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ABSTRACT 

Surface water flooding causes significant damage, disruption and loss of life in 

cities, both in the UK and globally. These impacts have historically been managed 

through application of conventional urban drainage systems designed to meet 

specified design standards. Conventional strategies have performed well in the 

past, but are becoming increasingly unfit for purpose due to intensifying hazards 

caused by several emerging challenges, including climate change, urban growth 

and aging drainage infrastructure. 

In response, an extensive range of alternative novel interventions has been 

developed. These have been successfully applied across many case studies and 

their performance to meet design standards on specific sites is now well 

understood. However, application is still limited and challenges exist regarding 

how to maximise performance at the urban catchment scale and incorporate 

resilience to extreme rainfall events within design. 

This thesis addresses these challenges through evaluating intervention 

performance using a rapid scenario screening framework. This framework 

delivers insight into the complex permutations of intervention strategies at a 

catchment scale through evaluating alternatives, scales, spatial interactions and 

responses to a range of rainfall events. The study achieves novelty through 

developing a new modelling methodology which applies cell parameterisation to 

represent urban drainage systems and interventions using an existing cellular 

automata model. The framework is applied at a high level to screen intervention 

performance using easily accessible data and simplified intervention strategies, 

it is envisaged that this style of analysis is appropriate for initial catchment 

assessment to evidence and direct future flood management actions. 

The research finds intervention scale, distribution and placement to be important 

factors in determining performance within the context of initial catchment 

screening using theoretical modelling parameters. Although localised 

interventions provide benefit at a smaller scale, catchment based strategies are 

required to substantially reduce estimated annual damage costs across urban 

areas. The most effective intervention was consistently found to be extensive 

application of decentralised rainfall capture, which reduced expected annual 

damage in a UK case study by up to 76%. Intervention distribution and placement 
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are also demonstrated to significantly influence cost effectiveness of strategies, 

with a wide range of ratios predicted, ranging from £0.10 to £26.0 saved per £1 

spent. The most cost effective interventions across the case studies investigated 

were found to be high volume local drainage interventions targeted in areas of 

intense flooding.  

Results demonstrate significant variation in strategy performance depending on 

rainfall intensity and duration. Analysis across events ranging from 2 to 1000 year 

return periods found many interventions which performed well during design 

standard events demonstrate substantial decreases in effectiveness during 

higher magnitude rainfall. Of particular note are interventions with finite storage 

capacities, which exhibit considerable decreases in performance at certain 

threshold levels. The implications of this finding are that designing interventions 

with resilient performance requires simulation of many rainfall scenarios, and that 

interventions with resilient properties, such as green infrastructure, do not 

necessarily achieve resilient performance. 

The research also identifies that rapid screening frameworks contribute an 

adaptable and useful tool for stakeholder engagement, intervention design and 

scenario exploration. Case study application of the framework alongside 

catchment stakeholders in Melbourne, Australia, facilitated an efficient and 

collaborative design screening process which benefitted from enhanced 

communication across a wide range of expertise. The simplified development of 

intervention strategies provided a clear communication tool which supported the 

multi-disciplinary investigations required for urban planning in a complex 

environment. Analysis of many strategy permutations highlighted the advantage 

of multiple smaller intervention strategies accumulating towards catchment scale 

benefits, a possibility which is advantaged through stakeholder communication 

tools, such as this framework. 

Overall, this thesis demonstrates that reliable and resilient surface water 

management can be achieved through decentralised catchment scale 

implementation of interventions, complemented by targeted and cost effective 

high volume measures. Complexity and variation of outcomes across a range of 

scenarios indicates the importance of encapsulating the complex permutations of 

options when evaluating interventions and provides justification for future 

application of rapid scenario screening frameworks. 
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1. INTRODUCTION AND SCOPE 

This thesis develops a rapid scenario screening methodology in response 

to surface water flood hazards exacerbated by climate change, population 

growth and rapid urban development. The central argument of this thesis 

is that utilising rapid analysis to screen many permutations of future 

scenarios can evidence and direct reliable and resilient surface water flood 

management across urban catchments. 

Cities are facing unprecedented shocks from natural hazards (Carter et al., 2009; 

Wong and Brown, 2009; Jabareen, 2013; Norton et al., 2015; Committee on 

Climate Change, 2017; Guerreiro et al., 2018). The convergence of people, 

economic activity and social function makes cities uniquely vulnerable to the 

challenges of a changing climate, growing population and urban expansion 

(Djordjević et al., 2011; Hallegatte et al., 2013). Managing environmental hazards 

is necessary and urgent to prevent major future disruption to social and economic 

functions in cities (Butler et al., 2017), but assessing and implementing 

management strategies at the urban catchment scale is complicated and 

expensive. New approaches and methodologies are required for the effective 

future management of urban environments (Pitt, 2008; Cabinet Office, 2011). In 

particular, recent studies emphasise a need to manage surface water flood 

hazards (EWA, 2009; Douglas et al., 2010; Ellis and Lundy, 2016; Committee on 

Climate Change, 2017; Löwe et al., 2017; Guerreiro et al., 2018; Wing et al., 

2018). 

This introductory chapter presents the motivation for research and outlines the 

structure of the thesis. Motivation is described through detailing the context of 

surface water management, future hazards, legislation and available 

management interventions. The thesis structure is presented through 

establishing aims and objectives for the research and linking these with 

subsequent chapters. The introduction is concluded through justifying the 

originality and contribution to knowledge delivered through this thesis. 

1.1. Motivation for research 

1.1.1. Surface water flood management 

Flood management is an established discipline in UK environmental policy, 

however there is an emerging recognition that a historic focus on fluvial and 
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coastal flooding has left a gap in managing urban surface water (Pitt, 2008). 

Recent reports highlight surface water flooding accounts for 50% of the properties 

at risk in the UK (DEFRA, 2012). Damage from surface water flooding is 

significant, with current annual damages estimated between 0.25 and 0.5 billion 

GBP in the UK alone (DEFRA, 2012; Committee on Climate Change, 2017). This 

is predicted to rise to between 0.5 and 1 billion GBP over the next 50 years 

(Committee on Climate Change, 2012). Some studies estimate current damage 

costs from surface water to already constitute up to 40% of UK annual flood 

losses (DEFRA and Environment Agency, 2007; Douglas et al., 2010).  

Severe damage from recent extreme events has led governments, academics 

and communities to prioritise building resilience to future hazards (DEFRA and 

Environment Agency, 2011; Davoudi et al., 2012; Ofwat, 2012; Viavattene and 

Ellis, 2013; Aldunce et al., 2015; HM Government, 2016; Butler et al., 2017; 

Committee on Climate Change, 2017). Current action is insufficient to manage 

future levels of risk (HM Government, 2016; Committee on Climate Change, 

2017), therefore future research must advance ‘business as usual’ design 

standards beyond a contemporary management approach focused on minimising 

routine disruptions, towards strategies which build resilience to extreme events.  

Surface water flooding is a global issue, with many international government 

reports and academic studies emphasising the need for management strategies 

to be implemented (US EPA, 2002; Chocat et al., 2007; EWA, 2009; Wong and 

Brown, 2009; Barbosa et al., 2012; Burns et al., 2012; Leitão et al., 2013; Fletcher 

et al., 2015; Mguni et al., 2016; Wing et al., 2018). Need for action is evidenced 

through growth of international surface water management agendas such as 

sustainable drainage systems (UK), sponge cities (China), water sensitive urban 

design (Australia) and low impact development (USA), to name a few (Fletcher 

et al., 2015). 

Although many potential management strategies exist, recent government 

reviews (Committee on Climate Change, 2015) indicate current implementation 

of management strategies is insufficient despite clear and established legislation 

presented in the 2010 Flood and Water Management Act  (HM Government, 

2010). Reviews call for enhanced evidence to support and increase 

implementation of new surface water management strategies, however spatial 

disaggregation of complex urban catchments, uncertainty regarding hazard 
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characteristics and the multitude of management options results in a challenge 

evaluating the many permutations of potential scenarios. Delivering cost 

effective, reliable and resilient surface water management requires consideration 

of these interacting factors. A central argument of this thesis is that this challenge 

can be managed through enhanced screening of many scenarios using resource 

efficient frameworks. 

1.1.2. Future hazards 

It has long been understood that climate change, population growth and urban 

expansion are increasing future risk to cities (Djordjević et al., 2011). However, 

recent advances in research highlight that the magnitude of these hazards has 

been systematically underestimated (Wing et al., 2018). Even in low impact 

climate change scenarios, cities are likely to face far greater hazards from 

flooding than previously recognised (Guerreiro et al., 2018). This section will 

present the main challenges driving innovation in surface water flood 

management. 

Climate change 

The causes and effects of climate change are subject to extensive contemporary 

research (IPCC, 2014). It is apparent that the effects of a changing climate have 

manifested themselves globally on human and physical systems and that this 

change needs to be managed (Barker, 2007; Jones et al., 2012; IPCC, 2014; 

Committee on Climate Change, 2017).  

A changing climate is predicted to increase the seasonality and variability of 

weather patterns, influencing the occurrence and characteristics of extreme 

weather events (Djordjević et al., 2011; DEFRA, 2012; Jones et al., 2012; 

Committee on Climate Change, 2017). The most relevant impact to surface water 

management is the increase in intensity and duration of extreme precipitation 

which may result in flooding which exceeds the capacity of existing drainage 

systems and design standards (Westra et al., 2014). This is of particular concern 

where changes to climate could also exacerbate other anthropogenic pressures 

such as urban sprawl and changes in land use (Quevauviller, 2011). A consistent 

prediction is that future extreme rainfall events will increase in frequency and in 

magnitude, thus increasing surface water flooding hazards (EWA, 2009; Wheater 

and Evans, 2009; Guerreiro et al., 2018). Many climate scientists highlight that it 

is extreme events, and not gradual change, which pose the most risk to humans 
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(Meehl et al., 2000). Therefore it is crucial that future hazard management 

accommodates mechanisms to plan for extreme events.  

Building resilience to extreme events is prioritised in recent UK strategic policy, 

including the National Risk Register (Cabinet Office, 2017a), the 2010 Flood and 

Water Management Act (HM Government, 2010), Keeping the Country Running 

(Cabinet Office, 2011), National Flood Resilience Review (HM Government, 

2016), the UK Climate Change Risk Assessment (Committee on Climate Change, 

2017) and the public summary of sector security and resilience plans (Cabinet 

Office, 2017b). This thesis responds to this through enhancing analysis of novel 

engineering solutions to counter the negative effects forecast by UK and 

international climate change predictions.  

Urban and demographic change 

It is well recognised that expansion of urban areas can express negative effects 

on the water cycle (Weng, 2001; Chocat et al., 2007; Marlow et al., 2013; Butler 

et al., 2018). This is attributed to disruption of the natural processes which 

regulate water flow and quality within catchments (White, 2008). Disruption is 

most relevant when urban development has occurred rapidly and drainage 

infrastructure has been in place for long periods of time; typically where systems 

are designed for past climates, land use or out of date environmental standards 

(Johnson and Priest, 2008). 

In relation to surface water flooding, the main impact from urbanisation is that the 

sealing of native soils with impervious surfaces greatly increases the volume of 

runoff during precipitation events (Goonetilleke et al., 2005; Chocat et al., 2007; 

Karvonen, 2011; Barbosa et al., 2012). Compounding challenges caused by 

urbanisation include a reduction in groundwater infiltration rates, increased 

sediment and soil erosion, competition for subterranean utilities space, increased 

sewerage requirements and smaller areas available above ground to store, 

capture or attenuate runoff (Wong and Eadie, 2000; Chocat et al., 2007).  

Urbanisation is recognised as a global problem and is exacerbated by growing 

populations and a trend for an increasing proportion of people to cluster in cities. 

This issue is particularly pronounced in the developing world, where studies 

predict urban populations to double and city areas to triple by 2030 (Djordjević et 

al., 2011; Marlow et al., 2013). In the UK a similar, although less dramatic trend 
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is expected, with evidence of continued migration into cities and a population size 

predicted to rise by 9 million by 2030 (Butler et al., 2014). The effect of an 

increasing population living in urban areas will be compounded by the trend 

towards a greater proportion of single occupancy households. Currently at 5%, 

this is expected to reach 18% of all households by 2030 (Office for National 

Statistics, 2009). 

Complex infrastructure and an abundance of residential, commercial and 

governance structures results in surface water flooding having particularly 

damaging effects within urban environments. In addition to urban areas being 

highly vulnerable, their characteristics, in particular the predominance of 

impermeable surfaces, also means that these spaces can further increase 

surface water flows and exacerbate impacts. The combination of generating large 

quantities of runoff in the same spaces as potential for high density vulnerabilities 

prioritises cities as crucial areas to manage effectively (White, 2008; Wong and 

Brown, 2009; Chen et al., 2016). Future research should develop new 

mechanisms for planning surface water management interventions which take 

into account the complex spatial disaggregation of urban environments. 

Limitations of current surface water management systems 

Within this thesis, the term ‘surface water management system’ refers to the 

physical infrastructure installed to manage hazards, rather than a broader 

societal-infrastructure interaction described in other systems research (Babovic 

et al., 2018a).  

Another emerging threat to urban surface water management is a reliance on 

legacy solutions and aging drainage systems (Ana and Bauwens, 2010). Historic 

application of conventional drainage infrastructure has successfully achieved a 

consistent level of performance relative to design standards (Butler et al., 2014). 

However, it is apparent that new approaches are required to address future 

challenges.  

Conventional drainage infrastructure laid to service urban environments typically 

includes pipe and gully networks, storage tanks, combined sewer outfalls and 

other drainage features (Chocat et al., 2007; Butler et al., 2018). Over time these 

systems deteriorate. Ultimately, this may lead to system failures such as leaks 

and blockages which result in sub optimal operation of networks and an increased 
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risk of flooding and contamination (Fenner, 2000; United States General Services 

Administration, 2011).  

As the majority of urban assets are buried their condition is difficult and expensive 

to monitor, particularly where excavation is required to examine pipes. This is due 

to the long time period (often decades) between laying pipes and finding them 

again resulting in records being lost or damaged. This is a particular problem 

when pipes are laid before digital archiving was available or where regulatory 

changes mean responsibility for maintenance has changed (for example the 

privatisation of water and sewerage). This is often evident in historic cities, for 

example parts of London are still served by the sewerage system designed by 

Bazalgette in the late 1800’s. Cost is further compounded by the price of 

managing other urban services, particularly where required excavation of 

networks may lead to disruption. A common example of this is a road closure to 

access and repair a collapsed or blocked subterranean pipe system. 

Consequently, it is difficult to ascertain the condition and investment 

requirements to manage future surface water flooding through relying on existing 

systems alone. 

Differences in land use, design standards and planning regulations mean that 

urban drainage networks have often been designed to accommodate significantly 

smaller demands than for which they currently operate. Significant proportions of 

networks in major cities have been laid years before detailed current guidance 

and hydraulic modelling software has been available with which to accurately 

quantify the requirements for pipe capacities (Fenner, 2000).  

Pipe networks are considered one of the most capital intensive infrastructures 

(Wirahadikusumah et al., 2001).  Therefore the risk of deterioration and potential 

upgrades is an expensive threat to mitigate, requiring extensive investment and 

analysis (Fenner, 2000; Ana and Bauwens, 2010). In the context of global 

financial crisis and austerity, regulatory bodies are placing additional pressures 

on infrastructure operators to ensure customer costs are as low as possible 

(Ofwat, 2017). By this logic it can be said that the financial pressures of 

investment also act as an emerging threat to surface water management.  
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1.1.3. Legislation and governance 

The previous section outlines that magnitude and likelihood of future flood 

damage is predicted to escalate as a result of increasing precipitation intensity, 

expanding urban areas and a reliance on aging urban drainage infrastructure 

(Barker, 2007; Wheater and Evans, 2009; Ana and Bauwens, 2010; IPCC, 2014). 

UK flood policy has identified this risk and legislated towards identifying and 

managing hazards (Pitt, 2008; DCLG, 2010; HM Government, 2010).  

Flooding is amongst the top three hazards prioritised in the UK Climate Change 

Risk Assessment of the greatest emerging environmental challenges to the UK 

(Committee on Climate Change, 2017). Surface water flooding is specifically 

reinforced by legislation (HM Government, 2010), DEFRA guidance (DEFRA, 

2012, 2018a; HM Government, 2016) and strategic assessments undertaken by 

the Committee on Climate Change (2015, 2017). 

Severe damage from recent extreme events has emphasised the flood resilience 

agenda and led governments and academics to prioritise building resilience to 

future extreme events (Ofwat, 2012; HM Government, 2016; Committee on 

Climate Change, 2017). Strategic reviews indicate that current action is 

insufficient to manage future levels of risk (HM Government, 2016; Committee on 

Climate Change, 2017) and that new hazard management frameworks and novel 

interventions are required to manage future extreme flooding (Commitee on 

Climate Change, 2015).  

One mechanism for achieving this is implementation of Surface Water 

Management Plans (SWMP) as set out in the PPS25 and detailed in DEFRA 

technical guidance (DCLG, 2010; DEFRA, 2010). SWMP’s are investigations 

designed to outline long term solutions to manage surface water across local 

authority jurisdictions and develop a strategy for partnership working across 

organisations operating within this boundary. Application of plans typically 

involves large scale strategic risk assessments, followed by focused studies in 

areas defined as vulnerable to flood hazards. A key objective of this process is to 

identify possible interventions which can be applied to alleviate flood risks. 

1.1.4. Challenges of implementing available interventions 

The previous sections have outlined several significant challenges facing surface 

water management in cities. However, despite these issues, technical 
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understanding and availability of a range of surface water flood management 

interventions exists. 

Interventions include both tested and novel measures such as conventional piped 

drainage networks, sustainable drainage systems (SuDS), green infrastructure, 

property level resilience measures, nature based solutions and catchment 

management, to name a few (Fletcher et al., 2015; Woods Ballard et al., 2015; 

Ossa-Moreno et al., 2017; Schanze, 2017; Butler et al., 2018). Application of 

these interventions is supported by current legislation such as the 

aforementioned Flood and Water Management Act, which specifies for local flood 

risk strategies to be developed and implemented (HM Government, 2010).  

Despite technical understanding, supportive legislation and a wide range of 

intervention options, recent studies indicate application of new intervention 

strategies still faces multiple challenges. Barriers for implementation include 

failure to accommodate new measures in institutional decision making 

frameworks, uncertainty regarding effectiveness of novel interventions in a 

heavily regulated and risk averse water industry and a lack of evidence regarding 

the hydrological performance and cost effectiveness of novel strategies at the 

catchment scale and during extreme rainfall events (Gersonius, 2008; Cettner, 

2012; Gersonius et al., 2012; Ellis, 2013; Lamond et al., 2015; Woods Ballard et 

al., 2015; Fenner, 2017; O’Donnell et al., 2017; Ossa-Moreno et al., 2017; 

DEFRA, 2018b). Collecting evidence to mitigate these barriers is compounded 

by the computational expense of simulating the many possible intervention 

strategies across multiple rainfall scenarios at a detail which adequately 

represents the spatial disaggregation of urban catchments (Hunter et al., 2008a; 

Dottori and Todini, 2011; Dottori et al., 2013; Jayasooriya and Ng, 2014; Mikovits 

et al., 2015; Löwe et al., 2017). Government guidance supports academic 

findings through calling for new approaches to generate evidence and support 

implementation of future surface water management (Pitt, 2008; Commitee on 

Climate Change, 2015).   

One way to address the computational expense of detailed performance analysis 

whilst maintaining adequate spatial resolution and representation of surface 

water dynamics and interventions is to adapt and structure application of decision 

support processes at different levels of complexity. Recognising and adapting to 

the trade-off between model detail and required accuracy for a range of decisions 
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supports analysis undertaken in steps, from screening to detailed design. Novel 

analysis can be applied to initially screen scenarios using easily accessible data 

to inform and direct requirements for additional evidence, which may require 

subsequent application of enhanced model complexity and resources. This 

creates an opportunity to evaluate the many permutations of scenarios through 

developing high level screening processes which enhance understanding of 

options by quickly evaluating relative importance of available interventions, 

locations and hazards, before taking this information to refine and direct future 

management actions. This thesis responds to this opportunity through 

investigating the scale, interactions, distribution, performance and economics of 

novel interventions in urban catchments through developing a framework which 

facilitates high level insights and analysis regarding the complex permutations of 

scenarios in urban catchments.  

1.2. Aims and objectives 

The aim of this thesis is to develop rapid scenario screening to investigate 

the performance of surface water management strategies in urban 

catchments across design standard and extreme events. 

In order to achieve this aim, a number of objectives have been identified: 

1. Review literature regarding screening intervention performance under 

design standard and extreme rainfall events. 

2. Develop a screening framework to enable assessment of many 

intervention scenarios at the urban catchment scale. 

3. Validate the framework against industry best practice. 

4. Investigate the flood reduction performance of strategic and specific 

interventions. 

5. Evaluate intervention cost effectiveness across many rainfall scenarios. 

6. Verify application of the framework through practical application with 

catchment stakeholders. 

7. Investigate the relationship between resilience and reliability of 

interventions. 

8. Develop recommendations for practical application of this methodology. 
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1.3. Thesis structure 

This thesis contains eight chapters. The structure of these chapters and their 

connection to the thesis objectives are presented in Figure 1.1. The present 

chapter (Introduction) describes the motivation and scope of research. 

 

 

Figure 1.1: Thesis structure and objectives  

Chapter Two responds to Objective One through reviewing current scientific 

literature regarding intervention strategies, selection processes and management 

of design standard and extreme surface water flood scenarios. 

INVESTIGATING INTERVENTION PERFORMANCE 

DEVELOPING RAPID SCENARIO SCREENING 

Chapter 1 

Introduction and scope 

Chapter 2 

Literature review 

Chapter 3 

Developing a rapid scenario screening framework 

Chapter 4 

Validating the framework 

Chapter 5 

Examining the effects of strategic intervention zones 

Chapter 6 

Evaluating cost effectiveness of specific interventions 

Chapter 7 

Applying the framework to an international case study 

Chapter 8 

Conclusions and recommendations 

Objective 1 

Objective 2 

Objective 3 & 8  

Objective 4 

Objectives 4, 5 & 7 

Objectives 4, 6 & 7 

Objective 8 
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Chapter Three responds to Objective Two and the gaps in literature by 

presenting the development of a rapid scenario screening framework. This forms 

the basis of the methodology applied within the thesis. 

The framework is published in the following peer reviewed journal publication: 

Webber, J.L., Gibson, M.J., Chen, A.S., Savic, D., Fu, G. and Butler, D. 2018. 

Rapid assessment of surface-water flood-management options in urban 

catchments. Urban Water Journal 15 (3) pp 210 – 217. 

Chapter Four responds to Objective Three by validating the framework through 

comparing results versus results simulated using standard industry software. 

Validation is undertaken using a case study of St Neots, UK, with model outputs 

taken from a professional Surface Water Management Plan (SWMP), published 

by the engineering consultancy ‘Arcadis’ on behalf of Cambridgeshire County 

Council (Arcadis, 2012). Validation is made relative to a range of scenarios, 

representing incremental advances in complexity and realism of the catchment 

study area. The chapter also responds to Objective Eight by exploring practical 

application of the framework relative to the current approaches applied by Arcadis 

to develop the SWMP. 

This research is published in: Webber, J.L., Booth, G., Gunasekara, R., Fu, G. 

and Butler, D. 2018. Validating a rapid assessment framework for screening 

surface water flood risk. Water and Environment Journal (accepted and pending 

publication). 

Chapter Five responds to Objective Four. This chapter applies the framework to 

evaluate the flood reduction performance of strategic intervention zones. 

Strategic intervention zones are applied through changing catchment 

characteristics to represent effects possible using a range of interventions. This 

analysis is intended as a preliminary screening measure to identify the potential 

for subsequent analysis of specific interventions. Analysis is carried out across a 

case study in Exeter, UK.  

The research presented in this chapter is published as part of: Webber, J.L., 

Gibson, M.J., Chen, A.S., Savic, D., Fu, G. and Butler, D. 2018. Rapid 

assessment of surface-water flood-management options in urban catchments. 

Urban Water Journal 15 (3) pp 210 – 217. 
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Chapter Six advances framework application towards assessing specific 

interventions and responds to Objectives Four, Five and Seven. The chapter 

describes how specific interventions are represented within the framework and 

then evaluates intervention performance across a range of rainfall and placement 

scenarios in a case study located in Exeter, UK. Performance analysis is split into 

two levels of detail. Stage one consists of 144 scenarios and assesses flood 

damage relative to variation in rainfall intensity, duration and frequency. Stage 

two is a more detailed analysis, in which 792 scenarios are evaluated through 

developing a cost effectiveness metric which includes estimated annual flood 

damage compared to intervention capital, operation and maintenance costs over 

a thirty year planning period. Analysis of reliability and resilience is made through 

evaluating intervention performance during a range of design standard and 

extreme rainfall events. 

The research presented in the stage one analysis, screening intervention 

response to rainfall duration, is published as: Webber, J.L., Fu, G. and Butler, D. 

2018. Rapid surface water intervention performance comparison for urban 

planning. Water Science and Technology 77 (8) 2084 – 2092. 

The cost effectiveness research presented in this chapter is currently under 

review as: Webber, J.L., Fu, G. and Butler, D. 2019. Comparing cost 

effectiveness of surface water flood management interventions in a UK 

catchment. Journal of Flood Risk Management. 

A discussion of reliability and resilience, using examples drawn from this chapter 

is also published as: Webber, J.L., Fu, G. and Butler, D. 2018. How can we build 

reliable and resilient surface water flood management? Proc. 6th Joint 

EWA/JSWA/WEF Conference 2018, Munich. 

Chapter Seven responds to Objectives Four, Six and Seven through verifying 

the framework using a real world case study in Melbourne, Australia. This 

research represents work undertaken in collaboration with a range of catchment 

stakeholders to workshop, represent and assess the performance of 75 

scenarios, representing a range of strategies and their response during design 

and extreme rainfall, applied across Melbourne City Centre.  

This research is presented in the following publication under review: Webber, 

J.L., Fletcher, T.D., Cunningham L., Fu, G., Butler, D. and Burns, M.J. 2019. Is 
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green infrastructure a viable strategy for managing urban flooding? Urban Water 

Journal (in review). 

Preliminary findings from this research project are also published as: Webber, 

J.L., Fletcher, T.D., Fu, G., Butler, D. and Burns, M.J. 2018. Evaluating city scale 

surface water management using a rapid assessment framework in Melbourne, 

Australia. Proceedings of the International Conference of Urban Drainage 

Modelling, 2018, Palermo. 

Chapter Eight, concludes the thesis through summarising the key findings from 

the work and providing recommendations for future research. The chapter also 

addresses Objective Eight by synthesising guidance for application of rapid 

scenario screening in practice. 

1.4. Originality and contribution to knowledge 

This thesis contributes a range of novel outcomes to the field of surface water 

management. This thesis has: 

 Contributed a novel rapid scenario screening framework which delivers 

insight into how intervention performance can deliver maximum benefits 

given the many permutations of intervention type, scale and distribution 

possible within urban catchments. (Chapter Three) 

 Developed and validated a methodology to represent urban drainage 

systems and interventions through parameterising cells within a 2D 

cellular automata modelling structure. Validation of this approach in a UK 

urban catchment demonstrates comparable accuracy (98.5%) versus 

outputs from industry standard modelling. (Chapter Four)  

 Found that although centralised interventions provide benefit at smaller 

scales, catchment based strategies are required to substantially reduce 

flood extent and estimated annual damage costs across urban areas. The 

most effective intervention was consistently found to be extensive 

application of decentralised rainfall capture, which reduced estimated 

annual damage in a UK case study by 76% versus a business as usual 

baseline. (Chapters Six and Seven) 

 Demonstrated the importance of intervention distribution and placement 

on strategy cost effectiveness. Analysis of hundreds of scenarios indicates 

a wide range of cost effectiveness ratios for interventions, ranging from 
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£0.10 to £26.0 damage reduction per £1 spent, with the most cost effective 

interventions identified as high volume localised drainage measures 

targeted in areas of intense flooding. The implications of spatially varying 

cost effectiveness are two-fold: Firstly, future intervention performance 

analysis should include spatial simulation of flood dynamics; and secondly, 

development of decentralised catchment scale strategies should be 

complemented by application of targeted cost effective interventions. 

(Chapter Six) 

 Identified that intervention performance rankings vary in response to 

changing rainfall return periods, highlighting that performance during 

design standard events is not indicative of resilience to extreme intensities. 

In particular, interventions with defined storage capacities demonstrate 

tipping points at which a significant performance reduction is observed. 

The implications of this finding are that evaluating resilient performance 

requires simulation of many rainfall scenarios and that interventions with 

resilient properties, such as green infrastructure, do not necessarily 

achieve resilient performance. (Chapters Six and Seven)  

 Developed practical guidance for screening catchment flood hazards and 

identifying cost effective, reliable and resilient interventions using rapid 

scenario screening as a decision support tool. (Chapter Eight) 
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2. LITERATURE REVIEW 

This chapter responds to Objective One: ‘Review literature regarding screening 

intervention performance under design standard and extreme rainfall events’. 

The chapter is structured through identifying available interventions and decision 

support processes for strategy selection and then evaluating existing approaches 

to define, measure and manage surface water flooding in design standard and 

extreme scenarios.  

2.1. Available interventions 

Technical understanding and availability of a range of both tested and novel 

surface water flood management interventions already exists, however uptake of 

novel strategies remains below capacity (Mijic et al., 2016; O’Donnell et al., 2017; 

Thorne et al., 2018). This section outlines broad categorisation of interventions 

with the intention of introducing and contextualising a range of potential surface 

water management strategies and terminology. A detailed review of literature 

regarding specific intervention performance is undertaken in Section 6.1. 

Conventional urban drainage strategies are often referred to as ‘grey’ solutions 

due to a basis of construction using concrete, metal and plastic (Hamill, 2001; 

Mitchell, 2006; Butler et al., 2018). These approaches focus on removing water 

from a catchment surface using sewers to convey flows to treatment or 

environmental discharge through combined sewer overflows (Chocat et al., 2007; 

Burns et al., 2012). Conventional solutions form the basis for the majority of 

contemporary and historic urban drainage systems and consequently there is 

extensive expertise regarding design, construction, maintenance and monitoring; 

leading to a high degree of confidence regarding effective system performance 

across infrastructure design life and standard loadings. 

Although confidence in conventional systems is high, their limitations have long 

been recognised (Section 1.1.2). In particular the lack of flexibility due to finite 

design capacities leads to difficulty managing changing runoff volumes and 

conditions (DEFRA, 2010). Flexibility is an important consideration for future 

water management given the likely increases in precipitation volume, frequency 

and intensity associated with climate change (Wheater and Evans, 2009; IPCC, 

2014; HM Government, 2016; Committee on Climate Change, 2017) and 

expanding impermeable urban environments caused by sprawling cities and 
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increasing urban populations (Wong and Eadie, 2000; Chocat et al., 2007; 

Djordjević et al., 2011; Marlow et al., 2013). The long design life for drainage 

infrastructure means that many systems are aging and need repair or 

replacement (Ana and Bauwens, 2010). This can be prohibitively expensive due 

to complex subterranean infrastructure now present throughout urban 

catchments. Research has responded to the limitations of conventional drainage 

measures through developing an extensive range of alternative novel 

interventions.  

A general consensus amongst urban drainage research and practice is the need 

to move towards more sustainable ‘green’ drainage solutions (Ellis, 2013; Ellis 

and Lundy, 2016; Mguni et al., 2016; O’Donnell et al., 2017; Thorne et al., 2018). 

This interest is reflected in an exponential growth of related terminology 

appearing in published scientific literature (Fletcher et al., 2015). However, this 

terminology is fragmented and inconsistent due to informal development of the 

science across a broad range of regional and institutional perspectives.  

Fletcher et al (2015) conducted a comprehensive review of green drainage 

terminology, motivated through recognising this need for clarity, as emphasised 

by the Joint Committee on Urban Drainage, International Water Association and 

International Association of Hydro-Environmental Engineering and Research. 

The review found terminology to include: Low Impact Development (LID); Water 

Sensitive Urban Design (WSUD) (Wong and Eadie, 2000; Wong, 2006); 

Integrated Urban Water Management (IUWM) and Integrated Water 

Management (IWM)  (Niemczynowicz, 1996; Harremoës, 1997); Sustainable 

Urban Drainage Systems (SUDS) (Woods Ballard et al., 2015); Best 

Management Practices (BMP) (United States Government, 2011); Stormwater 

Control Measures (SCM) (National Research Council, 2008); Alternative or 

Compensatory Techniques (AT/CT) (Fletcher et al., 2015); Source control and 

Green infrastructure (Walmsley, 1995). It should be noted that this list is not 

exhaustive. The unifying theme of these terms is the management of surface 

water through mimicking natural hydrological processes such as infiltration and 

retention (Fletcher et al., 2015).  

Fletcher et al (2015) highlight the concept of ‘green infrastructure’ as 

encompassing the range of terminology used to describe ‘green’ urban drainage, 

with green infrastructure representing a remit which goes beyond surface water 
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management (Tzoulas et al., 2007), in particular through incorporating multiple 

ecosystem services alongside drainage functionality, with the  potential to provide 

urban communities a range of benefits through advancing public health, 

recreation and aesthetics (CIRIA, 2015; Jose et al., 2015; Mijic et al., 2016; Ossa-

Moreno et al., 2017). The broad remit of this language supports the utility of rapid 

scenario screening sought through this thesis and encapsulates the range of 

terminology applied to represent interventions. As such, the term ‘green 

infrastructure’ will be applied throughout this document (Jayasooriya and Ng, 

2014).  

Despite established inclusion of green infrastructure within academic, 

government and commercial discussion, several gaps are apparent regarding 

application (Pitt, 2008; MWH, 2014; Burns et al., 2015c; Woods Ballard et al., 

2015; Schubert et al., 2017). Barriers for implementation include failure to 

accommodate new measures in institutional decision support frameworks, 

uncertainty regarding effectiveness of novel interventions in a heavily regulated 

and risk averse water industry and a lack of evidence regarding hydrological 

performance and cost effectiveness (Harremöes, 2002; Elliott and Trowsdale, 

2007; Mijic et al., 2016; O’Donnell et al., 2017). Effective future management 

requires a developed and enhanced understanding of how the scale, distribution 

and range of novel interventions can be best applied to achieve maximum 

performance at the catchment scale and during extreme rainfall events. A range 

of approaches are available with which to evaluate and evidence surface water 

flood management strategies, these are discussed in the following section. 

2.2. Decision support for intervention selection 

Evaluation and implementation of interventions requires a robust and transparent 

evidence base, including consideration of the many permutations of strategy 

type, distribution and scale across study areas (House of Commons, 2016). This 

section outlines current intervention evaluation methodologies from scientific 

literature and industry practice. The section is divided into ‘qualitative’ techniques, 

which provide descriptive assessment methodologies, and ‘quantitative’ 

approaches, which apply numeric metrics to measure intervention performance. 
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2.2.1. Qualitative techniques for evaluating intervention performance 

This subsection will discuss qualitative intervention screening techniques. The 

scope of this section is to evaluate the strengths and limitations of each approach, 

with reference to specific examples from scientific literature. 

Expert review, ranking and multi-criteria analysis 

The most basic form of intervention screening can be achieved using expert 

judgement to compare intervention types and locations. Judgement may be 

informal, through selecting options for further design, or structured through 

workshops, engagement and questionnaires.  

High level comparison of interventions can be undertaken using a SWOT 

(strength, weakness, opportunity, threat) analysis. For example, Mguni et al 

(2016) undertook a preliminary SWOT analysis of green infrastructure drainage 

measures in Sub-Saharan Africa through literature evaluation. The analysis 

supports green infrastructure as a viable flood risk management option, however 

indicates that further studies to quantify performance and co-ordinate work 

between multi-disciplinary stakeholders is required to achieve implementation. 

The paper provides a comprehensive analysis of broad scale suitability, however 

this form of SWOT analysis is unsuitable for comparing the more nuanced effects 

of intervention performance when applied in specific catchments. 

Analysis can be enhanced through wider inclusion of stakeholders and expert 

organisations. Douglas et al (2010) undertook analysis of non-structural 

mitigation to pluvial flooding through stakeholder engagement (44 households 

with a history of internal flooding), discussion with local authorities and hosting 

catchment pluvial flood risk workshops in Heywood, Greater Manchester. The 

workshops were based on historic flood records, which provided a high degree 

of confidence in outputs amongst stakeholders. However, this approach is only 

possible where there is flood history, engaged local stakeholders and reliable 

flood records; the latter of which is rare due to difficulty obtaining high resolution 

measurements that coincide with the flood peaks in urban areas (Neal et al., 

2009). This approach also relies on past events as an indicator of future 

performance, and so is unsuitable for analysis of future catchment changes or 

screening the performance of potential future interventions (Kjeldsen et al., 

2014).  
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Ellis et al (2004) applied expert scoring analysis to support green infrastructure 

installed on highways. The approach applied criteria describing the performance, 

environmental, social and economic impacts of a detention/ retention basins, 

wetlands, infiltration features, porous paving, swales and filters applied across 

highways. Analysis was conducted using a spreadsheet tool, with inclusion of 

flooding through criteria relating to storage volume, flood incidents, flooded 

properties and disruption costs. Data was achieved through community and 

expert scoring, of which the study acknowledges the subjective bias this may lead 

to. The study found that although the procedure was adaptable, there was still a 

need to quantify long term performance and full life costs. 

Assessment via expert judgement can be formalised through application of multi-

criteria analysis. The UK Sustainable Water industry Asset Resource Decisions 

(SWARD) project (Ashley et al., 2002) applied decision mapping to determine 

how sustainability was included by water service providers. Findings were applied 

to select appropriate criteria to form a decision support tool which applied 

weightings to rank interventions. The work was not solely focused on urban 

flooding, and took a wider view of sustainability based on social, technical, 

economic and environmental criteria (Foxon et al., 2002).  This was supported by 

the production of urban drainage case studies, including analysis of green 

infrastructure versus conventional drainage solutions. The project provided a 

structured analytical approach to evaluating a wide range of criteria; however, 

enumerating the criteria relied on supporting analysis and modelling, therefore 

requiring extensive additional analysis outside of the framework and restricting 

the number of options which could be assessed. 

Makropoulos et al (2008) developed the multi-criteria analysis Urban Water 

Optioneering Tool (UWOT) for intervention selection decision support. The tool 

applied quantitative and qualitative criteria from the SWARD framework (Ashley 

et al., 2002) to set multiple objectives to solve using a genetic algorithm (Savic 

and Walters, 1997). The approach was focused on broad scale integrated water 

management rather than solely on surface water, and consequently did not 

represent the spatial analysis of flooding and flood damage; however, the 

framework did include water re-use and capture objectives and is adaptable to a 

variety of inputs. This adaptability enables consideration of an extensive range of 

issues, however, as with Ashley et al (2002), relies on pre-modelled performance 
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data to set up. The study highlighted that ‘optioneering’ tools will increasingly be 

required to develop integrated and context specific solutions for urban water 

challenges. 

Similarly, Young et al (2010) applied an analytical hierarchy process (AHP), a 

pair wise expert ranking system, to select surface water management techniques. 

Results recommended using the AHP system were then modelled using the 

Storm Water Management Model (SWMM), with the study finding potential 

advantages over alternative selection methods. This approach enabled screening 

of many options combined with subsequent detailed analysis, however a lack of 

modelling flood dynamics within the screening stage restricts users to judgement 

based on past performance, neglecting both novel interventions and unpredicted 

consequences or mechanisms regarding surface water runoff. 

Martin et al (2007) applied the ELECTRE III (Roy, 1978) multi-criteria analysis to 

investigate structural and non-structural drainage measures. The study applied 

multi-criteria categorisation into a two stage process where initially unacceptable 

options are rejected (based on the French national drainage survey) with a 

subsequent option analysis based on performance ranking scores and quantified 

values.  Application of this method was supported by Chitsaz et al (2015), who 

conducted a comparison of many multi-criteria decision making approaches 

including simple additive weighting, compromise programming, VIKOR, TOPSIS, 

AHP and ELECTRE, finding the latter the most effective at managing complex 

input criteria.  

Expert judgement and multi-criteria approaches provide a fast method for 

screening potential flood interventions. However, fundamentally, these 

approaches can only prioritise preference based on a range of values and 

weightings reflecting current understanding and pre-generated analysis. Analysis 

of novel flood management interventions requires a robust evidence base 

grounded in understanding of intervention performance (Cettner, 2012; House of 

Commons, 2016). Spatial variation of performance is of particular importance 

when considering surface water flood management due to the complex spatial 

disaggregation of urban catchments. 



45 
 

GIS techniques 

Geographic Information Systems (GIS) enable visual and spatial analysis of 

intervention performance. The systems are commonly applied in intervention 

assessments, either to calculate or present performance metrics. 

GIS can integrate remote sensing data-sets to inform broad scale understanding 

of flood risk. Weng (2001) used this approach to model urban growth effects on 

runoff through a simplified distributed surface runoff model, first applied by the 

United States Soil Conservation Service and based on runoff curve numbers 

(Pyke et al., 2011). The approach was applied at a high level across the entire 

Zhujiang Delta, and so was not able to identify sites for interventions. The study 

found that highly urbanised areas are more prone to flooding, but was applied at 

too coarse a resolution to identify specific opportunities for interventions in any 

particular urban areas.  

Finer scale spatial analysis for selecting intervention sites at an urban catchment 

scale can also be applied. Makropoulos et al (2007) applied high resolution GIS 

techniques to evaluate siting interventions in new developments. Similarly, 

Todorovic and Breton (2014) applied geospatial analysis to select intervention 

options based on the potential distribution of pollutants. 

GIS are not designed for simulation of runoff and so are frequently applied for 

spatial analysis of outputs from other simulation approaches, such as 1D-2D 

models (Viavattene and Ellis, 2013). The SUDSLOC model developed by 

Viavattene et al (2008) is one such approach to amalgamate hydraulic model 

outputs to strategically select green infrastructure locations. However, authors 

indicate that the underlying flood simulation is computationally demanding, 

particularly for larger catchments. As such the approach is best suited to 

screening flood risk priority spots, rather than large numbers of interventions 

across multiple scenarios. 

Spatial analysis also extends to economic assessment of flood damages through 

spatial calculation of flood damage using flood depth damage curves and building 

locations in a catchment. For example as the basis of the CORFU damage 

assessment tool (Hammond et al., 2015; Chen et al., 2016). As with other GIS 

approaches, this relies on previous modelling of flood dynamics associated with 

individual interventions. 
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GIS intervention selection is of particular benefit in spatial analysis of 

interventions. Fenner (2017) support earlier work of Jayasooriya and Ng (2014) 

in identifying that many tools now utilise GIS interfaces to assess surface water 

flood management. GIS in itself does not constitute a full analytical process for 

evaluating model performance, however it provides a powerful tool for analysing 

the outputs from other assessment methodologies (Viavattene and Ellis, 2013). 

2.2.2. Quantitative techniques for evaluating intervention performance 

Current standard techniques to quantify flood depth and extent typically apply 

deterministic computational models based on solution of hydrodynamic 

equations. For simplicity these can be classified into lumped, 1D and 2D models 

(Butler et al., 2018). 

Lumped models 

Lumped or semi distributed models aggregate catchment elements into larger 

sub-catchments (Pina et al., 2016). Calculations are then based on these sub-

catchment units, resulting in a coarse resolution but fast simulation (Jamali et al., 

2018). Units are typically identified using GIS processing with a variety of volume 

continuity approaches applied to identify runoff rates. These are formulated as a 

function of rainfall and land use categories (US EPA, 2002; Pyke et al., 2011).  

Outputs from these methodologies provide a fast screening utility, but only 

account for total runoff volume. As such they are suitable for identifying broad 

indicative trends which can be used for strategic analysis, but are unsuitable for 

modelling high spatial resolution of flood dynamics. This is of particular 

importance given the high resolution spatial variability of intervention 

effectiveness in urban catchments (Dottori et al., 2013).  

1D hydraulic modelling 

1D models represent cross sectional average flow conditions through channels 

in a study domain (Vojinovic and Tutulic, 2009). In the case of urban surface 

water flooding this typically includes the pipe network or a simplified study 

catchment, represented using channels. 

Pipe surcharge and overland flooding can be approximated through a virtual 

‘cone’ proposed over each node of a 1D system (Butler et al., 2018). The cone 

acts as a temporary store for surcharged flows and enables flood volumes to be 

approximated. This approach does not simulate movement of runoff across the 
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surface and assumes all flood water originates from the sewer system; 

consequently, this is not a sufficient representation for overland flow caused 

during high intensity rainfall, the typical cause of surface water flooding (Westra 

et al., 2014), which exceeds the capture capacity of sewer systems. 

Other studies apply rapid flood spreading models to distribute volume from cones 

across the catchment. This is achieved through splitting the surface domain into 

large sub-catchments and specifying flow directions between these (Band, 1986; 

Martz and de Jong, 1988). This is a computationally efficient approach for 

estimating surface volume, however has two main limitations: no simulation of 

runoff from outside of the sewer system (as described above) and no time 

element to represent flow across a high resolution domain. Studies frequently 

emphasise the significance of high resolution topography on surface water flood 

dynamics and so modelling the effect of interventions requires spatial and 

temporal analysis of runoff (Bates et al., 2006; Mignot et al., 2006; Yu and Lane, 

2006; Hunter et al., 2008a; Neal et al., 2009; Fewtrell et al., 2011; Chen et al., 

2012; Schubert and Sanders, 2012; Dottori et al., 2013). 

A similar approach can also be applied to represent 1D flow through a catchment, 

with flooding considered as a series of interconnected channels and ponds 

(Heywood et al., 1997). This approach requires pre-processing or understanding 

of runoff routes across the catchment, and does not incorporate the spatial and 

temporal nuances of flow paths which may coalesce or diverge in response to 

different rainfall intensities. The method is also too simplistic to take into account 

the high resolution features which control runoff, as discussed above, although 

may be sufficient where flow remains within the channel profile delimited by street 

kerbs (Djordjević et al., 1999).  

In summary, 1D models offer a fast and simplified analysis of urban flooding, 

however do so at the expense of representing a high spatial resolution of flood 

dynamics. Understanding intervention performance within the complex spatial 

disaggregation of urban catchments requires evaluation of intervention 

interactions with runoff at a fine spatial scale (Fewtrell et al., 2011; Dottori et al., 

2013), therefore alternative modelling approaches are required. 
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2D hydraulic modelling 

Simulation of surface water runoff across the catchment is undertaken using 2D 

models based on solution of St Vennant shallow water equations (Chow, 1959) 

or simplifications of these, such as a kinematic or diffusion wave model (Ponce 

et al., 1978; Elliott and Trowsdale, 2007; Hunter et al., 2008a; Butler et al., 2018). 

These partial differential equations are commonly calculated using explicit or 

implicit finite difference solvers where calculation is divided into discrete steps. 

An extensive range of commercial and academic models are available, each with 

variations on equations, numerical solvers, time-step controls and input 

mechanisms. Popular industry models include Infoworks ICM, TUFLOW, Flood 

Modeller Pro and MIKE, to name but a few.  

When coupled with a 1D representation of the piped system, 2D models are 

considered to be the most accurate representations of urban surface flooding, 

however accurate simulation is achieved at a trade-off versus high computational 

and data expense (Bamford et al., 2008; Löwe et al., 2017). This can lead to 

extensive model setup times and force studies to focus analysis on a small 

number of options or scenarios. Restrictions on time, budget and data can lead 

to decision makers considering only tried and tested interventions, resulting in 

institutional inertia and stifling innovation (Cettner, 2012; O’Donnell et al., 2017). 

