
Efficient Real-Time Hypervolume Estimation
with Monotonically Reducing Error

Jonathan E. Fieldsend
University of Exeter

Department of Computer Science
EX4 4QF, UK

J.E.Fieldsend@exeter.ac.uk

ABSTRACT
The hypervolume (or S-metric) is a widely used quality measure
employed in the assessment of multi- and many-objective evolu-
tionary algorithms. It is also directly integrated as a component in
the selection mechanism of some popular optimisers. Exact hyper-
volume calculation becomes prohibitively expensive in real-time
applications as the number of objectives increases and/or the ap-
proximation set grows. As such,Monte Carlo (MC) sampling is often
used to estimate its value rather than exactly calculating it. This
estimation is inevitably subject to error. As standard with Monte
Carlo approaches, the standard error decreases with the square
root of the number of MC samples. We propose a number of real-
time hypervolume estimation methods for unconstrained archives
— principally for use in real-time convergence analysis. Further-
more, we show how the number of domination comparisons can be
considerably reduced by exploiting incremental properties of the
approximated Pareto front. In these methods the estimation error
monotonically decreases over time for (i) a capped budget of sam-
ples per algorithm generation and (ii) a fixed budget of dedicated
computation time per optimiser generation for new MC samples.
Results are provided using an illustrative worst-case scenario with
rapid archive growth, demonstrating the orders-of-magnitude of
speed-up possible.

CCS CONCEPTS
• Applied computing → Multi-criterion optimization and
decision-making; •General and reference→Estimation;Per-
formance; • Mathematics of computing → Evolutionary al-
gorithms.

KEYWORDS
Monte Carlo, hypervolume, real-time statistics, real-time analysis
ACM Reference Format:
Jonathan E. Fieldsend. 2019. Efficient Real-Time Hypervolume Estimation
with Monotonically Reducing Error. In Genetic and Evolutionary Computa-
tion Conference (GECCO ’19), July 13–17, 2019, Prague, Czech Republic. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3321707.3321730

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’19, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6111-8/19/07. . . $15.00
https://doi.org/10.1145/3321707.3321730

1 INTRODUCTION
In evolutionary multi-objective optimisation (optimising problems
with two-three objectives) and many-objective optimisation (opti-
mising problems with four or more objectives), the task is to find a
good approximation set of solutions to the optimal Pareto set for the
problem at hand. That is, the set of best possible trade-off solutions.
Defining what a ‘good’ approximation set is for a multi-objective
problem is itself a multi-faceted problem. This is why a range of
indicators are often employed [16]. Nevertheless, one of the most
regularly used quality measures is the hypervolume indicator. This
measure calculates the (hyper)volume of the objective domain ly-
ing between the image an approximation set under the objective
function and a reference point. It has the distinction among quality
indicators on approximation sets of being Pareto compliant. As
detailed in [25]:

(1) If one approximation completely dominates another approx-
imation, it will have the greater hypervolume.

(2) The approximation set that maximises the hypervolume for a
particular problemwill represent all Pareto-optimal objective
vectors.1

These properties underpin its popularity. However, its calculation
can be relatively expensive compared to other quality measures.

In this work we detail computationally efficient methods for hy-
pervolume estimation when maintaining an unconstrained Pareto
set approximation,A (often referred to as an archive). This is mainly
used during an optimisation process, to enable the use of the hyper-
volume in real-time for e.g. algorithm convergence and stopping
decisions, even when the number of objectives and/or |A| is large.
By utilising information from previous time steps this approxima-
tion is shown to monotonically improve over time. This results in
an orders-of-magnitude improvement in the standard error of the
approximation, compared to using an equivalent fixed budget of
Monte Carlo sample comparisons without exploiting the sample
history. Additionally, we show empirically that multiple orders-of-
magnitude computation speed up can be achieved by exploiting
the incremental update nature of an approximation set.

This work proceeds as follows. In Section 2 we briefly discuss
approaches for the calculation and estimation of the hypervolume,
and in Section 3 we detail the need to measure the hypervolume in
real-time. Section 4 introduces a method for efficient hypervolume
estimation exploiting the estimation history in previous time-steps,
along with some empirical results with a fixed budget of samples
per time step. Section 5 introduces a procedure for dynamically

1Note, it may not contain correspondingly all Pareto optimal solutions, if there are
duplicate objective vector mappings from the design space.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/199254201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3321707.3321730
https://doi.org/10.1145/3321707.3321730

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Jonathan E. Fieldsend

changing the number of samples given aminimumCPU time thresh-
old, and provides an empirical assessment of its behaviour. The
paper concludes with Section 6, which summarises the advances
made in this work, and also identifies potential routes for even fur-
ther efficiency gains, exploiting recent data structure research on
maintaining non-dominated sets, and on efficient non-dominated
sorting and updating.

2 COMPUTING THE HYPERVOLUME
MEASURE

Given k objectives to minimise (without loss of generality), asso-
ciated with a given solution (or design) x, solutions may exist for
which performance in one objective cannot be improved without
reducing performance in at least one other.2 Such solutions are
said to be Pareto optimal. The Pareto set is the set of all such Pareto
optimal solutions, whose image in objective space is known as the
Pareto front. Identifying such solutions relies on Pareto dominance.
A solution x is said to dominate another x′ solution, iff it is better
or equal in all objectives under the k-dimensional objective vec-
tor function f , and better in at least one. This can be denoted as
f(x) ≺ f(x′). A solution weakly dominates another if it is better or
equal on all objectives, denoted as f(x) ⪯ f(x′). Such relationships
may be extended to sets. With a slight abuse of the objective func-
tion notation, f(X) ≺ f(X ′) if each member of X ′ is dominated by
at least one member of X , and f(X) ⪯ f(X ′) if each member of X ′
is weakly-dominated by at least one member of X .

2.1 Exact calculation
A number of works have developed methods for the exact calcu-
lation of the hypervolume dominated by an approximation set A,
given a (dominated) reference point u. Recent work in this area
includes: [2, 5, 9, 12, 17, 20, 24]. These exact methods inevitably
involve recursive slicing of the hypervolume to calculate the parts
dominated by A.

