
1 
 

 

Impacts of fire, climate and land-

use change on terrestrial 

ecosystems  

 

Submitted by Chantelle Burton to the University of Exeter  

as a thesis for the degree of  

Doctor of Philosophy (PhD) in Geography 

In December 2018 

 

 

This thesis is available for Library use on the understanding that it is copyright 

material and that no quotation from the thesis may be published without proper 

acknowledgement. 

 

 

I certify that all material in this thesis which is not my own work has been 

identified and that no material has previously been submitted and approved for 

the award of a degree by this or any other University. 

 

 
Signature: ………………………………………………………….. 



2 
 

 

 

 

 

 

 

 

 

 

 



3 
 

Abstract 

Fire is an important component of the Earth system, affecting the land surface, 

releasing gases to the atmosphere, and altering the water cycle. Yet many Earth 

System Models lack full representation of this process, giving rise to uncertainty 

about its contribution to the development and stability of ecosystems now and in 

the future. In this PhD I investigate the impact of fire on the land surface today, 

and how this might change with drought events and with climate change in the 

future by developing the land surface model JULES to represent fire-vegetation 

interactions for the first time. I introduce a new fire disturbance term based on 

burnt area from the INFERNO fire model, and analyse the results of the coupling, 

together with changes in land-use, against observations of present day 

vegetation cover. I find that the simulation of vegetation cover is improved when 

disturbance is included, and that fire is important in the development of savanna 

regions. I apply the new modelling capability to assess the impact of the 2015/16 

El Niño event on fire, where projections show that burned area and fire emissions 

were higher due to the El Niño. The largest impact was across South America, 

where carbon uptake was reduced due to increases in fire, inducing a shift from 

a net sink of carbon to a net source. Fire danger may be further exacerbated in 

years of higher temperatures and drought in the future as a result of climate 

change. I apply the capability to model different aspects of the fire regime with 

future scenarios of climate and land-use change across a range of emission 

scenarios. Using Representative Concentration Pathway scenarios, I show that 

burned area is projected to increase in the future, with hotter, drier conditions 

increasing with higher emission scenarios and greater changes in land-use, 

especially across South America but not homogeneously. Using a theoretical 

scenario of Solar Radiation Management to limit temperature rise to 1.5°C above 

pre-industrial, I show that meteorological fire danger is generally reduced 

compared to 2.0°C, although there are regional variations and some regions 

show an increase including USA and Asia. This work furthers our current 

modelling capability around fire vegetation interactions, and enhances our 

understanding of the response of ecosystems to changes in fire, climate and land-

use.   
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HYDE   History Database of the Global Environment 

IBAMA  Brazilian Institute of Environment and Renewable Natural 

Resources 

IBIS-INLAND Integrated Biosphere Simulator - Brazilian Integrated Model 

of Land Surface Process  

INFERNO  INteactive Fire and Emission algoRithm for Natural    

envirOnments  

INPE   Brazilian National Institute for Space Research 

IPCC AR5 Intergovernmental Panel for Climate Change, 5th 

Assessment Report (AR4: 4th Assessment Report) 

JSBACH Land component of the Max Planck Institute Earth System 

Models MPI-ESM and ICON-ESM 

JULES  Joint UK Land Environment Simulator 

LAI   Leaf Area Index 

LMfire   Lausanne-Mainz fire model 

LPJ   Lund-Potsdam-Jena DGVM 
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LPJ-GUESS  Lund-Potsdam-Jena General Ecosystem Simulator 

LPX    Land surface Process and eXchanges model 

LSM   Land Surface Model 

LUC   Land-use change 

LULCC  Land-use and land cover change 

MCFire  MAPPS-Century DGVM with fire 

MOSES  Met Office Surface Exchange Scheme 

MODIS   Moderate Resolution Imaging Spectroradiometer 

MOHC Met Office Hadley Centre 

MMA Brazilian Ministry of the Environment  

NASA National Aeronautics and Space Administration 

NBP Net Biome Production / Productivity 

NCEP   National Centres for Environmental Prediction 

NDVI Normalized Difference Vegetation Index 

NEP Net Ecosystem Production 

NFDRS National Fire Danger Rating System 

NL   Needleleaf vegetation 

NOAA   National Oceanic and Atmospheric Administration  

NPP   Net Primary Productivity 

ONI    Ocean Nino Index 

ORCHIDEE  Organizing Carbon and Hydrology In Dynamic Ecosystems 

PI   Pre-Industrial 

PFT   Plant Functional Type 

PRODES  Program for the Estimation of Deforestation in the Brazilian 

Amazon 

PVM   Potential Vegetation Model 

RCP   Representative Concentration Pathways 

Reg-FIRM   Regional Fire Model 

RPM   Resistant Plant Material 

SAGE   Centre for Sustainability and the Global Environment 

SAMS   South American Monsoon System 

SB   Shrub 

SDGVM  Sheffield Dynamic Global Vegetation Model 

SPITFIRE  Spread and InTensity of FIRE (fire model) 

SRES   Special Report on Emissions Scenarios 
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SRM   Solar Radiation Management 

SST   Sea surface temperature  

TRENDY  Trends in net land carbon exchange project 

TRIFFID  Top-down Representation of Interactive Foliage and Flora 

Including Dynamics 

TRMM   Tropical Rainfall Measuring Mission 

UNFCCC  United Nations Framework Convention on Climate Change 

VIRS    Visible and Infrared Scanner  
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Chapter 1: Background & context 

1.1 Introduction to thesis and aims 

Fire is one of the most important disturbances in the Earth system (Bowman et 

al, 2009). It can impact vegetation dynamics through mortality and regrowth 

(Lasslop et al., 2016), atmospheric chemistry and the carbon cycle through the 

release of gases and particulate matter (Ward et al., 2012), and the hydrological 

cycle through reduction in evapotranspiration (Shakesby and Doerr, 2006), which 

is impacted by and feeds back onto anthropogenic impacts. It is therefore a 

crucial process to represent in both land surface models and Earth System 

Models (ESMs) (Hantson et al., 2016; Rabin et al., 2017). The representation of 

fire in models is still a relatively new process, especially in ESMs so there is still 

much uncertainty in the projection of burned area and its impacts (Ciais et al., 

2013; Flato et al., 2013; Settele et al., 2014; Kloster and Lasslop et al., 2017). 

While many land surface models now include fire, the modelling capability and 

extent of interactions varies greatly across models (Rabin et al., 2017). It is 

therefore important for the community to continue to develop our current 

capability to improve our understanding of interactions in the terrestrial carbon 

cycle and ultimately within the Earth system. This thesis aims to further our 

understanding of the biogeophysical interactions surrounding fire and 

disturbance spatially and temporally, by improving our fire modelling capability 

within the UK land surface model JULES (Joint UK Land Environment Simulator) 

using a simple fire model INFERNO (INteactive Fire and Emission algoRithm for 

Natural envirOnments) and coupling it to dynamic vegetation. 

Studies have shown both a potential increase in fire danger in some regions in 

the future, including increased risk of uncontrolled fire spread (Aragão et al., 

2018) under extreme hot/dry conditions, and conversely a decreasing trend of fire 

occurrence over the last 20 years (Andela et al., 2017), leading to continuing 

uncertainty about the role that this important process will play in ecosystems over 

the coming decades. Fire occurrence is a function of local environmental and 

anthropogenic processes, and both its history and its future impacts will not be 

spatially homogeneous. 
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This thesis focuses on the impacts of fire, climate and land-use change globally 

but with a particular focus on South America and the ecosystems of Brazil. The 

Brazil region is one of the areas with the most uncertainty in future projections of 

fire (Kloster et al., 2012; Moritz et al., 2012; Betts et al., 2015). The Amazon 

rainforest itself (henceforth referred to as ‘the Amazon’) is scientifically important 

because of its capacity to store and release carbon, as a source of biodiversity, 

regulator of regional and global scale water and climate, and its historical socio-

political focus as a site of extensive deforestation and degradation (Soares-Filho 

et al. 2006; Malhi et al., 2009; Brienen, 2015; Fauset et al., 2015). The Amazon 

is also a key region where there is still much uncertainty about how the links 

between climate, increased CO2 and land-use will impact the occurrence of fire 

in the future (Good et al., 2014), and considering its importance in the Earth 

system, more work is needed to understand how fire danger may change here. 

However this needs to be placed in the context of other ecosystems across the 

country and continent according to the question being addressed. The regions of 

high fire for example effect the southern Amazon across the Cerrado of Brazil, 

pushing the frontiers of the Amazon further North, and to understand the drivers 

of these fire patterns it is useful to consider meteorological and climatological 

changes across the rest of the continent and globally. In the context of extreme 

events such as El Niño, it is useful to compare fire occurrence with other regions 

of high fire such as across Africa or Asia, to understand patterns and drivers 

across different ecosystems and put the results in a global context.  

This PhD aims to further the knowledge in this area, by assessing the impact of 

fire on vegetation dynamics historically, for the present day, and in the future 

under different scenarios of climate and land-use change using improved fire 

modelling capability. The land surface model JULES will be used for this work, 

and the capability of the fire model INFERNO will be developed so that it interacts 

with the dynamic vegetation within JULES to produce an interactive response to 

fire. Scenarios will then be assessed for the historical period against 

observations, and the model tuned to give the best estimate of present day 

results. The model will be used to investigate the impact of the 2015/16 El Niño 

on fire, and driven with standard future scenarios of climate change to give a 

projected range of response to 2100 (high, medium and low emission scenarios). 
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Fire danger indices will also be used to give an indicative guide of the impact of 

alternative solutions, including mitigation efforts to limit temperature rise to 1.5ºC.  

This research aims to further our understanding of the interaction of fire, climate 

and land-use change by developing current modelling capability, and using this 

to answer key questions about how ecosystems are affected by fire and 

disturbance today, and how and why this might change under different future 

scenarios.  

The structure is as follows: 

 Chapter 1: Background & context 

This chapter will give an overview of the current status of modelling fire 

and land-use, including use of observations, fire indices and fire models. 

This is placed in the context of existing literature, with a particular focus on 

a number of studies that have previously linked fire, land-use and climate 

change in Brazil. It highlights the gap in current research which this thesis 

will address. 

o Fire and land-use in context 

o Research gap and motivation for study 

o Overview of observations 

o Overview of fire indices 

o Current status of fire modelling 

 Chapter 2: Introduction to land-use and land surface modelling 

This chapter will investigate the impact of land-use change globally and 

over Brazil, with a focus on the land carbon sink. A multi-model analysis 

shows large uncertainty in the land-use contribution of carbon allocation 

across models. I use four future RCP scenarios to analyse the implications 

for future land-use in Brazil.    

o Introduction to land-use change 

o Representation of land-use across models 

o Contribution of land-use to carbon allocation 

o Future RCP scenarios of land-use 

 Chapter 3: Interactive INFERNO: fire-vegetation interactions in JULES 

This chapter will outline the work that has been done to develop the fire 

modelling capability in INFERNO, to couple fire to dynamic vegetation and 
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the results of the coupling. These will be compared against observations, 

and the model tuned to produce a standard set up with interactive fire. 

Results will be analysed for Brazil. 

o Developing fire modelling capability in JULES 

o Impact of disturbance on vegetation cover 

o Impact of fire on development of savannas in Brazil 

 Chapter 4: Impacts of the 2015-2016 El Niño  

A range of variables will be assessed with JULES-INFERNO to understand 

what impacts the 2015-2016 El Niño had on fire and the terrestrial 

ecosystem. 

o What was the impact of the 2015/16 El Niño on fire? Did this vary 

globally, and why? 

o What impact did the El Niño have on the carbon sink globally and 

regionally when fire is taken into account? 

o How did the impacts of the 2015/16 El Niño vary spatially and in 

time across South America? 

 Chapter 5: Future projections of fire, climate and land-use change  

JULES-INFERNO is used to assess the standard RCP scenarios of future 

emission pathways, with a focus on vegetation dynamics in the region of 

Brazil. 

o How is burnt area projected to change with climate change in the 

future and, together with changes in land-use, what impact does 

this have on vegetation coverage? 

o What is the impact of different warming levels, and does the 

pathway to reach them alter the impacts on the land surface? 

o Could fire lead to a change in state from tropical forest to savanna 

by 2100?  

 Chapter 6: New horizons: limiting temperature rise to 1.5°C with SRM 

Fire danger indices are used to understand potential impacts of limiting 

temperature rise to 1.5ºC based on new policy developments under the 

‘Paris Agreement’. 

o Impacts of limiting temperature rise to 1.5°C on fire danger 

o Drivers of regional differences in fire 
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 Chapter 7: Synthesis and conclusions 

The final chapter will summarise the results found over the course of this 

PhD, draw conclusions about the implications and recommend steps for 

further research. 

o Summary of key findings 

o Future work 

o Wider implications of this work 

The high-level findings can be summarised as follows: 

 Disturbance is important for accurate simulation of vegetation cover within 

JULES 

 Fire is important for the representation of the Cerrado in Brazil in JULES, 

and improves the simulation of land-use emissions from this region 

 El Niño events can increase fire danger in some areas, as was the case 

with the 2015-16 El Niño in South America due to hotter and (in some 

areas) drier conditions.  

 The Amazon biome has the potential to change from a sink to a source of 

carbon in hot, dry years 

 Fire danger is projected to increase in the future due to hotter and drier 

conditions, but not homogeneously 

 The pathway taken to specific levels of warming has different regional 

impacts, with hotter temperatures and higher burnt area projected in NE 

Brazil in scenario RCP8.5 at global mean temperatures of 2.0˚C compared 

to other RCP scenarios, leading to reduced evapotranspiration and higher 

albedo 

 Fires may reduce dry season resilience of tropical ecosystems and bring 

them closer to a tipping point in the future 

 Fire danger is reduced at lower temperatures, but not homogeneously due 

to changing patterns of temperature and moisture availability  

The ultimate goal of this PhD will be to represent interactive fire disturbance 

processes in JULES with dynamic vegetation in the present day, and understand 

the implications of this for the Amazon historically and in the future. This is the 

first step towards including interactive fire from INFERNO within an Earth System 

Model, which will ultimately contribute to the wider field of climate science by 
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improving our ability to properly simulate the complete Earth system. This will 

enable us to create more realistic projections of the future, and thus aid policy by 

providing a better understanding of the implications of climate change and how 

to best mitigate and or adapt to these coming changes.  

 

1.2 Fire, climate and land-use in context 

1.2.1 Introduction to fire modelling 

Fire events exist in the confluence of temporal and spatial scales. Fires are 

experienced as a local phenomenon, yet are recognised as a global scale 

environmental process with importance and impacts at the Earth system level 

(Rabin et al, 2017). In terms of hazard management and action planning, we 

consider individual fires that occur over days to weeks, but fire danger and 

change in regimes are studied on a seasonal basis, with implications for the 

atmosphere and biosphere on timescales of hundreds to millions of years 

(Pechony and Shindell, 2010; Koele et al., 2017; Goulart et al., 2017).  

Fundamentally, the occurrence of fire depends on the availability of fuel, oxygen 

and ignition, but the nature of the fire regime including frequency, seasonality, 

size, intensity, and ecosystem effects, depends on a number of processes. These 

include fuel connectivity, fuel type, resistance of fuel to fire, density and dryness, 

conditions such as topography, temperature, moisture, wind, anthropogenic 

factors of ignition, management and suppression, and natural factors such as 

lightning ignition (see Figure 1.1). 

Fire can have a significant impact both on a global and a local scale. Fire affects 

global vegetation composition and dynamics through mortality, regrowth and 

species diversity (Barlow and Peres, 2008), atmospheric chemistry through 

emissions of gases including carbon dioxide, carbon monoxide, methane, sulphur 

dioxide, and nitrous oxides, the carbon cycle through the release of carbon from 

vegetation, the hydrological cycle through reduction of evapotranspiration and 

release of particulate matter, as well as altering the surface albedo from burnt 

area, black carbon, and changing vegetation cover (Hantson et al, 2016). It has 

been claimed that fire is the single most important disturbance of vegetation 
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globally (Hantson et al, 2016). Worldwide, annual burned area reaches 

approximately 350 million hectares or 3.4 Mkm2 per year, and resultant CO₂ 

emissions in the past have been as much as 50% of fossil fuel emissions (Jolly 

et al., 2015; Bowman et al., 2009). For example, in 1997 carbon emissions from 

Indonesian fires alone was between 0.81 and 3 GtC (Page et al., 2002; van der 

Werf et al., 2004; GFED data), compared to 6.55 GtC of total global fossil fuel 

emissions that year (Le Quèrè et al., 2017). Today total fossil fuel emissions have 

risen to ~10.0 GtC yr-1 (Global Carbon Project, emissions for 20161), and fire 

emissions are slightly lower (1.869 GtC in 2016, and estimated 1.822 GtC in 

2017, GFED2), amounting to around 20% of global emissions.  

Fires also have social and economic dimensions, making it challenging to 

represent fire events holistically in models. For example the 2017 Californian fires 

are estimated to have impacted over 10,878,000 people (US CENSUS 

BUREAU3), killed 43 people (Cal Fire) and estimates of economic cost for this 

fire event alone are up to $180 billion (Accuweather4). One study estimated that 

wildfires are responsible for 339,000 deaths worldwide every year5, and the 

annual economic burden has been estimated to be between $71.1 billion and 

$347.8 billion ($2016 US) (Thomas et al, 2017). They can impact air quality, and 

can destroy lives and infrastructure, and yet can also be a vital process for 

successful ecosystem functioning (e.g. maintaining savanna ecosystems; Andela 

et al. 2017), vegetation succession (e.g. seed release and resprouting in 

lodgepole pine, Eucalyptus, Banksia; post-fire flowering in Australian grass tree 

and Cyrtanthus6) and small-scale farming (waste disposal, land clearance, 

disease and pest control (Brandt, 1966)), increasing soil fertility (Santin et al, 

2016), soil carbon (Koele et al., 2017) and encouraging new growth for grazing 

animals7.  

                                            
1 Global Carbon Project ‘global budget’ http://www.globalcarbonproject.org/carbonbudget/17/data.htm  
2 GFED emissions https://www.geo.vu.nl/~gwerf/GFED/GFED4/tables/GFED4.1s_C.txt  
3  US Census: https://www.census.gov/topics/preparedness/events/wildfires/2017-ca-wildfires.html 
4 ACCUWEATHER: https://www.accuweather.com/en/weather-news/accuweather-predicts-2017-
california-wildfire-season-cost-to-rise-to-180-billion/70003495 
5 Wildfire deaths: http://newsinfo.inquirer.net/148611/wildfires-kill-339000-people-per-year-study  
6 Fire vegetation adaptation: https://www.britannica.com/list/5-amazing-adaptations-of-pyrophytic-
plants  
7 Swaling: http://www.exmoor-nationalpark.gov.uk/living-and-working/info-for-farmers-and-land-
managers/swaling  

http://www.globalcarbonproject.org/carbonbudget/17/data.htm
https://www.geo.vu.nl/~gwerf/GFED/GFED4/tables/GFED4.1s_C.txt
https://www.census.gov/topics/preparedness/events/wildfires/2017-ca-wildfires.html
https://www.accuweather.com/en/weather-news/accuweather-predicts-2017-california-wildfire-season-cost-to-rise-to-180-billion/70003495
https://www.accuweather.com/en/weather-news/accuweather-predicts-2017-california-wildfire-season-cost-to-rise-to-180-billion/70003495
http://newsinfo.inquirer.net/148611/wildfires-kill-339000-people-per-year-study
https://www.britannica.com/list/5-amazing-adaptations-of-pyrophytic-plants
https://www.britannica.com/list/5-amazing-adaptations-of-pyrophytic-plants
http://www.exmoor-nationalpark.gov.uk/living-and-working/info-for-farmers-and-land-managers/swaling
http://www.exmoor-nationalpark.gov.uk/living-and-working/info-for-farmers-and-land-managers/swaling
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1.2.2 Global impacts of land-use change  

Humans have been changing the land surface since prehistoric times, converting 

natural vegetation to crops, pastures and savanna through the use of fires and 

deforestation, using wood harvesting for fuel and construction which has only 

increased as population levels have continued to grow (Williams, 2006 in 

Wilkenskjeld, 2014). Over 50% of the land surface has been affected by land-use 

activities over the last 300 years; 25% of global forest area has been lost, and 

agriculture now accounts for around 30% of the land surface (Turner et al, 1990), 

which continues to grow at a rate of 13 million hectares per year (Zhang and 

Wiltshire, 2014). These land-use transitions not only create important primary 

changes to ecosystems (e.g. through cutting of forests and planting of crops etc.), 

but also leave behind secondary land in various stages of regrowth (Hurtt et al, 

2011). Vegetation influences the surface fluxes of radiation, heat and moisture, 

where conversion to crops or pastureland can reduce the aerodynamic 

roughness and alter evaporation patterns, soil moisture and latent heat (Betts, 

2005).  

Land-use and land-cover change (LULCC) is both a cause and a consequence 

of climate change (Settele et al, 2014). As well as directly affecting the land 

surface, land-use changes also impact the regional and global climate by altering 

greenhouse gas (GHG) concentrations in the atmosphere, the surface-energy 

budget, surface and cloud albedo, wind profiles and changing the natural carbon 

cycle through removal of carbon from natural vegetation and increasing carbon 

emissions (Pielke et al, 2002), or visa versa through reforestation. Changes in 

land-use have altered other basic cycles as well, including the nitrogen and water 

cycle. These are all critically important factors in the climate system, and can act 

to enhance or dampen the global thermodynamics of climate change.  

The largest impact on global mean temperatures comes from emissions of GHGs 

and aerosols, and as a result land-use change has previously been overlooked 

in many ESMs. However, cumulatively land-use emissions of carbon are not 

insignificant; changes in land-use have contributed almost 30% to the total 

anthropogenic CO₂ emissions since 1750 (180±80 PgC out of 555 PgC) with a 

major contribution from deforestation in tropical South America (Ciais et al, 2013). 

LUC is the second largest source of total GHG emissions globally (Don et al, 
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2011). Using HadGEM2-ES simulations to assess the impacts of climate change 

and land-use change over the four future Representative Concentration Pathway 

(RCP) scenarios, Betts et al. (2015) show that land-use has a greater effect on 

projected changes in global terrestrial ecosystems than climate change on a 

regional scale. Without adding in carbon loss from land-use change, we also risk 

overestimating carbon budgets. Strong evidence suggests that LUC can be as 

important as these larger forcings on a regional scale (Christidis, 2013). Change 

in biomass in the Amazon ecosystem has been found to be larger as a result of 

LUC than other drivers including climate change, fire and CO₂ fertilisation (Zhang 

et al., 2015). Recent analysis has shown the importance of land-use change in 

Effective Radiative Forcing (ERF) over the 20th century in HadGEM2-ES. While 

the magnitude of land-use change forcing is comparatively small on a global scale 

(albedo forcing alone =-0.15+/-0.1Wm-2, total land-use ERF in HadGEM2-ES ~=-

0.4Wm-2, Andrews et al, 2017), it can have a large impact on regional climate and 

extremes. It is therefore a fundamentally important process that needs to be 

included in model simulations in order to get an accurate picture of how the 

climate is changing, and how it is likely to change in the future. 