Where new interventions are considered, the model specialism required to 

accurately simulate these can also constrain analysis to specific measures, which 

may result in the need to apply several models to assess a range of options 

(Zhou, 2014). 

The trade-off between model complexity and simulation time can force 

practitioners to simplify aspects of modelling in order to simulate adequate 

numbers of strategies or scenarios in an acceptable timeframe. One area where 

this can easily be achieved is through simplification of input elevation models; 

high resolution inputs can lead to significant increases in simulation time due to 

an exponential increase in required calculations relative to the change in model 

cell size. However, maintaining high resolution data is important, Fewtrell (2011) 

found that errors caused by coarse representations of topography were 

significantly larger than the differences between a range of numerical 

approximation schemes across a range of simplifications in 2D models. This work 
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is supported by a body of literature highlighting the need to include high resolution 

data in 2D flood modelling (Fewtrell et al., 2008; Schubert et al., 2008). 

Fewtrell (2011) also highlights that simplified models can provide a viable 

alternative to St Vennant based simulations (Mikovits et al., 2015; Löwe et al., 

2017). This has the advantages of increasing simulation speed (Yu and Lane, 

2006; Hunter et al., 2008a; Schubert et al., 2008; Néelz and Pender, 2013), which 

in turn enables simulation of more scenarios using higher resolution elevation 

data. Dottori (2013) does however council that modellers should be wary of a 

false confidence associated with high resolution inputs, due to a range of 

uncertainties which can propagate throughout the modelling process. Precision 

is not an indicator of accuracy, and all models should be applied as tools for 

specific applications (Box, 1976). 

Hydraulic modelling to quantify intervention performance 

Several review articles specifically focus on assessing the tools available to 

quantitatively assess green infrastructure interventions. Elliot and Trowsdale 

(2007) conducted a review of a broad spectrum of urban stormwater models 

specialised to include green infrastructure techniques. The authors developed 

research from previous reviews (Zoppou, 2001) and identified 40 models, which 

they reduced to ten current available approaches. The study found the majority 

of models were not well suited to modelling high spatial resolution of individual 

interventions or their effects on catchment surface flood dynamics. Instead, the 

majority of models divided analysis into sub-catchments which limited the 

resolution of spatial analysis. The authors identified considerable scope for 

improving current approaches through adding cost modules, visualisation of 

individual measures and the increasing the spatial resolution of runoff generation. 

Jayasooriya and Ng (2014) conducted an updated review of current surface water 

flood models and responded to previous studies by advancing the scope to 

assess incorporating economic analysis within models (Zoppou, 2001; Elliott and 

Trowsdale, 2007; Ahiablame et al., 2013). The study reviewed 20 models, of 

which the ten most popular were reviewed in detail. The study identified several 

key challenges in developing green infrastructure modelling, in particular finding 

that models need to include a wider range of green infrastructure practices, be 

applicable to a range of regions using easily obtainable input data, facilitate 
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stakeholder engagement and use new technologies to advance capabilities of 

decision support systems.   

Rapid modelling using cellular automata 

A rise in availability of high resolution data has encouraged the development of a 

new series of models which apply novel cellular automata systems for modelling 

surface water flooding. Cellular automata are grid based systems which apply 

water routing rules based on simplified hydraulic equations to achieve speed 

increases versus traditional 2D models. The simplicity of this model structure 

suited to computational parallelisation, providing the possibility of further speed 

increases (Dottori and Todini, 2011). 

A range of cellular automata flood models have been developed. Caviedes-

Voullième et al (2018) carried out a review of current cellular automata flood 

models, identifying the relatively new development of the methodology, with the 

majority of advances being made in the past ten years. Early examples of these 

models were applied to simulate fluvial dynamics (Murray and Paola, 1994). More 

recently the approach has been applied to pluvial flood dynamics across flood 

plains (Parsons and Fonstad, 2007; Rinaldi et al., 2007; Douvinet et al., 2015; Li 

et al., 2015; Kassogué et al., 2017), however this application is typically 

undertaken across extensive 100 km2 (and larger) catchments using coarse 

resolution elevation modelling typically above a 25 m x 25 m cell size. 

Other studies have focussed on development of the underpinning cellular 

automata mechanisms against case studies or synthetic test catchments (Dottori 

and Todini, 2011; Guidolin et al., 2012; Ghimire et al., 2013; Liu et al., 2015; 

Gibson et al., 2016; Abbasizadeh et al., 2018; Caviedes-Voullième et al., 2018). 

A common finding from these studies is the high computational efficiency and an 

increase in simulation speed, versus traditional 2D models whilst maintaining 

comparable accuracy. Gibson et al (2016) found a 98-99% correlation in surface 

water flood extent relative to Infoworks ICM, a common industry model, at a 

speed increase of five to twenty times. 

A small number of recent studies have applied cellular automata models to urban 

pluvial flooding. Abbasizadeh et al (2018) coupled the SWMM 1D drainage 

simulation and a cellular automata model to investigate high resolution runoff in 

an urban setting using a 4 m x 4 m resolution grid, finding a good comparison 
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with the 2D model TUFLOW. Liu et al (2015) performed a similar analysis using 

a 5 m x 5 m grid, finding a high computational efficiency but recommending future 

studies apply finer resolution elevation models.  

There is a current gap in literature regarding analysis of high resolution urban 

flood modelling and investigating intervention performance using these measures 

despite well documented high computational efficiency, suitable for analysing 

many scenarios, and documented accuracy of cellular automata methods, 

relative to existing modelling approaches (Gibson et al., 2016). Only one 

intervention assessment study was identified, where Lu et al (2018) applied the 

cellular automata model ‘CADDIES’ to assess high surface water flood 

management options in a London catchment. The study was able to utilise fast 

assessment to examine the response of a range of strategies to three rainfall 

events. The limitation of this study was the application of relatively coarse (5 m x 

5 m) elevation model and only assessing three types of interventions (green 

roofs, permeable paving and bio-retention systems).  

Fast analysis using cellular automata is a promising and novel approach to 

include many simulations within intervention selection, whilst retaining application 

of high spatial and temporal resolution essential for understanding of urban flood 

dynamics (Fewtrell et al., 2011).  

2.2.3. General guidance on intervention selection 

Some studies provide general guidance on selecting intervention measures. 

These are intended to support other forms of analysis and include detailing 

availability and technical information for green infrastructure implementation. 

Bowker (2007) evaluated suitability of flood resistance and resilience measures 

at the property level. The study provides itemised cost estimates for a range of 

permanent and temporary solutions applied to domestic properties. The source 

provides a comprehensive breakdown of costs for measures suitable for 

protecting properties, but functions as a list and does not provide guidance on a 

process to select and measure performance of measures. 

The Environment Agency have produced a similar report detailing cost estimation 

for SUDS (Environment Agency, 2015), building on previous work from 2007 

(Environment Agency, 2007a). The report details a comprehensive analysis of 

the capital and operational costs of implementing SUDS, and includes a wide 
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range of measures such as green roofs, rainwater capture tanks, permeable 

paving and infiltration measures. As with Bowker (2007), the study does not detail 

a process for selecting or measuring the performance of measures. 

The Construction Industry Research and Information Association (CIRIA) have 

published several extensive best practice guides for application of conventional 

and green infrastructure drainage solutions in the UK. The SuDS manuals C753 

(Woods Ballard et al., 2015) and C697 (Woods Ballard et al., 2007) provide detail 

on design, application and technical performance of many interventions, however 

does not outline a methodology for scenario or strategy performance analysis. 

The Benefits of SuDS tool (CIRIA, 2015) furthers analysis through providing 

sustainability assessment indicators with similarities to the SWARD framework 

(Ashley et al., 2002); however, as with the SWARD framework, the approach 

requires extensive prior analysis to develop suitable input data, and as such is 

better suited to detail design rather than strategic screening. 

2.3. Reliable surface water management to meet specified design standards 

Contemporary surface water management has been underpinned by the concept 

of ‘reliability’, defined as “the degree to which the system minimizes level of 

service failure frequency over its design life when subject to standard loading” 

(Butler et al., 2014, 2017). Simply put, systems are designed to minimise the 

likelihood of failure under a predicted stress. Stresses, in this case typically 

intense rainfall, are defined by a probability specified through design standards. 

Performance is assessed through evaluating the likelihood of system failure up 

to specified rainfall intensities and durations. Sub-standard system performance, 

in this case - urban flooding, is then mitigated through identifying and 

implementing interventions (Linkov et al., 2014). 

In practice, reducing failure probability to zero is not possible due to inherent 

uncertainties associated with unknown future rainfall (Kjeldsen et al., 2014). 

Consequently, performance assessment takes this into account through risk 

management. This is the process of specifying and testing intervention 

performance up to a specific design standard. Typical risk management 

approaches identify the vulnerabilities of a system and quantify potential losses 

(Linkov et al., 2014). Adjustments are then made to reduce the probability or 
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consequences of failure (Vis et al., 2003). Acceptable failure probabilities are 

commonly specified as part of a legislated or agreed design standard.  

The concept of risk as a tool for identifying requirements for flood management 

strategies is well established and is laid out as a standard approach (both 

explicitly and implicitly) in the mainstream of governance guidelines (DEFRA and 

Environment Agency, 2007, 2011; DCLG, 2010; HM Government, 2010; Defra, 

2012; Environment Agency, 2013; House of Commons, 2014; Committee on 

Climate Change, 2017; DEFRA, 2018b), commercial methodologies (Conroy and 

Webber, 2013)and academic research (Merz et al., 2006; Johnson and Priest, 

2008; Schelfaut et al., 2011; Hammond et al., 2015; Schanze, 2017; Shah et al., 

2018).  

The main benefit of a risk management methodology is the ability to clearly 

measure and evidence decisions using quantifiable metrics. Risk metrics are 

typically a function of the event probability and consequence (Vis et al., 2003). 

Mathematically, risk is typically calculated as a function of the probability of an 

event multiplied by a quantified measurement of its impact (Dawson et al., 2011). 

This is expressed by Dawson and Hall (2006) as: 

𝑅 =  ∫ 𝑝(𝑥)𝑐(𝑥)𝑑𝑥
𝑥

    Equation 2.1 

Where R is risk, p(x) is probability of event x and c(x) is the consequence resulting 

from event x. 

Slight variations on this calculation are expressed throughout literature, however 

this represents a typical calculation technique, reflective of the common themes. 

Typically probability is represented as a return period or annual exceedance 

probability (AEP) percentage. Consequence is often expressed as a monetised 

value.  The units used within this formula vary by application. Provided units are 

consistent across any comparisons made this does not represent a problem; 

however, inconsistency can lead to confusion when comparing risk using a 

variety of methods. This is of particular note where studies adopt a relative 

scoring system to represent risk, rather than an absolute measure (such as 

economic costs) which can be transferred to a wider comparison. 

Other studies represent risk using an estimated annual damage (EAD) (Wheater 

and Evans, 2009; Hammond et al., 2015). The main advantage of this calculation 
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method is that it provides an absolute value which can be applied relative to 

annual flood management costs as part of cost benefit analysis. 

Risk management is able to offer a decision maker a clear understanding of 

where a system is most vulnerable for specified failure mechanisms under 

circumstances for which appropriate amounts of data are available (Stirling, 

2010; Bond et al., 2015). This is often used in combination with cost data to 

provide the evidential basis for decision making and management (Meyer et al., 

2013; Hammond et al., 2015; Chen et al., 2016); however, this approach alone 

does not provide the whole picture. Despite  risk management constituting the 

standard method for managing performance in systems, studies recognise 

several distinct limitations in its application (Howard et al., 2010; Stirling, 2010; 

Crisis and Risk Network and Center for Security Studies, 2012; Linkov et al., 

2014; Aldunce et al., 2015; Bond et al., 2015). 

One of the main limitations of the current risk based paradigm is that the narrow 

focus on quantifying specific risks does not consider uncertainty effectively, as in 

order to calculate the risk all probabilities and impacts need to be known, 

understood and quantified (Stirling, 2010). Where significant areas of uncertainty 

exist, these are often omitted from analysis. An example of this is failing to 

examine a flood management strategies performance during high magnitude 

events because the probability cannot be accurately ascertained or 

consequences modelled. This unpredictability and lack of knowledge impedes 

risk management, and means not all risks can be accurately accounted for 

(Linkov et al., 2014).  

Another limitation of a risk management approach is that by conducting analysis 

relative to a guideline design standard, the assessment only considers a 

snapshot of the system performance state. Behaviour of a system across a range 

of events is missed in favour of highly specialised protection for a particular 

scenario. When facing uncertain and highly dynamic risks such as rain storms it 

is crucial to consider a more adaptive and flexible approach for planning 

intervention strategies. This is most evident when considered in the context of 

unprecedented or unlikely extreme events (Bond et al., 2015). Current studies 

predict an increasing likelihood of future extreme rainfall and runoff in response 

to climate change and urban growth, and highlight the need for approaches to 

manage a range of possible future scenarios (Chocat et al., 2007; EWA, 2009; 
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Howard et al., 2010; IPCC, 2014; HM Government, 2016; Committee on Climate 

Change, 2017). Analysis which includes a range of scenarios can identify the 

adaptability of interventions to future uncertainties, in particular identifying how 

incremental changes in rainfall characteristics may affect strategy performance. 

Other studies further this by suggesting that probabilistic risk management 

methodologies are not suitable to manage non-linear and highly dynamic risks 

which exhibit significant uncertainties over the long term (Crisis and Risk Network 

and Center for Security Studies, 2012). This is of particular importance in 

developing urban areas and installing flood protection due to the requirement for 

infrastructure to remain effective over long planning horizons and future 

legislation. Surface water flood management must accommodate and manage 

major uncertainties regarding future climatic, social and economic conditions 

(Brown and Farrelly, 2009; Howard et al., 2010). During analysis, risk probability 

is extrapolated from past experiences, which are unlikely to be representative of 

future scenarios. Studies argue that analysis using historical data as a predictor 

for future events may vastly underestimate the likelihood of high magnitude 

events occurring due to selection bias originating from relatively short 

measurement periods (Kjeldsen et al., 2014; Guerreiro et al., 2018). 

Consequences can also be underestimated due the high degree of complexity in 

urban systems, this of particular concern where qualitative assessment methods 

are applied.  

Consequently, some studies argue that risk management can also contribute to 

the vulnerability of a system by enhancing a feeling of safety which may not be 

merited (Vis et al., 2003). This is often the case where stakeholders 

misunderstand probabilistic design standards and the significant hydrological, 

modelling and data uncertainties intertwined with calculations (Merz et al., 2008; 

Dottori et al., 2013).  

The widely recognised limitations of planning based on design standards does 

not discredit current analysis techniques, as a strong understanding of likely 

scenarios should also form a fundamental basis of management; however, given 

the severe consequences of flooding, there is a strong justification to plan for 

events outside of current understanding. This problem is widely recognised in 

scientific literature and alternative methods are currently being proposed, a pre-

eminent narrative in current methodologies is the potential for ‘resilience’ based 
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planning, which is described in the next section of this review (Cabinet Office, 

2011; Ofwat, 2012; Aldunce et al., 2015; Pizzo, 2015; HM Government, 2016; 

Butler et al., 2017).  

2.4. Resilient surface water management to manage extreme rainfall events 

The concept of resilience is widely used across a variety of disciplines. 

Contemporary application has increased in popularity in recognition of a need to 

manage system functionality beyond design conditions (Aldunce et al., 2015). 

The concept has been present in engineering literature for over 200 years, where 

it was used by Tredgold in 1818 to describe a property of timbers which could 

withstand sudden loads, and by Mallet in 1856, where a ‘modulus of resilience’ 

was used as a measure of a materials ability to withstand severe conditions 

(Hollnagel, 2014). ‘Resilience’ is also applied within mechanics to refer to “the 

ability of a body or material to return to its original state after being altered, due 

to the potential energy that has been stored through modification from a previous 

state” (Pizzo, 2015). 

The term rose to contemporary prominence in hazard management after 

discussion by C.S. Holling in a 1973 paper on the resilience of ecosystems 

(Holling, 1973). In this paper, Holling defines resilience as “a measure of the 

persistence of systems and their ability to absorb change and disturbance and 

still maintain the same relationships between populations or state variables”. 

Since this point the term resilience has been adopted by a wide range of 

disciplines, from business planning to social science, and the precise nature of 

what resilience is and how it should be applied is now subject to extensive 

contemporary academic debate (Aldunce et al., 2015).   

Each discipline has adopted the term with slight variations from the original 

definition, resulting in a noted lack of consistency and confusion in the application 

(Klein et al., 2003; Gallopín, 2006; Folke et al., 2010; Schelfaut et al., 2011). This 

range of applications and diverging development has led to an extensive set of 

definitions which is often characterised as diluting the meaning of the term 

towards that of a buzzword (Muller, 2007; Lhomme et al., 2013; Linkov et al., 

2014). This results in difficulty operationalising the ideas behind the term 

(Schelfaut et al., 2011). However, this wide range of approaches also provides 
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an opportunity for lessons learnt and experiences gained across various fields to 

be translated into the field of engineering.  

This section of the literature review will explore the pre-eminent narratives 

regarding resilience found in the contemporary cross-disciplinary academic 

literature. The objective of this is to synthesise theoretical discussion, identify key 

messages and ascertain a workable definition which can be used to 

operationalise the term in surface water management.  

2.4.1. Defining the term ‘resilience’ in water engineering 

As with many other disciplines, there is ongoing debate within the field of 

engineering as to the definition of resilience and how this can be operationalised 

to form a useful, actionable and measurable outcome (Aldunce et al., 2015; 

Pizzo, 2015).  

Hashimoto et al (1982) identified that traditional performance metrics for water 

systems, such as reliability, typically relied on measures of the mean and 

standard variance of a systems operational behaviour which would obscure the 

impacts of extreme events. The study recognised that in many cases the most 

important aspects of water system operation were during infrequent extreme 

events where failure could lead to significant negative consequences for 

populations. Hashimoto proposed a three component measure named ‘RRV’ 

which included reliability (likelihood of failure), resiliency (speed of recovery) and 

vulnerability (magnitude of consequences).  RRV has principally been applied in 

the analysis of water distribution reservoirs but is currently limited to application 

assessing relatively simple systems (Fowler et al., 2003; Kjeldsen and Rosbjerg, 

2004; Wang and Blackmore, 2009).  

A similar approach was adopted by Moy et al (1986), where the maximum time 

duration of failure was used as resilience. These studies were predominantly 

focused on reservoir operation where failure duration was of paramount 

importance. The focus on failure duration implies that short failures are 

insignificant, however in practice a short failure may still have a large magnitude 

and therefore a large consequence. Surface water management studies indicate 

that flood damage costs tend to be linked to peak depth rather than peak duration, 

as inundation is typically fast acting but short lived (Penning-Rowsell et al., 2010); 
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However, the concept of assessment based on peak rather than mean flood 

depth remains applicable. 

One prominent characterisation of resilience is presented by Fiksel (2003, 2006), 

in which resilient systems are shown as to retain functionality over a wide range 

of possible system states, therefore meaning that the system is likely to operate 

more effectively during a disturbance. Resilience is contextualised as an 

alternative to traditional resistant systems, which are designed to recover quickly 

from a perturbation within a narrow band of tolerance, but cannot to operate under 

a wide range of conditions (Figure 2.1). Fiksel also presents a resilient system 

with multiple equilibrium points, a concept related to ecological systems where 

the balance between components can shift, this will be further explored in Section 

2.4.3. 

 

Figure 2.1: Examples of system behaviour (Fiksel, 2003) 

Operation across a range of conditions is supported by Butler et al (2014, 2016) 

who indicate the role of resilience as a methodology to reduce the impacts from 

unexpected events, beyond an everyday level of service. This relationship is 

presented in Figure 2.2 which develops a conceptual model indicating that 

resilience accommodates unexpected high magnitude/ low probability events 

falling outside of normal planning policy, which is covered by reliable system 

design (Section 2.3).  

The ‘Safe and SuRe’ (Safe, Sustainable & Resilient) project provides a definition 

of resilience which includes the concept of managing exceptional conditions by 
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defining the term as: “The degree to which the system minimises level of service 

failure magnitude and duration over its design life when subject to exceptional 

conditions” (Butler et al., 2014). The definition is also expressed within Butler et 

al (2014) as: 

Resilience = min (failure: magnitude, duration)  Equation 2.2 

This creates a quantitative measure of resilience which encapsulates the 

concepts of managing extremes through reducing magnitude and bouncing back 

by minimising the duration of failures. The Safe and SuRe project specifies 

resilience as general or specified. General resilience is the ability of a system to 

as minimise failure to all threats. Specified resilience is the ability of a system to 

minimise failure to a particular threat based on an operational goal. Specified 

resilience can be represented graphically through its relationship between 

consequences and level of service (Figure 2.3). 

 

 

Figure 2.2: The relationship between reliability and resilience (Butler et al., 2014) 

The Safe and SuRe project also discusses resilience in terms of properties and 

performance. A property may contribute towards resilience, but does not fully 

determine whether a system is resilient. Properties may include factors such as 

connectivity, reliability, resistance, redundancy and adaptability (Cabinet Office, 

2011). Resilient performance is the emerging behaviour of the system as a result 
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of a combination of properties. Confusion regarding this concept is common 

within literature (Butler et al., 2017). To understand resilience it is crucial to 

measure performance, rather than summarising properties which may not 

accumulate to a desired outcome. 

 

 

Figure 2.3: Specified resilience to a determined service level (Butler et al., 2017) 

2.4.2. Measuring resilience in water engineering 

A long-standing critique of resilience science has been a lack of operational and 

quantitative application of theories (Aldunce et al., 2015). This is of particular note 

in complex systems, such as surface water management in cities. This section 

will outline flood resilience measurement techniques from academic literature. 

Several studies have compared stormwater interventions, although rarely in the 

context of resilience (Section 2.2). Lamond et al (2015) conducted a systematic 

literature review, describing a range of SUDS in detail and summarising 

applications where each was likely to be most effective. The study concluded that 

the application of SUDS attributes increased urban resilience, but the research 

did not expand analysis into a quantitative assessment.  

The CORFU project (COllaborative Research on Flood resilience in Urban areas) 

(Djordjević et al., 2011) quantifies the cost effectiveness of flood reliability and 

resilience interventions across eight case study cities including Barcelona, 

Beijing, Dhaka, Hamburg, Mumbai, Nice, Seoul and Taipei. The study 
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incorporated a range of flood hazards, and was not focused on surface water. 

Cost analysis was achieved using hydraulic models coupled with GIS and flood 

resilience was measured using an index (Batica et al., 2013). Assessment was 

conducted at a strategic city scale, with flood hazards simulated using a range of 

industry standard 2D models. Flood resilience assessment was made through 

assigning scores to natural, physical, social, economic and institutional 

dimensions of resilience at different scales. Scores ranged from zero (very low, 

not available) to five (high, requirements fully provided). Scores were assigned at 

building and city scales, repeated across a range of events and weighted to 

accumulate an index score. The study acknowledged the subjectivity of the 

scoring and weighting system, leaving a gap in research for a quantified and 

operational measure of resilience, such as economic cost, across events. 

Related research was undertaken by Hu and Khan (2013), who developed a ‘five 

layer framework’ to assess resilience. This framework was created to assess city 

level resilience by including ‘five dimensions of resilience’: reflect, resist, relief, 

response and recovery. Each dimension was linked to a time period before, 

during or after an event and measured through a range of indicators. This 

approach relies on scoring each indicator, rather than on an objective measure 

(i.e. economic cost of failure). The framework has been used in conjunction with 

city growth models applied to a qualitative assessment of Dhaka’s resilience and 

planning processes. 

The Safe and SuRe project (Butler et al., 2014, 2017) has developed a framework 

which links threats through to the consequences (Figure 2.4). This splits analysis 

of a system into four components and identifies opportunities for actions between 

each component as: mitigation, adaption, coping and learning. 

The project has proposed a definition for resilience which allows a quantification 

of resilience in a practical setting by measuring the failure magnitude and duration 

during extreme events (Section 2.4.1). This approach has been applied to a range 

of challenges, including:  wastewater treatment (Sweetapple et al., 2014, 2017), 

water distribution (Diao et al., 2016), urban drainage (Mugume et al., 2015) and 

flooding (Casal-Campos et al., 2015). 
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Figure 2.4: The Safe and SuRe Framework (Butler et al., 2014, 2017) 

As of yet this research has not been applied to assessing surface water flooding 

interventions. The closest this assessment style has come to investigating urban 

drainage is the global resilience assessment method applied by Mugume et al 

(2015). This approach studied a 1D sewer network and used flood cones to 

represent surface flood volume (Section 2.2.2). This approach accommodates a 

wide range of threats which lead to urban flooding by examining pipes (links) in 

an urban drainage system. The method moves away from hydraulic engineering 

approaches which rely on computational modelling to predict causes of threats 

by instead focusing assessment on a ‘middle state’ analysis which examines the 

effects, rather than cause and probability, of system failure. Middle state analysis 

accommodates uncertainties and unknown causes of failure which cannot always 

be quantified (Stirling, 2010; Bond et al., 2015). Link failure permutations are 

applied to identify changes to system performance when one or multiple pipes 

fail, irrespective of probability, allowing analysis to build up an understanding of 

functionality for all hazards. From this analysis a resilience index describing 

residual functionality can be constructed. Similar approaches have been 

undertaken in highways emergency planning and are referred to as multiple 

centrality assessment (Porta et al., 2008).  

Recent developments of this approach by Sweetapple et al (2018) have 

developed this into a standalone analysis tool, however this is only applicable to 

simplified systems such as pipe networks, and cannot accommodate the spatial 

complexity and computational resources required to examine surface water 

flooding. A similar middle state analysis was undertaken by Lhomme et al (2013) 
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who applied GIS methods to assess flooding on road networks in New Orleans. 

These approaches focus on failure of a network (middle state analysis) rather 

than the reasons for failure and as such are able to accommodate unknown 

failure mechanisms within an assessment  (Bond et al., 2015). However, global 

resilience analysis approaches have two common limitations: they are only 

suitable for application across a well-defined network (i.e. pipes, roads); and 

methods output resilience indicators such as connectivity and centrality which are 

not directly communicable to a wide range of stakeholders. Furthermore, by 

focusing analysis on a network and gauging resilience through connectivity 

measures, the most significant determinant of resilience is the structure of the 

network itself. Restricting the scope of analysis to the network means that 

interventions which may have an impact outside of a network cannot be included 

within analysis. Spatial disaggregation of complex urban surfaces are difficult to 

represent using this approach, so alternative approaches are best suited to 

modelling surface water flooding.  

Although not applied to storm water, Hashimoto et al (1982) developed a three 

component measure which included resilience (RRV, Section 2.4.1). This method 

has predominantly been applied in the measurement of water supply systems 

(Fowler et al., 2003; Kjeldsen and Rosbjerg, 2004). The RRV (reliability, resiliency 

and vulnerability) method considers both failure duration and consequence, 

therefore shows parallels to the resilience formulation derived as part of the Safe 

and SuRe project (Butler et al., 2014, 2017). 

The FREEMAN (Flood Resilience Enhancement and Management) project 

(Schelfaut et al., 2011) is a general flood resilience project aiming to bring flood 

resilience into practice. The study focuses on governance requirements to 

achieve resilient systems, highlighting the need for institutional interplay, flood 

management tools and improved risk communication. The paper outlines these 

factors in relation to several flood management case studies, but does not expand 

to discussing how resilience can be implemented or improved in practice. This is 

similar to many other studies which adopt similar high level and qualitative 

assessments of resilience (Hu and Khan, 2013; Restemeyer et al., 2013; 

Hollnagel, 2014; Kaklauskas et al., 2014). This subset of literature provides a 

general discussion of the properties of resilient systems, but does not connect 

these through to the performance of specific intervention strategies. 
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System dynamics (SD) modelling has also been used to quantify resilience to 

general flooding. Gotangco et al (2015) used SD to quantify household resilience 

to flooding in Manila in response to a gap in literature regarding the quantification 

of resilience (Cutter et al., 2010; Bruneau et al., 2012). A systems dynamic model 

developed by Simonovic and Peck (2013) is proposed and applied as a solution 

to this. Relationships are visualised though a SD model template and resilience 

is measured through a subjective scoring based framework. The main advantage 

of this approach is system dynamics ability to test leverage points within a 

system. This work shares similarities with previous SD resilience models in that 

it is intended to be descriptive rather than predictive, therefore applicable to 

exploring system behaviour rather than simulating the effects of specific 

interventions. 

The challenge of predicting and optimising scenarios to develop resilient water 

infrastructure is addressed by contemporary literature regarding decision making 

under deep uncertainty (DMDU). This work measures resilience through 

evaluating strategy behaviour in response to changes, rather than a historic 

paradigm of predicting and intensively modelling system response to a likely 

outcome (Babovic et al., 2018b). DMDU achieves this through focusing analysis 

on many possible scenarios and interventions to characterise a systems 

response to an increasing stress, for example increasing rainfall intensity. A key 

element of a robust DMDU analysis is inclusion of a wide range of scenarios 

through many simulations (Lempert et al., 2013; RAND, 2013), which requires 

consideration of the trade-off between computational complexities of modelling 

versus the detail required for effective decision support. The appropriate level of 

this trade-off is subject to current academic discussion and is context specific, but 

literature suggests that in practical terms it is best achieved through ongoing 

stakeholder engagement.  

Resilience is also evaluated through exploring indicators representing desired 

system properties. For example, Kaźmierczak and Cavan (2011) apply analysis 

of 26 indicators to assess the vulnerability of populations to flooding. The study 

only identifies broad interventions, such as promoting property level flood 

protection, but highlights the need for future analysis to tailor interventions to 

spatial variation in land use and housing. Other studies such as the Cabinet Office 

(2011) report on critical infrastructure resilience, the UKWIR (2013) good practice 
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guide for resilience planning and Bahadur et al's (2013) study characterising 

resilience, all follow a similar approach by measuring resilience based on system 

characteristics. These studies prioritise installing measures which promote 

properties such as ‘high intervention diversity’, ‘recovery’ and ‘inclusion of local 

knowledge’ However, methodologies focused on system properties only assess 

proxy measures of resilience through subjective scoring, rather than evaluating 

the emerging performance of specific strategies (Butler et al., 2014). As such, 

there remains a need for new quantitative approaches capable of measuring 

system and intervention performance. 

Many other studies propose flood resilience assessment through frameworks. 

These are typically generalist and are therefore are attributable to a range of 

contexts, including surface water management. Examples of frameworks include: 

Resilience of the built environment (Hollnagel and Fujita, 2013; Hollnagel, 2014); 

reliability, resistance, recovery and response framework (Cabinet Office, 2011; 

Ofwat, 2012); flood resilience assessment using the service risk framework 

(Conroy and Webber, 2013); regional resilience framework (Foster, 2006); 

resilience-vulnerability of urban areas (Romero Lankao and Tribbia, 2009); flood 

resilience of cities (Restemeyer et al., 2013); the resilience thermometer 

(Kaklauskas et al., 2014); and, resilience of critical infrastructure (Labaka et al., 

2016). None of these frameworks have been applied to surface water 

management or intervention evaluation. 

Evaluation of existing literature regarding measuring resilience in the field of 

water engineering indicates that current approaches deliver strong 

methodologies for measuring simple water systems, for example global resilience 

analysis for pipe networks, however there is currently a lack of operational 

assessment for more complex surface water management. Where studies do 

assess surface water management these tend to evaluate resilience through 

describing intervention properties, rather than performance. This is typically 

undertaken through qualitative descriptions or indices aimed at a limited niche 

application. Consequently, a gap exists regarding quantitative assessment and 

comparison of intervention performance during extreme events. Work in this area 

has been undertaken by the Safe & SuRe project (Butler et al., 2014, 2017), 

however this has only limited application to surface water flooding (Casal-

Campos et al., 2015; Mugume et al., 2015). 
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2.4.3. Lessons learnt from resilience applied across other fields 

Resilience is a broad term applied across many disciplines (Aldunce et al., 2015; 

Pizzo, 2015). Although these are not the focus of this project it is important to 

frame resilience in regard to its wider application, highlighting where additional 

benefit can be achieved through transferring knowledge to the field of engineering 

and surface water management. This section of the review will explore the pre-

eminent resilience narratives from the fields of ecology, organisational planning 

and urban planning. It should be noted that resilience is also commonly cited in 

many other fields, however the disciplines discussed here are most relevant to a 

thesis evaluating surface water management. 

Ecological resilience 

Much of the discussion of resilience within academic literature is influenced by 

Holling’s 1973 paper, ‘resilience and stability of ecological systems’ (Holling, 

1973). Holling frames resilience in relation to two types of system behaviour, 

stability and resilience. Stability is defined as the “ability of a system to return to 

equilibrium after a temporary disturbance” and emphasises minimising fluctuation 

and enhancing a rapid return to a desired system state following system failure. 

Maintenance of a pre-determined equilibrium in a predictable world has 

similarities to engineering resilience, which is grounded in minimising failure by 

preventing movement from a desired fixed state or performance goal (Vis et al., 

2003; Butler et al., 2014; Linkov et al., 2014; Pizzo, 2015). Ecological resilience 

instead concentrates on maintaining relationships and basic system states during 

change. Holling defines resilience as a “measure of persistence of systems and 

of their ability to absorb change and disturbance and still maintain the same 

relationships between populations or state variables”.  

The concept of ‘maintaining relationships between populations or state variables’ 

is easily applicable to an ecological context due to the constantly shifting dynamic 

equilibrium in which populations and ecological systems exist. It is straight 

forward to imagine one population changing in response to a disturbance and this 

cascading across other variables within a system, ultimately leading to a shift in 

equilibrium but a relatively unchanged system function. An example of this is 

Kolmogorov’s predator prey relationship model (Hoppensteadt, 2006): Simply 

explained, growth in the prey population will cause a spike in the predatory 

population, resulting in a subsequent decline in the prey population and a 
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corresponding drop in the predatory population until the lack of predators allows 

the cycle to repeat. The population of both predators and prey are therefore in 

dynamic equilibrium. Expanding the scope of the equilibrium by including 

relationships across a whole ecosystem demonstrates how ecological systems 

with adaptable populations can fluctuate in a dynamic equilibrium. It is also 

possible for sudden shifts to dramatically change an established trend of 

fluctuations and shift the equilibrium into a new regime, for example due to the 

inclusion of a new predator (Scheffer et al., 2001), representing a threshold over 

which the system loses stability (Steffen et al., 2007; Rockström et al., 2009). 

Systems can be robust to certain frequent disturbances, and very fragile to 

infrequent threats, this is referred to as ‘highly optimised tolerance’, and draws 

parallels with design standard planning in engineering practice (Folke et al., 

2010). 

This description of a system works well in the context of ecological systems 

consisting of fluctuating populations, however the change in relationship is hard 

to apply to an engineering system where components generally operate in one of 

two states: function or fail. One way of conceptualising this would be to imagine 

a fixed ‘digital’ level of function in an engineering system (the system functions or 

fails) compared to the ecological ‘analogue’ diversity in system components. 

Consequently there remains a distinction between ecological resilience (adapting 

function to accommodate disturbance) and engineering resilience (rapidly 

recovering from a disturbance) (Walker et al., 2004; Butler et al., 2014). This 

difference is emphasised by literature which highlights that ecological systems 

are in a state of constant flux and do not return to the stable equilibrium, which is 

the goal of engineering resilience (Pickett et al., 2004). This is characterised by 

Davoudi et al (2012) as bouncing back (engineering) versus bouncing forth 

(ecology). Recent research has applied bouncing fourth within engineering 

through implementing anti-fragility in urban water systems, representing a 

paradigm whereas systems evolve following disturbances (Babovic et al., 2018a). 

Despite the delimitation between definitions it is arguable that water engineering 

should adopt aspects from both engineering and ecological approaches in order 

to maximise the benefits of adopting a resilience based approach. Holling 

emphasises that ecological resilience can be achieved through recognising 

ignorance, ambiguity and uncertainty in decision making and ensuring the ability 
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to facilitate adaptive management through keeping options open (Holling, 1996). 

This concept is applicable to surface water management through designing 

interventions which can be gradually added to a system, in a way analogous to 

the adaption in ecological systems. Surface based green infrastructure can 

provide this adaptive capacity through facilitating an incremental surface water 

management pathway whilst avoiding costs of predicting future infrastructure 

requirements for increasing the size of subterranean sewer networks (Kunapo et 

al., 2018; Lu et al., 2018). This level of analysis requires modelling capable of 

simulating performance of many future interventions and scenarios. 

Another key message from ecological literature is the inherent resilient properties 

of decentralised systems, capable of managing failure of an individual component 

through heterogeneity (Holling, 1996). From an ecological perspective, this 

results in strategies aimed at maintaining many populations which can fulfil similar 

function, for example a rich species diversity. From an engineering perspective 

this can be translated to many interventions which operate independently across 

a catchment, so system function can be continued in the case of individual 

components (interventions) failing. 

The ecological approach offers important lessons which can be adapted into an 

engineering approach: Namely evaluating system response to infrequent 

hazards, encouraging heterogeneity through evaluating novel interventions and 

investigating the effect of distributed solutions. A limitation of ecological resilience 

is that application is broadly theoretical, with little possibility of a general practical 

application. Over time this has been compounded with a fractured narrative, 

which diverges from Holling (1973) by subtly altering definitions and approaches. 

Multiple sub-meanings are embedded into definitions of resilience, making them 

unworkable and unclear (Cutter et al., 2010; Prashar et al., 2012; Pizzo, 2015). 

Where frameworks are developed they are typically qualitative and based on 

properties or a question-answer process with no consideration of enumerating 

option scores to assist decision making (Walker et al., 2004; Gallopín, 2006; 

Folke et al., 2010). This trend is similar to that observed in other disciplines and 

as such adds weight to the argument that actionable and quantifiable resilience 

approaches need to be implemented. 
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Organisational resilience 

Although not a specific ‘discipline’, there is a wide body of literature which links 

resilience to organisational and governance strategies. This body of literature 

focuses on the importance of establishing management processes to embed 

resilience within decision making (Adger, 2000). Organisational resilience 

occupies an extensive body of literature, not all of which is relevant for this 

project, therefore this section contains relevant highlights and trends from 

research where useful lessons can be applied to surface water flood 

management. 

The Resilience Alliance, an organisation of academic institutions which promotes 

resilience in socio-ecological systems suggests four steps to include a resilience 

approach within management (Walker et al., 2002, 2004; Bond et al., 2015): 

 Establish key system attributes through stakeholder engagement.  

 Identify drivers through stakeholder engagement and expert vision. 

 Undertake quantitative resilience analysis. 

 Evaluate management and policy implications of findings. 

The Resilience Alliance process emphasises the need to bring stakeholders 

together and clearly communicate options (and associated uncertainties) to 

develop resilience enhancement strategies. This integrated vision focuses on 

keeping options open for participatory management in light of uncertainties 

associated with long term planning. This approach can be translated into surface 

water management through assessment of many scenarios and engagement 

regarding a range of intervention options.  

Brown and Farrelly (2009) conducted an analysis of 53 studies to the barriers of 

delivering sustainable urban water management. The authors reinforce the 

messages from the Resilience Alliance through highlighting a requirement for 

future urban water management policies to include adaptive, co-ordinated and 

participatory approaches to overcome socio-institutional barriers in water 

management. In particular, the study calls for co-ordination between multiple 

stakeholder organisations, which can be achieved through transparent 

communication of uncertainties and management options (Jabeen et al., 2010; 

Lopez-Marrero and Tschakert, 2011). 
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Resilience assessment within organisational management is typically qualitative, 

with studies structured through discussion of the merits of multiple scenarios 

(Romero Lankao and Tribbia, 2009; Wardekker et al., 2010; Gómez-Baggethun 

et al., 2012; Watts et al., 2012; Kaklauskas et al., 2014). Scenarios allow analysis 

of possibilities through stakeholder and expert engagement and can 

accommodate uncertainty in long term decision making through discussing a 

wide range of possible scenarios. In most instances scenarios are built up 

through expert discussion and tailored to specific situations (Gómez-Baggethun 

et al., 2012; Watts et al., 2012). However more general scenario building has also 

been undertaken where constructed instances are applicable to a broad range of 

themes (Kaklauskas et al., 2014; Casal-Campos et al., 2015).  

A conclusion that can be drawn from this literature is that communication of 

interventions is a crucial part of decision support towards resilience. Effective 

communication strategies are found to consist of a variety of methods including 

geospatial representation and stakeholder engagement (Foster, 2006; Jabeen et 

al., 2010; Wardekker et al., 2010; Lopez-Marrero and Tschakert, 2011; Scolobig 

et al., 2015).  A common thread from this body of work is that studies endorse 

the concept of increasing resilience but are largely theoretical. Studies typically 

present broad, non-specific and qualitative frameworks which are unsuitable for 

detailed decision support. Developing specific actions using qualitative or semi-

quantitative subjective scoring methods can propagate institutional inertia or bias, 

rather than developing new and effective interventions (Marlow et al., 2013). As 

such it is crucial that resilience frameworks enable stakeholder participation and 

communication through quantitative analysis of interventions. 

2.5. Chapter conclusions 

This chapter has responded to Objective Two through evaluating the techniques 

applied for comparing surface water flood management intervention performance 

across design and extreme events in urban catchments. The main message from 

this chapter is that a current gap exists regarding methodologies to screen the 

many possible interventions and scenarios which should be considered for 

reliable and resilient surface water management. This message can be broken 

into four key findings: 
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 Comparison and selection of interventions can be undertaken using a wide 

range of qualitative and quantitative approaches, however a trade-off 

exists between fast but low resolution methods, which are not suited to 

support decisions requiring a spatial understanding of intervention 

hydrology, and high resolution but computationally intensive flood 

simulations, which are not suited to support decisions requiring analysis of 

many scenarios.  

 New approaches, such as cellular automata flood models, provide an 

opportunity to enhance consideration of potential strategies through 

evaluating the many permutations of intervention type, scale and 

distribution possible in urban catchments. Despite documented speed and 

accuracy of these techniques, relatively recent development of the 

technology means application to surface water management is currently 

limited to coarse resolution modelling over large catchments, rather than 

applying efficiency towards analysis of many scenarios and interventions. 

 Design standard planning cannot accommodate residual risks caused by 

extreme events, particularly given future threats of climate change, 

urbanisation and population growth; therefore future resilient surface water 

management is required. 

 Current inclusion of resilience within flood management (and wider 

literature) tends to be applied through qualitative frameworks or specific 

niche applications. Although current research is addressing quantitative 

resilience measurement, for example deep uncertainty frameworks and 

global resilience analysis, gaps remain regarding application of actionable 

and quantitative resilience planning encompassing failure magnitude and 

duration during extreme events in ways which are easily communicable to 

stakeholders. 

The next chapter in this thesis will develop a framework to evaluate interventions 

in response to the gaps identified within current literature. The framework is 

based around a capability of quantitatively assessing flood dynamics of 

intervention strategies across a wide range of scenarios, encompassing design 

standard and extreme events.  
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3. DEVELOPING A RAPID SCENARIO SCREENING FRAMEWORK  

This chapter responds to Objective Two: ‘Develop a screening framework to 

enable assessment of many intervention scenarios at the urban catchment scale’. 

In response to the research gaps identified within the literature review, this 

chapter develops a framework to screen many surface water flood management 

scenarios and develop strategic evidence which can later be applied to steer 

detailed design. The novelty of the framework lies in its capacity to quantitatively 

assess hundreds of intervention scenarios whilst retaining a simulation of high 

resolution flood dynamics. 

This chapter presents an overview of the framework, the fundamental science of 

the underlying flood models and the requirements for implementing each step in 

the process. This framework forms the methodology for intervention assessment 

applied later in this thesis. 

Research presented within this chapter is published in: ‘Rapid assessment of 

surface water flood management options in urban catchments’ (Webber et al., 

2018a) and ‘Rapid surface water intervention performance comparison for urban 

planning’ (Webber et al., 2018d). 

3.1. Framework structure 

The framework prioritises easily accessible data and utilises a computationally 

efficient surface water routing model, capable of generating results to steer 

further investigations at a low resource cost. Fast data entry and processing 

speeds are achieved through simplification of land use and intervention 

characteristics, alongside clear performance metrics. 

The framework (Figure 3.1) is split into four steps: characterise study area, 

represent intervention scenarios, simulate scenarios and assess intervention 

performance. The data requirements and actions within each of these steps are 

detailed in subsequent sections of this chapter. 
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Figure 3.1: Framework for surface water intervention assessment 

3.1.1. Scope of framework 

Engineering research has the potential for direct translation from science to real 

world application and benefits. A framework responding to the need for enhanced 

catchment screening requires implementation using data likely to be available at 

the early stages of a design project, where screening takes place; therefore, 

processes and data sources applied in this research are intended to be applicable 

using accessible data and low processing requirements (Mikovits et al., 2015; 

Löwe et al., 2017). 

Accessible data are classified as sources which would commonly be freely 

available to a UK researcher or consultant. These formats are typically available 

through open source products, project partner databases or educational licenses. 

Where processing is required, it is intended that this should be applicable quickly 

and using methods possible through commonly available software, such as GIS. 

Catchment and intervention screening may be undertaken in a variety of contexts, 

therefore it is important that each stage of the framework is adaptable to data 

sources applied at a range of resolutions, depending on the purpose of each 

Characterise study area 

Represent intervention scenarios 

Assess intervention performance  

Simulate scenarios  
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study. Specific data requirements and processing steps are described in detail in 

corresponding sections of this chapter. 

It should be noted that the intention of this research is to generate a screening 

process to support, and not replace, requirements for detailed hydro-dynamic 

modelling. Fast implementation of the framework requires assumptions and 

simplifications in representing several physical processes commonly required for 

detailed design. This is a fact with all modelling tools, which can only ever provide 

a simplified version of reality to generate answers for specific purposes, 

supported by the frequently cited aphorism “all models are wrong, but some are 

useful” (Box, 1976). All assumptions are detailed within this chapter, and their 

effects are examined in Chapter Four, which validates the framework described 

here.  

3.1.2. Framework modelling architecture using the CADDIES flood 

simulation model 

Requirements for the framework are informed by the input data types of the 

underlying flood model applied, therefore it is important to introduce this model 

before outlining each stage of the setup. Section 2.2.2 outlines the potential 

advantages of urban flood modelling using cellular automata. In response, the 

framework utilises the ‘Cellular Automata Dual-DrainagE Simulation’ (CADDIES) 

model for flood simulation (University of Exeter, 2017). This section explains the 

underlying assumptions and mathematical basis of this novel modelling approach 

to enable the reader to understand how the framework has been structured. 

CADDIES is a cellular automata based surface water modelling tool developed 

at the Centre for Water Systems, University of Exeter (Ghimire et al., 2013; 

Guidolin et al., 2016; University of Exeter, 2017).  The model uses a regular 

square grid based cellular automata system to rapidly simulate overland flow. 

This avoids the computational cost of solving complex hydrodynamic equations 

via application of simplified cellular automata transition rules, resulting in 

increased computational speed versus traditional modelling techniques (Gibson 

et al., 2016; Guidolin et al., 2016). Utilisation of regular grids is well suited to 

execution across parallel and multiple core systems, leading to potential further 

increases in computational speed when applied using a GPU. When combined 

with high resolution 1D LiDAR the model is able to accurately simulate flow within 

an urban catchment (Gibson et al., 2016). 



76 
 

It should be noted that the CADDIES model has been developed prior to this PhD, 

however it has not previously been applied for rapid scenario screening in surface 

water flood management. The novel contributions made within this thesis arise 

from application of the existing CADDIES model as a component within a novel 

screening framework. Specifically, novelty is achieved through developing and 

applying a methodology to represent interventions through parameterising cells 

within the existing 2D cellular automata modelling structure; and through novel 

application of the framework as an option screening tool to evaluate many 

simulations and develop new insight into intervention performance across design 

standard and extreme rainfall.  