The current state-of-the-art for worst case complexity when
k ≥ 4 is Chan’s algorithm [5], which has a best worst case com-
plexity of O(|A|

k
3 polylog|A|), although there appears to be no im-

plementation currently available to assess its behaviour in practise
[17]. In practical terms the algorithms ofWhile et al. [24], Russo and
Francisco [20] and the non-incremental version of Lacour et al. [17]
are some of the most efficient for k ≥ 4, but their worst case com-
plexities are respectively O(|A|k), O(2k (|A |−1)) and O(|A| ⌊

k−1
2 +1⌋).

Recent work by Jaszkiewicz has further developing the algorithm
of [20] and has a worst case time complexity of O(k |A |−1).

Although there have been notable improvements in exact hy-
pervolume calculation in the last decade, it is still the case that for
high k and/or |A| its calculation can be prohibitively expensive as
a real-time cost. This has resulted in researchers using approximate
approaches (including recent work on hybridised approaches [22]).

2.2 Estimation
As the exact calculation of the hypervolume scales poorly with the
number of objectives, it is often infeasible to calculate exactly, and

2Depending on the problem, x may be a p-dimensional vector of real values, a permu-
tation, a vector of discrete values, or indeed a combination of types.

instead it can be approximated via Monte Carlo (MC) sampling (as
used in e.g. [1, 4, 8]).

In this case, the hyperrectangle to be sampled requires the defini-
tion of the reference point u (a vector of maximal values) as well as
the definition of the lower bounds, which will form the components
of l. The hyperrectangle is then [l, u]. Once these two vectors are
provided, the axis-parallel region bounded by them can be sampled.
The hypervolume is estimated by counting the proportion of sam-
ples in this region weakly dominated by A. More formally, given
n samples, drawn uniformly from Rk within the hyperrectangle
defined by [l, u], stored in Y :

Y = {y ∼ U([l, u])}ni=1 , (1)

the estimated hypervolume is the proportion of samples weakly
dominated:

Hest =
1
n

n∑
i=1

I (f(A) ⪯ {Yi }), (2)

where Yi is the ith objective vector sample in Y. The function I ()
returns 1 if the argument is true, 0 otherwise. As standard with
MC approaches, the error of this estimate is proportional to 1/

√
n,

so a reduction in error by a factor of 10 requires and increase in
samples by a factor of 100. Note, the standard error is not dependent
on k , making this approach especially attractive when k is large
(many-objective problems).

3 NEED FOR REAL-TIME HYPERVOLUME
The use of the hypervolume measure can occur at a number of
different stages when employing a multi-objective evolutionary al-
gorithm (MOEA). It is often used to compare the (estimated) Pareto
front qualities between algorithms, and the variation in perfor-
mance over multiple runs of a single algorithm. As this assessment
occurs after the optimisation process we consider this not to be a
real-time use of the measure. However, there are a number of situa-
tions where the hypervolume is (or can) be employed in real-time
(i.e. during an optimisation process):

(1) as part of a selection mechanism employed within an algo-
rithm during an optimisation run (of which HypE [1] and
SMS-EMOA [3] are prominent examples);

(2) incorporated in an automatic stopping criteria (i.e. as a con-
vergence measure);

(3) as a means of real-time progress analysis of the optimiser by
the practitioner.

Where |A| is large and/or many objectives are employed, only MC
estimation of the hypervolume may be reasonably employed for
such real-time applications.

We focus on the use of unconstrained archives here. If the archive
is constrained, its quality will often deteriorate. This was first
shown theoretically in [11] and empirically in [8]. The impact of
constrained archives on hypervolume, leading to non-monotonic
improvement in an algorithm run when the reference point was
altered during search, was shown in e.g. [14]. Most recently the
detrimental impact on hypervolume of eight popular constrained
archiving approaches was investigated in [19]. As such, using a
constrained archive for convergence analysis and progress analysis,
and/or varying u and l during such analyses, can be problematic.

Efficient Real-Time Hypervolume Estimation GECCO ’19, July 13–17, 2019, Prague, Czech Republic

4 EFFICIENT HYPERVOLUME ESTIMATION
OVER TIME

As we mentioned in [7], efficiency gains in MC estimation of the
hypervolume over time may be obtained by retaining a memory
of those samples non-dominated at the previous time step (though
we did not provide a formal description of such a process in [7]).
We detail a number of improvements and extensions to this idea in
the following sections.

Consider that we draw n MC samples Y 1 at the first time step
(or algorithm generation), t = 1 (see (1)). We compare Y 1 to the
archive at that time step, A1, and can calculate H1

est , as in (2). A
common approach at the next time step is to draw a new set of
n samples, to create Y 2, and compute H2

est on these. When A is
constructed as an unconstrained archive (as an active archive used
in the search, or a passive archive to trace progress [23]), those MC
samples dominated by At will always be dominated at At+1 (and
later time steps). This is because At+1 contains all non-dominated
solutions from At ∪ P t+1 (where P t+1 is the population of new
solutions generated by the optimisation algorithm at generation
t + 1). Therefore, if we observe H t

est > H t+1
est this can only be due to

estimation error (as an actual degradation of hypervolume is not
possible with an unconstrained A).

As time progresses we can construct a H t
est whose expected

error monotonically reduces with each time step, even given a fixed
budget of MC samples to compare to, by exploiting the information
of samples dominated in previous time steps.