A major innovation in the terrestrial carbon component of ESMs since AR4 is the 

inclusion of the effects of land-use change associated with the spread of 

agriculture, urbanisation and deforestation. However, this increasing complexity 

introduces greater spread in climate model projections (Flato et al, 2013).  

1.2.3 Interaction of climate, fire, and land-use 

LUC can be a cause of both fire initiation and suppression. Globally biomass 

burning increased from around the year 1750 as a result of land-conversion and 

population growth together with increasing temperatures. After 1870 there was a 

sharp decline in biomass burning despite increasing population and agriculture, 

indicating a shift in the way fire is used in agriculture from land-clearance to 

suppression (Marlon et al, 2008). Many studies have demonstrated the close link 

between land-use and fire trends (e.g. Aragao et al, 2008, Cardoso et al, 2003), 

mostly demonstrating increases in fire with human activity in the tropics, although 

on a global scale expansion of agriculture has generally led to fire suppression 

(Bistinas et al., 2014). Andela et al. (2017) have shown that global burned area 

has declined in the last 20 years, with the largest decline in savannas due to 
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increasing use of agriculture. This trend is not reproduced in most fire models as 

the interaction of fire and LUC is not yet properly represented. However this 

global average may mask regional variation in fire trends that are a function of 

the environment and changing anthropogenic land-use trends. It is also a function 

of human fire suppression, which can conceal changes in fire trends due to a 

changing climate.  

Underlying changes in ignition and fuel availability, is a background of 

meteorologically-driven changes in fire. A number of studies have suggested that 

there have been increases in fire occurrence in some areas that reflect recent 

changes in the climate. Westerling et al. (2006) showed that fire activity in the 

western United States has increased the area of forest burned by six times 

compared to 1970-1986 as a result of warmer temperatures and longer dry 

summers. Increases in wildfires in Canada from 1992-1999 have been directly 

attributed to human-induced warming (Gillett et al., 2004), extreme fire risk in 

Western Canada linked to human emissions (Kirchmeier-Young et al., 2017), and 

an increase in fire risk in California has been attributed to human-induced climate 

change (Yoon et al., 2014). There is still much uncertainty around future changes 

in fire associated with climate change (Mortiz et al., 2012), but the potential 

consequences of the social and economic impacts, impacts on human heath, 

changes in ecosystem functioning and services, and feedbacks on climate make 

this area of research particularly important and pertinent (Rabin et al., 2017).  

The interaction of LUC, climate change and fire is complex (Coe et al., 2013) and 

in order to understand the multiple positive feedbacks comprehensively, it is 

necessary to consider all of these elements together (Aragão et al., 2008). 

Figures 1.1 and 1.2 below illustrate the complexity of the problem and how many 

feedback loops can exist between these three processes. 
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Figure 1: Simple diagram showing the main factors influencing forest fires, and references to key 
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Figure 1.1 Factors influencing fire 
Simple diagram showing the main factors influencing forest fires, and references to key 
literature 
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Figure 2: Multiple factors and feedback loops exist between fire, climate change and land-use change. Blue 

colours represent the positive feedbacks between fire and climate change, green represents the positive 

feedbacks between fire and land-use change, and pink represents uncertain or mixed positive and negative 

feedbacks (original figure, with references to key literature associated with certain interactions included)
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Figure 1.2: Feedbacks between fire, climate change and land-use change.  
Multiple factors and feedback loops exist between fire, climate change and land-use 
change. Blue colours represent the positive feedbacks between fire and climate change, 
green represents the positive feedbacks between fire and land-use change, and pink 
represents uncertain or mixed positive and negative feedbacks (original figure, with 
references to key literature associated with certain interactions included) 
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The representation of fires is beginning to become a focus for model 

development, with the recognition of the important contribution that they make 

within the Earth system. The development of Dynamic Global Vegetation Models 

(DGVMs) and ESMs with fires is continually progressing, albeit with large 

variation in complexity across models (Rabin et al., 2017).   

1.2.4 Introduction to the region of study: the Amazon 

The Amazon forest biome is one of the largest and most important carbon sinks 

in the world (Brienen et al., 2015), as well as being one of the richest sources of 

biodiversity, and a major component of the global hydrological cycle (Moran, 

1993) and the Earth system itself (Malhi et al., 2008). Covering 5.3 million km², 

the Amazon forest contains 90–140 billion tons of carbon (Soares-Filho et al. 

2006), accounting for 17% of the global total terrestrial vegetation carbon (Fauset 

et al., 2015). Amazonia contains around a quarter of the world’s total biodiversity 

(Malhi et al., 2009) ~16,000 tree species (ter Steege et al., 2013), and the 

Amazon river has the largest average discharge in the world, releasing over 

200,000 m³/second of freshwater into the oceans (~20% of global total river 

discharge, Gupta 2007), with approximately eight trillion tons of water 

evaporating from Amazon forests every year (Nepstad, 2008).  

These colossal figures alone would make the Amazon an interesting focus of 

study, and combined with significant pressure on land-use, historical 

deforestation on an unprecedented scale (Laurence, 1998), and potentially 

devastating projected changes in climate (e.g. Cox et al., 2000) and fire danger 

(Golding and Betts, 2008) as discussed further below, this region has become 

one of the most important areas of research today. Changes in this finely 

balanced ecosystem will have a direct impact on the global carbon cycle, nitrogen 

cycle, and water cycle, as well as regional and even global climate (Good et al., 

2011). Global Climate Models (GCMs) and ESMs can give useful indications of 

how the system may change over the coming decades as a result of changes to 

the climate, but in order for these to be as realistic as possible it is important that 

the complexity of the system is properly represented. We need to fully understand 

the multifaceted interactions that will affect fire in this region, and its resilience 

over the coming century, which will have important implications for policy 

decisions. 
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The main vegetation type in the Amazon is evergreen tropical broadleaf rainforest 

(Figure 1.3), which is not well adapted to fire. The Amazon region has high levels 

of precipitation year-round (Figure 1.4), which historically has led to low 

occurrence of fire. Maximum burned area in Brazil occurs primarily in the Cerrado 

region, which comprises savannah vegetation made up of shrubs and grasses, 

and a hot dry climate. Here vegetation is much more adapted to frequent fire 

occurrence. In the East, an area of hot dry scrub vegetation makes up the semi-

arid Caatinga, which is fuel limited in supporting fire. Further south the tropical 

semi-deciduous Atlantic forest has a cooler climate. The fire regime across Brazil 

is therefore a function of climate and fuel, as well as human land management 

and ignition.  

 

 

Figure 1.3: Distribution of biomes and transition zones of Brazil 
Source: Brazilian Institute of Geography and Statistics (IBGE) 

 



36 
 

 

Figure 1.4: Climatic zones of Brazil 
Top left: Annual rainfall (mm). Top right: Annual mean temperature (°C). Bottom left: 
Climatic zones, with legend to right. Source: Alvares et al. (2014)  

 

 

1.2.5 History of projections for the Amazon  

In 1999, White et al. published an important study on the impacts of climate 

change on ecosystems and the terrestrial carbon sink, using output from two Met 

Office Hadley Centre climate models, HadCM2 and HadCM3. As a result of a 

strong warming (7°C increase) and drying (decreased rainfall of up to 500 mm/y-

1) signal over South America, HadCM3 in particular predicted large areas of 

Amazon dieback and conversion of tropical evergreen forests to savanna, 

grassland and desert by 2080s. Also based on output from HadCM3LC, Cox et 

al. (2000) showed that the inclusion of an interactive carbon cycle makes a 

significant contribution to future warming projections, with carbon emissions 

around 280ppmv higher by 2100 compared to simulations that exclude this 

feedback, leading to significant Amazon dieback as a result of climate change. 

Using HadCM3 coupled to the ocean-carbon cycle model “HadOCC” and the 
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DGVM “TRIFFID” (Top-down Representation of Interactive Foliage and Flora 

Including Dynamics), Cox et al. (2004) showed that the increased temperatures 

and decreased rainfall from HadCM3LC projections, with potential implications 

for drought and fire danger, give rise to a reduction in vegetation carbon of around 

73GtC over 1860-2100 in South America. 

A number of subsequent studies using DGVMs based on HadCM3 supported this 

large-scale forest loss in future scenarios; Scholze et al. (2006) showed high risk 

of climate-induced forest loss from drought and wildfire, and Sitch et al. (2008) 

showed projections of year-round temperature increases and decrease in rainfall 

rates across Amazonia, and a resultant increase in wildfire frequency. All models 

used in the Sitch et al. (2008) study simulate a decrease in vegetation carbon 

over the Amazon, with TRIFFID simulating the strongest dieback scenarios where 

forest is replaced by grasses. Jones et al. (2009) proved that a lag in the terrestrial 

ecosystem means that full vegetation response to climate change may take 

decades to be fully realised, long after stabilization of radiative forcing, 

significantly increasing the risk of a loss in Amazonian forest cover with rising 

temperatures. 

All of these studies showing significant Amazonian dieback are based on the 

Hadley Centre model HadCM3. As Cochrane and Barber (2009) suggest, “such 

apocalyptic scenarios of environmental devastation make it necessary to critically 

examine the climate model simulation driving speculation about a massive 

dieback of the Amazon”. Huntingford et al. (2004) compared simulations of 

HadCM3 precipitation with observations over the Amazon, and showed that the 

model was on average predicting precipitation that was 25% too low. Betts et al. 

(2004) reviewed the forcings and feedbacks within HadCM3LC, and concluded 

that a range of biogeophysical and biogeochemical feedbacks (such as stomatal 

closure) that are not included in other GCMs could cause a higher drying signal 

over the Amazon, which leads to the projected dieback scenarios. This has 

important implications for the reliability of the HadCM3 projections (Cochrane and 

Barber, 2009), and successive Hadley Centre climate models have not shown 

such a dramatic drying in this region. 

Many of the other GCMs used in the AR4 report underestimate current rainfall 

(Yin et al., 2013), making a shift to seasonal forest potentially a more likely 
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outcome than transition to savanna (Malhi et al., 2009). In 2014 the 

Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report 

(AR5) concluded that large-scale dieback due to climate change alone is unlikely 

by the end of this century (medium confidence). However, new observations have 

provided evidence of critical ecological thresholds and positive feedbacks 

whereby drought, land-use change (LUC) and fire could interact and catalyse a 

self-reinforcing transition to low-biomass fire-adapted vegetation (Settele et al., 

2014). 

So whilst dieback from climate change alone is no longer seen as a likely scenario 

over the course of this century, when combined with changes in land-use and 

fire, this worst-case scenario cannot be completely ruled out (Barlow et al., 2003; 

Nepstad et al., 2008; Malhi et al., 2009; Settele et al., 2014; Nobre et al 2016; 

Aragão et al., 2018; Lovejoy and Nobre, 2018). Research has shown that despite 

a recent decrease in LUC in the Amazon, fire incidence has not decreased (Cano-

Crespo et al., 2015), and conversely drought-related fires, including escaped 

management fires, increased by 36% as a result of the recent El Niño in 2015 

(Aragão et al., 2018). These changing trends suggest a decoupling of fire and 

LUC, and a transition to a more climate-driven fire regime which could increase 

as the climate warms. 

The AMAZALERT8 research project (2011-2014) focused on the impacts of 

climate change and LUC in Amazonia. The current generation of CMIP5 models 

simulates strong warming of up to 5.6°C over Amazonia, but observations made 

throughout the AMAZALERT project suggest that forests could be more resilient 

to temperature increase than previously thought. The results of the project 

confirmed that most of the Amazon is unlikely to degrade severely as a result of 

climate change this century, but the south-east Amazon forest is more vulnerable, 

and there are still high uncertainties around the sensitivity of the forest to climate 

and LUC, including response to fire dynamics, incidence of drought, CO₂ 

fertilisation and socio-economic developments (AMAZALERT-D6.7). It was also 

concluded that if climate-induced degradation does occur, it is likely to happen 

quickly and without warning and will therefore be difficult to mitigate. Signals of 

change may only come after a biophysical threshold has been passed and when 

                                            
8 AMAZALERT:  http://www.eu-amazalert.org/publications/deliveryreports 

http://www.eu-amazalert.org/publications/deliveryreports


39 
 

decline is already irreversible, and may be brought on by extreme weather 

events.  

1.2.6 Risk of abrupt change  

In 2008, Lenton et al. coined the term ‘tipping element’ to refer to a large-scale 

(subcontinental or larger) component of the Earth system that may induce a mass 

tipping point or abrupt change. This refers to a critical threshold whereby a small 

perturbation can rapidly and qualitatively alter the state and dynamics of the 

system, producing large-scale and long-term consequences on human and 

ecological systems which persist even if the drivers of the change are abated 

(Settele et al., 2014).  

The dieback of the Amazon rainforest is included as one of these tipping 

elements, which has been predicted to occur under 3-4°C of warming (Lenton et 

al., 2008; Kriegler et al., 2009), and/or drought (Reyer et al., 2015). Here LUC is 

acknowledged as a potentially critical factor, which alone could bring forest cover 

to a critical threshold, especially through the interaction with fire (Lenton et al., 

2008). Good et al. (2011) show that in terms of dry season resilience, the Amazon 

is the most vulnerable and closer to a threshold than other tropical forests. For 

example the dry season in Amazonia is cloudless which can lead to higher water 

stress than in the West African tropics where the dry season is characterised by 

overcast conditions (Charles-Dominique et al., 1998). Each tipping element could 

also interact with other elements in the system, for example Cai et al. (2016) 

shows that a tipping of the El Niño Southern Oscillation (ENSO) into a more 

persistent regime could increase drying of the Amazon, increasing the likelihood 

of the Amazon tipping. 

According to AR5, there is a high risk (but low confidence) that high rates of 

climate change will result in abrupt and irreversible change in Amazonia this 

century as a result of combined effects of fire, LUC and drought (Settele et al., 

2014). The outcome of passing this critical threshold is uncertain, but it has been 

suggested that even with a change towards a warmer, drier climate, there is some 

resilience in the forest ecosystems that means that a seasonal forest may persist 

in Amazonia (Malhi et al., 2009). For example, the existence of a dual bi-stable 

state of forest and savanna has been postulated under drought conditions 

(Oyama and Nobre 2003; Staver et al. 2011). However, this semi-stable state 
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would collapse if fire occurrence were to increase, and a transition to low-biomass 

savanna could occur (Hoffmann and Jackson, 2000) known as ‘savannization’ 

(Silverio et al., 2013). Fire can be a key determinant in self-reinforcing scenarios 

of vegetation. It can promote savanna vegetation where open, dry grasses create 

flammable conditions, but when tree cover becomes dense, grass growth is 

inhibited and conditions become too moist to support fires, leading to a self-

propagating shift to closed forest (Hirota et al., 2011). 

1.2.7 Projections of future climate  

Models generally show a signal of warming over the Amazon Basin throughout 

this century (Cochrane and Laurence, 2008; Zhang et al., 2015). Projections of 

rainfall over the Amazon region are mixed; Mortiz et al. (2012) show general 

agreement in 16 GCMs for increased precipitation over the tropics based on 

CMIP3, whereas other models including the CMIP5 mean model projections 

forecast drying (Stocker et al., 2013) and a lengthening and intensification of dry 

seasons, especially in the south-east (Malhi et al. 2008; 2009), along with 

increased warming. Indeed recent work by Jolly et al. (2015) has shown that the 

fire weather season in South America has already increased by an average of 33 

days over the last 35 years as a result of climate change, and the dry season 

length in Amazonia has increased by 6.5 (±2.5 days) per decade since 1979, 

resulting in a longer fire season (Fu et al., 2013). Deforestation may also increase 

dry season length (Costa and Pires, 2010), and there is high confidence that 

moist-tropical forests have many tree species that are vulnerable to drought and 

fire during extreme dry periods (Settele et al., 2014). This is based on numerous 

observational studies of increased tree mortality during previous severe droughts, 

e.g. 2005 (Philips et al., 2009), and 2010 (Gatti et al., 2014; Feldpausch et al., 

2016). Episodes of even modest warming in the past have demonstrated 

increased fire occurrences in drier parts of the Amazon (Settele et al., 2014), and 

in such times the net Amazon carbon sink can change to a source of carbon 

(Anderson et al., 2015). 

An increase in atmospheric CO₂ could partially offset this risk and vulnerability to 

drought, through increased photosynthesis and carbon uptake, as well as greater 

water use efficiency which would result in higher growth rates (Ciais et al., 2013). 

However there is still much uncertainty around this hypothesis due to lack of 
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observations. For example the effect may be limited by nutrient and water 

availability, and some studies suggest that increased CO2 will reduce 

transpiration and result in further localised drying and warming (Myhre et al., 

2013). It has been proposed that CO₂ is one of the main drivers of rainfall change 

in tropical regions, due to the biogeophysical effects on plant stomata and 

transpiration rates (Chadwick et al., 2016). Corresponding increases in growth of 

parasitic vines like lianas could also increase tree mortality and undermine the 

effects of the CO₂ fertilisation (Good et al., 2014).  

1.2.8 Land-use change in the Amazon  

LUC has affected 1.4 million km², around 20% of the Amazon basin so far 

(Castello and Macedo, 2016). The peak of deforestation in the Amazon was 

27,772 km²/yr-1 in 2004, (AMAZALERT-D4.2) which was primarily the result of 

cattle ranching (Moran, 1993; Nepstad, 2006), but soybean production has also 

been expanding (Settele et al., 2014). Palm oil is one of the main biofuel crops, 

and while its current use is still relatively small, Brazil has the largest potential for 

expansion in South America as around half of the Amazon is suitable for its 

cultivation (Butler and Laurance, 2009). Fire is often used as a quick and cost-

effective way of clearing the land for alternative use, which together with higher 

temperatures and drier conditions, can lead to increased fire danger. 

Post 2004, official estimates show that the rate of deforestation has reduced 

considerably to ~6,000 km²/yr-1 (Aguiar et al., 2016) although illegal deforestation 

is still rife (AMAZALERT-D4.2). Gross emissions from tropical deforestation and 

degradation were 3.0±0.5 PgC/yr–1 for the 1990s and 2.8±0.5 PgC/yr–1 for the 

2000s (Ciais et al., 2013). However, even with technological changes that could 

result in agricultural intensification, LUC and expansion of pasture and crop lands 

may continue from an increasing global demand for food and biofules (see 

Chapter 2). 

The south-east (SE) region of the Amazon has been identified as the most 

vulnerable region to small climatic changes, because of the combination of 

severe historical deforestation, as well as spanning the geographic transition 

zone between rainforest and savanna. The region has become known as the ‘arc 

of deforestation’ due to the intensity with which it has been depleted (Malhi et al., 

2008). Coe et al. (2013) identified South-SE Amazonia as a region that has 
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already experienced decreased evapotranspiration as a result of deforestation, 

as well as more frequent and intense fires and droughts, which are likely to 

increase with continued changes to climate and land-use.  

1.2.9 Land-use change and fire danger in the Amazon 

LUC is known to be one of the most important influencing factors in scenarios of 

Amazon decline in a number of ways: directly through deforestation and canopy 

thinning (cutting as well as use of fire for clearance), and through fire-leakage 

which can extend deforestation into much larger areas than planned. Forest 

fragmentation is also an important contributing factor, where lengthened forest 

edge increases the spread of fire into the forest (Soares-Filho et al., 2012; Coe 

et al., 2013; Good et al., 2014). This can be the result of land clearance for 

agriculture, and for urban expansion. For example there is a clear correlation 

between distance to roads and increased fire danger (Cardoso et al., 2003). The 

impact of this edge effect can vary from region to region though, with some 

research showing a more limited effect in the southwest Amazon region, likely 

counteracted by nutrient-rich soils and faster forest recovery (Numata et al., 

2017).  

LUC can have important impacts on regional climate, and has been shown to 

reduce evapotranspiration (Cochrane and Laurance, 2008), and decrease 

precipitation and induce drought over the Amazon (Bagley et al., 2014), which 

can in turn initiate abrupt increases in fire-induced tree mortality (Brando et al., 

2014; Castello and Macedo, 2016). Even when deforestation itself declines, fire 

incidence can still remain high due to increased agricultural frontiers where 

accidental fires burn out of control (Aragão and Shimabukuro, 2010). Nelson and 

Chomitz (2011) found that protected areas (especially multi-use protected areas) 

reduce the incidence of fire substantially; however, Carmenta et al. (2016) 

recently published a study investigating the incidence of fire in reserves, and 

found that fires are only less prevalent in reserves where the population is lower, 

and that reserve creation itself has no discernible impact on fire density.   

Due to their humid climate and high precipitation, tropical forests have not in 

recent history been at high risk of wildfire, although there is paleo evidence that 

suggests that the climate was dry enough ~10,000 years ago to sustain natural 

fires in these areas (Charles-Dominique et al., 1998). Today, fires are almost all 
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anthropogenically initiated in tropical regions (Aldersley et al., 2011; Cochrane 

and Barber, 2009). Traditional agriculture in Amazonia has used the ‘slash-and-

burn’ method of using fire to clear land at the end of the dry season. This depends 

on the fuel being dry enough to maintain a fire, otherwise the land must be left 

fallow. However, in very dry years (i.e. with El Niňo) there is risk of these small-

scale fires escaping and burning large areas of forest, as was the case in 1988 

where over 80,000km² of rainforest in southern Brazil was damaged by fire 

(Charles-Dominique et al., 1998). This risk may be increasing with hotter, drier 

conditions and more points of ignition through forest fragmentation and 

agriculture. This historically low fire incidence rate also means that the tropical 

vegetation is not adapted to cope with frequent fire in the same way that 

vegetation in the Cerrado is, for example, where wildfire occurs often (Malhi et 

al., 2008). The fires in the Amazon may be low intensity and slow-moving, burning 

for long periods of time over vast areas, powered by dead leaf litter on the forest 

floor (NASA9; Morton et al., 2013). These fires often kill trees, especially the small 

thin-barked trees (Pellegrini et al., 2017), but do not fully consume them; more 

fuel is created from the dead tree and the gap in the canopy lets air circulate and 

more sunlight in which dries out the forest floor and leaves it at higher risk of 

burning again (Laurance, 1998; Cochrane and Barber, 2009). 

In addition to having important implications for ecosystems and vegetation, fires 

can also cause social and economic disruption (Lohberger et al., 2018); for 

example, smoke from fires in 1997 forced the temporary closure of airports at 

Manaus and Boa Vista, and an increase in respiratory-related hospital 

admissions of 40-100% (Laurance, 1998). Tropical forests are increasingly being 

affected by fire, which drives degradation, biodiversity loss, disruption to 

ecosystem functioning and services, and reduction of carbon stocks (Oliveras et 

al., 2018). Globally, biomass burning is the second largest source of 

anthropogenic aerosols and South America is one of the major source regions 

(Marenco et al., 2016). In addition, fire-derived aerosol particles can decrease 

incoming solar radiation and photosynthesis, contributing further to forest 

degradation (Coe et al., 2013).  