The next section of the thesis describes the underlying science which has 

previously been published in order to provide context and background to support 

the novel developments described throughout the remainder of the thesis 

(Ghimire et al., 2013; Guidolin et al., 2016; University of Exeter, 2017). 

Governing equations applied in CADDIES 

Figure 3.2 presents the modelling architecture applied in CADDIES. The model 

utilises a cellular automata across a regular rectangular grid. Movement is 

controlled by routing water between neighbouring cells using a Von Neumann 

neighbourhood (Von Neumann and Burks, 1966; Guidolin et al., 2012). A Von 

Neumann neighbourhood allows water to travel between linked cells in four 

directions, north, east, south and west (Figure 3.2). 
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Figure 3.2: CADDIES model architecture (Webber et al., 2018d) 

The model is simulated through a series of time-steps. At each model time-step 

a transition rule is applied to specify water movement between cells in each 

neighbourhood.  The transition rule is applied in series of steps, outlined below. 

The first calculation at each time step determines the water level in each cell by 

adding input and subtracting output volumes from the current cell volume (Figure 

3.2).  

The direction of movement is then determined by ranking water levels within the 

neighbourhood on a cell by cell basis. Only the outflow from the central cell is 

considered, this provides the advantage of being able to calculate each cell 

independently, thus saving time versus traditional shallow water (St Vennant) 

equations which require solution of partial differential equations. Water can move 

in multiple directions where the water volume in the source cell is larger than the 

free space in multiple neighbouring cells (Figure 3.3). Every cell is evaluated to 

calculate flow directions across the entire model domain. Analysis on a cell by 

cell basis also presents the opportunity to efficiently parallelise computational 

implementation on a GPU (Gibson et al., 2016). 

 

Figure 3.3: Ranking cells and calculating ‘free volume’ to determine the direction 

of water movement (Ghimire et al., 2013) 
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Water volume flux is controlled by water volume in the source cell distributed 

according to the ranking identified in Figure 3.3. This assumes that cells will only 

receive water from neighbours with a higher water level and that cells will reach 

equivalent water levels within the surrounding neighbourhood. 

Simulation resolution is controlled via a time step, specified as a function of water 

velocity. The simulation time step specifies the frequency of calculations within 

the simulation. Time steps are controlled by an equation which relates the length 

of a cell and maximum velocity of runoff to the required number of calculations 

per second. 

∆𝑡 =  
∆𝑙

𝑣𝑚𝑎𝑥
 ×  𝛼                                Equation 3.1 

Where t is time-step (s), vmax is maximum velocity (m/s) and α is dimensionless 

scaling factor. 

Smaller time steps capture flow movement more frequently and are required 

when calculating fast moving flows. Small time steps increase the number of 

calculations required within a simulation and consequently lead to a decrease in 

model speed. Larger time steps increase the speed of simulation through 

reducing the number of calculations and are appropriate where velocity is low 

relative to the length of the cell for which it has to travel.  

Water velocity is controlled within each cell by Manning’s and critical flow 

equations, i.e., Equations 3.2 and 3.3 respectively (Butler et al., 2018). Water 

movement is limited by a transferrable volume, calculated as the minimum of the 

total volume in the source cell and the total free volume available in a receiving 

cell (Ghimire et al., 2013). 

𝑣 =  
1

𝑛
 𝑅

2

3 𝑆0

1

2                                          Equation 3.2 

Where v is velocity (m/s), n is Manning’s roughness coefficient (s/m⅓), R is 

hydraulic radius (m) and S is hydraulic slope (-).  

𝑣𝑐 = √𝑔𝑑                                     Equation 3.3 

Where vc is critical velocity (m/s), g is gravitational acceleration (m/s2) and d is 

water depth (m). 
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Combining Equations 3.2 and 3.3, the CADDIES velocity is calculated as 

(Ghimire et al., 2013):  

𝑣 = 𝑚𝑖𝑛 {
1

𝑛
 𝑅

2

3 𝑆0

1

2 , √𝑔𝑑}    Equation 3.4 

In the CADDIES implementation, the hydraulic radius is equal to the water depth 

and the slope is equal to the water surface elevation slope. 

Computational implementation of the CADDIES model 

Simulation is controlled using an input file which communicates the parameters 

and global settings required to run each simulation. Discussion of the framework 

structure requires an understanding of how inputs are communicated to the 

model. This section outlines the procedure and format of specifying parameters.  

The CADDIES model is implemented using four parameters which are used to 

calculate the water slope and time step, which in turn control the movement of 

water from and to cells. These parameters are elevation, input, output and 

roughness. Each of these parameters is specified on a cell by cell basis through 

parameter matrices. To save computational storage space, each parameter 

matrix contains codes which are indexed to a parameter value table; therefore 

implementation of each parameter requires a matrix, which specifies intervention 

type and location, and a value table, which specifies the exact value of each 

intervention. 

Parameter matrices are formatted as ‘.asc’ files. These files are a matrix 

composed of square cells. Each file specifies the co-ordinates (x and y), number 

of cells (x and y), cell size, a no data value (typically -9999) and a parameter 

index code for each cell in the matrix. Parameter value tables are formatted as 

‘.txt’ files which index parameter codes to values. Values can be fixed (elevation, 

output and roughness) or vary at defined time steps (input). 

Cell elevation is specified as a fixed value in m. The cell elevation is used to 

represent the surface of the model and is explained fully in Section 3.2.1. This 

parameter is used alongside cell input, output and water level to calculate water 

depth at the start of each time step. The elevation matrix is populated with values 

and, unlike other parameters, is not linked to a value table. 
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Cell roughness is specified as a fixed value in terms of Manning’s ‘n’ coefficient. 

This is used to represent different surface types and is applied within the 

CADDIES velocity equation to control the movement speed of water through the 

time step (Equation 3.4). Specifying cell roughness is explained fully in Section 

3.2.2. 

Cell output is specified as a fixed value in mm/hour. The cell output parameter 

represents the water leaving a cell in each time step and is used alongside cell 

elevation, water level and input to calculate water depth. Cell output is a sum of 

water removed through infiltration, the sub-surface drainage system, 

evapotranspiration and removal through interventions. Specifying components of 

the cell output rate are fully described in Section 3.2.2 (infiltration and 

evapotranspiration), Section 3.2.3 (drainage), and Section 3.3.1 (intervention 

effects). 

Cell input is specified as a value which can be manipulated temporally to provide 

a changing input rate across a simulation. This value is used alongside cell 

elevation, water level and output to calculate water depth. Cell input is primarily 

used to represent catchment rainfall, although the parameter can also be applied 

to represent the effects from watercourses and other inputs, such as burst pipes 

and pumping. Procedures used to specify the components of the cell input rate 

are described in Section 3.2.4 (rainfall), and Section 3.3.1 (intervention effects). 

Other parameters can be manipulated to control the speed, accuracy and outputs 

of the simulation. These are specified within the input file and are described in 

Section 3.4 of this chapter. 

Application of CADDIES within the framework 

The main advantage of the CADDIES model is fast assessment through efficient 

simulation which avoids the computational resource cost of solving shallow water 

hydro-dynamic equations. In turn this speed presents an opportunity to examine 

significantly more simulations than current standard techniques; therefore 

providing utility as an option screening tool, capable of evaluating many flood 

management scenarios. 

Simplified representation of parameters into four user specified values also 

presents a flood model which can be quickly set up through specifying a matrix 

and value table for each parameter. Parametrisation also provides possibility of 
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simplified representation of interventions to examine many effects within a single 

framework.  

Sections 3.2, 3.3 and 3.4 describe how the CADDIES model architecture is 

implemented for flood risk management through characterising the study area, 

representing interventions and running many simulations. 

3.2. Characterising study area 

The first stage of analysis is to setup a representation of the study area. The study 

area constitutes a baseline scenario which can be adapted in subsequent steps 

of the framework by adding rainfall, interventions and adapting catchment 

parameters develop additional scenarios. 

The study area consists of a computational representation of the key physical 

parameters which control surface water runoff across a catchment. Figure 3.4 

shows how the study area is built from four key components, including the macro-

topographical elevation profile of the landscape, the micro-topographical features 

such as buildings and roads and the characteristics of land use types. 

Representing the study area also includes identifying and specifying rainfall 

events to examine within analysis. 

 

Figure 3.4: Required steps to characterise the study area within the framework 

3.2.1. Representing the catchment elevation 

The principal controlling factor in surface water runoff is the accumulation of 

runoff across a catchment driven by gravity and controlled by catchment 
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topography. The topography is constituted of macro and micro features which 

channel flows across the surface (Figure 3.5). Macro-topographical features 

include the slope and elevation profile which control the broad scale of flow 

across landscape. In this study, macro-topography is defined as landscape 

features which are captured in an unprocessed input elevation model. Micro-

topographical features are constituted of smaller elements which may have 

significant local influence by acting as channels for runoff to concentrate and 

coalesce, in this study defined as features which are below the spatial resolution 

or not represented within an unprocessed input elevation model. The resolution 

of input models is changeable, depending on data availability and model purpose, 

therefore these terms are relative to the specific contexts of each particular model 

application or study. 

 

Figure 3.5: Representation of surface elevation using macro and micro 

topographical features 

Catchment macro-topography 

2D models specify macro-topography through digital elevation models (DEM’s) 

which describe the elevation of surfaces within a catchment. The surface is 

specified into components which can be reported at varying shapes and 

resolutions. The majority of commonly available DEM products specify elevation 

using a regular grid format divided into square cells, where the elevation within 

each cell is considered an equal and level surface. Data constituting elevation 

models is typically captured using aerial survey techniques such as LiDAR. Other 
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data capture methods such as manual surveys, photogrammetry or digitising 

existing mapping can also be applied in areas where specific small scale features 

need to be included or aerial surveys are unavailable. Accurate DEM’s from 

LiDAR surveys are available for 70% of England through the Environment 

Agency’s data archive and building footprints are available for the entirety of the 

UK through Ordinance Survey mapping (UK Government, 2017). High quality 

elevation data is commonly available from scientific or national data collection 

agencies in other countries (Hunter et al., 2007). 

An important distinction exists regarding DEM and digital terrain models (DTM’s). 

DEM’s are processed to only include the elevation of the bare earth surface, 

whilst DTM’s also include the elevation of features such as tree canopies 

(Podobnikar et al., 2000). When modelling runoff it is important to apply a DEM 

representing the ground level topography interacting with flows. 

Resolution of the DEM is controlled by the number and scale of cells used to 

represent a particular area. Large rural flood plains are often simulated using 

coarse resolution grids, defined as above 20 m by 20 m per cell (Dottori et al., 

2013) and may approach upwards of 100 m by 100 m per cell (Hunter et al., 

2007), whereas modelling of surface runoff in urban areas requires a much finer 

resolution to adequately represent the influence of surface features. Studies use 

a range of cell sizes, although any cells less than 2 m by 2 m are typically 

considered high resolution, this is also referred to as ‘very fine’ resolution (Dottori 

et al., 2013). It should be noted that, despite this definition, the application of 

these terms is inconsistent amongst the literature. When using high resolution 

data, vertical errors can be considered approximately 10 – 20 cm (Fewtrell et al., 

2011; Chen et al., 2012). 

Elevation for this framework is represented using a regular grid with a high 

resolution DEM containing cells less than 2 m by 2 m. This data is commonly 

available as a direct download and as such application of this format minimises 

required processing times. Data of this resolution is typically only available for 

developed countries, however the framework can still function using coarser 

resolution macro-topography, provided the trade-off between cell resolution and 

representation of urban flow paths is acknowledged. 
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Catchment micro-topography 

Recent studies indicate the high influence of small scale features on the 

movement of water across urban environments. Micro-topographical features 

include a range of items which will influence flow paths on a local scales, including 

drainage ditches (Bates et al., 2006), walls (Yu and Lane, 2006), fences (Mignot 

et al., 2006), road camber and kerbs (Fewtrell et al., 2011), buildings (Syme et 

al., 2004; Chen et al., 2012; Schubert and Sanders, 2012) and vegetation (Dottori 

et al., 2013). Changes in local flow conditions can have a significant impact on 

catchment flow dynamics so it is important to include these features within 

analysis. 

Micro-topographical features which have a particular significance in urban 

environments include buildings and the road network (Syme et al., 2004; Fewtrell 

et al., 2011; Chen et al., 2012; Schubert and Sanders, 2012; Dottori et al., 2013).  

Buildings can direct runoff around thresholds and so their effect can become 

significant across densely populated cities (Chen et al., 2012; Schubert and 

Sanders, 2012). Structures are typically the primary receptor of damage within a 

catchment and so need to be included within models. Buildings generate complex 

flow dynamics which vary with water depth and velocity depending on structural 

thresholds, integrities and internal composition (Mignot et al., 2006; Dottori et al., 

2013). Building threshold levels mean that shallow water is likely to flow around 

the edges of structures. Deeper flooding may enter a structure and either pond 

or flow through to another exit. The scope of a fast assessment methodology 

means it is impractical to individually survey each building, particularly over a 

large urban catchment, therefore complex flow dynamics associated with 

buildings have been included through raising the building threshold level or 

changing parameters within the structure to slow the flow of water (Syme, 2008). 

Roads also represent a significant conveyance mechanism for urban surface 

water (Fewtrell et al., 2011). During intense rainfall these are likely to act as 

channels for shallow flows which remain below kerb height. Other features such 

as ditches, railway embankments and walls may have a significant effect in 

particular urban areas (Dottori et al., 2013), therefore these items should be 

considered during the catchment screening process. 
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Processing steps 

Macro and micro-topographical inputs are processed to generate one file 

representative of the catchment surface. Processing is achieved using GIS to 

combine several layers representing macro and micro-topography. Literature 

highlights that accurate simulation of catchment runoff can be enhanced by 

combining these features (Hunter et al., 2008a). 

The DEM is used as the basis for the study area elevation model. The resolution 

of this format will vary depending on data availability. In the UK, DEM’s 

representing urban areas are typically available at a cell resolution of 1 m by 1 m. 

Significant micro-topographical features are then incorporated into the DEM 

through overlaying layers containing these features, typically shape files 

representing building and road outlines. Buildings are included through raising 

the elevation of cells within building boundaries. Roads are included through 

dropping levels in the DEM by the kerb height to create a slight channel along the 

road system. The exact level of elevation change depends on the characteristics 

of areas being evaluated. In certain cases elevations will not be changed at all, 

and instead land use characteristics within boundaries of micro-topographical 

features will be altered to reduce or increase flow velocities and generate 

preferential flow paths. 

Limitations  

Incorporating features smaller than high resolution modelling grids is a frequently 

reported challenge in 2D modelling (Dottori et al., 2013). Inclusion of features 

through DEM processing will capture feature effects and enable simulation to 

capture flood dynamics associated with them. However, this approach cannot 

take into account the full dynamics of the urban environment during intense 

rainfall, when micro-topographical features may change in response to high 

energy flows. Aspects of the urban environment which may be moved by high 

energy flows include vegetation, fences, soils and, in extreme cases, cars (Mignot 

et al., 2006). It is impractical to collect data or simulate these features within 

screening models, nevertheless this limitation should be recognised when 

assessing simulations.  

Practically, the most likely issue resulting from high velocity flows shifting features 

will be blockages to drainage system inlets. However, during flows of this 
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magnitude these inlets are likely to exceed capacity and so this limitation has to 

be accepted, yet acknowledged (Dottori et al., 2013). 

3.2.2. Land use classification 

Land use is specified as one of four components of representing a study area 

(Figure 3.6). Differences in land use characteristics across an urban catchment 

will influence water velocities, infiltration, drainage and evapotranspiration rates. 

Application of the CADDIES flood model includes representation of these 

influences by changing input, output and roughness parameters in model cells 

(Figure 3.2). The roughness parameter controls the velocity of flow across a cell, 

output removes water from a cell at a set rate, whilst input adds water to a cell 

surface at a set rate. Spatial adjustment of these parameters is used to simply 

represent the physical characteristics of land use and interventions. 

 

Figure 3.6: Representation of land use within the catchment 

Classification 

Land use is included within this framework through classifying each cell within a 

land use matrix and then indexing this matrix to a series of parameters describing 

the land use effect. The land use classification matrix is stored at the same 

resolution as the catchment elevation model. 

Although in practice many land use types can be assigned to a cell, a framework 

utility focused towards a fast setup and simulation time is developed through 
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assigning a relatively small number of land use types across a catchment. This 

creates a fast and simple classification using broad categories. 

Land use classification is achieved using GIS to categorise cells into a matrix 

which codes each cell depending on the predominant land use type. Land use 

formats are typically available as shape files, which can be converted into a grid 

based format, suitable for CADDIES, using a GIS raster creation function. This 

can be achieved at a variety of resolutions. Where shape files do not match with 

a desired raster grid cell during conversion, the dominant land use by area is 

applied to that cell. Land use for the UK is specified using OS master map data 

to define land use zones within the study area. Any other land use classification 

is suitable for input into the model, provided the format can be transformed onto 

a regular grid. For very broad classification schemes it is possible to do this 

manually using satellite imagery (i.e. Google Maps) or catchment imagery. 

Parameters associated with each land use type are indexed to communicate the 

roughness, input and output values to be applied to each cell. The exact number 

of categories will vary on a project by project basis, depending on the level of 

detail required for analysis. The following sub sections outline specification of 

each parameter. 

Roughness 

Cell roughness is used to calculate the maximum velocity of runoff through 

Manning’s equation (Equation 3.2), this is in turn used by CADDIES to set the 

required time-step, as described in Section 3.1.2. Roughness is represented 

using Manning’s coefficient ‘n’. Values for this coefficient can be attributed to land 

use types based on commonly accepted specifications found in the literature 

(Arcement Jr and Schneider, 1989; Hunter et al., 2007; Woods Ballard et al., 

2015; Butler et al., 2018). 

Parameter values are indexed computationally through a roughness value table, 

an example of which is shown in Figure 3.7. This figure contains each code used 

within the roughness matrix and its associated values. 
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Figure 3.7: Example roughness value index file from CADDIES 

Infiltration 

Infiltration rates of land surfaces are included within the framework through 

adjusting the output rates in cells. Infiltration is specified based on permeability 

of underlying soil types. Soil infiltration rates can be captured through field 

measurements, existing survey data and soil classifications. Soil classification is 

commonly available in the UK through resources such as the UK Soil Observatory 

(UKSO, 2017) and Soilscape (Cranfield Soil and Agrifood Institute, 2018) 

databases. Soil classification can be linked to infiltration rates through literature 

such as UNFAO guidance (United Nations Food and Agriculture Organisation, 

2017). Similar data sources are available in other countries. 

In the case of soils, it should be noted that CADDIES applies a set infiltration rate 

which does not simulate the underlying physical processes controlling water 

movement through a substrate or contributions from ground water flow (Hunter 

et al., 2007; Beven and Germann, 2013). This is accommodated within modelling 

through application of conservative infiltration values, which are more likely to 

represent longer term rates. The simplicity of this approach is deemed acceptable 

for high level analysis of surface water runoff due to: the resource restrictions of 

measuring detailed soil porosity data versus the proposed fast utility of the 

framework; and, for the majority of soil types, the likely limited effect infiltration 

will have at removing water during high intensity rainfall typically responsible for 

surface water flooding (Mark et al., 2004). 

Infiltration rates form a component of the cell output rate. The cell output rate is 

indexed against values stored in input tables in a similar way to cell roughness 

(Figure 3.8). 

Name, Example roughness value index 

Number sequences, 2 

Value 1, [value] 

Value 2, [value] 

... 
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Figure 3.8: Example infiltration value index file from CADDIES 

Evapotranspiration  

Surface water flood events are typically caused during short duration, high 

intensity rainfall. Therefore it is assumed that the evapotranspiration potential of 

plants would have negligible impact on flood level and are not included within the 

cell output rate (Mark et al., 2004). It is however possible to accommodate these 

rates within the framework through increasing the output value for each cell 

(Figure 3.8). 

3.2.3. Representing sub-surface drainage systems 

CADDIES is designed for rapid simulation of 2D runoff and does not include a 

direct representation of the 1D piped system. Surface water and combined 

sewerage is represented within the framework though manipulation of the water 

output parameter in each cell. This approach is consistent with recent practices 

developed for UK surface water flood mapping as applied by the Environment 

Agency (2013). 

Applying an output rate to represent urban drainage systems 

Surface water drainage systems are represented through adjusting cell output 

parameters to remove water from the surface at a rate similar to the pipe network 

running at full capacity. Parameterisation requires understanding of the pipe 

system layout and drainage sub-catchments within the study area. 

Where the layout of the surface water drainage system is available, a peak flow 

rate per drainage sub-catchment can be calculated through assuming that the 

pipe full flow in the trunk sewer acts as the limiting factor on flow rate within each 

sub-catchment. Figure 3.9 shows the method for converting 1D pipe schematics 

into a 2D output rate per cell. 

Name, Example output value index 

Number sequences, 2 

Value 1, [value] 

Value 2, [value] 

... 
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Figure 3.9: Process for representing the surface water network in CADDIES 

through adjusting the cell output rate 

Surface water drainage sub-catchments are generated from existing pipe layout 

data (Figure 3.10). Required data includes pipe invert levels, diameters, locations 

and sub-catchments. Unique sub-catchments are identified by determining which 

areas flow to a single output pipe, referred to as the trunk sewer. The flow 

capacity in the trunk sewer is assumed to be the limiting factor on flow rate for 

each sub-catchment. In practice specific pipes in the network may have a lower 

flow rate than this, however this captures the maximum possible peak flow rate 

from the sub-catchment and enables a fast screening to determine network flow. 

Identify unique surface water drainage 
catchments (Figure 3.10) 

Identify trunk sewer diameter for each sub-
catchment using GIS screening 

Calculate trunk sewer peak flow (Q) for each 
sub-catchment (Equation 3.10) 

Calculate sub-catchment area (Asub) using GIS 

screening 

Calculate a cell infiltration rate for each sub-
catchment (Equation 3.11) 
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Figure 3.10: Example identifying a unique sub catchment and associated trunk 

sewer 

Once the trunk main has been identified the peak flow rate is calculated through 

determining the pipe area and pipe full flow velocity. In the case of a circular pipe 

section, the area can be calculated simply using: 

𝐴 = 𝜋𝑟2       Equation 3.5 

Where ‘A’ is area (m) and ‘r’ is pipe radius (m). 

Pipe full flow velocity is calculated through application of the Colebrook-White 

equation:  

1

√𝜆
= −2 log10  (

𝑘𝑠

3.7𝐷
+

2.51

𝑅𝑒√𝜆
)    Equation 3.5 
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Where ‘λ’ is the dimensionless friction factor, ‘ks’ is pipe roughness (m), ‘D’ is pipe 

diameter (m) and ‘Re’ is the dimensionless Reynolds number. 

Equation 3.5 can be rearranged to Equation 3.8 in order to provide an explicit 

expression for velocity through substituting λ using the Darcy-Weisbach equation 

(Equation 3.6) and Re using the pipe full Reynolds number calculation (Equation 

3.7).  

 

ℎ𝑓 =
𝜆𝐿

𝐷
.

𝑣2

2𝑔
     Equation 3.6 

𝑅𝑒 =
𝑣𝐷

v
     Equation 3.7 

v = −2√2𝑔𝑆𝑓𝐷log10 (
𝑘𝑠

3.7𝐷
+

2.51𝑣

𝐷√2𝑔𝑆𝑓𝐷
)   Equation 3.8 

Where ‘hf’ is head loss due to friction (m), ‘L’ is pipe length (m) ‘v’ is kinematic 

viscosity (m2/s), ‘g’ is gravitational acceleration (m/s2), ‘Sf’ is the dimensionless 

hydraulic gradient, and ‘v’ is velocity (m/s). 

Pipe full velocity can then be substituted into Equation 3.10 to calculate the pipe 

full flow rate ‘Q’ in m3/s. 

𝑄 = v𝐴     Equation 3.9 

Once a peak flow rate per sub-catchment trunk sewer has been calculated, Q is 

averaged across all cells within the sub-catchment to generate a drainage rate 

per cell (m3/s). 

𝐷𝑟𝑎𝑖𝑛𝑎𝑔𝑒 𝑟𝑎𝑡𝑒 𝑝𝑒𝑟 𝑐𝑒𝑙𝑙 = 𝐴𝑐𝑒𝑙𝑙  ×  
𝑄

𝐴𝑠𝑢𝑏
   Equation 3.10 

Where ‘Acell’ is the area of each cell (m2) and ‘Asub’ is area of the sub-catchment 

(m2).  

The drainage rate is converted to mm/hour and added to the existing output rate 

per cell specified during the land use classification (Figure 3.8). This then creates 

one value which represents outputs due to water losses in each cell, constituting 

drainage, infiltration and evapotranspiration (if included). 

Technical details of surface water drainage networks (pipe size, location, inverts, 

lengths) are typically available in the UK, however ageing drainage infrastructure, 
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data confidentiality, and the difficulty of surveying sub-surface assets means that 

sometimes details are unavailable or have gaps regarding pipe locations, sizes 

and conditions (Ana and Bauwens, 2010). Where data might be available at the 

later stages of a project, the expense of surveying networks or data 

confidentialities may also mean that the data is unavailable for initial stages of 

strategic design. Where this is the case, screening methods such as this may be 

applied to prioritise areas data collection in support of future detailed modelling. 

In this instance it is possible to apply high level assumptions regarding the 

capacity of the drainage network, such as those applied by the Environment 

Agency in broad scale surface water flood mapping (Environment Agency, 2013). 

This process represents the existing combined sewer system through an 

infiltration value of 12 mm hour-1.  

Limitations 

This method creates a simple method for representing the sub-surface drainage 

system, however a model architecture aimed at speed creates several 

simplifications which effect the representation of physical processes. 

The predominant simplification removes the 1D system in favour of an output rate 

added to the 2D runoff routing mechanism on a sub-catchment basis. This 

generates a uniform value across each unique sub-catchment using several 

assumptions. These assumptions relate to the piped system, contributing sub-

catchment, network maintenance and destination of flows. 

Regarding the pipe system, the assumption is made that the upstream pipe 

network is able to transfer flows up to the pipe-full capacity of the trunk sewer. 

Although it is anticipated that pipes are typically designed to achieve this, the 

irregularities of an aging drainage network and designing with partial knowledge 

gaps mean that narrower upstream pipes may throttle flow and prevent the 

outflow discharging at full capacity (Hamill, 2001; Butler et al., 2018). Similarly, a 

uniform drainage rate across all cells assumes that all areas of the sub-catchment 

will contribute to the piped system equally. A modern designed network may 

achieve this, however it is likely that historic design and iterative retrofit and 

replacement of pipes will lead to a range of upstream pipe sizes throughout the 

network, creating a variable drainage rate across areas of the sub-catchment. 
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Representing drainage using a steady output rate also neglects the simulation of 

sub surface drainage interactions and hydraulic flow phenomenon such as 

surcharge, backflow and narrow pipes throttling flows in certain catchment 

locations (Dottori et al., 2013). This may be a significant hazard in specific 

catchments and so should be screened prior to applying a 2D representation of 

flows. 

The sub-catchment drainage rate assumes that all areas of the sub-catchment 

are able to contribute to the pipe network equally and instantly. This does not 

simulate the need for flows to enter the network through a defined inlet.  In 

practice, certain areas within the catchment may not be able to flow into network 

inlets as a result of catchment topography ponding runoff, features blocking flow 

paths and poorly designed or maintained inlets (Dottori et al., 2013).  

The framework assumes that the pipe network is properly maintained and 

operating without blockages. In reality blockages and maintenance issues are 

frequently present in pipe networks, however typically remain unseen until 

flooding occurs (Schmitt et al., 2004; Ana and Bauwens, 2010; Butler et al., 

2018). It is possible to adjust flow rates to account for sedimentation and partial 

blockages by restricting diameters or reducing the peak flow rate to include a 

safety margin. This approach is straight forward and can easily be applied within 

this framework. However, the effects of a full pipe failure are incredibly variable 

and difficult to predict, depending on failure cause, location and timing (Ana and 

Bauwens, 2010). It is therefore difficult to accommodate this analysis in 1D or 2D 

pipe models without having a computationally expensive systematic failure of 

certain pipes, inlets and outlets (Mugume et al., 2015; Diao et al., 2016). 

Simulation using this framework can include a ‘worst case scenario’, representing 

a situation where the pipe network has failed totally (DEFRA, 2018b). This is be 

achieved by removing the drainage component of the cell output rate. It should 

be noted that situations similar to this ‘worst case’ treatment can also occur during 

times of high intensity rainfall which falls at a rate faster than the network can 

capture runoff. 

Removal of water from the model assumes that all rainfall captured within the 

surface water drainage network is transferred to a destination where it will not 

cause disruption. This assumption reflects removing rainfall where it falls, but 

once this is removed from the model it does not represent the possibility of 
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surface water re-emerging at another point in the network or outfall. High intensity 

short term rainfall, responsible for the majority of urban surface water flooding, is 

unlikely to contribute significant amounts of volume to cause flooding in major 

watercourses, but this limitation should be considered carefully as the approach 

may not be suitable where small water courses, culverts or pipe full flow 

phenomenon such as surcharge are expected to contribute to surface water flood 

risk. This risk can be mitigated through initial analysis of flood risk such as 

evaluating flood histories, interviewing catchment stakeholders and reviewing 

previous studies in the area of investigation. These actions are typically 

recommended as part of strategic flood risk assessments (DEFRA, 2010). 

3.2.4. Rainfall generation 

Rainfall is the final component required to characterise the study area (Figure 

3.11). Rainfall is represented in the model through a spatially and temporally 

variable inputs, specified on a cell by cell basis through a range of indexed 

hyetographs.  

 

Figure 3.11: Characterising rainfall events within the framework 

Input hyetographs 

Rainfall for the study area is specified using an input hyetograph describing the 

intensity of an event at user specified time steps. This approach can 

accommodate simple block rainfall, design storms and time series rainfall. 

Applicability of rainfall depends on the purpose of investigation and available 

setup time. 
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Data availability 

Any rainfall data can be applied within the framework, provided it is transferred 

into a hyetograph format (see processing steps section). A wide variety of data 

sources are available depending on catchment location and the context of 

analysis. Rainfall data will typically be presented as design or historic rainfall 

patterns in an event or time series format (Ward and Robinson, 1990).  

Design rainfall is constituted of a synthetic and statistically developed rainfall 

pattern which reflects characteristics specified to each catchment. Rainfall may 

be supplied within a statistically constructed distribution or as a single block of 

constant rainfall. Statistical relationships are developed using an intensity, 

duration and frequency (IDF) relationship. Applying design rainfall to assess flood 

hazard in catchment provides the advantage of providing a large range of rainfall 

events which constitutes many rainfall probabilities and magnitudes. When 

combined with fast assessment methodologies this enables research to 

investigate intervention performance across many events. The drawback from 

studying flooding using design rainfall is that it is difficult to validate model 

performance versus real world measurements. UK design storms are available 

through the Centre for Ecology and Hydrology Flood Estimation Handbook 

(Centre for Ecology and Hydrology, 1999, 2013). This resource specifies an IDF 

relationship at a km2 scale across the UK. Similar organisations can provide this 

information in other countries.  

Historic rainfall represents records of previous rainfall events within a catchment. 

Records are measured using a variety of techniques including rain gauges and 

weather radar. Different data collection methodologies constitute a range of 

advantages and limitations regarding temporal and spatial accuracy and 

precision of records (Ward and Robinson, 1990). The advantage of studying 

intervention performance using historic rainfall is the opportunity for practical 

validation of model results versus real life measurements enabling an enhanced 

confidence in model results. However, limits on the events which have been 

recorded within a catchment typically constrain analysis to a small range of 

events, particularly when considering extreme rainfall, and consequently restrict 

analysis of resilience (Neal et al., 2009; Kjeldsen et al., 2014). Extreme rainfall is 

rare, thus limiting data collection. Rainfall measurement techniques are often 

calibrated to everyday rainfall, and as such can provide erroneous readings for 
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high intensity storms (Westra et al., 2014). For example tipping bucket rainfall 

gauges can fail to action at a fast enough rate to capture the most extreme high 

intensities. The short duration and potentially highly localised nature of high 

intensity rainfall also results in rainfall measurement techniques failing to collect 

full records of rainfall. Surface water flooding during these events is also typically 

of short duration therefore, even when accurate rainfall measurements can be 

captured, records may not accurately record catchment flood conditions.  

Event rainfall represents the intensity and duration of a single rainfall occurrence. 

Time series rainfall is constituted of a longer term record of several rainfall events 

and intervening periods. The duration of the series can be adapted to capture 

antecedent periods. This format of rainfall provides useful information regarding 

the conditions within a catchment prior to intense rainfall, which can be an 

important controlling factor in determining catchment characteristics such as soil 

saturation, watercourse levels, groundwater flows and remaining capacities for 

rainfall capture or storage interventions (Ward and Robinson, 1990). The longer 

time period recorded increases simulation time and the storage space required 

for output times. In the case of surface water flooding, which is predominantly 

associated with high intensity rainfall, this increase in simulation requirement 

does not provide sufficiently enhanced analysis of the catchment and so, for this 

framework, analysis will focus on applying rainfall events whilst accommodating 

antecedent conditions through conservative parameter assumptions and 

sensitivity analysis. 

Processing steps 

Rainfall hyetographs are converted into a comma delimited format, readable by 

the CADDIES model (Figure 3.12). Multiple hyetographs can be added into each 

model to represent spatially variable rainfall or the effects of interventions 

capturing incoming precipitation (see Section 3.3.1).  

Figure 3.12 shows an example input file describing two block rainfall hyetographs. 

The file specifies the rainfall input rate (intensity) which changes in steps for 

defined blocks of time. The sequence of blocks can be expanded to multiple steps 

to represent temporally complex rainfall patterns.  
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Figure 3.12: Example block rainfall input file from CADDIES 

Hyetograph effects are referenced to cells through indexing. Each cell is linked 

to a specified hyetograph to represent the spatial distribution of rainfall. The 

number of hyetographs can also be increased to include many different rainfall 

patterns within the same simulation. 

Catchment critical rainfall 

Engineers typically base designs for surface water management systems on a 

critical duration event where all upstream areas are contributing rainfall to a 

specific location. This identifies conditions which are likely to lead to the most 

significant damage. 

Identifying critical rainfall characteristics is straight forward when designing linear 

systems (for example pipe networks), however is a challenging concept when 

considering flood hazard across an entire catchment, exacerbated by spatial 

complexities of disaggregated catchment surfaces and differing intensities 

generated using a range of rainfall profiles.  

Consequently, the characteristics leading to the most significant damage may not 

be readily predictable, and may change in response to different intervention 

strategies. Therefore rapid analysis using the framework enables investigations 

to incorporate a range of rainfall profiles and compare maximum flood depths 

across many scenarios to identify the catchment’s critical event. This may be 

undertaken to guide rainfall selection at the initial stages of project design, or as 

part of a detailed intervention assessment undertaken within the main evaluation 

of an analysis. 

Name, Example input hyetograph 

Number sequences, 2 

Value 1 (mm/hr), [intensity at start], [intensity at end] 

Time 1 (seconds), [time at start], [time at end] 

Value 2 (mm/hr), [intensity at start], [intensity at end] 

Time 2 (seconds), [time at start], [time at end] 
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3.3. Representing intervention strategies 

This section outlines how interventions are represented within the modelling 

framework. At this stage, discussion outlines the general methodology and 

mechanisms for modelling interventions within the framework. A detailed 

discussion of modelling specific interventions is presented in Section 6.1.  

Interventions are applied using an input matrix which overlays the land use setup 

defined in the previous section, this allows many intervention strategies to be 

stored and added to the model efficiently. Figure 3.13 identifies how this overlay 

relates to the land use setup discussed in the previous section.  

 

Figure 3.13: Representation of interventions within the modelling framework 

3.3.1. Representing interventions through the model architecture 

General approach 

Intervention strategies are included within the model through a simplified 

representation of measures using spatial manipulation of elevation, input, output 

and movement speed parameters (Figure 3.2). All intervention effects are applied 

on a cell by cell basis, controlled by the resolution of the input land use. Simple 

representation using these parameters is unsuitable for detailed design, but has 

the advantage of enabling multiple, fast simulations to determine performance of 

intervention types and locations in a particular catchment. 
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Representing interventions effects on the catchment surface 

Interventions which change surface types and land use are represented through 

adjusting a roughness parameter in corresponding cells. The roughness value is 

changed across the entire footprint of the intervention, rounded to the nearest 

minimum cell size. Examples of interventions likely to change surface roughness 

include measures such as permeable paving, swales, urban green space, etc 

(Woods Ballard et al., 2015). 

Representing interventions effects on rainfall capture 

Rainfall is specified through an input value in each cell which can be programmed 

to include a temporally variable rainfall rate through specifying an input 

hyetograph for each cell. Interventions which capture incoming rainfall are 

represented in the framework through adjusting input hyetographs to reduce 

water input to selected cells. Adjustments vary depending on the storage 

capacity, attenuation rate and capture efficiency specific to each intervention.  

Hyetographs are adjusted across all areas which constitute the capture footprint 

of an intervention. This area is specified down to the resolution of the input model 

cells. The input volume removed per cell is estimated through dividing the total 

storage volume of an intervention by the size of the area on which it is situated, 

typically the roof of a building. For example, an average roof size in the UK is 

45.5 m2 (DCLG, 2015). Therefore, a 100 litre water butt collecting from this 

surface would capture approximately 2.2 l of rainfall per 1 m2 cell.  Figure 3.14 

shows how the hyetograph is manipulated to achieve this. Figure 3.14a shows 

an unedited example rainfall profile. Figure 3.14b, c, and d show edited profiles 

representing capturing rainfall using different capture volumes. This example 

assumes a 100% efficiency of rainfall capture interventions. 
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Figure 3.14: Example representing rainfall capture through cell hyetograph 

manipulation 

Representing interventions effects on infiltration 

Infiltration is included within the model through increasing the outflow rate in cells. 

The infiltration rate specified is controlled by the porosity of the underlying soil or 

drainage medium, which can be attributed based on literature and field studies 

specific to each intervention. 

Representing surface water drainage interventions 

Surface water drainage interventions are specified through adjusting cell output 

rates, as described in Section 3.2.3. 

Representing changes to elevation profile 

Interventions which change catchment topography are represented through 

adjusting elevation levels in the underlying elevation model, as described in 

Section 3.2.1. These interventions are likely to include measures such as swales, 

attenuation ponds, wetlands, flood walls, embankments, landscaping and other 

micro and macro topographic features. Elevation in a cell can also be adjusted to 

account for flood resilience interventions such as raising building thresholds. 
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Interventions with multiple effects 

Many interventions are represented using multiple parameters, for example 

swales and infiltration trenches will slow runoff in addition to infiltrating water. 

Intervention effects are described along with each case study later in the thesis. 

Interventions modelling summary 

Table 3.1 presents a summary to describe parameter changes required to 

represent interventions within CADDIES. This table provides reference regarding 

interventions which is developed to describe representation of specific 

interventions in detail within Section 6.1. It should be noted that this table shows 

the predominant general parameter change requirements for representing groups 

of interventions, but that application to represent specific interventions and 

contexts may vary and should be developed with stakeholders on a site by site 

basis. 

Table 3.1: General summary of predominant parameter changes used to 

represent intervention types when using the rapid scenario screening framework 

Intervention Elevation Input Output Roughness 

Rainwater capture      

Surface capture     

Catchment drainage      

Catchment infiltration     

Walls/ embankments     

Landscaping     

Surface ponding     

Runoff speed     

Raising thresholds     

 

3.3.2. Storing intervention scenarios using input maps 

Parametrisation of CADDIES across a regular grid enables intervention scenarios 

to be stored as numeric matrices, in which the value in each cell is indexed to a 

set of parameters which describe the effects of each intervention. This enables a 

computationally efficient storage of interventions through a series of matrices and 

an associated parameter table.  

This representation of strategies is fast to set up and simple to modify. By 

inputting the intervention matrix on top of the land use matrix it is easy to run 
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simulations without having to set up multiple models. This has the further 

advantage of enabling code to apply new intervention maps on top of the land 

use data to automatically simulate many scenarios. 

In many circumstances the intervention will not alter the underlying land use 

parameters, for example a drainage system upgrade would not change the cell 

surface roughness parameter. Where this the case, a ‘n/a’ effect can be specified 

which retains the land use parametrisation for that particular value. This provides 

the utility of enabling the same intervention to have a range of effects based on 

the land use it occupies.  

3.4. Simulation using cellular automata 

This section outlines the model set up conditions applied to run the CADDIES 

flood model. These conditions are specified using a simulation input file. This 

section will describe settings controlling trade-offs between speed and accuracy, 

and how these are implemented within the framework. Full description of the 

CADDIES modelling process is found in Section 3.1.2. 

Time control and simulation time steps 

Simulation duration is specified in seconds and controlled using the ‘time start’ 

and ‘time end’ settings. Times are specified in seconds and generally extend for 

the duration of the rainfall event plus an allocated runoff time to capture dynamics 

of surface water movement following an event. 

Time step settings 

CADDIES speeds processing times through application of an adaptive time step 

controlled by the length of a cell and the water velocity. The time step is 

automatically reduced as runoff velocity increases. It is necessary to define a 

minimum and maximum time step to prevent the calculation requirements 

approaching infinity where velocity is zero, or very small time steps affecting 

model performance where velocity is high. The software recommended minimum 

and maximum time steps are 0.01 and 60 seconds, respectively (University of 

Exeter, 2015).  

CADDIES automatically adapts the time step and updates values stored as peak 

outputs at set intervals specified by the user. The developer recommends setting 

this to 60 seconds to provide good accuracy at a level which will not affect 

performance. 
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Roughness, rainfall and infiltration setup 

Roughness, rainfall and infiltration parameters are either specified as a uniform 

global value or as a spatially and temporally varying value. Global parameters 

are unsuitable to define complex urban environments where multiple land use 

types and intervention configurations are present. This research applies variation 

in parameters. Parameter values defining these are specified as by the user as 

part of the input file. 

Initial conditions 

Initial conditions for each simulation are set on a context specific basis. Initial 

losses can be represented through manipulation of effective rainfall through the 

input hyetograph. This is achieved by subtracting rainfall at the beginning of a 

simulation to represent interception, depression storage and initial soil wetting. 

Depression storage can also be accommodated through application of high 

resolution LiDAR when developing the catchment DEM. 

Initial conditions should not be neglected when evaluating low intensity rainfall or 

non-urban catchments, however literature indicates that initial losses are not 

significant in determining the effect of high intensity storms in urban areas, the 

focus of this study (Butler et al., 2018). 

Uncertainties regarding initial conditions can be accommodated through 

simulating many different scenarios including a range of potential parameters. 

For example, simulating multiple tank sizes to represent previous rainfall events 

reducing effective capacity. 

Boundary characteristics 

Boundary conditions are set by the user to specify water movement across the 

model boundary. Low elevations allow water to be lost through flow out of the 

domain, whereas high elevations act as a barrier which prevents runoff from 

leaving the model. This will typically only affect the water level at the model 

boundary, and so is only of importance when considering flood impacts at the 

very edge of the domain. Speed of CADDIES enables large areas to be 

simulated, therefore it is recommended that the model area encapsulates a total 

surface water catchment relevant to the study area examined. Where this is the 

case water flowing away from the catchment will not impact the investigation. 
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3.5. Intervention performance assessment 

Performance assessment and the strategic direction of flood management should 

be supported through a robust and quantifiable evidence base (House of 

Commons, 2016). Many fast option assessment techniques are available, 

however as identified in Chapter Two, common methodologies typically achieve 

speed through qualitative or simplified metrics which do not adequately represent 

flood dynamics. The main novelty from this framework is the ability to quickly 

simulate flood dynamics, which then enables intervention performance 

assessment to be undertaken using quantified metrics detailing flood extents, 

depths and costs.  

To identify intervention performance the model is run to outputs representing 

baseline and intervention scenarios. Baseline scenarios describe the catchment 

‘as is’, without any intervention strategies (Section 3.2). Intervention scenarios 

apply new measures onto this baseline (Section 3.3). Comparison between these 

two sets of scenarios enables intervention performance effects to be measured. 

This section outlines the approach taken to analyse intervention performance 

using the CADDIES model outputs.  

3.5.1. CADDIES outputs 

The CADDIES simulation outputs ‘.asc’ files identifying water depth and velocity 

for each cell within the study area. Outputs are provided at user specified intervals 

and as a peak value across the entire simulation. These outputs directly provide 

absolute flood extent and depths, and can be processed to provide flood damage 

costs (Section 3.5.4). 

3.5.2. Flood extent 

The simplest assessment of flood hazards is achieved through analysis of flood 

extent. Movement of water across the catchment during the simulation means 

that analysis at a particular simulation time step will not necessarily adequately 

represent flooding across the whole catchment, therefore a snapshot of a worst 

case flood extent is achieved by analysing the peak flood extent across sampled 

from an entire flood event. This enables one flood map to visualise hazards 

across the entire catchment, simplifying decision support. 
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3.5.3. Flood depth 

Spatial analysis of flood extent is enhanced through assessment of flood depths 

across the catchment. As with flood extent, peak flood depths are analysed in 

order to present a worst case scenario across the whole catchment in a single 

output. 

Maximum flood depth is a useful metric for identifying the peak impact caused by 

surface water flooding and provides data for application using damage cost 

assessment techniques. Limiting simulation outputs to one maximum depth file 

saves computational space where many model runs are required and provides 

decision support with simple visualisation of an interventions effects. 

Absolute flood depth 

Analysis of absolute flood depth for an intervention scenario includes application 

of the depth in each cell and provides analysis of the overall worst case impact in 

a particular scenario. 

Relative flood depth 

Intervention strategies typically aim to reduce flooding in a catchment. Absolute 

flood depth maps are descriptive of an individual scenario, but the large amounts 

of information presented in a single map can make it difficult to easily identify 

intervention performance. Relative flood depths present a metric within a single 

map to visualise the surface water depths before and after an intervention 

strategy is applied. A relative flood depth is calculated on a cell by cell basis using 

Equation 3.11, which equates the difference between a baseline depth matrix and 

an intervention depth matrix. A negative value within a cell indicates a reduction 

in flood depth due to an intervention, whilst a positive value indicates an 

intervention strategy increases flood depth in a cell. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑝𝑡ℎ 𝑚𝑎𝑡𝑟𝑖𝑥 =  𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑡ℎ 𝑚𝑎𝑡𝑟𝑖𝑥 − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑑𝑒𝑝𝑡ℎ 𝑚𝑎𝑡𝑟𝑖𝑥  

Equation 3.11 

Relative depth matrices can be transformed into flood maps which visualise the 

effects of strategies and provide a simple tool for informing decision support. 

Maps can provide utility for developing intervention scenarios and identifying 

complex spatial variation in flood dynamics attributed to certain strategies. This 

is of particular relevance where certain interventions may generate new flow 

paths through changing the timing of flooding. Changes to flow paths may 
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inadvertently create additional flooding even when water is captured upstream. 

Figure 3.15 presents an example of calculating and generating a relative flood 

map using a simple 2 x 2 cell matrix. 

 

Figure 3.15: Example presenting calculation of a simple relative depth flood maps 

Limitations of peak and relative flood depths 

Maximum flood depth does not represent the total volume or extent of flooding at 

any particular moment. This metric is unsuitable for uses where a snapshot of 

flooding is required at a specific time step as it does not represent the propagation 

of flooding through the catchment. An example of an application where timing is 

required is emergency evacuation planning. It is possible to apply CADDIES to 

present information at user defined time steps to include temporal flood 

dynamics, however it is not required for the purposes of screening intervention 

performance to reducing flood damage. 

Relative flood depth maps do not represent the change in timing for a flood event. 

