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Abstract 

Neat fly ash-based alkali activated binders require high activator dosages and high temperature curing in order to 

develop satisfactory mechanical properties. Blending ground granulated blast furnace slag (GGBS) with fly ash 

can give medium to high strengths without the need for high temperature oven curing. An extensive investigation 

was carried out for understanding the effects of GGBS substitution of fly ash in mortar. GGBS substitution in the 

mix has an impact on mix proportions, fresh and hardened properties, and microstructure of reaction products. 

The strength of fly ash/GGBS blends cured at room temperature increased with the increase of GGBS content, 

whilst setting time showed an opposite trend. Fly ash/GGBS blends required lower activator dosages for obtaining 

high compressive strength, which has cost and environmental benefits. XRD, FTIR, TGA, and SEM/EDX results 

confirmed the presence of C-A-S-H gel as a reaction product with as low as 20% GGBS content.  

 

Keywords: alkali activated cement (D), microstructure (B), mixture proportioning (A), fly ash (D), Granulated 

Blast-Furnace Slag (D). 

 

1. Introduction 

Alkali activated concrete (AAC) can be a potential alternative to ordinary Portland cement based concrete (OPC) 

for reducing the CO2 emissions from the building sector, which account for around 8% of the worldwide carbon 

emissions [1]. Numerous studies have been carried out worldwide on binders based on neat fly ash or neat slag. 

Low calcium fly ash-based binders usually require high temperature curing and high activator dosages to achieve 

good mechanical properties. Chemical activators are responsible for the majority of CO2 emissions and production 

costs of AAC, as using high activator dosages leads to an increase in both of these [2]. This may hinder the 

industrial uptake of this technology. Slag-based binders, on the other hand, require relatively lower activator 

dosages but suffer from some technical problems such as rapid setting and low workability. Recently, blended 
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binders have attracted a great deal of attention mainly due to their potential to mitigate some of the above 

mentioned issues. 

Blending fly ash and Ground Granulated Blast Furnace Slag (GGBS) enables curing at ambient temperature (20 

°C) leading to a denser and more compact microstructure and therefore better mechanical properties [3]. However, 

despite around 40 years of studying [4], relatively few investigations focused on the optimization of mix design 

in terms of binder blends and their influence on activator dosage, fresh and hardened properties of the mix and 

identification of the microstructure of reaction products. The majority of the studies focused on pastes [5, 6] and 

only few data are available on the properties of blended fly ash/GGBS mortars and concrete [7-9]. The main 

conclusions from these studies were that the substitution of GGBS increased the compressive strength but 

decreased the setting time especially when higher percentages of GGBS and higher chemical dosages were used. 

Understanding the chemistry of AAC can also help towards designing more robust and durable concrete. 

However, the reaction mechanism of fly ash, despite having been studied for decades, is still not yet well 

understood [1]. Blending fly ash with GGBS makes the reaction process more complex as different reaction 

products can form. These reaction products depend on the ratio of slag and the activation dosages. Geopolymer 

gel (N-A-S-H) was found to be the main reaction product in mixes with slag ratio up to 25%, with possible 

formation of zeolites when this ratio was further decreased [10].  

This study aims to provide more insight into the influence of GGBS substitution on (a) the physical and 

mechanical properties of fly ash/GGBS blends, (b) the required activator dosage and (c) heat output development. 

Furthermore, characterisation of reaction products was carried out using microstructural techniques in order to 

understand the influence of slag content on the microstructure of the matrix. 

2. Materials and Methods 

The binders used in this study were based on fly ash and GGBS having chemical compositions (obtained by X-

ray fluorescence – XRF) as shown in Table 1. Fly ash was supplied by Power Minerals Ltd, United Kingdom. It 

was class F according to ASTM C618 [11], and compliant to BS EN 450 standard [12], with Loss on Ignition 

(LOI) falling into Category A. GGBS was supplied by Civil and Marine Ltd, United Kingdom. The slag was 

defined as basic since its basicity coefficient Kb = (CaO+MgO) / (SiO2+Al2O3) was higher than 1. The physical 

properties of the precursors are shown in Table 2. The grain size distribution is described by the parameters D50 

and D90, i.e. the mesh sizes for 50% and 90% sample mass passing respectively. 

Oven-dried natural siliceous sand having grain size in the range 0 to 4 mm and density 2.69 g/cm3 was used for 

the preparation of the mortars. 
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Table 1. Main oxides determined by XRF analysis on precursor materials. 

Oxide CaO SiO2 Al2O3 Fe2O3 Na2O K2O SO3 MgO TiO2 
Other oxides 

(minors) 
LOI 

Fly ash 2.2 46.8 22.5 9.2 0.9 4.1 0.9 1.3 1.1 7.4 3.6 

GGBS 43.7 29.4 11.2 0.4 1.0 0.9 1.8 6.9 0.7 1.6 2.4 

 

Table 2. Physical properties of precursor materials. 

Property 
Particle density 

(g/cm3) 

Grain size 

range (μm) 
D50 (μm) D90 (μm) 

Amorphous 

content (%) 

Fly ash 2.42 0.24 – 105 16.8 59.1 86 

GGBS 2.92 0.24 – 149 14.4 47.0 > 95 

 

Alkali dosage (M+) and alkali modulus (AM) were the parameters adopted for determining the activator dosage 

(i.e. mass of sodium hydroxide and sodium silicate solutions in the mix). M+ is the mass ratio of sodium oxide 

(Na2O) to the total mass of the precursor, whilst AM is the mass ratio of Na2O to SiO2. The activators used in this 

study were commercial grade (99% purity) sodium hydroxide (NaOH), and sodium silicate solution with 

SiO2:Na2O mass ratio = 2:1 (mass composition: Na2O 12.8%, SiO2 25.5%, water 61.7%), provided by Fisher 

Scientific UK. NaOH solutions with the required concentration were prepared by dissolving NaOH prills in tap 

water, leaving the solution to cool down for at least 24 hours before use. Sodium hydroxide solution was used to 

adjust the Na2O content in the activating solution in order to achieve the required M+. The water-to-solid ratio 

(w/s) was defined as the mass ratio of water to the mass of binder including the solid chemicals (i.e. mass of 

precursor + mass of SiO2 and Na2O). 

Mortars were mixed in a planetary mixer. The sand/binder ratio was kept constant at 2.75. Dry constituents (sand, 

fly ash and GGBS) were first dry mixed for 2 minutes, then the liquid part was added and mixing continued for a 

further 5 minutes. Typical mix proportions of mortars are shown in Tables 3a for production batches. These have 

been converted to grams/litre, see Table 3b. 

 

Table 3a. Typical mix proportions for mortar production batch (M+ 7.5%, AM 1.25, w/s ratio 0.37). 

Label Fly ash (g) GGBS (g) NaOH solution 

@ 30% conc. (g) 

Sodium silicate 

solution (g) 

Water 

(g) 

Sand (g) 

100/0 500 0 97 118 70 1375 

95/5 475 25 97 118 70 1375 

80/20 400 100 97 118 70 1375 

60/40 300 200 97 118 70 1375 

30/70 150 350 97 118 70 1375 
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 Table 3b. Typical mix proportions for 1 litre of mortar (M+ 7.5%, AM 1.25, w/s ratio 0.37). 

Label Fly ash (g) GGBS (g) NaOH solution 

@ 30% conc. (g) 

Sodium silicate 

solution (g) 

Water 

(g) 

Sand (g) 

100/0 530 0 102 125 74 1456 

95/5 504 26 102 125 74 1459 

80/20 427 107 103 126 74 1467 

60/40 323 215 104 127 75 1478 

30/70 163 381 105 128 76 1495 

 

 Setting time was measured with a manual Vicat apparatus. The paste consistency required for this method 

was not achievable with geopolymer pastes due to the need of higher water contents for preventing quick 

reaction as discussed by Vinai et al. [13]. The Vicat method was instead used with mortars for comparing 

the effects of different binder blends.  

 The consistency of mortars was assessed using the flow table in accordance with British Standard BS 

EN 1015-3: 1999. The conical frustum available in the laboratory had different dimensions than the 

standard (90 mm instead of 60 mm in height, internal diameter 65 mm instead of 100 mm at the base and 

40 mm instead of 70 mm at the top).  

 50-mm mortar cube specimens were cast in PVC moulds and compacted on a vibrating table. Moulds 

were then wrapped in a plastic film and stored for curing. Neat fly ash samples were oven cured at 70 °C 

whereas fly ash/GGBS blends were cured at a constant room temperature of 20 °C ± 2 °C and a relative 

humidity of 55% ± 5% until the day of testing. Samples were demoulded after 24 hours and tested for 

compressive strength at 1, 7 and 28 days using a 2000 kN capacity compression testing machine with a 

loading rate of 1.5 kN/s, which is within the range specified in BS 12390-3: 2009.  

 A TAM Air Isothermal Calorimetre (IC) was used for determining the heat of reaction of fly ash/GGBS 

paste blends. Ex-situ (i.e. sample mixed outside the machine and then lowered into the measuring 

chamber) and in-situ (i.e. sample mixed directly in the measuring chamber) methods were adopted. Ex-

situ measurements were carried out at two temperatures, i.e. 20 and 70 °C, whilst for in-situ measurement 

one temperature, i.e. 20 °C, was applied. 