                                            
9 NASA Amazon fires: https://earthobservatory.nasa.gov/Features/AmazonFire/amazon_fire2.php  

https://earthobservatory.nasa.gov/Features/AmazonFire/amazon_fire2.php
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Future fire activity will depend on a combination of both anthropogenic and 

climatic factors. Forest susceptibility to fire is projected to change little for low 

emissions scenarios, but substantially for high emissions scenarios (Settele et 

al., 2014). Because the frequency of fires increases with temperature, the 

incidence of fires is expected to rise over the 21st Century (Flato et al., 2013). For 

the Amazon it is estimated that currently 58% of the area is too humid to support 

fires, but climate change might reduce this area to 37% by 2050 (Ciais et al., 

2013) or even lower (Le Page et al., 2010). Golding and Betts (2008) used the 

McArthur Forest Fire Danger Index (FFDI) to calculate the change in fire danger 

in the Amazon with the simulated changes in climate, and found that high fire 

danger for over 50% of the forest is simulated by 2080, and these areas correlate 

with those projected to be most impacted by deforestation. They estimate that 

future vulnerability to fire may depend nonlinearly on both climate change and 

deforestation. According to IPCC AR5 (Settele et al., 2014), there is low 

agreement in the models on whether climate change will cause fires to become 

more or less frequent on a regional scale due to the complexity of interactions 

and feedbacks and lack of proper representation in models.. 

There is also mounting evidence that extreme weather events can interact with 

LUC to change fire danger. A number of studies have looked at the incidence of 

drought and fire related to ENSO (e.g. Latif and Keenlysie, 2008). El Niño years 

are associated with the largest fire events in the Amazon, due to the hotter, drier 

conditions experienced over the South American continent (Cochrane and 

Barber, 2009), and some projections suggest that El Niño droughts may increase 

in severity or frequency under a warmer climate (Laurance, 1998). Gatti et al. 

(2014) showed that the Amazon switched to become a source of carbon rather 

than a sink during the 2010 drought, which is a cause for concern if this trend of 

extremes continue given the large potential source of carbon in the Amazon. AR5 

(Settele et al., 2014) concluded that there is high confidence that forest fire 

frequency and severity is increasing through the interaction of severe droughts 

and land-use. Work by Saatchi et al. (2013) also showed the slow recovery rate 

of the canopy in the Amazon following a major drought, such that if droughts were 

to occur more frequently there may be permanent changes in the canopy. 

However, Feldpausch et al. (2016) found that closely occurring droughts-such as 

the 2005 and 2010 droughts in Amazonia did not compound carbon loss. Data 



45 
 

from Brienen et al. (2015) suggests that there is a decreasing trend of carbon 

accumulation in the Amazon, as a result of levelling growth rates but increasing 

biomass mortality that is contrary to model projections. There is clearly still much 

uncertainty around the potential response of the forest to future changes in the 

climate.  

1.2.10 Work to date on fire danger 

The first study to assess changing fire danger over the Amazon in detail was 

Golding and Betts (2008). They used the McArthur FFDI to calculate the change 

in fire danger in the Amazon with simulated changes in climate, and found a 

significant increase in central and eastern Amazonia by 2020, and high fire 

danger for over 50% of the forest by 2080. However, this study was also based 

on HadCM3, which was subsequently shown to have a dry-bias in this region.  

In 2015, Betts et al. repeated the study using HadGEM2-ES at N96 atmospheric 

resolution with 38 levels and 1 degree ocean resolution with 40 levels, together 

with 4 RCP scenarios. Land surface processes were included through MOSES II 

(Met Office Surface Exchange Scheme) with vegetation dynamics simulated by 

TRIFFID, and LUC was also included in the RCP scenarios based on the Hurtt et 

al. (2011) data sets. However disturbance was prescribed as a uniform rate in the 

model that remains constant over time, with no representation of the effects of 

climate on disturbances such as fire. They showed that there was little difference 

as a result of climate-related changes between scenarios, and the dominant 

driver for large-scale ecosystem change is from LUC. In terms of fire danger, the 

FFDI was shown to perform well over the tropics when compared with observed 

burnt area. Future projections show a general increase in FFDI for all RCPs by 

the end of the century, with greater increases at higher levels of warming. Areas 

of particularly large increase in FFDI under RCP 8.5 included eastern Amazonia. 

There is a lack of consensus across models on the projected change in fire 

danger across the tropics (Kloster et al., 2012; Moritz et al., 2012), and the aim 

of this work will be to further the capability of how fire is represented in models 

and investigate the implications for future fire danger.  

In 2014 AMAZALERT published a report (AMAZALERT-D3.3) on ‘Quantifying 

impacts of fire on climate’. The report recognised the need for incorporating fire 

into coupled models that will allow climate change, fire and LUC to interact and 
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give an indication of potential feedbacks within the Earth system. In this study, a 

fire module was implemented in HadGEM2-ES and the Brazilian land surface 

model IBIS-INLAND (Integrated Biosphere Simulator- IBIS, Brazilian Integrated 

Model of Land Surface Process- INLAND). In HadGEM2-ES, burnt area was 

estimated from soil and atmospheric moisture, assuming constant rates of 

ignition, based on the work of Kasikowski et al. (unpublished, see Bibliography) 

designed for HadCM3. This was an offline estimation of burning extent, and plant 

mortality was not included. Within IBIS-INLAND, an estimation of fire potential 

from biomass and flammability was used to calculate vegetation dynamics, 

biomass, leaf area index and net primary productivity, using two RCP scenarios 

out to 2100 and AMAZALERT LUC scenarios. Under the climate change-only 

runs, an increase in biomass was observed, likely as a result of the CO₂ 

fertilisation effect, whereas when fire was included there was a shift in vegetation 

from forest to grass. In both scenarios a drying and lengthening of the dry season 

was predicted, especially in the south and east of the Amazon Basin, which was 

increased by deforestation. One surprising result was the relatively small impact 

of LUC, and the report concluded that this requires further investigation.  

1.2.11 Missing processes  

This review has aimed to show the importance of considering the interactions of 

fire, climate change and LUC in the critical ecosystem of the Amazon. With 

mounting pressure from LUC and climate change, it is likely that fire danger is 

going to become an increasing concern over this century in some areas. Yet this 

is one critical area that has been missing in climate modelling processes.  

It has been well-documented that models are still at their early stages in dealing 

with land-use, LUC and forestry, and in particular, disturbances from fire, drought, 

and tree mortality are either poorly characterised and treated crudely as uniform 

disturbances without any representation of the underlying physical processes 

(Nepstad 2008; Costa et al., 2010; Pan 2011; Hirota 2011; Coe et al., 2013; 

Brando et al., 2014; Ciais et al., 2013; Betts et al., 2015; Malhi et al., 2018), or 

are missing completely (Ciais et al., 2013; Flato et al., 2013; Collins et al., 2013).  

The mechanisms and links between fire, drought and LUC are still poorly 

understood (De Faria et al., 2017). Our understanding is currently limited to a 

small number of studies in dry temperate or boreal forests, and likely response in 
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the Amazon is still unclear (Coe et al., 2013). ESMs also are not always able to 

account for alternative stable states such as tropical forest or savanna (Ciais et 

al., 2013), which is a possible outcome of change in the Amazon (see Chapter 

5). This means there is low confidence in many of the future projections of 

terrestrial carbon storage. Although more recent studies have found that climate-

driven Amazon dieback such as that described by Cox et al. (2000) is unlikely 

(Settele et al., 2014), the missing process of fire and associated feedbacks mean 

that we cannot rule this possibility out. 

‘At present, the tropical forest biome constitutes the largest terrestrial  

carbon sink, but it is also associated with the largest uncertainties.’  

(Good et al., 2014) 

 

According to Cavaleri et al. (2015), over the next 20 years it is likely that the 

tropics in particular will experience unprecedented warming, yet model variation 

in this region is vast and there is still ‘exceedingly high uncertainty’ about future 

changes in precipitation, and vegetation responses to climate change, including 

changes in temperature and levels of CO₂ due to their inherent complexity, wide 

range of possible feedbacks and nonlinearities, and interplay between climate 

and LUC. An important part of this response is how fire danger will change, and 

the resilience of the forests to this risk. Zhang et al. (2015) identifies an ‘important 

need’ to evaluate model predictions of fire dynamics for the Amazon. The early 

detection and prediction of changing fire danger is therefore still an area of active 

research (Settele et al., 2014; Reyer et al., 2015). 

The AMAZALERT project showed that fire incidence rises substantially in the 

presence of drought and land-use, and recommended that future research focus 

on the balance of CO₂ fertilisation, temperature increase, drought, LUC and fire 

dynamics. 

1.3 Observations 

There are a large range of observational products available for data of burned 

area, vegetation cover and land-use which are useful to this study. Here I outline 

a selection of well-known and relevant products, giving an overview of their 

scope, how they were created / collected, and some of the uncertainties that are 

associated with their use. 
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1.3.1 Burned Area 

As interest in fire as part of Earth system modelling grows, a number of 

observational datasets are now available that give information on burned area. 

On a global scale, the best source of observational data is via satellite imagery. 

These include for example:  L3JRC (1km resolution, 2000-2007, produced from 

SPOT VEGETATION imagery and Global Burnt Area algorithm) (Tansey et al., 

2004); GLOBCARBON (1km resolution, 1998-2007 also based on SPOT 

VEGETATION plus ATSR-2 and AATSR) (Giglio et al., 2010); and NOAA 

products AVHRR and GOES-8 (Cardoso et al., 2003). Observations are essential 

in comparing against historical projections of burned area or fire danger to get an 

indication of how accurate a model or fire index is. If patterns of burned area are 

accurately represented in historical simulations, we can have more confidence in 

future projections. Two of the most popular observational products are MODIS 

and GFED, outlined below.  

 Moderate Resolution Imaging Spectroradiometer (MODIS)  

 

NASA provides MODIS data from polar-orbiting Terra and Aqua satellites, as well 

as high-resolution Landsat data. Satellites are effective at covering large regions 

in short time periods, and are able to map temperature changes so can be useful 

in helping to estimate fire occurrence, intensity and extent. However, there are 

multiple sources of uncertainty in the data, for example clouds can hide fires, very 

reflective surfaces may be confused with burned area, and omission errors may 

occur when satellites are not passing over (AMAZALERT-D3.3). Small 

understory fires are also undetectable in many cases, hidden from satellites by 

tree canopies (Morton et al., 2013).   

MODIS also provide active fire and burned area. The active fire products detect 

fires over 1km resolution. Burned areas are made up of deposits of charcoal and 

ash and alteration/removal of vegetation. Using changes in daily surface 

reflectance, an algorithm is used to calculate approximate date of burning, given 

at 500m for recent fires10.  

                                            
10 MODIS: http://modis-fire.umd.edu/index.php 

http://modis-fire.umd.edu/index.php
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The National Institute of Space Research (INPE) also make use of geostationary 

(GOES, MSG) satellites for regional-scale burned area information over the 

Amazon as part of their fire monitoring programme11. In addition INPE use 

AVHRR/3, NOAA-15, NOAA-18, NOAA-19 and METOP-B polar satellites which 

have optical sensors in a 4m thermal range, all for fire detection purposes. Each 

polar orbiting satellite produces at least two images a day, while geostatic 

satellites generate several images an hour. Current data for fire danger and 

occurrence are made available on their website, along with statistics around 

historical fire counts (see Appendix 4).  

 Burned area from Global Fire Emissions Database (GFED)  

 

GFED provides gridded data on burned area and fire emissions based on 

observations from MODIS, ATSR, TRMM, and VIRS (Giglio et al., 2010). The 

latest data are available at 0.25° resolution from 1997-present, including gridded 

burned area, 3-hourly and daily emissions, monthly emissions, and global 

emission totals. Annual emissions are available but contain large uncertainties 

and missing data. Burned area estimates are derived from active fires detected 

by 500m MODIS after 2001; prior to 2001 fire observations are derived from the 

Tropical Rainfall Measuring Mission (TRMM), visible and Infrared Scanner 

(VIRS), and the Along-Track Scanning Radiometer (ATSR)12. The original 

GFED4 data are in HDF format, and do not include small fires (Giglio et al., 2013).  

However it is recognised that the small understory fires which are difficult to 

detect via satellites are important to total emissions and burned area, adding up 

to as much as 35% to the global total burned area (Randerson et al., 2012). These 

fires are currently below the detection capability of satellite products using 

reflectance imagery, and whilst they can be detected by thermal anomalies they 

have not historically been quantified for inclusion in global fire products. Recently 

work has been done to include the representation of an ‘experimental’ small fire 

estimate in the updated HDF5 burned area dataset, GFED4.1s (van der Werf et 

al., 2017), based on 1km thermal anomaly and 500m burned area data products. 

The number of active small fires outside of the existing 500m burned area were 

estimated by using the normalised burn ratio for each product individually and 

                                            
11 INPE fire data: http://www.inpe.br/queimadas/portal  
12 GFED data: https://daac.ornl.gov/VEGETATION/guides/fire_emissions_v4.html  

http://www.inpe.br/queimadas/portal
https://daac.ornl.gov/VEGETATION/guides/fire_emissions_v4.html
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then combining the information from both products along with ground based 

information12. The GFED3 biogeochemical model was then used to estimate 

resultant emissions, which were added to the GFED4 emissions data as a ‘boost’ 

to create the new GFED4.1s product including small fires.  

There are also a number of older products from historical projects that have 

looked at burnt area datasets, including the Global Burnt Areas 2000-2007 

(L3JRC project), Global Burnt Area Project 2000, Global Burnt Surfaces (GBS) 

1982-1999, and GLOBSCAR 200013.  

Satellite data can provide a good indication of burned area; however, they cannot 

give information on tree mortality rate. For this more local fieldwork is required. 

Furthermore, not all fires are the same; wildfire in dense vegetation or for 

deforestation will produce more CO₂ than from fires used to manage pasture and 

grassland. Anderson et al. (2015) show that there is a highly anti-correlated 

relationship between biomass and fire rate where, as biomass increases, the 

forest climate becomes wetter and cooler which reduces fire intensity. There may 

also be a lag in the mortality rate, where some trees may take months or years 

to die as a result of a fire event (Barlow et al., 2003). This information needs to 

be taken into account when modelling dynamic vegetation. 

Many satellites of coarse resolution also have difficulty capturing smaller, 

understory fires, which has partly been addressed now with the introduction of 

new datasets such as GFED4.1s. Use of landsat data, if available, may be 

another solution to this, or using a Burn Damage Recovery algorithm as 

presented in Morton et al. (2013).  

                                            
13 GLOBSCAR: http://due.esrin.esa.int/page_project24.php  

http://due.esrin.esa.int/page_project24.php
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Figure 1.5: GFED4.1s mean burned area fraction 2010-2015 

 

1.3.2 Vegetation and land-use change 

There are a number of data products available today which represent various 

aspects of LULCC. Ultimately many of these could be used together to produce 

a blended product that would be useful for an improved observational product 

that could be used with models, driving improvements in land-use changes. An 

overview of available products is provided here, starting with global datasets and 

then focusing on those available over the Amazon region.  

 HYDE 

 

The global HYDE (History Database of the Global Environment) dataset is 

developed by the Netherlands Environmental Assessment Agency, based on UN 

Food and Agriculture Organisation (FAO, 2015) data. It comprises a gridded time 

series of land-use data and population covering the last 12,000 years, as well as 

Gross Domestic Product (GDP), agriculture, greenhouse gas emissions and 

industrial production data for the last century14 (Klein Goldewijk et al., 2011). 

There are few global-scale products of historical land-use data that cover the pre-

observational period, and a variety of methods exist for reconstructing land-use 

patterns. Some products use hindcast modelling to extrapolate historical cropland 

data, while other products use a book-keeping method to estimate carbon fluxes. 

                                            
14 HYDE: http://themasites.pbl.nl/tridion/en/themasites/hyde/introduction/index-2.html   

http://themasites.pbl.nl/tridion/en/themasites/hyde/introduction/index-2.html
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The HYDE product uses a land-use per capita calculation based on historical 

statistics and computation for the entire Holocene period (10,000 BC to 2000 AD) 

at a temporal resolution of 1000 years for the BC period, 100 years for pre-1700, 

and 10 years for 1700-2000 (Klein Goldewijk and Verburg, 2013). 

 

Figure 1.6: HYDE present day agricultural fraction  

 

 Hurtt / LUH2 

LUH2 is a harmonised land-use change dataset (Hurtt et al., 2011) based on 

HYDE, available for the period 1500-2100 at half a degree spatial resolution (Le 

Quere et al., 2018). The harmonisation applied by the Global Land-Use Model to 

create the dataset attempts to preserve regional crop and pasture changes, grid 

data where required, and to smooth the transition across time periods from past 

to future (Jones et al., 2011). This results in final land use states being presented, 

as well as transitions between all land cover states of forests and agricultural 

land, and distinguishes between rangeland and pastureland. 

 Pongratz (800-1992)  

 

The Pongratz dataset contains reconstructions of global land-use and land cover 

from AD800 to 1992. Before 1700, the land-use is estimated using population 

data (McEvedy and Jones 1978) using the maximum range, and post-1700 the 

data is based on HYDE and SAGE (Centre for Sustainability and the Global 

Environment) products from Ramankutty and Foley (1999), Foley et al. (2003) 

and Klein Goldewijk (2001). The vegetation includes three agricultural land-use 
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types (crops, C3 pasture, C4 pasture) and 11 natural vegetation types15 

(Pongratz et al., 2008). 

 MODIS  

 

Both burned area and vegetation maps are provided on a global scale through 

MODIS. The MODIS Vegetation Indices (VI) are produced at multiple spatial 

resolutions, retrieved from surface reflectance from Terra and Aqua satellites and 

show empirical measures of vegetation activity on the land surface. There are 

two products available globally for land regions. The first is the standard 

Normalized Difference Vegetation Index (NDVI) which runs from 1981-2015 from 

NOAA-AVHRR. The second is the Enhanced Vegetation Index (EVI), which has 

improved vegetation monitoring and sensitivity capability10 (Justice et al., 2002). 

 ESA CCI land cover data 

 

The European Space Agency (ESA) Climate Change Initiative (CCI) programme 

provides an annual global land cover time series from 1992 – present day, made 

up of daily observational data from 5 different satellites (NOAA-AVHRR HRPT, 

SPOT-Vegetation, ENVISAT-MERIS FR and RR, ENVISAT-ASAR, and  PROBA-

V). It includes 22 different land cover classes, defined by the UN Land Cover 

Classification System to support the conversion to Plant Functional Types (PFTs) 

used in climate and land surface models (ESA, 201016). Work has been done to 

translate these data into the PFTs that are used within JULES to enable 

comparison of model output with observations (Hartley et al., 2017). The plots 

below show the output of these observational products for the standard 5 PFTs 

used in JULES (Broadleaf trees, Needleleaf trees, C3 grass, C4 grass and 

Shrubs). Here the reference values are used, but it should also be considered 

that there is a range of uncertainty with any observational dataset, as explained 

in section 1.3.3. The latest dataset available including this translation is 2010. 

                                            
15 RECON: http://cera-www.dkrz.de/WDCC/ui/Entry.jsp?acronym=RECON_LAND_COVER_800-1992 
16  ESA CCI https://www.esa-landcover-cci.org/?q=node/175 

http://cera-www.dkrz.de/WDCC/ui/Entry.jsp?acronym=RECON_LAND_COVER_800-1992
https://www.esa-landcover-cci.org/?q=node/175
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Figure 1.7: N96 resolution ESA land cover map, 5 PFTs (2010) by fraction of gridbox 

  

Figure 1.8: N96 resolution ESA land cover map of Broadleaf fraction (2010) 

 

  

Figure 1.9: N96 resolution ESA land cover map of Broadleaf fraction over South America 
(2010) 
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 Terraclass 

 

The Terraclass dataset is available from INPE, and gives information on land 

cover for the Amazon region in Brazil (Almeida et al., 2016). Currently only 

available for Brazilian Amazonia, there are ambitions to extend the data further 

into Brazil. The product uses a number of land-use classifications, which 

determine forest from agricultural regions, four different types of pasture land, 

farming, urban, mining, secondary vegetation and deforested areas. The data is 

obtained from satellite information, from Embrapa (the Brazilian Agricultural 

Research Corporation), and is available from 2008 (Figure 1.10).  

 

Figure 1.10: TerraClass land cover map for 2008.  
Data from INPE and Embrapa 

 

 PRODES  

 

The PRODES (Program for the Estimation of Deforestation in the Brazilian 

Amazon) dataset is also made available by INPE, in collaboration with the 

Ministry of the Environment (MMA) and the Brazilian Institute of Environment and 

Renewable Natural Resources (IBAMA), and gives information on annual 

deforestation rates in the Brazilian Legal Amazon. The dataset runs from 1988, 

using Landsat images as well as imagery from CBERS, Resourcesat and UK2-

DMC. This information is available online, with data from 1997-2000, and annual 

deforestation data from 2000 to present day17 (INPE, “PRODES” 2014). 

                                            
17 PRODES, funded by the Brazilian Ministry of Science, Technology and Communications 
(MCTIC) through the "Monitoramento Ambiental da Amazônia" (Environmental Monitoring of 
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 Avitabile 

Avitabile et al. (2016) have created a pan-tropical above ground biomass dataset 

at 1km resolution by combining two existing datasets of observations and high-

resolution maps. The data integration technique uses bias correction and 

weighted linear averaging resulting in very low bias estimates. The AGB stock for 

the tropics is 9-18% lower than previous estimates using this technique (Avitabile 

et al., 2016).  

 

Figure 1.11: Avitabile aboveground biomass 

 

 WWF Biomes 

The World Wildlife Fund has created a ‘Terrestrial Ecoregions of the World’ 

product which divides the Earth’s terrestrial biodiverse ecoregions into 14 

biomes, defined as ‘relatively large units of land or water containing a distinct 

assemblage of natural communities sharing a large majority of species, dynamics 

and environmental conditions’18. The product is intended for use in conservation 

strategies and planning (Olson et al., 2001). 

                                            
Amazônia) program at INPE: 
http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes 
https://www.arcgis.com/home/item.html?id=4160f715e12d46a98c989bdbe7e5f4d6 
18 WWF ecoregions: https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world  

http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes
https://www.arcgis.com/home/item.html?id=4160f715e12d46a98c989bdbe7e5f4d6
https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world


57 
 

 

Figure 1.12: WWF biomes and ecoregions 
Major global biomes based on 14 World Wildlife Fund’s ecoregions. Some ecoregions have 
been combined to reduce the total number to 8: Tropical forests = all tropical and  
subtropical forests plus mangroves; Mixed forest = temperate broadleaf and mixed forests  
plus temperate conifer forests; tropical savannas = tropical/sub-tropical grasslands,  
savanna, and shrubland; Grassland = temperate grasslands, savannas, shrublands,  
flooded grasses, montane grasses. Reproduced from Harper et al. (2016), Figure 3b. 
 