For example, two strategies may reach the same peak magnitude, however one 

may reduce the duration of this peak. Timing has not been included within this 

assessment due to an assumption that the impact of short duration surface water 

flooding is linked to depth, not duration. This is supported by industry flood 

assessment methodologies which indicate flood costs are controlled by depth at 

up to twelve hour duration (Penning-Rowsell et al., 2010). Longer duration flood 

events associated with fluvial and groundwater mechanisms will also be 

influenced by the duration of flooding, which can significantly alter the impacts of 

damage and disruption. 
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3.5.4. Flood damage costs 

Understanding flood depth and extent alone does not always provide a reliable 

assessment of the disruption associated with an event. Certain locations within a 

study area may be more susceptible to damage and disruption due to the 

presence of structures; therefore, a scenario with the greatest flood depth may 

not equate to the largest flood damage cost or impact. Assessment using flood 

damage cost metrics provide additional detail incorporating the spatial distribution 

of flooding across a catchment. 

This section outlines calculating damage costs for specific events, translating this 

into an annual cost, projecting this cost into future calculations and the limitations 

associated with this screening methodology. 

Depth damage model 

Flood damage costs for each scenario are calculated through application of GIS 

based flood damage analysis (University of Exeter, 2014; Chen et al., 2016). This 

analysis estimates the costs of damage through assigning depth damage profiles 

to polygons within a catchment and then calculating a cost based on the peak 

water depth within each polygon. Damage is only related to depth, without 

consideration of velocity or other damaging factors such as contamination (Merz 

et al., 2010). Potential limitations of this approach and its application for strategic 

screening are discussed later within the section. 
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Figure 3.16: GIS analysis of flood damage costs through assessing peak depth 

across polygons representing buildings 

Damage costs for average UK properties are specified in the multi-coloured 

handbook (Penning-Rowsell et al., 2010). This is an industry standard document 

which relates the direct and tangible costs of short duration inundation (<12 

hours), typical of surface water flooding, to the building fabric and household 

inventory. Components of building fabric include the exterior and surrounding 

features, interior materials and finishing, floors, plumbing and electrical damage. 

Components of household inventory include appliances, furniture, audio visual 

equipment, personal items and the costs of domestic clean up. Figure 3.17 shows 

the flood damage curve for an average UK property using data supplied from the 

multi-coloured manual. 
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Figure 3.17: Depth damage curve for short duration flooding in an average UK 

property (Penning-Rowsell et al., 2010) 

Estimated annual damage 

Damage costs per scenario only present a limited view of intervention 

performance across a specific event. The life expectancy of intervention assets 

alongside unpredictable future hazards means that decision support should 

include assessment of costs over a longer time period whilst considering the 

likelihood of impacts (University of Exeter, 2014). 

Estimated annual damage (EAD) represents an average expected damage per 

year when averaged over a long time period and represents a useful metric to 

describe the damage avoidance of intervention strategies. EAD is calculated 

through sampling cost damage across a range of different probability events to 

generate a curve representing damage versus annual exceedance probability 

(Figure 3.18). The EAD is equal to the area under the flood damage curve (Arnell, 

1989). As intense local precipitation is the controlling factor in creating surface 

flooding it is reasonable to assume the return period of the rainfall can be applied 

as the return period for the flood (University of Exeter, 2014). 
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Figure 3.18: Graphical representation of sampling events to develop an EAD 

calculation 

The more sampling points available result in a higher reliability of the EAD 

calculation (University of Exeter, 2014). For an effective representation of the 

EAD the curve should represent damage costs across a range of events including 

both low probability high magnitude as well as high probability, low magnitude 

occurrences. These curves will not meet the axes as practically, a certain or 

impossible event cannot be included within analysis. A limitation of many current 

assessment approaches is that modelling adequate numbers of simulations to 

build reliable sample sizes can be restricted by the computational expense of 

hydro-dynamic modelling, therefore fast assessment models and frameworks 

provide an opportunity to reliably include EAD within intervention assessments. 

EAD calculation is expressed mathematically in Equation 3.12, which describes 

estimating the area underneath the curve from Figure 3.18 (University of Exeter, 

2014). 

𝐸𝐴𝐷 =  ∫ 𝐷(𝐹) 𝑑𝑓
1

0
     Equation 3.12 

Where D(F) is damage as a function of annual exceedance probability, F.  
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Projecting future costs using discounting 

The time value of money, a core principle of economic theory, indicates that 

money at the present time is worth more than an identical sum in the future due 

to the potential interest growth on the value (Wong, 2015). Discounting is applied 

to calculate the present value of a benefit to be received in the future. 

Interventions are typically designed to operate over a prolonged service life, and 

therefore strategy performance should be assessed relative to future benefits, 

which need to be discounted. Future costs can be calculated using a discount 

rate, In the UK, this is currently specified at 3.5% per year (HM Treasury, 2013). 

It should be noted that discounting adjusts net present value for future economic 

costs, and does not adjust costs in relation to potential future changes to 

probabilities of events. 

Limitations regarding tangible surface water flood damage 

This method provides a fast technique for generating flood damage estimates at 

the urban catchment scale. However, fast implementation provides limitations 

which should be acknowledged. These limitations are primarily caused by a lack 

of resources available for a screening process, either through cost of data, 

measurements required to collect the required data or the computational time to 

analyse and complex interactions between subsystems.  

The cost assessment applied in this framework is focused on analysis of direct 

and tangible damages to properties. Direct tangible damage refers to the 

structural and contents damage incurred due to direct contact with flood water 

(Hammond et al., 2015).  

With regard to the limitations of a direct and tangible cost assessment of property 

damage. Treating all properties with a single flood damage curve neglects the 

potential cost differences attributable to the wide range of different structures 

present within an urban catchment. Application of an ‘average building damage 

cost’ can be indicative and applicable across a wide area, but will not account for 

spatial differences in property types, function, sizes, layouts and construction 

materials or techniques. Certain buildings may also have specific structural 

vulnerabilities such as basements, sub-standard electrical wiring and damaged 

masonry which will also lead to increased damage versus regular properties. 

Alternatively, other structures may have flood resilient design features or coping 
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mechanisms which limit property damage (Douglas et al., 2010; Kaklauskas et 

al., 2014; Gotangco et al., 2015; HM Government, 2016). Differences are further 

enhanced when considering commercial properties, which will potentially contain 

a large amount of stock of varying value. Nuances in insurance policies may also 

affect the damage costs and vulnerability of these structures. It is not practical, 

or possible, to survey all of these parameters when screening or estimating 

damage costs across a large area.  

The simplified flood analysis also neglects the impact of critical infrastructure. 

Critical infrastructure in urban catchments is likely to include buildings such as 

hospitals, power relays, water treatment and distribution assets and 

administrative buildings. These structures may have important functionality, 

which if disrupted could result in significant damage and disruption costs (Crisis 

and Risk Network and Center for Security Studies, 2012).  

Other direct and tangible impacts are not included within the assessment 

(Hammond et al., 2015). Damage and disruption to the road and transport 

network is not included (Pregnolato et al., 2017). In urban areas this can lead to 

major costs, however the survey and network analysis required to understand the 

importance of the transport link, density of traffic and potential alternative routes 

are beyond the scope of initial option screening. Surface water flood impacts are 

also created by intense and short duration events, which are unlikely to persist 

for long durations. 

Disruption and damage to critical infrastructure and the road network may lead to 

cascading damage which can be challenging to predict and manage (Little, 2002). 

Several studies have investigated measuring permutations of cascading impacts, 

however interconnections across systems and scales requires a detailed 

understanding of asset functions within networks and renders this level of detailed 

analysis beyond the scope of an initial screening tool (Kinzig et al., 2006; Labaka 

et al., 2016). 

It is challenging to include high levels of detail without extensive and high 

resolution surveys, particularly in the case of assessing individual structures or 

large scale networks for which bespoke surveys could become disproportionately 

expensive, essentially becoming full research projects within their own rights and 

significantly exceeding the scope of a screening tool. As such it is deemed 



114 
 

appropriate to apply industry standard flood depth-damage curves for average 

residential properties within the screening tool. It is envisioned that outputs from 

this process will steer further detailed analysis and highlight areas where surveys 

and additional site investigations are required. 

Limitations regarding intangible surface water flood damage 

Other categories of impacts are also excluded from analysis as a result of 

challenging measurement requirements. Figure 3.19 presents a simple 

classification based on a direct versus indirect and tangible versus intangible 

impacts. Direct and tangible impacts, as discussed above, occur due to contact 

with flood water, whereas indirect impacts are secondary occurrences which are 

triggered by knock-on effects from hazards (Hammond et al., 2015). Tangible 

impacts can be measured through attributing damage costs, whereas intangible 

impacts are subjective and difficult to assign a robust and objectively cost. 

 

Figure 3.19: Classification of flood impact categories 

In terms of surface water flooding, the largest intangible impact is likely to be 

human health impacts, with fatalities being the most significant, and hardest to 

quantify, outcome. Health impacts include physical and mental health effects 

(Hajat et al., 2005, 2014). Physical effects can include diseases or injuries caused 

during flooding, evacuation or clean-up operations. Secondary impacts, such as 

disruption to infrastructure or displacement of populations can also increase this 

hazard. Studies have reviewed epidemiological evidence regarding loss of life, 

disease and injury impacts (Ahern et al., 2005; Jonkman and Kelman, 2005; 

Jonkman et al., 2008), however impacts are subjective and influenced by a wide 

range of socio economic factors which are impractical to include within this style 
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of screening process. Psychological impacts of flooding are even harder to 

identify and value within impact assessments (Hammond et al., 2015). 

3.6. Chapter conclusions 

This chapter has outlined the development of a rapid scenario screening 

framework. This framework delivers novelty through responding to gaps identified 

in literature regarding a fast and quantitative methodology for assessing many 

permutations of interventions, rainfall events and scenarios. The framework 

delivers a streamlined method, intended for application as a screening tool to 

complement and direct, rather than replace, detailed modelling.  

Key conclusions from this chapter are: 

 A framework for rapid scenario screening has been developed. The scope 

of the framework is aimed at generating evidence for decision support 

using fast preliminary option screening, and therefore is designed to use 

data requirements and assumptions commensurate with this utility. 

 Land use, rainfall and interventions are represented using a simplified 

system of adjusting elevation, input, output and roughness parameters in 

cells across a study area. 

 Simulation is undertaken using the cellular automata flood model 

CADDIES. This model applies simplified simulation of flooding based on 

cell states, which previous studies have demonstrated leads to higher 

simulation speed relative to industry standard hydro-dynamic modelling. 

 Intervention performance is assessed using quantitative metrics, including 

flood depth, extent and damage costs. Analysis is achieved using 

simulation outputs, depth-damage curves and GIS processing. 

Subsequent chapters in the thesis will validate this approach and then apply 

findings to investigate framework utility and intervention performance across 

multiple case studies. 
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4. VALIDATING THE FRAMEWORK  

This chapter responds to Objectives Three, ‘validate the framework against 

industry best practice’ and Eight ‘develop recommendations for practical 

application of this methodology’. Validation of the framework is a crucial step in 

establishing suitability of the rapid scenario screening framework for application 

as catchment screening and intervention assessment methodology. To support 

utility towards screening flood management actions it is important to understand 

how the results from the framework compare to current approaches applied in 

industry.  

Framework validation is evaluated though comparison of framework outputs with 

an industry standard integrated flood model which has been applied as part of a 

published surface water management plan (SWMP), representing established 

professional engineering practice. Past research has compared the underlying 

flood model used in the framework, ‘CADDIES’, with ‘Infoworks Integrated 

Catchment Management’ (ICM) to compare performance routing 2D runoff, but a 

gap remains regarding validating the approach against a model including a 1D 

pipe network and interventions (Gibson et al., 2016).  

This chapter describes a case study in St Neots, Cambridge, outlines the 

modelling approaches used in the SWMP and framework and then evaluates 

framework performance through assessing variations between the two methods. 

It is important to note the distinction between CADDIES, which has been 

developed and rigorously tested through previous studies (Guidolin et al., 2012, 

2016; Ghimire et al., 2013; Gibson et al., 2016) and the rapid scenario screening 

framework (Chapter Three), a novel contribution taking advantage of CADDIES 

fast processing speed, alongside other research developments, to create utility 

towards intervention assessment.  

The work presented in this chapter is published in: ‘Validating a rapid assessment 

framework for screening surface water flood risk’ (Webber et al., 2018b),  which 

has been accepted for publication in the Journal of Water and Environmental 

Management. 
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4.1. Method 

Framework validation is examined through three questions, representing 

scenarios with increasing levels of detail: Can the framework consistently 

prioritise areas of flood risk during a worst case scenario, with no functioning 

surface water drainage system? Can the framework consistently prioritise areas 

of flood risk taking into account the existing sub-surface drainage system? Is the 

approach suitable for modelling interventions in an urban catchment? These 

questions are answered through comparing the framework with a published 

SWMP, produced by Arcadis on behalf of Cambridgeshire County Council and 

simulated using the industry standard hydrodynamic model ICM (Arcadis, 2012).  

It is important to understand the scope and limitations of the framework in respect 

to different levels of detail, therefore analysis is structured using three scenarios. 

These scenarios facilitate a performance comparison across a range of 

conditions, linked to the questions from the previous paragraph, which gradually 

increase in complexity. The full detail of these scenarios is described later in the 

chapter.  

 Scenario One, ‘worst case’, represents the catchment with no 

functioning surface water drainage system. 

 Scenario Two, ‘surface water drainage’, includes the existing surface 

water drainage system, with pipe locations and sizes provided by 

Cambridge County Council. 

 Scenario Three, ‘intervention’, includes the existing surface water 

system plus additional flood management interventions.  

This section outlines the data, processes and assumptions required to setup both 

models. In certain circumstances differences between model architectures has 

prevented an identical application between both approaches, where this is the 

case it is specified within the methodology. 

4.1.1. Characterising study area 

Study area 

St Neots is the largest town in Cambridgeshire, UK, with a population of 28 000. 

The town is situated on flat terrain which acts as the flood plain for the Great Ouse 

River and its tributaries. The study area is approximately 9.5 km2 and is defined 

by the urban extent of the town, which includes suburbs and the surrounding road 



119 
 

system (Figure 4.1). The area has a recorded flood history, including fluvial 

flooding adjacent to the river and surface water flooding in the urban area. St 

Neots is prioritised in the Cambridgeshire SWMP due to the number of properties 

and critical infrastructure at risk from surface water flooding, identified using multi-

criteria analysis (Arcadis, 2012). The SWMP identifies several Priority Flood 

Spots (PFS) where flooding is of particular concern. PFS are Eaton Ford, 

Eynesbury, Town Centre and Riverside, as identified in Figure 4.1. 

 

Figure 4.1: St Neots model extent, with priority flood spots highlighted 

Characterising the catchment using ICM 

This section details the approach used to represent St Neots within this model 

structure. Full details from this modelling study are published as part of the St 

Neots SWMP (Arcadis, 2012). ICM is an industry standard flood modelling 
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software package which provides an integrated simulation of rainfall, overland 

runoff, the pipe network and watercourses (Innovyze, 2018).  

The catchment area was specified by a polygon delimiting the surface water 

catchment. This area is contained by the A1 highway to the west and a railway 

line to the east (Arcadis, 2012). Elevation was represented using an irregular 

triangular mesh generated using 2 m resolution LiDAR data. The elevation of 

each triangle is set as the mean of the levels at each corner of the feature. The 

mesh was generated using the ICM mesh building function. Buildings were 

included within the landscape as voids within this mesh. This approach forces 

runoff to flow around the building thresholds. All rainfall landing on voids was 

specified directly into the surface water drainage system. Roads were included in 

the elevation model through a 100 mm reduction in elevation to account for kerb 

heights. This method was intended to ensure runoff would follow the road network 

before spilling onto other urban areas. 

Land use was classified through application of a uniform roughness coefficient 

applied across the entire domain. The SWMP describes sensitivity analysis and 

determines a suitable surface Manning’s roughness coefficient of 0.045 (Arcadis, 

2012). The SWMP initially aimed to use variable roughness based on OS 

Mastermap land use types, however initial studies indicated a significant increase 

in processing and simulation time. Separation into urban and rural land use 

values was also discarded due to the “minimal impact on the flood extent” 

(Arcadis, 2012). 

An infiltration rate of 2.5 mm/hour was applied across the entire domain, based 

on available local information (Arcadis, 2012). As with variable roughness, 

sensitivity analysis regarding this value is described in the SWMP. 

Design rainfall was derived using IDF rainfall catchment descriptors from the 

Flood Estimation Handbook (FEH) (Centre for Ecology and Hydrology, 1999, 

2013). Rainfall was represented using a series of design rainfall hyetographs 

representing rainfall in a 5.0%, 3.3%, 2.5%, 1.0% and 0.5% annual exceedance 

probability (AEP) events. A rainfall duration of two hours was applied for 

assessment due to previous screening identifying this event causing the most 

extensive flooding in the catchment across all exceedance probabilities (Arcadis, 

2012). 
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The Revitalised Flood Hydrograph (ReFH) method was used to estimate the 

fluvial flows and levels for the modelled watercourses. On the River Great Ouse, 

the estimated 20 % annual probability fluvial flood flows and levels were applied 

as the upstream and downstream boundary conditions respectively for all the ICM 

simulations. However for the remaining tributaries in the ICM model, the 

estimated flood flow hydrographs (with a 2 hour storm duration) were applied as 

the upstream boundary condition for the respective annual probability flood event. 

Characterising the catchment in CADDIES 

The CADDIES model was set up to replicate as closely as possible the 

assumptions and approach applied using the ICM model. Elevation was included 

using the same 2 m resolution LiDAR DEM which underpinned the ICM approach. 

CADDIES applies runoff routing across a regular grid mesh and so the irregular 

triangular mesh applied in ICM could not be included within the model. Instead 

the elevation was input directly using the input DEM, reducing the pre-processing 

time required to generate the 2D mesh. Buildings were included within the 

elevation input file through application of a 1 m threshold level for all structures in 

the catchment. Thresholds were defined using the same OS Mastermap land use 

layer used to specify building locations in ICM. Raising the threshold of the 

structure replicated the ICM approach through forcing runoff to flow around the 

structure. Roads were included using the same DEM applied in the ICM 

approach. 

The effects of land use were replicated through application of the same 

assumption to apply a constant uniform infiltration and roughness parameter 

across the entire catchment. Rainfall was also applied using the same input 

hyetographs applied in the ICM model.  

The scope of CADDIES is limited to surface water flooding within the urban areas, 

and as such the watercourses were not included in the model.  

4.1.2. Representing intervention scenarios 

Representing the ‘worst case’ scenario 

DEFRA guidance indicates that flood management should evaluate the effect of 

a ‘plausible worst case scenario’ (DEFRA, 2018b). The worst case scenario 

represents a total failure of the surface water drainage system. For this scenario 

the catchment was represented as described above, with no additional 



122 
 

interventions applied. This scenario responds to recent UK government guidance 

which highlights a requirement for surface water management planning to 

develop a robust assessment of a ‘plausible worst case scenario’ (DEFRA, 

2018b). 

Representing the ‘surface drainage’ scenario 

In ICM the urban surface water network was simulated using a detailed 1D model 

which represented pipe layout, diameters and invert levels. Runoff enters the 

surface water system through model nodes specified to each pipe and leaves the 

system at outfalls located along the watercourses running through the urban area.   

The largest difference between the CADDIES framework and ICM was in the 

representation of the surface water sewer network. CADDIES does not include a 

1D pipe system and so runoff captured by the surface water system was 

represented through adjusting the outflow rate within cells, effectively removing 

water from the simulation at a set rate. (Figure 3.1). Adjustments to cell outflow 

rates were made on a sub-catchment basis, defined using the sewer sub-

catchments applied in the ICM model. It was assumed that the peak flow rate in 

each sub-catchment was set by the flow rate in the trunk sewer. The trunk sewer 

for each surface water sub-catchment was identified through evaluating the pipe 

diameters using a GIS database. The peak flow rate for each trunk sewer was 

calculated using the Colebrook White module in ICM. This rate was then 

averaged and applied across each cell in the associated sub-catchment as 

described in Section 3.2.3. The outflow drainage rate was capped at 300 

mm/hour to avoid model instabilities generated by very high rates, typically 

generated where small catchments fed into culverts.  
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Figure 4.2: Surface water sub-catchments and corresponding outflow rates used 

in CADDIES 

Representing the ‘intervention scenario’ 

The intervention scenario corresponds to ‘Option Combination C2’ as specified 

in the Cambridge SWMP (2012). This option includes small scale engineering 

options applied at strategic locations within the catchment. Interventions included 

installing soakaways across the catchment, constructing swales at all four PFS, 

changing kerb heights and road elevation in Eaton Ford and Eynesbury, and 

adding a flood bund surrounding a property in Eaton Ford (Figure 4.3). These 

interventions were represented in ICM and CADDIES through changes to 

elevation models and parameters to reflect the planned interventions. 
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Figure 4.3: St Neots Surface Water Management Plan intervention scenario 

(Arcadis, 2012) 

4.1.3. Simulation  

CADDIES increases simulation speed whilst maintaining accuracy through 

application of an adaptive time step. The time step decreases towards a minimum 

as velocity increases, thus enabling the simulation to capture flow dynamics of 

fast moving runoff whilst stepping quickly through periods of low flow.  Smaller 

time steps are more accurate, but result in a trade-off with simulation speed 

(Gibson et al., 2016). This simulation applied a minimum step of 0.01s, 

representing a very small time step capable of modelling fast moving flows. The 

modelled duration of each simulation included the rainfall event plus one hour for 

additional ponding and runoff. 
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4.1.4. Assessing model performance 

Mean difference in peak depth per cell 

Model performance was assessed through analysis of variation in flood depths 

between both modelling approaches. Performance was assessed in relation to 

the entire catchment (this included areas of fluvial flooding) and to PFS identified 

within the SWMP (Arcadis, 2012). Peak flood depth outputs from both models 

were transformed into an identical ‘.tif’ format (a regular grid) using GIS and then 

variation was examined on a cell by cell basis. Evaluation of differences between 

model outputs was evaluated through analysis of the mean depth and standard 

deviation between corresponding model cells, constituting a comparison of 

absolute differences between cells. 

Flood/ no flood correlation  

In addition to assessing the absolute difference in flood depth it is also important 

for screening tools to reach similar conclusions, therefore a further metric, 

described as ‘flood/ no flood’ correlation (F/NF) was applied. F/NF correlation 

classifies the flood depth in each cell as either a flood or no flood, based on a 

flood threshold level of 30 cm (Environment Agency, 2013). All cells over this 

threshold are classified as a flood, all cells below it are classified as a no flood 

outcome. All cells in both models were classified and then compared to generate 

a percentage agreement (‘F/NF correlation’) between model outcomes for each 

scenario.  

4.2. Results 

4.2.1. Mean difference in peak depth per cell 

Table 4.1 presents mean differences in peak flood depth per cell between 

CADDIES and ICM. Positive values indicate that CADDIES was on average 

shallower than ICM and negative values indicate CADDIES output a deeper peak 

depth per cell.  The mean difference in peak depth per cell for the entire study 

area and across all AEP’s was between 5 and 6 cm (with a standard deviation 

between 22 and 24 cm – Table 4.2). It should be noted that the ‘entire study area’ 

includes the watercourses, which are not currently included in CADDIES model. 

Focusing analysis on the PFS (Figure 4.1) demonstrated mean cell differences 

of less than 2 cm, with standard deviations between 5 and 12 cm across all AEP’s. 
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Table 4.1: Model comparison for mean difference in peak depth per cell between 

CADDIES and ICM (m) 

AEP Entire 

study 

area 

Eaton 

Ford 

PFS 

Eynesbury 

PFS 

Riverside 

PFS 

Town 

Centre 

PFS 

All 

PFS 

Worst case scenario 

5.0 % 0.05 -0.00 -0.01 -0.01 -0.01 -0.01 

3.3 % 0.05 -0.00 -0.01 -0.01 -0.01 -0.01 

2.5 % 0.05 -0.00 -0.01 -0.01 -0.01 -0.01 

1.0 % 0.04 -0.00 -0.01 -0.01 -0.01 -0.01 

0.5 % 0.04 -0.00 -0.02 -0.01 -0.01 -0.01 

Average 0.05 0.00 -0.01 -0.01 -0.01 -0.01 

Surface water drainage scenario 

5.0 % 0.07 0.01 0.01 0.01 0.00 0.01 

3.3 % 0.07 0.01 0.01 0.01 0.00 0.01 

2.5 % 0.07 0.01 0.02 0.01 0.00 0.01 

1.0 % 0.06 0.02 0.02 0.01 0.00 0.01 

0.5 % 0.06 0.02 0.02 0.01 0.00 0.01 

Average 0.06 0.02 0.02 0.01 0.00 0.01 

Intervention scenario 

5.0 % 0.07 0.01 0.01 0.01 0.00 0.01 

3.3 % 0.07 0.01 0.01 0.01 0.00 0.01 

2.5 % 0.06 0.02 0.02 0.01 0.00 0.01 

1.0 % 0.07 0.02 0.02 0.01 0.00 0.01 

0.5 % 0.06 0.02 0.02 0.01 0.00 0.01 

Average 0.06 0.02 0.02 0.01 0.00 0.01 

 

All scenarios demonstrated consistent peak depths per cells between models. 

Model variance is approximately 1 to 2 cm with consistent performance across 

AEP’s. The distribution of variation in mean flood depth shows a consistent trend 

where differences in flooding are predominantly observed around the River Great 

Ouse flood plain and tributaries, with other smaller differences observed around 

building outlines and topographical features (Figure 4.4).  
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Table 4.2: Model standard deviation for mean difference in peak depth per cell 

between CADDIES and ICM (m) 

AEP Entire 

study 

area 

Eaton 

Ford 

PFS 

Eynesbury 

PFS 

Riverside 

PFS 

Town 

Centre 

PFS 

All 

PFS 

Worst case scenario 

5.0 % 0.22 0.06 0.06 0.06 0.09 0.07 

3.3 % 0.23 0.06 0.07 0.07 0.09 0.07 

2.5 % 0.23 0.06 0.08 0.07 0.10 0.08 

1.0 % 0.24 0.07 0.09 0.08 0.11 0.09 

0.5 % 0.24 0.08 0.10 0.10 0.12 0.10 

Average 0.23 0.06 0.08 0.08 0.10 0.08 

Surface water drainage scenario 

5.0 % 0.22 0.05 0.06 0.06 0.06 0.06 

3.3 % 0.22 0.05 0.06 0.06 0.07 0.06 

2.5 % 0.22 0.06 0.06 0.06 0.07 0.06 

1.0 % 0.22 0.08 0.07 0.07 0.08 0.07 

0.5 % 0.23 0.09 0.08 0.07 0.09 0.08 

Average 0.22 0.07 0.07 0.06 0.07 0.07 

Intervention scenario 

5.0 % 0.22 0.05 0.06 0.07 0.07 0.06 

3.3 % 0.22 0.06 0.06 0.07 0.07 0.07 

2.5 % 0.22 0.07 0.07 0.08 0.08 0.07 

1.0 % 0.23 0.09 0.08 0.08 0.09 0.09 

0.5 % 0.23 0.10 0.09 0.08 0.09 0.09 

Average 0.22 0.08 0.07 0.08 0.08 0.08 

 

Differences across the floodplain are attributed to the framework not representing 

the fluvial system which is included within the ICM model. This creates model 

variation through three key mechanisms. Firstly, input hydrographs add more 

water to the channel and tributaries, therefore increasing water depth on the flood 

plain, the differential is shown as red / orange in Figure 4.4. Secondly, ICM 

classifies the channels separately to the urban domain, meaning that water 

located here is not registered as a flood output. CADDIES does register this as a 

flood output, observed through CADDIES showing deeper flooding in the middle 

of channels (shown as green in Figure 4.4). Thirdly, the surface water drainage 

system in ICM outflows to the river and floodplain, increasing depth in these areas 

relative to the simplified mechanism in CADDIES which removes water from the 

model, rather than transferring it. 
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Figure 4.4: Mean peak flood depth difference per cell for the intervention scenario 

during a 1% AEP, 2 hour rainfall event 

Variation at the edge of buildings is attributed to differences representing 

structures between the two methods. In ICM the elevation mesh technique 

represents buildings as a void, whereas the rapid screening framework applies 

an elevation uplift to represent structures. The elevation uplift can create areas 

of local ponding, and in the case of very deep water, also registers flood depths 

within a building. Representation as a void in ICM cannot register flood depth 

within the structure itself. 

Closest model correlation is observed in the worst case scenario, in which the 

sewer system is not modelled. The mean difference in peak flood depth is 0.05 ± 

0.23 m for the entire catchment and between 0.00 ± 0.06 m (Eaton Ford) and -
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0.01 ± 0.10 m (Town Centre) for individual PFS. This supports application of the 

framework for modelling 2D runoff in circumstances with non-functioning 

drainage systems or extreme intensities which overwhelm system capacity; this 

type of short duration, high intensity rainfall is characteristic of the events typically 

leading to surface water flooding (Wheater and Evans, 2009; Douglas et al., 

2010; Environment Agency, 2013; Committee on Climate Change, 2017). This 

finding is supported by previous evaluation of CADDIES, where close correlation 

was found when assessing the 2D runoff mechanism versus existing hydraulic 

models (Gibson et al., 2016) and the Environment Agency benchmarking tests 

(Néelz and Pender, 2013; Guidolin et al., 2016). 

4.2.2. Flood/ no flood correlation 

Table 4.3 presents analysis of F/NF correlation across the entire study area and 

individual PFS. The table indicates that models correlated at an average between 

88% and 89% across the entire study area. This includes the fluvial system, the 

limitations of which are discussed in the previous section. Analysis of PFS, where 

fluvial input is minimised, indicates model correlation between 93% and 99%. 

PFS with no watercourses, such as Eynesbury, demonstrated the highest 

average correlation.  

Models correlated more closely during the lower magnitude event in all cases. 

This is attributed to higher magnitude events exacerbating the differences 

between modelling approaches through two main mechanisms.  

Firstly, more intense rainfall increases flood depths in areas not fully represented 

within the CADDIES approach, namely watercourses (where ICM includes 

additional inputs, as discussed in Section 4.2.1) and specific sub-surface 

features, such as culverts (presented in in Figure 4.8). Deeper flooding within 

these areas in ICM is driven by this increased flow, whereas CADDIES removes 

this water from the domain entirely. This effect is more prominent in scenarios 

where additional flow reaches watercourses in ICM through the sub-surface 

drainage system, evidenced through CADDIES outputs having a shallower mean 

peak flood depth than ICM during the surface water drainage and intervention 

scenarios (Table 4.1). 

Secondly, the CADDIES model registers flooding across the full domain including 

buildings, which are represented using an uplift to the DEM, whereas the ICM 
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approach used in the SWMP represents structures using voids which do not 

register flood depths. Therefore, as deeper and more extensive flooding occurs 

across the urban area, the CADDIES approach will inundate a greater area due 

to waters entering buildings and registering flooding within these cells.  This effect 

is more prominent where deeper flooding is present across the catchment, as 

evidenced by CADDIES registering deeper mean flood depths for PFS during the 

worst case scenario (Table 4.1). 

Application of the model subject to these limitations is further discussed in Section 

4.3 

Table 4.3: Model comparison for F/NF correlation (% of cells with the same F/NF 

classification using a 30 cm threshold) 

AEP Entire 

study 

area 

Eaton 

Ford 

PFS 

Eynesbury 

PFS 

Riverside 

PFS 

Town 

Centre 

PFS 

All 

PFS 

Worst case scenario 

5.0 % 89.3 99.1 98.8 97.9 98.2 98.5 

3.3 % 88.9 99.0 98.5 97.4 97.9 98.2 

2.5 % 88.5 98.9 98.2 96.8 97.6 97.9 

1.0 % 87.5 98.4 97.3 94.5 96.6 96.7 

0.5 % 87.3 98.0 96.4 93.1 95.7 95.8 

Average 88.3 98.7 97.8 95.9 97.2 97.4 

Surface water drainage scenario 

5.0 % 89.6 99.4 99.6 99.1 98.7 99.2 

3.3 % 89.1 99.1 99.5 99.0 98.4 99.0 

2.5 % 88.9 98.8 99.5 98.8 98.2 98.8 

1.0 % 88.3 98.2 98.9 98.0 97.5 98.2 

0.5 % 87.6 97.4 98.2 96.8 96.6 97.2 

Average 88.7 98.6 99.1 98.3 97.9 98.5 

Intervention scenario 

5.0 % 89.6 99.2 99.5 98.7 98.7 99.0 

3.3 % 89.2 98.9 99.4 98.5 98.4 98.8 

2.5 % 89.2 98.7 99.3 98.4 98.4 98.7 

1.0 % 88.1 98.1 98.9 98.3 97.7 98.2 

0.5 % 87.7 98.1 98.2 97.7 96.9 97.7 

Average 88.8 98.6 99.1 98.3 98.0 98.5 

 



131 
 

Figure 4.5 presents F/NF correlation between the models across the worst case 

scenario in a 1% AEP event. F/NF correlation is indicated in green and variation 

in red. The figure presents a similar distribution to Figure 4.4, where variation is 

focused around the river channels and several topographical features, including 

buildings and embankments. To illustrate this point, watercourses and the fluvial 

flood zones have been identified in the figure. 

 

Figure 4.5: F/NF correlation overlain with areas of fluvial interaction for the worst 

case scenario, 1% AEP 2 hour event 

Figure 4.6 and Figure 4.7 present F/NF correlation for the drainage system and 

worst case scenarios during a 1% AEP event. These figures show a similar 
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distribution as found in the worst case scenario (Figure 4.6), indicating that model 

performance remains consistent across multiple levels of domain complexity. 

 

 

Figure 4.6: F/NF correlation for the ‘drainage system’ scenario during a 1% AEP, 

2 hour rainfall event 
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Figure 4.7: F/NF correlation for the ‘intervention’ scenario during a 1% AEP, 2 

hour rainfall event 

Embankments which demonstrate variation in F/NF prediction are those which 

are served by culverts, represented by a 1D system, and therefore not included 

within the CADDIES model. An example of this can be seen to the east of 

Eynesbury where the road embankment ponds water, resulting in a localised area 

of F/NF variation (Figure 4.8). This indicates a limitation of rapid scenario 

screening framework. 
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Figure 4.8: F/NF correlation at Eynesbury for the ‘intervention’ scenario during a 

1% AEP 2 hour rainfall event 

 

4.3. Discussion 

4.3.1. Screening a worst case scenario using the framework 

The degree of utility of the framework to screen catchments in the worst case 

scenario is evaluated relative to three questions, each progressing to a more 

nuanced level of application: Firstly, can the framework broadly replicate flood 

dynamics and identify PFS in the urban catchment? Secondly, does the 

framework correlate flood depths with industry standard techniques? And thirdly, 
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are outcomes from application of the rapid screening technique comparable to 

analysis using the industry standard approach? 

During the worst case scenario the rapid screening framework replicates 

identification of the four PFS identified in St Neots as part of the Cambridgeshire 

SWMP (2012). These regions are Eaton Ford, Eynesbury, Town Centre and 

Riverside. Only a minor variation in peak depths per cell of 0 to 2 cm ± standard 

deviation of 5 to 12 cm is observed in measurements across each PFS during all 

AEP events. Outcomes from both approaches are likely to be very similar due to 

the 97.4% average F/NF correlation across all PFS and each of the AEP events. 

The 88% F/NF correlation observed across the whole catchment is likely to be 

mitigated in practice through initial catchment assessment to discount areas of 

fluvial interaction or where complex subsurface drainage features create 

localised anomalies. 

The models demonstrate similar results and outcomes, providing evidence that 

the rapid screening framework is acceptable for the purpose of screening flood 

hazards during worst case scenarios. However, it is emphasised that this 

comparison is between two models, and not recorded observations. 

Simplifications required for all models mean that neither approach should be 

considered a fully accurate representation of real life. In practice, models will 

always trade off simplifications in representation and limitations in data with 

accuracy, and should therefore be considered as tools for a specific application 

(Box, 1976), in this case screening using readily available data.  

Model utility should be considered relative to the simplifications necessary within 

all flood models. Flood model accuracy in highly complex urban environments is 

likely to be affected by many factors. Variation between models and urban flood 

findings can commonly be attributed to uncertainties including: inaccuracies in 

topographic surveys (Dottori et al., 2013); spatial resolution of elevation models 

missing permanent micro-topographical features such as kerbs (Fewtrell et al., 

2011), walls (Yu and Lane, 2006), ditches  (Bates et al., 2006) and fences (Mignot 

et al., 2006); temporary micro-topographical features such as cars (Dottori et al., 

2013); landscapes altered by high energy flows (Dottori et al., 2013); flow 

interactions with buildings, which vary with height and inundation duration (Chen 

et al., 2012; Schubert and Sanders, 2012); uncertainties in statistical construction 

of temporal and spatial patterns of design rainfall (particularly for low probability 



136 
 

events); changes to boundary conditions during storms (Bates, 2004); and local 

short term irregularities such as blocked or damaged drainage features (Neal et 

al., 2009). 

4.3.2. Including urban drainage systems within the framework 

The primary limitation of the rapid scenario screening framework is considered to 

be the trade-off between representation of the 1D pipe system with a model 

architecture aimed at speed (Webber et al. 2018a; 2018b). This chapter has 

identified that representing the pipe system using spatial variation in cell outflow 

rates across model sub-catchments demonstrates an average PFS F/NF 

correlation of 98.5% with the 1D network included in the ICM model. Both models 

screen the catchment and identify the four areas at risk from surface water 

flooding. Within these PFS, models demonstrate a mean variation per cell of 0 to 

2 cm with a standard deviation of 5 to 9 cm, alongside an average F/NF 

correlation of 98.5%. Correlation is similar across all return periods. The result of 

this correlation is that both modelling approaches are likely to result in similar 

outcomes for recommending further detailed modelling and prioritising areas of 

the catchment where interventions should be evaluated.  

Representing sub-surface drainage using a simplified cell output rate appears an 

effective trade-off in areas where the water is removed; however, carries the 

limitation that water is not transferred to other regions where it may influence 

flooding, for example outflows to watercourses. High intensity short term rainfall, 

responsible for the majority of urban surface water flooding, is unlikely to 

contribute significant amounts of volume to cause flooding in major watercourses. 

However, this limitation should be considered carefully as the approach may not 

be suitable where small water courses, culverts or pipe full flow phenomenon 

such as surcharge are expected to contribute to surface water flood risk. This can 

be mitigated using initial analysis of flood hazards through taking actions such as 

evaluating flood histories, interviewing catchment stakeholders and reviewing 

previous studies in the area of investigation. These actions are typically 

recommended as part of strategic flood risk assessments (DEFRA, 2010). 

As with the worst case scenario, finding that the rapid scenario screening 

framework correlates with existing methodologies is caveated with the need to 

examine the spatial distribution of results to ensure action taken reflects the 

strengths of the framework; namely, that the model is used to support further 
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study in areas not influenced by fluvial flooding and that allowance has been 

made for significant sub-surface features. 

4.3.3. Modelling interventions using the framework 

The most complicated scenario within this analysis is the inclusion of additional 

interventions alongside the existing drainage network. This scenario involves 

representing the land use, sub surface drainage and additional flood protection 

measures modelled using ICM. Both models identify PFS and correlate closely 

on mean peak flood depth (average 1 cm ± 8cm) in cells and F/NF correlation 

(average 98.5%) within these regions. As discussed in previous sections, spatial 

analysis of differences attributes variation to watercourses and significant sub 

surface features such as culverts. 

Close correlation between the two approaches supports application of rapid 

screening as a tool for examining an initial assessment of interventions in urban 

catchments (Webber et al 2018a, 2018b). Complexities modelling runoff in urban 

catchments (Dottori et al., 2013) alongside the high computational cost of 2D 

modelling (Elliott and Trowsdale, 2007; Hunter et al., 2008b; Mikovits et al., 2015) 

have traditionally restricted the number of interventions which can be screened 

during design. Speed of analysis using this framework lends the utility of 

screening many interventions in a short space of time. Utility is supported through 

the application of simple data, such as elevation, land use mapping and rainfall 

events. This data is likely to be available in the initial stages of engineering 

projects and therefore provides an opportunity for decision makers to examine 

catchments during preliminary analysis and to generate evidence to support the 

strategic direction and requirements for further detailed design. 

4.3.4. Model speed 

Due to licensing restrictions and data confidentiality it was not possible to run 

both approaches using the same computer, necessary for a robust comparison 

of simulation speed. However, it should be noted that existing published studies 

have investigated CADDIES speed, and demonstrated a five to twenty fold speed 

increase of the model versus ICM (Gibson et al., 2016). Additionally, there is a 

large body of supporting literature detailing the computational efficiencies 

achieved through implementing cellular automata flood models relative to 

traditional 2D modelling (Dottori and Todini, 2011; Ghimire et al., 2013; Li et al., 

2015; Liu et al., 2015; Caviedes-Voullième et al., 2018; Lu et al., 2018). This is 
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described in detail within Section 2.2.2. Application of rapid models facilitates 

analysis of many different scenarios and enables decision support to generate an 

evidence base which can include a large range of return periods, possible 

interventions and study area assumptions. 

4.3.5. Sensitivity to changes in the cell output rate 

The suitability of representing drainage through adjusting cell output rates was 

subject to a preliminary analysis where potential adjustments to the rate were 

evaluated. Preliminary analysis was made across the entire catchment area 

modelled under the assumptions outlined for the surface water drainage scenario 

(Figure 3.1) and standard cell output rate calculations, as described in Sections 

3.2.3 and 4.1.2. 

Table 4.4 presents the mean difference in peak depth per cell between ICM and 

CADDIES for a cell output rate calculation ± 50%. This indicates low sensitivity 

to changes in input value, with a slightly lower variation attributed to a reduced 

output rate. This may be attributable to the CADDIES method over estimating the 

drainage efficiency through removing runoff from each cell, rather than through 

specific inlets to the surface water system. 

Table 4.4: Mean difference in peak depth per cell (m) between CADDIES and 

ICM whilst varying cell drainage output rates across the entire catchment in the 

‘surface water drainage’ scenario 

AEP Rate -50% Standard 

calculation 

Rate +50% 

5.0 % 0.06 ± 0.22 0.07 ± 0.22 0.07 ± 0.22 

3.3 % 0.06 ± 0.22 0.07 ± 0.22 0.07 ± 0.22 

2.5 % 0.06 ± 0.22 0.07 ± 0.22 0.07 ± 0.22 

1.0 % 0.06 ± 0.22 0.06 ± 0.22 0.06 ± 0.22 

0.5 % 0.05 ± 0.23 0.06 ± 0.23 0.06 ± 0.23 

Average 0.06 ± 0.22 0.06 ± 0.22 0.07 ± 0.22 

 

When this variation is evaluated in a specific catchment this difference is clearer. 

Table 4.5 presents the same analysis undertaken in the Eynesbury PFS. This 

indicates lower variation when the cell output rate is restricted and higher 

variation when the rate is increased, supporting the previous argument. 
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Table 4.5: Mean difference in peak depth per cell (m) between CADDIES and 

ICM whilst varying cell drainage output rates across the Eynesbury PFS in the 

‘surface water drainage’ scenario 

AEP Rate -50% Standard 

calculation 

Rate +50% 

5.0 % 0.01 ± 0.06 0.01 ± 0.06 0.01 ± 0.06 

3.3 % 0.01 ± 0.06 0.01 ± 0.06 0.02 ± 0.06 

2.5 % 0.01 ± 0.06 0.02 ± 0.06 0.02 ± 0.06 

1.0 % 0.01 ± 0.07 0.02 ± 0.07 0.02 ± 0.07 

0.5 % 0.01 ± 0.08 0.02 ± 0.08 0.03 ± 0.08 

Average 0.01 ± 0.07 0.02 ± 0.07 0.02 ± 0.07 

 

  

Table 4.6 applies the F/NF classification to determine how this variation effects 

outcomes from the rapid screening framework versus ICM. This indicates low 

variability in the division of outcomes when evaluating a flood or no flood across 

the entire catchment. A more detailed breakdown of this classification presented 

in Table 4.7 identifies that modifying the cell output rate creates a trade-off within 

correlation. Breaking down the classification into model variation in F/NF 

classification identifies a pattern in which decreasing the output rate will lead to 

higher flood match outcomes at the expense of lower no flood match outcomes. 

Increasing the drainage rate has the opposite effect, where no flood matches are 

more frequent at the expense of flood matches.  

Table 4.6: F/NF correlation (%) per cell between CADDIES and ICM whilst 

varying cell drainage output rates across the entire catchment in the ‘surface 

water drainage’ scenario 

AEP Rate -50% Standard 

calculation 

Rate +50% 

5.0 % 89.5 89.6 89.6 

3.3 % 89.1 89.1 89.1 

2.5 % 88.9 88.9 88.9 

1.0 % 88.2 88.3 88.3 

0.5 % 87.7 87.6 87.6 

Average 88.7 88.7 88.7 
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Table 4.7: Comparison of F/NF classification outcomes between models 

(averaged across all AEP events) whilst varying cell drainage output rates across 

the entire catchment in the ‘surface water drainage’ scenario 

Outcome Rate -50% Standard 

calculation 

Rate +50% 

ICM F  CAD F 1.0 0.8 0.8 

ICM NF  CAD NF 87.7 87.9 88.0 

ICM F CAD NF 9.8 10.0 10.0 

ICM NF CAD F 1.5 1.3 1.3 

 

Although similar, it should be noted that variation in F/NF correlation does not 

represent a ‘true’/ ‘false’ ‘positive’/’negative’ metric, as would be the case if 

compared versus observed data. Instead this breakdown indicates the divisions 

of classification that each model outputs. Model variation is discussed extensively 

earlier in the chapter and is predominantly attributed to the influence of fluvial 

flood mechanics (ICM F, CAD NF) and subsurface drainage features (ICM NF, 

CAD F). This is of particular relevance when assessing the entire catchment, of 

which a large area is impacted by fluvial flooding (Figure 4.5). 

Low sensitivity to the change in drainage parameters is attributed to analysis 

focusing on extreme short duration rainfall events responsible for surface water 

flooding, where the predominant controlling factor in flooding is overland flow 

rather than the drainage system, which has been developed to manage design 

standard events across the urban area. This results in a water balance with 

relatively low losses attributable to the output value (drainage rate) compared to 

the extreme rainfall input. 

Water balance can be evaluated through a ratio of total output to input volumes 

(Pina et al., 2016). This provides a high level summary of water movement across 

a catchment during an entire event. This analysis is focused on evaluating peak 

surface water flood depths, the controlling factor in flood damages (Penning-

Orwsell et al., 2010). The timing of peak depths varies from cell to cell based on 

the time of concentration, therefore a water balance summary across a whole 

simulation will not adequately capture the controlling conditions which lead to this 

snapshot within the simulation. This is predominantly due to ongoing infiltration 

rates continuing beyond the timing of the peak depth. 
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Instead the water balance and relative weighting of losses can be evaluated 

through examining the scale of drainage systems and likely input and output 

values during conditions leading up to peak flood depths. 44% of the model 

domain is specified to drain to a sewer sub-catchment, the average drainage rate 

per sq.m for each catchment is approximately 30 mm/ hour. Drainage catchment 

locations and capacities are shown in Figures 4.2 and 4.9, note each cell is 4 

sq.m, with F/NF for individual cells detailed in Figures 4.5 to 4.7. 

 

Figure 4.9: Absolute difference between models in 0.5% AEP, 2 hour surface 

water drainage scenario, with sub-catchments highlighted. 
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Peak rainfall inputs, which are likely to be linked to peak flood depths, reach a 

maximum intensity of 140 mm/ hour across the entire catchment. Therefore an 

increase or decrease of 50% in cell output rate makes a marginal difference 

relative to the overall flood dynamics, explaining a low sensitivity to this 

parameter. This emphasises the predominance of overland flow, rather than the 

drainage rate, in predicting surface water flooding during extreme events, which 

supports the application of rapid 2D modelling to screen flooding during extreme 

intensity events. 