X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA) 

and scanning electron microscopy (SEM) coupled with Energy Dispersive X-ray analysis (EDX) techniques were 

used for the microstructural characterisation on paste samples: 

 XRD was used to detect the crystal phases of both the raw materials and the reacted samples. Tests were 

carried out with a PANalytical X’Pert PRO diffractometer using pure copper-K-Alpha 1 radiation with 
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wavelength 1.54 Å. The X-ray generator was set to 40 kV and 40 mA, the recorded angular range was 5 

to 60° (2θ) with a step close to 0.017°. Malvern PANalytical X’Pert Highscore Plus software was used 

for pattern interpretation. An internal standard (corundum) was used with raw fly ash for the 

quantification of mineralogical phases. 

 FTIR spectra were obtained using a Jasco 4100 series FTIR Spectrometer to determine the chemical 

functional groups of raw materials and reacted samples. Jasco software was used for data interpretation. 

Attenuated Total Reflectance (ATR) attachment (germanium crystal) in the range 3960 – 650 cm-1 was 

measured, with a data interval 0.964 cm-1.  

 TGA was performed using a thermobalance Netzsch TG 209 F1 Libra. Powder was obtained from the 

samples with the use of a mortar and pestle. The powder was placed in an alumina crucible and then 

heated from 25 to 1000 °C at 20 °C/min in an inert environment. The thermobalance was coupled with a 

Pfeiffer mass spectrometer Vacuum Thermostat for the analysis of gases emitted during the heating 

process. 

 SEM images and EDX data were obtained on gold-palladium coated cubes of 1x1x1 cm with a FEI 

QUANTA 200 scanning electron microscope. The accelerating voltage was set at 20 kV. Six samples 

were analysed for each investigated mix.  

3. Results and discussion 

The effect of partially replacing fly ash with GGBS on the (a) fresh and hardened properties of mortars, (b) reaction 

heat development and (c) microstructure of pastes was investigated. A detailed study was carried out for evaluating 

the effect of activator dosage on neat fly ash mortars and fly ash/GGBS blends with high level of GGBS 

substitution (70% in mass), in order to determine ranges of dosage giving high compressive strengths. Several 

microstructural analysis techniques were used to assess the properties of the reaction products and relate these to 

the compressive strengths of mortars. The chemical composition of reaction products was determined which gave 

an indication of the nature of the binding gel.    

3.1. Fresh and hardened properties of mixes with neat fly ash and fly ash/GGBS blends 

A first series of mixes aimed at assessing the effects of the GGBS inclusion in fly ash-based mortars cured at 

ambient temperature. This included tests for consistency, setting time and compressive strength. Samples were 

mixed with GGBS contents ranging from 5% by mass (5% GGBS and 95% fly ash, referred as to 95/5, where the 

first number corresponds to the fly ash content and the second to the GGBS content) to 70% (i.e. 30/70). Mixes 

with higher GGBS content exhibited setting within a very short time (i.e. less than 5 minutes) and therefore were 
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not investigated. Water-to-solid ratio (w/s) was kept constant at 0.37. Activator dosages were kept constant at M+ 

= 7.5% and AM = 1.25, as suggested in a previous work [14]. 

3.1.1. Fresh properties of fly ash/GGBS mortars 

Results from the investigation on consistency and setting time of mortars with different GGBS contents are shown 

in Figure 1. Mortar consistency seemed to be moderately affected by the GGBS substitution, although no clear 

trend could be observed. An increase of GGBS content seemed to lead to a reduction of the flow, but this reduction 

was not significant. Similar findings have also been reported in the literature [3, 15]. 

The initial setting times were however significantly affected with increasing content of GGBS. The initial setting 

time decreased from above 3 hours for 95/5 mix to as low as 10 minutes in the case of 30/70 mix. The reduction 

in the initial setting time was found to be bilinear, with a more pronounced variation in the range 5% to 20% 

GGBS content (i.e. 95/5 to 80/20 mixes), in which the setting times were reduced from 3 hours to 1 and a half 

hour. The effect of GGBS inclusion on setting time had a lower slope in the GGBS range 20% to 70%, in which 

the initial setting time varied from one and a half hours to about 10 minutes.  

 

Figure 1. Consistency and setting time of fly ash/GGBS mortar mixes. Legend: ×: initial setting time (minutes). 

○: flow (mm). 
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3.1.2. Cube compressive strength  

Compressive strength of ambient temperature cured mortar cubes was found to increase with increasing GGBS 

content, see Figure 2. 28-day compressive strength varied from about 20 to 30 MPa for GGBS contents up to 20% 

to about 75 MPa for GGBS substitution of 70%. The increase in the strength with increasing GGBS has also been 

reported by others [3, 15, 16] and it is attributed to the densification of the matrix due to the formation of calcium 

silicate hydrate binding gel [15]. The increase in the compressive strength observed with increasing GGBS in the 

mix blend was also attributed to the coexistence of the geopolymeric gel (N-A-S-H) along with C-A-S-H type gel, 

which can lead to a denser and more homogeneous matrix and eventually to better mechanical properties [17]. 

 
 

Figure 2. Compressive strength for fly ash/GGBS mortar blends. 

 

Increasing GGBS allowed high compressive strengths to be obtained for samples cured at room temperature at a 

specific combination of activator dosages, i.e. M+ 7.5% and AM = 1.25. However, neat fly ash mortars have been 

shown to be capable of achieving compressive strengths as high as 60 MPa, when other activator dosages are used 

[14]. It is therefore of interest to understand how the activator dosages influence neat fly ash and fly ash/GGBS 

blended binders and to compare dosages leading to high compressive strengths.   

3.2. Activator dosages for high compressive strengths 

The mechanical strength of alkali activated binders is significantly influenced by the activator dosage, and a range 

of dosages resulting in high compressive strengths have been suggested [2, 14, 18-20, 65, 66].  
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3.2.1. Effect of activator dosage on the compressive strength of 100% fly ash mortar cubes 

The effect of M+, which is a proxy for the concentration of the alkali activator solution, and AM, which is a proxy 

for the amount of added silica in the activator solution, on compressive strength was first investigated for neat fly 

ash mortar cubes. M+ was in the range 7.5 to 13.5%, whilst AM was from 0.5 (corresponding to all sodium 

silicate) to ∞ (i.e. all sodium hydroxide). Figure 3 shows the combined effect of AM and M+ on the compressive 

strength of mortar cubes produced with 100% fly ash. Mix proportions of mortars are shown in Appendix A (Table 

A1 for production batches information, Table A2 for grams/litre conversion). The structure of sample labels is 

“precursor-M+-AM”. In order to maintain the required w/s ratio, samples with M+ equal to 12.5% and 13.5% 

were produced using sodium hydroxide solution at 40% concentration. 

 

 
Figure 3. Combined effect of M+ and AM on 28-day compressive strength for neat fly ash mortar mixes. 

 

The “sweet spot” for compressive strength was found to be with an AM in the range 0.7 to 1.0 and an M+ in the 

range 11.5% to 13%, where compressive strengths in excess of 60 MPa were obtained.  

The AM was found to have a strong effect on the compressive strength development, as compressive strengths 

higher than 50 MPa were obtained with an AM in the range 0.7-1.0 regardless of the value of M+. Similar ranges 

have been reported in the literature [21-23]. This can be attributed to the enhancement of the degree of 
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polymerisation of the dissolved species, leading to better mechanical properties. Hajimohammadi et al. [24] 

observed that high Si availability led to multiple aluminosilicate nucleation point opportunities, enhancing also 

the Al dissolution and the geopolymer gel formation. Compressive strength decreased as AM increased over 1.0, 

being in the range of about 10 MPa when AM = ∞ (i.e. when only NaOH solution was used as activator). This 

can be due to the non-availability of soluble silicates which affected the geopolymerisation process and, thus 

resulted in lower compressive strength. A decrease in compressive strength was also observed when the AM was 

low, i.e. 0.5.  

This strength reduction (around 50%) can be attributed to the decrease in the pH of the system with the increase 

in sodium silicate solution. A drop in the pH from 14 to 12 when AM decreased from 1.25 to 0.5 has been observed 

in the literature [25]. The decrease in the pH affects the dissolution of the glassy aluminosilicate species from the 

precursor [26], which in turn affects the geopolymerization process and thus results in lower compressive strength. 

The amount of SiO2 in the activating solution (i.e. high soluble silicates) seemed to correlate well with the 

compressive strengths, confirming that the increase in SiO2 results in an increase in compressive strength until a 

SiO2/binder mass ratio of about 15%. Higher amounts of SiO2 did not increase the strength further. Data points 

corresponding to AMs at the two ends of the investigated range did not follow the trend, see Figure 4. As 

previously discussed, when the silicate contents were very low (i.e. AM > 30 in Figure 4) the geopolymerisation 

process was hindered, whilst excess of silicate (i.e. AM 0.5 in Figure 4) lowered the pH of the pore solution, 

reducing the dissolution of reactive species and thus negatively affecting the strength development. 

The effect of M+ on strength was also assessed. Within the optimum range of AM previously determined, 

compressive strength increased from 50 to 60 MPa when M+ of 8% increased to 12.5%. The increases in 

compressive strength were more pronounced (i.e. from about 35 – 40 MPa to about 55 to 60 MPa) when M+ 

increased from 7.5% to 9.5%. The strength increase was not significant for M+ higher than 12.5%. This was 

attributed to the saturation of the gel with alkali ions, i.e. less free water is available for speciation of silica and 

alumina oligomers from the dissolution of fly ash [14].  