1.3.3 Observational uncertainty 

Across all observational products there is a degree of uncertainty associated with 

the data. These can stem from flaws in data collection. For example in satellite 

data, overpass time, clouds and spatial resolution hinder output, which affect 

most burned area products in use today. As outlined in Hantson et al. (2016), 

there are multiple burned area products such as g. GFED4, L3JRC, MCD45, 

MODIS and Fire_cci, some of which have been mentioned here, all giving 

different results and with different ranges of uncertainty. Similarly with land-use 

data, the HYDE LULCC dataset for example has been developed from a 

combination of model, satellite and historical reconstructions of agricultural and 

population data to cover the entire period 10,000 AD to present day, long before 

observational records began, and the biomass quantities are noted to contain 

uncertainties due to lack of direct observations from the historical period (Klein 

Goldewijk and Verburg, 2013; Hurtt et al., 2011). Uncertainties can also stem 

from data interpretation. The ESA CCI land cover data is the product most 

commonly used as observations for use with JULES, mostly due to the work 

invested in classifying the data into the JULES PFTs for improved comparison. I 

therefore focus on this product for comparison with my results. However, the 

process of translating global vegetation cover into the 5 PFTs that are used in 
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JULES (Poulter et al., 2015), and through the process of data collection and 

classification, a number of uncertainties are introduced which result in a range of 

possible outcomes for land cover distribution (see Hartley et al., 2017). These 

uncertainties can include for example variation in classifying the surface 

reflectance products into the 22 land cover classes, and aggregating these by 

dominant vegetation type into just 5 PFTs for JULES by a consultative cross-

walking technique. This classification also needs to take into account seasonal 

variation in NDVI (greenness), burned area, cloud cover and snow occurrence 

that can all vary throughout the year, giving a large range between the minimum 

and maximum possible vegetation cover for any one PFT, as shown below. A 

classification algorithm is used to determine vegetation type using satellite-

derived radiance and ground-based observations, and the most likely class is 

then chosen. This is referenced with a cross-walking technique, aggregation, and 

post-processing, to result in a ‘most likely’ case for vegetation cover referred to 

as the ‘reference’ case (Hartley et al., 2017). The ‘reference’ dataset is the one 

commonly used in analysis. 
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Figure 1.13: ESA CCI land cover uncertainty  
ESA CCI fraction of vegetation cover. Minimum cover shown in left column, reference data 
in centre column, and maximum cover in right column. BL = broadleaf, NL = needleleaf, C3 
= C3 grass, C4 = C4 grass, Sb = Shrub, BS = bare soil. 

 

It is not within the scope of this PhD to attempt to reduce observational 

uncertainty within the datasets used. However it must be borne in mind when 

comparing the model results with the observations that there are uncertainties 

associated with the products, and they should not be taken as perfect 

representations of the real world. 

1.4 Fire indices 

Forest fires are greatly affected by meteorological conditions, where fire 

occurrence is highest during dry summer periods when temperatures are high, 

humidity is low and fuel moisture is reduced (Pinol et al. 1998). Based on this, a 

number of fire indices have been developed that can give information on the 
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potential behaviour of fires as a result of varying conditions. An overview of the 

more common fire indices is give here.   

1.4.1 McArthur Mark 5 Forest Fire Danger Index (FFDI) 

(Noble et al. 1980) 

The McArthur FFDI was developed in 1960 by the CSIRO scientist A.G. 

McArthur, based on the degree of fire danger in Australia. It uses meteorological 

data to calculate the change of a fire igniting, its rate of spread, and the difficulty 

of suppression, using the following equation: 

 

𝑭𝑭𝑫𝑰 = 𝟐. 𝟎 ∗ 𝒆𝒙𝒑(−𝟎. 𝟒𝟓𝟎 + 𝟎. 𝟗𝟖𝟕 ∗ 𝒍𝒏(𝑫) −  𝟎. 𝟎𝟑𝟒𝟓 ∗ 𝑯 + 𝟎. 𝟑𝟑𝟖 ∗ 𝑻 + 𝟎. 𝟐𝟑𝟒

∗ 𝑽) 

 

Or simplified:  

𝑭𝑭𝑫𝑰 = 𝟏. 𝟐𝟓 ∗ 𝑫 ∗ 𝒆𝒙𝒑 ⌊
𝑻 − 𝑯

𝟑𝟎. 𝟎
+ 𝟎. 𝟎𝟐𝟑𝟒 ∗ 𝑽⌋  

 

Where: 

 

D = drought factor, calculated as follows: 

 

𝑫 =
𝟎. 𝟏𝟗𝟏 ∗ (𝑰 + 𝟏𝟎𝟒) ∗ (𝑵 + 𝟏)𝟏.𝟓

𝟑. 𝟓𝟐 ∗ (𝑵 + 𝟏)𝟏.𝟓 +  𝑷 − 𝟏
 

 
Table 1.1: Input to McArthur FFDI 

Symbol Meaning Units 

I Based on Keetch-Byram drought index mm equivalent 

H Relative humidity % 

T Air temperature ˚C 

V Average wind velocity in the open at a height of 
10m 

km hr-1 

N Number of days since last rain days 

P Amount of precipitation mm equivalent 

 

 

The McArthur FFDI is measured on a scale of 1-100, as shown in Table 1.2. 
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Table 1.2: McArthur FFDI scale of fire danger. 

Category Forest Fire Danger Index 

Catastrophic* (code red) 100+ 

Extreme 75 - 99 

Severe 50 – 74 

Very high 25 – 49 

High 12 - 24 

Low - Moderate 0 - 11 

*Catastrophic refers to fires that spread so quickly that they present a threat to life and 
safety  

 

 

This index is widely used, and has been applied by Golding and Betts (2008), 

Betts et al. (2015) and was cited in IPCC AR5 to assess fire danger globally and 

in the Amazon. It is useful in providing an indication of fire danger, and includes 

a number of meteorological variables as well as a drought index which enhance 

its accuracy. It does however still have notable limitations, in that it was designed 

for Australian vegetation, and therefore its applicability outside of this region is 

less certain. The power function and inability to measure inputs precisely also 

means there is a large uncertainty range. (Note there is also a McArthur Mark 4 

Grassland Fire Danger Index (GFDI), but this is outside the scope of this work so 

is not considered here.) 

1.4.2 Canadian Forest Fire Weather Index (FWI) 

(de Groot, 1987) 

The FWI was developed in 1970, based on the effects of weather parameters on 

forest floor fuel moisture conditions. This index assesses the fixed and variable 

factors of the fire environment, which determine the ease of ignition, rate of 

spread, difficulty of control and potential fire impact. Its purpose is to account for 

the effects of weather on forest fuels and forest fires, and is based on a number 

of inputs, as shown in Figure 1.14: 
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Figure 1.14: Structure of the Canadian FWI.  
Reproduced from de Groot, 1987. Input variables include temperature, relative humidity, 
wind speed, and rainfall in previous 24 hours 

 

This is a complex index with many input variables (Appendix 1). It was developed 

to forecast fire danger in Canadian pine forests so, similar to the FFDI, can give 

an indication of fire danger in other regions such as the Amazon, but its 

applicability can only extended so far and does not account for the difference in 

flammability of different vegetation types.  

Bedia et al. (2015) investigate the sensitivity globally to fire-weather using the 

FWI, and find that the Amazon is one of the most susceptible regions to fire-

weather fluctuations, which may result in severe impacts on future fire regimes 

with climate change.  

These complex fire rating systems integrate sub-models and drought indices 

within the calculation. A drought index quantifies fuel flammability by representing 

the cumulative moisture deficiency as a net effect of evapotranspiration and 

precipitation (Mantzavelas et al., 2006). However, because of the complexity of 

drought there are many indices and no single index has been able to adequately 

represent the severity, intensity and potential impacts for so many different users. 

Some drought indices are used on their own to indicate fire danger, such as the 

Angström and Nesterov indices, as described below. 
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1.4.3 Angström Index 

One of the simplest drought indices, the Angström Index was devised in Sweden 

and has been used all over Scandinavia. It was designed to be computed 

mentally. 

The index, I, is given by: 

𝑰 = ( 
𝑹

𝟐𝟎
) +  (

𝟐𝟕 − 𝑻

𝟏𝟎
) 

Where: 

R = Relative humidity (%)  

T = Air temperature (°C) 

This is measured on a reverse scale where a low index pertains to a high fire 

likelihood, as shown in Table 1.3. 

Table 1.3: Angström Index scale of fire danger 

Index Value Meaning 

I > 4.0 Fire occurrence unlikely 

4.0 > I > 2.5 Fire conditions unfavourable 

2.5 > I > 2.0 Fire conditions favourable 

I < 2.0 Fire occurrence very likely 

 

1.4.4 Nesterov Index  

(Mantzavelas et al., 2006) 

This drought index was developed by Professor V.G. Nesterov in 1967 for use in 

Russia for fire danger rating, and uses synoptic daytime data of temperature, 

humidity and precipitation:  

𝑵𝑰 =  ∑(𝒕𝒊

𝑾

𝒊=𝟏

−  𝑫𝒊) ∗ 𝒕𝒊  

Where:  

NI = Nesterov Index, W = number of days since last rainfall > 3 mm,  

T = mid-day temperature (oC), and D = dew point temperature (oC). 
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Table 1.4: Nesterov scale of fire danger 

Index Value Meaning 

N < 300 No fire danger 

301 < N < 1000 Low fire danger 

1001 < N < 4000 Medium fire danger 

4001 < N < 10,000 High fire danger 

N > 10,001 Extremely high fire danger 

 

 

This is a simple equation which doesn’t require wind speed or daily humidity, for 

which accurate data are difficult to obtain. However it does require sub-daily 

meteorological information which may not be easily available. This is available as 

a stand-alone fire-danger index in JULES.  

None of these indices were designed for use in tropical humid ecosystems, 

probably because historically there have been few fires in these regions due to 

the high moisture levels. Some of these indices have been shown to do a 

reasonable job of predicting fire danger over the Amazon (e.g. the FFDI is 

assessed in Betts et al. (2015) against observed burned area), but there is a 

question over whether this could be improved with an index based specifically on 

tropical vegetation.  

Currently in JULES the FFDI, FWI and the Nesterov fire indices are available. 

Fire indices can give a good indication of changes in fire danger to give 

information on the probability of fire occurring in a particular location based on 

only meteorological and climatological conditions. This is different to burned area, 

which is where fires occur given meteorological conditions, available fuel and 

ignitions. Global observed burned area for example inherently includes human 

land management which can increase and supress ignitions according to policies 

and cultural practices, and may not reveal changes in the susceptibility of 

ecosystems to fire as a result of changes in the climate. However with fire indices, 

the risk of fire is not quantitatively related to burned area, emissions or fuel 

consumption (Hantson et al., 2016), and does not include ignition. These factors 

can be crucial in determining where fires occur; without natural or anthropogenic 

ignition, an area can have high fire danger but will never burn. Similarly there is 
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high fire danger over desert areas, but with limited fuel fire is not a hazard. The 

complete assessment of burnt area and interaction with climate and vegetation 

therefore needs to be addressed by more sophisticated land surface and Earth 

system models.  

1.5 Fire models 

1.5.1 Overview of fire models 

Despite the relative lack of progress so far in implementing fire as a standard 

process across ESMs (Ciais et al., 2013) a large number of fire models exist 

today, varying greatly in complexity. Although many different streams of work in 

fire modelling have been started, there has been little evaluation across these 

different models until now, and there is therefore a lack of consensus on how well 

the individual models perform, and over the degree of complexity that is required 

to model fire accurately (Hantson et al. 2016). The current FireMIP (Model 

Intercomparison Project) activity aims to provide this independent evaluation 

across models, and therefore provide an authoritative voice on fire modelling.  

One of the main points on which models vary is around ignition, and there are 

differing perspectives on the best way to model human-induced fire starts. For 

example some empirical models use a constant estimated rate of ignition, 

whereas some include algorithms that estimate lightning frequency and 

population density, and others give the option of reading in observed data. 

Pechony and Shindell (2009) proposed that fires increase with population due to 

higher ignition potential, until an optimum maximum point, beyond which fire 

occurrence decreases with increased population due to anthropogenic 

intervention and management (fire suppression). The simulated number of fires 

then translates into burned area. Other schemes simulate human ignition as a 

result of land-use change (LUC), e.g. Kloster et al. (2010) includes burned area 

as an assumed fraction of cleared biomass. Li, Levis and Ward (2013) propose 

fire-rates based on deforestation and weather in closed tropical forests, plus 

cropland management. Other DGVMs, such as Sheffield (SDGVM), include fire 

modules, but assume ignition is not limited (Bond, Woodward and Midgley 2005) 

(see section 1.5.2). This section provides an overview of the development of a 

selection of fire models. 
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 MAPSS-CENTURY Fire (MC-FIRE) (Lenihan et al., 1998) 

o Uses a rate of spread model (based on Rothermel equations (1972) 

o Simulates large, intense fires where all of the grid cell is assumed to burn 

(later version includes low-intensity fires) 

o Includes meteorological input (moisture availability) 

o Allows only one ignition per grid cell per year 

o Embedded in MC1 DGVM 
 

 GLOBal FIRe Model (Glob-FIRM) (Thonicke et al. 2001)  

o First global fire model 

o Assumes vegetation burns at a constant rate for each PFT 

o If fuel is sufficient, burned area depends on length of fire season (function 

of soil moisture) 

o Calibrated using site-based observations 

o Threshold value of 200 gC/m² (point at which fuel becomes discontinuous 

and fire occurrence = 0) 

o Coupled in LPJ, CLM, ORCHIDEE, LPJ-GUESS, BETHY 

o Does not specify ignition sources 
 

 Regional Fire Model (Reg-FIRM) (Venevsky et al. 2002) 

o Based on Glob-FIRM 

o Simulates burnt area as a product of number of fires and average fire size 

o Assumes constant lightning ignition rate, and human ignitions dependent 

on population density  

o Includes Nesterov Index  

o Uses simplified Rothermel equations to simulate rate of spread 

o Vegetation mortality is a prescribed parameter 

o Used in LPJ 
 

 Canadian Terrestrial Ecosystem Model (CTEM-fire) (Arora and Boer 2005)  

o Based on Reg-FIRM 

o Simulates the feedback between vegetation and fires using a simplified 

parameterised approach  

o Models rate of spread 

o Completeness of combustion depends on PFT, but does not vary with fire 

intensity 
 

 HADLEY-FIRE (Venevsky et al., 2007) 

o Based on Reg-FIRM 

o Prototype fire model in HadCM3LC, and off-line version in JULES using 

IMOGEN/climate emulator for fine tuning 

o Number of ignitions is constant 

o No interaction with vegetation 

o No fire suppression 

o Fuel threshold determined by total fraction of vegetation in grid cell 

o 2.5° x 3.75° resolution, 30 min timesteps 

o Validation against MODIS 

o Output: fire weather risk (0,1) and burnt area (m²) 
 

 Spread and InTensity of FIRE (SPITFIRE) (Thonicke et al. 2010) 

o Based on Reg-FIRM and rate of spread, but maximum fire duration limited 

to 4 hours, and population density is regionally tuned  
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o Builds on Nesterov Index 

o Explicit representation of ignitions, spread and intensity 

o Coupled with ecosystem dynamics, included in LPJ, and in ORCHIDEE, 

JSBACH, LPJ-GUESS and CLM-ED with modifications 

o Completeness of combustion depends dynamically on moisture, fire 

intensity, and PFT 

o Mortality varies with bark-thickness which scales with tree size 

o Used to explore the impact of fire on the terrestrial carbon cycle 

o Estimates an average release of 2.24 PgCyr-1 as CO₂ from biomass 

burning over 1980s-1990s 

o Reproduces broadly accurate geographic patterns for peak fire seasons, 

although this can be late and too long in some areas, as validated by 

MODIS and GBS 

o Implemented in historic versions of JULES but no longer available 
 

 Land surface Process and eXchanges model (LPX) (Prentice, Harrison and 

Bartlein 2011) 

o Based on SPITFIRE 

o Realistic representation of lightning by including precipitation data 

o Does not include human ignition 

o Only model to date that includes fire-triggered regeneration (resprouting) 
 

 Lausanne-Mainz fire model (LMfire) (Pfeiffer, Spessa and Kaplan 2013) 

o Based on SPITFIRE 

o Limits lightning ignition to rain-days, by interannual variability, and by 

fraction of land already burned 

o Separates population into three categories: hunter-gatherer, pastoralist, 

farmers 
 

 INteactive Fire and Emission algoRithm for Natural envirOnments 

(INFERNO) (Mangeon et al. 2016) 

o Fuel flammability is simulated using temperature, relative humidity, fuel 

density, precipitation and soil moisture  

o Flammability, fuel and ignition gives diagnostic burned area and 

emissions 

o Implemented as diagnostic fire model in JULES version 4.5 

o Does not include fire spread, or interactive vegetation 
 

 IBIS-INLAND (AMAZALERT D3.3) 

o Based on CTEM 

o Represents major features of fire occurrence  

o Emphasis on ecosystems in Brazil 

o Focus on simulation of fire probability (based on fuel, flammability and 

source of ignition) and effects on vegetation dynamics only 

o Ignition is taken into account, but it is currently considered random 

o IBIS-INLAND fire model is not properly calibrated yet 

 

 

The representation of fire in models can be organised according to different 

aspects of the fire regime, as summarised in Table 1.5.  
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Table 1.5: Aspects of the fire regime 

Model 
Burnt 
Area 

 
Fire danger 
/ 
probability 

Rate of 
Spread 
(ROS) 

No. of 
fires 

Fire 
Intensity 

Fire 
duration 

Fire 
Weather 
(e.g FDIs) 

Vegetation 
mortality 

Carbon 
Emissions 

Ignition Suppression 

  

 Vegetation-Fire models 

MC-FIRE     
  

       
  

          

GlobFIRM     
  

        
  

          

RegFIRM     
  

        
  

         

CTEM             
  

          

HADLEY-FIRE     
  

        
  

          

SPITFIRE              

LPX               

LMfire             
  

          

INFERNO 
  

    
  

          This PhD      

IBIS-INLAND             
  

         

 Fire Danger Indices 

McArthur FFDI                       

Canadian FWI                       

Angström                       

Nesterov                       

 

 

 

 

 



69 
 

The characteristics of fire can be numerous and varying. There is no agreed 

consensus on what aspects should be included in the definition of a ‘fire regime’, 

and in some respects this depends on the temporal and spatial scales being 

studied. However, we can broadly categorise the main aspects of fire into groups 

such as size, pattern, frequency, seasonality, intensity and severity, which make 

up the ‘fire regime’. For example, the nature of a fire depends on vegetation 

composition, type, and structure, previous fires, ignition, management, climate 

and weather, terrain (slope and exposure), and landscape patterns, which can 

effect the frequency, return interval, size, severity, seasonality, and extent of a 

fire, as well as the type of fire including surface, crown, understory / sub-canopy, 

ground, stand replacement, or mixed-severity fire19. It is very difficult to attempt 

to model all aspects of the fire regime at once, largely due to the inclusion of 

unconstrained model parameters and inputs from the base vegetation model, and 

models that include more inputs are generally more complex and harder to 

maintain within a constantly-developing modelling environment. In addition, the 

importance of each aspect depends on the research question being asked; for 

some research questions a simple fire index will be enough to give an indication 

of changing fire danger across an area, whereas for other questions a fully-

coupled interactive fire model will be required. This provides some reasoning for 

why there are many different fire models that exist today, and why there is a large 

spread in results and uncertainty across the models. 

1.5.2 Uncertainty in fire modelling 

In addition to modelling different aspects of the fire regime, part of the reason why 

there is such variety across fire models is because there are still many areas of 

uncertainty in correctly simulating fire count and burned area. Firstly, as outlined 

in section 1.3, there are uncertainties in the observation datasets of burned area 

and vegetation resulting from methods of collection, which makes calibration of 

models difficult. Bachmann and Allgöwer (2002) identify fire spread through wind 

speed and direction to be a large source of uncertainty, together with fuel type, 

which impacts models such as SPITFIRE which aim to model fire spread. In terms 

of fuel, LSMs are necessarily a simplification of real world variation in vegetation 

type, which introduces a source of uncertainty in representing how fire and 

                                            
19 Fire Science Project, ‘Fire History and Climate Change’,  Chapter 3: 
https://www.firescience.gov/JFSP_fire_history.cfm  

https://www.firescience.gov/JFSP_fire_history.cfm


70 
 

vegetation interacts. In JULES for example there are just 5 PFTs as standard, or 

9 PFTS if extended (Harper et al., 2016; Harper et al., 2018). In reality, some 

vegetation species will be more fire resilient than other species within each PFT 

class. For example, vegetation in high fire-risk areas often develops thicker bark 

for protection from fire, whereas other species may adapt to the fire and use it as 

a method of reproduction (Pellegrini et al., 2017). There is no consensus on the 

best way to model human ignition, with some models using population either as 

a unimodal relationship (e.g. Pechony and Shindell, 2009; Mangeon et al., 2016) 

or negative monotonic relationship (e.g. Bistinas et al., 2014), or some using 

distance to construction / roads (i.e. Cardoso et al., 2003; Song et al., 2017). Li 

et al. (2012) advocate the use of a combination of ignition sources: population 

and GDP (both negatively correlated with fire, reflecting that less populated and 

less developed regions are more likely to use fires in agricultural management, 

and more developed regions may have more resources for fire management and 

suppression) and socioeconomic factors (i.e. harvesting patterns) are taken into 

account for agricultural fires; positive correlation with deforestation rates are used 

for tropical forests such as the Amazon; climatic factors are used in simulating 

peat fires; and population and GDP by PFT is used for all other fire types. These 

differences result in a model spread of simulated burned area (Figure 1.15). 

However, due to equifinality of models (Beven, 2006), there are many different 

approaches and model assumptions used across fire models that can lead to 

similar patterns of burned area. 

 

Figure 1.15: Uncertainty across fire models.  
Global burned area time series (A) and annual mean (B) from observations and models in 
FireMIP. Reproduced from Andela et al. (2017), as their figure 3 

 



71 
 

1.5.3 Fire modelling in Brazil 

Considering the whole country, one of the most important fire modelling 

applications in Brazil is the warning system for the fire monitoring program at the 

Brazilian Centre for Weather Forecasts and Climate Studies11. The system 

provides daily information on fire occurrence and risk for the whole of Brazil and 

some neighbouring countries, based on land-cover and meteorological 

information and fire detection from several satellite products. The information 

supports the operation of national parks and environmental protection institutions 

such as the Brazilian Institute of the Environment and Renewable Natural 

Resources (IBAMA) and Brazilian Ministry of the Environment (MMA) to avoid 

and control catastrophic fires. Preparedness and allocation of resources are 

concentrated in regions with indication of higher occurrence or risk of fires.  

The model, based on several years of empirical observations of fires in Brazil 

(Setzer and Sismanoglu 2012), assumes that fire susceptibility is mainly driven 

by a lack of precipitation, where fire danger increases for longer dry periods and 

decreases for recent high precipitation. Vegetation is grouped into broad 

categories from grasslands to evergreen forests with progressively higher 

capacity to resist dry periods before becoming flammable. In addition to 

precipitation, the model considers recent data on minimum relative humidity, 

maximum temperature, and detection of active fires. Fire danger increases if the 

relative humidity is lower than 40%, and maximum temperature is above 30 °C. 

Places presenting low risk but detection of fires are reclassified to high 

susceptibility. The model then classifies the study regions into five main 

categories of minimum, low, medium, high and critical fire susceptibility. 