4.3.6. Considerations for future modelling in response to Objective Eight 

The purpose of validating the framework is to support application towards utility 

as a catchment screening methodology, intended to support and direct further 

data collection, detailed modelling and management actions. Analysis of the two 

models identifies that the advantages of the rapid screening framework enable 

simulation of many scenarios and potential intervention strategies at a low 

computational and setup resource cost and with comparable accuracy relative to 

other contemporary 2D simulation approaches. Automation of the approach can 

generate hundreds of simulations and build an extensive set of ‘what if’ scenarios 

for preliminary decision support (Webber et al 2018a, 2018b). Simplification of 

several physical parameters, such as the sub-surface drainage system and 

watercourses, mean that this model should be applied only as an initial screening 

tool to direct and inform, rather than replace, detailed design models. Future 

application of the framework should be subject to recognition of several key 

considerations identified during the validation process.  

The application of the framework should be subject to a preliminary analysis of 

catchment flood mechanisms. The 2D model applied is designed specifically to 

model surface water runoff, and as such is unsuitable in its current state for 

modelling other types of flooding, such as fluvial and groundwater floods. It is 

recommended that different approaches are applied where a preliminary analysis 

identifies these mechanisms as the cause of flooding within a particular study 

catchment. Preliminary analysis can be facilitated through investigating published 

flood reports, incident logs, flood histories and discussion with catchment 

stakeholders. Flood reports in the UK are available through catchment flood 

management partnerships which regularly update surface water flood 
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management plans. Elsewhere, interaction with catchment stakeholders or 

reviewing local authority reporting is likely to contribute flood histories. 

The model does not include a 1D representation of the piped system. Including 

an allowance for pipes through parametrisation of cell output values 

demonstrates a close correlation in urban areas, however will not represent 

complex pipe flow dynamics such as surcharge or throttled flows. The assumption 

of uniform rate across each sub-catchment, applied based on the trunk sewer 

diameter is also a simplification which does not necessarily represent water 

movement, capture from the surface into the pipes and spatial variation in 

contribution rates across the sub-catchment.  The framework is therefore 

unsuitable in areas where sewer flooding is highlighted as the predominant cause 

of flooding. As with fluvial and ground water mechanisms, preliminary analysis of 

flooding is likely to be a sufficient process to mitigate this limitation, and enable a 

different approach, such as a 1D sewer network model, to be applied in areas 

where this is the primary issue.  

In certain areas data may be limited or subject to restricted access. This can 

include elevation models, rainfall data, land use characteristics and sewer 

schematics. In particular, sewer networks often consist of legacy assets which 

may not be accurately mapped or may be classified as commercially sensitive 

and subject to data protection, therefore unavailable to the model user. These 

restrictions can be overcome through a framework design adaptable to a wide 

range of data types and resolutions in which a range of data sources can be 

converted into the appropriate formats. As with all models, the accuracy of 

analysis will be controlled by the resolution of data (Dottori et al., 2013). However, 

depending on the purpose of application, ranging from screening approximated 

catchment flood dynamics through to assessing high resolution data, the tool may 

still be suitable and will output useful analysis of removing runoff across the 

catchment. Particularly in the context of high intensity rainfall which exceeds 

drainage system capacity and soil infiltration rates. 

Where land use data is unknown, the model can be run using uniform global 

parameters, sourced from academic literature. The same principle applies to the 

piped system, which can be approximated using a uniform drainage rate, a 

concept similar to that applied within the Environment Agency Surface Water 

Flood Mapping studies (Environment Agency, 2013). 
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Practical utility of the rapid screening framework can be summarised as suitable 

for initial catchment screening. This has application as part of developing 

evidence or enhancing scenario exploration and stakeholder communication to 

aid decision support. As with all models, this provides a tool for a specific purpose 

and it’s uncertainties and limitations should be evaluated on a case by case basis 

(Blöschl, 2006; Dottori et al., 2013). 

4.4. Chapter conclusions 

This chapter validates the application of the framework for screening catchment 

flood dynamics by comparing framework outputs with those from a published 

SWMP. Key conclusions from this chapter are: 

 The rapid scenario screening framework is a suitable tool for screening 

surface water PFS and high level flood dynamics in urban catchments. 

 The framework demonstrates close correlation with ICM when evaluating 

surface water flood hazards within priority flood spots. This finding applies 

to models constructed to multiple levels of detail, including a worst case 

overland flow (97.4%), inclusion of the sub-surface drainage system 

(98.5%) and addition of interventions to the catchment surface (98.5%). 

 Parameterisation of cell output rates to represent the sub surface drainage 

system demonstrated high correlation with 2D-1D modelling however data 

confidentiality, record uncertainties and legacy assets mean that detailed 

schematics of surface sewers may not always be available, particularly at 

the initial stages of intervention screening. Low sensitivity of cell output 

parameters during extreme rainfall indicates that broad scale 

parameterisation, such as that undertaken as part of Environment Agency 

(2013) surface water flood mapping, is suitable for preliminary screening 

where this is the case. 

 Application of the framework should be supported through preliminary 

analysis to ensure surface water flood hazards are not caused by 

interactions with local sub-surface drainage or river systems. 

Comparison indicates that the rapid scenario screening framework is a promising 

tool for screening flood hazards and evaluating intervention options across urban 

catchments. This validation supports using the framework for initial catchment 



145 
 

screening as part of scenario exploration to aid decision support.  Subsequent 

chapters in the thesis will apply the methodology from Chapter Three and lessons 

learnt validating the approach in this chapter to evaluate reliability and resilience 

of surface water flood management strategies. 
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5. EXAMINING THE EFFECTS OF STRATEGIC INTERVENTION ZONES 

This chapter responds to Objective Four: ‘Investigate the flood reduction 

performance of strategic and specific interventions’. This is achieved through 

examining the effects of strategic intervention zones across an urban catchment. 

Understanding the effects of strategic intervention zones forms the initial stage of 

surface water flood management through developing evidence regarding the type 

and scale of action required to address hazards in a catchment. This is achieved 

through identifying catchment flood dynamics to prioritise areas where 

management is required and scoping the scale of intervention effects required to 

manage flooding.  

It is envisaged that this method of analysis will form the basis of an initial 

assessment, which will support and direct further detailed modelling. Therefore, 

the scope of this chapter is to provide a broad scale screening of potential 

strategies using data which would be available at the beginning of a flood 

management project. This application is intended to demonstrate the potential for 

the framework to output useful results for pragmatically steering further 

investigation whilst using minimal data and computational requirements (Mikovits 

et al., 2015). 

The chapter is structured by introducing the case study of an urban region in the 

UK. Model set up is described using the structure of the framework specified in 

Chapter Three. This set up is then modelled as a base case scenario to 

understand catchment flood hazards and prioritise regions for further analysis. 

The effects of a range of ‘strategic intervention zones’, each represented via 

applying intervention effects across a large area of the catchment, are then 

evaluated across the prioritised region. Analysis is undertaken to identify flood 

dynamics and estimate damage costs associated with each strategy. 

The work presented in this chapter is published in ‘Rapid assessment of surface 

water flood management options in urban catchments’ (Webber et al., 2018a). 
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5.1. Defining ‘strategic intervention zones’ and ‘specific interventions’ 

This chapter focuses on the flood reduction effects of strategic intervention zones 

across an urban catchment. Before zones are evaluated it is first important to 

define the terminology applied in the thesis. 

Strategic intervention zones are regions of the catchment in which parameters 

are modified to investigate the scale and scope of potential effects achievable 

through broad changes to landscape characteristics. Zones are typically 

evaluated using coarse resolution analysis as part of preliminary catchment 

investigations. Therefore, analysis using strategic zones is intended to examine 

how modifying catchment characteristics will influence flood dynamics, and is not 

designed to replicate the effects of any one particular intervention type. 

A more detailed representation of interventions can be achieved through 

modelling specific interventions. These are representations of particular 

measures, parameterised and placed in a defined location across a study area. 

Specific interventions will be evaluated in more detail in Chapters Six and Seven. 

Figure 5.1 presents the difference between modelling a strategic intervention 

zone (left) versus the specific interventions which may contribute towards a 

desired strategic outcome (right).  

 

Figure 5.1: Indicative example presenting the theoretical differences between a 

strategic intervention zone (left) versus siting specific interventions (right) 

Strategic intervention zone Specific intervention placement 

Area of parameter changes 



149 
 

Modelling strategic intervention zones is a simpler process than defining specific 

interventions as characteristics and siting of individual measures is not required. 

This fast approach provides the utility of evaluating how broad scale changes to 

a catchment will manifest themselves towards flood management potential. This 

is of particular application to providing an initial indication to the level of change 

required to manage flooding and can provide the basis towards identifying the 

requirements for specific interventions to achieve the desired effects. 

5.2. Study catchment 

The study catchment examined is in the city of Exeter, located in South West 

England. The city has a population of 120 000 and functions as the administrative 

and economic hub for the county of Devon (Devon County Council, 2011).  

The 5 km by 4km study area investigated in this study includes both the urban 

extent of the city to the south of its major river, the River Exe, and surrounding 

rural areas which contribute runoff to the city (Figure 5.2). Land use in the city 

consists of a densely populated urban area, predominantly consisting of 

residential terraces with some light commercial and industrial units.  

 

Figure 5.2: Map of the Exeter study catchment model extent 
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5.3. Method 

This section outlines how the study area was set up using the modelling 

framework, following the process described in Chapter Three. The scope of 

analysis is restricted to data which would be available to a practitioner for 

catchment screening at the outset of a study. This includes elevation models, 

coarse land use mapping derived from open sources, national or regional rainfall 

profiles and land use parameter values from literature and industry standard 

guidance. Analysis is split into two distinct stages: Stage one, identifying flood 

dynamics and prioritising flood zones for further investigation; and stage two, 

examining the effects of strategic intervention zones across a PFS. 

5.3.1. Characterising the study area 

The catchment surface was specified using 1 m resolution DEM LiDAR with 

building thresholds and road locations added using shapefiles (Ordnance Survey, 

2018). Building thresholds were specified at 0.15 m, representative of the level at 

which the level of flooding would typically exceed a damp proof course 

(Environment Agency, 2013). 

Land uses were specified using Ordnance Survey Mastermap products and 

satellite imagery, and simplified into four categories: Urban, green space, 

buildings and roads. For the purposes of simplification, urban and green space 

areas were classified based on 250 m x 250 m grid cells, in which the 

predominant land use was attributed to the entire block. Road and building land 

use was specified at a 1 m x 1 m resolution overlaying this (Figure 5.3).  

Parameter values associated with each land use type are identified in Table 5.1. 

Roughness values were attributed based on commonly accepted specifications 

found in the literature (Arcement Jr and Schneider, 1989; Woods Ballard et al., 

2015; Butler et al., 2018). Buildings were attributed an artificially high Manning’s 

‘n’ value of 0.300 to account for water being held up within a structure during 

flooding  (Syme, 2008).  Infiltration for green spaces was based on standard 

values for the sandy loam soil found in the area (United Nations Food and 

Agriculture Organisation, 2017; Cranfield Soil and Agrifood Institute, 2018). It was 

assumed that buildings would have no capacity for infiltration. 
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Figure 5.3: Land use classification for the Exeter case study area 

Table 5.1: Parameter values for Exeter case study land use 

Type 
Roughness 

(Manning’s n) 

Infiltration 

(mm/ hour) 

Urban 0.065 12 

Green space 0.110 15 

Building 0.300 0 

Road 0.015 12 

 

No data was available to define the underlying sewer system, therefore the areas 

served by the existing combined sewer system, including roads and urban land 

use, were represented using an infiltration value of 12 mm/ hour in line with the 

Environment Agency approach for surface water flood mapping (Environment 

Agency, 2013).  

It was assumed that as an intervention screening exercise, limited data for the 

catchment would be available and analysis was therefore based on typical 
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catchment profiles in England and Wales from the Environment Agency surface 

water flood mapping methodology (Environment Agency, 2013). To generate 

extensive flooding, rainfall generation was based on a high magnitude 200 year 

return period event using rainfall IDF relationships for the area of LiDAR coverage 

(Centre for Ecology and Hydrology, 2013). This equates to a constant intensity 

design storm of 47 mm/ hour to represent an assumed time of concentration of 1 

hour (Environment Agency, 2013). The simulation was set to run for five hours 

(model time) so that water ponding after precipitation could be examined.  

5.3.2. Representing intervention scenarios 

The strategic intervention zones examined are detailed in Table 5.2. This outlines 

the associated roughness, infiltration and rainfall capture parameters applied to 

each zone. The characteristics of each zone investigated are intended to 

represent a broad range of possible parameters which subsequently explore a 

variety of effects likely to be achievable using specific interventions.  

Examining this range of parameters also functions as a high level sensitivity 

analysis which indicates the relative importance of parameters within this 

catchment. Roughness parameters range from a smooth channel (0.010) to 

grasses (0.110) (Arcement Jr and Schneider, 1989; Woods Ballard et al., 2015; 

Butler et al., 2018). An infiltration rate of 20 mm/ hour and a rainfall capture rate 

of 20 mm/ hour were examined. ‘No change’ is specified in cases where an 

intervention did not affect an underlying land use parameter. Interventions were 

placed across urban areas in the catchment, with their effects assumed to apply 

to every cell within this extent Figure 5.4. 
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Table 5.2: Parameter values for Exeter case study land use 

Type Roughness 

(Manning’s n) 

Infiltration 

(mm/ hour) 

Rainfall capture 

(mm/ hour) 

Do Nothing no change no change no change 

Intervention A no change no change 20 

Intervention B no change 20 no change 

Intervention C no change 20 20 

Intervention D 0.010 no change no change 

Intervention E 0.010 no change 20 

Intervention F 0.010 20 no change 

Intervention G 0.010 20 20 

Intervention H 0.110 no change no change 

Intervention I 0.110 no change 20 

Intervention J 0.110 20 no change 

Intervention K 0.110 20 20 

 

 

Figure 5.4: Distribution of a strategic intervention zone across the Exeter case 

study 

Legend 
  

Intervention zone 
Rural land use 
Urban land use 
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5.3.3. Simulating scenarios 

Simulation was undertaken using a minimum model time step of 0.01 s (Guidolin 

et al., 2016). Small time steps such as this have been demonstrated to deliver 

model accuracy of flood extents at 98 – 99% correlation with industry standard 

hydrodynamic flood models (Gibson et al., 2016). This was corroborated in 

Chapter Four, where correlation between 97 – 99% was identified across a city 

scale analysis. 

5.3.4. Assessing intervention performance 

Performance of intervention strategies was assessed through analysis of peak 

flood depth, flood extent, and damage costs to buildings, as outlined in Section 

3.5. Comparison of intervention scenarios is made relative to a ‘do nothing’ 

approach.  

Damage costs are calculated by applying a depth-damage function to building 

polygons within flood extents using GIS tools (Chen et al., 2016). Peak depths 

are used to ensure a worst case scenario is recorded. The depth-damage 

function applied for this case study was based on costs for an average three 

bedroom semi-detached property (Penning-Rowsell et al., 2010). Costs specified 

as GBP per depth per household were converted to GBP per depth per m2 using 

average household sizes in England (DCLG, 2015). 

5.4. Results 

5.4.1. Screening flood dynamics and identifying a PFS 

As presented in Chapter Four, the role of a PFS is to identify a region, or regions, 

of flood hazard which are prioritised for further analysis. Identification of a PFS 

enables subsequent stages of analysis to refine the scope and requirements for 

modelling by focusing on specific locations within a catchment.  

Figure 5.5 presents peak flood depths across the study area in the ‘do nothing’ 

scenario. These depths represent the worst case scenario for all points in the 

catchment across the entire simulation. Flooding across the catchment is focused 

along two river channels, low points in topography and in the urban area 

highlighted within the figure.  

This highlighted region identifies a PFS within the study catchment. This 

constitutes a region of localised flooding within the residential urban area, where 

depths of approximately 0.5 m are observed. Flooding in this area is observed 
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adjacent to buildings and across roads and consequently this region is prioritised 

for further analysis. 

 

Figure 5.5: Peak flood depth for the ‘do nothing’ simulation during the one hour, 

200 year rainfall event with a PFS highlighted 

Isolated ponding is also seen distributed across the catchment. However, it is 

assumed that disruption associated with this flooding in rural regions will be 

minimal in comparison to the impact on the densely populated urban area, and 

so further analysis is focused on the aforementioned PFS. 

Validity of the PFS and application of results 

The results presented in this chapter are based on a high level screening using 

readily available data and a simplified representation of land use and 

interventions, intended to facilitate a rapid analysis towards evaluating many 

different intervention scenarios. The simplifications within this approach have 

been favourably compared to current detailed flood models in Chapter Four, 

however outputs from this modelling methodology should still be considered in 

the context of an initial and relative assessment between scenarios, intended to 

inform and direct future management actions.  
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Validity of these results has been considered at a high level through comparing 

flood outlines with the Environment Agency’s Risk of Flooding from Surface 

Water flood mapping (Figure 5.6). 

 

Figure 5.6: Peak flood depths for catchment during 100 year flood event 

(Environment Agency, 2013).   

It should be noted that due to limitations regarding available return periods and 

unknown model inputs regarding the Environment Agency mapping, this is only 

intended as an indicative comparison to identify that the PFS identified in Figure 

5.5 aligns with a region of surface water flooding highlighted by the Environment 

Agency Surface Water Flood Mapping. Full comparison between the two 

approaches is not possible due to unknown input data and limited return periods 

available using the Environment Agency mapping, however correlation regarding 

high level flood dynamics between sources supports application of this approach 

for identifying priority flood spots, aligning with the conclusions presented in 

Chapter Four and benchmarking of CADDIES versus other flood models 

undertaken in previous research (Néelz and Pender, 2013; Gibson et al., 2016; 

Guidolin et al., 2016). 
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Further details on how results should be applied are presented in Section 5.5.5. 

5.4.2. Comparison of intervention effects on peak flooding in the PFS 

Figure 5.7 is focused on the urban area identified in Figure 5.5. Intervention 

subplots highlight the difference in peak flood depth relative to the ‘do nothing’ 

depth. The absolute flood depth of the ‘do nothing’ scenario is shown in blue, 

differences relative to this for each intervention are shown in green (reduction) 

and red (increase). 

Flood depth and extent differ between each intervention.  Maximum depth and 

extent of flooding occur in Intervention D, Intervention H and the ‘do nothing’ 

scenarios. Minimum flooding is observed in Interventions C, G, I and K. 

Interventions C and K lead to the largest reduction in peak flood depth across the 

catchment. These interventions capture 20 mm of rainfall and set the infiltration 

rate to 20 mm/ hour, whilst maintaining (C) or increasing (K) the surface 

roughness. Intervention G also leads to a large reduction in peak flood depth, 

however this is less pronounced than Interventions C and K, likely due to the 

decreased roughness (0.010) increasing the runoff speed and allowing water to 

pond.  

Nine of the eleven interventions show a consistent increase or reduction in depth 

across the majority of the urban area. The two remaining interventions (F and H) 

show a spatial trade-off in changes to peak depth, with some areas benefitting 

from interventions and others showing deeper flooding. This is attributed to the 

uniformity across a large spatial extent of all the intervention strategies examined. 

More spatial variation may be observed where interventions are applied in small, 

discrete schemes. 
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Figure 5.7: Relative maximum flood depth for intervention scenarios applied 

across the PFS in the Exeter case study during the one hour, 200 year rainfall 

event 
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5.4.3. Flood damage cost comparison 

Spatial differences between flood depths associated with each intervention and 

locations of buildings mean that interventions which have the greatest impact on 

flood depth reduction may not cause the greatest reduction in flood damage 

costs. Figure 5.8 presents damage costs for each of the intervention strategies, 

highlighting the effects of changing catchment infiltration and rainfall capture 

rates. Analysis of flood damage costs indicates a clear hierarchy of intervention 

effect performance, highlighting that rainfall capture reduces flood damage more 

than infiltration.  

 

Figure 5.8: Comparing the effects of changing infiltration and rainwater capture 

rates across the Exeter study area during the one hour, 200 year rainfall event 

Intervention strategies resulting in the least damage across the study area are 

those which include simultaneous infiltration and rainfall capture effects (K, C and 

G). These interventions generate damage costs between £0.4 and £0.6 million. 

The next best performing set are interventions which capture rainfall (I, A and E) 

which lead to between £1.0 to £1.3 million of damage, followed by interventions 
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which increase infiltration (J, B and F) which result in £1.6 to £1.9 million of 

damage. The worst performing interventions are those which do not change 

infiltration and rainfall capture rates (H, D and Do Nothing) which lead to damage 

costs of £2.6 to £2.9 million. 

Figure 5.8 clearly indicates that adjusting the rainfall capture parameter reduces 

damage further than the infiltration parameter, and that changing the roughness 

parameter demonstrates the least impact relative to other parameters.  

Figure 5.9 further evaluates effects of changing surface roughness on the flood 

damage cost of each scenario. A trend is visible indicating that increasing the 

roughness parameter value tends to generate lower damage costs in all 

parameter sets. When the effect of increasing the roughness value is isolated 

across each set of interventions it appears to create a reduction of £0.1 to £0.3 

million in damage, relative to the unchanged scenario. It is suggested that higher 

roughness leads to slower runoff, which enables an opportunity for more 

infiltration and also slows the ponding. 

Conversely, lowering roughness tends to generate higher flood damage costs in 

this catchment. The negative effect of reducing roughness is typically around £0.1 

million. This is not the case in the scenarios where infiltration and rainwater 

capture are unchanged, in which the ‘Do Nothing’ scenario generates the highest 

total damage costs. 

Table 5.3 presents more detail regarding intervention ranking, as based on 

damage cost reduction relative to the Do Nothing scenario. Interventions K, C 

and G generate the largest reduction in damage costs of between 79 to 86%. 

Each of these interventions consists of rain capture and increasing infiltration 

rates. Interventions which capture rain and change surface roughness (I, E, A) 

perform better than those which increase the infiltration rate and change surface 

roughness (J, B, F).  
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Figure 5.9: Comparing the effects of changing surface roughness across the 

Exeter study area during the one hour, 200 year rainfall event 

All interventions where rainfall and infiltration rates are altered perform better with 

a higher surface roughness, evident through a 9.5% cost difference between 

Intervention J (roughness of 0.11) and Intervention F (roughness 0.01).  

Interventions which just change roughness parameters (H) demonstrate a 10% 

reduction in cost versus the do nothing scenario, in comparison just increasing 

infiltration (B) realises a 38% saving and reducing rainfall (A) realises a 58% 

relative reduction. 
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Table 5.3: Percentage change in damage cost associated with each strategy 

relative to a baseline (do nothing) scenario 

Rank Intervention 
Total damage 

(103) (GBP) 
Damage cost 
reduction (%) 

1 K 411 86 

2 C 470 84 

3 G 609 79 

4 I 1,040 64 

5 A 1,226 58 

6 E 1,301 55 

7 J 1,623 44 

8 B 1,818 38 

9 F 1,890 35 

10 H 2,625 10 

11 D 2,829 3 

12 Do Nothing 2,920 - 

 

Intervention D is the only intervention which shows a different performance when 

assessed by depth versus a cost based comparison. The intervention causes 

deeper peak flood depths than the ‘do nothing’ scenario (Figure 5.7), but damage 

costs are 3% less (Table 5.3). This is due to fast conveyance caused by a 

reduced runoff parameter preventing deep flooding against buildings in the 

northwest quadrant of the catchment, indicating spatial complexities regarding 

the relationship between runoff speed controlled by roughness and damage 

costs. Deeper flooding in the rest of the catchment does not coincide with building 

locations. This variation between evaluating the flood extent versus the flood 

damage indicates the importance of including the spatial value of areas which are 

flooded, and highlights the need to assess intervention performance ranking 

using context specific analysis and applicable metrics. 

5.5. Discussion 

5.5.1. Effects of strategic intervention zones within the catchment 

Both the damage cost and flood extent analysis output the same results when 

ranking the best performing interventions. A small difference is observed in the 
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worst performing interventions (‘Do Nothing’ and Intervention D), due to the 

location of deeper flooding not coinciding with buildings in the study area. 

Visualisation of flooding using the maps allows a quick overview of each 

intervention, however does not capture the significance of flood locations (Merz 

et al., 2004; Hammond et al., 2015).  

Interventions which captured rainfall and increased infiltration showed the largest 

reduction in peak flood depth and damage costs relative to the ‘Do Nothing’ 

scenario. Interventions with these traits exhibited a catchment wide flood depth 

reduction alongside a 79% to 86% decrease in damage costs.  

The case study demonstrated that, when applied across an identical area, rainfall 

capture reduced flood damage more than increasing infiltration (Figure 5.8). 

Rainfall capture strategies accounted for a 55% to 64% decrease in damage 

costs, whereas infiltration strategies accounted for 35% to 44%. However, in 

practice the available area for application, storage volume and costs for each 

intervention are very different. Strong performance of interventions based on 

rainfall capture is exaggerated by no limit being placed on storage in this case 

study. In reality, storage capacity for captured rainfall will limit the effectiveness 

of an intervention, particularly during prolonged rainfall or following wet 

antecedent conditions (Mentens et al., 2006; Stovin et al., 2012). Further over-

estimation occurs due to the same surface area being specified for capture and 

infiltration.  Roofs feature as the primary site for rainfall capture, however not all 

roofs are suitable for construction, and so assuming equal area for rainfall capture 

as infiltration will exaggerate the reduction effect (Viavattene and Ellis, 2013). 

Future studies should incorporate this finding by limiting the available storage 

potential for rainwater capture interventions.  

Adjusting catchment roughness demonstrated the smallest reduction in flood 

damage when considered in isolation, relative to the effects of changing the other 

parameters across the study area. However, a clear trend is visible where higher 

roughness parameters are consistently associated with lower flood damages 

when applied with any other permutation of parameters (Figure 5.9). This 

supports strategies which slow runoff in a catchment and indicates a synergistic 

relationship with measures which simultaneously remove or capture runoff. This 

finding is supported by other green infrastructure literature which indicates that 

slowing runoff and returning catchments to a more natural hydrological cycle is 
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likely to present an opportunity to improve flood management (Balmforth et al., 

2006; Environment Agency, 2007b; Duffy et al., 2008; Wong and Brown, 2009; 

Woods Ballard et al., 2015; Bowen and Lynch, 2017). This finding is caveated 

with the need for a context and location specific analysis of roughness 

parameters. In many cases slow runoff across the catchment will extend the 

runoff hydrograph and consequently reduce flood depths; however, it is also 

conceivable that fast runoff away from buildings and areas of risk, for example 

through designing for exceedance, would also reduce damage costs (Balmforth 

et al., 2006). This supports the need for fast screening approaches which include 

spatial simulation of surface water flood flooding, and highlights that ‘one size fits 

all’ solutions are not sufficient to respond to complex spatial disaggregation in 

urban catchments. 

5.5.2.  Applying strategic intervention zones to identify opportunities for 

specific interventions 

One utility of applying a screening approach to evaluate strategic intervention 

zones is to identify promising strategies which show potential for managing 

surface water flooding in a complex urban catchment. Findings regarding these 

promising strategies can then inform a prioritisation for investigating the 

application of specific interventions to achieve desired strategic effects. A critical 

step in this process is understanding the relationship between conceptual 

strategic intervention zones and the specific measures which may achieve a 

required performance. 

In practice, specific interventions which may contribute to a rainfall capture 

strategy will include those which intercept incoming precipitation and store this 

for re-use or attenuation. These measures include interventions such as 

rainwater harvesting, attenuation tanks, water butts and green roofs (Stovin et 

al., 2007; Environment Agency, 2015; Woods Ballard et al., 2015). Rainwater 

capture strategies are likely to be situated on the roofs of buildings across the 

catchment and will be subject to several limitations on capacity, notably including 

the storage volume, antecedent conditions and installation costs  (Mentens et al., 

2006; Viavattene and Ellis, 2013). Surface based interventions with a finite 

capacity may also contribute to rainfall capture through storing water in ponds or 

surface features.  
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Interventions which can be implemented to increase the infiltration rate per cell 

are typically those which operate on the catchment surface to remove volume 

from surface flows. This mechanism includes both infiltration and surface 

drainage based interventions. Infiltration measures include options such as 

increasing green space within a catchment, installing porous surfaces such as 

permeable paving and installing green infrastructure such as tree pits, 

raingardens and swales. Surface drainage includes measures such as increasing 

the capacity of surface or combined sewers or installing green drainage 

infrastructure such as filter drains and soakaways (Woods Ballard et al., 2015; 

Butler et al., 2018). 

Interventions corresponding to the increased roughness parameter include those 

which alter the catchment surface. This can be achieved as the primary aim of an 

intervention, for example slowing runoff using nature based solutions and green 

infrastructure (Burns et al., 2015d; Schanze, 2017), or as a secondary effect of 

installing another measure, for example a change in surface roughness attributed 

to installing permeable paving, swales, filter drains and other surface based 

strategies (Woods Ballard et al., 2015). In this regard, many interventions will 

effect multiple parameters. Parameterisation of specific interventions will be 

outlined in detail in Chapter Six of this thesis. 

5.5.3. Utility of the framework for initial catchment screening. 

The study has demonstrated two main utilities as an initial screening tool for flood 

risk management: screening flood risk and scoping required intervention effects. 

Screening catchment flood dynamics has identified the predominant regions of 

flood hazards (PFS) across the catchment and forms the basis for prioritising the 

location of flood management strategies. The advantage of the framework is that 

assessment is evaluated through modelling flood depths and extents which are 

not typically associated with standard industry screening approaches, which 

typically rely on flood histories or previously conducted studies (DEFRA, 2010). 

Flood histories should be used with caution due to the potential for small sample 

sizes, inconsistencies or inaccuracies in data collection (for example 

classification of a surface water sewer blockage leading to flooding as a capacity 

rather than maintenance issue), bias towards regions with active and vocal 

reporting and basing decisions on records limited by the time period or technology 

of reporting (Kjeldsen et al., 2014). A reliance on the outputs of previously 
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conducted flood models should also be treated with caution due to the time 

requirement for due diligence of methodologies in the context of crucial but subtle 

nuances of different modelling decisions, which can be missed by new parties 

adopting old projects (Dottori et al., 2013). A simple but significant example of 

this could be using results from a model which does not include subsequent 

changes to catchment land use, which would then divert flow paths in a 

catchment. Planning future strategies using a method reliant on historic events 

can also negate the importance of looking forward at future hazards, which are 

likely to be exacerbated by climate change and urban growth (Wheater and 

Evans, 2009; Howard et al., 2010). The clear identification of flood patterns which 

can be modelled using accessible data is evidenced through framework outputs 

such as Figure 5.5, which clearly identifies areas exposed to hazards during 

intense rainfall events. Application of data such as DEM’s, rainfall descriptors and 

coarse land use mapping enables a fast and simple screening which can be 

undertaken at a minimal resource cost to inform next steps. 

The framework has also evaluated potential effects of a range of strategies whilst 

estimating a relative flood damage cost for each scenario. As discussed in 

Section 5.5.2, this enables a method to steer preliminary design by identifying the 

scope, scale and effects of the specific measures required to manage flooding. 

Outputs such as relative flood depth (Figure 5.7) and avoided flood damage 

(Table 5.3) are easily accessible as decision support tools and provide a clear 

evidence structure for directing decision makers. The UK Government stipulates 

all investment decisions to be supported by transparent and accessible evidence 

bases such as this (Pitt, 2008; House of Commons, 2016). 

The utility of this framework establishes preliminary understanding of catchment 

flood dynamics which can be applied as part of a suite of flood management tools 

to support and inform further analysis (Sayers et al., 2002). The logical next step 

towards application of the framework is developing understanding towards 

modelling specific interventions, of which the connections are discussed in 

Section 5.5.2. Investigation of specific interventions can be supported through 

advancing the simplified representations of interventions used in this example 

through application of finer resolution categorisation, both in terms of the number 

of intervention types and the scale of implementation. This is of particular 

importance when assessing the impacts of numerous small and dispersed 
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interventions, such nature based solutions or dispersed green infrastructure 

(Schanze, 2017).  

Development of the framework towards specific interventions will introduce a 

novel methodology with applications as an enhanced catchment screening tool 

which can utilise the computational efficiency of this approach for investigating 

intervention effects across multiple scales and events. This will respond to 

knowledge gaps regarding the application of a fast and quantitative screening 

methodology to evaluate suitable interventions for a given context, and the ability 

of interventions to manage a range of rainfall events, from design standard rainfall 

through to examining intervention resilience to infrequent, high magnitude events 

(Pitt, 2008; MWH, 2014; Burns et al., 2015c; Woods Ballard et al., 2015; Schubert 

et al., 2017). This is of particular significance given the need to build resilience to 

future extreme events (Ofwat, 2015; Butler et al., 2017) in combination with a 

limited understanding of how novel interventions, particularly green infrastructure, 

will perform during these events (Wheater and Evans, 2009). 

5.5.4. Applying suitable metrics for assessing intervention performance 

Peak flood depth per cell 

Maximum flood depth was a useful metric for identifying the peak impact caused 

by surface water flooding and provided adequate data for a damage cost 

assessment. Limiting simulation outputs to one maximum depth file saves 

computational space where many model runs are required and provides decision 

makers with simple visualisation of each interventions effects. However, it should 

be noted that a maximum flood depth map does not represent the total volume 

or extent of flooding at any particular moment. This metric is therefore unsuitable 

for uses where accurate representations are required at a specific time step, such 

as in the case of emergency evacuation planning. If this use is required then time 

step and recording requirements can be adjusted in the simulation. 

Damage costs 

This study screened flood damage cost associated with a single event as a 

preliminary catchment analysis tool to examine flood dynamics and the relative 

performance of implementing strategic intervention zones to manage extreme 

rainfall. For subsequent stages of evaluating specific interventions, this approach 

could be expanded to assess damage across multiple events to calculate an 

expected annual damage cost, as described in Chapter Three. 
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The focus on direct flood damage also neglects the costs of implementing each 

strategy. In practice, decision makers will be constrained by budgets and 

application of different intervention strategies are likely to constitute a range of 

capital, operational and maintenance costs (Bowker, 2007; Environment Agency, 

2007a). Future research regarding specific interventions should take these costs 

into account and compare these against the expected flood damage savings to 

evaluate the cost effectiveness of each strategy.  

PFS 

Chapter Four recommends application of rapid scenario screening to evaluate 

surface water flooding across a catchment and identify PFS. These are regions 

of hazard within the catchment which can be prioritised for further analysis and 

investigation.  

Once a PFS has been highlighted upstream catchments can be identified by 

tracing contributing areas using GIS. Identifying a PFS and its contributing area 

facilitates a focused approach where resources can be targeted at prioritised 

regions. This benefits strategic design through focusing stakeholder attention 

towards developing and implementing strategies to manage hazards within these 

areas. Managing flooding across upstream areas enables the approach to 

consider the flood offsetting effect of multiple interventions mitigating downstream 

impact through a cohesive and decentralised management strategy. The effects 

of decentralised management to offset downstream risk are further explored 

within Chapter Seven, where flood hazards in Melbourne are managed through 

managing runoff from the upper catchment. 

Terminology regarding PFS and how this relates to strategic intervention zones 

is shown in Figure 5.10. This indicates that the priority flood zone is used to define 

a surface water catchment in which hazards are identified. These hazards can be 

managed through a variety of interventions, which can be modelled through a 

strategic intervention zone, where intervention effects are applied on average 

using parameter changes across a wider region, or through defining specific 

interventions, as discussed in Chapter Six. The difference between strategic 

intervention zones and specific interventions is discussed in Section 5.1. 
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Figure 5.10: Conceptual relationship between PFS, a surface water catchment 

and a strategic intervention zone 

The scale and location of a strategic intervention zone varies depending of the 

context, type and scale of parameter changes evaluated. The zone can extend 

up to the scale of the surface water catchment and include regions within a PFS. 

5.5.5. Applying the results from catchment screening 

As discussed whilst evaluating the utilities of the approach (Sections 5.5.3), the 

primary application of the framework is developing preliminary understanding of 

catchment flood dynamics. This forms one component of a suite of flood 

management tools to support and inform further analysis (Sayers et al., 2002). It 

is important to understand how results from the framework should be applied and 

which decisions they should inform. 

Results from this style of initial catchment screening should primarily be applied 

to support understanding and direct future management actions using other 

complementary management tools. Useful decisions from screening include: 

 Re-focusing analysis on areas of high flood hazard, or discounting areas 

of low hazards. 

 Developing evidence to support investigating the performance of specific 

interventions (Chapter Six). 

 Identifying data gaps which restrict modelling in specific areas.  

 Highlighting key stakeholders to engage in subsequent steps of a flood 

management project. 
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 Informing the types of scenarios and strategies which show promise for 

further analysis using detailed modelling tools. For example rainfall 

events, interventions or catchment regions which would benefit from 

further analysis. 

The assumptions associated with rapid scenario screening are reflective of the 

simplifications required to develop novel utility of evaluating many surface water 

flood scenarios during the initial stages of a management project, and are in line 

with similar approaches recommending simplified models to facilitate this style of 

analysis (RAND, 2013; Babovic et al., 2018b). The strength of the methodology 

lies in an ability to explore a wide range of scenarios using readily available data. 

Scenario exploration supports further actions through developing a robust 

evidence base which enhances understanding to direct a chain of subsequent 

analysis which incrementally guides subsequent flood management actions. 

Outputs and decisions from the approach are most useful when compared both 

relatively and the context of the limitations discussed in Chapters Three and Four. 

5.6. Chapter conclusions 

This chapter has demonstrated application of the framework to screen catchment 

flood hazards and compare the effects of twelve high level intervention strategies 

during a high magnitude flood event in an urban catchment. Analysis has focused 

on assessment of strategic intervention zones, represented through changing 

land use parameters across large areas of the catchment. It is envisaged that this 

style of analysis can generate understanding of the scope and scale of effects 

required to manage flood risk in an urban catchment. This knowledge can then 

form the basis for decision support regarding the direction of further investigations 

evaluating the specific interventions required to achieve these effects. 

Key findings from this chapter are: 

 The framework is applicable to identify flood dynamics and screen surface 

water hazards across an urban area. Analysis was achieved at a low 

resource cost whilst utilising data sources likely to be available at the 

inception of a flood management project. 

 Ranking interventions based on flood extent and damage costs outputs 

similar results, however spatial differences between intervention effects 

versus building locations results in a slight variation in rankings between 
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the two metrics. Future application should include context discussing how 

metrics accommodate spatial variation of effects in surface water flood 

management. 

 When intervention effects were evaluated independently, rainfall capture 

based strategic intervention zones demonstrated the lowest estimated 

damage costs (£1.0 M) relative to interventions which only infiltrated runoff 

(£1.6 M) or slowed runoff (£2.6 M). However, it is noted that this is based 

on an assumption of equal areas and capacities available for all 

intervention types, which in practice may not be the case. 

 Intervention zones with multiple effects were the most effective strategies. 

Combined interventions generated the lowest damage cost estimates of 

£0.4 M. This supports future development of synergistic intervention 

strategies capable of applying a range of mechanisms to manage surface 

water management. 

Conclusions are made specific to the context of the case study and are subject 

to several limitations associated with simplification of physical processes made 

as a result of a model architecture aimed at speed. Speed and computational 

efficiency are necessary to respond to gaps in traditional modelling regarding the 

ability to assess and evidence many strategies (Chapter Two). The limitations 

support the intention of this framework to guide and evidence optioneering, rather 

than conducting detailed design. Full discussion of these limitations is available 

in Chapters Three and Four. 

The chapter has identified several recommendations for future research which 

will be developed in subsequent chapters of this thesis. These recommendations 

include: developing the assessment presented by refining parameters to 

represent specific interventions applied across urban catchments at a high 

resolution; investigating reliability and resilience of interventions through 

evaluating performance across multiple rainfall events; and, expanding the 

economic analysis to include the annual expected damages and cost 

effectiveness of each strategy. 
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6. EVALUATING COST EFFECTIVENESS OF SPECIFIC INTERVENTIONS 

This chapter responds to Objectives Four, ‘investigate the flood reduction 

performance of strategic and specific interventions’, Five, ’evaluate intervention 

cost effectiveness over many rainfall scenarios’ and Seven, ‘investigate the 

relationship between resilience and reliability of interventions’. This is achieved 

through advancing the methodology introduced in Chapter Three to develop 

representation of specific interventions, and then assessing performance of these 

measures across a range of scenarios.  

Despite established inclusion of novel surface water management strategies 

within academic, government and commercial discussion, several gaps are 

apparent in application (Pitt, 2008; MWH, 2014; Burns et al., 2015c; Woods 

Ballard et al., 2015; Schubert et al., 2017). This chapter principally responds to 

two of these gaps, namely, generating evidence regarding novel interventions 

through the application of a fast and quantitative screening framework to select 

suitable interventions for a given context, and evaluating the ability of 

interventions to manage a range of rainfall events, including resilience to extreme 

rainfall (Butler et al., 2017; Löwe et al., 2017). 

This chapter is divided into three sections. Section 6.1 outlines representing 

specific interventions within the framework in order to address barriers for 

implementation of novel measures, including developing evidence for institutional 

decision making frameworks, uncertainty regarding effectiveness of novel 

interventions in a heavily regulated and risk averse water industry and a lack of 

evidence regarding the hydrological performance of novel interventions (Cettner, 

2012; O’Donnell et al., 2017; Ossa-Moreno et al., 2017).  

Section 6.2 assesses performance of specific interventions across a range of 

rainfall durations and return periods. This responds to a gap in literature regarding 

performance variation of flood management strategies across design standard 

and extreme rainfall events through analysis of 144 scenarios which represent a 

range of rainfall intensities, frequencies and durations (Pitt, 2008; Wheater and 

Evans, 2009).   

Section 6.3 advances analysis towards investigating the resilience of 

interventions up to a 1000 year return period event and evaluates the effect of 

intervention placement on performance in an urban catchment. This section also 
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responds to recommendations from Chapter Five by developing a cost 

effectiveness metric which enhances decision support through screening 

intervention economics over a thirty year planning horizon. 

The work presented in this chapter draws from the papers ‘Rapid surface water 

intervention performance comparison for urban planning’ (Section 6.2), which is 

published in Water Science and Technology (Webber et al., 2018d), ‘Comparing 

cost effectiveness of surface water flood management interventions in a UK 

catchment’ (Section 6.3), which is published in the Journal of Flood Risk 

Management (Webber et al., 2019) and ‘How can we build reliable and resilient 

surface water management’ (Section 6.3), which is published in the proceedings 

of the Resilience of the Water Sector conference held in Munich, 2018 (Webber 

et al., 2018c). 

6.1. Interventions 

Green infrastructure is frequently cited as a desirable method with which to 

manage surface water and build resilience in urban environments (Balmforth et 

al., 2006; Environment Agency, 2007b; Duffy et al., 2008; Wong and Brown, 

2009; Woods Ballard et al., 2015; Bowen and Lynch, 2017). Terminology 

describing such approaches varies, including a range of synonyms such as Water 

Sensitive Urban Design (WSUD), Low Impact Development (LID), Sustainable 

Drainage Systems (SUDS) and Best Management Practices (BMP), among 

many others. Current literature recognises significant cross-over regarding the 

definitions and terminology of measures (Fletcher et al., 2015). Therefore a broad 

categorisation is applied to group similar interventions in this chapter. The term 

‘green infrastructure’ is applied as a generic term for drainage interventions which 

manage surface water by mimicking natural hydrologic processes, such as 

infiltration and detention (Fletcher et al., 2015).  

Literature highlights the need to increase the evidence available for novel 

interventions through establishing new assessment frameworks which can 

evaluate strategy performance (Pitt, 2008). This section outlines specific 

interventions (as defined in Section 5.1, Figure 5.1), their effects and how they 

are translated into the rapid scenario screening framework. Specific interventions 

are simulated through high resolution representation of detailed measures and 

included within the model structure through spatial and temporal manipulation of 
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cell roughness, infiltration and rainfall parameters. Parameters are determined 

through evaluating current literature and best practice.  

A broad range of conventional and green infrastructure interventions are 

presented, including green roofs, rainwater capture tanks, permeable paving, 

infiltration techniques, sub-surface drainage measures and surface storage 

features. These descriptions form the basis of analysis conducted in Sections 6.2 

and 6.3. 

6.1.1. Green roofs 

Green roofs are vegetated surfaces constructed on the roofs of buildings. There 

are many variations of green roof types, in line with the large variation in roof 

structure. In general roofs can be classified into two categories based on 

substrate depth: extensive and intensive roofs (Berndtsson, 2010; Woods Ballard 

et al., 2015). Extensive green roofs tend to have a shallow substrate depth and 

are suitable for planting vegetation such as grasses. Intensive green roofs are 

constructed using a deeper substrate and can support a wider range of planting. 

It should be noted that this classification is not exact; Berndtsson (2010) 

conducted a review of green roof literature and identified a significant overlap in 

substrate depths between studies (Table 6.1). 

Table 6.1: Examples of soil thickness of intensive and extensive green roofs 

(adapted from Berndtson, 2010) 

Intensive (mm) Extensive (mm) Reference 

>500 – Köhler et al (2002) 

>300 – Bengtsson et al (2005) 

150 – 350 30 – 140 Mentens et al (2006a) 

150 – 1200 50 – 150 Kosareo and Ries (2007) 

>100 <100 Wong et al (2007) 

>150 20 – 150 Woods Ballard et al (2015) 

 

This thesis will adopt UK industry best practice in the form of the CIRIA (Woods 

Ballard et al., 2015) definition of green roofs based on a substrate depth threshold 

of 150 mm.  
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Woods Ballard et al (2015) indicate that green roofs can be installed on a variety 

of roofs, however installation costs will increase where building structure requires 

reinforcement. This is of particular note regarding intensive roofs, which tend to 

require significant upgrades to support increased structural load (particularly 

relevant when soils become saturated), access and maintenance. Structural re-

design required for installation of intensive roofs adds uncertainty to the 

installation suitability of green roofs, particularly when considering urban retro-fit 

on standard properties. The high level strategic analysis undertaken through this 

screening method is therefore better suited for investigating the effects of 

extensive green roofs, which are more likely to be suitable for urban retrofit.  

A number of studies have measured green roof performance across a variety of 

environmental and construction factors. These identify variation in the rainfall 

capture potential of green roofs due to substrate depth and type, planted 

vegetation, roof geometry (VanWoert et al., 2005; Villarreal and Bengtsson, 2005; 

Getter et al., 2007; Stovin et al., 2012), age and antecedent conditions such as 

proceeding dry periods, temperature, seasonal variation and rain event 

characteristics (Bengtsson et al., 2005; Villarreal and Bengtsson, 2005).   

Studies indicated a range of values for the interception potential of green roofs. 

This thesis incorporates the variation in predicted green roof performance 

through adopting assumptions within the average range proposed by previous 

research (Table 6.2). This is equal to around 15 mm of interception for a green 

roof. This value will be adapted for each case study, through editing the input 

rainfall profiles for cells on which green roofs are situated. The process for editing 

rainfall values is described in Section 3.3.1. 
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Table 6.2: Summary of green roof performance (adapted from Woods Ballard et 

al., 2015) 

Study Interception 

provided 

(mm) 

Substrate 

depth (mm) 

Location 

Martin (2008) 10 100 Ontario, Canada 

Paudel (2009) 16.5 100 Detroit, USA 

United States General 

Services Administration 

(2011) 

12.5  – 19  75 - 100 USA 

Stovin et al (2012) 12 – 15 80 Sheffield, UK 

Fassman-Beck et al 

(2013) 

20  100 - 150 Auckland, New 

Zealand  

 

It should be noted that the variation in performance and construction suitability 

indicates the need to conduct detailed scoping studies in areas where preliminary 

screening indicates green roofs are a preferred option to manage flooding 

Much of the literature indicates that green roofs are most effective for managing 

smaller storms (Carter and Rasmussen, 2007; Simmons et al., 2008). Limited 

studies have been undertaken to examine the green roof resilience to extreme 

events, application of green roofs within this research framework is anticipated to 

assist bridging this gap. 