3.2.2. Effect of activator dosage on the compressive strength of fly ash/GGBS mortar cubes 

The effect of activator dosage on compressive strength of blended binder was investigated on mixes with a GGBS 

content as high as 70% (i.e. 30/70). Higher than 70% GGBS substitution was not investigated as it resulted in 

quick setting times which did not allow proper casting of samples, for the M+ and AM used in this series of mixes. 

Preliminary trials with 30/70 mixes showed satisfactory workability and reasonable working time. Neat GGBS-

based binder typically requires lower M+ dosages than neat fly ash [6, 23, 27, 28] and therefore the M+ range 
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selected was from 4.5 to 10.5%, and the AM was in the range 0.75 to ∞ (i.e. NaOH solution only). Water-to-solid 

ratio (w/s) of 0.4 was adopted to ensure proper consistency of mixes. This value was slightly higher than the 0.37 

used for neat fly ash mixes. Results are shown in Figure 5. Mix proportions of mortars are shown in Appendix A 

(Table A3 for production batches and Table A4 as grams/litre). 

 

Figure 4. Relationship between mass ratio of SiO2 in the activating solution to the binder and 28-day compressive 

strength for neat fly ash mortar mixes. 
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Figure 5. Effect of alkali dosage M+ and alkali modulus AM on 28-day compressive strength of 30/70 blend 

 

GGBS substitution had a significant effect on activator dosages required for achieving highest possible strength. 

28-day strength higher than 60 MPa was obtained with AM in the range 0.7 to 1.7 and M+ in the range 6 to 10.5%. 

AM values in the range 1.0 to 1.25 achieved mortar compressive strengths higher than 60 MPa with M+ as low 

as 6%. Neat fly ash mixes, as reported previously, required an AM in the range 0.7 to 1 and M+ in the range 

11.5% to 12.5%. The inclusion of GGBS in the mix allowed an increase of the AM and a decrease of the M+ for 

obtaining comparable strengths. This is a reduction of the amount of chemical activators required and therefore a 

reduction also of the cost and environmental footprint of these mixes.  

When only NaOH was used in the mix (i.e. AM infinite), a strength equal to 30 MPa was obtained regardless of 

the M+ value. This can be attributed to the fact that the reaction in this case is mainly the hydration of calcium 

species of GGBS. This kind of reaction requires a pore solution with a pH high enough for breaking down the 

slag grain layer, allowing the water to reach the slag and the hydration to take place [29]. An M+ of 4.5% has 

been reported to be sufficient for neat GGBS systems, although inadequate for neat fly ash systems [30]. M+ of 

4.5% gave the same 28-day compressive strength of around 30 MPa for all the investigated AM i.e. 0.75, 0.95, 

1.15 and 1.25. This confirms that the reaction at this AM dosage is mainly due to the GGBS. The aluminosilicates 

from the fly ash do not contribute as this AM dosage is not sufficient for triggering the dissolution of fly ash 

particles.  
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For higher alkali dosages (M+) of 6%, 7.5%, 8.5% and 10.5%, the ‘optimum’ AM was found to be 1.25 (1/AM 

of 0.8). Mixes with M+ of 8.5% and 10.5% gave compressive strengths of around 74 MPa, similar to those with 

M+ of 7.5%.  

Higher chemical dosages have adverse effects on the mix, i.e. they cause reduction in the setting time, an increase 

of the CO2 footprint and an increase of the cost of AAC. Activator dosages of M+ = 7.5% and AM = 1.25 were 

therefore selected for investigation with fly ash/GGBS blends. 

3.3. Heat output of the reaction 

Heat output rate was determined with an isothermal calorimeter technique in order to understand the effects of 

GGBS inclusion and curing temperature on the reaction. Ex-situ tests (i.e. samples prepared outside the 

calorimeter) simulating curing temperatures 20 °C and 70 °C respectively were carried out on paste samples with 

different GGBS percentage substitution (100/0, 95/5, 82/20, 60/40, 30/70 and 0/100). Furthermore, in-situ tests 

(i.e. samples mixed directly in the calorimeter after temperature stabilisation) simulating room temperature 

conditions (i.e., 20 °C) were carried out on 4 paste samples, namely 30/70, 60/40, 80/20 and 100/0 in order to 

investigate the very early reaction which could not be investigated with the ex-situ method.  

3.3.1 Ex-situ isothermal calorimeter tests at 20 °C 

The solid powder was mixed with the liquid activator outside the isothermal calorimeter, and then the sample was 

placed in the testing chamber. Some time was then allowed for temperature stabilisation and only after this 

recording of the heat output started. The first 40 to 45 minutes of reaction could not be investigated.  

Tests carried out at 20 °C aimed at assessing the heat of reaction simulating room temperature curing. Mixes with 

significant content of GGBS (mixes 60/40 and above) showed one prominent peak, attributed to the dissolution 

and precipitation reaction leading to the formation of C-A-S-H type binding gel [3], see Figure 6(a). The peak 

appeared earlier and was higher as GGBS content increased. The peak occurred at around 10, 6, and 4 hours for 

60/40, 30/70 and 0/100 samples respectively, whilst it was not observed in samples with GGBS content lower 

than 40%. Similar peak but at longer reaction time i.e. 24 hours has been reported in the literature [31] for 50/50 

fly ash/GGBS blend. The occurrence, magnitude and location of the peaks depend on various parameters such as 

the type and concentration of the activator, reaction temperature [32] and the nature and the reactivity of the raw 

materials. 

The cumulative heat output increased with the increase in GGBS content, see Figure 6(b), which is consistent 

with what has been reported by others [31]. Values recorded up to 120 hours were in the range of 140, 130, and 
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90 J/g for mixes 0/100, 30/70, and 60/40 respectively. Mixes with low GGBS content such as 80/20, 95/5 and 

100/0 showed low to very low cumulative heat outputs, with values of about 55, 20, and 10 J/g respectively. 

3.3.2 Ex-situ isothermal calorimeter tests at 70 °C 

Tests carried out at 70 °C investigated the reaction simulating oven curing conditions. The reaction developed 

faster compared to tests carried out at 20 °C. After about three hours, residual heat flows of 2 mW/g were recorded, 

see Figure 6(c). Peaks shifted toward shorter times as GGBS content increased as was observed for samples tested 

at 20 °C. Peaks however occurred earlier, i.e., about 30 minutes, and with much higher intensities than those 

recorded for samples tested at 20 °C. 

Cumulative heat generally increased with the increase in GGBS content, as the reaction of GGBS is exothermic 

involving mainly a hydration process. Cumulative heat outputs recorded for mixes 0/100, 30/70, and 60/40 for up 

to 50 hours were comparable to the values recorded at 20 °C, see Figure 6(d), suggesting that temperature 

accelerates the speed of the reaction but does not increase the amount of the reaction products.  

Fly ash-rich mixes (i.e. 80/20, 95/5, and 100/0 mixes) tested at 70 °C had heat outputs of 105, 75, and 60 J/g 

respectively which are higher than those measured at 20 °C. These results confirmed that (a) fly ash reaction is 

less exothermic than GGBS reaction as it does not involve hydration, and (b) fly ash-rich mixes require energy 

(in the form of curing heat) for the reaction to develop. This was expected because of the low compressive strength 

development obtained when fly ash-rich mixes were cured at 20 °C. 
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Figure 6. Ex-situ IC test results. (a) Heat flow at 20°C. (b) Cumulative heat output at 20 °C. (c) Heat flow at 

70°C. (d) Cumulative heat output at 70 °C. 

 

3.3.3 In-situ isothermal calorimeter tests at 20 °C 

In-situ isothermal calorimeter tests were carried out at 20 °C on four blends, i.e. 100/0, 80/20, 60/40, and 30/70 

fly ash/GGBS mixes. The constituent materials were placed in the testing chamber of the calorimeter which was 

then left to stabilise in terms of temperature before mixing the solid part with the liquid activator. 

Two peaks were recorded in the first hour of testing. The first peak was recorded for all the samples (including 

neat fly ash sample) within about five minutes from the start of the mixing. This can be attributed to the wetting 

and dissolution of Si, Al and Ca species from fly ash and GGBS [33, 34], see Figure 7(a). The highest initial peaks 
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were recorded for fly ash-rich samples, whilst the lowest was recorded for GGBS-rich sample, i.e. 30/70. A second 

peak with a lower magnitude occurred after around 30 minutes of reaction, over a period of about 2 hours, in all 

the samples except neat fly ash, see Figure 6(a). This peak increased with the increase in GGBS content in the 

blend, and it can be attributed to the formation of C-A-S-H product from the reaction between Ca2+ dissolving 

from GGBS particles and silica anions from the activators [32, 35]. This reaction was reported to play an important 

role in setting and mechanical properties in slag cement pastes [36].  

A third peak was detected in samples with high content of GGBS i.e. 60/40 and 30/70 after about 10 to 15 hours, 

see Figure 7(a). These peaks can be attributed to the subsequent precipitation and formation of C-A-S-H reaction 

products, as these were not observed for fly ash-rich samples. These peaks were also found with the ex-situ 

technique.  

The cumulative heat of the reaction increased with increasing GGBS content, confirming the exothermal nature 

of the GGBS hydration reaction, see Figure 7(b). Cumulative heat values after 100 hours were found to be similar 

to those obtained with ex-situ technique. 

 
Figure 7. In situ IC curves for different fly ash/GGBS pastes: (a) heat flow in mW/g. log scale for time was 

used for magnifying the occurrence of early peaks. (b) Cumulative heat output in J/g of paste. 