Let us define Y tdom as the MC sampled points dominated by the
archive at time t . At t = 1, Y 1

dom ⊆ Y 1, so at t = 2, m = |Y 1
dom |

samples have already been identified as being dominated by A2.
Correspondingly we may define Y tnd as the subset of Y t which
contains all samples not dominated byAt−1, i.e. Y t \Y tdom . We may
therefore construct Y 2 as:

Y 2 = Y 1
nd ∪ {y ∼ U([l, u])}mi=1 , (3)

which ensures |Y 2 |= n. The hypervolume at t = 2may be estimated
as:

H2
est =

1
n +m

(
m +

n∑
i=1

I
(
f(A2) ⪯ {Y 2

i }
))
. (4)

We can do this without biasing our search as Y 2 contains unbiased
samples from the hyperrectangle defined by l and u, plus the pro-
portion of Y 1 that was not dominated at t = 1, which is balanced
by them weighting term for the corresponding dominated portion
of Y 1. As Y 1 was itself a set of unbiased samples, H2

est is now also
an unbiased estimate, but its accuracy is based on n +m samples
rather than n samples, although it only requires comparison of A2

to n samples at time step 2.
We may generalise (4) for arbitrary t . Let us denote bymt the

number of samples which were first dominated at time step t . We
denote by Mt the sum ofmt including time t , i.e. Mt = ∑t

τ=1m
τ .

We may construct Y t+1 as:

Y t+1 = Y tnd ∪ {y ∼ U([l, u])}m
t

i=1 . (5)

Also, as:

Mt+1 = Mt +
n∑
i=1

I
(
f(At+1) ⪯ {Y t+1i }

)
(6)

the hypervolume at t + 1 may be estimated as:

H t+1
est =

Mt+1

|Y t+1nd |+M
t+1 . (7)

This procedure may be made even more efficient given the set
properties. The size of the subset of the MC samples Y t+1 which are
not dominated at the previous time step, |Y tnd |, is n −m

t . As f(At)
fails to dominate any members of Y tnd , it is wasteful to compute
I (f(At+1) ⪯ {Y tnd ,i }), as many elements of At+1 are likely to be
the same as in At . Instead, only I (f(At+1 \At) ⪯ {Y tnd ,i }) need be
calculated. Indeed, if At+1 = At then no comparisons against the
members ofY tnd are required at all at t +1. In this further refinement
the (estimated) hypervolume at t + 1,Mt+1 may be calculated as

Mt+1 = Mt +
mt∑
i=1

I
(
f(At+1) ⪯ {y ∼ U([l, u])}

)
+
n−mt∑
i=1

I
(
f(At+1 \At) ⪯ {Y tnd ,i }

)
(8)

At most n samples are compared against elements of the archive
at t + 1. Furthermore, onlymt new MC samples are drawn at each
time step. As such, this is a capped sampling approach.

We now compare the empirical performance and accuracy of the
approaches detailed in (6)–(8), along with a baseline which takes n
samples each time step and does not exploit past sample history.

4.1 Empirical assessment of incremental
updating

To illustrate the benefit of the proposed methods we employ a
simple (1+1)-Evolution Strategy. These results are therefore for
an algorithm which proposes and evaluates only a single new de-
sign at each iteration. The update procedure outlined is however
generalisable to population-based approaches.

The optimiser is based on the PAES approach of [15], however
rather than using a gridded constrained archive, an unconstrained
archive is used, which is stored in a Dominance Decision Tree for
efficient comparison [21]. The parent has a single design variable
mutatedwith Gaussian noise, withwidth 0.1, and rejection sampling
is used on mutations which lead to boundary violations. If the child
is not weakly dominated by A the child replaces the parent at the
next generation.

We run this optimiser for 100,000 iterations on the DTLZ2 test
problem [6]. We choose this problem for illustration as there is
likely to be a rapid growth in |A| for the optimiser, as the Pareto
set of this problem may be traversed by small changes to a single
design variable. Therefore it is a good ‘stress test’ assessment of
a worst case excessive archive growth. We use the recommended
solution lengths for a the number of objectives used, specifically
for k = {3, 5, 10, 20} we correspondingly use |x|= {12, 14, 19, 29}.
We use l = 0 and u = 2 for the hypervolume estimation.

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Jonathan E. Fieldsend

Eqn. 3 objectives 5 objectives

(2)

0 2 4 6 8 10

Iterations 10
4

0.5

0.6

0.7

0.8

0.9

1
E

s
t.
 h

y
p
e
rv

o
lu

m
e

0 2 4 6 8 10

Iterations 10
4

0.5

0.6

0.7

0.8

0.9

1

E
s
t.
 h

y
p
e
rv

o
lu

m
e

(6)–(7)

0 2 4 6 8 10

Iterations 10
4

0.5

0.6

0.7

0.8

0.9

1

E
s
t.
 h

y
p
e
rv

o
lu

m
e

0 2 4 6 8 10

Iterations 10
4

0.5

0.6

0.7

0.8

0.9

1

E
s
t.
 h

y
p
e
rv

o
lu

m
e

(7)–(8)

0 2 4 6 8 10

Iterations 10
4

0.5

0.6

0.7

0.8

0.9

1

E
s
t.
 h

y
p
e

rv
o
lu

m
e

0 2 4 6 8 10

Iterations 10
4

0.5

0.6

0.7

0.8

0.9

1

E
s
t.
 h

y
p
e

rv
o
lu

m
e

Figure 1: Estimated hypervolume with generation on an in-
dicative run. DTLZ2 for k = 3 and k = 5, three different esti-
mation approaches.

Rather than using a high-performance computing cluster or high-
performance desktop, all experiments were performed on a mid-
2010 MacBook Pro laptop. This was equipped with a 2.66 GHz Intel
Core 2 Duo processor, and 8 GB 1067 MHz DDR3 ram. The results
therefore demonstrate where good real-time performance can be
achieved even with relatively modest computational resources.