6.1.2. Rainwater capture tanks 

Rainwater capture tank interventions consist of a variety of measures designed 

to intercept, store and release rainwater (Woods Ballard et al., 2015). Interception 

is typically achieved through collection from roof surfaces, although runoff can 

also be collected from the catchment surface. Storage is achieved using tanks 

across a range of scales, from small water butts through to large domestic and 

industrial tanks. Rainwater release can be achieved through re-use of captured 

grey water for uses such as gardens and toilets, infiltrated into the soil, or 

attenuated back into the surface water sewer system. Rainwater tanks are 

classified based on the combination of these three parameters (Amos et al., 2016; 

Melville-Shreeve et al., 2016; Campisano et al., 2017). This section will describe 
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three common rainwater capture tanks: rainwater harvesting, attenuation tanks 

and water butts. Typically, rainwater capture and infiltration is considered a 

soakaway, which is discussed in Section 6.1.5. 

Rainwater harvesting involves the capture of rainwater for re-use (Burns et al., 

2015d; Amos et al., 2016; Melville-Shreeve et al., 2016; Campisano et al., 2017). 

Water is typically re-used at the site of capture to reduce water demand. Typically 

re-use is for non-potable water demand such as toilet flushing, although the 

addition of a treatment train means that this is not always the case. 

Design of rainwater harvesting systems requires careful balance of seasonal 

rainfall averages, rainfall intensity, storage duration and site demand (Melville-

Shreeve et al., 2014). Systems can be adapted to incorporate a range of 

collection and storage options, some of which are gravity fed and others which 

require pumping (Melville-Shreeve et al., 2016). The rate of capture can also be 

limited by the collection mechanisms, for example the size of the downpipe can 

restrict and throttle flows from the collection surface to the storage tank. As this 

project is primarily concerned with the potential of interventions to reduce the 

surface water runoff, the nuances of system design will not be examined at this 

point and so it is assumed that interventions operate with 100% capture efficiency 

until storage fills, with no throttling effects. 

Attenuation tanks share very similar characteristics with rainwater re-use tanks in 

terms of collection and storage, however captured water is gradually attenuated 

back to the sewer system rather than re-using it on site. Gradual release of 

captured water is designed to increase the available space within surface water 

and combined sewer systems during an event without the cost of excavating and 

installing new subterranean infrastructure.  

Water butts provide a cheap but low capacity rainwater capture device. However 

ease of installation means they are accessible for implementation across large 

areas, which in turn can lead to cumulative flood reduction effects. 

The quantity of rainwater disconnected will be relative to the storage capacity of 

the system. In this study it has been assumed the only controlling factor on 

storage is available volume. Sufficient available storage volume within tank can 

be controlled using active and passive systems. Active controls combine real time 

forecasting with ‘smart’ tank operation to release stored water before large rainfall 
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events, thus ensuring full tank capacity is available (Xu et al., 2018). Tank design 

can also include passive controls to ensure available storage capacity through 

compartmentalised tanks which are designed to only hold a certain volume for re-

use (Figure 6.1; Gee and Hunt, 2016; Melville-Shreeve et al., 2016)  

 

Figure 6.1: Diagram representing a compartmentalised rainwater capture tank 

This thesis responds to the uncertainties regarding available storage volume and 

the presence of active controls through utilising assessment of many scenarios 

to examine a range of tank capacities for each catchment. This constitutes a 

sensitivity analysis, which can be used to evidence decision support using results 

indicative of many potential configurations. Typical sizes of domestic rainwater 

capture tanks range from 2500 l to 10 000 l (Rainwater Harvesting Ltd, 2018; 

Tanks Direct, 2018). Water butts are significantly smaller, with a typical capacity 

around 250 l of capacity when empty. It is assumed that water butts are unlikely 

to have active control mechanisms due to their relatively small capacity, therefore 

the study assumes a conservative available capacity of 100 l per water butt. 

Rainwater capture is represented in the model using a similar approach as green 

roofs, where a new rainfall profile is applied to accommodate water captured by 

the intervention (Section 3.3.1). In the case of green roofs, the interventions 

rainfall capacity is controlled by the area of installation. This is not the case for 

rainwater capture measures, for which the capacity is specified by the tank size. 

Rainwater capture is instead incorporated within the modelling framework 

Storage capacity  

Attenuation capacity Always draining at attenuated rate 

Stored for re-use  

Rainfall capture  
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through assuming that all areas of a specified collection surface contribute to the 

tank equally. Therefore, the storage capacity of the tank is modelled through 

averaging the volume across the entire collection area through adjusting all cells 

rainfall inputs. For example, a 5,000 l rainwater tank draining 100 m2 of 

impervious roof would be represented by capturing the first 50 mm of rainfall 

which fell on each cell. 

This study assumes rainwater capture collection is undertaken on building roofs. 

Therefore roughness and infiltration will remain the same as underlying land use 

parameters.  

6.1.3. Permeable paving 

These interventions consist of paving structures which are able to permeate 

runoff through the catchment surface for storage or transmission (Zachary Bean 

et al., 2007; Collins et al., 2008a; Yong et al., 2011; Woods Ballard et al., 2015; 

Mohammadinia et al., 2018). Pavements are constructed using porous surface 

materials, which enable infiltration across the entire surface, or using 

impermeable materials, with infiltration only occurring at the voids between 

blocks. Figure 6.2 shows three types of pervious paving system: Left, a porous 

asphalt construction allowing infiltration across the entire surface; Middle, a 

series of impermeable blocks with porous jointing material; and Right, a 

reinforced grass and gravel structure which facilitates natural infiltration.  

 

Figure 6.2: Types of pervious pavement system (Woods Ballard et al., 2015) 

Once infiltrated, runoff can be stored using tanks and geo-cellular systems, 

infiltrated into the soil structure or collected in transmission trenches and pipes. 
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A large range of permeable paving systems is available, including: modular 

permeable paving, porous asphalt, grass reinforcement, resin bound gravel, 

porous concrete, macro pervious and block pervious paving (Woods Ballard et 

al., 2015). Paving can be installed to replace many impervious surfaces, although 

it is most commonly found in areas with lighter loading such as car-parks and 

pedestrian walkways (Scholz and Grabowiecki, 2007).  

Key design requirements for effective and safe permeable pavements are 

presented in Table 6.3. Broad consideration of these factors is appropriate for a 

high level screening process, however detailed design requires a site by site 

investigation, with particular attention required to examine sub-surface geology, 

the potential for soil contamination and an appropriate maintenance regime. 
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Table 6.3: Practical considerations for installation of permeable paving 

Consideration Description 

Groundwater 

contamination 

All measures which directly infiltrate to the subsoil should 

be assessed for potential contamination, particularly if 

draining road surfaces which may build up heavy metals 

and motor oils. Permeable paving diverting to storage or 

treatment can be managed through installation of 

impermeable membranes (Wilson et al., 2003). 

Seasonal 

temperature 

extremes 

It has been documented that permeable pavements can 

withstand freeze-thaw conditions better than traditional 

pavements due to the insulating effect of air trapped within 

the base and the latent heat of soil moisture (Kevern et al., 

2010) However, infiltration is unsuitable for managing 

runoff in areas with seasonally frozen ground. 

Maintenance Regular maintenance of permeable paving is required to 

prevent pores clogging through due to sediment build-up 

and shear stress (Scholz and Grabowiecki, 2007). This is 

of particular importance in environments where the 

intervention is situated in close proximity to fine particles. 

Full maintenance descriptions are beyond the scope of this 

screening project, but are available on Page 492 of the 

SUDS manual (Woods Ballard et al., 2015). 

 

It should be noted that other studies indicate that 

permeable paving operates effectively over long periods 

with minimal maintenance. One study indicates that over 

six years a permeable paved car park exhibited only 

minimal changes to paving structure and infiltration rates 

(Booth and Leavitt, 1999). 

 

The volume reduction capability of permeable paving is controlled by the 

transmission speed through the medium and the availability of storage within it. 

However, in the case of surface water flooding caused by short duration, intense 

rainfall the most likely limiting factor will be the pore saturation in the upper soil 
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or storage medium slowing transmission speeds, with the potential to limit 

infiltration even if storage is adequate. A range of studies have taken place which 

aim to quantify the volume reduction in various locations, these are presented in 

Table 6.4.  

Table 6.4: Summary of studies measuring infiltration rates through pervious 

paving (adapted from Woods Ballard et al., 2015) 

Study Infiltration rate 

(mm/ hour) 

Details 

Pratt et al 

(2002) 

2.6 – 17.2  

Average 7.3 

Edinburgh, UK using concrete block pervious 

pavement. Testing using rainfall intensity to 

trigger runoff. 

Rankin and 

Ball (2004) 

2.5 – 16 

Average 5 

Sydney, Australia using concrete block 

pervious pavement. Testing using rainfall 

intensity to trigger runoff. 

Bean et al 

(2007) 

86 median after 

maintenance 

40 sites in North Carolina, Maryland, Virginia 

and Delaware, US. Testing undertake using 

double ring infiltrometer. 

Collins et al 

(2008b) 

> 5 Kingston, USA using concrete block pervious 

pavement. Testing using rainfall intensity to 

trigger runoff. 

Collins et al 

(2008b) 

Average 6 Kingston, USA using concrete grass grid. 

Testing using rainfall intensity to trigger 

runoff. 

Drake et al 

(2012) 

Average 7 Toronto, Canada using concrete block 

pervious pavement and porous concrete. 

Testing using rainfall intensity to trigger 

runoff. 

 

A wide range of site dependant factors controls the performance of permeable 

paving, therefore the infiltration rate is modelled within the framework using a 

value of 5 mm/ hour, as indicated from the lower bounds of averages in Table 

6.4. Where further information is available, it is recommended that this value is 

adjusted on a site by site basis using field data. This is particularly pertinent in 

the case of reinforced grass gravel paving structures lacking artificial storage, 
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which are more likely to be controlled by the permeability of the underlying soil 

substrate. Indicative catchment specific infiltration rates for soil types are 

available using a variety of soil mapping products (United Nations Food and 

Agriculture Organisation, 2017; Cranfield Soil and Agrifood Institute, 2018). 

Installing permeable paving will affect surface roughness. Concrete block based 

permeable paving is represented using a Manning’s n coefficient of 0.015 

(Arcement Jr and Schneider, 1989; XP Solutions, 2017; Butler et al., 2018). 

Reinforced grass gravel roughness is represented using a value of 0.030, 

corresponding to short grasses (Hamill, 2001; XP Solutions, 2017).  

6.1.4. Infiltration techniques 

Infiltration techniques consist of interventions which infiltrate runoff into the soil. 

A variety of techniques are commonly used, including soakaways, trenches and 

filter strips (Woods Ballard et al., 2015). The common feature of all infiltration 

approaches is the utilisation of natural soil permeability to remove runoff from the 

catchment surface, as such the soil structure must be permeable and unsaturated 

to allow percolation of water at an effective rate.  

The underlying geology is considered the controlling factor in the capabilities of 

infiltration techniques. Full understanding of soil permeability requires detailed 

site specific investigations which include the influences of micro features such as 

rocks, preferential flow routes, soil packing and macro-pores (Ward and 

Robinson, 1990; Beven and Germann, 2013). This level of detail is not possible 

for a high level screening assessment over a broad area and so a simpler 

classification of infiltration capacity is achieved using broad soil type categories 

available from geological mapping products. This assumes relatively 

homogeneous conditions across the catchment based on typical rates for each 

soil type. Figure 6.3 presents a classification from the DEFRA and Cranfield Soil 

and AgriFood Institute (CSAI) Land Information System, ‘LANDIS’ (Cranfield Soil 

and Agrifood Institute, 2018).  
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Figure 6.3: Soil texture classification (Cranfield Soil and Agrifood Institute, 2018) 

LANDIS also provides catchment level mapping of soil types across the UK, 

which can be used in conjunction with typical permeability values to define high 

level infiltration rates (Table 6.5; Table 6.6). 
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Table 6.5: Typical infiltration rates based on soil texture (Bettess, 1996; Woods 

Ballard et al., 2015) 

Soil type/ texture ISO 14688-1 description 

(Blake, 2010) 

Infiltration rate 

(m/s) 

Gravel Sandy GRAVEL 3x10-4 – 3x10-2 

Sand Slightly silty slightly clayey 

SAND 

1x10-5 – 5x10-5 

Loamy sand Silty slightly clayey SAND 1x10-4 – 3x10-5 

Sandy Loam Silty clayey SAND 1x10-7 – 1x10-5 

Loam Very silty clayey SAND 1x10-7 – 5x10-6 

Silt loam Very sandy clayey SILT 1x10-7 – 1x10-5 

Chalk (structure-

less) 

N/A 3x10-8 – 3x10-6 

Sandy clay loam Very clayey silty SAND 3x10-10 – 3x10-7 

Silty clay loam N/A 1x10-8 – 1x10-6 

Clay N/A < 3x10-8 

 

Table 6.6: Basic infiltration rates for soil types (United Nations Food and 

Agriculture Organisation, 2017) 

Soil type Infiltration rate (mm/ hour) 

Sand Less than 30 

Sandy loam 20 – 30  

Loam 10 – 20  

Clay Loam 5 – 10 

Clay 1 - 5 

 

Infiltration measures are modelled based on the soil infiltration rates specified 

using Table 6.5 and Table 6.6. Roughness is attributed based on surface type 

using the typical roughness coefficients from literature (Arcement Jr and 

Schneider, 1989; XP Solutions, 2017; Butler et al., 2018).  

Certain interventions, such as filter strips and trenches, may have additional 

rainfall capture capacity through void space on the top level (Melbourne Water, 
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2005). This additional capture capacity is included through editing the input 

rainfall parameter, representing an initial capture allowance for the intervention.  

6.1.5. Green infrastructure rainfall detention techniques 

Green detention techniques refers to a variety of methods used to temporarily 

capture and store surface water runoff in topographical features. Some features 

are used purely to store water whilst others are used to convey runoff along a 

channel at a predetermined rate matched to the downstream conditions. Rainfall 

detention measures include large scale features such as urban parks, detention 

basins, ponds and wetlands, as well as smaller scale features such as rain 

gardens and tree pits (Scholz, 2015; Woods Ballard et al., 2015). 

In the case of large scale detention techniques, a storage area is created within 

a landscape to capture runoff. Discharge is then moderated through use of 

infiltration features, valves, orifices or weirs. A common detention technique 

involves creating a landscaped depression in a green area, referred to as a 

detention basin (Figure 6.4; Woods Ballard et al., 2015). Basins are typically dry 

except immediately following rainfall when they can offer storage to moderate 

runoff rates and provide a route for some runoff to infiltrate into soils. Many basins 

also have a secondary use as a local green space amenity. 

Large scale detention features are included within the modelling approach 

through editing catchment elevation models to represent a depression designed 

to capture water. Cell output rates are specified to include the infiltration through 

the substrate (as discussed in Section 6.1.4) as well as the any additional 

attenuation rates achieved through urban drainage mechanisms. As with other 

interventions, roughness coefficients are specified based on surface type. 
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Figure 6.4: Schematic for a detention basin layout (Woods Ballard et al., 2015) 

Larger detention features may also provide a basic level of treatment. Treatment 

can be facilitated through settling of sediments (see ‘Forebay’ in Figure 6.4) or 

through biological processes in wetlands and ponds. Water treatment is beyond 

the scope of the surface water flood research undertaken in this thesis and 

therefore not included within the framework. It is also assumed that wetlands are 

too large to be considered as a possible treatment option for urban retrofit case 

studies, although micro treatment facilities have been established in several 

urban settings. 

Smaller scale rainwater detention techniques such as tree pits and rain gardens 

are included within the framework without editing elevation models. Instead, 

capture capacity is included through editing the input rain hyetograph to represent 

intervention capacity for storage and attenuation. Rainfall capture can be 

achieved through surface ponding and infiltration into a porous filter media. 

Surface ponding capacity is included through calculating available space on the 

surface. Filter media capacity is calculated through assessing the volume taking 

into account effective porosity of the substrate. Roughness and infiltration rates 

are included using the same approach as large scale detention features. 
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6.1.6. Upgrading catchment sewer systems 

Historic management of surface water flooding has focused on construction of 

combined and surface water sewer systems, designed to accommodate runoff to 

treatment or emergency discharge (Butler et al., 2018). Upgrading sewers system 

capacity can comprise of several options, discussed below: 

• Increasing pipe diameter involves replacing components of existing 

networks with larger capacity pipes, enabling systems to convey greater 

quantities of water. Construction requires extensive excavation of the pipe 

network, which brings challenges regarding disruption to the local area 

and designing upgrades around existing subterranean utility networks. 

Downstream pipes are also likely to require upgrading to manage the 

increased inflow. 

• Construction of new sewers involves similar construction actions to 

increasing pipe diameters, with the addition of extra investigative and 

design procedures.  

• CSO (Combined Sewer Overflow) construction increases the capacity 

of a sewer network by creating overflow compartment discharge sewerage 

out of the network during periods of excessive flow, typically into 

watercourses. CSO’s release excessive water, thus preventing sewer 

flooding in urban areas, but at the expense of potentially significant 

environmental and health consequences to aquatic environments. 

• Sewer separation splits the foul and surface water element of sewerage 

into different networks, therefore increasing the quality of surface water 

through removal of the foul component. It should be noted that surface 

water will still contain heavy metals, oils and other pollutants from 

surfaces, particularly as part of the ‘first flush’ (Sansalone and Buchberger, 

1997; Lee et al., 2007). This option is unlikely to create significant 

additional capacity in a combined sewer system as the volume of foul flow 

is typically negligible relative to the large volume of surface water during 

extreme rainfall events. The division of different quality waste streams 

does however facilitate a range of discharge options. 

• Increase capacity through monitoring, maintenance and 

rehabilitation. A further option to increase capacity, and importantly to 

prevent blockages, is a regular monitoring, maintenance and rehabilitation 

programme. Sewer collapse and blockage has the potential to lead to 
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surcharging networks, therefore minimising this hazard is potentially an 

important factor in reducing flooding (Ana and Bauwens, 2010).  

CADDIES does not currently support a 1D/ 2D network, therefore it is not possible 

to simulate flow within a pipe network as part of the framework. Instead, surface 

water removal using sewer systems is included in the model through adjusting 

the output rate for sewer sub-catchments (Section 3.2.3). Depending on available 

data and designs, parametrisation can be undertaken at the sub-catchment level 

or through strategic analysis of increased drainage rates across the catchment. 

The process for modelling and parameterising sewer systems is discussed in 

detail in Chapter Three and validated in Chapter Four. This simplified method is 

found suitable for initial option screening and, as with analysis of strategic zones 

in Chapter Five, should be deemed indicative of the level of performance required 

to achieve beneficial outcomes. This understanding can then be extended into 

future management actions, which may involve further analysis using detailed 

1D-2D models.  

It should be noted that achieving drainage via the subsurface, as modelled 

through the cell output rate, can be achieved using a variety of measures. 

Therefore this intervention is referred to as ‘upgrading drainage’ rather than 

specifying the exact modifications to the sewer network. As this intervention is a 

subsurface feature it is deemed to have no effect on the roughness, rainfall or 

elevation model.  

6.1.7. Intervention summary 

Table 6.7 presents a summary of which parameters should be adjusted for 

representing specific interventions. Further detail and context specific 

adjustments are presented later in the thesis, in respect to each case study. 
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Table 6.7: Summary of parameter changes used to represent specific 

interventions 

Intervention Elevation Input Output Roughness 

Green roofs      

Rainwater capture 

tanks 
    

Permeable paving      

Infiltration techniques     

Green infrastructure 

rainfall detention 

techniques 

    

Upgrading catchment 

sewer systems 
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6.2. Investigating duration effects on interventions 

This section of the chapter evaluates the effects of rainfall duration on specific 

intervention performance in an urban catchment. A case study of a UK urban 

catchment is used to illustrate the advantages of the framework (Figure 6.5). 

Analysis is split into two stages, firstly assessing critical rainfall duration and 

secondly examining intervention performance across a range of rainfall 

intensities and durations.  

6.2.1. Method 

Characterising the study area 

The study area examined is an urban catchment in Exeter, UK. In order to 

demonstrate a sequential analysis, important for establishing utility of this 

framework for decision support, the study area examined corresponds to the area 

prioritised in Chapter Five. Figure 6.5 shows the study area, highlighting the 

surface water catchment and building locations. The surface water catchment 

was identified using 1 m resolution elevation model and the ArcMap 10.3 spatial 

analyst function, which tracks the flow direction from each cell to define individual 

watersheds. 

 

Figure 6.5: Exeter study area with surface water catchment highlighted 
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Characterisation of the study area was undertaken using high resolution 1 m 

LiDAR data to represent surface elevation. Building locations were identified 

using a shapefile and included in the simulation through a 0.15 m surface 

elevation uplift to represent a threshold level. 

Land use was specified using online mapping. The effects of interventions and 

land use types were included through manipulation of the parameters in each cell 

which specified water input, output and runoff speed.  An infiltration rate and 

roughness value was assigned to each cell based on the online mapping. 

Infiltration rates were specified in mm/ hour based on catchment soil types 

(United Nations Food and Agriculture Organisation, 2017; Cranfield Soil and 

Agrifood Institute, 2018). Roughness values were specified using commonly 

accepted Mannings ‘n’ coefficients found in literature (Arcement Jr and 

Schneider, 1989; XP Solutions, 2017; Butler et al., 2018). These values are 

provided in Table 5.1. 

Data regarding the subterranean surface water network was unavailable, 

therefore the underlying drainage system was represented using a constant 

infiltration rate of 12 mm/hour, as specified in the Environment Agency 

methodology for high level surface water mapping (Environment Agency, 2013).  

Catchment rainfall was simulated using 1, 2, 3, 4, 6, 12, 24 and 48 hour design 

rainfall events (Figure 6.6). Design rainfall events represent a constant rainfall 

intensity during 30, 100 and 200 year return periods (Centre for Ecology and 

Hydrology, 2013). 
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Figure 6.6: Intensity-Duration-Frequency relationship for study catchment (data 

from Centre for Ecology and Hydrology, 2013) 

Application of rapid screening enables of a range of rainfall events to be included 

within intervention analysis and facilitates assessment across a range of possible 

future scenarios. This is of contemporary importance in the context of future 

uncertainties regarding climate change and is particularly relevant when 

assessing intervention response to changing rainfall intensities, which are 

predicted to increase in the future (Jones et al., 2012; IPCC, 2014). Therefore, 

results in this chapter are presented across a range of rainfall intensities 

representing many possible futures. Inclusion of many possible futures translates 

assessment towards decision making under deep uncertainty approaches where 

assessment of many simulations is undertaken instead of examining a highly 

optimised scenario tied to a single predicted future (Babovic et al., 2018b). This 

is desirable due to uncertain projections of future rainfall characteristics and a 

requirement for water infrastructure to retain function across extended timescales 

(Ana and Bauwens, 2010; Howard et al., 2010). 
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Representing interventions 

Interventions were represented using the methodologies outlined in Section 6.1. 

Interventions included water butts, green roofs, rainwater capture, permeable 

paving, drainage upgrades and a ‘Do Nothing’ baseline scenario.  

Conservative intervention capacity values have been applied where the literature 

presents a range of capacities. This may limit the observed flood reduction of 

strategies. Water butt and rainwater capture tank capacity was based on 

commercially available designs (Rainwater Harvesting Ltd, 2018; Tanks Direct, 

2018) and academic literature (Section 6.2.2; Woods Ballard et al., 2015). Water 

butts were specified at 100 l of available storage volume and rainwater tanks at 

1500 l, representing passive controls enabling half a 3000 l tank. Green roof 

capacity of 15 mm was based on recent published studies (Section 6.2.1; Paudel, 

2009; Stovin et al., 2012). Permeable paving infiltration rates and surface 

roughness was based on a concrete block design rate of 5 mm and included an 

additional 12 mm for areas still contributing to the conventional drainage system 

(Section 6.2.3; Pratt et al., 2002; Bean et al., 2007; Collins et al., 2008). Drainage 

upgrade rates were included through doubling the Environment Agency (2013) 

standard rate applied for broad scale surface water modelling.  

Table 6.8: Intervention strategy effects per cell for the Exeter case study 

Intervention 
Rainfall capture 

(mm) 

Infiltration 

rate 

(mm/hour) 

Cell 

roughness 

(Manning n) 

Do nothing Land use Land use Land use 

Water butt 2.2 No effect No effect 

Green roof 15 No effect No effect 

Rainwater capture 33 No effect No effect 

Permeable paving No effect 17 0.015 

Surface drainage No effect 24 No effect 

 

Interventions were applied at a cell scale (1 m2) across all suitable surfaces in the 

catchment. Water butts, green roofs and rainwater capture were installed on 

building roofs in the study area. Permeable paving and drainage upgrades were 

applied to all impermeable surfaces (roads, pavements and urban areas). 
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Simulating scenarios 

Simulation was carried out across the 1 million cells which represented the 1 km 

by 1 km area using 0.01s time-steps. All six strategies were simulated across all 

eight rainfall events (1, 2, 3, 4, 6, 12, 24 and 48 hours) and all return periods (30, 

100 and 200 year). Each simulation ran for the duration of rainfall, plus an 

additional five hours of time beyond the event to enable ponding. In total 144 

scenarios were simulated. 

Intervention performance assessment 

Damage cost was calculated by applying a flood damage curve to peak flood 

depths within each building, as described in Section 3.5.4. Damage costs were 

industry standard figures for a three bedroom semi-detached property, typical to 

the study catchment, converted into an estimated cost per m2 using average 

household sizes in England (Penning-Rowsell et al., 2010; DCLG, 2015). Total 

damage costs per scenario were calculated by adding the costs of all 

corresponding buildings within the watershed identified in Figure 6.5.  

6.2.2. Results and discussion 

Identifying the critical event duration 

Figure 6.7 shows the total damage costs of design rainfall across 144 simulations, 

including all event return periods, durations and intervention strategies. The 

highest damage costs tended to occur during low probability, high magnitude 

rainfall, with the highest cost at each duration associated with the 200 year event. 

Some crossover is visible, where certain strategies lead to higher damage costs 

at lower probability events. A larger variation between damage costs was evident 

during shorter, higher intensity rainfall. This merits further analysis and is 

discussed later in the chapter in relation to the effectiveness of intervention 

strategies. 
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Figure 6.7: Catchment critical rainfall duration identified using a damage 

assessment for all interventions during 30, 100 and 200 year rainfall events (144 

simulations) 

The highest damage costs occurred during the one hour event. A clear trend is 

visible where higher damage correlates with shorter duration and more intense 

rainfall events. Intervention comparison for this catchment should therefore be 

focused on short rainfall durations. This correlates with UK government guidance 

indicating that short duration design events should be assessed when examining 

urban catchments without knowledge of critical rainfall duration (Environment 

Agency, 2013). 

Identification of catchment flood dynamics using this approach can steer 

prioritisation of computationally expensive hydraulic modelling through 

highlighting design rainfall which is likely to lead to the peak flooding in the 

catchment. The advantage of this prior investigation is to streamline the modelling 

process whilst minimising assumptions regarding catchment flood response by 

evidencing selection of rainfall.  
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Visualising peak flooding during the critical event 

Figure 6.8 shows a comparative flood depth assessment for each intervention 

versus the ‘Do Nothing’ scenario during the one hour 200 year return period 

rainfall event. Absolute flood depth is shown for the do nothing scenario (blue). 

Intervention effects on flood depth are shown on a separate scale showing 

improvement in a cell (green) or deeper flooding (red). This shows the largest 

reduction in flood extents are caused by rainwater capture tanks and upgrading 

sewer capacities. Reduction in flood depth across the catchment was not uniform, 

with interventions creating localised regions of improvement.  

 

Figure 6.8: Peak flood depths during a one hour 200 year return period rainfall 

event: (a) do nothing, (b) green roof, (c) water butt, (d) rainwater capture, (e) 

permeable paving and (f) upgrade drainage 

The largest flood reduction effect is visible in upgrading the drainage system and 

installing rainwater capture across the catchment. These strategies show around 

20 cm of flood reduction across a large extent of the catchment. It should be 

noted that areas where no reduction is apparent can also mean that no flooding 

is in this region to reduce. 
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Examining peak depth visualises a snapshot of total flood effect, which is 

particularly useful for communicating hazards and an overview of strategy effects 

to stakeholders.  

Examining the performance of intervention strategies 

The previous chapter highlighted that interventions which appear to reduce flood 

extent most significantly do not necessarily correlate with those which show the 

largest damage cost reduction due to spatial variation in flood reduction effects 

and building locations. This distinction is important as flood management should 

prioritise impact reduction over hazard reduction, particularly when considering 

placement of surface water flood management interventions where location will 

effect flood extent. This highlights the advantages of a damage cost assessment 

(Figure 6.7) over proxy measures of impact (Figure 6.8), such as captured volume 

or intervention effects on a sub catchment scale, and emphasises the need to run 

flood simulations when comparing intervention strategies.  

Figure 6.9 expands analysis to assess impact by breaking down damage costs 

for each intervention strategy across each event. Assessment of damage costs 

across each scenario indicates that short duration, high intensity rainfall 

generates the highest flood costs across all return periods for the Do Nothing 

scenario. This supports current literature emphasising prioritising investigation of 

short duration rainfall when assessing surface water flood management 

(Balmforth et al., 2006; Environment Agency, 2013; Burns et al., 2015d; Lamond 

et al., 2015; Schubert et al., 2017).  
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Figure 6.9: Flood damage costs associated with each intervention across all 

rainfall events for the Exeter case study  

This is further supported by a trend for higher flood damage costs during shorter 

duration rainfall for all strategies during the 100 and 200 year return periods, and 

five out of six strategies for the 30 year return period. The exception to this trend 

is the performance of rainwater harvesting tanks in the 1 hour, 30 year rainfall 

event.  This intervention demonstrates relatively low flood costs of £0.3 million 

during the one hour rainfall. This is lower than the calculated damage resulting 

from the 2 to 48 hour rainfall events which follow the same trend as other 

strategies, with shorter durations leading to increasing flood damages. This 

apparent anomaly can be explained by the rainwater capture capacity of 33 mm 

per cell, which exceeds the total rainfall volume of 32.3 mm falling during the 1 

hour 30 year rainfall, and therefore captures all incoming rainfall to these cells; 

leading to substantially reduced flooding during this particular event. All other 

events exceed the capacity of the intervention, thus creating overflow; although 

in the case of longer flood events with lower intensities, this overflow can be 

accommodated by other surrounding drainage features such as the surface water 

system, leading to lower costs. When rainfall exceeds tank capacity, as seen 

during the 100 and 200 year events, the damage increases. This finding merits 

further analysis of tank size versus performance across a range of intensities and 

indicates the presence of tipping points for rainfall capture interventions, a 

concept which is examined in Section 6.3 in relation to intervention performance 

during design standard and extreme events. 

The Do Nothing scenario generates the highest or equal highest flood damage 

costs across all return periods, demonstrating that no interventions worsen the 

catchment flood risk. 

The largest intervention effects were observed during the shorter duration events. 

This is due to the existing surface water management approaches within the 

catchment having capacity to convey the relatively low intensities of long duration 

rainfall, thus minimising the observed difference between strategies. 

Intervention performance ranking during longer duration events is not the same 

as for short duration events. The strategy with the lowest damage costs for the 

one hour event, particularly at lower return periods, is rainwater capture. This is 
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despite appearing to not have as large a reduction versus drainage improvements 

when visually comparing peak flood depth and extent (Figure 6.8). The larger 

reduction in impact with a lower reduction of hazard extent is associated with the 

location of rainwater capture preventing surface water accumulation in and 

around properties, versus the drainage upgrades having a larger effect outside 

of these. This example highlights the importance of understanding the spatial 

disaggregation of hazard versus impact reduction. 

Drainage upgrades tended to demonstrate the lowest damage costs during the 

higher intensity, longer duration events due to effective performance during 

prolonged rainfall. Conveyance based systems, such as drainage upgrades, can 

continue to function throughout the event and so lead to lower flood damages. 

This nuance highlights the complexity in the relative strengths of urban 

management strategies, indicating the benefits of rapid scenario screening able 

to identify characteristics of strategies designed for different rainfall durations.  

Assessing resilient performance of interventions during extreme rainfall events 

Resilient performance is assessed through analysis of impact in extreme events 

(Aldunce et al., 2015; HM Government, 2016; Butler et al., 2017).  Frameworks 

which enable assessment of many simulations have the advantage of being able 

to simulate intervention response to conditions beyond design standards. 

Resilience is assessed relative to the magnitude and duration of failure across 

multiple events, in line with Butler et al (2016) which specifies that resilience 

minimises failure magnitude and duration. In this case failure is specified as any 

damage cost above zero. This research applies short duration flood costs (depth-

damage) which act as a single metric that combines magnitude and duration as 

a monetary value.  

Figure 6.10 shows the change in damage costs from each intervention strategy 

versus increasing rainfall intensity during the one hour rainfall event in response 

to design standard (30 year return period) and extreme (100 and 200 year return 

period) events.  
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Figure 6.10: Damage cost versus increasing rainfall intensity during the one hour 

rainfall event for the Exeter case study 

Interesting implications for resilience can be identified by the shape of the curves 

for each intervention in Figure 6.10. Interventions generating a shallower gradient 

demonstrate an ability to minimise damage beyond the standard design 

conditions, resulting in a more resilient performance relative to other scenarios. 

Some interventions exhibit a shallow curve for low return periods which steepens 

as higher return periods are reached, indicating failure in levels of service.  

During the 30 year return period, rainwater capture results in minimum damage 

costs of approximately £0.3 million. All other strategies lead to at least £0.9 million 

more damage during this event. The same performance ranking applies to the 

100 year event, however the difference between rainwater capture and the next 

best performing intervention, drainage upgrades, is reduced to around £0.1 

million. This represents a tipping point in the performance of rainwater capture, 

whilst other interventions represent a more stable response to an increasing 

stress. During the 200 year event, the performance difference between rainwater 

capture and drainage upgrades becomes negligible. This change in flood 
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damage cost rankings indicates varying levels of resilience to the increasing 

stress and highlights complexity in analysing intervention performance.  

Figure 6.11 presents flood damage response to the two hour event. This 

demonstrates a similar change in ranking to Figure 6.10, where rainwater capture 

is initially the best performing intervention during the 30 year event, however 

leads to more damage than drainage upgrades over the 100 year event, and 

more damage than both drainage upgrades and permeable paving in the 200 

year event. The role of capacity in flood resilience merits further investigation, 

and is explored in more detail in Section 6.3. 

 

Figure 6.11: Damage cost versus increasing rainfall intensity during the two hour 

rainfall event 

Variation in performance highlights the importance of assessing impact across 

multiple return periods when selecting surface water management interventions, 

providing evidence that the current paradigm of restricted consideration of events 

is not sufficient to ensure the best outcome in response to uncertainties in future 

climate and urban growth. This information can be presented as part of decision 

support to complement a standard assessment and has the potential to promote 
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innovative interventions which meet design standards during high probability 

events, whilst providing additional resilience for low probability occurrences. 

6.2.3. Key findings 

Context specific findings relative to the intervention assessment in this catchment 

indicate that rainwater capture interventions exhibit the largest reduction in flood 

damages during short duration, high intensity events where capacity can be fully 

utilised; however, exceeding capture volumes leads to lower performance during 

longer duration or low probability extreme rainfall events. Interventions which are 

able to continue functioning over extended timescales, such as drainage 

upgrades, are more effective at managing long duration events and appear more 

resilient to the extreme rainfall, however damage reduction during extreme 

events represents a minimal saving versus the do nothing baseline scenario. 

Broader findings from this section identify quantitative analysis of flood depths 

and damage costs provide a simple metric to evidence decision support, offering 

an advantage versus fast but qualitative screening tools such as stakeholder 

ranking (Ellis et al., 2004; Martin et al., 2007; Makropoulos et al., 2008; Young et 

al., 2010) and GIS analysis (Weng, 2001; Makropoulos et al., 2007; Viavattene 

and Ellis, 2013). Variation in intervention performance ranking relative to the 

complex relationships between event intensity, duration and frequency highlight 

the advantages applied through simulation of many events. Therefore, the key 

recommendation from this section is to screen the flood dynamics of many 

strategies prior to detailed design. Expanding analysis will also benefit and inform 

the resilience assessment principles presented here by expanding the response 

to a larger range of return periods.  

Performance sensitivity to changes in rainfall duration, in particular the high costs 

associated with short term burst of high intensity rainfall, even when averaged 

across an event, indicate that assessment may benefit from a more detailed 

representation of events. It is therefore recommended that future analysis applies 

input hyetographs at a finer temporal resolution to simulate the effects of peak 

intensities within rainfall events. 

Further capabilities could be added to the assessment framework through 

examination of intervention cost effectiveness and whether variation of 

intervention location will lead to preferential cost benefit ratios through taking into 
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consideration the spatial differences between flood reduction effects and building 

locations. 

  



206 
 

6.3. Applying a cost effectiveness metric to assess the effect of intervention 

placement on performance 

This section of the chapter responds to recommendations made in Section 6.2.3. 

Namely, the utility of including a cost effectiveness measure within option 

screening, investigating intervention performance across different locations and 

examining intervention response to design and extreme rainfall events. These 

recommendations correspond to objectives six, four and seven, respectively. 

The intention of this section is to advance new methods which can be applied to 

complement established detailed modelling techniques through initial 

prioritisation of intervention cost effectiveness, suitable for evidencing and 

directing further detailed analysis using techniques which can be applied quickly 

and with limited data. Interventions include both green infrastructure and 

conventional solutions modelled at the property scale.  Cost effectiveness is 

assessed by comparing an estimated cost of constructing and operating 

interventions versus an expected annual damage reduction cost.  

6.3.1. Method 

The study area is the same surface water catchment of a residential suburb in a 

UK city as applied in Section 6.2 (Figure 6.5). The catchment is approximately 

700 m x 700 m and was identified using a GIS watershed analysis with 1 m 

resolution LiDAR. Predominant land use is residential, comprised of minor roads 

and semi-detached and terraced housing. A main road connects the north and 

south of the catchment. A large area of open recreational green space is located 

in the south west.  

Characterising the study area 

The study area elevation and land use was represented using the same process 

described in Section 6.2.1.  

The investigation presented in Section 6.2 was used as a basis for evaluating a 

catchment critical rainfall duration through calculating flood damages using FEH 

design rainfall events at 1, 2, 3, 4, 6, 12, 24 and 48 hour durations across 30, 100 

and 200 year return periods (Centre for Ecology and Hydrology, 2013). Peak 

flooding in all return periods was observed during one hour rainfall, therefore 

analysis of intervention performance was made relative to this event (Figure 6.7; 

Figure 6.9). 
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The number of return periods was expanded for intervention analysis to include 

2, 5, 10, 20, 30, 50, 100, 200 and 1000 year rainfall events, all provided by the 

FEH database (Centre for Ecology and Hydrology, 2013). Rainfall was 

represented using hyetographs at a one minute resolution, this better 

represented the peak rainfall intensities during events, which earlier analysis 

found to correlate with the highest flood damage outcomes (Figure 6.12). 

Summer design rainfall profiles were selected due to characteristic higher peak 

intensities which are more likely to exceed drainage capacity and result in surface 

water flooding (Jones et al., 2012; Butler et al., 2018). 

 

Figure 6.12: Input hyetograph for one hour rainfall at a 100 year return period for 

the Exeter case study catchment 

Representing interventions 

This study applied a more diverse range of interventions than in Section 6.2. In 

particular, this analysis was designed to examine the effects of different scale 

rainwater capture measures, in response to the indication of a rainfall capture 

tipping point as discussed in Section 6.2.2. The study investigates green roofs, 

water butts, rainwater capture tanks, permeable paving and drainage upgrades. 

This section outlines the modelling approach applied for each intervention, which 
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is presented in Table 6.4 and summarised below. All strategies are modelled 

using the same process outlined in Section 6.1. 

Table 6.9: Summary of intervention effects per 1 m2 cell 

Type 

Rainfall 

capture 

(mm) 

Output rate  

(mm/ hour) 

Roughness 

(Manning’s n) 

Green roof  15 Land use Land use 

Water butt (100 l) 2 Land use Land use 

RW capture (1 500 l) 33 Land use Land use 

RW capture (3 000 l) 66 Land use Land use 

RW capture (5 000 l) 110 Land use Land use 

RW capture (10 000 l) 220 Land use Land use 

Permeable paving - 17 0.015 

Drainage upgrade  

(+12 mm/hr) 

- 24 Land use 

Drainage upgrade  

(+24 mm/hr) 

- 36 Land use 

 

Green roofs are represented by capturing 15 mm of rainfall prior to generating 

runoff. It is assumed that the substrate can capture rainfall with 100% efficiency 

until saturation occurs. As this intervention consists of water capture above the 

model domain surface, it will have no effect on surface roughness or infiltration 

rate. 

Rainwater capture tanks are modelled based on the assumption the only 

controlling factor on storage is available volume, not the throttling effects of down 

pipes. Sensitivity to intervention capacity and tipping points is modelled through 

inclusion of four capture volumes: 1500 l, 3000 l, 5000 l and 10 000 l. Water butts 

were modelled using the same approach but with a conservative available 

capacity of 100 l per water butt. This low capture volume also functions as part of 
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a sensitivity analysis to set a benchmark for very low capacity rainwater capture 

function. 

Volume reduction properties of permeable pavements are controlled by the 

infiltration rate through the surface and available storage. Several studies have 

taken place to identify infiltration rates into commonly used surface materials 

(Pratt et al., 2002; Zachary Bean et al., 2007; Collins et al., 2008a). These studies 

found infiltration rates for concrete block pervious paving have been recorded 

from 2.6 up to 17.2 mm/hour, with average rates around 5 to 7 mm/hour, therefore 

a conservative estimate of 5 mm is applied for this measure. Roughness values 

are taken from Manning’s n coefficients for concrete (Section 6.2.1). 

No data for the underlying surface water sewers are available, therefore drainage 

upgrades have been included by increasing water output rates linked to the 

drainage system (12 mm/ hour) by an additional 12 mm/ hour and 24 mm/hour, 

representing a doubled and tripled rate from Environment Agency (2013). This 

also functions as a sensitivity analysis for the effects of draiange capacity 

assumptions. 

Intervention placement scenarios  

Examining the performance of a baseline scenario and nine interventions (Table 

6.9) across a combination of locations in the catchment generated 88 scenarios 

for simulation. Each scenario represented placing one intervention type across a 

location (or locations) in the catchment. Eight locations were selected using the 

street layout of the study area as shown in OS Mastermap (Figure 6.13) and the 

areas of flooding identified during the preliminary analysis of critical rainfall 

duration (Figure 6.8). Green roofs, water butts and rainwater capture tanks were 

applied to building roofs. Drainage upgrades were applied to the catchment 

surface. Permeable paving was applied across carparks in the residential zone. 

The 88 scenarios consisted of interventions applied across: the entire catchment 

(16); locations 1 to 8 individually (64); locations where flooding was identified 

including 1, 2, 3 and 4 combined (8) and 1, 2, 3, 4 and 6 combined (8). A scenario 

also represented applying permeable paving to car parks (1) and another 

represented a catchment baseline where no interventions were applied (1).   
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Figure 6.13: Defining eight regions for basing intervention placement locations 

across the Exeter study catchment 

The intention of examining multiple locations was to demonstrate the utility of the 

framework for screening multiple scenarios, responding to a need for tools to 

simulate flood dynamics of surface water management across many possible 

locations and to prioritise future modelling using preliminary analysis. This is 

particularly important given the spatial variation of intervention effects, which is 

not typically included in intervention screening (Section 2.2.2). 

Simulating scenarios 

Each intervention scenario was simulated across nine return periods, resulting in 

a total of 792 simulations. The simulation was run using an ‘Nvidia Tesla K20c’ 

(2496 CUDA cores) at a grid resolution of 1 m2 and a minimum simulation time-

step of 0.01 s. 

Simulation speed for the most intensive simulation, one hour duration 1 in 1000 

year summer design rainfall, was six minutes. This simulation was extended by 

four hours of model time to ensure sufficient time for all runoff processes. This 

took an additional 21 minutes to run. 
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6.3.2. Intervention performance assessment using a cost effectiveness 

measure 

Decision support should be enhanced through a transparent evidence base, 

using clear performance metrics (House of Commons, 2016). Flood management 

actions are expected to demonstrate positive benefit to cost ratios (Environment 

Agency, 2014). Therefore, it is important that a framework intended to enhance 

catchment screening and prioritise further actions is capable of indicative cost 

estimates for schemes.  

It should be noted that certain artificial economic incentives, such as financial 

penalties for DG5 (property sewer) flooding, and water company performance 

outcomes may skew the economic analysis and in certain cases prioritise non 

cost beneficial projects to ensure legislative compliance (Ofwat, 2012, 2017, 

2018). However, screening project costs and identifying multiple routes to the 

reach performance measures is still of benefit to practitioners. 

This section outlines development of a cost effectiveness metric, intended to 

assist steering strategic design. The scope of analysis is high level estimation 

using approximated average costs to identify trends. Analysis also refers to ‘cost-

effectiveness’ rather than ‘cost-benefit’ in recognition of the extended multiple 

benefits, particularly those associated with green infrastructure, which are not 

included in this analysis but are the subject of a wide body of current research 

(MWH, 2014; CIRIA, 2015; Fletcher et al., 2015; Hammond et al., 2015; Jose et 

al., 2015; Norton et al., 2015; Mijic et al., 2016; Bowen and Lynch, 2017; Kunapo 

et al., 2018). The metrics applied to this case study use non contextual average 

estimates from literature, it is anticipated that practical application of the approach 

would apply site specific cost data available from catchment partner 

organisations. 

Intervention capital costs 

Capital costs of interventions are presented in Table 6.9. These have been 

calculated based on academic and government studies which provide a range of 

average costs, discussed in detail below. Where multiple cost estimates are 

available the higher cost was used to develop a safety margin.  

Capital costs have been converted to present day (2018) values using UK 

inflation rates (Office for National Statistics, 2018). Operational costs are 
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calculated using discounting at a rate of 3.5% over a 30 year period (Environment 

Agency, 2010; HM Treasury, 2013). Costs are translated to a value per 1 m2 cell 

through dividing the intervention total cost by the area for which the intervention 

is situated, typically across a roof (45.5 m2 in DCLG, 2015) or per m2 for surface 

based interventions.  A similar method was applied in Environment Agency 

(2007).  