 

Results from isothermal calorimeter analysis seemed to suggest the presence of two different reaction 

mechanisms, according to the amount of GGBS in the mix:  

a) With no or low GGBS content, the main exothermic reaction is due to the dissolution of Si and Al species 

from the binder. This reaction takes place very early (only observed with in-situ technique), but the 
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hardening of geopolymeric matrix is slow at ambient temperature and needs external energy input (in the 

form of curing heating) to develop. This is confirmed by the comparison between the total heat output 

generated at 20 °C and 70 °C and it is consistent with the results from compressive strengths on mortar 

samples. 

b) With higher GGBS contents, the main exothermic reaction is due to the formation of C-A-S-H gel with 

the hydration of calcium silicate species. The heat output values increased with increasing GGBS content, 

in terms of heat flow rate peak intensity and cumulative heat of reaction, indicating that higher amounts 

of Ca species available for hydration resulted in higher volume of C-A-S-H produced, which may lead 

to denser and stronger gel structure. Samples with higher GGBS content showed higher compressive 

strength.  

Increasing the curing temperature for high GGBS content mixes did not result in an increase of the total heat 

output (hence of the C-A-S-H gel production) but only in a faster reaction. This seems to suggest that curing 

GGBS-rich samples in oven would not result in an increase in the final compressive strength, but would only 

accelerate the strength development. 

 

3.4. Microstructure of pastes 

An extensive investigation on microstructural properties of eight sample pastes was carried out in order to assess 

in a qualitative and quantitative way the reaction products and to determine the effect of GGBS substitution on 

the microstructural development of the paste. Neat fly ash mixes (100-FA-1.25, 100-FA-0.85 and 100-FA-0.85b 

which had higher M+) were oven cured at 70 °C for 7 days then stored in air tight containers at 20 °C until testing 

(after 28 days). Samples with blends of fly ash and GGBS (05-GGBS-1.25, 20-GGBS-1.25, 40-GGBS-1.25, 70-

GGBS-0.95 and 70-GGBS-∞) were cured at 20 °C. Unreacted fly ash and GGBS samples were also analysed for 

defining a baseline for comparison. Details of the samples are shown in Table 6.  

Fly ash samples 100-FA-1.25, 100-FA-0.85 and 100-FA-0.85b were used as the control, i.e., for determining the 

microstructure and the reaction products with no GGBS. The effects of higher silicate dosage (100-FA-0.85) and 

of higher activator dosages (100-FA-0.85b) were also investigated.  

The changes in reaction products when the GGBS content was increased from 5% to 70% was investigated for 

samples 05-GGBS-1.25, 20-GGBS-1.25, 40-GGBS-1.25, and 70-GGBS-0.95. The mix 70-GGBS-∞ used sodium 

hydroxide as the only activator (i.e., without sodium silicate). 
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 Table 6. Details on pastes investigated with microstructural techniques. 

Label 
fly ash/GGBS 

ratio 

Curing 

Condition 
M+ AM Aim of the investigation 

100-FA-1.25 100/0 70 °C 7.5 1.25 
Neat fly ash – assessment of microstructure for typical 

chemical activator dosage. 

100-FA-0.85 100/0 70 °C 7.5 0.85 Neat fly ash – effect of increased content of silicates 

100-FA-0.85b 100/0 70 °C 11.5 0.85 Neat fly ash – effect of increased amount of activator. 

05-GGBS-1.25 95/5 20 °C 7.5 1.25 
Fly ash/GGBS – effect of GGBS substitution on the 

microstructure (5% GGBS). 

20-GGBS-1.25 80/20 20 °C 7.5 1.25 
Fly ash/GGBS – effect of GGBS substitution on the 

microstructure (20% GGBS). 

40-GGBS-1.25 60/40 20 °C 7.5 1.25 
Fly ash/GGBS – effect of GGBS substitution on the 

microstructure (40% GGBS). 

70-GGBS-0.95 30/70 20 °C 7.5 0.95 
Fly ash/GGBS – effect of GGBS substitution on the 

microstructure (70% GGBS). 

70-GGBS-∞ 30/70 20 °C 7.5 
NaOH 

only 

Fly ash/GGBS – effect of GGBS substitution on the 

microstructure (70% GGBS) without silicates addition. 

 

XRD, FTIR, TGA and SEM-EDX were the techniques used in this investigation. XRD analysis was used to 

identify the formation of some C-A-S-H in samples with GGBS, but it was not effective in assessing differences 

between other phases due to the amorphous nature of the main reaction products. With FTIR technique, qualitative 

differences among samples were observed, whilst TGA was used to estimate in a quantitative way the amount of 

hydrated reaction products. SEM-EDX methods were used to determine the morphology of reaction products and 

their chemical composition, and to assess the nature of the reacted gel. 

3.4.1. X-ray diffraction 

The crystalline phases observed with XRD analysis on three neat fly ash samples (i.e. 100-FA-1.25, 100-FA-0.85 

and 100-FA-0.85b) were the same phases identified in the unreacted (raw) fly ash, namely Mullite, Quartz and 

traces of Hematite, see Figure 8(a). Corundum was used as an internal standard to quantify the amorphous 

percentage of the fly ash. No crystalline reaction product was observed in the reacted samples. This is due to the 

amorphous nature of the aluminosilicate hydrate binding gel rich in sodium (N-A-S-H). Peaks for the crystalline 

phases were lower compared with those of the unreacted material. 
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Figure 8. XRD spectra. (a) Neat fly ash pastes. (b) Pastes with GGBS. 

 

The XRD pattern of unreacted GGBS showed traces of Akermanite and Gehlenite as the only crystalline phases, 

see Figure 8(b). The crystalline phases observed in the raw fly ash, i.e., Quartz and Mullite, were also observed 

in fly ash/GGBS samples, although in a lower amount, due to the dilution resulting from blending. Sample 05-

GGBS-1.25, which contained only 5% GGBS, showed a pattern similar to that of neat fly ash samples, with no 

presence of the C-A-S-H type gel hump. On the contrary, this latter was detected as the main reaction product in 

samples with GGBS > 20% (20-GGBS-1.25 to 70-GGBS-∞). The peak attributed to C-A-S-H seemed to increase 

with increasing GGBS content, which is in agreement with the increase in compressive strength of corresponding 

mortars: cube compressive strengths of about 20, 30, 45 and 70 MPa were obtained for samples having GGBS 

contents of 5%, 20%, 40% and 70% respectively. The presence of C-A-S-H gel has previously been reported for 

alkali-activated slag [37] and slag and fly ash systems for slag contents > 25% [7, 38].  

Hydrotalcite was identified in the sample activated with NaOH solution only (i.e., 70-GGBS-∞). Hydrotalcites 

are a class of anionic clays that are formed in highly caustic conditions (pH greater than 9) as hydrated compounds 

of Mg, Al and CO3
2-. The absence of silica in the activating solution might have prevented the formation of 

geopolymeric gel (C-A-S-H), and consequently the Al was available for the crystallization of hydrotalcite. This 

is in agreement with the lower strength (30 MPa) obtained with the mortar with 70% GGBS and AM ∞ (i.e. no 

silicate in the activator solution). The compressive strength of mortar sample with 70% GGBS and AM 1.25 was 

above 70 MPa. Hydrotalcite has been identified in slag systems activated with different activators [37, 39, 40]. 
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The amount of precipitation of hydrotalcite was found to increase with the increase of MgO content in the slag 

[41].  

Due to the generally amorphous nature of precursors and reaction products, XRD analysis allowed qualitative 

assessments only. The utilisation of advanced approaches for the quantification of phases with partial or no known 

crystal structures (PONKCS) could give further quantitative insight into the nature of the reacted phases [62, 64]. 

 

3.4.2. Fourier-transform infrared spectroscopy 

FTIR spectroscopy analysis was used to determine the presence and the position of peaks in the transmittance 

spectra obtained with raw materials and reacted pastes, see Figure 9.  

In unreacted fly ash, the Si-O-(Si or Al) band was centred around 1057 cm-1, whereas a shift towards 1004, 995 

and 995 cm-1 was observed for 100-FA-1.25, 100-FA-0.85 and 100-FA-0.85b respectively. This shift can be 

attributed to the change of microstructure and the formation of the amorphous reaction products, with the partial 

replacement of SiO4 units by tetrahedral AlO4 units [42]. This confirmed the reaction development in the three 

samples, with 100-FA-1.25 showing a lesser extent of reaction compared with 100-FA-0.85 and 100-FA-0.85b. 

The peak observed at the wavenumber of 1650 cm-1 is attributed to the –OH bending vibration of chemically 

bound water, and it is present in all the three samples, confirming the presence of the reaction products. In the 

range 3200-3600 cm-1 a hump that is due to the stretching vibration modes of H-OH groups has been identified 

for the reacted materials. This increased or broadened with the increase in the activator dosage (i.e. passing from 

100-FA-1.25 to 100-FA-0.85 and 100-FA-0.85b), presumably due to the increase in the volume of reaction 

products. This may explain the improvement in compressive strengths of mortars produced with same activation 

dosages, i.e. 100-FA-1.25, 100-FA-0.85 and 100-FA-0.85b which had compressive strengths of 30, 45 and 75 

MPa respectively. Quartz was observed in both the unreacted fly ash and the reacted pastes with bands at 795 and 

775 cm-1 respectively [7, 43, 44]. 