First, we run the three different hypervolume estimation routines
detailed in (2), (6)–(7) and (7)–(8) for single indicative runs of k = 3
and k = 5. We use the same seed across runs, so the progression
of At is identical for each run for a particular k . Figure 1 shows
the estimated hypervolume per generation for each approach. The
variation in estimated hypervolume between generations using
(2) is clear in the top panels — highlighting that relying soley on
n = 5000 MC samples per generation is insufficient to provide
consistent results. The middle and bottom rows are identical, as
both use the same sample sets. Furthermore, the hypervolume
increases in a stable fashion, with variation rapidly diminishing
due to the exploitation of information in previous samples. Figure
2 shows the corresponding CPU time for hypervolume estimation
each generation. There are a few interesting aspects to note here.
Although (2) and (6)–(7) compare the same number of samples
to At at each generation, (6)–(7) progressively has a worse time
cost, approaching five times worse by t = 100000. This is because,
unlike in (2), the samples compared at time steps are biased in
(6)–(7). Samples in Y t include those accrued in Y t−1nd which are not
dominated at previous time steps. A larger proportion of these are
likely not to be dominated at t compared to an equivalent number of
unbiased samples from the domain. As non-dominated samples tend
to incur a larger comparison cost toAt (as they require comparison
tomultiple elements ofAt before they are identified as continuing to

Eqn. 3 objectives 5 objectives

(2)

0 5 10

Iterations 10
4

10
-6

10
-4

10
-2

10
0

H
y
p
e
rv

o
lu

m
e
 C

P
U

 T
im

e
 (

s
e
c
s
)

0 5 10

Iterations 10
4

10
-6

10
-4

10
-2

10
0

H
y
p
e
rv

o
lu

m
e
 C

P
U

 T
im

e
 (

s
e
c
s
)

(6)–(7)

0 5 10

Iterations 10
4

10
-6

10
-4

10
-2

10
0

H
y
p
e
rv

o
lu

m
e
 C

P
U

 T
im

e
 (

s
e
c
s
)

0 5 10

Iterations 10
4

10
-6

10
-4

10
-2

10
0

H
y
p
e
rv

o
lu

m
e
 C

P
U

 T
im

e
 (

s
e
c
s
)

(7)–(8)

0 5 10

Iterations 10
4

10
-6

10
-4

10
-2

10
0

H
y
p
e
rv

o
lu

m
e
 C

P
U

 T
im

e
 (

s
e
c
s
)

0 5 10

Iterations 10
4

10
-6

10
-4

10
-2

10
0

H
y
p
e
rv

o
lu

m
e
 C

P
U

 T
im

e
 (

s
e
c
s
)

Figure 2: Estimated hypervolume CPU time per generation
on an indicative run. DTLZ2 for k = 3 and k = 5, three differ-
ent estimation approaches.

0 2 4 6 8 10

Iterations 10
4

0

2

4

6

8

10

A
rc

h
iv

e
 s

iz
e

10
4

Figure 3: Archive size with generation, DTLZ2, using (7)–(8).

be non-dominated, even with efficient data structures), the overall
time cost is higher for the same number of samples. However, by
the same measure (7)–(8) is orders-of-magnitude faster than (2) and
(6)–(7) as the Y t−1nd samples in Y t are only compared to the new
archive entrant, which is substantially cheaper than comparing to
the entire archive.

We next repeat our experiments 50 times, choosing a different
random seed for the Monte Carlo samples, but the same random
seed for the algorithm. This enables us to isolate variability due
to the hyervolume estimation process itself, rather than due to
the stochastic nature of the optimiser, and due to the time costs
involved, we focus on the approach in (7)–(8).

Figure 3 shows how the archive grows in size over time on
DTLZ2 as the number of objectives is increased. This is linear with
iteration, and the gradient increases from roughly 0.17 for k = 3
through to over 0.6 for k = 20. Figure 4 shows the estimated hyper-
volume across the 50 runs. The mean, minimum and maximum are

Efficient Real-Time Hypervolume Estimation GECCO ’19, July 13–17, 2019, Prague, Czech Republic

3 objectives 5 objectives

0 2 4 6 8 10

Iterations 10
4

0

0.2

0.4

0.6

0.8

1

E
s
t.

 h
y
p

e
rv

o
lu

m
e

0 2 4 6 8 10

Iterations 10
4

0

0.2

0.4

0.6

0.8

1

E
s
t.

 h
y
p

e
rv

o
lu

m
e

10 objectives 20 objectives

0 2 4 6 8 10

Iterations 10
4

0

0.2

0.4

0.6

0.8

1

E
s
t.

 h
y
p

e
rv

o
lu

m
e

0 2 4 6 8 10

Iterations 10
4

0

0.2

0.4

0.6

0.8

1

E
s
t.

 h
y
p

e
rv

o
lu

m
e

Figure 4: Estimated hypervolume with generation, DTLZ2,
using (7)–(8). Mean over 50 runs in black, maximum and
minimum in red.

3 objectives 5 objectives

0 2 4 6 8 10

Iterations 10
4

10
4

10
6

M
C

 s
a
m

p
le

s
 f
o
r

H
y
p
e
rv

o
lu

m
e

0 2 4 6 8 10

Iterations 10
4

10
4

10
6

M
C

 s
a
m

p
le

s
 f
o
r

H
y
p
e
rv

o
lu

m
e

10 objectives 20 objectives

0 2 4 6 8 10

Iterations 10
4

10
4

10
6

M
C

 s
a
m

p
le

s
 f
o
r

H
y
p
e
rv

o
lu

m
e

0 2 4 6 8 10

Iterations 10
4

10
4

10
6

M
C

 s
a
m

p
le

s
 f
o
r

H
y
p
e
rv

o
lu

m
e

Figure 5: Cumulative number of MC samples with genera-
tion, DTLZ2, using (7)–(8). Mean over 50 runs in black, max-
imum and minimum in red.

plotted, however they are rapidly indistinguishable at this plotting
resolution. Figure 5 shows how the number of MC samples grows
over time and Figure 6 gives the corresponding standard error of
these estimates, which can bee seen to monotonically decrease, and
is consistent across runs.