The fire season severity (FSS) forecast lead by the University of California in 

cooperation with NASA Goddard Space Flight Center, Columbia University, 

University of Maryland and Duke University, based on Chen et al. (2011), was a 

service available from 2012-2016. It presented a range of information about the 

fire danger for the forthcoming dry season for 6 high-biomass burning sub-

regions; Acre, Amazonas, Maranhão, Mato Grosso, Pará, and Rondônia20. A fire 

season severity index (FSSI) is given, based on active fire counts and two ocean 

climate indices, the ONI (Ocean Nino Index) and AMO (Atlantic Multidecadel 

                                            
20 FSSI: http://www.ess.uci.edu/~amazonfirerisk/ForecastWeb/SAMFSS2016.html 

http://www.ess.uci.edu/~amazonfirerisk/ForecastWeb/SAMFSS2016.html
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Oscillation index). The sea surface temperature (SST) anomalies are captured 

by the ONI 3-month mean SST anomaly from the NOAA National Weather 

Service Climate Prediction Centre, and the AMO 3-month mean from the NOAA 

Earth System Research Laboratory. Observations of fire counts are detected 

from thermal radiation anomalies via Moderate Resolution Imaging 

Spectroradiometer (MODIS) on board the NASA Terra satellite, and are ongoing 

throughout the season. The SSTs have a strong relationship with fire activity, and 

the empirical predictive model is based on a linear combination of the two ocean 

climate indices, and verified against observations. Although as the deviser of the 

method notes, actual fire severity depends on a complex interaction between 

multiple parameters including fuel moisture levels, precipitation, wind speeds, 

ignition sources and land-use decisions (Chen et al. 2011). A time series of fire 

counts 2001-2016 is also available. Terrestrial water storage is monitored by 

NASA’s Gravity Recovery and Climate Experiment (GRACE) satellite to give 

further support to the FSSI, although is not directly used by it.  

Other fire models are more complex and have been coupled to ecosystem 

models, such as the fire-susceptibility system RisQue98 that was developed 

during the dry season of 1998 to map the vulnerability across the Amazon to fire, 

using historical observations also from the AVHRR satellite together with 

information on climate, soil properties, land-use. There are also the MAPSS-

CENTURY Dynamic Vegetation Model and the Ecosystem Demography models. 

These model natural fire occurrence as a result of fuel availability and 

meteorological conditions, but do not include human ignitions, which are the 

cause of a large proportion of fires in this region.  

Cardoso et al. (2003) presented a new fire model based on GOES-8 satellite 

data, which incorporates factors linked to land cover (forest cover), land-use 

(distance to road, presence of deforestation), and climate to give a yearly 

indication of large-scale fire patterns in Amazonia. When tested against 

observations it performed well in reproducing the spatial pattern of fire at large 

scales. This was more advanced than the previous fire danger models, as the 

input factors were spatially and temporally variable, however this model didn’t 

interact with the climate or Earth system and so important dynamical feedbacks 

were absent. Fire pixels were the main focus of the study, and information on 

emitted carbon and impacts on vegetation was not included. Analysis of remote 
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sensing data has also been used as a way of determining the relationship 

between fire and land-use (Cardoso et al. 2005), but the extent of the burnt area 

and fraction of biomass is not easy to establish from this method alone. The 

CPTEC Potential Vegetation Model (PVM) has also been improved in recent 

years to include a new parameterization for long-term fire occurrence (Cardoso 

et al. 2008). This was based on a simple-empirical relationship of lighting 

occurrence combined with fuel availability using large-scale topography and 

climatological data, but did not account for human ignition. 

As part of research on surface-atmosphere interactions at CCST/INPE21, the 

Brazilian Integrated Model of Land Surface Process (INLAND) has been 

improved to incorporate fire processes as part of the AMAZALERT project 2011-

2014 (see AMAZALERT Deliverable D3.3 ‘Impacts of fire on climate’). Based on 

work by Arora and Boer (2005), the model calculates fire potential using fuel, 

flammability and sources of ignition. The model uses the output of fire estimates 

to calculate vegetation dynamics, biomass, leaf area index, and net primary 

productivity (NPP), and fractional cover of forest and herbaceous canopies are 

modified as a result. 

In this model, the minimum requirement for fuel in order to sustain a fire is 

200gC/m², which is made up of stem and leaf biomass. Flammability is based on 

soil moisture in the top soil layer, and ignition is random:  

Fire occurrence probability = Fuel x Flammability x Ignition 

Vegetation disturbance from fire is assumed to be proportional to fire probability. 

Deforestation was not included as a direct relationship with fire, but was 

accounted for as an additional disturbance, affecting plant biomass, leaf area 

index and NPP. However the current version of the INLAND fire model still lacks 

proper calibration.  

1.5.4 Fire modelling in Europe 

From the above list of fire models used in Europe in 1.5.1, it is proposed that 

there are two contrasting approaches used in fire modelling; a process-based 

approach to model individual fires that is extrapolated up to the large scale, and 

                                            
21 CCST: http://www.ccst.inpe.br/projetos/inland/ 

http://www.ccst.inpe.br/projetos/inland/
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an empirical approach using statistical relationships between fires and 

observations. Here SPITFIRE and INFERNO are used as examples of each 

approach respectively.  

SPITFIRE is a relatively complex model with multiple inputs (Figure 1.16). 

IGNITION

ANTHROPOGENIC: HUMAN-

IGNITION

Based on a non-linear function of 

population density (increases at low 

densities, reaches a peak, then 

decreases at high densities) 

Doesn’t include fuel management or 

fire fighting 

NATURAL: LIGHTNING

Prescribed from LIST / OTD 

0.5° HRFC data: monthly 
frequency totals used to 

calcualted lightning average over 
5 years

BURNT AREA

EMISSIONS

RATE OF SPREAD AND 

DURATION

based on Rothermel’s 

equations

WIND SPEED

FUEL LOAD

FIRE DANGER INDEX

Based on litter moisture, 

fire weather conditions, 

and probability of fire 

spread

FIRE INTENSITY

Product of rate of spread, 

fuel consumption, fuel 

type, and heat content of 

fuel

PLANT 

MORTALITY

FUEL 

CONSUMED

FIRE WEATHER 

CONDITIONS

- Wind speed

- Precipitation

- Relative humidity

Uses weather generator 

in LPJ, uses monthly 

precipitation and wet 

days

VEGETATION 

DYNAMICS MODEL

Vegetation regeneration

FUEL TYPE

From LPJ DGVM 

based on 9 PFTs

FUEL MOISTURE

Fuel moisture calculated 

from Nesterov drought 

index

VALIDATED BY 

MODIS AND GBS

  

Figure 1.16: Overview of SPITFIRE.  
Figure by C.Burton, based on information from Thonicke et al. (2010) and Spessa (2009) 
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SPITFIRE uses both anthropogenic and natural ignitions. The anthropogenic 

ignitions are again based on the unimodal relationship of population density with 

ignitions proposed by Pechony and Shindell (2009), with low ignitions at low 

population densities, rising with population to a peak, then decreasing at high 

population density. The lightning ignitions are prescribed from LIS lightning data. 

In terms of geographic distribution and general timing of fires compared to data 

from MODIS, SPITFIRE has been shown to do well (Thonicke et al. 2001, 

Thonicke et al. 2010). However, the model does not allow for long-lasting fires, 

landscape heterogeneity, or fire suppression. There are also a couple of key 

regions over which the model performs poorly as outlined in  Fletcher et al. 

(2014); for the interior of Australia which is a high fire-prone region, the model 

simulates very low vegetation due to low rainfall, and thus zero fire. The extent of 

low fire occurrence in northern latitudes also extends too far south in the model. 

This could be due to the use of monthly climate data, which are interpolated to 

quasi-daily values. There is little fire activity simulated over the Amazon due to 

the humid conditions, which fails to capture the high rate of human-induced fire 

which can be seen in the MODIS data, although later studies show the statistical 

representation of burned areas of the Amazon performs well at coarse resolution. 

SPITFIRE is also one of the more complex fire models, making it difficult to 

develop and maintain, and the underlying calculations are based on a number of 

weakly constrained input variables and datasets (Fletcher et al. 2014).  

Despite their global importance, fires are a local phenomenon and are difficult to 

model at large scales. INFERNO was therefore developed on the premise of a 

reduced complexity approach and intended for decadal to centennial scale 

climate simulations on continental to global scales (Mangeon et al. 2016). See 

Figure 1.17 below.  
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Hurtt et al (2011) land-use datasets, 
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Figure 1.17: Overview of INFERNO.   
Figure by C.Burton based on information from Mangeon et al. (2016)  
 

Even though much reduced in complexity in comparison to SPITFIRE as 

highlighted by the figures above, INFERNO generally performs well for global fire 

occurrence and emissions, as detailed in Mangeon et al. (2016). INFERNO is 

also compared against the fire indices available in JULES in the same study, and 

on a global scale performs better compared to GFED observations of burnt area, 

and performs particularly well for low latitudes and equatorial regions. Current 

limiting factors in INFERNO are the lack of representation of peat, no estimation 

for rate of fire spread, and inability to interact dynamically with vegetation, so that 

it only acts a diagnostic to predict burnt area.  

INFERNO uses inputs of surface air temperature, relative humidity, precipitation, 

soil moisture, fuel density and saturation vapour pressure (via the Goff-Gratch 

equation) to calculate flammability. It uses three interactive modes of ignition (see 

Figure 1.17), combined with flammability and an estimation of average burnt area 

by PFT to calculate burnt area. It then uses burnt area and flammability together 

with leaf and wood carbon per PFT and combustion completeness rates to 

calculate emissions of Carbon Monoxide, Carbon Dioxide, Methane, Nitrogen 

Oxides, Sulphur Dioxide, Organic Carbon and Black Carbon.  

INFERNO has recently been implemented in JULES, and was purposefully 

designed as a reduced complexity model in order to be easier to maintain and 

develop. It has been shown to give good results compared to observations, and 
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is comparable to other fire models. However, as INFERNO is not yet developed 

to interact dynamically with the vegetation in JULES, this aspect will need to be 

implemented in order to obtain a realistic projection of future vegetation mortality. 

This was noted in Thonicke et al. (2010) as an important feature of a good fire 

model. For the purposes of this research, INFERNO will be used within the land 

surface model JULES.   
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Chapter 2: Introduction to land-use and land 

surface modelling 

2.1 Abstract 

The terrestrial biosphere is an important sink and potential source of carbon. 

Land-use and land cover change have significant implications for changes to this 

sink, releasing carbon through deforestation, and changing the biophysical 

properties of the landscape through agriculture, crop and biofuel production. 

There are still large uncertainties in how and where all of the emitted carbon is 

taken up within the Earth system, leading to what is known as the budget 

imbalance, or “missing sink”. Working to reduce the uncertainties around land-

use change should be a starting point to account for this missing sink. In this 

study I assess the impacts of land-use change (LUC) globally and over Brazil 

though a number of variables, and find that the land carbon sink is substantially 

impacted by LUC in this region, leading to a high vulnerability to climate variability 

and change in the future. I conduct a multi-model analysis for the region using 

TRENDY (Trends in net land carbon exchange project) model simulations, which 

show a high degree of uncertainty in the land-use contribution of carbon 

allocation, especially in the Cerrado region. I also review four future RCP 

scenarios and analyse the implications for future land-use in Brazil, finding that 

the highest emissions scenario (RCP8.5) and the highest mitigation scenario 

(RCP2.6) are projected to have the largest impact on LUC in the future.    

2.2 Introduction 

LUC (land-use change) is both driven by, and results in, changes in the climate 

system (Settele et al., 2014). Deforestation and agriculture can be important 

sources of carbon emissions driving climate change, and at the same time 

changes in the climate are leading to changing patterns of land-use, both directly 

human-driven e.g. for biofuels, crop production, or land abandonment, and 

unintentional e.g. climatic forest expansion (Chapin et al., 2005) and 

savannization (Silverio et al., 2013).  

The land surface has undergone countless changes since prehistoric times, 

many of which have resulted from natural processes, but since the Neolithic era 
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people have also been converting natural vegetation to agriculture to grow crops, 

and using wood for fuel and construction (Williams, 2006). This process has 

increased with population and food demand, and today over 50% of the ice-free 

land surface has been affected by land-use activities, with agriculture expanding 

from an estimated 300-400 million hectares in 1700 to 1500-1800 million hectares 

in 1990 (Lambin, Geist and Lepers 2003), which continues to grow at a rate of 13 

million hectares per year (Zhang and Wiltshire, 2014). The main drivers of LUC 

are conversion of forested land to agricultural land including crop and pasture, as 

well as conversion to biofuels, and urban expansion, all of which are facing 

increasing pressure globally as the demand for food, energy and minerals 

increases (Flato et al., 2013). 

Despite LUC representing one of the most important drivers of change within 

Earth systems, the processes are still under-represented and over-simplified in 

many ESMs and Land Surface Models (LSMs), for a variety of reasons. These 

include, for example, difficulties in obtaining comprehensive ground-based 

datasets on how the land cover changes, and the building of model equations 

that reflect the information in these datasets and the actual processes occurring 

on the ground. This leads to large uncertainties in the estimates of emissions 

from LUC (Le Quéré et al., 2016).  

There has been some progress in implementing the effects of LUC since the 

IPCC AR4 report, where many of the CMIP3 (Climate Model Inter-comparison 

Project 3) models omitted these processes. The latest models used in CMIP5 

now include carbon dioxide (CO₂) emissions from LUC and many simulate some 

of the biophysical effects as well (Flato et al., 2013). However this increased 

complexity has also led to an increased spread in model projections, and there is 

an ongoing need for better representation of LUC and its associated impacts in 

models. These improvements will lead to better representation of vegetation and 

biomass structure and characteristics, which in turn leads to improved 

representation of vegetation dynamics, estimates of carbon fluxes, and 

understanding of biophysical feedbacks.  

Disturbance as a result of LUC has manifold implications for biogeochemical and 

biophysical Earth system processes. Firstly it can be a primary cause of soil 

erosion and degradation. There are also impacts on local and global climate, 

causing changes in temperature, precipitation, evapotranspiration and runoff 
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which are regionally dependent (Settele et al., 2014). Simulations of Amazon 

deforestation typically generate reductions in precipitation, lengthening of dry 

season, and increases in temperature as a result of reduced evapotranspiration, 

(although with some variation, see Marengo et al. 2006) which means changes 

in land-use could cause the forest to reach a critical threshold, leading either to 

dieback or a bi-stable forest/savanna state (Zemp et al., 2017). Christidis et al. 

(2013) show that a loss of trees and increase of grassland since preindustrial 

times has caused an overall cooling trend in both mean and extreme 

temperatures on a global scale due to increases in albedo, but note that 

physiological changes from land-use on regional scales may dominate in areas 

like the tropics. Agricultural expansion in the tropics for example has been 

associated with an increase in temperature of 0.23°C from 2000-2015, due to 

reduced evapotranspiration (Duveiller et al., 2018; Skinner et al., 2018). 

Vegetation changes influence the surface fluxes of radiation, heat and moisture, 

where conversion to crops or pastureland can reduce the aerodynamic 

roughness and alter wind profiles, soil moisture and latent heat (Betts 2005). The 

loss of forest cover also has a particularly large impact on runoff, as shown by 

Wei et al. (2018). 

Another important impact of LUC is increased emissions and release of aerosols. 

Fire can be used as a quick method of land-clearance, leading to increased air 

pollution, greenhouse gas emissions, and release of particulate matter into the 

atmosphere either directly, or indirectly from escaped fire. For example Cano-

Crespo et al. (2015) showed that up to 52% of burnt forest area in the vicinity of 

pasture lands in Amazonia is a result of escaped management fire. Globally, 

carbon emissions from fire amounts to approximately 2.8 ± 0.4 PgC yr-1, largely 

from the tropics, which offsets the global terrestrial carbon sink resulting in a net 

carbon balance for global forests of 1.1 ± 0.8 Petagrams of Carbon per year (PgC 

yr–1) (Ciais et al., 2013). This could also lead to a positive feedback cycle, where 

hotter, drier conditions increase the risk of fire spread. For Amazonia for example, 

(Zhang et al. 2009) suggest that biomass-burning aerosols negatively impact the 

seasonal monsoon circulation transition leading to a reduction in dry season 

rainfall for southern Amazonia.  

The change in land surface properties leads to alteration of the surface albedo, 

and the release of aerosols can lead to changes in cloud albedo, which results in 
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changes in the radiative energy balance. These impacts can oppose other 

biogeochemical effects, introducing further complexity. For example the release 

of greenhouse gases and decreases in evapotranspiration both create a warming 

effect and hence act as positive feedbacks, but increased albedo from aerosols 

and reduction in forest cover on average induces a cooling trend. However this 

can be regionally dependent, where some satellite observations suggest that the 

effect of conversion of the Brazilian savannas (cerrado) to pasture was to induce 

a local warming (Settele et al., 2014). 

Accurately representing disturbance also requires adequate representation of the 

vegetation recovery time. Both of these processes are important for producing 

accurate simulations of present day vegetation, which can then be used for better 

predictions of changes in future vegetation cover.  

There are a number of data products available today which represent various 

aspects of LUC. Ultimately many of these could be used together to produce a 

blended product that would be useful for an improved observational product that 

could be used with models, driving improvements in land-use changes. An 

overview of available products is provided in section 1.3.2.  

In this study I aim to evaluate the impacts of land-use change globally and over 

Brazil, to understand the impact on the terrestrial carbon sink across a range of 

models. I review four future RCP scenarios and analyse the implications for future 

land-use in Brazil. This will underpin further research later in the thesis where the 

impacts of future fire and land-use change are assessed, as presented in Chapter 

5.  

2.3 Representation of land-use in models 

Land-use in JULES  

JULES (the Joint UK Land Environment Simulator) is a DGVM which represents 

the land component of the UK Hadley Centre family of models and is used to 

predict the response of vegetation to climate change. It was developed from the 

Met Office Surface Exchange Scheme (MOSES), and is based on a modular 

structure which gives various science options when running (Best et al., 2011). It 

uses 5 PFTs as standard, but extra PFTs up to 9 (with more in development) are 

available if required (Harper et al., 2016). The 5 PFT set up uses broadleaf trees, 
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needleleaf trees, C3 grass, C4 grass and shrub. Additional PFTs comprise 

tropical and temperate broadleaf evergreen trees, broadleaf deciduous trees, 

needleleaf evergreen and deciduous trees, C3 and C4 grasses, and evergreen 

and deciduous shrubs. JULES represents the land surface component within the 

new state of the art Earth System Model UKESM1 (Kuhlbrodt et al., 2018; see 

also ukesm.ac.uk22), developed jointly at the Met Office with Leeds University.  

The land surface model JULES can represent changes in vegetation cover arising 

from both natural responses to changing climatic conditions and from direct 

human impact via land-use. In the current version of the model, there are two 

options for this. Firstly, land cover can be prescribed through an input data file, 

where all PFTs are prescribed either as static, or time varying for the length of 

the run. Alternatively, natural vegetation can be simulated via the dynamic 

vegetation scheme TRIFFID (Cox, 2001), and human land-use imposed on this 

by being prescribed through a data file as ‘Disturbed Vegetation Fraction’, 

representing both crop and pasture land as agriculture. This gives TRIFFID the 

boundary conditions of land-use from which woody PFTs are excluded, allowing 

just C3 and C4 grasses to grow in these agricultural areas, according to the 

climatic conditions. This Disturbed Vegetation Fraction input file can again either 

be static or time-varying. These data files for land cover / land-use can be created 

from a number of sources, for example from the HYDE dataset. 

The total carbon flux for each grid box is made up of local litterfall, large-scale 

disturbance, and land-use, as represented by the following equation: 

𝛬𝑐 =  ∑ 𝑉𝑖

𝑖

=  (𝛬𝑙𝑖  +  𝛾𝑣𝑖𝐶𝑣𝑖 +  Π𝑖  ∑ 𝐶𝑖𝑗𝑉𝑗

𝑗

)  

Where 𝛬  is the total carbon lost from vegetation, 𝐶𝑖𝑗are the competition 

coefficients, 𝛾𝑣𝑖is a large scale disturbance, Π is the NPP per unit of vegetation 

area, and V is the fractional coverage of PFT i after competition (Clark et al., 

2011).  

Carbon is lost from the vegetation carbon pools through the process of land-use 

change, with the amount determined by the prescribed land-use change data, 

                                            
22 UKESM: https://ukesm.ac.uk/ 
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and transferred into product pools to represent the capture of carbon in wood 

products. There are three product pools that act on different timescales: a fast 

product pool for products that may be broken down quickly such as paper, with a 

turnover rate of 1 year; a medium pool that releases carbon more slowly over 10 

years; and a slow product pool for products such as furniture where carbon may 

be locked away for many years, with a turnover rate of 100 years. Eventually 

these pools are broken down and release carbon back to the atmosphere. 

In this version of JULES, fire is not represented as a separate process of 

disturbance, and its impact on the carbon cycle is subsumed within a large scale 

disturbance term.  

TRENDY project 

The Global Carbon Project (GCP) (Le Quéré, 2016) is a global, cross-

organisational partnership that aims to establish a robust knowledge base about 

how the carbon cycle may be responding to climate change. The project focuses 

on both biophysical and human dimensions, carbon management and policy, 

variability in the carbon sink, and interactions and feedbacks in the Earth system. 

One of the most important aspects of this project is to establish an annual global 

carbon budget. One consortium sponsored by the GCP is TRENDY, which is a 

terrestrial carbon cycle model intercomparison project aiming to quantify the 

response of ecosystems to increasing atmospheric concentration of carbon 

dioxide, changes to the climate, and anthropogenic changes to the land surface 

(Sitch et al., 2015). Many terrestrial carbon cycle groups contribute to this effort, 

submitting modelled simulations of the carbon balance of the terrestrial biosphere 

from pre-industrial to present day in order to compare land surface model results. 

TRENDY is typically run annually with a set of 9-14 DGVMs in order to investigate 

trends in land-atmosphere model simulations. Climate forcing is based on the 

Climate Research Unit (CRU) observed monthly 0.5 degree climatology and the 

National Centre for Environmental Prediction (NCEP) reanalysis. Global 

atmospheric CO₂ is from ice core records. Land-use change is achieved through 

the implementation of the Hurtt LUC dataset for observed evolving cropland and 

grazing (crop + pasture) from HYDE. 

Table 2.1 below gives a summary of a selection of these models (Ahlström et al., 

2015; Le Quéré et al., 2018). 
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Table 2.1: Summary of TRENDY models 

DGVM Disturbance types 

CABLE Wood harvest, shifting cultivation 

CLASS-CTEM Tillage, fire 

DLEM Wood harvest, crop harvest, fire 

ISAM Wood harvest, crop harvest, grazing/mowing 

JULES - 

LPJ Crop harvest, grazing/mowing, fire 

LPX-Bern Crop harvest, fire 

O-CN Wood harvest, crop harvest 

ORCHIDEE Wood harvest, crop harvest, tillage 

VEGAS Fire 

VISIT Fire 

 

However while some of these models simulate fire, none represent fire as a 

management tool.  

TRENDY uses three scenarios: S0 = no forcing, S1 = CO₂ only, S2 = CO₂ plus 

climate (static land-use at 1860), S3 = CO₂, climate and land-use change. Here I 

focus on two simulations, S2 and S3 to show the impact of land-use change in 

the models. The results are presented as global means, and for the region of 

Brazil, for the period 1860-2015. First I focus on output from the JULES model. 