Figure 9(b), i.e. samples with GGBS, shows a main band centred at 985 cm-1 in the unreacted GGBS sample, 

which is assigned to the asymmetric stretching vibration of T-O-T bond (T is tetrahedral Si or Al). In the reacted 

blended fly ash/GGBS samples (05-GGBS-1.25 to 70-GGBS-∞), the T-O-T band shifted toward a lower 

wavenumber as the content of slag increased. The bands were centred at 975, 965, 958, and 952 cm-1 for 05-

GGBS-1.25, 20-GGBS-1.25, 40-GGBS-1.25 and 70-GGBS-0.95 respectively, see Figure 9(b). Shifting of the 

peaks toward a lower wavenumber in reacted pastes of GGBS rich blends can be due to the simultaneous activation 

of fly ash leading to the formation of a binding gel with more cross-linked aluminosilicate geopolymer gel (N-A-
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S-H) [7] and consequently increasing the compressive strength. However, the presence of GGBS in blended 

samples would shift the position of this peak for blended samples to a lower wavenumber irrespectively of the 

actual reaction, the main band of raw GGBS being at 985 cm-1. Further confirmation needs to be found from other 

microstructural analysis.   

 

 

Figure 9. FTIR spectra. (a) Neat fly ash pastes. (b) Pastes containing GGBS. 

 
In sample 70-GGBS-∞ (70% GGBS activated with NaOH only) the T-O-T band was centred at a lower 

wavenumber (944 cm-1) compared to the samples activated with both sodium hydroxide and sodium silicate 

activators. Activation dosage used for the production of this sample (only NaOH was added in the mix at a 

relatively low M+ of 7.5%) may have hindered the reactivity of fly ash, and therefore prevented the formation of 

either N-A-S-H or Al rich C-A-S-H binding gels. As a result, low Al C-A-S-H binding gel was formed along with 

hydrotalcite. SEM images of sample 70-GGBS-∞ which is discussed later in this paper showed a larger extent of 

unreacted fly ash particles confirming the above.  

A band centred at 1400 cm-1 was detected in all fly ash/GGBS samples and was attributed to CO3
2- probably due 

to some carbonation during the sample preparation.  

As observed in neat fly ash reacted samples, the stretching-bending mode of H-OH groups was centred at around 

3400 cm-1 and appeared to increase or broaden with the increase of GGBS content, probably due to the 

development of the reaction products. Another band related to the reaction products was identified at around 1650 

cm-1 due to the bending vibration of O-H of the hydrated reaction products.  
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3.4.3. Thermo-gravimetric analysis 

TGA was performed on raw materials (as baseline for subsequent analysis) and on reacted pastes. Both unreacted 

fly ash and GGBS powders were found to be stable in terms of thermal decomposition, see Figure 10. A mass loss 

of about 4% was observed for fly ash in the range 600 to 1000 °C, which was presumably due to the loss of 

ignition of carbon compounds (L.O.I. from XRF analysis was about 3.6%). Gas emission analysis obtained with 

the mass spectrometer confirms this, since emissions recorded starting from 600 °C were attributed to CO2.  

TGA analysis on neat fly ash pastes (samples 100-FA-1.25 to 100-FA-0.85b) showed moderate mass losses. In 

these materials, the reaction product is mainly a N-A-S-H (sodium – aluminium – silicate – hydrate) binding gel 

system. The mass loss at 300 °C (when water from the aluminosilicate type-gel is removed) was between 7 and 

9%, see Figure 10. The amount of hydrated product in the paste is a proxy for the degree of reaction. Different 

amounts of hydrated compounds, according to the intensity of differential curve peaks centred at around 150°C, 

were observed for 100-FA-1.25 on the one hand and 100-FA-0.85 and 100-FA-0.85b on the other. Such increased 

intensity has been attributed to a higher amount of aluminosilicate gel formation [45] and consequently leading to 

a higher compressive strength. Results suggest that 100-FA-1.25 reacted to a lesser extent compared to 100-FA-

0.85 and 100-FA-0.85b, and this is in agreement with the lower strengths obtained from mortar with AM 1.25. 

Mortars produced with same activator dosages as 100-FA-1.25, 100-FA-0.85 and 100-FA-0.85b gave compressive 

strength of 30, 45 and 75 MPa respectively. 100-FA-1.25 showed a mass loss at high temperature (associated with 

CO2 emission at 600 – 800°C) similar to that of the unreacted fly ash, see Figure 10. This behaviour can be related 

to the relatively poor reactivity of sample 100-FA-1.25, which resulted in a proportion of unreacted fly ash 

particles higher than in the other two samples, i.e., 100-FA-0.85 and 100-FA-0.85b, and consequently in a lower 

production of geopolymeric gel, which ultimately led to a lower compressive strength. 

The analysis of the TG curves and the derivative TG (DTG) curves of samples containing GGBS (samples 05-

GGBS-1.25 to 70-GGBS-∞) indicated that the main mass losses occurred in the region 40 – 160 °C, with peaks 

centred in the range 90 – 130 °C. This region corresponds to the dehydration of physically bound water in the gel 

structure (mainly in the pore network). The water gas emission curves are the mirror image of the DTG, 

confirming that the main mass loss happens due to the dehydration process.  
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Figure 10. Thermo gravimetric curves of raw materials (fly ash and GGBS), neat fly ash pastes and pastes 

containing GGBS. 

 

GGBS-rich pastes (high calcium pastes) show higher mass losses due to the dehydration process. In these 

materials, the hydration products are mainly related to the C-(N)-A-S-H (calcium – aluminium – silicate – hydrate) 

systems, with sodium ions in the structure. The dehydroxylation occurs from around 300 °C to 600 °C [46], and 

it is completed by 550-600 °C. The total mass loss up to 600°C can be taken as a relative measure of the degree 

of reaction. Mass losses increasing from 10% (05-GGBS-1.25) to around 24% (70-GGBS-0.95) were observed 

with increasing GGBS content, which corresponded to an increase in the volume of reaction products. This 

explains the high compressive strength obtained in these formulations, see Figure 11. The analysis confirmed that 

increasing GGBS content in the mix resulted in a higher volume of C-(N)-A-S-H gel. 
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Figure 11. Relationship between compressive strength and hydrated products (observed as mass loss up to 600 

°C) for fly ash/GGBS pastes. 

 

The comparison between samples 70-GGBS-0.95 and 70-GGBS-∞ gave insights into the effects of silicates in the 

activating solutions on the reaction products. Sample 70-GGBS-∞ was activated with NaOH only, and shows a 

reduced amount of hydration products when compared to 70-GGBS-0.95 (18.2% vs. 20.3% at 300 °C 

respectively). This indicates a lack of reactivity and therefore a deficiency in binding gel formation (in agreement 

with the difference in compressive strength mentioned above). Furthermore, an isolated peak at around 350 °C 

can be observed in sample 70-GGBS-∞, see Figure 12. This peak is associated with the dehydration of 

hydrotalcite, which decomposes in the range of 270 – 400 °C [7, 41]. The presence of hydrotalcite as a reaction 

product when NaOH only was used as an activator was also confirmed from XRD analysis. On the other hand, 

70-GGBS-0.95 differential thermogram shows a broader hump in the range 300 – 600 °C, which is due to the 

dehydroxilation by condensation of the bound silanol (-Si-OH end group) groups, and is completed at around 600 

°C [46, 47], with no evidence of hydrotalcite. 
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Figure 12. Thermogravimetry and H2O emission curves for 70-GGBS-0.95 and 70-GGBS-∞ samples. 

 

3.4.4. Scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX)  

SEM and EDX techniques were used to study the morphology and the chemical composition of the geopolymeric 

matrix such as: (a) unreacted or partially reacted particles (cenospheres for fly ash and flakes for GGBS); (b) 

matrix gels; (c) crystals from raw materials or from precipitation during the reaction. Due to the unavailability of 

polished samples, EDX analysis should be considered with a degree of uncertainty. 

Neat fly ash pastes (samples 100-FA-1.25 to 100-FA-0.85b) activated with different dosages resulted in three 

different observed morphologies. The magnification 3000X (30 µm) allowed to observe much larger amount of 

unreacted (or partially reacted) cenospheres in sample 100-FA-1.25 than those observed in samples 100-FA-0.85 

and 100-FA-0.85b. Denser microstructures were found in samples 100-FA-0.85 and 100-FA-0.85b. This indicated 

better reactivity of fly ash and therefore better mechanical properties as confirmed by higher compressive strength. 

When low quantities of free Si ions were available, i.e., for low activation dosages, Al was present in the 

cenospheres only and did not fully participate in the formation of the gel structure, limiting also the presence of 

Na in the binding gel. With higher Si availability, i.e. higher activator dosages, the distribution of Al, Na and Si 

was found to be more even in the matrix, and the dissolution of solid aluminosilicates was nearly complete [48]. 

Higher Si availability resulted in higher compressive strength and this has been associated with a more thorough 

dissolution of Al [24]. 

The SEM and EDX analysis confirmed therefore that 100-FA-1.25 did not fully react, whereas 100-FA-0.85 and 

100-FA-0.85b showed higher levels of aluminosilicate gel structure formation.  
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Samples with lower GGBS content i.e. 05-GGBS-1.25 and 20-GGBS-1.25 showed larger amounts of unreacted 

particles, and a less dense matrix was found in sample 05-GGBS-1.25. When GGBS content was increased to 

20% (i.e., sample 20-GGBS-1.25), the matrix became denser with smaller amount of unreacted particles and fewer 

visible pores. The structure of the matrix increased in density and homogeneity with increasing GGBS, i.e., 

samples 40-GGBS-1.25 and 70-GGBS-0.95, with a better-developed microstructure showing more glassy texture, 

which in turns implied more binding gels. Thus the higher compressive strengths obtained with increasing GGBS.  

