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ABSTRACT
There are situations where the need for optimisation with a global
precision tolerance arises — for example, due to measurement,
numerical or evaluation errors in the objective function. In such
situations, a global tolerance ϵ > 0 can be predefined such that
two objective values are declared equal if the absolute difference
between them is less than or equal to ϵ . This paper presents an
overview of fitness landscape analysis under such conditions. We
describe the formulation of common landscape categories in the
presence of a global precision tolerance. We then proceed by dis-
cussing issues that can emerge as a result of using tolerance, such
as the increase in the neutrality of the fitness landscape. To this
end, we propose two methods to exhaustively explore plateaus in
such application domains — one of which is point-based and the
other of which is set-based.
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1 INTRODUCTION
In many real world problems, the function to optimise often suffers
from numerical errors due to, for example, truncation error, round-
off error, or some other random variation. One such example is
when the objective function is calculated from numerical approxi-
mations to the solutions of a computational model (e.g. a differential
equation system) [1, 2, 4]. Another example is approximation error
in surrogate optimisation, where obtaining high accuracy might be
computationally expensive. In such situations, optimisation may
be performed under a predefined global precision tolerance ϵ > 0
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such that two objective values, f (x) and f (y), are declared equal
⇐⇒ | f (x) − f (y)| ≤ ϵ . (Note that the tolerance studied in this
paper is different to the tolerance or error threshold in [9], but is
the same as that considered in [11].)

Landscape analysis offers a way of understanding optimisation
problems and giving insights into the design of appropriate search
heuristics. However, the presence of numerical error in the objec-
tive function can result in landscape features, such as superfluous
local optima, that are merely an artefact of this numerical error.
In order to avoid such misleading features being identified, the
analysis of the landscape should be done in such a way as to tol-
erate this precision error. However, although using tolerance has
the beneficial effect of smoothing untrue ruggedness of the land-
scape, it has the concomitant effect of introducing or increasing
the size of neutral areas [11]. It is therefore of particular interest to
characterise neutral areas in such landscapes. To this end, here we
propose two alternative methods to exhaustively explore plateaus,
and discuss the issues and limitation of each of them.

Understanding neutrality in the search space and its effect on
the performance of search heuristics has attracted considerable
attention over the past years [5, 8, 10, 12]. In [10], neutral walks
were used to gain information about the neutral areas, where in
each step a neutral neighbour is selected to increase the distance
from the starting point. In [8], a neutrality-based iterated local
search that allows neutral walks over plateaus was found to be
able to find improving solutions compared with a classical iterated
local search, contradicting the general belief that neutrality usually
hinders local search algorithms. However, these studies relied on
an error-free (ϵ = 0) assumption on the observed fitness value. In
reality, such optimisation problems are a special case — arguably,
most practical optimisation problems are subject to at least some
degree of measurement error, due to e.g. rounding error, sensor
measurement error, estimation error, etc.Note that here we limit our
considerations to a bounded error on the observation, as opposed
to e.g. where experienced error is from a Gaussian distribution,
where the error is effectively unbounded. There are other forms
of uncertainty leading to robust optimisation problems, where for
instance the uncertainty may be derived from tolerances in the
realisation of a design (e.g. due to engineering precision), or through
scenario sets where a design’s performance is characterised over a
set of fitness functions (see [7] for a discussion on this topic).

The paper proceeds as follows. In Section 2 we introduce our
notation, the landscape categories commonly used for describing
points with respect to local search, and introduce their analogous
versions where there is an ϵ-tolerance on fitness values. In Section
3 we detail a number of algorithms to characterise neutral regions
in a search landscape, in the zero error case, and the ϵ > 0 case.
Concluding remarks and future work are presented in Section 4.
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2 NOTATION AND DEFINITIONS
Formally, a fitness landscape is a triple (X,N , f ), whereX is the set
of candidate solutions, N : X → 2X is a neighbourhood operator
specifying the connectivity between candidate solutions and f is
the fitness or objective function f : X → R — which is considered
here, without loss of generality, to be minimised.