Figure 7 shows the CPU time dedicated to the hypervolume
estimation per generation. As can be seen, the timings are quite
volatile, and are influenced by the degree to which comparisons are
being made to either (i) At (new MC samples), or (ii) to the new
entrant to At alone (i.e. when comparing to samples in Y t−1nd), at a

3 objectives 5 objectives

0 5 10

Iterations 10
4

10
-4

10
-3

10
-2

H
y
p

e
rv

o
lu

m
e

 s
td

 e
rr

o
r

0 5 10

Iterations 10
4

10
-4

10
-3

10
-2

H
y
p

e
rv

o
lu

m
e

 s
td

 e
rr

o
r

10 objectives 20 objectives

0 5 10

Iterations 10
4

10
-4

10
-3

10
-2

H
y
p

e
rv

o
lu

m
e

 s
td

 e
rr

o
r

0 5 10

Iterations 10
4

10
-4

10
-3

10
-2

H
y
p

e
rv

o
lu

m
e

 s
td

 e
rr

o
r

Figure 6: Estimated hypervolume standard error with gen-
eration, DTLZ2, using (7)–(8). Mean over 50 runs in black,
maximum and minimum in red.

3 objectives 5 objectives

0 5 10

Iterations 10
4

10
-6

10
-4

10
-2

10
0

H
y
p
e
rv

o
lu

m
e
 C

P
U

 T
im

e
 (

s
e
c
s
)

0 5 10

Iterations 10
4

10
-6

10
-4

10
-2

10
0

H
y
p
e
rv

o
lu

m
e
 C

P
U

 T
im

e
 (

s
e
c
s
)

10 objectives 20 objectives

0 5 10

Iterations 10
4

10
-6

10
-4

10
-2

10
0

H
y
p
e
rv

o
lu

m
e
 C

P
U

 T
im

e
 (

s
e
c
s
)

0 5 10

Iterations 10
4

10
-6

10
-4

10
-2

10
0

H
y
p
e
rv

o
lu

m
e
 C

P
U

 T
im

e
 (

s
e
c
s
)

Figure 7: Estimated hypervolume CPU time per generation,
DTLZ2, using (7)–(8). Mean over 50 runs in black, maximum
and minimum in red.

particular time step. The vast majority of hypervolume estimate
updates are seen to take below 10−2 seconds. The mean CPU time
per iteration across time steps required for each of the problem
sizes was 0.065ms for k = 3, 0.17ms for k = 5, 0.76ms for k = 10 and
1.9ms for k = 20. Figure 8 shows the (cumulative) mean number
of MC samples compared to the archive as a whole (red) and to
the single new archive entrant (black), exploiting the incremental
nature of the archive update. For all objective dimensions there
was over an order of magnitude fewer comparisons to the archive

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Jonathan E. Fieldsend

3 objectives 5 objectives

0 5 10

Iterations 10
4

10
0

10
5

10
10

C
u
m

u
m

u
la

ti
v
e
 s

a
m

p
le

s
 c

o
m

p
a
re

d

0 5 10

Iterations 10
4

10
0

10
5

10
10

C
u
m

u
m

u
la

ti
v
e
 s

a
m

p
le

s
 c

o
m

p
a
re

d

10 objectives 20 objectives

0 5 10

Iterations 10
4

10
0

10
5

10
10

C
u
m

u
m

u
la

ti
v
e
 s

a
m

p
le

s
 c

o
m

p
a
re

d

0 5 10

Iterations 10
4

10
0

10
5

10
10

C
u
m

u
m

u
la

ti
v
e
 s

a
m

p
le

s
 c

o
m

p
a
re

d

Figure 8: Cumulative number of sample comparisons to A
(mean in red), and to a single newA element (mean in black).
50 runs on DTLZ2, using (7)–(8).

compared to a single new entrant, which, given the archive growth
shown in Figure 3 demonstrates the significant computational gains
over the approach outlined in [7] (also shown earlier in Figure 2).

5 DYNAMIC SAMPLE SIZES
Statistically, the effect of the process described in (8) is for the
total number of MC samples, Mt + |Y t−1nd |, to converge such that
eventually n samples will be non-dominated by the set of solutions
in the archive. This effect occurs because if the membership of A
does not change for any prolonged period of timemt → 0, and
|Y tnd |→ n, none of which are compared at t as At \At−1 = ∅. The
converged value of Mt + |Y t−1nd | is therefore n/(1 − H

t
est). Figure

9 shows (Mt + |Y t−1nd |)/(n/(1 − H
t
est)), illustrating clear and rapid

convergence to the predicted value each time the archive updates.
In the case whereAt+1\At = ∅, i.e. when an archive is unchanged

between time steps, no MC samples will be compared to f (At+1) at
all if |Y t−1nd |= n. Therefore, not only will the hypervolume estimate
fix on a value, there will be no improvement in the accuracy of this
value as time progresses. This stagnation behaviour may be viewed
as undesirable.

In response, we now investigate a mechanism for incremental
hypervolume estimation over time, which attempts to bracket the
computational budget per time step dedicated to the hypervolume
estimation. It therefore dynamically varies its sample size and num-
ber of comparisons per time step given this budget. This requires
some additional book-keeping, but maintains the monotonically
improving property of the hypervolume estimation previously de-
scribed. It has the added advantage that, in situations where the
archive is unchanged, the fidelity of the estimated hypervolume
will always improve.

3 objectives 5 objectives

0 5 10

Iterations 10
4

0.8

0.85

0.9

0.95

1

1.05

N
u

m
.

s
a

m
p

le
s
 /

 p
re

d
.

c
o

n
v
e

rg
e

d

0 5 10

Iterations 10
4

0.8

0.85

0.9

0.95

1

1.05

N
u

m
.

s
a

m
p

le
s
 /

 p
re

d
.

c
o

n
v
e

rg
e

d

10 objectives 20 objectives

0 5 10

Iterations 10
4

0.8

0.85

0.9

0.95

1

1.05

N
u

m
.

s
a

m
p

le
s
 /

 p
re

d
.

c
o

n
v
e

rg
e

d

0 5 10

Iterations 10
4

0.8

0.85

0.9

0.95

1

1.05

N
u

m
.

s
a

m
p

le
s
 /

 p
re

d
.

c
o

n
v
e

rg
e

d

Figure 9: Convergence to (Mt + |Y t−1nd |)/(n/(1 − H t
est)) = 1

(mean in black, maximum and minimum in red). 50 runs
on DTLZ2.