The effects of different activating dosages on a sample containing 70% GGBS on the morphology were assessed 

by comparing 70-GGBS-0.95 (30/70 blend activated using sodium silicate and sodium hydroxide) with 70-GGBS-

∞ (30/70 blend activated with sodium hydroxide only). Sample 70-GGBS-∞ showed a larger amount of unreacted 

(or partially reacted) particles, both from fly ash and from GGBS precursors, with a coarse bonding with the gel. 

Sample 70-GGBS-0.95, on the other hand, showed a very dense and uniform matrix. The difference in 

compressive strength was significant (above 70 MPa for sample 70-GGBS-0.95 and around 30 MPa for sample 

70-GGBS-∞), confirming a lack of reaction due to the lack of silicates in the solution, which led to a reduced 

amount of binding gel forming. 

3.4.5. Chemical composition of reaction products (EDX) 

The chemical composition of the reaction products, assessed via EDX analysis, varied depending on the GGBS 

amount in the blend, see Table 7. In the sample with low GGBS content such as 05-GGBS-1.25, Si/Al atomic 

ratios ranged from 2.5 to 2.9 with an average ratio of 2.8. Ca/Si ratios were in the range of 0.1 to 0.3 with an 

average ratio of 0.2. The Si/Al ratio of sample 05-GGBS-1.25 was similar to that of neat fly ash samples (100-

FA-1.25 to 100-FA-0.85b) suggesting the dominance of fly ash-driven reactions in these samples due to the low 

GGBS content. The reaction products in sample 05-GGBS-1.25 consisted mainly of Si, Al and Na whereas the 

content of Ca was relatively low in the matrix. As the content of GGBS increased in the sample, the amount of 

Ca increased and the amount of Si and Al appeared to decrease in the matrix. Furthermore, the amount of the main 

elements and their atomic ratios varied depending on the blend. Ca/Si and Si/Al ratios (in samples 05-GGBS-1.25 

to 70-GGBS-0.95) increased with increasing GGBS. The highest Ca/Si ratio was obtained in sample 40-GGBS-

1.25 (Ca/Si = 0.7) which was similar to that of 70-GGBS-0.95 (0.6) and the highest Si/Al ratio was found in 

sample 70-GGBS-0.95 (Si/Al = 3.1). This is because of the higher Si content in the activating solution and explains 

the high compressive strength obtained for mortar samples with the same composition (above 70 MPa). The higher 

strengths are due to the better geopolymerization or highly cross-linked structures of the binding gels [10], which 

lead to more compact and denser matrix and therefore better mechanical properties. 
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Table 7. Average values (%) and the standard deviation in the brackets of the main elements and their atomic 

ratios in the matrix, assessed via EDX analysis. 

Sample label Ca Si Al Ca/Si Si/Al 

05-GGBS-1.25 2.5 (0.7) 13.3 (0.4) 4.8 (0.2) 0.2 (0.0) 2.8 (0.2) 

20-GGBS-1.25 4.3 (1.7) 12.0 (1.0) 5.3 (1.4) 0.4 (0.2) 2.3 (0.4) 

40-GGBS-1.25 6.7 (1.4) 9.9 (1.6) 3.9 (0.4) 0.7 (0.2) 2.5 (0.6)  

70-GGBS-0.95 6.5 (1.9) 10.3 (1.8) 3.3 (0.6) 0.6 (0.1) 3.1 (0.6) 

70-GGBS-∞ 12.5 (4.2) 8.6 (2.5) 3.7 (0.9) 1.5 (0.6) 2.3 (0.3) 

 

The chemical composition of the reaction products of sample 70-GGBS-∞ (i.e., activated with NaOH solution 

only) was different from that of the other blends, especially in the amount of Ca. The amount of Ca in the matrix 

was higher than that of the other samples including 70-GGBS-0.95, which had the same GGBS content. The Ca/Si 

ratio was 1.5, i.e., the highest amongst all investigated blends. This ratio is higher than the typical ratios which 

are reported in the literature in the range of 1.0 to 1.2 for neat alkali-activated slag systems [7, 39, 49]. This high 

Ca/Si ratio is more similar to that found in C-S-H gel in Portland cement systems, which varies from 1.2 to 2.3 

[50]. The reaction in this sample seems to be the hydration of GGBS, leading to the formation of C-A-S-H gel 

that is high in Ca. There is very little contribution from the fly ash as unreacted fly ash particles were easily 

identified in SEM images. The compressive strengths were about 30 MPa regardless of the dosage (M+), 

suggesting that the reaction involves mainly the hydration of GGBS, since there is absence of silicate into the 

activating solution,  

The variation of the chemical composition of the binding gel due to the increasing GGBS content suggests the 

development of different reaction products. In sample 05-GGBS-1.25, the reaction product was mainly alkaline 

aluminosilicate hydrate geopolymer gel (N-A-S-H) with Si/Al ratios of 2.5-2.9 and a low Ca/Si ratio of 0.1-0.3. 

The chemical composition for sample 20-GGBS-1.25 was different from that of 05-GGBS-1.25, as higher Ca/Si 

ratios 0.2 to 0.6 were obtained, indicating more Ca in the gel. This suggests the formation of C-A-S-H type binding 

gel along with the geopolymer gel (N-A-S-H). The existence of C-A-S-H gel in samples with as low as 20% 

GGBS content was confirmed by TGA and XRD analyses discussed earlier. The dominance of the geopolymer 

gel (N-A-S-H) among reaction products with GGBS content less than 25% has also been reported by others [10, 

51]. In samples with high GGBS content such as 40-GGBS-1.25 and 70-GGBS-0.95, the ratios of Ca/Si increased 

significantly compared to samples 05-GGBS-1.25 and 20-GGBS-1.25. The two samples had similar Ca/Si ratios 
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in the range of 0.5 – 1.0 with average values of 0.7 and 0.6 for 40-GGBS-1.25 and 70-GGBS-0.95 respectively. 

These ratios are consistent with the chemical composition of C-A-S-H gel in slag systems and therefore the 

dominant reaction product in the gel was C-A-S-H, possibly coexisting with geopolymer type binding gel N-A-

S-H. These findings are in agreement with previous studies [3, 30, 51, 52]. The evolution of the reaction resulted 

in higher compressive strength and reduced setting time with increasing GGBS content, which can also be 

attributed to the co-existence of the above mentioned binding gels [3]. However, using morphological images and 

EDX chemical analysis of the gels, it was not possible to clearly distinguish the two reaction products as they 

appear to be intermixed at a too small scale to be spotted by EDX analysis [7, 51, 53]. This may suggest the 

formation of a hybrid binding gel (C-N-A-S-H) that improved the mechanical properties of the matrix [7, 51, 54]. 

Pseudo-ternary diagrams of the ratios of Al, Ca and Na normalised by the quantity of Si for neat fly ash samples 

and fly ash /GGBS blends are shown in Figures 13 and 14 respectively. The unreacted/partially reacted fly ash 

particles appeared to have similar composition to that of the precursor material but with lower quantity of calcium. 

This suggests that the calcium was dissolved by the activators. The difference between theoretical and EDX 

measured gel composition was found to be higher for sample 100-FA-1.25 than for the other neat fly ash samples 

(100-FA-0.85 and 100-FA-0.85b). The quantity of Al in the binding gel of sample 100-FA-1.25 also appeared to 

be lower. This can be due to the poor dissolution of Al from the precursor, especially in samples with higher AM 

(i.e., low soluble silicate), which reduced the availability of Al in the gel nucleation [24]. As the activator dosage 

increased (samples 100-FA-0.85 and 100-FA-0.85b), the gel compositions obtained by EDX were closer to the 

calculated values (see Figure 13). This indicates better reactivity and homogeneity of the binding gel. The quantity 

of Al in the gel increased in samples 100-FA-0.85 and 100-FA-0.85b with lower alkali modulus (AM 0.85) 

compared to sample 100-FA-1.25 (AM 1.25). An increase in alkali dosage (M+) from 7.5% (100-FA-1.25) to 

11.5% (100-FA-0.85b) increased the sodium content of the binding gel as can be seen from Figure 13. Low 

calcium N-A-S-H binding gel was identified as the main reaction product in these formulations. 
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Figure 13. Pseudo-ternary diagram showing Al/Si, Na/Si and Ca/Si molar ratios for neat fly ash samples. 

 

In the case of fly ash/GGBS blends (see Figure 14), the unreacted GGBS particles analysed with EDX showed 

similar chemical composition to those of the raw GGBS. However, the chemistry of partially reacted GGBS 

particles was similar to the composition of the binding gel, indicating that those particles had reacted to some 

degree that enabled the formation of the gel (C-A-S-H). Sample 05-GGBS-1.25 had a gel chemical composition 

similar to that of neat fly ash samples. The increase of GGBS content in the system led to the formation of binding 

gels with different calcium content, see Figure 14.  

Two main categories of the gel can be detected: (a) a low calcium gel with similar chemical composition as that 

of neat fly ash systems, and (b) a binding gel with higher calcium content. It was also observed that both low 

calcium and high calcium gels were present in the same samples (20-GGBS-1.25 and 70-GGBS-0.95), which may 

confirm the coexistence of both N-A-S-H and C-A-S-H from the activation of fly ash and GGBS respectively. 