JULES is run here with TRIFFID dynamic vegetation. 

2.4 Analysis and results  

TRENDY: JULES results 

Figure 2.1 below shows the disturbance as a result of land-use change over time, 

globally and over Brazil. In the global run, we can see there is a rapid increase in 

agricultural area from 1866-1966, after which the rate of change slows. 

Comparatively we can see that the land-use change continues to increase 

throughout the entire timeseries for Brazil.  We can see the impact of this as we 

look at other variables in the model.  
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Figure 2.1: Agricultural / crop fraction change over time  
Gridbox mean agricultural fraction time series 1860-2015 from JULES, with (red) and 
without (black) land-use change globally (solid line) and over Brazil (crosses)  
 

From the model simulations, I assess how carbon distribution changes between 

the product pools over time (Figure 2.2). Here we can see that the fast product 

pool remains relatively stable over time in both the global and regional runs, 

whereas the medium product pool increases rapidly from 1866 to a peak around 

1966, then declines as the slow product pool starts to increase gradually. Here 

the overall regional trend is not dissimilar to the global trend, except at the start 

of the run where the medium pool takes up carbon much faster in the global run 

than the regional run, reaching a first peak around 1900 whereas this comes 

much later in 1930 over Brazil. Note also the different scales, with Brazil an order 

of magnitude higher than the global mean (per square meter). These results 

suggest that most of the carbon from land-use change (Figure 2.1) ends up in the 

medium product pools, and more recently in the slow product pools.  
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a b  

Figure 2.2: Carbon changes in the three product pools over time 
Time series of carbon from wood product pools (kgC/m2) 1860-2015 from JULES as a 
product of changes in land-use (S3). Panel (a) shows global mean, panel (b) shows mean 
over Brazil 

 

Figure 2.3 shows how total vegetation carbon changes with and without land-use 

change. Here we can see that globally with LUC, vegetation carbon decreases to 

a minimum around 1966, and then starts to recover. Without LUC, vegetation 

carbon increases throughout the run. Over Brazil however, there is a continual 

decrease in vegetation carbon, reflecting the continuous trend of LUC shown in 

Figure 2.1. in terms of mean carbon per square meter, this has a more significant 

impact on vegetation carbon in Brazil compared to the global trend. 

a b  

Figure 2.3: Time series of vegetation carbon  
Time series of vegetation carbon 1860-2015 from JULES, with (red) and without (black) 
land-use change, globally (solid lines) and over Brazil (crosses). Panel (a) shows mean 
change (kgC/m2), panel (b) shows total carbon (PgC).  

 

Figure 2.4 shows the mean change in soil carbon over time. Here we can see 

that proportionally the global change with land-use is not large compared to no 
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land-use, however there is a substantial increase in soil carbon over Brazil with 

land-use (top panel). The difference in total carbon at present day is 

approximately 12PgC over Brazil and approximately 20PgC globally.   

 

a  

b c  
Figure 2.4: Time series of soil carbon  
Time series of soil carbon 1860-2015 from JULES, with (red) and without (black) land-use 
change, globally (solid lines) and over Brazil (crosses). Panel a shows mean change 
(kgC/m2), bottom panels show total carbon (PgC) for Brazil (b) and globally (c)  

 

Figure 2.5 and Figure 2.6 show similar trends of productivity. Both GPP and NPP 

are proportionally much higher in Brazil than the global mean, and again LUC has 

more of an impact on the mean (totals also shown for context).  
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a b  

Figure 2.5: Time series of Gross Primary Productivity (GPP) 
Time series of GPP 1860-2015 from JULES, with (red) and without (black) land-use change, 
globally (solid lines) and over Brazil (crosses). Panel (a) shows mean change (kg/m2/yr), 
panel (b) shows total carbon (PgC)  
 

a b  

Figure 2.6: Time series of Net Primary Productivity (NPP)  
Time series of NPP 1860-2015 from JULES, with (red) and without (black) land-use change, 
globally (solid lines) and over Brazil (crosses). Panel (a) shows mean change (kg/m2/yr), 
panel (b) shows total carbon (PgC)  

 

According to IPCC definitions23, the Gross Primary Productivity (GPP) refers to 

the total amount of carbon fixed in the process of photosynthesis by plants. The 

NPP refers to the net production of organic matter which is equal to GPP minus 

autotrophic (plant) respiration. Net Ecosystem Production (NEP) is the net 

accumulation of carbon by an ecosystem, which is equal to NPP minus 

heterotrophic (soil) respiration. The Net Biome Production (NBP) is the net 

production of organic matter per biome, which is calculated as NEP minus carbon 

loss (NPP minus soil respiration and the total of the loss of carbon from the wood 

product pools). 

                                            
23 IPCC LUC: http://www.ipcc.ch/ipccreports/sres/land_use/index.php?idp=24 



89 
 

We can assess the NBP (Figure 2.7 and Table 2.2) to show how much carbon is 

accumulated in a system, after accounting for loss from harvesting and 

respiration. We can see that there is an overall increase in NBP globally and that 

this is larger without land-use change, whereas there is a net decrease in NBP 

over Brazil and this is larger with land-use change. 

 a b  

c d  

Figure 2.7: Time series of Net Biome Production (NBP) 
Time series of NBP 1860-2015 from JULES, with (red) and without (black) land-use change, 
globally (left column) and over Brazil (right column). Top row shows mean NBP (kgC/m2), 
bottom row shows total NBP (PgC). 
 
 
Table 2.2: Summary of results for NBP, with and without land-use change from JULES 

PgC Without land-use change With land-use change 

 Global Brazil Global Brazil 

Total 2016 0.76 -0.39 0.14 -0.76 

Change 
1861 to 
2016 

0.92 -0.23 0.30 -0.60 

 

From Figure 2.8 below we can see more detail of how LUC affects different 

vegetation types over time. For broadleaf and needleleaf trees, with land-use 

changes over time we see a gradual decline in tree cover fraction. As this occurs, 
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we see a corresponding increase in C4 grasses. We also see a more substantial 

decrease in shrub cover with LUC, and a large increase in C3 grasses. We know 

that the growth of C3 and C4 grasses represents the increase in crops and 

pasture lands, and this analysis now gives more insight into the distribution 

across the different PFTs with the addition of land-use.  
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Figure 2.8: Global mean change in fraction of Plant Functional Type (PFT) over time.  
BL = broadleaf (red), NL = needleleaf (yellow), C3 = C3 grasses (dark blue), C4 = C4 grasses (light blue), Sb = shrubs (green). Dotted lines 
represent vegetation fraction without land-use change from JULES
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TRENDY: Multi-model analysis 

I perform a multi-model review of the carbon contribution from land-use across 

the TRENDY models, as context for the JULES output. Here I use Brazil as a 

case study, using five ecosystem regions: Atlantic Forest, Amazon forest, 

Pantanal wetland, Cerrado and Caatinga. 

Not all of the models in TRENDY have available land-use data, so here I use 

results from 6 models: CABLE, DLEM, ISAM, LPJ-GUESS, VEGAS, and JULES. 

Table 2.3 below shows the impact of LUC on the carbon balance of each 

ecosystem over the historical period (1860-2015), calculated as S3 - S2, where 

negative results show land-use emission (mean rate of carbon loss due to LUC, 

in PgC/yr).   

Table 2.3: Carbon flux for each TRENDY model from LUC (PgC/yr), 1860-2015 

 
Atlantic 
Forest 

Amazon Pantanal Caatinga Cerrado 

           

CABLE -2.44168 -3.6511 -0.40663 -0.32488 -9.27507 

           

DLEM -5.29373 -2.02379 -0.12549 -0.18984 -4.26964 

           

ISAM -6.21358 -8.1601 -0.1018 -0.31383 -3.58486 

           

LPJ_GUESS -7.67722 -4.1563 -0.84143 -0.11815 -14.3983 

           

VEGAS -3.19863 1.75657 0.04636 -0.08492 -1.70009 

           

JULES -4.91821 -3.21025 -0.9709 -0.04072 -11.6607 

 

Figure 2.9 below shows the uncertainty range across the models. The largest 

potential source of emissions as a result of LUC is in the Cerrado region, which 

also shows the largest uncertainty range across the models. The large 

uncertainty in carbon-climate feedbacks across the models is likely to be 

associated with the different sensitivities of simulated terrestrial carbon cycle 
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processes to changes in the climate and CO₂, as well as different approaches to 

simulating processes such as nutrient limitation, land-use and recovery. A 

potential factor here could also be the inclusion of fire in the models. Fire is not 

accounted for as a separate process in JULES for example, which has one of the 

highest rates of emissions from land-use change. Fire is included in the VEGAS 

model (Table 2.1), which has the lowest rate of land-use emissions from this area 

(Table 2.3). The Cerrado is a high fire danger region due to the hot, dry climatic 

conditions, so we could expect to see a contribution to emissions from fire rather 

than land-use in those models that include this as a separate process.  

 

  

Figure 2.9: Uncertainty range of carbon loss due to land-use change in TRENDY models 
Carbon loss (PgC/yr),1860-2015 

 

Considering JULES as an example of a model showing high emissions from the 

Cerrado, we can see that this region had high pre-industrial vegetation carbon 

and together with large changes in land use (Table 2.4), this results in high carbon 

flux values attributed to land-use change (Table 2.3). 
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Table 2.4: Change in agricultural fraction and vegetation carbon for JULES 

Agricultural fraction (gridbox fraction) 

  
Atlantic 
Forest 

Amazon Pantanal Caatinga Cerrado 

1860 0.031613 0.000679 0.020501 0.02305 0.026535 

2015 0.548756 0.089445 0.711089 0.548756 0.543046 

Change 0.517143 0.088766 0.690588 0.525705 0.516511 

Mean vegetation carbon, S3 (kg/m2) 

  
Atlantic 
Forest 

Amazon Pantanal Caatinga Cerrado 

1860 12.40017 12.77756 10.20659 0.580391 11.67313 

2015 5.465484 13.45711 0.580391 0.612066 5.857612 

Change -6.93469 0.679555 -9.6262 0.031675 -5.81552 

Total vegetation carbon, S3 (PgC) 

  
Atlantic 
Forest 

Amazon Pantanal Caatinga Cerrado 

1860 17.00827 59.97019 2.227475 0.498201 29.70806 

2015 7.496542 63.15961 0.984663 0.525391 14.9076 

Change -9.51173 3.189424 -1.24281 0.027189 -14.8005 

 

2.5 Future projections of land-use change in Brazil 

When modelling future climate, an essential factor to evaluate is the level of 

GHGs we are likely to see in the future, in order to understand how the climate 

may change and what impact this will have on temperature and other factors. The 

levels of future emissions are highly uncertain, with many different variables that 

could change and interact in numerous complex ways, including policy options, 

technology, population levels, and land-use changes. The IPCC therefore 

introduced a number of emission scenarios that represent plausible pathways of 

how GHG concentrations may change over time (see Appendix 2).  

RCP scenarios describe future releases of GHGs, aerosols, and other pollutants 

into the atmosphere and, along with information on LUC, provide inputs to climate 

models. They are based on assumptions about driving forces such as patterns of 

economic and population growth and technology development. They assist in 

climate change analysis, including climate modelling and the assessment of 

impacts, adaptation, and mitigation. There are large uncertainties around the 

future scenarios of LUC in the Amazon however (Aguiar et al., 2016), and multiple 

different estimates exist.  
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For IPCC AR5, four main future RCP scenarios were used from high mitigation 

(RCP 2.6), to business-as-usual with high emissions and no mitigation (RCP 8.5). 

These were based on previous IPCC SRES scenarios, but included the possibility 

of mitigation. Broad global assumptions around LUC are made within the 

scenarios, as outlined in detail in Appendix 2. Here I present a review of LUC 

over Brazil using these RCPs.  

As outlined in Chapter 1, LUC has affected 1.4 million km², around 20% of the 

Amazon basin (Castello and Macedo, 2016). The peak of deforestation in 2004 

was approximately 28,000 km²/yr (AMAZALERT-D4.2) resulting from cattle 

ranching (Nepstad, 2006) and soybean production (Settele et al., 2014). Palm oil 

is one of the main biofuel crops, and while its current use is still relatively small, 

Brazil has the largest potential for expansion in South America as around half of 

the Amazon is suitable for its cultivation (Butler and Laurance, 2009). 

Using the RCP scenarios as an example of potential future pathways of land-use, 

LUC is not projected to increase directly in line with emissions in the future but 

reflects more complex assumptions (see Appendix 2). In RCP 2.6 and 8.5 LUC 

continues to increase to 2100 resulting from increasing use of croplands to feed 

a rapidly expanding population in RCP 8.5, and an increase in the use of biofuels 

in the high-mitigation scenario, RCP 2.6. Conversely, LUC is projected to decline 

in RCP 6.0 and 4.5, based on the assumption that there will be a decreasing use 

of grasslands (and croplands in RCP 4.5) due to dietary changes, and 

reforestation resulting from climate mitigation policies (Settele et al., 2014; see 

Appendix 2). 

 

Here I use the output from Met Office Earth System Model HadGEM2-ES to 

understand how land-use has changed up to present day, and to see how 

assumptions made in RCP scenarios affect projections of LUC into the future. 

This will provide a basis for comparison with LUC scenarios when implemented 

in JULES.  

The datasets are based on the Hurtt et al. (2011) harmonized datasets that were 

used in CMIP5 and IPCC AR5, which capture land-use transitions between 

cropland, pasture, primary land and secondary (recovering) land, including the 

effects of wood harvest and shifting cultivation, as well as transitions from/to 
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urban land. The dataset estimates fractional land-use patterns annually for 1500-

2100, spatially gridded at 0.5° x 0.5° resolution. It should be noted that in the 

original Hurtt dataset, and most other CMIP5 models, the areas of crop and 

pasture land are treated separately and vary over time. However, in HadGEM2-

ES they are added together and referred to as the ‘Disturbed Fraction of 

Vegetation’ (DFV). In other words, HadGEM2-ES assumes that any loss in trees 

or shrub equates to crop and pasture growth, and treats them together as 

‘grasses’. This may potentially mask important variation, as not all pasture is 

necessarily grass and may still include trees or shrubs, which could over-

emphasize deforestation (Andrews et al., 2017).  

In order to examine how LUC in Brazil varies over time based on RCPs, I analyse 

the DVF from HadGEM2-ES data. The graphs in Figure 2.10 show the historical 

trend of land-use globally and over Brazil, and I use the four RCPs to project how 

this may change over the rest of this century to 2100. 

 

a b  

Figure 2.10: Disturbed vegetation fraction by RCP scenarios 
Globally (a) and for Brazil (b), from HadGEM2-ES. Note different scales on Y axis. 

 

The historical simulations show a trend of increasing disturbance, in line with a 

move from primary forest land to agriculture both globally and in Brazil. In Brazil 

there is little disturbance up until 1920, where there is a sharp increase in 

deforestation. For the future projections, we can see a marked divide between 

RCP scenarios, where in RCP 2.6 and 8.5 LUC increases to 2100, but declines 

in RCP 6.0 and 4.5. This reflects the assumptions made in the RCP scenarios 

(see Appendix 2), of increasing use of croplands for agriculture to feed a rapidly 

expanding population in RCP 8.5, and an increasing conversion to crops for the 



97 
 

use of biofuels in the high-mitigation scenario, RCP 2.6. In the two intermediate 

emission scenarios we see decreasing use of grasslands (and croplands in RCP 

4.5) due to dietary changes and reforestation. 

To see how this change in DVF varies geographically, Figure 2.11 shows the 

global DVF at 1860, 2005 and 2100 for the four RCP scenarios, and Figure 2.12 

centres on Brazil to show this in more detail. 

 

Figure 2.11: Global disturbed vegetation fraction  
From HadGEM2-ES for 1860, 2005, 2100 and four RCP scenarios 
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Figure 2.12: Disturbed vegetation fraction for Brazil 
From HadGEM2-ES for 1860, 2005 and 2100 for four RCP scenarios  

 

It is interesting to note that the Amazon forest remains mostly in tact in the future 

projections, with most of the DVF located in the South of Brazil in the Cerrado 

region, Atlantic forest, and into Paraguay, Uruguay and Argentina. However there 

is some degradation evident in the Eastern Amazon in scenarios RCP2.6 and 

RCP8.5 (Marengo et al., 2018). In these scenarios therefore LUC doesn’t appear 

to be a major driver of forest loss in the future, however fire is not included in this 

and may be an important factor in determining future vegetation patterns.  

2.6 Conclusion 

The land and ocean absorb around half of the anthropogenic emissions of CO₂ 

every year, creating long term carbon sinks which are regulated through climate 

change and variability. We know that climate change is driven by anthropogenic 

activity, both directly through emissions but also through additional feedback on 

these carbon sources and sinks (Piao et al., 2013). Land-use change is an 

important element in this. Sitch et al. (2015) for example used a number of the 

TRENDY models to review the trends in regional sources and sinks, and 

concluded that the trend of increasing carbon uptake is driven by increasing NPP 
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primarily in the tropics. However that study did not include LUC, and 

recommended that further work should be undertaken to understand what impact 

LUC has on the carbon fluxes globally and regionally through time, as this is likely 

to have a significant impact on the results.  

Here I have focused on metrics of terrestrial carbon fluxes over the Brazil region 

compared to global means in order to understand how this large store of carbon 

has changed over the historical period with land-use change. The results have 

shown that the land is increasingly being converted from forest to agricultural 

land, at a faster rate than the global average. This has led to a substantial 

decrease in vegetation carbon (Figure 2.3). It is here that we see the importance 

of land-use change in model simulations leading to a change in the sign of carbon 

uptake, where vegetation carbon is simulated to increase over the historical 

period without land-use change, but when LUC is added in vegetation carbon 

decreases. This also leads to increased soil carbon. GPP and NPP also increase 

with land-use change, but when we analyse the overall carbon uptake including 

carbon losses through respiration and disturbance (NBP), we see that the overall 

trend for Brazil is a slight decrease, which is larger with LUC. This seems to 

support the conclusion of (Cox et al., 2000) that the disturbances in this region 

are offsetting the positive effects of CO₂ fertilisation.   

I have also shown the contributions to the carbon sink from different eco-regions 

in Brazil across the TRENDY models. This has offered an insight into the large 

uncertainties that still exist in the terrestrial biosphere across models, and has 

highlighted the Cerrado as a potentially important source of carbon. The Amazon 

biome still offers a potentially large carbon sink, but this also has the potential to 

become a source in adverse conditions such as during El Niño years (Cox et al., 

2000). 

The analysis of future land-use scenarios over Brazil show that there may be 

continued decreases in the carbon sink in this region as a result of climate and 

land-use change, especially in the high emission and high mitigation scenarios. 

This will underpin further work later in this thesis assessing the impact of future 

land-use and fire on the land surface in Chapter 5. 
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Chapter 3: Interactive INFERNO: fire-
vegetation interactions in JULES 

3.1 Background, motivation and initial testing 

As presented in Chapter 1, it has been well-documented that many models are 

still in the relatively early stages in dealing with land-use, LUC and forestry, and 

in particular, disturbances from fire, drought, and tree mortality are often not well 

characterised and treated crudely as constant disturbances (Nepstad et al. 2008; 

Costa and Pires 2010; Pan et al. 2011; Hirota et al. 2011; Coe et al. 2013; Brando 

et al. 2014; Ciais et al., 2013; Betts et al. 2015), or are not represented at all 

(Ciais et al., 2013; Flato et al., 2013; Collins et al., 2013). ESMs also do not 

account for alternative stable states such as tropical forest or savanna yet (Ciais 

et al., 2013), which is a possible outcome of change in the Amazon. This means 

there is low confidence in many of the future projections of land carbon storage.  

The aim of this research is therefore to develop the current status of fire modelling 

in order to improve the representation of vegetation and its disturbance, and 

create more robust projections of future changes.  

Here I advance the current fire modelling capability in JULES, by developing the 

diagnostic fire parameterisation model INFERNO as presented in Mangeon et al. 

(2016) into a coupled fire-vegetation model. This has been achieved by 

introducing a new disturbance term within JULES for mortality due solely to fire, 

resulting in vegetation mortality and incorporating the resultant release of carbon 

into the atmosphere and soil. 

The processes I have focused on developing here are the biogeophysical 

processes of vegetation cover, mortality and burnt area. I have therefore chosen 

to complete initial model development work in the JULES land surface model to 

test the interactions of fire and vegetation in a terrestrial capacity. This is the first 

necessary step before developing these processes into a fully coupled climate 

and Earth system model. I first undertake initial testing of the capability for 

coupling by simulating burnt area in a diagnostic form and comparing to present 

day vegetation cover. I then develop a basic coupling method by prescribing burnt 

area and assessing the impact on vegetation, before undertaking full modification 
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of the JULES model to include fire disturbance. I describe the coupling methods 

and represent this in the form of new equations for the JULES vegetation 

dynamics, and describe the tuning process undertaken as part of the coupling 

including tuning disturbance, burnt area by vegetation type, and dynamics 

relating to vegetation spreading. I then evaluate the simulation of present day 

vegetation with fire and land-use disturbance. I finish by exploring the implications 

of the new modelling capability for the focus region of Brazil.   

3.1.1 Initial simulations using INFERNO 

In its current form, INFERNO is a diagnostic fire model available in an offline land 

surface model. This means that the burnt area is calculated based on which areas 

of the land surface would burn given certain meteorological conditions, and given 

enough fuel and ignitions, but that the resultant area of fire occurrence does not 

affect the vegetation, atmosphere, climate or any other aspects of the Earth 

system. A diagnostic output of burnt area and emissions are provided by 

INFERNO, but this does not currently alter the vegetation cover. This is a 

necessary and important process to be able to represent in a land surface model 

for a number of reasons. One of the most important aspects of the land surface 

is the vegetation and soil cover, which affects the albedo, evapotranspiration, 

carbon stores, and circularly also affects subsequent fires through available fuel. 

In a fully interactive model these processes, together with fire emissions, would 

also affect the temperature, humidity, aerosols and organic matter, and radiative 

forcing. Furthermore, without a loss of fuel through fire occurrence, change in 

burnt area over time cannot be accurately represented. This makes the 

development of fire-vegetation coupling a top priority for JULES. 

Before undertaking model development within JULES, it is important to first 

assess the potential impact of coupling fire to vegetation, by reviewing the current 

simulation of vegetation and diagnostic of burnt area from INFERNO. Here I use 

the TRENDY (Sitch et al. 2015) project scenarios to review the present day 

vegetation fractions simulated by JULES (Table 3.1), focusing on the S2 (no land-

use change) scenario (Figure 3.1) and S3 (with land-use change) scenario 

(Figure 3.2). The primary changes to vegetation as a result of land-use change 

are a decrease of broadleaf vegetation in South America (Figure 3.3), a reduction 
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in shrub cover (except in the boreal region), and an increase in C3 - and to a 

lesser extent C4 -grasses. 