It should be noted that in practice the costs of interventions are heavily influenced 

by locational and project context, therefore these values should be considered 

indicative for the purposes of demonstrating the methodology. Where this method 

is applied practically it is recommended that contextual cost models are applied.  
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Table 6.10: Cost estimates for intervention construction, operation and routine maintenance per 1 m2 cell, adjusted to 2018 

values 

Intervention 
Capital cost per 

measure (£) 

Capital cost per cell 

(£/m2) 

30 year operational 

cost per cell (£/m2) 

30 year total cost per 

cell (£/m2) 

Green roof  131.40 per m2 131.40 469.87 601.27 

Water butt (100 l) 335.34 per butt 7.37 4.25 11.62 

RW capture (1 500 l) 3050.00 per system 67.03 10.12 77.15 

RW capture (3 000 l) 4270.00 per system 93.85 10.12 103.96 

RW capture (5 000 l) 4880.00 per system 107.25 10.12 117.37 

RW capture (10 000 l) 5856.00 per system 128.70 10.12 138.82 

Permeable paving 74.52 per m2 74.52 10.12 84.64 

Drainage upgrade  

(+12 mm/hr) 

648.42 per 1 m pipe 3.10 0.13 3.23 

Drainage upgrade  

(+24 mm/hr) 

648.42 per 1 m pipe 3.72 0.17 3.89 
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Literature states rainwater capture tanks (adjusted for 2018 values) cost £3050 

for 1500 l, £4270 for 3000 l, £4880 for 5000 l and £5856 for 10 000 l (Roebuck et 

al., 2011). Other studies corroborate this range of values (Environment Agency, 

2007a). Green roofs are estimated to cost £131.40 per m2 in 2018 prices 

(Bamfield, 2005). Water butts were estimated to cost £335.34 per unit in 2018 

prices (Stovin et al., 2007). It has been assumed that water butts will be replaced 

after 15 years at a discounted rate of £193.39, this represents the more 

conservative assumption from available literature (Environment Agency, 2007a; 

Ossa-Moreno et al., 2017).  Permeable paving costs are based on present day 

concrete block pervious paving in literature of approximately £74.52 per m2 

(Environment Agency, 2007a; Stovin et al., 2007; Woods Ballard et al., 2007). 

Cost of sewers are provided as a conservative upper estimate of £648.82 per m 

of 450 mm diameter pipe laid under an urban highway (Environment Agency, 

2015). A cost per m2 has been estimated by calculating the area which a single 

pipe could drain at full flow during the time of concentration. Flow rates were 

estimated using the Colebrook-White equation with dimensions typical of an 

urban  surface water drainage system designed to reach a self-cleaning velocity, 

as described in Chapter Three and Four (Butler et al., 2018). Application of this 

method included the standard assumptions of a pipe roughness of 0.6 x 10-3 m 

and a kinematic viscosity of 1.14 x 10-6 m2/s.  

Flow rate was calculated using a shallow gradient of 1:200, indicative of a safety 

margin representing slow flowing sewers. The pipe full flow rate was linked to the 

increase in cell output rate by attributing pipe flow capacity to a sub-catchment 

where each cell drained at the rate of +12 mm/hour or +24 mm/hour. The sub-

catchment was assumed to be rectangular where the pipe was laid in a straight 

line through the middle of the area. This calculation estimates a 450 mm diameter 

pipe can drain at 12 mm/hour across a 280 m x 280 m region, at 24 mm/hour 

across a 200 m x 200 m region and at 36 mm/hour across a 160 m x 160 m 

region. The cost of the pipe length was divided between each cell within these 

regions to calculate an approximate cost per m2 drained. This method assumes 

connection to an existing sewer system without additional resizing of downstream 

pipes or treatment. This cost is an indicative figure, designed to test model 

application. 



216 
 

Intervention operation and maintenance costs 

Maintenance costs are shown in Table 6.9, these are indicative estimates of 

routine maintenance which do not consider decommissioning costs or out of the 

ordinary maintenance issues. All costs are converted to 2018 values (Office for 

National Statistics, 2018). 

Literature indicates green roofs require £3650 per year for the initial two years 

and £876 a year maintenance afterwards (Bamfield, 2005). Rainwater capture 

maintenance is estimated to cost £0.55 per m2 / year (Environment Agency, 

2007a). Water butts are assumed to have a negligible annual maintenance cost, 

but are replaced after a 15 year design life (Environment Agency, 2007a). 

Average costs for operation and maintenance in sewers are specified in industry 

estimation advice (Hunter Water Corporation, 2013). A 450 mm gravity fed sewer 

is estimated to cost £1512 per km/ year. This cost was translated into a cost per 

m2 scaled by the catchment size of each pipe network to calculate an indicative 

cost per cell. 

Measuring intervention performance using cost effectiveness 

Costs of property damage have been calculated using the process described in 

Section 3.5.4. Damage costs have been taken from industry standard depth 

damage curves for an average residential property (Penning-Rowsell et al., 

2010). This relates the direct and tangible costs of short duration inundation (less 

than 12 hours), typical of surface water flooding, to the building fabric and 

household inventory. Damage is only related to depth, without consideration of 

velocity or other damaging factors such as contamination. Intangible and indirect 

costs have not been included within this assessment (Hammond et al., 2015).  

Costs and qualitative assessment of multiple benefits have been omitted from 

this research due to data and modelling requirements being beyond the scope of 

an initial project screening, analysis of these can be found in other studies (Ashley 

et al., 2002; CIRIA, 2015; Woods Ballard et al., 2015; Mijic et al., 2016; Ossa-

Moreno et al., 2017; Kunapo et al., 2018). 

Projecting costs across a 30 year design life 

The annual effect of damages was calculated through projecting EAD over a thirty 

year design life (Environment Agency, 2010). EAD for each strategy is calculated 

through sampling cost damage across a range of different probability events to 
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generate a curve representing damage versus annual exceedance probability. 

This curve represents damage costs in low probability high magnitude events as 

well as high probability, low magnitude events. This analysis has included a wide 

range of probabilities by sampling 2, 5, 10, 20, 30, 50, 100, 200 and 1000 year 

events. A full description of the calculation technique is provided in Section 3.5.4.  

As intense local precipitation is the controlling factor in creating surface flooding 

it is reasonable to assume the return period of the rainfall can be applied as the 

return period for the flood (University of Exeter, 2014).  

EAD for each intervention was used to quantify benefit through avoided flood 

damage relative to a baseline. Future costs were calculated over a thirty year 

period using a discount rate of 3.5% per year, as specified by the UK Government 

(Environment Agency, 2010; HM Treasury, 2013). It should be noted that 

discounting adjusts net present value for future economic costs, and does not 

adjust costs in relation to potential future changes to probabilities of events. The 

design life of all interventions, bar the water butts, was assumed to be the same. 

Intervention performance was assessed using a simple cost effectiveness metric 

which compared the cost of the intervention over thirty years with the benefit of 

damage avoided over the same period. 

Assessing intervention resilience 

A long-standing critique of resilience science has been a lack of operational and 

quantitative application of theories (Aldunce et al., 2015). This is of particular note 

in complex systems, such as surface water management in cities. 

The Safe & SuRe project at Exeter University (Butler et al., 2014, 2017) has 

proposed a definition for resilience which allows a quantification of resilience in a 

practical setting by measuring the failure magnitude and duration during extreme 

events. This model has been applied to a range of challenges, including: 

wastewater treatment (Sweetapple et al., 2014, 2017), water distribution (Diao et 

al., 2016), urban drainage (Mugume et al., 2015) and urban catchment 

management (Casal-Campos et al., 2015). As of yet this research has not been 

applied to assessing surface water flooding interventions. 

The Safe and SuRe project specifies resilience as ‘general’, the ability of a system 

to as limit failure duration to all threats, and ‘specified’, limiting failure to a 
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particular threat based on an operational goal. Specified resilience is applied in 

this research to identify the resilience of cities to surface water flooding. 

Resilience is measured as a function of the magnitude and duration of failure. 

This research applies short duration flood costs (depth-damage) which act as a 

single metric that combines magnitude depth and duration.  

6.3.3. Results and discussion 

Comparison of interventions when applied across all available surfaces 

Figure 6.14 shows the damage cost versus mean rainfall intensity for 

interventions applied across all suitable areas within the catchment. Results were 

used to develop a performance curve representing the damage cost response of 

intervention strategies to a range of rainfall intensities, including design standard 

and high magnitude events. Figure 6.14 maps the intensity of each one hour 

rainfall event (primary x axis) to a return period, expressed in terms of a ‘1 in X 

year’ event (secondary x axis).  

 

Figure 6.14: Damage cost versus mean rainfall intensity for interventions applied 

across all suitable locations for the Exeter case study 
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The damage cost resulting from each intervention strategy rises as the rainfall 

intensity increases. The highest flood damage costs during each event are 

consistently observed in the ‘Do Nothing’ baseline, where no interventions are 

applied.  

Large rainwater capture tanks (> 5 000 l) generate the lowest flood damage costs 

at all rainfall intensities. Smaller tanks perform well at low return periods, but lead 

to very large damage costs at higher return periods as rainfall exceeds storage 

capacity. This generates a spike in the damage curve for these interventions, 

indicating low resilience to events above design conditions. Drainage upgrades 

do not provide as great a damage reduction as rainwater capture interventions, 

however exhibit a relatively gradual and consistent increase in damage as a 

response to higher magnitude events. This implies a higher resilience to larger 

magnitude events, as indicated in Section 6.2. During the 1 in 1000 year event 

drainage upgrades perform better than rainfall capture at 1 500 l and below. 

Permeable paving shows only a slight improvement over the ‘Do Nothing’ 

scenario, this is attributed to a very small area within the catchment being suitable 

for construction relative to the large areas suitable for other interventions. As such 

this line was not discernible and has been omitted from the Figures 6.14 and 6.15. 

Conclusions regarding the effect of permeable paving should be considered in 

the mitigating context that the very small area of permeable paving applied is 

unfavourable relative to the much larger footprints of other interventions in this 

study. 

Figure 6.15 illustrates the percentage of total damage avoided by each 

intervention, highlighting the drop in damage avoided as rainwater capture 

interventions exceed storage capacity. This occurs at around 31 mm/hour for 

1500 l tanks and 54 mm/hour for 3000 l tanks. During high rainfall intensities 

these interventions approach zero damage reduction due to storage filling too 

early and shifting the time of flood concentration rather than reducing magnitude. 

The ability of surface drainage to reduce damage by a more consistent value is 

attributed to continually removing runoff across the event, rather than having a 

finite storage volume filled.  
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Figure 6.15: Percentage of damage avoided versus mean rainfall intensity for 

interventions applied across all suitable locations in the Exeter case study 

Spatial variation of intervention EAD  

Interventions were also examined when placed on suitable surfaces in the 

regions indicated in Figure 6.5. Figure 6.16 presents the EAD and cost 

effectiveness for each intervention when applied across a different region of the 

catchment.  

Intervention strategies demonstrate a wide range of EAD outcomes. The 

interventions which demonstrated the largest reduction in EAD were catchment 

wide installation of large capacity (> 5000 l) rainwater capture tanks, which 

reduced damage costs as low as £196 000, representing a 76% saving versus 

the baseline scenario (Figure 6.15). These interventions demonstrate the lowest 

EAD for every placement option (Figure 6.16). The lowest EAD is generated 

when the intervention is applied across all available areas, however application 

of these measures in Areas One, Four and Six can achieve damage costs around 

£400 000, representing a 51% saving versus the Do Nothing scenario and a 

similar result to applying other interventions across the entire catchment.  
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Figure 6.16: Comparison of EAD for interventions across all placement scenarios 

in the Exeter case study 

The worst performing scenario is the Do Nothing baseline, which equates to an 

EAD of £826 000. The worst performing intervention is permeable paving, 

however it should be noted that this intervention was only investigated across a 

very small scale application due to uncertainties regarding suitability of 

application across the catchment. Water butts generate the largest EAD when 

compared with other interventions applied across the same areas, and only 

represents a marginal improvement of up to £16 000 less than the Do Nothing 

scenario. Poor performance is attributed to the low capacity of water butts not 

providing sufficient storage to prevent peak flooding during the event, particularly 

when applied across small areas. Better performance is seen at catchment wide 

application as the cumulative effects of capture reduce runoff volume, however 

the saving is still marginal relative to the high intensity rainfall experienced during 

the one hour rainfall event. This corroborates existing literature calling for 

catchment scale approaches to realise flood reduction benefits (Wong and 

Brown, 2009; Burns et al., 2012, 2015a; Palla and Gnecco, 2015). 
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Catchment wide application of interventions led to lowest EAD for every 

intervention studied, however selection of different intervention placement 

locations leads to variation in resulting EAD. Application of interventions in Area 

Four demonstrates the lowest EAD for all strategies, relative to other single 

locations. The worst locations for placement are Areas Five and One. These 

regions demonstrate EAD’s up to £115 000 higher than the same strategies 

applied elsewhere in the catchment. Both of these locations are relatively small 

and isolated regions on the periphery of the catchment.  

Variation in performance highlights the importance of investigating multiple 

intervention locations when designing strategies. A trend of lower EAD 

associated with catchment wide solutions versus individual locations supports 

current literature emphasising a need for broad scale implementation of 

strategies to manage catchment scale flood hazards (Wong, 2006; Wong and 

Brown, 2009). This is of particular significance when considering the better 

performance of dispersed and lower capacity measures such as green roofs and 

1500 l tanks relative to intensive application of high capacity measures in a single 

location. 

Spatial variation of intervention cost effectiveness 

It is crucial to consider a range of metrics when evaluating intervention 

performance. Figure 6.17 presents the cost effectiveness of interventions applied 

across the locations identified in Figure 6.5. This figure highlights that strategies 

which generate the lowest EAD (Figure 6.16) do not correlate with damage 

avoided per GBP spent (Figure 6.17). Cost effectiveness is an important 

consideration in flood management as long term investment decisions must 

represent value relative to other public spending requirements (Environment 

Agency, 2007a, 2010; DEFRA, 2010; Jayasooriya and Ng, 2014). 
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Figure 6.17: Comparison of intervention cost effectiveness over a 30 year period 

for all placement scenarios in the Exeter case study 

Surface drainage upgrades demonstrate the most cost beneficial application 

within this catchment. When applied across the entire catchment, upgrading by 

24 mm/hour reduced EAD to £360 000, representing a 56% saving on the do 

nothing scenario and achieving a damage cost reduction of £13.4 per £1 spent. 

Catchment wide high volume rainwater capture, which demonstrated the lowest 

EAD, generates a damage cost reduction of £2 per £1 spent. This result highlights 

a variation in ranking when assessing intervention performance using different 

metrics. 

Green roofs and water butts demonstrate the lowest cost effectiveness in all 

location permutations. This is likely to be due to the high costs of green roof 

maintenance within the catchment and the very conservative capacity 

assumptions (100 l) made for water butts. These are the only interventions which 

demonstrate greater costs of damage than intervention installation, operation and 

maintenance. However, it should be noted that green infrastructure is likely to 

offer other additional benefits to catchments which are not costed within this 
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assessment. This includes multiple benefits such as reduction in ambient heat, 

opportunities to re-use water and increasing biodiversity (Oberndorfer et al., 

2007; CIRIA, 2015; Norton et al., 2015; Woods Ballard et al., 2015; Bowen and 

Lynch, 2017; Kunapo et al., 2018). 

Comparatively high cost effectiveness of surface drainage may be a result of low 

costs not accounting for the total drainage build and maintenance costs. It should 

be noted that the strong performance of sewer based interventions could also be 

achieved using extensive infiltration based measures, which may also convey 

additional benefits to the catchment.  

The same intervention applied across a range of locations demonstrated a range 

of cost effectiveness outcomes. Different types of technique (i.e. rainwater 

capture and water removal from the surface) resulted in different optimum 

locations. Surface drainage measures applied in Area One demonstrated the 

highest damage reduction ratio of up to 26 times the intervention cost. This area 

is a small region in the north west of the catchment which experiences deep 

flooding (Figure 6.5). The strong performance of catchment surface drainage 

indicates the advantages of small scale application of high volume measures in 

areas with significant flood hazards. Rainwater capture measures were most 

effective when applied across Area Three, a larger and more dispersed region. 

Here, interventions demonstrate up to a 4.1 ratio of benefit to cost. These 

measures perform similarly well in Area One, where they demonstrate a ratio of 

up to 4.0.  

Although less cost effective, rainwater capture interventions demonstrated more 

consistent ratio for the same intervention applied across each location than 

surface drainage counterparts. The variation in maximum and minimum ratios for 

rainwater capture interventions is a difference of 0.6 through to a difference of 

1.2. Surface drainage interventions indicate a much wider variation, with ranges 

of 14.1 and 17.5. Consistency of rainwater capture methods despite different 

placement strategies supports more reliable performance when applied in new 

locations. This is attributed to these measures removing runoff from the site of 

damage (buildings), which is less reliant on the spatial difference in runoff 

patterns present on the surface. 



225 
 

The range of cost effectiveness across all scenarios varies from 0.3 (Area Five 

green roofs) through to 26.0 (Area One drainage). Wide range of performance 

values indicates the importance of examining multiple placement strategies for 

intervention options, and supports application of rapid scenario screening 

techniques to screen urban flood management actions. 

Resilience of interventions to extreme rainfall 

Findings specific to the case study interventions indicate that that relative 

performance of interventions is inconsistent as the intensity of the rainfall 

increases from design standard to extreme rainfall. Interventions which minimise 

damage during higher probability, low intensity rainfall are not always observed 

to be the most effective interventions in lower probability, higher intensity rainfall 

events. This is expressed most clearly when considering how the ranking of 

interventions changes during each return period (Figure 6.14). 

All rainwater capture tanks are the equal best ranking intervention during two to 

thirty year return period rainfall. Large (> 5 000 l) tanks remain the best ranking 

intervention for all events; however smaller tanks demonstrate inconsistent 

performance, with a large increase in flood damage costs and a consequent 

reduction in ranking during higher return periods. The increase in flood damage 

costs is observed with 1 500 l tank scenario from the fifty year return period 

onward. By the 200 year return period this intervention is only marginally better 

performing than the 24 mm/ hour sewer upgrade, although it is still the second 

ranked strategy. By the 1000 year return period the intervention is now ranked 

fifth and demonstrates considerably worse performance than interventions it 

outperformed during the lower intensity events. 

Sewer upgrades perform well during lower intensity rainfall, but demonstrate 

higher damage costs as intensity increases. Damage costs rise in a relatively 

consistent and incremental values in response to the increasing stress. This 

stable rise in cost results in the interventions improving their ranking during the 

higher return periods, despite initially ranking poorly. The strategies still 

demonstrate increasingly high costs relative to the best performing interventions 

in each event. 
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Green roofs rank equal first place during the two year return period but fall to sixth 

following the twenty year event. The cost increase steps are particularly large 

relative to other interventions between these two return periods. 

Both small capacity water butts and the do nothing base case demonstrate the 

worst performance and are respectively ranked eighth and ninth at each return 

period. Damage cost increases in stable steps relative to increasing rainfall 

intensity. 

In this example, the proposed mechanisms controlling damage increase are the 

storage capacity and rate of runoff removal from each cell, parameterised for 

each intervention. Storing rainfall is an effective damage reduction technique 

when storage is able to contain all rainfall, however as rainfall exceeds 

intervention capacity the damage increases significantly at each additional 

increase in intensity. Removing rainfall at a set rate from a cell via infiltration or 

increasing the drainage capacity did not perform as effectively as capturing all of 

it, however a more consistent response to the increasing rainfall events was 

observed due to a continuing reduction effect across the event. The mechanisms 

presented here are simplified: In practice the output rate is controlled by a variety 

of physical processes including hydraulic limitations in the piped system and 

saturation in soils, therefore these findings can only be considered indicative of 

high level strategic implications of the actual strategies.  

Generally, these findings indicate that intervention performance during a high 

probability event is not an indicator of performance during low probability events. 

This is of major significance when considering a planning environment focused 

on meeting specified design standards versus environmental hazards which are 

increasing in severity as a response to climate change, urbanization and aging 

infrastructure systems (Chocat et al., 2007; Wheater and Evans, 2009; Howard 

et al., 2010; IPCC, 2014). Planning based solely on design standard events is not 

guaranteed to develop systems which are able to cope with extreme events 

(Butler et al., 2017). Future developments to planning methods should include 

analysis of a range of events and conditions so decision makers are able to better 

manage system shocks.  

It should also be recognised that this analysis is focused on homogenous 

intervention strategies whereas in practice catchment management is likely to be 
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developed through multiple integrated intervention types designed to 

accommodate a range of rainfall intensities. Hoang and Fenner (2015) describe 

how an integrated portfolio of interventions interacts to effectively manage day to 

day rainfall and design standard rainfall alongside extreme events. The research 

indicates that green infrastructure can be applied to accommodate every day and 

design standard hydrological function whilst achieving enhanced outcomes for 

urban ecology and societal benefits (Woods Ballard et al., 2015; Fenner, 2017). 

Complementary large capacity surface water management infrastructure can 

then be installed to manage extreme rainfall with dispersed green interventions 

attenuating the peak volume. The analysis presented in this chapter supports 

Hoang and Fenner’s conclusions regarding intervention effectiveness across the 

spectrum of flood events through the observed variation in performance between 

intervention types in response to increasing rainfall intensities. Therefore, 

although day to day hydrological function and enhanced multiple benefits are 

outside the scope of this thesis, it is significant that conclusions regarding the 

performance of green infrastructure during extreme rainfall should be considered 

within the context of developing integrated catchment management strategies 

which interact to manage every day, design standard and extreme events. 

Application of simplified simulation approaches is one way of including extreme 

events within design. These approaches have the advantage of assessing many 

scenarios and expanding understanding of catchments, but encounter several 

drawbacks regarding the simplification of underlying physical processes. These 

approaches require understanding of hazard characteristics (i.e. rainfall IDF) in 

order to simulate surroundings. As such they are best applied at an initial strategic 

level of design, with findings advanced and corroborated by further more detailed 

analysis. 

Alternative approaches of including extreme events within planning include 

application of ‘middle state’ failure analysis or emergency planning (Mugume et 

al., 2015; Butler et al., 2017; Sweetapple et al., 2017). Middle state analysis 

removes the need for understanding of hazards by systematically assessing how 

a system operates as more components fail. This has been applied with success 

to pipe networks (water distribution systems and sewers) where components can 

clearly be identified and changed. So far this approach has not been applied to 
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surface water management for which the spatial complexity of hazards makes 

defining the middle state failure theoretically and computationally challenging.  

On the other hand, emergency planning approaches encourage planners to 

develop contingency plans for failure as part of an understanding that 

unprecedented and unknown events may take place, so advance communication 

on strategies for managing failures gracefully becomes necessary (Cutter et al., 

2010; Alexander, 2013; Scolobig et al., 2015).  

On balance, a combination of these approaches is likely the best outcome for 

managing resilience, however the advantages of applying visualisation of 

resilience to decision support should not be understated. Particularly in light of 

potential for quick wins, where a selection of similarly costed strategies may all 

meet design standards but certain interventions may provide additional benefits 

beyond this. 

Framework utility 

The speed of simulation using the framework enables analysis of intervention 

performance across many return periods. This facilitates analysis of intervention 

resilience to extreme events alongside evaluating design standard performance. 

The observed variation in intervention performance across events highlights the 

importance of evaluating a range of conditions when designing strategic 

infrastructure. Interventions which perform well within standard conditions may 

fail to provide protection to high magnitude events.  

Cost assumptions were focused on developing a fast but high level assessment 

and do not take into account site specific costs. Uncertainty has been managed 

through cost valuation at the high end of estimated ranges which may lead to 

overestimation of intervention costs. Estimation of sewer costs using a value per 

area drained is only suitable as an initial estimate due to the complexities and 

costs associated with installing pipes and connecting (or resizing) to existing 

networks and treatment facilities. It is recommended that this approach is only 

used for screening, and is validated on a catchment basis by comparison with 

costs of similar schemes. 

The cost effectiveness metric applied during this study is a simplified metric 

focused on avoided direct flood damage to buildings. Future development of this 

work could enhance this metric through inclusion of additional benefits certain 
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interventions may provide. In particular, studies indicate that green infrastructure 

may provide significant and tangible benefits including a reduction in the urban 

heat island effect, improvements in air quality and use of captured rainfall. 

Intangible benefits such as a reduction in risks to life, prevention of psychological 

impacts, amenity value and mitigation of climate change are also relevant when 

comparing infrastructure options (CIRIA, 2015). These benefits are difficult to 

monetise without detailed investigations using specific models, however studies 

have begun to develop mechanisms for estimating these (Ashley et al., 2002; 

Ossa-Moreno et al., 2017).  Studies indicate inclusion of multiple benefits within 

option screening is likely to increase the cost effectiveness of interventions, 

particularly green infrastructure (Woods Ballard et al., 2015). 

6.3.4. Key findings 

This section demonstrated a resource efficient analysis of intervention cost 

effectiveness in a UK catchment through applying a rapid screening framework 

requiring minimal setup time, readily available data and simulation speeds of less 

than six minutes per scenario. Resource efficient analysis enabled screening of 

many intervention types, placement locations and rainfall scenarios, including 

extreme events not normally modelled within surface water management. The 

main utility of the approach is early catchment screening to develop evidence to 

inform and steer future detailed design.  

Catchment scale application of large rainwater capture interventions achieved the 

largest reduction in flood damage costs across the case study in all scenarios. 

The most cost effective intervention was found to be localised surface drainage 

upgrades; however, discussion indicates that cost estimates for these upgrades 

are high level and in practice they may be more expensive due to the costs 

required in connecting to existing drainage networks. 

This work identifies that performance of strategies during low magnitude events 

is not reflective of a strategies response to extreme events. A paradigm based on 

design standard planning therefore misses assessing resilient performance. A 

range of approaches can be used to assess resilience and it is important that 

these feature in future urban design in order to ensure preparedness for 

unexpected, unprecedented and extreme events. Visualisation of resilience 

curves using rapid simulation of many scenarios is one way of achieving this. 
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6.4. Chapter conclusions 

This chapter responded to the need to include novel flood management strategies 

within decision support frameworks through developing representations of 

specific interventions and then evaluating performance across a wide range of 

rainfall scenarios, including design standard and resilience focused events. 

Section 6.1 reviewed current literature to develop representations of specific 

interventions within the structure of the rapid screening framework presented in 

Chapter Three. These interventions can be investigated following initial 

catchment screening of strategic intervention zones, such as that demonstrated 

in Chapter Five. This responded to Objective Four by enabling a methodology to 

investigate intervention flood reduction performance.  

Section 6.2 evaluated 144 intervention performance scenarios representing 

rainfall ranging from 1 to 48 hour duration. Key findings indicated: 

 Short duration rainfall led to the highest flood damages, corroborating 

guidance indicating the importance of assessing these events when 

planning surface water management strategies.  

 Performance of rainwater capture interventions is limited by total volume, 

whereas the performance of surface drainage interventions is limited by 

rainfall intensity. Rainwater capture interventions outperform surface 

drainage interventions in high intensity, short duration events, however 

limited capacities mean that surface drainage provides a more consistent 

performance to manage lower intensity, longer duration rainfall. 

 Interventions which are able to continue functioning over extended 

timescales, such as drainage upgrades, are more effective at managing 

long duration events and appear more resilient to the extreme rainfall. 

 

Section 6.3 developed a cost effectiveness metric, which was then applied as 

part of intervention performance analysis including design standard and extreme 

rainfall. The analysis evaluated 792 scenarios and identified a wide range of 

intervention performances, dependent on location and event characteristics. Key 

findings included: 

 Rapid scenario screening can advance current best practice through 

including analysis of many scenarios within high level screening. This 
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responds to limitations in current approaches such as narrow analysis of 

future uncertainties, for example evaluating strategies using a design 

storm for a fixed return period, and restricting permutations of novel 

surface water management interventions. 

 Although centralised interventions provide benefit at smaller scales, 

catchment based strategies are required to substantially reduce flood 

extent and estimated annual damage costs across urban areas. 

Catchment wide high capacity rainwater capture measures (> 5000 l) 

generated the lowest EAD, indicating a saving of 76% versus a baseline 

scenario. 

 Dispersed lower volume catchment wide interventions performed better 

than concentrated higher volume measures. Decentralised 1500 l 

rainwater capture tanks demonstrated a lower EAD (£0.2 million) than 

centralised, high volume tanks (£0.7 to £0.8 million). This supports future 

development of catchment wide surface water management. 

 Intervention type, location and scale have significant impacts on cost 

effectiveness. Analysis of hundreds of scenarios indicates a wide range of 

cost effectiveness ratios for interventions, ranging from a £0.10 to £26.0 

damage reduction per £1 spent, with the most cost effective interventions 

identified as high volume localised drainage interventions targeted in 

areas of intense flooding.  

 Rainwater capture demonstrates lower but more consistent cost 

effectiveness across multiple scales and locations than surface drainage. 

Rainwater capture effectiveness ranges from £1.7 to £4.1, whereas 

surface drainage ranges from £6.6 to £26.0. This is attributed to surface 

based interventions demonstrating sensitivity to spatial variation of surface 

runoff. When considered in combination with the large reduction in EAD 

attributed to rainwater capture, this supports catchment scale 

decentralised application of rainwater capture, but highlights the 

advantages of strategically targeting complementary drainage 

interventions.  

 Interventions which generate the lowest EAD do not necessarily correlate 

with the most cost effective application. The most cost effective 

intervention, strategically targeted surface drainage, has a cost 

effectiveness of £26.0 per £1 spent but only reduces EAD by £18 000 per 
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year. The intervention predicted to have the lowest EAD, catchment wide 

rainwater capture, reduces EAD by £607 000 but only demonstrates a cost 

effectiveness of £2.3 per £1 spent. 

 Intervention performance during design standard rainfall is not indicative 

of resilience to extreme events. Interventions demonstrated performance 

tipping points where damage costs increased over a threshold. Rainwater 

capture based interventions were most susceptible to this due to storage 

capacities being exceeded during high magnitude events. 

Overall, the wide performance variation highlights the advantages of evaluating 

the complex permutations of intervention type, scale and distribution through 

applying a rapid scenario screening framework to generate evidence and 

understanding prior to detailed design. The next chapter of this thesis will apply 

the framework in conjunction with catchment stakeholders to assess the utility of 

the approach in practice. 
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7. APPLICATION OF THE FRAMEWORK TO AN INTERNATIONAL CASE 

STUDY 

This chapter responds to Objectives Four, ‘investigate the flood reduction 

performance of strategic and specific interventions’, Six, ‘verify application of the 

framework through practical application with catchment stakeholders’ and Seven 

‘investigate the relationship between resilience and reliability of interventions’. 

Objective Four is met through evaluating the performance of surface water 

management interventions across a case study in Melbourne, Australia. 

Objective Six is met through collaboratively designing interventions and 

implementing the framework for decision support alongside partnership with 

catchment stakeholders. Objective Seven is met through examining intervention 

performance from design standard through to extreme rainfall events. 

This chapter is structured through introducing a case study catchment and 

describing how this is represented using the modelling framework. The chapter 

then details the collaborative process applied to design a range of intervention 

strategies. Intervention performance is assessed through analysis of flood depth 

and velocity at key locations in the catchment. The discussion evaluates the 

performance of interventions and the lessons learnt applying this approach in 

practice. 

This work presented here is drawn from the paper, ‘Is green infrastructure a viable 

strategy for managing urban flooding’, which is currently in review in the ‘Urban 

Water Journal’. Elements of the chapter have also been published in the 

proceedings of the 11th International Conference on Urban Drainage Modelling, 

which took place in Palermo, Italy, in September 2018. 

7.1. Surface water flood management case study in Melbourne, Australia 

7.1.1. Study catchment 

The study area is a surface water catchment in the City Centre of Melbourne, 

Australia (Figure 7.1). The catchment is intensely urbanized and constitutes a 

major hub of commerce, entertainment and governmental function in Melbourne. 

The majority of buildings in the study area are high rise commercial and 

residential structures, several of which are recognised with national heritage 

status. Significant infrastructure sites are located in the catchment, including the 

City’s major railway station, local government offices and transport connections 
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across the city. The study catchment is at the lowest point in the Melbourne CBD 

and is built on top of a natural creek which flows into the City’s focal river (River 

Yarra). The north of the catchment includes urban parkland, national heritage 

sites, hospitals and the campus’ of several large universities.  

Surface water flooding in the catchment is of concern due to large historic floods 

in 1972 and 2010. During these events, intense rainfall across the catchment 

generated surface water runoff, in some cases deeper than 1 m, which flowed 

down the catchment’s main street before ponding in front of the central railway 

station. These flows carried cars and manhole covers down the street and 

resulted in risk to life alongside damage to transport infrastructure, shops and 

properties.  

 

Figure 7.1: Identifying the modelled study catchment in Melbourne, Australia. 

Inset shows the extent the three flood zones evaluated during analysis  
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7.1.2. Catchment stakeholders 

The research benefitted from engaged and motivated catchment stakeholders 

who represented decision makers in the study catchment. Partnership with 

experienced decision makers enabled research to explore the practical 

application and utility of developing and screening interventions using the 

framework. Stakeholders included within the project are presented in Table 7.1. 

Table 7.1: Catchment stakeholders who helped design the interventions  

Organisation Responsibility  

City of Melbourne Local government with oversight of Melbourne CBD, 

including urban planning and flood management 

responsibilities. Their role in flood management is 

limited to catchments less than 60 ha, with larger 

catchments managed by the regional water authority.   

Melbourne Water Regional water authority responsible for water supply, 

sewage, and drainage.  

Water Technology Consultants responsible for identifying green 

infrastructure strategies for flood management in the 

CBD. Water Technology provided access to data and 

expertise from previous flood modelling studies in the 

catchment. 

University of 

Melbourne 

Researchers and major land owners in the 

catchment, responsible for joint R&D partnership to 

identify green infrastructure opportunities in the city 

centre. 

 

Access to these stakeholders with their wide range of case study specific and 

general surface water management expertise provided the study with support to 

validate the flood modelling, identify opportunities for siting green infrastructure 

and review intervention performance modelling to steer application of the 

framework. 

7.2. Methods 

The viability of green infrastructure to manage urban flooding was tested using 

the rapid scenario screening framework presented in Chapter Three. A range of 

intervention strategies was devised in collaboration with the catchment’s 

stakeholders. The performance of these interventions was measured through 
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evaluating the resulting flood depth and velocity benefits of each strategy versus 

a baseline scenario. Details on each of these steps is described below. 

7.2.1. Characterising study area 

Catchment land use and elevation 

Catchment elevation was represented using a 1 m resolution DEM provided by 

the City of Melbourne and Water Technology. The DEM comprised the entire 

Elizabeth Street surface water catchment as validated by Melbourne Water and 

the City of Melbourne. 

Land use was characterised into 8 specifications, representing urban spaces, 

buildings, vegetation and transport infrastructure. Parameters associated with 

each of these classifications are outlined in Table 7.2. Some of these values differ 

from the ranges applied in other chapters of this thesis due to aligning modelling 

with previous studies undertaken by catchment stakeholders within this study 

area. This classification was made using digital land use mapping provided by 

Water Technology. The distribution of this classification is presented in Figure 

7.2. 

Table 7.2: Land use parameterisation in the study catchment  

Land use type 
Roughness 

(Manning’s n) 

Infiltration rate 

(mm/ hour)* 

Residential high density 

space 
0.350 15 

Buildings 0.400 15 

Cemetery 0.100 1 

Minimal vegetation 0.040 1 

Moderate vegetation 0.060 1 

Heavy vegetation 0.090 1 

Roads and pavements 0.020 15 

Railway 0.125 15 

*Higher infiltration rates associated with impervious surfaces represent losses 

due to the underground surface drainage system. 
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Surface roughness was attributed based on specifications for Manning’s n 

coefficient from available literature (Arcement Jr and Schneider, 1989; Hamill, 

2001; Syme, 2008; XP Solutions, 2017; Butler et al., 2018). Buildings were 

represented using a high Manning’s n coefficient to represent water being held 

up within structures (Syme, 2008). Infiltration was specified based on typical rates 

of clay soils from the region (City of Melbourne, 2018). 

 

Figure 7.2: Classifying Melbourne City Centre land use into eight categories 
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Representing surface water drainage systems 

The underground surface drainage system was represented through application 

of a constant cell output rate to areas assumed to be drained by the underground 

piped surface water system. This included residential high density space, 

buildings, railway, roads and pavements. A rate of 15 mm/ hour was applied to 

represent a system designed to convey the average intensity of an 18% AEP, 2 

hour event, which was specified by stakeholders as a conservative estimate of 

the system’s flow capacity.  

Consideration of finer resolution representation of drainage through variation 

depending on the trunk capacity in sub-catchments was not possible for this 

assessment due to incomplete data regarding the pipe network in the area. 

Catchment stakeholders have previously undertaken extensive monitoring 

studies of the network, however significant data gaps still remain, making 1D 

modelling challenging and subject to many assumptions. As such, screening 

using an output rate provides an opportunity to examine the catchment without 

expensive data collection, and prioritise areas for future monitoring work. 

This simplified representation of drainage systems facilitated fast screening of 

interventions and was able to simulate overland flooding as rain volume exceeds 

pipe capacity. As discussed in Chapter Four, it should be noted that this trade-off 

between model complexity and speed is only suitable for initial option comparison 

and not for detailed design of options. 

Validation using records from the 1972 flood event 

To validate the simple representation of the catchment’s underground surface 

drainage system, predicted model outputs from a large rainfall event were 

compared against available observational evidence including photographs, flood 

histories and anecdotal information. The flood model was driven using the 

hyetograph of the 1972 event, one of the most intense on record, where rainfall 

intensities exceeded 100 mm/hour (Figure 7.3).  

It should be noted that land cover parameters applied to represent the 1972 flood 

were not available, therefore current catchment land use was applied to model 

this event. The implication of this is that historic land use may influence the 

catchment runoff relative to current day values, particularly if the historic 

catchment was less urbanised that observed in current conditions. However, this 
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is mitigated through the broad categorisation and parametrisation of urban space 

applied within this analysis not representing specific building types and the fact 

that analysis is focused on the historic CBD, which has been highly urbanised 

with the same historic park space for many years. This assumption would not be 

valid for the suburbs of Melbourne, within which urbanisation is rapidly expanding. 

 

Figure 7.3: Hyetograph from the 1972 Melbourne flood event showing very high 

rainfall intensities over a one hour period 

Flood maps indicating the peak depth and velocity of flooding during the event 

were evaluated with stakeholders during workshopping using comparison with 

photographs and reports from the 1972 event, as well as in house flood mapping 

derived from standard 1D-2D coupled models. 

Figure 7.4 presents peak flood depth during the event. This predicts maximum 

flood depths of 1 to 1.5 m. Figure 7.5 supports this through presenting peak 

velocities during the flood, which was predicted to reach up to 2.5 m/s.  These 

results compare well with photographs depicting flood waters exceeding the 

height of cars and the extent of flooding across the event. It is noted that full data 

regarding the depths of the actual flood event are not available due to the difficulty 

of practically monitoring high spatial and temporal resolution of surface water 

flows across urban streets (Neal et al., 2009), particularly in 1972; However, this 
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high level validation builds confidence that the flow routes and approximate 

depths are acceptable to use for an initial and relative assessment, aimed at high 

level option comparison. 

 

 

Figure 7.4: Flood map showing peak flooding on Elizabeth Street during the 1972 

flood event 
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Figure 7.5: Map showing peak water velocity on Elizabeth Street during the 1972 

flood event 

Initial assessment of the 1972 flood event, combined with stakeholder expertise, 

identified three flood zones where flood risk was highest. These zones were used 

as the basis for examining intervention performance and are indicated in Figure 

7.1. The intervention performance assessment is discussed in more detail in 

Section 7.2.4, later in this chapter. 
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Design rainfall generation and identification of a ‘catchment critical event’ 

Engineers typically base designs for surface water management systems on a 

critical duration event where all upstream areas are contributing rainfall to a 

specific location. This approach is not possible when considering flood hazard 

across an entire catchment due to the spatial complexities and differing intensities 

generated using different rainfall profiles. The study overcame this restriction by 

taking advantage of fast simulation speeds to analyse a range of rainfall profiles 

and compare maximum flood depths to identify the catchment’s critical event. A 

total of thirty rainfall events were assessed, including five different frequencies 

(18%, 10%, 5%, 2% and 1% AEP) across six different durations (30, 60, 120, 

180, 270 and 480 minutes). Design rainfall was derived using methods outlined 

in the Australian Rainfall and Runoff guidance (Ball et al., 2016), which involve 

disaggregating burst rainfall depths (e.g. 50 mm in 30 min) into synthetic events. 

This analysis identified peak flooding during the one hour rainfall profile for all 

AEPs, therefore this was used for analysing intervention effectiveness. 

Throughout the study the likelihood of each design rainfall is described in terms 

of AEP. This terminology was selected to address potential ambiguity for 

stakeholders unfamiliar with hydrology, due to misconceptions regarding implied 

periods of ‘safety’ between event recurrences when presenting findings using 

return periods, for example ‘1 in X year’. This is important for a study partially 

responding to the need for decision-support suited to stakeholders of varied 

training and professional backgrounds. 

7.2.2. Representing interventions 

Stakeholder engagement to design strategies  

The research team collaborated with the catchment stakeholders to devise 

potential surface water management strategies which could be applied within the 

area. This involved a series of workshops with key organizational staff from a 

range of departments including engineering, environment, and planning. 

Workshop participants identified a range of strategies, which included specific 

sites for green infrastructure retrofit along with the possibility of broad 

implementation of interventions across the entire catchment.  

Translation of the strategies into the rapid scenario screening framework was 

undertaken using the same approach as described in Sections 3.3 and 6.1. 

Parameterisation of specific interventions were adjusted in line with Australian 
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literature and stakeholder expertise regarding the possibilities for application 

across the catchment. This section outlines each of the strategies examined by 

describing the adjustments to cell parameters and extent of the interventions 

effect relative to the total area of the catchment. Intervention map handouts, 

created as part of workshopping interventions with catchment stakeholders, are 

presented to indicate the scale and distribution of each strategy. A summary of 

all strategies is presented in Table 7.3. 

Base case 

The base case represented a business-as-usual scenario where the catchment 

was simulated as described in Section 7.2.1, with no interventions applied. This 

was used as a comparative baseline to measure the performance of each 

intervention strategy against. The effects of additional intervention scenarios are 

overlaid on top of this base case setup. 

Green roofs applied across the entire catchment 

This strategy represented retrofitting green roofs on all buildings within the 

catchment. Application across all roofs constituted 39% of the total catchment 

area (Figure 7.6). This was deemed to be an aspirational strategy, achievable in 

the medium to long term through changes in city level planning. Green roofs were 

modelled through editing input hyetographs to represent capturing rainfall within 

a cell.  Each m2 of a green roof captured 10 mm of rainfall, based on a 

conservative value from a review of the green roof literature (Mentens et al., 2006; 

Martin, 2008; Paudel, 2009; Stovin et al., 2012; Woods Ballard et al., 2015). Such 

levels of rainfall retention represented a conservative estimate, taking into 

account a range of typical values associated with varying roof slope, substrate 

storage capacities and climates.  
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Figure 7.6: Map showing the distribution of green roofs installed across all 

buildings in the model extent 

Green roofs applied across the upper catchment 

This strategy represented a smaller scale application of green roofs devised by 

the local government to investigate the effect of scale and capacity assumptions 

on green roof performance. The scenario only added green roofs to specific 

buildings in the upper catchment, representing 8% of the total catchment area 

(Figure 7.7). Rainfall capture with this intervention was limited to a more 

conservative 7.5 mm per cell. 
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Figure 7.7: Map showing the distribution of green roofs installed across the upper 

catchment 

Rainwater capture tanks applied across the entire catchment 

This strategy included installation of rainwater capture tanks across all buildings 

in the catchment. It was assumed that rainfall would be captured on roof surfaces 

and transmitted to storage tanks within each building. Application to all buildings 

in the catchment constituted 39% of the total catchment area (Figure 7.8). 

A storage capacity of 2500 l per 100 m2 of roof space was applied across all 

buildings. This value represents an estimate for rainwater capture supported by 

literature and common practice (Hamel and Fletcher, 2014; Burns et al., 2015b, 

2015c; Schubert et al., 2017; Xu et al., 2018). It was assumed that the entire 

capacity was available for storage, attributed to real time control operation 

draining the tank in preparation of a predicted rainfall event (Campisano et al., 

2017; Xu et al., 2018), and that the downpipe would not throttle water into the 

tank.  
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Figure 7.8: Map showing the distribution of rainwater capture tanks installed 

across all buildings in the model extent 

Rain gardens distributed across the entire catchment 

Rain gardens were applied across impermeable areas within the catchment. A 2 

m2 garden was specified to drain 100 m2 of impervious area. The rainfall capture 

effect was represented through a uniform application of this capture capacity 

across all contributing cells, representing 43% of the total catchment area (Figure 

7.9).  

Rainfall is captured in rain-gardens through surface ponding and infiltration into 

porous filter media. Surface ponding was specified to a depth of 200 mm of water 

across the 2 m2 surface (equating to 400 l of storage). The filter media was 

assumed to be 500 mm deep with a porosity of 0.4, but an effective porosity of 

0.3 to account for likely antecedent soil moisture. Thus each rain-garden had a 

total storage capacity of 700 l (400 l at the surface and 300 l within the filter 
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media). The filter media was lined and assumed to flow into the surface water 

sewer system, so no allowance for infiltration was included within the intervention. 

The value of 700 l was applied uniformly across all cells in the 100 m2 catchment 

to generate a representative average capture effect of 7 mm of rainfall per m2. It 

was assumed that this capacity was not limited by an infiltration rate into the 

substrate. 

 

Figure 7.9: Map showing the distribution of rain gardens installed across the 

entire study area 

Tree pits distributed across the upper catchment 

The effect of locating 1000 tree pits across the upper catchment was modelled 

through assuming the storage capacity of a 1 m2 tree pit to be 350 l, using the 

same assumptions as for rain gardens (above). This capacity was multiplied by 

1000 and then applied as a uniform capture rate of 0.12 l.m2 across the entire 

upper catchment, which constituted 43% of the total study area (Figure 7.10).  
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Figure 7.10: Map showing the distribution of tree pit effects across the upper 

catchment 

Permeable paving distributed across the entire catchment 

Permeable paving was modelled through assuming all impermeable areas within 

the catchment, constituting 44% of the study area, could runoff to a permeable 

paving unit (Figure 7.11). Typical paving structure comprises of 200 mm depth 

gravel with a porosity of 0.5 (Melbourne Water, 2005; Yong et al., 2011; 

Mohammadinia et al., 2018). This equates to 100 mm of interception across each 

1 m2 paving unit. It was assumed that 1 permeable paving unit served 10 m2 of 

contributing area, therefore this effect was averaged and distributed evenly, 

represented through 10 mm captured from each contributing cell. An ongoing 

infiltration rate of 1 mm/ hour was based on typical permeability of the underlying 

clay soils in the catchment. 
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Figure 7.11: Map showing the distribution of permeable paving across the entire 

model extent 

Enhanced storage across the upper catchment 

The local government was interested to test the potential combined effect of 

large-scale distributed storage applied across the entire catchment. This scenario 

represented the possible effects of a collaboration between all property planners 

and owners (both public and private) in the catchment. It was assumed storage 

would be implemented through a wide application of sustainable drainage 

features, which may also offer additional benefits to the city. 

Previous investigations by the local government found that a value of 4.5 l/m2 

could be achieved across the catchment and an enhanced storage capacity of 

8.1 l/m2 would be possible in strategically targeted areas of the upper catchment. 

This is a strategic development zone within the city where extensive works are 

currently being planned in collaboration with major landowners. No detail could 
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be provided regarding locating sites at this early stage of option analysis, 

therefore this intervention was modelled through capturing rainfall landing within 

each cell of the catchment. Standard storage capacity was applied across 52% 

of the total catchment area and the enhanced capacity was applied across a 

further 16% of the catchment area (Figure 7.12).  

 

Figure 7.12: Map showing the distribution of enhanced catchment storage zones 

specified by catchment stakeholders 

Storage at a major university campus 

Further storage was considered across the City’s major university campus in the 

north of the CBD. A total of 1.5 Ml of storage was proposed, achievable through 

intensive application of surface water control measures such as permeable 

pavement, rain-gardens and rainwater capture across the campus. Storage was 

implemented in the modelling framework using an assumption of uniform capacity 

across the entire campus, which constituted 6.6% of the total catchment area 

(Figure 7.13). The effect over this area was estimated to be 3.3 l/m2. 
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Figure 7.13: Map showing the distribution of storage across upper catchment 

university campus 

Storage at university buildings integrated within the city centre 

Similar storage was proposed across the other university in the catchment. These 

buildings are located across multiple sites clustered in the north of the catchment. 