Sodium silicate crystals were also detected mainly in sample 05-GGBS-1.25. This can be due to the poor reactivity 

of this sample at room temperature due to its high fly ash content (95%), which led to some amount of activator 

chemicals to crystalize. 
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     Figure 14. Pseudo-ternary diagram showing Al/Si, Na/Si and Ca/Si molar ratios for fly ash/GGBS samples. 

 

The compressive strength was generally found to increase with the increase in Ca/Si ratio, which is in agreement 

with the increase in GGBS content in the sample. The highest compressive strength was obtained at Ca/Si of 0.6 

in the sample with 70% GGBS. This increase in compressive strength with the increase in Ca/Si ratio is 

presumably due to evolution of C-A-S-H binding gel with increasing GGBS content in the blend, leading to a 

matrix with improved mechanical properties. Similarly, Si/Al ratios generally increase with increasing GGBS 

content. This can be due to the more complete dissolution of Si and Al from the precursors, leading to a higher 

degree of crosslinking in the structure of the reaction products comprising of N-A-S-H and C-A-S-H binding gels 

[55]. However, sample 05-GGBS-1.25 showed lower compressive strength despite Si/Al ratio higher than that of 

20-GGBS-1.25 and 40-GGBS-1.25. The lower compressive strength obtained for 05-GGBS-1.25 can be attributed 

to the slow reactivity of fly ash rich samples at room temperature as previously discussed. The slower reaction 

rate at room temperature may have hindered the dissolution of Al from fly ash leading to higher Si/Al ratio. This 

together with the absence of C-A-S-H binding gel led to less compact matrix and therefore lower strength.    

 

3.5. Significance of the results and key outcomes 

The investigation described in this paper allowed to link the mechanical behaviour of alkali activated mortars with 

the microstructure of the binding matrix, and contributed towards the understanding of a number of key aspects 

related to activation of fly ash and fly ash/GGBS based binders. The mechanisms governing the reaction of low-
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Ca and high-Ca binders respectively are different, as it has been reported in the literature, but the behaviour of 

blended systems is still under investigation [56, 57]. The research provided insights into the following: 

 Silicate content in the activating solution: compressive strength results suggested that the silicate content in 

the activating solution has a direct influence on the strength development of neat fly ash samples. Ca-rich 

blend showed a lower dependence on the silicate contents, allowing a reduction in the activator dosage for 

developing satisfactory strengths. However, it was observed that the presence of silicates influenced the type 

of reaction. Hydration of Ca species only (leading to very similar values of compressive strength irrespective 

of the alkali dosage) was observed when no silicates were added, whilst production of C-A-S-H gel was 

found with the use of silicates in the activating solution. This finding was confirmed by results from XRD, 

FTIR and TGA analyses as well as by SEM images. The absence of silicates in Ca-rich blends proved to be 

responsible for the formation of hydrotalcite, as shown by XRD, TGA, and FTIR analyses and discussed by 

others [58]. A recent publication pointed out the possible role of hydrotalcite in the immobilisation of 

chlorides [59], although SEM images obtained in this investigation suggested that neat NaOH activation for 

Ca-rich system resulted in poorly compacted matrix, with clear repercussions in terms of resistance to 

degradation attacks. 

 Effect of calcium content in the blend: blended systems appeared to be mainly influenced by the presence of 

Ca-rich precursor, which allowed the hardening of samples at room temperature (i.e. 20 °C). Microstructural 

analysis indicated that the presence of GGBS resulted in the production of C-A-S-H gel in the matrix, even 

with as low as 20% GGBS content, and this was confirmed by both XRD and EDX analysis. The use of slag 

in the blend was found to be linearly related to the increase of compressive strength, whereas recent studies 

found that a slag content higher than 50% led to non-significant strength contribution [60]. The chemical 

composition of pastes obtained through EDX and their representation in pseudo-ternary plots allowed to 

identify the nature of the binding gel, confirming and expanding available literature on the topics of phase 

diagrams and co-existence of C-A-S-H and N-A-S-H gels [10, 17, 61]. The mass loss up to 600 °C, used as 

proxy for the hydration products, proved to be related to the compressive strength of mortars in Ca-rich 

samples.   

 Effect of curing temperature on the reaction: the effect of the curing temperature on the reaction was 

investigated through isothermal calorimetry. The analysis confirmed and expanded results from recent 

publications [62, 63]. The study demonstrated that the temperature has a clear effect on the rate of dissolution 

of Si and Al in neat fly ash samples. The cumulative heat release increased by a factor of 4 by increasing the 
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curing temperature from 20 °C to 70 °C, in line with what was observed by Sun and Vollpracht [62] on neat 

precursors heated up to 40 °C. The catalyst effect of temperature was also observed with Ca-rich blends, i.e. 

the final cumulative heat release did not vary under different temperatures (20 °C and 70 °C), but the reaction 

was concluded in about 1/3 of the time when increasing the curing temperature  from 20 °C to 70 °C. 

Isothermal calorimetry results confirmed the findings of Singh and Subramaniam [63] on compressive 

strength and EDX data of alkali activated fly ash.  

 

4. Conclusions 

This study focused on the effects, such as mechanical and microstructural properties, of fly ash replacement with 

GGBS in alkali activated mortars and pastes. The conclusions from the work reported in this paper are: 

 The partial substitution of fly ash with GGBS reduced the activator dosages required for obtaining high 

compressive strength. This has cost and environmental benefits. Whilst neat fly ash mortar mixes (cured 

at 70 °C) needed alkali modulus (AM) of 0.85 and alkali dosage (M+) of 11.5% for obtaining a 7-day 

compressive strength in excess of 70 MPa, high GGBS content mixes gave similar strength with AM of 

1.25 and M+ of 7.5%. The addition of GGBS in the mix also eliminated the need for oven curing. 

 Two reaction mechanisms were identified from IC analysis. With no or low GGBS content, the 

exothermic reaction was mainly due to the dissolution of aluminosilicate precursor from fly ash. This 

reaction took place very early but required external energy (i.e., heating) for its full development. A more 

exothermic reaction was observed with higher GGBS contents. This was due to the hydration of calcium 

silicate species and formation of C-A-S-H gel. An increase in the curing temperature for high GGBS 

content mixes resulted in a faster reaction, whilst the volume of C-A-S-H gel produced did not change 

significantly. 

 The increase of GGBS content in the blend allowed the formation of C-A-S-H gel which improved the 

matrix and thus the mechanical properties of the mortars. XRD, FTIR and TGA results confirmed the 

presence of C-A-S-H-like gel as a reaction product. A correlation between the amount of such gel in the 

matrix and the mortar compressive strength was found. 

 The main reaction product in neat fly ash samples was an amorphous aluminosilicate hydrate gel with 

sodium in the structure (N-A-S-H). More compact and dense matrix was observed as the content of 

GGBS increased in the blend. C-A-S-H was the main binding gel found in formulations with 40% GGBS 

content or higher. XRD and EDX chemical analysis suggested the formation of C-A-S-H gel in the 
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sample with as low as 20% GGBS content. Compressive strength was found to increase with the increase 

in Ca/Si and Si/Al ratios suggesting an increase in the degree of cross-linking of the reaction products 

and therefore more homogenous and compact matrix. 

 Alkali activation of GGBS-rich mix with neat sodium hydroxide solution (i.e., no silicate in the 

activation) resulted in morphology, gel chemistry and reaction products different from the mix activated 

with a mixture of sodium hydroxide and sodium silicate solution at a fixed alkali dosage M+ of 7.5%. 

Micrographs showed a heterogeneous matrix with larger extent of unreacted fly ash and GGBS particles 

indicating poor reactivity. Hydrotalcite was also identified in this sample through TGA and XRD 

techniques. 
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Appendix A 

Table A1. Mix proportions for mortar production batch. Asterisk denotes samples prepared with NaOH solution 

at 40% conc. 