Table 3.1: TRENDY experiments 

 TRENDY experiment Forcings 

S0 Constant pre-industrial (1860) 

S1 CO2 

S2 CO2, Climate 

S3 CO2, Climate, land-use change 

 

Figure 3.1: S2 land cover from JULES 
2016 Fraction of land cover for 10 land cover types, S2 without land-use change, as 
modelled by JULES for the TRENDY 2017 project 

 

Figure 3.2: S3 land cover from JULES  
2016 Fraction of land cover for 10 land cover types, S3 with land-use change, as modelled 
by JULES for the TRENDY 2017 project  
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Figure 3.3 JULES simulations of broadleaf, South America 
2016 Fraction of broadleaf cover with no land-use change (left) and with land-use change 
(right) as modelled by JULES for the TRENDY 2017 project  

 

Compared to ESA observations (Figure 3.4) of land cover, the model has too 

much shrub, especially in the high latitudes, and C4 grass fraction is higher than 

observed, whereas the other PFTs are mostly too low in fraction and coverage. 

In particular needleleaf is lacking across the central Canada region in the model 

compared to observations. Broadleaf over South America is well modelled 

compared to this version of ESA observations when land-use is included (S3), 

but is too high without land-use (S2) (see also Figure 3.3).  
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Figure 3.4: Modelled and observed vegetation cover 
ESA CCI observations (left column), JULES 2016 modelled vegetation with land-use 
change (centre column), and difference (right column) for fraction of Broadleaf (BL), 
Needleleaf (NL), C3 grasses (C3), C4 grasses (C4), Shrub (Sb) and Bare Soil (BS) 

 

Below I review the output of the diagnostic burnt area using all three ignition 

modes for comparison, without LUC. Mode 1 refers to constant ignitions, mode 2 

refers to varying lightning ignitions, and mode 3 refers to varying population and 

lightning ignitions (as described in Mangeon et al., 2016). Constant ignitions are 

set to a global average of 1.67 ignitions km-2 month-1; 1.5 ignitions km-2 month-1 

are attributed to humans, and 0.17 ignitions km-2 month-1 are attributed lightning 

ignitions derived from a multi-year annual mean of 2.7 strikes km-2 year-1 

(Huntrieser et al., 2007) and assuming 75% of the strikes are cloud-to-ground 

(Prentice and Mackerras, 1977). For mode 2, human ignitions remain at 1.5 

ignitions km-2 month-1 but lightning ignitions are prescribed from an ancillary file 

and vary spatially and temporally, with all strikes assumed to ignite a fire. For 

mode 3, ignitions depend on spatially and temporally varying lightning and 

population data through a function which represents both ignition and 
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suppression based on population density (Venevsky et al., 2002; Pechony and 

Shindell, 2009), as follows. 

IT = (IN + IA)* fNS   

(1) 

IA = k(PD) PD α 

(2) 

Where k(PD) = 6.8*PD-0.6 , and α = 0.03 (representing number of potential 

ignitions per person per month per km2). Both natural and anthropogenic ignitions 

can be suppressed, and the non-suppressed fraction (fNS) is described as: 

fNS = 7.7 (0.05 + 0.9 x e-0.05 PD) 

(3) 

where 7.7 is used as a scaling factor for calibration to MODIS data (Pechony and 

Shindell, 2009; Mangeon et al., 2016), and where: 

IT : Total ignitions (Ignitions km-2 month-1) 

IN : Natural ignitions (Ignitions km-2 month-1) 

IA : Anthropogenic ignitions (Ignitions km-2 month-1) 

PD : Population density (People km-2) 

Varying ignitions therefore refers to spatially and temporally varying ignitions 

based on lightning and population density; the function as shown in Figure 3.5 is 

based on the assumption that at very low levels of population there will be no 

anthropogenic ignition, which increases as population increases to a maximum 

point whereby the suppression curve reflecting active fire management, 

suppression and urbanisation reduces ignitions.  
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Figure 3.5: Function of ignitions relating to population density in INFERNO 

 

 

Here I use one PFT, broadleaf vegetation, for comparison. Figure 3.6 shows plots 

of burnt area from JULES-INFERNO mode 1 (constant ignitions). The top row of 

plots show the burnt area as a fraction of gridbox. The middle row of plots show 

burnt area by PFT for broadleaf. If vegetation were allowed to grow in these 

regions, climatologically the areas marked in red are where high fire incidence 

rates would occur. However after natural competition and land-use, there is less 

vegetation in these areas and the bottom row of plots take account of available 

fuel (burnt area by PFT multiplied by broadleaf fraction), showing decreased burnt 

area. The desert regions of the Sahara and Kalahari in Africa are a good example 

of this; these are areas that provide favourable fire conditions, with hot, dry 

weather. If there were vegetation and ignition in these areas, fuel would burn 

readily. However there is little available fuel which is why we see little burnt 

fraction of vegetation in the bottom row of plots.  
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Figure 3.6: Output from INFERNO (mode 1)  
From top to bottom: Annual mean burnt area fraction; potential area of broadleaf that 
would burn if there were sufficient fuel available; burnt fraction of available broadleaf 
vegetation. All means shown globally (left panels) and over South America (right panels) 
for one year (2013) 

 

Figure 3.7 shows plots of burnt area from JULES-INFERNO mode 2 (constant 

human ignitions, varying natural ignitions). There are no obvious differences 

between mode 1 and mode 2 in terms of simulated burnt area. 
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Figure 3.7: Output from INFERNO (mode 2) 
From top to bottom: Annual mean burnt area fraction; potential area of broadleaf that 
would burn if there were sufficient fuel available; burnt fraction of available broadleaf 
vegetation. All means shown globally (left panels) and over South America (right panels) 
for one year (2013) 

 

Compared to modes 1 and 2, mode 3 (Figure 3.8) simulates more potential burnt 

area of broadleaf vegetation, as well as mean burnt area. This implies that human 

ignitions make an important contribution to projected burnt area in the model. 

After taking account of vegetation however, the simulated burnt area is the same 

as in modes 1 and 2.  
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Figure 3.8: Output from INFERNO (mode 3) from top to bottom 
Annual mean burnt area fraction; potential area of broadleaf that would burn if there were 
sufficient fuel available; burnt fraction of available broadleaf vegetation. All means shown 
globally (left panels) and over South America (right panels) for one year (2013) 

 

Comparing annual mean burnt area as modelled by diagnostic INFERNO to 

GFED observations (Figure 3.9), it is apparent that although the general spatial 

pattern of burnt area is captured by the model, there is a larger area burnt in the 

model projections than in the observations. Certain areas show particularly high 

burnt area compared to observations, including India, the east coast of Australia, 

Central/Western USA and South America. This is something to consider when 

coupling the model with vegetation, as this may have a negative impact on the 

vegetation cover in these areas.  

 

Figure 3.9: Modelled and observed burnt area fraction  
As modelled by diagnostic INFERNO with constant ignitions (left) and observations from 
GFED4.1s (right), annual mean 2009-2014 
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3.1.2 Using prescribed burnt area  

The first stage of the fire-vegetation coupling has been to update the disturbance 

term in JULES. Previously all vegetation disturbance was combined into one 

term. This included death due to natural mortality of vegetation, insects and 

diseases, windfall, and fire, among other causes. In order to separate out fire as 

a separate disturbance, I have now separated this into ‘disturbance from fire’, and 

‘all other disturbance’. I have added a switch so that fire can either be prescribed 

via an ancillary file (e.g. output from a run with INFERNO, or using burnt area 

data from MODIS or GFED), or if there is no ancillary file available in the run then 

the burnt area will be taken straight from the INFERNO module as the model 

runs.  

Figure 3.10 shows initial results of disturbing the vegetation using prescribed 

burnt area from an ancillary file simulated by INFERNO. This removes broadleaf 

vegetation around the South of the Amazon, and C3 grass and shrubs increase 

around the same area. This is as expected, considering the burnt area in 

INFERNO is high in this region. Some needleleaf is also reduced in the boreal 

regions, and again shrub increases here also. Compared to observations, this 

means that vegetation is lower for trees, but grasses and shrubs are higher. This 

is likely to be a result of the quicker regrowth time of these PFTs in the model 

after disturbance.  

 
Figure 3.10: JULES Initial simulations with prescribed burnt area 
Fraction of vegetation for each PFT (left to right, top to bottom: broadleaf, needleleaf, C3 
grass, C4 grass and shrub) 
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Overall the results from the initial coupling are successful, which suggests that 

full coupling will also be successful. The original disturbance term will now need 

to be reduced to account for the new fire disturbance which has been introduced 

as a separate term.  

3.1.3 Coupling fire and vegetation 

The second stage of the coupling has been to introduce a new disturbance term 

in the dynamic vegetation scheme TRIFFID, to reduce the vegetation carbon as 

a result of fire disturbance, and further reduction of carbon in the soil carbon 

layers to represent burning litter. These modifications have now been accepted 

into the JULES trunk at version 4.8, as described in the next section. 

3.2 Representing disturbance in JULES 

The following is based on a manuscript accepted for publication in GMD (Burton 

et al., 2019), with additional information on the tuning work undertaken in 

developing the interactive fire model.  

3.2.1 Abstract 

Disturbance of vegetation is a critical component of land-cover, but is generally 

poorly constrained in land surface and carbon cycle models. In particular, land-

use change and fire can be treated as large-scale disturbances without full 

representation of their underlying complexities and interactions. Here we 

describe developments to the land surface model JULES (Joint UK Land 

Environment Simulator) to represent land-use change and fire as distinct 

processes wich interact with simulated vegetation dynamics. We couple the fire 

model INFERNO (INteractive Fire and Emission algoRithm for Natural 

envirOnments) to dynamic vegetation within JULES and use the HYDE (History 

Database of the Global Environment) land cover dataset to analyse the impact of 

land-use change on simulation of present day vegetation. The explicit 

disturbances provide important contributions to the realistic modelling of 

vegetation on a global scale, although in some areas fire and land-use together 

result in over-disturbance. Overall, disturbance generally improves the simulation 

of vegetation compared to observations, with grasses showing a particularly large 

improvement (biases reduced from -66% to 13% respectively), but trees are often 
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represented as too sparse. This work provides a substantial contribution towards 

representing the full complexity and interactions between land-use change and 

fire that could be used in Earth System Models.  

3.2.2 Introduction 

JULES (Joint UK Land Environment Simulator) is a land surface model (LSM) 

which simulates surface fluxes of water, energy and carbon, along with the state 

of terrestrial hydrology, vegetation and carbon stores (Clark et al., 2011; Best et 

al., 2011). It forms the land-surface component in the Met Office Unified Model 

for Numerical Weather Prediction, as well as in the latest Climate and Earth 

System Models of the Hadley Centre family including HadGEM3 (Senior et al., 

2016) and UKESM1, and can also be used as a stand-alone LSM, used to 

contribute to international scientific studies such as the Global Carbon Project 

and TRENDY (Trends in net land atmosphere carbon exchange model 

intercomparison project). As documented in Cox (2001) and Clark et al. (2011), 

vegetation cover was previously simulated as a function only of competition 

between plant species, and a large-scale, spatially-constant disturbance term. 

Here we document updates to the calculation of vegetation cover, including 

spatially and temporally varying changes in land-use, and introduce a new 

disturbance term from fire based on the fire model INFERNO (Mangeon et al., 

2016) as separate from the large-scale disturbance factor for the first time in 

JULES. We use these processes together with dynamic vegetation to address 

the impact on global vegetation cover.  

JULES can be used in a number of different configurations depending on the 

focus of research, and parameters can be switched on or off by the user 

accordingly. For example JULES can be used for studying river routing and 

runoff, snow cover and permafrost, or crop modelling inter alia. In this context, it 

is useful for the community to develop standard configurations that can be used 

widely, and are thus easily comparable. In this study we use a standard JULES 

configuration with dynamic vegetation, and focus on the impact of disturbance 

from fire and land-use on the simulation of vegetation cover.    

Land-use change and fire are two of the most important processes which affect 

vegetation cover. These disturbances affect vegetation dynamics (e.g. Lasslop 

et al., 2016), atmospheric chemistry (Crutzen et al., 1979), the hydrological cycle 
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(Shakesby and Doerr, 2006) and the carbon cycle (Prentice et al., 2011), as well 

as surface albedo (López-Saldaña et al., 2015) and feedbacks on radiative 

forcing. Each year around 4% of vegetation is burnt (Giglio et al., 2013), releasing 

approximately 2 PgC which equates to around a quarter of emissions from fossil 

fuel combustion (Hantson et al., 2016; van der Werf et al., 2017). Land-use and 

land-cover change (LULCC) can include clearance through fire, as well as other 

forms of deforestation, conversion of natural vegetation to agricultural land, and 

abandonment of agricultural land with subsequent forest regrowth. At least 50% 

of the ice-free land surface has been affected by land-use activities over the last 

300 years; 25% of global forest area has been lost, and agriculture now accounts 

for around 30% of the land surface (Hurtt et al., 2011). LULCC can result in 

changes to biogeochemical and biophysical properties of the Earth system, 

including changes to surface fluxes of radiation, aerodynamic roughness, heat 

and moisture, evaporation patterns, soil moisture and latent heat (Betts 2005). 

LULCC often represents deliberate conversion from one land cover type to 

another, such as forests to cropland, and this can be long-lasting until the area is 

subsequently abandoned based on various socio-economic conditions and 

decision making processes (Turner et al., 1995).  Fires may be used in a similar 

way for land conversion, or otherwise may be unintentional (natural or escaped 

fire), and thus recovery may be more temporally variable than with LULCC.   

LULCC is known to be one of the most important influencing factors in the decline 

of forests in several ways: directly through deforestation and canopy thinning 

(cutting as well as use of fire for clearance), and indirectly through fire-leakage 

which can extend forest losses into much larger areas than planned. 

Fragmentation is also an important contributing factor, causing increased tree 

mortality and carbon losses near the forest edges (Laurance et al., 2000), and 

increased risk of fire spread into the forest (Soares-Filho et al., 2006; Coe et al., 

2013; Good et al., 2014). This can be the result of land clearance for agriculture, 

and for urban expansion. For example there is a clear correlation between 

distance to roads and increased fire danger in Amazonia (Cardoso et al., 2003). 

Even when deforestation itself declines, fire incidence can remain high due to 

increased agricultural frontiers where accidental fires burn out of control (Aragão 

and Shimabukuro 2010; Cano-Crespo et al., 2015) exacerbated by drought 

conditions (Aragão et al., 2018). Small-scale forest degradation is sometimes 
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included in the definition of LULCC and can be an important contributor to carbon 

and biomass loss, however more frequently these contributions are below the 

level of detection and are often not accounted for in estimates of LULCC (Watson 

et al., 2000; Arneth et al., 2017). Similarly small fires are difficult to detect by 

conventional satellite methods (Randerson et al., 2012), leading to potential 

underestimations in LULCC and emission reporting.  

The interaction between fire and managed agricultural land is complex. Small 

scale croplands are often burnt to clear land before planting or harvesting, and 

can also be burnt after harvest to dispose of waste, where pasture lands may be 

burnt to fertilise the soils between crops (Rabin et al., 2017a). Agricultural land 

may therefore be an important contributing factor in fire emissions, and fire 

ignition. Conversely, larger agricultural lands may provide a fire break, where 

more active fire management takes place to prevent fires from spreading into 

crop areas unintentionally, and it has been shown that burnt area reduces as 

cropland area increases (Bistinas et al., 2014). Andela et al. (2017) has shown 

that fire occurrence has been reducing in many regions because of agricultural 

expansion and intensification, making fuel less readily available and decreasing 

ignitions.  

While human ignitions are the main causes of fires in tropical (Cochrane, 2003) 

and Mediterranean (Mooney et al., 1977) regions, natural fires from lightning and 

volcanic activity are also important for shaping vegetation cover in temperate 

(Ogden et al., 1998) and boreal regions (Johnson, 1992; Veraverbeke et al., 

2017). In addition, climate-induced land cover change has been shown to be as 

important in the long-term as anthropogenic LULCC (Davies-Barnard et al., 

2015), and can continue to fluctuate for decades before a committed state is 

realised (Pugh et al., 2018), making it particularly important to incorporate 

dynamic vegetation processes in modelling (Seo and Kim., 2019). While previous 

modelling studies have considered the impact of each of these processes (e.g. 

Sitch et al., 2015; Betts et al., 2015; Seo and Kim, 2019), considering fire, LULCC 

and dynamic vegetation together is still a relatively recent development.  

Future fire activity will depend on a combination of both anthropogenic and 

climatic factors. Forest susceptibility to fire is projected to change little for low 

emissions scenarios, but substantially for high emissions scenarios (Settele et 
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al., 2014; Burton et al., 2018). Because the frequency of fires increases with 

temperature, the IPCC AR5 report concluded that the incidence of fires is 

expected to rise over the 21st Century (Flato et al., 2013) although there is low 

agreement in the models on a regional scale due to the complexity of interactions 

and feedbacks and lack of proper representation in models (Settele et al., 2014). 

However while the meteorological conditions may become more conducive to fire 

danger in the future, the effects of future LULCC will also have a direct impact on 

how fire danger will change. LULCC can have important impacts on regional 

climate, and has been shown to reduce evapotranspiration (Cochrane and 

Laurance 2008), decrease precipitation and induce drought (Bagley et al., 2014), 

which can in turn initiate abrupt increases in fire-induced tree mortality (Brando 

et al., 2014; Castello and Macedo 2016). The interaction of LULCC, climate 

change and fire is complex (Coe et al., 2013) and in order to understand the 

multiple feedbacks comprehensively, it is necessary to consider all of these 

elements together (Aragão et al., 2008). To do this we need to be able to 

represent these processes explicitly within our models.  

Currently the representation of disturbance, in particular fire, drought and tree 

mortality in models is poorly constrained, as identified in the most recent IPCC 

report (Ciais et al., 2013; Flato et al., 2013). The purpose of this paper is to 

document the developments to JULES to include the explicit representation of 

fire and LULCC and their coupling to vegetation dynamics, and to evaluate the 

impact of these developments on the simulation of vegetation within the model, 

with the aim of ultimately being able to represent these processes within a fully 

coupled Earth System Model. We begin by describing how dynamic vegetation is 

already simulated in JULES as documented in Cox (2001) and Clark et al. (2011), 

before describing the new processes of fire and land-use. We then outline the 

methods used in this study for simulating vegetation cover in a number of 

experiments, and describe the benchmarking approach used to quantify the 

change. We present results showing the impact of fire and LULCC on vegetation 

cover, which generally decreases woody vegetation cover and increase grass 

cover, contributing to an improved simulation of vegetation compared to 

observations. 
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3.2.3 Model description and developments 

3.2.3.1 Model description 

This section describes the representation of disturbance in the land surface 

model JULES, described in Clark et al. (2011) and Best et al. (2011). This is a 

community model, developed from the Met Office Surface Exchange Scheme 

(MOSES), and will act as the land surface component of the new Earth System 

Model UKESM. The model can be used offline, forced by observational data. The 

configuration considered here is the Carbon Cycle configuration of JULES, with 

dynamic vegetation.  

JULES uses TRIFFID (top-down representation of interactive foliage and flora 

including dynamics) for modelling dynamic vegetation. TRIFFID models 

vegetation dynamics including the soil carbon, and the structure and coverage of 

five plant functional types (PFTs) within each gridbox, broadleaf tree, needleleaf 

tree, C3 grass, C4 grass, and shrub (Cox et al. 2000). More recent developments 

to JULES have included the option of modelling an extra 4 PFTs (Harper et al. 

2016; Harper et al., 2018). TRIFFID models carbon fluxes for each vegetation 

type using climate and atmospheric CO₂ concentration provided by ancillaries, 

and this accumulates to update vegetation and soil carbon on a 10 day timestep.  

The vegetation carbon density is related allometrically to changes in the balanced 

leaf area index (LAI) which in turn is separated into leaf (Lc), root (Rc) and stem 

(Wc) pools:  

Cv = Lc + Rc + Wc  

(1) 

The change in vegetation carbon is based on Net Primary Productivity (NPP) 

minus litterfall:  

𝑑𝐶𝑣𝑖

𝑑𝑡
 = (1 − 𝜆𝑖)Πi − Λ𝑙𝑖 

(2) 

Where λ represents the fraction of NPP allocated to PFT area expansion, Π 

represents NPP per unit of vegetated area of PFT i, and Λ represents litter (Clark 

et al. 2011). 
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The model uses species competition based on the Lotka-Volterra approach, 

populating the available land surface with expansion by a dominance hierarchy 

of trees, shrubs then grasses (Cox et al. 2000). Therefore the vegetation 

competition is represented by the change in fractional coverage of PFT i (𝑣𝑖) in a 

gridcell is: 

𝐶𝑣

𝑑𝑣

𝑑𝑡
=   𝜆 Π 𝑣∗  {1 − ∑ 𝑐𝑖𝑗

𝑗

𝑣𝑗} − 𝛾𝑣 𝑣∗𝐶𝑣 

(3) 

Where 𝑣∗ = MAX {v,0.01}. 𝑐𝑖𝑗 is the competition coefficient describing the effect 

of PFT i on j, and 𝛾𝑣 is a large scale disturbance term. A proportion of this NPP 

(λ) is used to increase the fractional coverage of a PFT and the remainder (1- λ) 

increases the carbon content of the existing vegetated area (equation 2) (Cox et 

al., 2001). 

Carbon and Nitrogen allocated to spreading allow the vegetation to expand onto 

bare ground. Where available area is limiting, the vegetation competes for space 

with some carbon being turned over as litter, and the competition code updates 

the vegetation fractions (𝑣𝑖 ) accordingly.  

Carbon is lost from the vegetation via a local scale litter term, as defined by:  

Λli = γlLc + γrRc + γwWc  

(4) 

Where γr and γw are constant turnover rates for root and stem carbon, and γl is 

a temperature dependent turnover rate of leaf carbon defined to be consistent 

with the phenological state. 

JULES was developed with one generic disturbance term to cover mortality from 

age, pests, disease, storms, and fire (γv), referred to as ‘g_area’. This included 

implicit fire disturbance, in a spatially constant turnover rate.  

In the original formulation all vegetation carbon turnover was considered litterfall. 

Total litterfall for each grid box is made-up of the area-weighted sum of the local 

litterfall from each PFT, along with the previously described large-scale 
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disturbance rate (γv), and a density dependent component from PFT competition 

for space (Clark et al., 2011): 

Λ𝑐 = ∑ 𝑣𝑗

𝑖

(Λ𝑙𝑖 + 𝛾𝑣𝑖𝐶𝑣𝑖 +  Πi ∑ 𝑐𝑖𝑗

𝑗

𝑣𝑗) 

(5) 

The carbon lost from the total litterfall 𝛬𝑐 is transferred to the soil carbon pool C𝑠. 