For a given point x ∈ X, according to the topology and fitness
values of its direct neighbourhood, it can belong to one of seven
different search position types [6]:
• Strict local minimum (SLMIN): ∀y ∈ N (x), f (y) > f (x).
• Non-strict local minimum (NSLMIN): ∀y ∈ N (x), f (y) ≥

f (x), and ∃ u, z ∈ N (x), such that f (u) = f (x) ∧ (f (z) >
f (x)).
• Interior plateau (IPLAT): ∀ y ∈ N (x), f (y) = f (x).
• Ledge (LEDGE):∃ u, y, z ∈ N (x), such that f (u) = f (x), f (y) >

f (x), and f (z) < f (x).
• Slope (SLOPE): ∀y ∈ N (x), f (y) , f (x), and ∃ u, z ∈ N (x),
such that f (u) < f (x), and f (z) > f (x).
• Non-strict local maximum (NSLMAX): ∀y ∈ N (x), f (y) ≤

f (x), and ∃ u, z ∈ N (x), such that f (u) = f (x) ∧ (f (z) <
f (x)).
• Strict local maximum (SLMAX): ∀y ∈ N (x), f (y) < f (x).

Four of these types, namelyNSLMIN, IPLAT, LEDGE andNSLMAX,
have neutral neighbours. All of an IPLAT’s neighbours are neu-
tral, but the number of neutral neighbours varies between 1 and
|N (x)| − 1 for NSLMIN and NSLMAX, and between 1 and |N (x)| − 2
for LEDGE. Following [3] we make a distinction between two dif-
ferent types of plateaus — closed and open:

Definition 2.1. Closed Plateau: A closed plateau is a set of con-
nected non-strict localminima, with orwithout interior plateau points.

Definition 2.2. Open Plateau: An open plateau is a set of con-
nected non-strict local minima, with or without interior plateau
points and with at least one exit.

Definition 2.3. Exit: An exit is a neighbour of one or more con-
figurations in the plateau, which shares the same objective value of
the plateau but has at least one improving move. An exit can be a
non-strict local maximum (minimum when maximising) or a ledge.

Distinguishing between these two types of plateau can be impor-
tant in guiding the design of search algorithms. Indeed, in [8] the
proposed local search method was able to exploit open plateaus to
find better solutions. Note that exits are referred to in other studies
as portals, see e.g. [8, 11].

In the zero error case, only changing the neighbourhood function
has the effect of inducing different landscapes. However, in the
case where f has some measurement error ϵ , changing ϵ has the
effect of inducing different landscapes, even with f fixed. Therefore,
the landscape under global tolerance is effectively a quadruple
(X,N , f , ϵ). Using a global tolerance allows neutral neighbours to
differ by up to and including the value of ϵ . Given this, we define
here the analogous search position types under a global tolerance
ϵ as follows (Note that the following definitions are equivalent to
the ones introduced earlier when ϵ = 0):
• ϵ-SLMIN: ∀y ∈ N (x), f (y) − f (x) > ϵ .

Algorithm 1 Exhaustive Plateau Exploration
1: start with x, where x is a NSLMIN or IPLAT
2: c ← f (x) ▷ Plateau’s objective value
3: U ← {x} ▷ Set of unvisited plateau configurations
4: PO ← ∅ ▷ Set of visited non-strict optima
5: PI ← ∅ ▷ Set of visited interior plateau points
6: PE ← ∅ ▷ Set of visited exit configurations
7: Be ← ∅ ▷ Set of entry points to the plateau
8: Bd ← ∅ ▷ Set of departure points from the plateau
9: repeat
10: Choose y ∈ U
11: U ← U /{y} ▷ Remove from unvisited
12: Exit← false
13: Entry← false
14: for all z ∈ N (y) | z < PE ∪ PO ∪ PI ∪ Bd ∪ Be do
15: if f (z) = c then
16: U ← U ∪ {z} ▷ z is on the plateau
17: else if f (z) < c then
18: Bd ← Bd ∪ {z} ▷ z is a departure point
19: Exit← true
20: else
21: Be ← Be ∪ {z} ▷ z is an entry point
22: Entry← true
23: end if
24: end for
25: if Exit then
26: PE ← PE ∪ {y}
27: else if Entry then
28: PO ← PO ∪ {y}
29: else
30: PI ← PI ∪ {y}
31: end if
32: untilU = ∅
33: return (PO , PI , PE , Be , Bd )