Label 
Fly ash 

(g) 

GGBS 

(g) 

NaOH solution @ 

30% conc. (g) 

Sodium silicate 

solution (g) 

Water 

(g) 

Sand 

(g) 

FA-7.5-inf 500 0 161 0 86 1375 

FA-7.5-30 500 0 159 5 85 1375 

FA-7.5-5 500 0 145 29 82 1375 

FA-7.5-1.5 500 0 107 98 73 1375 

FA-7.5-1.35 500 0 101 109 71 1375 

FA-7.5-1.25 500 0 97 118 70 1375 

FA-7.5-1.15 500 0 91 128 68 1375 

FA-7.5-1.05 500 0 84 140 67 1375 

FA-7.5-0.95 500 0 76 155 65 1375 

FA-7.5-0.85 500 0 66 173 62 1375 

FA-7.5-0.75 500 0 53 196 59 1375 

FA-7.5-0.50 500 0 0 294 45 1375 

FA-8.5-inf 500 0 183 0 73 1375 

FA-8.5-30 500 0 180 6 72 1375 

FA-8.5-5 500 0 164 33 68 1375 

FA-8.5-1.5 500 0 122 111 58 1375 

FA-8.5-1.35 500 0 115 123 56 1375 

FA-8.5-1.25 500 0 109 133 54 1375 

FA-8.5-1.15 500 0 103 145 53 1375 

FA-8.5-1.05 500 0 95 159 51 1375 

FA-8.5-0.95 500 0 86 175 49 1375 

FA-8.5-0.85 500 0 75 196 46 1375 

FA-8.5-0.75 500 0 60 222 42 1375 

FA-8.5-0.50 500 0 0 333 27 1375 

FA-9.5-inf 500 0 204 0 60 1375 

FA-9.5-30 500 0 201 6 59 1375 

FA-9.5-5 500 0 184 37 54 1375 

FA-9.5-1.25 500 0 122 149 39 1375 

FA-9.5-1.15 500 0 115 162 37 1375 

FA-9.5-1.05 500 0 107 177 35 1375 

FA-9.5-0.95 500 0 96 196 33 1375 

FA-9.5-0.85 500 0 84 219 29 1375 

FA-9.5-0.75 500 0 68 248 25 1375 

FA-9.5-0.50 500 0 0 373 8 1375 

FA-10.5-inf 500 0 226 0 46 1375 

FA-10.5-30 500 0 222 7 45 1375 

FA-10.5-5 500 0 203 41 41 1375 

FA-10.5-1.05 500 0 118 196 19 1375 

FA-10.5-0.95 500 0 106 217 17 1375 



 

39 

 

FA-10.5-0.85 500 0 92 242 13 1375 

FA-10.5-0.75 500 0 75 275 9 1375 

FA-10.5-0.50 500 0 0 412 0 1375 

FA-11.5-1.05 500 0 129 215 4 1375 

FA-11.5-0.95 500 0 117 237 1 1375 

FA-11.5-0.85 500 0 101 265 0 1375 

FA-11.5-0.75 500 0 82 301 0 1375 

FA-12.5-1.05* 500 0 105 233 23 1375 

FA-12.5-0.95* 500 0 95 258 16 1375 

FA-12.5-0.85* 500 0 83 288 8 1375 

FA-12.5-0.75* 500 0 67 327 0 1375 

FA-13.5-0.95* 500 0 103 279 3 1375 

FA-13.5-0.85* 500 0 89 311 0 1375 

FA-13.5-0.75* 500 0 72 353 0 1375 
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Table A2. Mix proportions for 1 litre of mortar. Asterisk denotes samples prepared with NaOH solution at 40% 

conc. 

Label 
Fly ash 

(g) 

GGBS 

(g) 

NaOH solution @ 

30% conc. (g) 

Sodium silicate 

solution (g) 

Water 

(g) 

Sand 

(g) 

FA-7.5-inf 541 0 174 0 93 1486 

FA-7.5-30 540 0 171 5 92 1485 

FA-7.5-5 538 0 156 32 88 1479 

FA-7.5-1.5 531 0 114 104 77 1461 

FA-7.5-1.35 530 0 107 116 75 1458 

FA-7.5-1.25 530 0 102 125 74 1456 

FA-7.5-1.15 529 0 96 135 72 1454 

FA-7.5-1.05 528 0 89 148 70 1451 

FA-7.5-0.95 526 0 80 163 68 1447 

FA-7.5-0.85 525 0 69 182 65 1442 

FA-7.5-0.75 522 0 56 205 62 1437 

FA-7.5-0.50 514 0 0 302 46 1413 

FA-8.5-inf 539 0 197 0 78 1482 

FA-8.5-30 538 0 193 6 78 1480 

FA-8.5-5 536 0 176 36 73 1473 

FA-8.5-1.5 528 0 129 117 61 1453 

FA-8.5-1.35 527 0 121 130 59 1450 

FA-8.5-1.25 526 0 115 140 57 1448 

FA-8.5-1.15 525 0 108 152 56 1445 

FA-8.5-1.05 524 0 100 166 53 1442 

FA-8.5-0.95 523 0 90 183 51 1437 

FA-8.5-0.85 521 0 78 204 48 1432 

FA-8.5-0.75 519 0 63 230 44 1426 

FA-8.5-0.50 509 0 0 339 27 1400 

FA-9.5-inf 537 0 219 0 64 1477 

FA-9.5-30 537 0 216 7 63 1475 

FA-9.5-5 534 0 196 40 58 1467 

FA-9.5-1.25 523 0 128 156 41 1439 

FA-9.5-1.15 522 0 120 169 39 1436 

FA-9.5-1.05 521 0 111 185 37 1432 

FA-9.5-0.95 519 0 100 204 34 1428 

FA-9.5-0.85 517 0 87 227 30 1422 

FA-9.5-0.75 515 0 70 256 26 1415 

FA-9.5-0.50 504 0 0 376 8 1386 

FA-10.5-inf 535 0 242 0 50 1472 

FA-10.5-30 535 0 237 7 49 1471 

FA-10.5-5 532 0 216 44 43 1462 

FA-10.5-1.05 518 0 122 203 20 1424 

FA-10.5-0.95 516 0 110 224 17 1419 

FA-10.5-0.85 514 0 95 249 13 1413 

FA-10.5-0.75 511 0 76 280 9 1405 
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FA-10.5-0.50 494 0 0 407 0 1359 

FA-11.5-1.05 514 0 133 221 4 1415 

FA-11.5-0.95 513 0 120 243 1 1409 

FA-11.5-0.85 508 0 103 270 0 1398 

FA-11.5-0.75 503 0 82 302 0 1383 

FA-12.5-1.05* 507 0 107 237 23 1394 

FA-12.5-0.95* 505 0 96 261 16 1389 

FA-12.5-0.85* 503 0 83 290 8 1384 

FA-12.5-0.75* 499 0 67 326 0 1373 

FA-13.5-0.95* 502 0 103 280 3 1380 

FA-13.5-0.85* 496 0 89 309 0 1365 

FA-13.5-0.75* 488 0 70 345 0 1343 
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Table A3. Mix proportions for mortar production batch. 

Label Fly ash (g) GGBS (g) 
NaOH solution @ 

30% conc. (g) 

Sodium silicate 

solution (g) 
Water (g) Sand (g) 

FA-G-4.5-inf 150 350 97 0 141 1375 

FA-G-4.5-1.25 150 350 58 71 132 1375 

FA-G-4.5-1.15 150 350 55 77 131 1375 

FA-G-4.5-0.95 150 350 46 93 129 1375 

FA-G-4.5-0.75 150 350 32 118 126 1375 

FA-G-6.0-inf 150 350 129 0 122 1375 

FA-G-6.0-1.25 150 350 77 94 109 1375 

FA-G-6.0-1.15 150 350 73 102 108 1375 

FA-G-6.0-0.95 150 350 61 124 106 1375 

FA-G-6.0-0.75 150 350 43 157 101 1375 

FA-G-7.5-inf 150 350 161 0 102 1375 

FA-G-7.5-1.25 150 350 97 118 87 1375 

FA-G-7.5-1.15 150 350 0 128 149 1375 

FA-G-7.5-0.95 150 350 76 155 82 1375 

FA-G-7.5-0.75 150 350 53 196 77 1375 

FA-G-8.5-inf 150 350 183 0 89 1375 

FA-G-8.5-1.25 150 350 109 133 72 1375 

FA-G-8.5-1.15 150 350 103 145 70 1375 

FA-G-8.5-0.95 150 350 86 175 66 1375 

FA-G-8.5-0.75 150 350 60 222 60 1375 

FA-G-10.5-inf 150 350 226 0 63 1375 

FA-G-10.5-1.25 150 350 135 165 42 1375 

FA-G-10.5-1.15 150 350 0 179 129 1375 

FA-G-10.5-0.95 150 350 106 217 35 1375 

FA-G-10.5-0.75 150 350 75 275 27 1375 
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Table A4. Mix proportions for 1 litre of mortar. 

Label Fly ash (g) GGBS (g) 
NaOH solution @ 

30% conc. (g) 

Sodium silicate 

solution (g) 
Water (g) Sand (g) 

FA-G-4.5-inf 165 386 107 0 156 1516 

FA-G-4.5-1.25 163 381 63 77 144 1496 

FA-G-4.5-1.15 163 380 59 83 143 1494 

FA-G-4.5-0.95 163 379 49 101 140 1490 

FA-G-4.5-0.75 162 378 35 127 136 1483 

FA-G-6.0-inf 165 384 142 0 133 1508 

FA-G-6.0-1.25 162 377 83 101 118 1482 

FA-G-6.0-1.15 161 377 78 110 117 1480 

FA-G-6.0-0.95 161 375 65 133 113 1474 

FA-G-6.0-0.75 160 373 45 167 108 1465 

FA-G-7.5-inf 164 382 176 0 111 1500 

FA-G-7.5-1.25 160 374 103 126 93 1468 

FA-G-7.5-1.15 161 375 0 137 160 1473 

FA-G-7.5-0.95 159 371 81 164 87 1458 

FA-G-7.5-0.75 158 368 56 206 81 1448 

FA-G-8.5-inf 163 381 199 0 97 1495 

FA-G-8.5-1.25 159 371 116 142 76 1459 

FA-G-8.5-1.15 159 371 109 153 74 1456 

FA-G-8.5-0.95 158 369 91 185 70 1448 

FA-G-8.5-0.75 157 366 63 232 63 1436 

FA-G-10.5-inf 162 378 244 0 68 1485 

FA-G-10.5-1.25 157 367 142 173 44 1442 

FA-G-10.5-1.15 158 369 0 189 136 1448 

FA-G-10.5-0.95 156 364 111 225 36 1428 

FA-G-10.5-0.75 154 360 77 282 28 1414 

 

 