5.1 A ceiling on total hypervolume CPU time
We conducted initial investigations on limiting the total time dedi-
cated to hypervolume estimation at each time step to a maximum
threshold (i.e. the combined time spent comparing to both |Y tnd |
and newMC samples could not exceed a given value). This required
maintaining a list of archive elements yet to be fully compared to
Y tnd , and how far throughY tnd each had been compared. However, it
became apparent such an approach rapidly led to processed archive
member backlogs and stale hypervolume estimates when the time
cost of comparing to all members of Y tnd would exceed the time
threshold. This was only alleviated when substantial periods of
static archive membership occurred, however this typically was
not sufficient to clear the backlog. Given space limitations we do
not provide an in depth analysis here, but highlight to the reader
the inherent issues with such an approach.

5.2 A ceiling on hypervolume CPU applied
after comparison to Y t

nd completes
The second approach we considered was applying CPU time cost
ceiling after f(At+1 \ At) is compared to Y tnd . While a predefined
time threshold κ is not reached new MC samples are repeatedly
taken (the clock is started prior to any comparison of f(At+1 \At)
to Y tnd). This ensures thatH

t+1
est accurately reflects the hypervolume

dominated byAt+1, given the number of samples accrued. However
when At+1 \At ̸= ∅ and |Y tnd | is large then the computational time
expended on comparison to |Y tnd | may be larger than κ, and there-
fore there is no guaranteed upper bound on overall hypervolume
CPU cost per time step in this approach. The procedure is outlined
in Algorithm 1

We set κ = 0.1ms. This resulted in a mean CPU time (over 50
runs) per iteration required for each of the problem sizes of 0.86ms

Efficient Real-Time Hypervolume Estimation GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Algorithm 1 Dynamic (minimum time) hypervolume estimation.
Require: κ ▷ Minimum time to dedicate to each estimation
1: P0 ← initialise_state() ▷ Get initial optimiser population
2: A0 ← ∅ ▷ Initial empty archive
3: M ← 0 ▷ Number of dominated samples
4: Ynd ← ∅ ▷ Non-dominated set of Monte Carlo samples
5: t ← 1
6: L← ∅ ▷ List of new archive members to compare to samples
7: I ← ∅ ▷ Indices to track processing of samples to lest members
8: while stopping condition(s) not met do
9: start_time ← get_time() ▷ Get current time
10: domed_samples ← 0 ▷ To track number dominated at t
11: P t ← increment_optimiser(P t−1,At−1) ▷ Step optimiser
12: At ← nondom(P t ∪At−1) ▷ Update approximate Pareto set
13: Anew ← At \At−1

14: if Anew ̸= ∅ then ▷ Archive has new member(s)
15: for i ← |Ynd |, . . . , 1 do
16: if f(Anew) ⪯ {Ynd ,i } then
17: domed_samples ← domed_samples + 1
18: Ynd ← Ynd \ {Ynd ,i }
19: end if
20: end for
21: end if
22: while get_time() − start_time < κ do
23: s = monte_carlo_sample() ▷ New sample
24: if f(At) ⪯̸ {s} then
25: Ynd ← Ynd ∪ {s} ▷ Add non-dominated sample
26: else
27: domed_samples ← domed_samples + 1
28: end if
29: end while ▷ Out of time
30: M ← M + domed_samples

31: Hest ←
M

|Ynd |+M
32: t ← t + 1
33: end while

for k = 3, 0.46ms for k = 5, 0.86ms for k = 10 and 0.82ms for k = 20.
Figure 10 shows how the hypervolume approximation changes over
time. Figure 11 shows how the number of MC samples grows for
each of the problem variants. Note the number drops as the number
of objective increases, as the computational cost per dominance
comparison rises with k . This effect is not seen in the correspond-
ing Figure 5 where the sample number is budgeted rather than the
computational cost. Figure 12 shows how the standard error pro-
gresses over time, note the descent is much more smooth than the
corresponding set of results in Figure 6, due to the ≈ κ CPU time
spent on new MC samples whenAt \At+1 = ∅. Figure 13 shows the
CPU time spent at each time step calculating the estimated hyper-
volume. The lower bound of the κ = 0.1ms is clear. It is interesting
to note that for these particular runs, with archives reaching over
60,000 members, and accruing over 1,500,000 MC samples, the CPU
cost per time step for hypervolume estimation is clearly bracketed
between 0.1–10ms per time step. For completeness, Figure 14 shows
the (cumulative) number of times a sample is compared to the entire
archive, or to just the most recent update to the archive. As with

3 objectives 5 objectives

0 2 4 6 8 10

Iterations 10
4

0

0.2

0.4

0.6

0.8

1

E
s
t.

 h
y
p

e
rv

o
lu

m
e

0 2 4 6 8 10

Iterations 10
4

0

0.2

0.4

0.6

0.8

1

E
s
t.

 h
y
p

e
rv

o
lu

m
e

10 objectives 20 objectives

0 2 4 6 8 10

Iterations 10
4

0

0.2

0.4

0.6

0.8

1

E
s
t.

 h
y
p

e
rv

o
lu

m
e

0 2 4 6 8 10

Iterations 10
4

0

0.2

0.4

0.6

0.8

1

E
s
t.

 h
y
p

e
rv

o
lu

m
e

Figure 10: Estimated hypervolume with generation, DTLZ2.
Mean over 50 runs in black, maximum andminimum in red.

3 objectives 5 objectives

0 2 4 6 8 10

Iterations 10
4

10
4

10
6

M
C

 s
a
m

p
le

s
 f
o
r

H
y
p
e
rv

o
lu

m
e

0 2 4 6 8 10

Iterations 10
4

10
4

10
6

M
C

 s
a
m

p
le

s
 f
o
r

H
y
p
e
rv

o
lu

m
e

10 objectives 20 objectives

0 2 4 6 8 10

Iterations 10
4

10
4

10
6

M
C

 s
a
m

p
le

s
 f
o
r

H
y
p
e
rv

o
lu

m
e

0 2 4 6 8 10

Iterations 10
4

10
4

10
6

M
C

 s
a
m

p
le

s
 f
o
r

H
y
p
e
rv

o
lu

m
e

Figure 11: Cumulative number of MC samples with gener-
ation, DTLZ2. Mean over 50 runs in black, maximum and
minimum in red.

the previous approach, there are a couple of orders-of-magnitude
fewer of the former compared to the latter.