• ϵ-NSLMIN: ∀y ∈ N (x), | f (y) − f (x)| ≤ ϵ or f (y) − f (x) > ϵ ,
and ∃ u, z ∈ N (x), such that | f (u)− f (x)| ≤ ϵ∧(f (z)− f (x) >
ϵ).
• ϵ-IPLAT: ∀ y ∈ N (x), | f (y) − f (x)| ≤ ϵ .
• ϵ-LEDGE:∃ u, y, z ∈ N (x), such that | f (u)−f (x)| ≤ ϵ, f (y)−

f (x) > ϵ, and f (x) − f (z) > ϵ .
• ϵ-SLOPE: ∀y ∈ N (x), | f (y) − f (x)| > ϵ , and ∃ u, z ∈ N (x),
such that f (x) − f (u) > ϵ and f (z) − f (x) > ϵ .
• ϵ-NSLMAX: ∀y ∈ N (x), | f (y)− f (x)| ≤ ϵ or f (x)− f (y) > ϵ .
∃ u, z ∈ N (x), such that | f (u)− f (x)| ≤ ϵ∧(f (x)− f (z) > ϵ).
• ϵ-SLMAX: ∀y ∈ N (x), f (x) − f (y) > ϵ .

3 CHARACTERISING PLATEAUS
Wenow describe three algorithms to characterise plateaus in a given
landscape through exhaustive exploration. We start by describing
an algorithm (listed in Algorithm 1) that explores plateaus when no
tolerance is defined (i.e.when ϵ = 0). The algorithm starts exploring
a plateau when a NSLMIN or an IPLAT configuration is reached and
keeps track of the points residing on the plateau in three different
sets: non-strict optima (PO ), IPLAT points (PI ) and exits (PE ). The



Landscape Analysis Under Measurement Error GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

Algorithm 2 Point-Based Exhaustive ϵ-Plateau Exploration
1: start with x , where x is a ϵ-NSLMIN or ϵ-IPLAT
2: U ← {x} ▷ Set of unvisited plateau configurations
3: PO ← ∅ ▷ Set of visited non-strict optima
4: PI ← ∅ ▷ Set of visited interior plateau points
5: PE ← ∅ ▷ Set of visited exits configurations
6: Be ← ∅ ▷ Set of entry points to the plateau
7: Bd ← ∅ ▷ Set of departure points from the plateau
8: repeat
9: Choose y ∈ U
10: U ← U /{y} ▷ Remove from unvisited
11: Exit← false
12: Entry← false
13: for all z ∈ N (y) | z < PE ∪ PO ∪ PI ∪ Bd ∪ Be do
14: if | f (z) − f (y)| ≤ ϵ then
15: U ← U ∪ {z} ▷ z is on the plateau
16: else if f (z) < f (y) then
17: Bd ← Bd ∪ {z} ▷ z is a departure point
18: Exit← true
19: else
20: Be ← Be ∪ {z} ▷ z is an entry point
21: Entry← true
22: end if
23: end for
24: if Exit then
25: PE ← PE ∪ {y}
26: else if Entry then
27: PO ← PO ∪ {y}
28: else
29: PI ← PI ∪ {y}
30: end if
31: untilU = ∅
32: return (PO , PI , PE , Be , Bd )

algorithm also keeps track of the boundary points that lead to the
plateau Be or allow a departure from the plateau Bd . Note that entry
points (Be ) may lead to the plateau under first-improvement search
but not necessarily under best-improvement local search. The sizes
of Bd and PE relative to the plateau size give an indication of how
easy it is to escape the plateau. The sizes of PO and PI , alongside
the size of Be , give an indication of how likely the plateau is to be
found.

When a tolerance is used, exploring a plateau becomes more
complicated, as now the acceptance criterion for whether a con-
figuration belongs to a plateau or not is dependent on the relative
difference between it and the points in the plateau. A straightfor-
ward approach, that can be viewed as mimicking the behaviour of
local search algorithm with plateau walks, is to consider a point-
based acceptance criterion, as detailed in Algorithm 2. The problem
with this approach is (a) the plateau returned by the algorithm is
dependent on the entry point and the order in which the neighbours
of a given point are explored, and (b) the difference between the
objective values of configurations in the same plateau can exceed
the predefined tolerance.