It was proposed that 1 Ml could be captured on roofs of campus buildings the 

northern subset and 0.5 Ml could be captured on roofs in the southern distribution. 

This was modelled through capture volumes of 46 l/m2 in the north (0.3% of the 

total catchment area) and 10 l/m2 in the south (0.7%) (Figure 7.14).  
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Figure 7.14: Map showing the distribution of storage installed at urban university 

campus buildings 

Park expansion at city squares 

The local government proposed expanding the pervious area of three major parks 

in the catchment. The parks were expanded across the roads to increase the park 

space up to 0.9% of the total catchment area (Figure 7.15). This strategy was 

modelled with the assumption that the rate of capture across the space would be 

equivalent to permeable paving applied uniformly across the area. Each 1 m2 

section of permeable paving was calculated to capture 100 l of rainfall, with a 

continuing rate of 1 mm/ hour infiltrating into the underlying clay soil. Roughness 

was attributed a uniform Manning’s n coefficient of 0.040 to represent minimal 

vegetation coverage across the square. 
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Figure 7.15: Map showing the distribution of park expansions at city squares 

Increasing drainage capacity in the strategic sub-catchments 

A grey intervention was proposed to increase the drainage capacity in two key 

areas through duplicating current pipes in two surface water drainage sub-

catchments, representing 17% of the total catchment area (Figure 7.16). Limited 

data exists regarding the pipe capacities (Section 7.2.1), so a high level 

assumption was used to represent the scenario where the drainage rate used in 

the analysis were doubled to 30 mm/hour output per cell across both areas.  
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Figure 7.16: Map showing the distribution of increasing drainage capacity in the 

strategic sub catchments within the upper catchment 

Summary of intervention effects 

Table 7.3 presents a summary of all twelve intervention strategies and outlines 

cell parameter values applied to represent each intervention. The relative scale 

of strategies can be ascertained through the proportion of the study area which 

each approach is applied across.
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Table 7.3: Intervention scenarios applied to the catchment 

Intervention 
Distribution 

(% of study area) 

Roughness 

(Manning’s n) 

Infiltration 

(mm/ hour) 

Rainfall capture 

(l per cell) 

Base case model n/a Land use Land use n/a 

Green roofs on all buildings 39.4 Land use Land use 10.0 

Green roofs in the upper catchment 7.8 Land use Land use 7.5 

Rainwater capture tanks on all buildings 39.4 Land use Land use 25.0 

Rain gardens across all impermeable 

spaces* 
43.5 Land use Land use 7.0 

Tree pits in the upper catchment* 43.4 Land use Land use 0.1 

Permeable paving (catchment wide)* 43.5 Land use 
Land use 

(plus 1.0) 
10.0 

Rainfall storage in the university campus 6.6 Land use Land use 3.3 

Rainfall storage in university buildings 
0.3 (zone 1) 

0.7 (zone 2) 
Land use Land use 

46.0 (zone 1) 

10.0 (zone 2) 

Enhanced catchment storage 
15.6 (zone 1) 

52.2 (zone 2) 
Land use Land use 

8.1 (zone 1) 

4.5 (zone 2) 

Increase park space 0.9 0.040 1.0 100.0 

Pipe duplication 17.1 Land use 30.0 n/a 

* Intervention capture rates averaged over all cells within the specified area. 





257 
 

7.2.3. Simulating scenarios 

In total, 60 scenarios were examined, which consisted of the twelve intervention 

strategies (Section 7.2.2) applied across the five rainfall magnitudes (Section 

7.2.1). Simulation was undertaken using CADDIES run on an ‘Nvidia Tesla K20c’.  

Average simulation time for each scenario was 2.12 hours at a minimum model 

time step of 0.01 s. 

7.2.4. Analysing intervention performance 

Areas of investigation 

Intervention performance was assessed in three zones across the catchment 

(Figure 7.1). These were selected through correlating flood ponding and 

conveyance routes during the base case scenario with expertise and 

observations from catchment stakeholders. Each zone corresponded to a major 

road within the catchment and were corroborated as PFS through historical flood 

observations (Section 7.2.1).  

Using peak flood depth and velocity as flood hazard metrics 

Performance of interventions was assessed using peak flood depths and 

velocities in cells within each flood zone identified in Figure 7.1. Peak values were 

chosen for analysis as these represent the worst case flooding and allow one 

image to effectively communicate overall flood hazard to stakeholders. This 

approach is advantageous for quick comparison of interventions effects on 

flooding to all buildings, infrastructure and features. Storing one output per cell 

per simulation also greatly reduces the memory requirements for large numbers 

of simulations. 

Data limitations and commercial sensitivities meant that detailed flood damage 

cost curves were unavailable for this case study. However, the three flood zones 

evaluated consist of high density urban commercial buildings of relatively 

consistent value and type, resulting in a relatively homogenous level of 

vulnerability across each zone. Therefore, spatial variation in flooding within 

these regions is unlikely to have a significant impact on flood damage costs, 

therefore it is deemed acceptable for performance assessment to be based on 

analysis of peak depth and velocity in this instance. 
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7.3. Results 

This section evaluates the effects of each intervention strategy across the 18%, 

10%, 5%, 2% and 1% AEP events simulated during the analysis. Performance of 

each intervention across each of the three flood zones was undertaken through 

comparing the distribution of peak flood and peak velocity values from each cell 

in the zones (Figure 7.1). The distributions are presented as a box plot which 

shows the mean, 25% and 75% percentiles as a box, bounded by the full range 

of data. 

Surface water flooding was observed during the one hour rainfall event in all 

scenarios and at all AEPs. Analysis of the distribution of peak flood depths per 

simulation indicates that the deepest mean and maximum peak depth and 

velocity are observed in the base case scenario for all zones during all AEPs, 

demonstrating that no intervention had a negative effect on flooding within the 

study area. 

7.3.1. Intervention performance during the 18% AEP event 

Performance during the 18% AEP event is shown in Figure 7.17 (peak depth) 

and Figure 7.18 (peak velocity). Flood depths and velocities within this event are 

the lowest across all the events studied. All scenarios, including the baseline 

demonstrate mean peak flood depths of less than 20 cm across all three flood 

zones. All scenarios in all zones also demonstrate cells with no flooding. The 

base scenario demonstrates the deepest peak flooding, at up to 40 cm in Flood 

Zone One.  

Intervention performance shows the largest reduction in flood depth in Flood 

Zone One. Differences in other flood zones are less noticeable, with only minor 

changes (less than 5 cm) between the base case mean peak flood depth and any 

other intervention. 
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Figure 7.17: Comparison of peak flood depth distribution for all flood zones in the 

18% AEP event 

The distribution of peak velocity in each cell across each flood zone demonstrates 

a similar pattern to peak depths, with the base case demonstrating the fastest 

velocities. As with peak depth, the largest effect of interventions is demonstrated 

in Flood Zone One, with only minor variation apparent in Flood Zone Two and 

Three.  

 

Figure 7.18: Comparison of peak runoff velocity distribution for all flood zones in 

the 18% AEP event 
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7.3.2. Intervention performance during the 10% AEP event 

Peak flood depth (Figure 7.19) and peak flood velocity (Figure 7.20) during the 

10% AEP event demonstrate a relatively similar pattern to results from the 18% 

AEP events. The most notable performance variation is observed in Flood Zone 

One with much smaller variation in performance across Flood Zones Two and 

Three. The largest difference is that the base scenario in Flood Zone One has no 

cells with zero flood depth, however four strategies (rainwater harvesting, 

permeable paving, the strategic capture zone and drainage upgrades) all 

generate areas with zero flood depth. 

 

Figure 7.19: Comparison of peak flood depth distribution for all flood zones in the 

10% AEP event 

Differences in the distribution of values attributable to intervention performance 

are more pronounced for this event. In particular for Flood Zone One, where 

rainwater capture is the most effective intervention for reducing flood depths and 

velocities. Drainage upgrades demonstrate the largest difference in Flood Zone 

Two, attributable to the upgrades removing runoff from the catchments which 

directly flow into this zone. 
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Figure 7.20: Comparison of peak runoff velocity distribution for all flood zones in 

the 10% AEP event 

7.3.3. Intervention performance during the 5% AEP event 

The majority of interventions reduced flood depth across the three zones during 

the 5% AEP rainfall event. Figure 7.21 shows the distribution of peak flood depth 

across all cells for all strategies in each of the three zones. The maximum mean 

peak depth in the base case scenario, approximately 0.38 m, was observed in 

Flood Zone One. The deepest peak flood depth, over 0.61 m, was also identified 

in this zone. Zone One is located at the furthest downstream point of the 

catchment and will have the largest contributing area. Flooding across the other 

zones was on average shallower, due to smaller contributing areas.  
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Figure 7.21: Comparison of peak flood depth distribution for all flood zones in the 

5% AEP event 

The largest reduction in peak depth was observed in Zone One, where several 

strategies reduced the mean peak flood depth by 25 to 50%. The most effective 

interventions were those applied across large areas of the catchment, including 

rainwater capture, green roofs, permeable paving and the introduction of 

enhanced storage in the upper catchment. Rainwater capture was consistently 

the most effective intervention, reducing the mean peak flood depth to less than 

0.2 m in Zone One and Two, and to less than 0.1 m in Zone Three. The strategy 

of increasing drainage capacities also demonstrates flood reduction. Tree pits 

and capturing runoff at the city’s universities demonstrated a negligible reduction 

in flood depth versus the base scenario. It is suggested that, in this instance, 

these interventions only capture enough rainfall to delay the timing of the flood 

peak, rather than reduce its magnitude. 

Interventions demonstrate similar performance rankings in each zone. The most 

effective performances were observed in Zone One with similar, albeit a smaller 

range of, values exhibited in the other study areas. No interventions completely 

eliminated flooding, however rainwater capture was predicted to remove all 

flooding from certain cells in Flood Zone Two, a benefit which is not present in 

the base scenario. All interventions demonstrated cells with no flooding in Flood 

Zone Three. 
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Figure 7.22 shows the intervention effects on peak flood velocity in each of the 

three flood zones. The distribution of values has a similar, albeit less pronounced, 

pattern to the change in peak flood depths. The most effective intervention was 

catchment scale rainwater capture, however even in Flood Zone One, where the 

effect is most noticeable, this only reduced mean peak velocities from 2 m/s to 

1.6 m/s.  

 

Figure 7.22: Comparison of peak runoff velocity distribution for all flood zones in 

the 5% AEP event 

7.3.4. Intervention performance during the 2% AEP event 

Figure 7.23 presents peak flood depths during the 2% AEP event. The distribution 

of peak depths is deeper than the more frequent AEP events, but still follows the 

same pattern; with the most noticeable intervention performances observed in 

Flood Zone One. The most effective interventions in this area are the catchment 

wide strategies, with rainwater capture reducing flooding by the largest value in 

all flood zones. 



264 
 

 

Figure 7.23: Comparison of peak flood depth distribution for all flood zones in the 

2% AEP event 

Interventions have a less pronounced effect on the peak flood velocity, which 

remains relatively consistent across all intervention strategies. The best 

performing intervention, rainwater capture, reduced the mean by approximately 

0.2 m/s across all scenarios. Other interventions demonstrated negligible effects 

on peak velocities. 

 

Figure 7.24: Comparison of peak runoff velocity distribution for all flood zones in 

the 2% AEP event 
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7.3.5. Intervention performance during the 1% AEP event 

The deepest flooding across all scenarios was predicted to occur during the 1% 

AEP event (Figure 7.25). Intervention performance generally approached the 

base case scenario, with less variation in performance relative to lower return 

periods. Ranking of interventions remained consistent, but the degree of variation 

between strategies was less noticeable.  

No interventions worsen flood depths, however tree pits and capturing 1.5 Ml at 

the University of Melbourne and RMIT campuses show negligible differences to 

the base case across all zones. Other strategies based on a defined capture 

volume, such as green roofs in the upper catchment, rain gardens and park 

expansion also have little impact on flood depths during the most intense rainfall 

event. Limited performance is attributable to rainfall exceeding capture capacities 

during the event and therefore interventions leading to a delay, rather than 

reduction, in peak runoff rates. This is similar to findings regarding intervention 

performance tipping points discussed in Chapter Six. This effect is partly 

mitigated by strategies applied across the whole catchment or large areas, such 

as rainwater capture, green roofs, enhanced catchment storage and permeable 

paving which capture sufficient volume to reduce peak depths. Strategically 

targeted and intensive options such as increasing drainage capacities also 

demonstrate an improvement versus the base case. 

 

Figure 7.25: Comparison of peak flood depth distribution for all flood zones in the 

1% AEP event 
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Interventions demonstrate a limited effect on flooding in Zones Two and Three. It 

is suggested that this is due to these zones receiving runoff from smaller areas 

of the catchment, and consequently reach a time of concentration faster after 

rainfall volume exceeds capture capacities. 

Analysis of depth distribution is a useful tool for identifying strategic performance 

trends during decision support. However, it is also important for decision makers 

to consider the location of flooding, in order to conceptualise and manage risk. 

Figure 7.26 presents a visualisation of peak depths in the base case scenario 

during the 1% AEP event (panel A) with a comparison of the reduction in flooding 

created by application of the most effective intervention, rainwater capture (panel 

B). The analysis created maps like this for each of the scenarios and rainfall 

events investigated, however these have been omitted from this results section 

to facilitate a concise analysis. It is important to note that these maps are 

available, as they formed a useful tool for visualising and exploring the 

effectiveness of interventions during workshops with the city council and are 

discussed later in the chapter. 

 

Figure 7.26: Effect of catchment scale rainwater capture on peak flooding during 

the 1% AEP event. (A) Base case and (B) Difference in peak floods using 

rainwater capture  
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This figure shows that rainwater capture reduces peak flood depths by 0.2 to 0.6 

m across the entire width of Zone One along approximately 300 m of the transect. 

This demonstrates a substantial public safety and damage reduction 

improvement versus the base case scenario.   

Figure 7.27 indicates that interventions only have a marginal impact on reducing 

peak flood velocities in the study area. This is attributed to the interventions 

delaying the timing, rather than reducing the magnitude of peak runoff during the 

event, and is similar to the observations regarding the minor changes in peak 

flood depths predicted during this scenario. The velocity is also controlled by the 

topography and roughness of the road surface, which has not been altered using 

these interventions.  

 

Figure 7.27: Comparison of peak runoff velocity distribution for all flood zones in 

the 1% AEP event 

7.4. Discussion 

7.4.1. Green infrastructure to manage urban surface water flooding 

Many interventions reduced peak flood depths and velocities, and no strategy 

performed more poorly than the base case approach in any scenario. Of 

particular note were interventions applied as part of a catchment-wide strategy, 

which were predicted to achieve the largest reductions in flood depth and velocity 

in all scenarios. 

The apparent limited performance of certain localised or smaller scale 

interventions, even when capturing a high volume) should be considered in the 
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context of an incremental development step towards a larger catchment 

management approach. In addition to this, although local strategies may not 

reduce the peak depth in the downstream catchment, their local effect and 

delaying flood peaks may facilitate more effective movement around areas of 

severe flooding which are consistent with large rainfall events. Additionally, such 

interventions are likely to be effective for reducing localised nuisance flooding in 

strategically targeted regions. 

A reduction in peak flood depth will likely correlate with a decrease in flood 

damage costs (Penning-Rowsell et al., 2005; Hammond et al., 2015). Reduction 

in flood volume will also reduce the duration of flooding, which in turn will reduce 

the disruption and hazard exposure to the general public. Delaying the 

occurrence of peak flood depths will also provide an opportunity for additional 

warning time, enabling more effective application of flood resilience measures 

and early warning systems, potentially providing safer emergency evacuations of 

the at risk areas and allowing diversions to limit disruption to key economic, 

cultural and social activity in the city (Parker et al., 2011). 

No interventions completely prevented surface water flooding in the zones 

studied during any rainfall event. This is likely due to the very high capacity of 

storage and conveyance systems required to capture all runoff across the large 

contributing area when subject to the highly intense rainfall predicted during short 

duration events. Despite this, many strategies demonstrated a reduction in flood 

depth within the flood zones studied. Many interventions also created safe areas, 

where water levels were reduced to either zero or very low values.  Safe areas 

prevent damage in the locality, but also have a far wider reach in minimising 

disruption and consequences through establishing evacuation routes which can 

provide the public with an opportunity to minimise hazard exposure.  

Although the zones investigated still flood, interventions were predicted to reduce 

flood depths on streets in the upper catchments which act as tributaries to the 

main conveyance route. Accumulation of volume downstream masks this 

reduction in the regions studied, however flood management upstream will both 

reduce risk and make movement more manageable around the areas of higher 

flood risks. 
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Application of frameworks which facilitate analysis of many simulations may have 

a role in iteratively combining smaller local strategies to project the impact of 

combined future projects and develop towards greener urban catchments. This 

mode of analysis could also provide utility in identifying tipping points, where the 

combined effect of interventions will reduce rather than delay the peak flood and 

to limit the requirements for financially and environmentally expensive sub 

surface drainage upgrades. 

7.4.2. Effect of AEP on flood intervention effectiveness  

Fast analysis of strategies enabled evaluation of performance across multiple 

rainfall AEP scenarios. This analysis has identified a clear trend where, as events 

become more intense (i.e. AEP decreases), intervention performance to reduce 

peak flood depth and velocity become less effective. It should be noted that this 

finding is made relative to the peak values and does not include the interventions 

effect on hazard duration. However, in the case of surface water flooding, the 

peak depth rather than flood duration is likely to be the controlling factor in flood 

damage (Penning-Rowsell et al., 2010). 

It should be noted that this effect is partially obscured during more common AEP 

events (18% and 10%) as the large capacity, catchment scale interventions do 

not appear to make such a difference, this is attributed to the fact that the full 

potential of these large scale interventions is not utilised during lower intensity 

rainfall events.  

The reduction in intervention performance during more intense rainfall is 

attributed to strategies reaching capacity and then ceasing to reduce the flow rate 

versus the base case scenario. This is particularly relevant to peak flood velocity, 

which will be controlled by the peak flow rate of incoming runoff via topography. 

This pattern of interventions becoming less effective at reducing peak values 

during high intensity events is observed during the 1% AEP event (Figure 7.27), 

where differences between interventions were negligible. This finding correlates 

with evaluation of rainfall capture strategies from Chapter Six, where 

performance tipping points were predicted as rainfall volume exceeded storage 

capacities. 

This effect is less apparent when comparing peak flood depths, which reflects a 

distinction in the controlling factor of depth being the total flood volume leading to 
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ponding, rather than peak flows which control peak velocities. This argument is 

supported by observations of a larger variation in intervention peak flood depths 

at higher intensities (lower AEP’s) than is present when examining the changes 

in peak velocities.  

Assessing the response of green infrastructure to changing rainfall intensities is 

significant as it informs understanding the effective flood management beyond 

design standards. Green infrastructure is frequently cited as a desirable method 

with which to manage surface water and build resilience in urban environments 

(Balmforth et al., 2006; Environment Agency, 2007b; Duffy et al., 2008; Wong 

and Brown, 2009; Woods Ballard et al., 2015; Bowen and Lynch, 2017).  Finding 

that performance of certain interventions reduces in response to high intensity 

rainfall indicates that resilience of interventions needs to be assessed in relation 

to a range of events when building urban resilience, particularly in light of 

increasing intensity and frequency of future hazards (Goonetilleke et al., 2005; 

Ana and Bauwens, 2010; Howard et al., 2010; Barbosa et al., 2012; IPCC, 2014). 

This supports conclusions regarding to the resilience of intervention strategies in 

Chapter Six, where certain storage based interventions demonstrate a sudden 

decrease in performance as a capacity threshold is exceeded. 

7.4.3. Supporting practical application of green infrastructure through 

collaborative strategy screening 

It is imperative that catchment stakeholders understand the performance of flood 

management techniques in order for benefits to be applied to cities (Pitt, 2008; 

MWH, 2014; Burns et al., 2015c; Woods Ballard et al., 2015; Schubert et al., 

2017). Historic approaches have been limited  by restrictions on time, budget and 

data which can lead to decision makers considering only tried and tested 

interventions, resulting in institutional inertia and stifling innovation (Cettner, 

2012; O’Donnell et al., 2017). This research sought to develop application of new 

methods to address this institutional barrier through collaborating with key 

personnel from local government to devise intervention strategies. There is 

thought that such civic experimentation can change standard practice (Karvonen, 

2011), and in this case, could increase the capacity of the local government to 

implement green infrastructure. This is particularly important because case study 

results suggest that substantial reductions in flood risk are only possible when 

green infrastructure is applied across large areas of a catchment, requiring buy 
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in and communication between many stakeholders. Fast analysis using the 

framework enabled a series of workshops in quick succession, in which 

stakeholders could communicate and test strategies with fast feedback upholding 

a collaborative momentum. 

Achieving high levels of green infrastructure implementation will likely take time 

and trusting partnerships between those involved (Burns et al., 2015a). Planners 

therefore need to develop and articulate aspirational strategies which gradually 

implement actions towards catchment wide surface water flood management. It 

is important to note that although the more localised interventions appear less 

effective, these will play a vital role in achieving larger scale ambitions. In fact, 

Burns et al. (2015d) found that localised projects increase the confidence of using 

new surface water management interventions. Communicating that substantial 

outcomes could take time will also be an important part of stakeholder 

consultation efforts. This observation is influenced by the decision to focus 

assessment, in line with local government priorities, on reducing the flooding in 

three flood zones which act as the principal areas of flood hazard in the 

catchment. Localised application of flood interventions will have an impact in 

smaller areas of the upper catchment, which may not be captured in this analysis. 

These may form an important role managing disruption of floods in the lower 

catchment through providing increased opportunity to navigate and divert around 

areas of risk. Understanding and utilising these opportunities is an important 

consideration for maintaining functionality of the urban environment during 

flooding. 

7.5. Chapter conclusions 

This chapter demonstrates a practical and applied implementation of the 

framework described in Chapter Three. The chapter finds several key 

conclusions regarding application of the framework: 

 Implementation of this framework in collaboration with catchment 

stakeholders provided a clear and concise strategic intervention 

development mechanism which generated evidence towards the utility of 

the framework in screening urban flood management strategies.  

 Efficient option analysis achieved using the framework enabled a 

collaborative screening process which could be undertaken iteratively over 
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the course of several workshops. Holding workshops in quick succession 

(over several weeks) upheld the collaborative momentum of the project. 

 The simplified development of intervention strategies provided a clear 

communication tool which supported the multi-disciplinary investigations 

required for urban planning in a complex environment. This was evidenced 

through engaging multiple catchment stakeholders and departments 

ranging from engineering, environment, and urban landscape planning. 

The chapter also finds several conclusions regarding application of green 

infrastructure in managing urban surface water flooding: 

 Analysis of interventions indicated a range of strategies which were 

effective at reducing flooding when built up across the catchment, and that 

multiple smaller intervention strategies accumulate towards catchment 

scale benefits.  

 The most effective strategy was found to be high volume rainwater capture 

tanks applied across the catchment. Strategically targeted drainage 

upgrades also demonstrated significant reductions in flooding. 

 Green infrastructure flood reduction performance declines when managing 

high intensity rainfall events. This is of particular significance given a trend 

in literature to present green infrastructure as an intrinsically resilient 

solution to extreme rainfall and demonstrates the need for future 

evaluation of interventions to apply context specific analysis across many 

rainfall scenarios to build resilient surface water management.  
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8. CONCLUSIONS AND RECCOMENDATIONS 

This chapter details conclusions and recommendations emerging from the 

research presented in this thesis. This is structured through outlining a summary 

of the work undertaken, presenting conclusions pertinent to each objective, 

synthesising conclusions towards general guidance for evaluating intervention 

performance using rapid scenario screening and identifying emerging 

opportunities for future research. 

8.1. Thesis summary  

Surface water flooding is the predominant cause of flood risk in the UK and 

contributes significantly to global flood impact (Pitt, 2008; Committee on Climate 

Change, 2017; Löwe et al., 2017; DEFRA, 2018b; Guerreiro et al., 2018; Wing et 

al., 2018). Many studies predict these impacts to increase in response to climate 

change, urbanisation and a reliance on aging urban drainage infrastructure 

(Wheater and Evans, 2009; Howard et al., 2010; Djordjević et al., 2011). Despite 

significant flood impacts and a growing realisation of future hazards, 

management of surface water flooding has historically been overshadowed by 

prioritisation of fluvial and coastal flooding counterparts (Douglas et al., 2010; 

DEFRA, 2018b). In response, contemporary research has developed a technical 

understanding of many management interventions, however inclusion of 

measures within strategic planning methodologies is still limited.  

The aim of this thesis was to develop rapid scenario screening to investigate the 

performance of surface water management strategies in urban catchments 

across design standard and extreme events.  

To achieve this aim it was first necessary to identify current tools applicable for 

measuring the performance of interventions. A review of current literature 

identified a general trade off regarding the ability of available tools to 

quantitatively measure intervention performance versus the capability to 

practically screen the multitude of possible permutations of strategies and 

scenarios. Consequently, this has historically limited the scope of intervention 

comparisons, typically at the expense of examining novel interventions and 

strategy responses to extreme rainfall events. 

The research responded to this gap through developing a rapid scenario 

screening framework, capable of high level quantitative screening of many 
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scenarios through application of easily accessible input data, computationally 

efficient cellular automata flood models and a simplified representation of 

interventions.  

Application to evaluate intervention performance required validation of this 

simplified approach and an understanding of its potential advantages and 

limitations versus conventional assessment methodologies. Framework 

validation was achieved through testing the approach versus industry standard 

modelling, undertaken and published as part of the Cambridgeshire SWMP 

(Arcadis, 2012). Analysis indicated that the rapid scenario screening provided 

comparable results to published model outputs, whilst retaining advantages 

regarding simulation speed and set-up time. 

Validation of the framework enabled the method to be applied for screening 

surface water flood risk and potential interventions. This was first applied through 

assessing the effect of strategic intervention zones, intended to identify the scope 

and effects of various intervention strategies required for effective flood 

management in a case study catchment. Rapid scenario screening was used to 

identify priority flood spots and flood damage estimates for a case study in Exeter, 

UK.  

The framework was advanced to incorporate representation of specific 

interventions. The performance of a range of intervention types and placement 

strategies was assessed across 144 rainfall scenarios and 792 placement and 

AEP permutations. This provided analysis of intervention response to design 

standard and extreme rainfall. A cost effectiveness metric, based on EAD 

reduction versus capital, operation and maintenance costs over a thirty year 

planning horizon was developed and used to enhance analysis towards 

developing evidence to screen intervention strategies in urban catchments. This 

stage of research contributed a progression in methodological approaches and 

understanding of intervention reliability and resilience. 

The final stage of research was to verify the theoretical opportunities provided by 

using the rapid scenario screening framework through application to a practical 

case study, alongside catchment stakeholders. This was achieved through 

framework application to assess interventions in a case study of Melbourne City 

Centre, Australia. The framework was demonstrated as an appropriate tool for 
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collaborative catchment screening, whilst providing insight into the scale versus 

effectiveness of green infrastructure strategies for surface water flood 

management in a highly developed urban environment. 

It is recommended that the outcomes from rapid scenario screening are applied 

to support initial and high level strategic decisions, such as: influencing the 

direction of further detailed modelling, highlighting additional data requirements; 

stakeholder engagement; scenario exploration; and, including novel intervention 

strategies within the initial stages of the decision support process. This screening 

approach can also be used to explore many permutations of strategies and their 

responses to future uncertainties, such as the increases in precipitation intensity 

and changes in rainfall characteristics evaluated within this thesis. This supports 

other research indicating the advantages of enhancing decision support through 

evaluating many possible futures. 

8.2. Conclusions 

This section presents the main conclusions regarding each objective of the thesis. 

8.2.1. Review literature regarding screening intervention performance 

under design standard and extreme rainfall events 

Chapter Two reviewed literature regarding available surface water management 

interventions and current methodologies for evaluating intervention performance 

during design standard and extreme rainfall. Key conclusions drawn from the 

review are: 

 Screening and comparing intervention performance is currently achieved 

using a wide range of qualitative and quantitative approaches. However, 

a trade-off exists between fast but low resolution methods, capable of 

qualitatively screening many interventions, and high resolution but 

computationally intensive flood simulation, which can only evaluate a 

limited number of scenarios. New rapid approaches, such as cellular 

automata flood modelling, provide an opportunity to overcome this trade-

off and increase enhance consideration of intervention type, scale and 

distribution when evaluating performance of strategies. Despite 

documented speed and accuracy of these techniques, their application to 

surface water management is currently limited.  
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 Current performance evaluation is also focused on implementation of 

design standards, which neglects the importance of building resilience to 

extreme events and represents a gap in current surface water flood 

management. 

 

8.2.2. Develop a screening framework to enable assessment of many 

intervention scenarios at the urban catchment scale 

A rapid scenario screening framework was developed to address the gaps 

identified during the literature review. The scope of the framework is aimed at 

generating evidence for decision support using fast preliminary option 

assessment, and therefore is designed to use data requirements and 

assumptions commensurate with this utility. Chapter Three details development 

of this framework, with the following key messages: 

 Research has contributed a novel rapid scenario screening framework 

which delivers insight into how intervention performance can deliver 

maximum benefits given the many permutations of intervention type, scale 

and distribution possible within urban catchments. The framework applies 

easy to access data, a simplified representation of interventions and a 

computationally efficient cellular automata flood model to quantitatively 

screen scenarios at an urban catchment scale. 

 Utility of the framework is designed to screen many strategies at a high 

level to enhance understanding of performance and develop evidence 

towards surface water management actions. Application towards this goal 

is achieved through assessing performance using readily comparable 

quantitative metrics, including flood depth, extent and damage costs. 

 

8.2.3. Validate the framework against industry best practice 

The rapid scenario screening framework was validated through comparison with 

industry standard modelling techniques in Chapter Four. The overall conclusion 

was that rapid scenario screening is a promising tool for evaluating flood 

dynamics and intervention performance as part of scenario exploration to aid 

decision support. Specifically, research found: 
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 Rapid scenario screening demonstrates close correlation with outputs 

from current industry standard modelling when evaluating surface water 

flood hazards within priority flood spots across a UK case study. This 

finding applies to models constructed to multiple levels of detail, including 

worst case overland flow (97.4%), inclusion of the sub-surface drainage 

system (98.5%) and addition of interventions to the catchment surface 

(98.5%). This supports application of the framework for screening priority 

surface water flood spots and high level flood dynamics at the urban 

catchment scale.  

 The new framework can advance current best practice through including 

analysis of many scenarios within high level screening. This responds to 

limitations in current approaches such as narrow analysis of future 

uncertainties, for example evaluating strategies using a design storm for a 

fixed return period, and restricting permutations of novel surface water 

management interventions.  

 

8.2.4. Investigate the flood reduction performance of strategic and specific 

interventions 

Performance of interventions was evaluated through Chapters Five, Six and 

Seven. Chapter Five examined effects of strategic intervention zones, Chapter 

Six evaluated specific interventions in Exeter, UK, and Chapter Seven measured 

performance of green infrastructure applied to Melbourne, Australia. Several 

general conclusions regarding intervention performance can be drawn from these 

three chapters: 

 Intervention performance varies significantly in response to the duration 

and intensity of rainfall. Short duration, high intensity rainfall was predicted 

to cause the deepest flooding and highest flood damage costs. This finding 

corroborates existing guidance indicating the importance of managing high 

intensity and extreme events in urban environments (Meehl et al., 2000; 

Environment Agency, 2013). 

 Although centralised interventions provide benefit at smaller scales, 

catchment based strategies are required to substantially reduce flood 

extent and estimated annual damage costs across urban areas. The most 

effective intervention was consistently found to be extensive application of 
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decentralised rainfall capture, which reduced estimated annual damage in 

a UK case study by 76% versus a business as usual baseline.  

 Multiple smaller intervention strategies accumulate towards catchment 

scale benefits. Dispersed lower volume catchment wide interventions 

performed better than concentrated higher volume measures. For 

example, in Exeter, decentralised 1500 l rainwater capture tanks 

demonstrated a lower EAD (£0.2 million) than centralised, high volume (up 

to 10 000 l) tanks (£0.7 to £0.8 million). This finding is supported by 

analysis in the Melbourne case study, which indicates catchment wide 

approaches are more effective at reducing flood depths than high volume 

centralised interventions. This supports future development of catchment 

wide surface water management. 

8.2.5. Evaluate intervention cost effectiveness across many rainfall 

scenarios 

Chapter Six responded to this objective by expanding analysis of intervention 

performance through developing a cost effectiveness metric. Key conclusions 

pertinent to this objective are: 

 Intervention type, location and scale have significant impacts on cost 

effectiveness. Analysis of hundreds of scenarios indicates a wide range of 

cost effectiveness ratios for interventions, ranging from £0.10 to £26.0 

damage reduction per £1 spent, with the most cost effective interventions 

identified as high volume localised drainage interventions targeted in 

areas of intense flooding. The implications of spatially varying cost 

effectiveness are two-fold: Firstly, future intervention performance analysis 

should include spatial simulation of flood dynamics; and secondly, 

development of decentralised catchment scale strategies should be 

complemented by application of targeted and cost effective high volume 

interventions in areas of high risk. 

 Objective Four indicates that catchment wide surface water management 

should be pursued as an aspirational goal, however extensive 

implementation will take time, resources and co-operation between 

multiple stakeholders. The implication from this objective is that progress 

towards this can be implemented incrementally and cost effectively using 

tools such as rapid scenario screening. Analysis supports this through 
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demonstrating all interventions generated their strongest cost 

effectiveness ratios when strategically targeted. 

 

8.2.6. Verify application of the framework through practical application with 

catchment stakeholders 

Chapter Seven responded to verification of the framework through designing and 

evaluating intervention performance across a case study in Melbourne City 

Centre in collaboration with catchment stakeholders. Key conclusions were: 

 Development and analysis of many intervention strategies was enabled 

through rapid setup and simulation using easy to access data. The 

simplified development of intervention strategies provided a clear and 

concise communication tool leading to a collaborative and efficient option 

screening process which supported the multi-disciplinary investigations 

required for urban planning in a complex environment.  

 Catchment screening identified a clear hierarchy of interventions, 

highlighting the effective flood reduction of catchment wide surface water 

management strategies, which could be achieved through iteratively 

developing smaller local strategies to project the impact of combined 

future interventions towards greener urban catchments. 

 Application of the framework is also supported by Chapter Four, which 

indicates close correlation between industry standard screening 

methodologies versus the rapid scenario screening approach (as 

discussed in Objective Three). 

 

8.2.7. Investigate the relationship between resilience and reliability of 

interventions 

Chapters Six and Seven respond to Objective Seven through exploring the 

performance of interventions across design standard and extreme events. 

Typically studies can only assess a limited range of events due to resource costs 

of surface water modelling, the rapid scenario screening framework addresses 

this challenge. Analysis of intervention performance across events identifies 

several key conclusions: 
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 Performance of strategies during low magnitude events is not reflective of 

a strategies response to extreme events. This is evidenced through 

rainwater capture interventions demonstrating low flood damages where 

capacity can be fully utilised, but reaching a tipping point where exceeding 

capture volumes leads to a substantial performance decrease. 

Interventions which are able to continue functioning over extended 

timescales, such as drainage upgrades, are more effective at managing 

long duration events and appear more resilient to the extreme rainfall 

beyond design standards. This is of major significance when considering 

a planning environment focused on meeting specified design standards 

versus environmental hazards which are increasing in severity as a 

response to climate change, urbanization and aging infrastructure 

systems. Planning based solely on design standard events is not 

guaranteed to develop systems which are able to cope with extreme 

events. 

 Chapter Seven indicates that green infrastructure effectiveness declines 

when managing high magnitude rainfall events. This is of particular 

significance given a trend in literature to present green infrastructure as an 

intrinsically more resilient solution to extreme rainfall (Balmforth et al., 

2006; Environment Agency, 2007; Duffy et al., 2008; Wong and Brown, 

2009; Woods Ballard et al., 2015; Bowen and Lynch, 2017). The 

implication of this finding is that developing strategies with resilient 

performance requires evaluation of many rainfall scenarios and that 

interventions with resilient properties, such as green infrastructure, do not 

necessarily achieve resilient performance. 

 

8.2.8. Develop recommendations for practical application of the 

methodology 

This thesis has the intention of developing reliable and resilient surface water 

management through contributing a rapid scenario screening framework 

applicable to complement and direct the existing detailed urban drainage tools 

currently available. A crucial component of contributing an actionable framework 

is developing a set of recommendations for future application. The following 
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section outlines recommendations pertaining to practical considerations, 

structuring the application of the tool and framework utility. 

Development, validation and application of rapid scenario screening has 

identified several key considerations when implementing the methodology: 

 Studies have identified the importance of high resolution elevation models 

which incorporate macro and micro topographical features to accurately 

route runoff across urban surfaces (Schubert et al., 2008; Fewtrell et al., 

2011; Dottori and Todini, 2013); therefore, wherever possible, catchments 

should be represented using high resolution data. 

 Chapter Six identified that intervention performance during design 

standard events is not reflective of resilience to extreme rainfall. 

Interventions with similar cost effectiveness and performances during low 

magnitude events were found to exhibit substantial differences during high 

magnitude events. Therefore, application of the framework should 

examine intervention performance across a range of rainfall events, 

particularly given likely increases to future rainfall intensities (Westra et al., 

2014). 

 Analysis using constant intensity design storms (Section 6.2) and variable 

intensity design storms (Section 6.3) in the same catchment demonstrates 

increased flood damage when high resolution peak intensities are 

represented. The influence of peaks on flood damage indicates future 

modelling should represent these when calculating damages. 

 Selection of flood metrics should be considered carefully depending on 

each context. Performance analysis based on peak flood depth, flood 

damage costs and intervention cost effectiveness did not always return the 

same intervention performance rankings. Therefore, evaluation of 

intervention performance should considered relative to the spatial 

disaggregation and context of metrics assessed. This is particularly 

relevant in catchments with a high degree of spatial variation in land use, 

where the location of flooding may be significant in determining damage. 

It should be noted that this isn’t always the case, for example high density 

and broadly homogenous land uses (i.e. main streets in urban city centres) 

may not demonstrate a large difference between intervention rankings 

based on depth or damage costs. 
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 Parameterisation of cell output rates to represent the sub surface drainage 

system demonstrated high correlation with 2D-1D modelling (Chapter 

Four), however data confidentiality, record uncertainties and legacy assets 

mean that detailed schematics of surface sewers may not always be 

available, particularly at the initial stages of intervention screening. Low 

sensitivity of cell output parameters during high intensity rainfall indicates 

that broad scale parameterisation, such as that undertaken as part of 

Environment Agency (2013) surface water flood mapping, is suitable for 

preliminary screening where this is the case. In this case, preliminary 

modelling using the framework can also be utilised towards identifying 

where additional data is required to develop opportunities for future 

detailed modelling. 

 Rapid scenario screening should be applied subject to a preliminary 

analysis of catchment flood mechanisms. The strengths of the 

methodology lie in computationally efficient setup and analysis of surface 

water runoff, and the approach is not intended to examine other causes of 

flooding. It is recommended that catchment flood mechanisms should be 

assessed to scope framework suitability prior to investigations taking 

place. This can be achieved through investigating published flood reports, 

incident logs, flood histories and discussion with catchment stakeholders. 

 

The following conclusions relate to a implementing a staged process when 

applying the framework. It is recommended that rapid scenario screening is 

applied iteratively to evidence, direct and explore the complex permutations of 

intervention type, scale and distribution: 

 The first stage of analysis should identify and prioritise flood hazards 

across catchment(s) through assessment of a baseline scenario(s) 

(Chapters Four and Five). Identification of priority flood spots and general 

trends in flood dynamics can then be applied to focus subsequent analysis 

on specific sub-catchments, both enhancing the direction of intervention 

design and achieving computational efficiency through refining the area 

where further modelling is required. 

 Intervention screening should start with analysis of strategic intervention 

zones (Chapter Five). This broad scale of analysis will direct requirements 
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for future modelling by establishing the scope, scale and effects of 

interventions required to best achieve surface water flood management 

outcomes within the catchment. 

 Assessment of strategic intervention zones can then inform analysis of 

specific intervention type and distribution (Chapter Six). This may also be 

undertaken iteratively with catchment stakeholders (Chapter Seven), to 

enable development and exploration of flood management scenarios.  

 Iterative analysis following this procedure will form a structured and well 

evidenced direction of investigation which can be used to justify 

requirements for subsequent flood management actions within the 

catchment, as recommended by UK Government guidance (House of 

Commons, 2016). 

 

Rapid scenario screening using the framework has the following key utilities for 

surface water flood management: 

 Scoping requirements for surface water flood management projects 

through preliminary investigation of catchment flood dynamics and 

identification of priority flood locations across city scale catchments. 

 Enhancing analysis through evaluating complex permutations of 

intervention type, scale and distribution in urban catchments. 

 Generating evidence for decision support and directing future actions 

through the screening the performance of strategic and specific flood 

management interventions across multiple scenarios. Future actions may 

consist of capturing additional data, further detailed modelling, 

implementing interventions or developing strategic catchment 

management plans. 

 Evaluating resilience of catchments to extreme rainfall using performance 

analysis across a wide range of rainfall IDF characteristics. 

 Exploration of management scenarios with catchment stakeholders, 

structured through iterative stages of analysis and corresponding 

workshops to utilise fast and simplified assessment as a basis for 

evaluating options. 
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8.3. Recommendations for future research 

A number of future research topics were identified. 

8.3.1. Develop intervention ‘cost effectiveness’ towards ‘cost benefit’ 

The cost effectiveness metric applied during this study is a simplified metric 

focused on avoided direct flood damage to buildings, suitable for high level 

screening. Future development of this work could enhance the metric towards 

cost ‘benefit’ through a more detailed consideration of damages and benefits.  

The damage element of the cost effectiveness metric could be developed through 

finer spatial analysis of building classifications alongside inclusion of indirect 

damages and intangible impacts such as flooding effects on human health (Ahern 

et al., 2005; Bowen and Lynch, 2017). Current studies support this direction of 

research through highlighting the range of impacts resulting from indirect 

damages (Messner et al., 2007; Merz et al., 2010; Penning-Rowsell et al., 2010; 

Hammond et al., 2015; Chen et al., 2016) and the potential for damages to 

cascade through inter-connected urban environments (Cavallo and Ireland, 

2014).  

The benefit element of the metric could be enhanced through inclusion of the 

wide range of tangible benefits attributable to interventions. Many studies are 

currently evaluating these multiple benefits, with specific focus on the potential of 

urban green infrastructure (MWH, 2014; CIRIA, 2015; Jose et al., 2015; Norton 

et al., 2015; Mijic et al., 2016; Bowen and Lynch, 2017; Fenner, 2017; Kunapo et 

al., 2018). In particular studies indicate benefits such as a reduction in the urban 

heat island effect, improvements in air quality and use of captured rainfall. 

Intangible and difficult to quantify benefits such as a reduction in risks to life, 

prevention of psychological impacts, amenity value and mitigation of climate 

change are also relevant when comparing infrastructure options (CIRIA, 2015). 

These benefits are difficult to monetise without detailed investigations using 

specific models, however studies have begun to develop mechanisms for 

strategic level analysis (Ashley et al., 2002; Ossa-Moreno et al., 2017).  Inclusion 

of multiple benefits within quantitative rapid scenario screening methodologies 

underpinned by a high resolution simulation is likely to provide additional 

evidence to support installation of multi-functional infrastructure. 
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8.3.2. Investigate timing and duration of surface water flooding 

Analysis of resilience within this thesis is made relative to minimising the duration 

and magnitude of failure (Butler et al., 2014). These elements, along with 

recovery costs, are captured through application of flood damage curves 

inclusive of short duration flood damage (Penning-Rowsell et al., 2010). 

Resilience literature also encapsulates additional criteria such as the speed, 

timing and recovery duration of failures (Hashimoto et al., 1982; Linkov et al., 

2014). This is identified within this research through assessment of intervention 

tipping points (Chapter Six) where intervention performance becomes less 

effective across an event intensity threshold. This is attributed to interventions 

exceeding storage capacity and shifting the timing, rather than reducing the 

magnitude, of the downstream time of concentration. This concept merits further 

investigation through analysis of intervention effects on failure timing across 

catchments, and evaluation of how timing and duration will affect the 

consequences of failure. 

8.3.3. Develop detailed scenarios including urban and population change 

Scenario screening within this thesis is focused on intervention response to 

design standard and extreme rainfall. Literature also emphasises the need to 

manage future urban and population growth (Marlow et al., 2013; Mikovits et al., 

2015; Lu et al., 2018). Future research has the potential to apply rapid scenario 

screening to a greater range of scenarios to evaluate the effects and interactions 

of changing landscapes, rainfall characteristics and intervention strategies.   

8.3.4. Enhance parameterisation within the CADDIES model 

The CADDIES model applied for simulation delivers a computationally efficient 

simulation of spatial flood dynamics, suitable for catchment screening. However, 

the approach applies several simplifications of physical processes which could 

be adapted to include more functionality within the approach. The main 

recommendation for this is to enhance the cell output parameter to incorporate 

temporal variability. This could be achieved using a similar mechanism as applied 

through the cell input hyetograph. Temporal variation in output rates would enable 

finer resolution representation of the physical processes controlling urban 

drainage system function and infiltration to soils. Application of surface storage 

volumes would also enhance possibilities for representing surface drainage 

features. However, it is noted that computational efficiency is a pre-requisite for 
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assessing many scenarios, therefore any increase in model complexity should be 

evaluated relative to the trade off in simulation time versus improvements to 

utility.  

8.3.5. Develop and test model application towards continuous simulation 

of rainfall events 

This research has focused on intervention performance in response to short 

duration, high intensity rainfall; a typical cause of high magnitude surface water 

flooding. Many interventions evaluated within this framework are also applicable 

to manage everyday rainfall events over extended periods. Application towards 

this analysis could be enhanced through development of the modelling approach 

using continuous simulation to verify parameterisation of interventions. This could 

be further enhanced through implementation alongside the recommendations 

outlined in Section 8.3.4. 

8.3.6. Align work within context of ‘Decision Making under Deep 

Uncertainty’ 

Application of rapid scenario screening to explore many scenarios and generate 

extensive and robust decision support tools using simplified modelling techniques 

draws significant parallels with current research in the field of ‘Decision Making 

under Deep Uncertainty’ (DMDU) (RAND, 2013; Babovic et al., 2018b). A link 

between rapid scenario screening and DMDU could be developed through 

implementing this and similar simplified modelling approaches to address the 

wider urban system when evaluating options, for example through evaluating 

resilience in the context of a broader societal-infrastructure relationship, 

advancing on the intervention perspective developed in this work. 

8.3.7. Implement machine learning to optimise surface water management 

Machine learning is frequently applied to optimise multi-dimensional water 

engineering problems for which systematic evaluation of every alternative is not 

possible. Methods include application of techniques such as genetic algorithms 

and neural networks (Ostfeld et al., 2013). These techniques have been available 

for decades, however require carefully formulated problems, treatable using 

solvers which have traditionally only been applicable to simplified representations 

of systems such as pipe networks, reservoirs and water treatment (Savic and 

Walters, 1997; Sweetapple et al., 2014). The fast simulation speeds and 

simplification of model parameters applied within this research provide the 
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potential for future work to apply simplifications as the basis for developing 

machine learning approaches which include the spatially complex datasets 

required for surface water flood management. Automatic adjustment of 

parameters, fast simulation and programming multi-objective goal seeking 

algorithms could enable advanced exploration of multi-objective decisions and 

develop optimisation within surface water flood management.
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“For a moment, nothing happened. Then, after a second or so, 

nothing continued to happen.” 

Douglas Adams, The Hitchhiker’s Guide to the Galaxy 

 

 


