

[115] T. A. Tabish, S. Zhang, and P. G. Winyard, "Developing the next generation of graphene-
based platforms for cancer therapeutics: the potential role of reactive oxygen species," 
Redox biology, 2017. 

[116] T. A. Tabish et al., "Investigation into the toxic effects of graphene nanopores on lung cancer 
cells and biological tissues," Applied Materials Today, vol. 12, pp. 389-401, 2018. 

[117] A. B. Seabra, A. J. Paula, R. de Lima, O. L. Alves, and N. Durán, "Nanotoxicity of graphene and 
graphene oxide," Chemical research in toxicology, vol. 27, no. 2, pp. 159-168, 2014. 

[118] C. Fisher, A. E. Rider, Z. J. Han, S. Kumar, I. Levchenko, and K. Ostrikov, "Applications and 
nanotoxicity of carbon nanotubes and graphene in biomedicine," Journal of Nanomaterials, 
vol. 2012, p. 3, 2012. 

[119] L. Ma-Hock et al., "Comparative inhalation toxicity of multi-wall carbon nanotubes, 
graphene, graphite nanoplatelets and low surface carbon black," Particle and fibre 
toxicology, vol. 10, no. 1, p. 23, 2013. 

{120] Matharu, Rupy Kaur, et al. "The effect of graphene–poly (methyl methacrylate) fibres on 
microbial growth." Interface focus 8.3 (2018): 20170058. 

[121]  Heseltine, Phoebe L., Jubair Ahmed, and Mohan Edirisinghe. "Developments in pressurized 
gyration for the mass production of polymeric fibers." Macromolecular Materials and 
Engineering 303.9 (2018): 1800218. 

[122]  Tabish, Tanveer A., et al. "Influence of luminescent graphene quantum dots on trypsin 
activity." International Journal of Nanomedicine 13 (2018): 1525. 

[123]  Matharu, Rupy Kaur, Lena Ciric, and Mohan Edirisinghe. "Nanocomposites: suitable 
alternatives as antimicrobial agents." Nanotechnology 29.28 (2018): 282001 

[124] E. P. Randviir, D. A. Brownson, and C. E. Banks, "A decade of graphene research: production, 
applications and outlook," Materials Today, vol. 17, no. 9, pp. 426-432, 2014. 

[125] L. Jing et al., "Biocompatible hydroxylated boron nitride nanosheets/poly (vinyl alcohol) 
interpenetrating hydrogels with enhanced mechanical and thermal responses," ACS nano, 
vol. 11, no. 4, pp. 3742-3751, 2017. 

[126] A. Salvetti et al., "In vivo biocompatibility of boron nitride nanotubes: effects on stem cell 
biology and tissue regeneration in planarians," Nanomedicine, vol. 10, no. 12, pp. 1911-
1922, 2015. 

[127] S. Feng et al., "Folate-conjugated boron nitride nanospheres for targeted delivery of 
anticancer drugs," International journal of nanomedicine, vol. 11, p. 4573, 2016. 

[128] T. H. Ferreira, P. Silva, R. Santos, and E. Sousa, "A novel synthesis route to produce boron 
nitride nanotubes for bioapplications," Journal of biomaterials and nanobiotechnology, vol. 
2, no. 04, p. 426, 2011. 

[129] A. Pullanchiyodan, K. S. Nair, and K. P. Surendran, "Silver-Decorated Boron Nitride 
Nanosheets as an Effective Hybrid Filler in PMMA for High-Thermal-Conductivity Electronic 
Substrates," ACS Omega, vol. 2, no. 12, pp. 8825-8835, 2017. 

[130] T. Wang et al., "Enhanced Thermal Conductivity of Polyimide Composites with Boron Nitride 
Nanosheets," Scientific reports, vol. 8, no. 1, p. 1557, 2018. 

[131] D. Lahiri et al., "Boron nitride nanotube reinforced polylactide–polycaprolactone copolymer 
composite: mechanical properties and cytocompatibility with osteoblasts and macrophages 
in vitro," Acta biomaterialia, vol. 6, no. 9, pp. 3524-3533, 2010. 

[132] D. Lahiri, V. Singh, A. P. Benaduce, S. Seal, L. Kos, and A. Agarwal, "Boron nitride nanotube 
reinforced hydroxyapatite composite: mechanical and tribological performance and in-vitro 
biocompatibility to osteoblasts," Journal of the mechanical behavior of biomedical materials, 
vol. 4, no. 1, pp. 44-56, 2011. 

[133] A. L. M. Reddy, B. K. Gupta, T. N. Narayanan, A. A. Martí, P. M. Ajayan, and G. C. Walker, 
"Probing of Ni-encapsulated ferromagnetic boron nitride nanotubes by time-resolved and 
steady-state photoluminescence spectroscopy," The Journal of Physical Chemistry C, vol. 
116, no. 23, pp. 12803-12809, 2012. 



23 
 

[134] Y. Yu, H. Chen, Y. Liu, L. H. Li, and Y. Chen, "Humidity sensing properties of single Au-
decorated boron nitride nanotubes," Electrochemistry communications, vol. 30, pp. 29-33, 
2013. 

 