Algorithm 3 Set-Based Exhaustive ϵ-Plateau Exploration
1: start with x , where x is a ϵ-NSLMIN or ϵ-IPLAT
2: U ← {x} ▷ Set of unvisited plateau configurations
3: P ← ∅ ▷ Set of visited plateau configurations
4: Be ← ∅ ▷ Set of entry points to the plateau
5: Bd ← ∅ ▷ Set of departure points from the plateau
6: repeat
7: Choose y ∈ U
8: U ← U /{y} ▷ Remove from unvisited
9: P ← P ∪ {y}
10: for all z ∈ N (y) | z < P ∪ Bd ∪ Be do
11: if ∃v ∈ P ∪U : | f (v) − f (z)| ≤ ϵ then
12: U ← U ∪ {z} ▷ z is on the plateau
13: else if ∃v ∈ P ∪U : f (v) − f (z) > ϵ then
14: Bd ← Bd ∪ {z} ▷ z is a departure point
15: else ∃v ∈ P ∪U : f (z) − f (v) > ϵ
16: Be ← Be ∪ {z} ▷ z is an entry point
17: end if
18: end for
19: U ← U ∪ {x | x ∈ Bd ∧ ∃(y ∈ U ∪ P) : | f (x) − f (y)| ≤ ϵ}
20: P ← {x | x ∈ P ∧ ∄(y ∈ U ∪ P) : f (x) − f (y) > ϵ}
21: U ← {x | x ∈ U ∧ ∄(y ∈ U ∪ P) : f (x) − f (y) > ϵ}
22: Bd ← {x | x ∈ Bd ∧ ∃(y ∈ U ∪ P) : f (y) − f (x) > ϵ}
23: Be ← {x | x ∈ Be ∧ ∃(y ∈ U ∪ P)f (x) − f (y) > ϵ}
24: untilU = ∅
25: return (P , Be , Bd )

To address the latter issue, we propose exploring the plateau
in a set-based fashion. This strategy is detailed in Algorithm 3,
where the acceptance criterion is now dependent on the relative
difference between the new point and the set of points visited so
far (the archive). Since the entire history is considered in this case,
it is more difficult to keep track of the different types of point that
comprise the plateau, i.e. non-strict optima, ϵ-IPLAT points and
exits, as this would require keeping track of the neighbours of each
configuration, and updating the sets PO , PI and PE accordingly. For
simplicity, we therefore keep track of all the points in the plateau
in a single set, which we refer to as P . We note that this set-based
approach is still dependent on the starting point and the order in
which the neighbours of a given point are explored. Furthermore, as
this approach involves steps to remove configurations from plateaus
that are not ϵ apart, it may return a disjoint set. That is, one where
it is not possible to reach, via a walk using neighbourhood steps,
all members of the returned set from an arbitrary set member.

4 CONCLUSIONS
In this paper, we have introduced a strategy for performing land-
scape analysis under a global precision tolerance ϵ > 0 . We for-
mally described the analogous formulation of common landscape
categories under such a tolerance. We then focused on characteris-
ing the neutral areas of the resulting landscapes, since the use of a
global precision tolerance has the effect of increasing the size and/or
number of these areas. Next, we presented a number of algorithms
to characterise neutral regions in fitness landscapes, in both the
zero error case, and the ϵ > 0 case. For the ϵ > 0 case, we proposed
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two algorithms to characterise plateaus: one point-based and the
other set-based. An issue we found when exploring neutral areas
under ϵ-tolerance is the dependence on the starting point of the
plateau exploration, which therefore results in a stochastic view of
the landscape. As future work, we intend to perform a comparative
study of the two algorithms to characterise plateaus for combinato-
rial and (discretised) continuous problems under different levels of
global precision tolerance.

The proposed algorithms explore plateaus exhaustively; however,
exhaustive methods quickly become intractable as the problem size
increases. We will therefore also extend our methods to sample the
neutral areas with some confidence bounds on the size and number
of sampled neutral areas.
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