Java implementations of all the approaches detailed here are
available at https://github.com/fieldsend.

6 DISCUSSION
We have detailed a new approach for incrementally updating the
estimated hypervolume when maintaining an unconstrained Pareto
approximation set of solutions during multi- and many-objective
optimisation. This approach is shown to have monotonically reduc-
ing approximation error. We detail methods which provide multiple

https://github.com/fieldsend

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Jonathan E. Fieldsend

3 objectives 5 objectives

0 5 10

Iterations 10
4

10
-4

10
-3

10
-2

H
y
p

e
rv

o
lu

m
e

 s
td

 e
rr

o
r

0 5 10

Iterations 10
4

10
-4

10
-3

10
-2

H
y
p

e
rv

o
lu

m
e

 s
td

 e
rr

o
r

10 objectives 20 objectives

0 5 10

Iterations 10
4

10
-4

10
-3

10
-2

H
y
p

e
rv

o
lu

m
e

 s
td

 e
rr

o
r

0 5 10

Iterations 10
4

10
-4

10
-3

10
-2

H
y
p

e
rv

o
lu

m
e

 s
td

 e
rr

o
r

Figure 12: Estimated hypervolume standard error with gen-
eration, DTLZ2. Mean over 50 runs in black, maximum and
minimum in red.

3 objectives 5 objectives

0 5 10

Iterations 10
4

10
-6

10
-4

10
-2

10
0

H
y
p
e
rv

o
lu

m
e
 C

P
U

 T
im

e
 (

s
e
c
s
)

0 5 10

Iterations 10
4

10
-6

10
-4

10
-2

10
0

H
y
p
e
rv

o
lu

m
e
 C

P
U

 T
im

e
 (

s
e
c
s
)

10 objectives 20 objectives

0 5 10

Iterations 10
4

10
-6

10
-4

10
-2

10
0

H
y
p
e
rv

o
lu

m
e
 C

P
U

 T
im

e
 (

s
e
c
s
)

0 5 10

Iterations 10
4

10
-6

10
-4

10
-2

10
0

H
y
p
e
rv

o
lu

m
e
 C

P
U

 T
im

e
 (

s
e
c
s
)

Figure 13: Estimated hypervolumeCPU time per generation,
DTLZ2. Mean over 50 runs in black, maximum and mini-
mum in red.

orders-of-magnitude speed up using such an approach. We show re-
sults with two different formulations, either bounding the number
of samples compared to each generation, or fixing a time cost limit
on the number of new MC samples to be compared to. We provide
an illustration where the approximation set grows to contain over
60k members, and the hypervolume accuracy is based on 1.5M
samples, but the hypervolume estimation is still roughly 1ms per
algorithm generation, on a modest laptop computer.

3 objectives 5 objectives

0 5 10

Iterations 10
4

10
0

10
5

10
10

C
u
m

u
m

u
la

ti
v
e
 s

a
m

p
le

s
 c

o
m

p
a
re

d

0 5 10

Iterations 10
4

10
0

10
5

10
10

C
u
m

u
m

u
la

ti
v
e
 s

a
m

p
le

s
 c

o
m

p
a
re

d

10 objectives 20 objectives

0 5 10

Iterations 10
4

10
0

10
5

10
10

C
u
m

u
m

u
la

ti
v
e
 s

a
m

p
le

s
 c

o
m

p
a
re

d

0 5 10

Iterations 10
4

10
0

10
5

10
10

C
u
m

u
m

u
la

ti
v
e
 s

a
m

p
le

s
 c

o
m

p
a
re

d

Figure 14: Cumulative number of sample comparisons to A
(mean in red), and to a single newA element (mean in black).
50 runs on DTLZ2.

Although we limit our empirical work here to run-time and
convergence analysis of an algorithm, we note that, subject to the
upper and lower bounds of the sampled domain being fixed a priori,
it may also be employed effectively within selection mechanisms of
algorithms to increase hypervolume estimation fidelity (assuming
an unconstrained archive is kept).

The Dominance Decision Tree data structure [21] has proved
effective for storing the approximation set for weak-dominance
queries in the hypervolume estimation. Nevertheless, recently de-
veloped data structures for this task may speed these calculations
even further (e.g. [10, 13]), and we look forward to integrating these
as alternative storage choices for the archive into our approach.

A potentially even greater efficiency gain may be achievable by
storing and updating Y tnd in a sorted fashion. Currently all of Y tnd
is compared to a new archive element, however, if Y tnd were sorted
into non-dominated fronts with inverted objectives, then an attrac-
tive approach would be to process each front in turn (from the back)
and stop processing once a front has been reached in Y tnd where no
members have been dominated (as by construction, no members of
any fronts ahead of this can possibly be dominated). Recent work
has shown how to update a set of non-dominated fronts efficiently
in a steady state fashion [18], which may be amenable for use in
the context of this work also. However, maintaining such a sorted
structure has itself a computation cost, and the trade-off between
this additional cost and the computational gain of processing fewer
elements of Y tnd per archive update will be interesting to explore.

ACKNOWLEDGMENTS
This work was supported by Innovate UK [grant number 104400]
and the Engineering and Physical Sciences Research Council [grant
number EP/N017846/1]. The author would like to sincerely thank
the reviewers for their helpful and constructive comments.

Efficient Real-Time Hypervolume Estimation GECCO ’19, July 13–17, 2019, Prague, Czech Republic

REFERENCES
[1] Johannes Bader and Eckart Zitzler. 2011. HypE: An algorithm for fast

hypervolume-based many-objective optimization. Evolutionary computation
19, 1 (2011), 45–76.

[2] Nicola Beume, Carlos M Fonseca, Manuel López-Ibáñez, Luís Paquete, and Jan
Vahrenhold. 2009. On the complexity of computing the hypervolume indicator.
IEEE Transactions on Evolutionary Computation 13, 5 (2009), 1075–1082.

[3] Nicola Beume, Boris Naujoks, and Michael Emmerich. 2007. SMS-EMOA: Mul-
tiobjective selection based on dominated hypervolume. European Journal of
Operational Research 181, 3 (2007), 1653–1669.

[4] Karl Bringmann, Tobias Friedrich, Christian Igel, and Thomas Voß. 2013. Speed-
ing up many-objective optimization by Monte Carlo approximations. Artificial
Intelligence 204 (2013), 22–29.

[5] Timothy M Chan. 2013. Klee’s measure problem made easy. In 2013 IEEE 54th
Annual Symposium on Foundations of Computer Science. IEEE, 410–419.

[6] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. 2005. Scal-
able test problems for evolutionary multiobjective optimization. In Evolutionary
multiobjective optimization. Springer, 105–145.

[7] Jonathan E Fieldsend. 2017. University Staff Teaching Allocation: Formulating
and Optimising a Many-Objective Problem. In Proceedings of the Genetic and
Evolutionary Computation Conference. ACM, 1097–1104.

[8] Jonathan E Fieldsend, Richard M Everson, and Sameer Singh. 2003. Using un-
constrained elite archives for multi-objective optimization. IEEE Transactions on
Evolutionary Computation 7, 3 (2003), 305–323.

[9] Carlos M Fonseca, Luís Paquete, and Manuel López-Ibánez. 2006. An improved
dimension-sweep algorithm for the hypervolume indicator. In 2006 IEEE interna-
tional conference on evolutionary computation. IEEE, 1157–1163.

[10] Tobias Glasmachers. 2017. A Fast Incremental BSP Tree Archive for Non-
dominated Points. In EMO 2017 (LNCS), H. Trautmann et al. (Ed.), Vol. 10173.
Springer, 252–266.

[11] Thomas Hanne. 1999. On the convergence of multiobjective evolutionary algo-
rithms. European Journal of Operational Research 117, 3 (1999), 553–564.

[12] Andrzej Jaszkiewicz. 2018. Improved Quick Hypervolume Algorithm. Computers
& Operations Research 90, C (Feb. 2018), 72–83.

[13] Andrzej Jaszkiewicz and Thibaut Lust. 2018. ND-Tree-Based Update: A Fast
Algorithm for the Dynamic Nondominance Problem. IEEE Transactions on Evolu-
tionary Computation 22, 5 (2018), 778–791.

[14] Leonard Judt, Olaf Mersmann, and Boris Naujoks. 2013. Non-monotonicity of
Observed Hypervolume in 1-Greedy S-Metric Selection. Journal of Multi-Criteria
Decision Analysis 20, 5-6 (2013), 277–290.

[15] Joshua Knowles and David Corne. 1999. The Pareto archived evolution strategy:
A new baseline algorithm for Pareto multiobjective optimisation. In Evolutionary
Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, Vol. 1. IEEE,
98–105.

[16] Joshua D Knowles, Lothar Thiele, and Eckart Zitzler. 2006. A Tutorial on the
Performance Assessment of Stochastic Multiobjective Optimizers. 214. Computer
Engineering and Networks Laboratory (TIK), ETH Zurich, Switzerland. revised
version.

[17] Renaud Lacour, Kathrin Klamroth, and Carlos M Fonseca. 2017. A box decompo-
sition algorithm to compute the hypervolume indicator. Computers & Operations
Research 79 (2017), 347–360.

[18] Ke Li, Kalyanmoy Deb, Qingfu Zhang, and Qiang Zhang. 2017. Efficient non-
domination level update method for steady-state evolutionary multiobjective
optimization. IEEE Transactions on Cybernetics 47, 9 (2017), 2838–2849.

[19] Miqing Li and Xin Yao. 2019. An Empirical Investigation of the Optimality and
Monotonicity Properties of Multiobjective Archiving Methods. Proceedings of
Evolutionary Multi-Criterion Optimization (EMO) (2019).

[20] Luís MS Russo and Alexandre P Francisco. 2014. Quick hypervolume. IEEE
Transactions on Evolutionary Computation 18, 4 (2014), 481–502.

[21] Oliver Schütze. 2003. A New Data Structure for the Nondominance Problem
in Multi-objective Optimization. In International Conference on Evolutionary
Multi-Criterion Optimization, EMO 2003 (LNCS), Vol. 2632. Springer, 509–518.

[22] Weisen Tang, Hailin Liu, and Lei Chen. 2017. A Fast Approximate Hypervol-
ume Calculation Method by a Novel Decomposition Strategy. In International
Conference on Intelligent Computing. Springer, 14–25.

[23] David A Van Veldhuizen and Gary B Lamont. 2000. Multiobjective evolutionary
algorithms: Analyzing the state-of-the-art. Evolutionary computation 8, 2 (2000),
125–147.

[24] LyndonWhile, Lucas Bradstreet, and Luigi Barone. 2012. A fast way of calculating
exact hypervolumes. IEEE Transactions on Evolutionary Computation 16, 1 (2012),
86–95.

[25] Eckart Zitzler, Dimo Brockhoff, and Lothar Thiele. 2007. The hypervolume in-
dicator revisited: On the design of Pareto-compliant indicators via weighted
integration. In International Conference on Evolutionary Multi-Criterion Optimiza-
tion. Springer, 862–876.

	Abstract
	1 Introduction
	2 Computing the hypervolume measure
	2.1 Exact calculation
	2.2 Estimation

	3 Need for real-time hypervolume
	4 Efficient Hypervolume Estimation Over Time
	4.1 Empirical assessment of incremental updating

	5 Dynamic sample sizes
	5.1 A ceiling on total hypervolume CPU time
	5.2 A ceiling on hypervolume CPU applied after comparison to Y_nd^t completes

	6 Discussion
	Acknowledgments
	References