Some of this is broken down by microbial respiration and returned to the 

atmosphere as CO₂ (Clark et al., 2011): 

𝑑𝐶𝑠

𝑑𝑡
 = (Λ𝑐) −  𝑅𝑠  

(6) 

The effect of land-use on vegetation distribution is included by modifying the 

competition term of equation 3 (Burton et al., 2019). In the competition term, cij is 

zero for dominant PFTs, meaning the whole gridbox is available for PFT i to 

expand into. For non-dominant PFTs, cij is 1 and expansion is scaled by the 

fraction of the gridbox where PFT i is dominant. Land-use is also represented by 

a limitation to the space available for a PFT to expand into. A fraction of each 

gridbox is prescribed as the “disturbed fraction”, which represents the area 

covered by agriculture, with no distinction between cropland and pasture being 

made. When land-use is added, we have: 

𝑑𝑣𝑖

𝑑𝑡
 =

𝜆Π𝑣∗

𝐶𝑣𝑖
{1 − 𝛼𝑎𝑖 − ∑ 𝑐𝑖𝑗

𝑗

𝑣𝑗} − 𝛾𝑣 𝑣∗ 

(7) 

Where α is the disturbed fraction and ai is 1 for non-woody PFTs and 0 for woody 

PFTs. The three woody PFTs (broadleaf trees, needle-leaf trees and shrubs) are 

prevented from growing in the disturbed fraction, while the two grass PFTs (C3 

grass and C4 grass) can grow anywhere in the gridbox. Grass PFTs growing in 

the disturbed fraction are interpreted as agricultural grasses, although they are 

physiologically identical to “natural” grasses. α can increase or decrease over 
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time. As α increases, first “natural” grasses are relabelled as “agricultural” 

grasses, then an area of woody PFTs is replaced by bare soil, which can be 

replaced by the non-woody PFTs over time if they are viable. As α decreases, an 

area of “agricultural” grasses is relabelled as “natural” and becomes available for 

woody PFTs to expand into. 

3.2.3.2 Model developments 

Until now, JULES has not included fire as a separate disturbance. Here I have 

developed the model so that fire is separated into an independent disturbance 

which reduces the vegetation carbon pool accordingly. The carbon flux as a result 

of fire is calculated in a similar way as LULCC, although fire differs in the respect 

that it is an instantaneous occurrence based on fire danger conditions and 

ignition, whereas LULCC is maintained as agricultural fraction of land over time.  

The disturbance from fire is calculated via the diagnostic fire model INFERNO 

which was recently implemented in JULES (Mangeon et al. 2016). This is a 

reduced-complexity global fire model, designed to represent fire variability at 

large scales. The model uses flammability, ignition and fuel to diagnose burnt 

area. Burnt area is accumulated to the TRIFFID timestep and used to calculate 

the fire disturbance term.  

The effect of fire on vegetation distribution is included by modifying the 

disturbance rate, γv. Previously disturbance due to fire was implicitly included in 

γv, along with mortality due to pests, windfall and many other processes. Fire 

disturbance, βi, is included as a PFT-dependent burnt area which can vary in 

space and time. βi is calculated within JULES by the INFERNO fire model. Now 

that fire is explicitly represented, γv must be reduced accordingly, hence the 

representation of fire does not necessarily increase mortality, but makes it 

spatially and temporally variable. Table 3.2 shows the standard values of γv 

implicitly including fire disturbance. The developments to γv to account for fire 

disturbance will be described in section 3.2.4. 
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Table 3.2: The original disturbance rate, γv, implicitly including fire disturbance  

PFT Broadleaf 

Tree 

Needle-

leaf Tree 

C3 Grass C4 Grass Shrub 

Standard γv 

including 

implicit fire 

(360 days)-1 

0.009 0.0036 0.10 0.10 0.05 

 

 

The vegetation competition equation can now be updated with fire and land-use 

disturbance: 

𝑑𝑣𝑖

𝑑𝑡
 =

𝜆Π𝑣∗

𝐶𝑣𝑖
{1 − 𝛼𝑎𝑖 − ∑ 𝑐𝑖𝑗

𝑗

𝑣𝑗} − (𝛾𝑣 + 𝛽𝑖) 𝑣∗ 

(8) 

The calculation of burnt area depends on soil carbon density, Cs, providing 

additional mechanisms by which fire and land-use can feedback onto vegetation 

distribution. The coupling of fire and the carbon cycle includes a direct impact of 

fire on Cs; some soil carbon is burnt, resulting in a flux of carbon from the soil to 

the atmosphere. The burnt soil carbon flux is diagnosed in INFERNO and we now 

allow the flux to effect the evolution of Cs. The carbon cycle in JULES does not 

explicitly represent a litter carbon store, however the model includes four soil 

carbon pools and two of these pools are used here as proxies for flammable litter. 

The decomposable plant material soil carbon pool, Cdpm, and the resistant plant 

material soil carbon pool, Crpm, both receive the litter carbon flux from vegetation 

and have a relatively rapid turnover rates, making them reasonable proxies for 

the litter carbon store. The calculation of the burnt soil flux is based on the 

INFERNO diagnosis of burnt vegetation flux (equation 8 of Mangeon et al., 2016). 

𝑓𝑠 = (𝜇𝑚𝑖𝑛,𝑘 + (𝜇𝑚𝑎𝑥,𝑘 − 𝜇𝑚𝑖𝑛,𝑘)(1 − 𝜃)) 𝐶𝑘 ∑  𝛽𝑖𝑣𝑖

𝑖

 

(9) 



121 
 

The efficiency of soil burning is inversely proportional to the surface soil moisture, 

θ, with the values of the completeness of combustion parameters, μ, for each soil 

pool, k, being listed in Table 3.3. The burnt soil flux is proportional to the total 

available fuel, Ck, and the total burnt area, summed over all PFTs. 

Table 3.3: Completeness of combustion parameters 

Soil Carbon Pool Decomposable plant 

material, Cdpm 

Resistant plant material, 

Crpm 

μmin 0.8 0.0 

μmax 1.0 0.2 

 

Fire and land-use both affect the soil carbon store by altering the vegetation-to-

soil litter flux. Without fire or land-use, the litter flux comprises a local litter fall 

rate, Λl, representing the turnover of leaves, roots and stems, litter due to 

disturbances and litter due to competition. The total litter fall is defined by Clark 

et al. (2011) as (their equation 63): 

Λ𝑐 = ∑ 𝑣𝑖

𝑖

(Λ𝑙𝑖 +  𝛾𝑣𝑖𝐶𝑣𝑖 +  Πi ∑ 𝑐𝑖𝑗

𝑗

𝑣𝑗) 

(10) 

Including both fire and land-use disturbance terms produces: 

Λ𝐶𝑣𝐿𝑜𝑠𝑠 = ∑ 𝑣𝑖

𝑖

(Λ𝑙𝑖 +  (𝛾𝑣𝑖 + βi)𝐶𝑣𝑖 +   Πi ∑(𝛼𝑎𝑖 +  𝑐𝑖𝑗

𝑗

𝑣𝑗)) 

(11) 

ΛCvLoss represents the loss of vegetation carbon. The carbon that is not 

combusted following a fire enters the soil carbon pools and is split between Cdpm 

and Crpm according to PFT-specific parameters as described by Clark et al. 

(2011). To calculate the losses due to fire, the vegetation distribution (equation 

8) and vegetation loss (equation 11) are calculated with and without fire, and the 

difference between the two values of ΛCvLoss is attributed to the fire, following the 

same method as used for land-use change.   
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Carbon loss due to fire, ΛFire, is calculated by repeating equations 8 and 11 with 

no burnt area (β=0): 

Λ𝐹𝑖𝑟𝑒 = Λ𝐶𝑣𝐿𝑜𝑠𝑠 − ∑ 𝑣𝑁𝑜𝐹𝑖𝑟𝑒,𝑖

𝑖

(Λ𝑙𝑖 +  𝛾𝑣𝑖𝐶𝑣𝑖 +   Πi ∑(𝛼𝑎𝑖 +  𝑐𝑖𝑗

𝑗

𝑣𝑁𝑜𝐹𝑖𝑟𝑒,𝑗)) 

(12) 

Where vNoFire is the PFT area calculated using equation 8 with β=0. 13% of the 

vegetation killed by fire emitted as CO2 and the remainder enters the soil carbon 

pools (Li, Zeng and Levis 2012). All terms expressed in the above equations are 

summarised in Appendix 3.   

The figures below show some initial results for 5 plant functional types following 

this update. 

 

Figure 3.11: JULES vegetation fractions without (left) and with (right) fire. 
From top to bottom, PFTs are: broadleaf, needleleaf, C3 grass, C4 grass and shrub 
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Figure 3.12: JULES broadleaf fractions, with and without fire 

 

 

Figure 3.13: Plotted output of fire disturbance for each PFT  
JULES fire disturbance (g_burn) fraction by PFT. Left to right, top to bottom: broadleaf, 
needleleaf, C3 grass, C4 grass, and shrub 

 

Here interactive fire is working well, and following the pattern of burnt area that 

would be expected from INFERNO. The plots comparing fire to no fire (Figure 

3.11 and Figure 3.12) show that fire is primarily decreasing broadleaf and 

needleleaf vegetation, with some reduction in C4 grasses, and increasing shrub 

and C3 vegetation. The amount of disturbance is currently relatively high, so 
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further work is now required to tune this to observations. Some of this is likely to 

be due to double-counting of fire, within the existing ‘all disturbance’ term (γv) 

which should be reduced now fire is separated out.  

It should be noted that here burnt area is directly converted into vegetation 

mortality, as implemented in other simple schemes such as JSBACH (Lasslop et 

al., 2018), given that INFERNO calculates flammability based only on leaf carbon 

and DPM (Mangeon et al., 2016). There are no observational data available on 

scales relevant to global models that give information on the impact of fire on 

vegetation (Rabin et al., 2017) , which limits the ability to constrain this processes 

within models (Lasslop et al., 2018). However mortality is in fact likely to be highly 

variable depending on the duration, severity and intensity of the fire, the type of 

biomass burned and its resistance to fire, and the condition of the fuel (moisture 

level) inter alia. 

3.2.4 Tuning the fire model 

The uncertainties associated with fire modelling (see section 1.5.2) result in a 

range of potential values of projected burnt area. This range can be constrained 

to a certain extent by observations of burnt area, but there are also uncertainties 

associated with observations which should be taken into account (see section 

1.3.3). Adding fire as a new disturbance term into the model now results in 

changes to the vegetation distribution and vegetation fractions, which can also 

be tuned to observations.   

However, it should be noted that tuning the vegetation response is just one 

method of tuning the model with fire. Other methods could include tuning the 

emissions, burnt area, and ignitions. Here I focus on tuning the vegetation with 

the fire model for a number of reasons. Firstly the aim of this PhD is to understand 

the impact of fire on vegetation in JULES, and so modelling the vegetation 

fractions with accuracy for the historical period and present day narrows the 

range of uncertainty associated with future projections. Secondly, burnt area and 

emissions have already been tuned to some extent within the work of Mangeon 

et al. (2016) using GFED burnt area, and was shown to perform well against other 

fire models. Finally, there is still much uncertainty around the modelling of 

ignitions across the fire modelling community (see section 1.5.2) which is a 
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separate topic for research, so for now the best estimate for the calculation of 

ignitions based on the work of Pechony and Shindell (2010) is used here. 

There are a number of ways of tuning the model so that the results reflect 

observations of vegetation, to stay within a range of uncertainty:  

 Tuning disturbance 

Previously in JULES there was only one disturbance term ‘g_area’ (γ) 

which represented all disturbance to vegetation, including pests, disease, 

windthrow and also fire. Now there is a separate disturbance term for fire, 

the value of g_area needs to be reduced accordingly.  

 Tuning with average burnt area 

The average burnt area per PFT was heuristically defined in Mangeon et 

al. (2016), and therefore is associated with inherent uncertainty. This can 

be reduced or increased within JULES 

 Tuning Leaf Area Index 

‘LAI_min’ refers to a fraction (λ) of NPP that is used to increase the 

fractional coverage of vegetation. 

I consider the impact of each of these methods in turn.  

3.2.4.1 Tuning disturbance 

Previously all vegetation disturbance in JULES was captured in the term (γvi), or 

‘g_area’ (Jones et al., 2011). Now fire is represented as a separate disturbance, 

termed ‘g_burn’: 

g_dist = g_area + g_burn 

where ‘g_dist’ refers to overall disturbance. Thus g_area should be reduced. 

G_area (g_area_io) is a parameter value available in the JULES namelist files 

under the ‘TRIFFID PFT parameters’ which can be tuned according to a particular 

set up. The standard set up of JULES as used for the TRENDY experiments uses 

g_area values as outlined in Table 3.2.  

Using the standard set up of JULES and the new interactive fire option, the 

vegetation fractions change significantly compared to results without fire, and 

depart further from observations (Figure 3.14). Particularly noticeable is the loss 

of broadleaf and needleleaf trees, and the increase in shrub fraction.  
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Figure 3.14: Results of initial coupling in JULES 

 

Tuning with competition equation 

One method of estimating disturbance is outlined in Harper et al. (2018a), using 

the competition equation within TRIFFID to calculate the level of disturbance 

required to achieve certain vegetation distributions per PFT. The method is based 

on a formula that calculates the equilibrium distribution of PFTs using the 

following equation (from Harper et al., 2018a, their equation 17):  

𝛾𝑣𝑖 = 𝜆𝑖Π𝑖 [1 − ∑ 𝑐𝑖𝑗𝑣𝑗

𝑛𝑝𝑓𝑡

𝑗=1

] ×
1

𝐶𝑉𝐼

 

                      (13) 

Using this method with the initial simulations of interactive fire, new values for 

g_area were calculated, as outlined in Table 3.4.  
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Table 3.4: Values of g_area using competition 

Broadleaf 

Tree 

Needle-leaf 

Tree 

C3 grass C4 Grass Shrub 

0.005493 0.004704 0.08124 0.07023 0.04257 

 

Running the model again with the new values of g_area shows improved results, 

but there is still a high loss of woody PFTs and too much shrub and grasses 

compared to observations (Figure 3.14). 

 

 

Figure 3.15: Results with tuned values for g_area in JULES 

 

Tuning with observations 

The results of the first tuning experiments show that there is still some 

discrepancy between the model output and the observations. The next step is 
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therefore to continue tuning g_area and other factors of fire disturbance as 

outlined above to try to improve the results.   

To maximise growth of the larger woody PFTs and attempt to find the right level 

of grasses and shrubs, I reduce g_area in a number of test simulations, and 

based on the result continue to adjust the disturbance across the PFTs, as shown 

in Table 3.5. 

Table 3.5: Tests for g_area values 

G_area  

(360 days)-1 

Broadleaf 

Tree 

Needle-

leaf Tree 

C3 Grass C4 Grass Shrub 

Standard 

set up 

0.009 0.0036 0.10 0.10 0.05 

Test 1 0.0001 0.0001 0.33 0.8 0.45 

Test 2 0.0001 0.0001 0.01 0.3 0.3 

Test 3 0.0001 0.0001 0.03 0.4 0.2 

Test 4 0.0001 0.0001 0.12 0.42 0.18 

Test 5 0.0001 0.0001 0.15 0.43 0.19 

 

Figure 3.16 below shows the results of test 5. Even by reducing the disturbance 

term to as little as 0.0001, the broadleaf and needleleaf trees still do not survive 

with interactive fire included. There could be a number of reasons for this. The 

regrowth timescale of trees in TRIFFID could be too slow which is a known issue 

in JULES, so that with frequent disturbance from fire the trees are unable to 

recover fast enough to sustain vegetation in areas of high fire occurrence. 

Research studies have shown that it takes around 30-50 years for a forest to 

recover following a fire (Oliveras et al., 2018; Houghton, 1999), whereas to grow 

a forest to full size in TRIFFID takes in excess of 800 years, with tropical forests 

taking over 950 years to recover (Oliver and Jones, unpublished data – see 

Appendix 3).  

Another reason could be that the fire disturbance level as calculated by INFERNO 

is too high. Therefore the next step of tuning should be to assess the burnt area 

given by INFERNO against observations.  
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Figure 3.16: Results with further tuning of g_area in JULES 

 

3.2.4.2 Tuning average burnt area 

Different vegetation types have different propensities to burning (Pellegrini et al., 

2017). Burnt area therefore depends to some extent on the vegetation type that 

is available at the site of a fire. Some studies have assessed this, however this 

has not been categorised by the 5 PFTs available within JULES and we cannot 

therefore draw strong conclusions about how these numbers should be 

represented in JULES. In the original set up of INFERNO, the average burnt area 

for each PFT is “heuristically” determined (Mangeon et al., 2016). There could 

therefore be some scope for further tuning this with vegetation. The parameters 

for the average burnt area by PFT are available in the namelist files in JULES 

(avg_ba_io within PFT parameters) and can be tuned within a suite. Burnt area 

is therefore a function of flammability, ignition, and the average burnt area by 

PFT, which then is translated into the new disturbance term g_burn. Within this 

calculated burnt area, 100% of the vegetation is then assumed to die and is 

converted either to emitted carbon or to soil carbon. The avg_ba parameter thus 

impacts the total burnt area for each PFT, influencing the mortality rate indirectly.  
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The original values of average burnt area are shown in Table 3.6. 

Table 3.6: Standard values for burnt area by PFT 

Broadleaf 

Tree 

Needle-leaf 

Tree 

C3 Grass C4 Grass Shrub 

0.6km2 0.6km2 1.4km2 1.4km2 1.2km2 

 

To understand how much of an impact this parameter values makes on the 

results of vegetation distribution, I try a number of experiments focusing on the 

simulation of broadleaf fractions, as outlined in Table 3.7. 

Table 3.7: Tests for burnt area by PFT values 

avg_ba 

(km2) 

Broadleaf 

Tree (BL) 

Needle-

leaf Tree 

(NL) 

C3 

Grass 

C4 

Grass 

Shrub Result 

(compared 

to obs) 

Standard 
set up 

0.6 0.6 1.4  1.4  1.2  BL too low 

Test 1 0.06 0.06 0.14 0.14 0.12 Burnt area 
too low 

Test 2 0.3 0.3 0.7 0.7 0.7 BL too low 

Test 3 0.1 0.3 0.7 0.7 0.7 Good (no 
loss of BL) 

Test 4 0.2 0.4 0.8 0.7 0.8 BL too low 

Test 5 0.15 0.4 0.7 0.8 0.7 Good (some 
loss of BL 

 

As the burnt area is now being reduced, it is appropriate to increase the level of 

general disturbance again. In these tests I use the following values for g_area: 

Table 3.8: Values for g_area (yr-1) with modified burnt area 

Broadleaf 

Tree 

Needle-leaf 

Tree 

C3 Grass C4 Grass Shrub 

0.0045 0.0018 0.15 0.43 0.19 
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One of the largest differences in the simulation of vegetation when fire is added 

can be seen across the tropical regions of Brazil and the Congo. Therefore this 

is one of the regions I will focus on in the tests to look for improvement.  

Without land-use change included (S2), the area of broadleaf vegetation was too 

high across South America in Test 1. Burnt area was also too low compared to 

observations. When fire is added with too low a burnt area, there is no visible 

impact on vegetation. Test 2 showed a reduction in the loss of broadleaf forest 

across South America, but still a high loss of the broadleaf forest around the 

Congo region. The burnt area is improved in test 3 although still lower than 

observations, but there was little impact on the vegetation of adding fire. Test 5 

showed reduced loss of broadleaf in South America than in other tests, but 

broadleaf across the Congo was still lower than ESA CCI (Figure 3.17). In 

addition there was little impact on vegetation across South America without 

prescribing land-use, and burnt area was too low (right panel).  

 
Figure 3.17: Tuning test 5 with burnt area by PFT 
Fraction of vegetation by PFT for S2 without land-use (left column), S3 with land-use (right 
column) and gridbox total burnt area (right) in JULES 
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From Figure 3.18 it is apparent that although the results of reducing the burnt 

area may result in less vegetation disturbance across all PFTs, the total burnt 

area is much lower than observations.  

 

Figure 3.18: Total global burnt area  
Total global burned area (Mkm2) for GFED4.1s observation data and a selection of tuning 
tests in JULES as described above  

 

The tests have shown that reducing the amount of area burnt per PFT has clear 

impacts on the resultant vegetation growth. By reducing the burnt area by an 

order of magnitude, there is virtually no impact of adding fire to the model: the 

broadleaf fraction is too high across South America as before, and there is little 

shrub coverage. By gradually reducing the burnt area for trees, it is possible to 

reduce the amount of disturbance around the Congo region and the shrubs 

remain low, giving good results compared to mean observations from ESA. 

However, when the burnt area for this set-up is compared to observations of burnt 

area (Figure 3.18) it is clear that overall levels of fire are too low.  

Finally, I try a number of tests reducing the average burnt area for trees while 

increasing burnt area for grasses and shrubs to try to encourage tree growth while 

keeping grasses and shrubs lower (Table 3.9).  
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Table 3.9: Tests for reduced tree burnt area  

 Broadleaf 

Tree (BL) 

Needle-leaf 

Tree (NL) 

C3 

Grass 

C4 

Grass 

Shrub 

Standard set up 

G_area (yr-1) 

Avg_ba (km2) 

 

0.009 

0.6 

 

0.0036 

0.6 

 

0.10 

1.4  

 

0.10 

1.4  

 

0.05 

1.2  

Test 6 

 

0.0045 

0.1 

0.0018 

0.3 

0.05 

1.7 

0.1 

1.6 

0.1 

1.5 

Test 7 

 

0.0045 

0.1 

0.0018 

0.3 

0.05 

1.9 

0.1 

1.5 

0.1 

1.4 

Test 8 

 

0.0045 

0.1 

0.0018 

0.3 

0.4 

1.9 

0.08 

1.5 

0.1 

1.4 

Test 9 

 

0.0045 

0.1 

0.0018 

0.3 

0.2 

1.9 

0.12 

1.5 

0.12 

1.4 

 

The final tests gives a higher burnt area compared to observations at present 

day, and no improvement in spatial tree cover globally (although total vegetation 

carbon is higher owing to higher density tree fraction).  

 

In conclusion, by testing a range of values for burnt area by PFT I have shown 

that reducing the burnt area results in values of global burnt area that are too low 

compared to observations, and reducing the average burnt area for trees does 

not improve the tree cover. This again points to a need for increased recovery 

times for trees in TRIFFID to improve the results. I therefore progress with the 

original values of burnt are by PFT as published in Mangeon et al. (2016).     

3.2.4.3 Tuning Leaf Area Index 

The results of the initial tuning suggest a tendency of the model to reproduce fast-

growing vegetation quickly, while the larger woody vegetation lags behind. One 

way to encourage new vegetation growth is to alter the value of LAI_min.  

In JULES, TRIFFID assigns a fraction (λ) of NPP to use in increasing the carbon 

content of the existing vegetation, while the remainder increases fractional 

coverage of each PFT, with this boundary being determined by the value of 
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LAI_min. Thus, when LAI values are small, all of the NPP is used for growth, and 

when they are large all the NPP is used for spreading (Clark et al., 2011).  

By reducing the LAI_min boundary term for broadleaf and needleleaf trees, the 

LAI values become larger and maximum spreading of these vegetation types is 

promoted. I will test what impact this has on the simulation of vegetation in JULES 

by altering the values as shown in Table 3.10. 

Table 3.10: Altered values for LAI-min 

PFT Broadleaf 

Tree 

Needle-

leaf Tree 

Shrub C3 Grass C4 Grass 

LAI_min 

standard 

3.0 3.0 1.0 1.0 1.0 

LAI_min 

with fire 

1.0 1.0 1.0 1.0 1.0 

 

The results of the tests are shown through plots of global vegetation distribution 

at present day (Figure 3.19). Using this method of analysis there is little 

perceptible difference in vegetation distribution when LAI is modified. I then 

assess the changes in global mean vegetation fractions (Figure 3.20).  
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Figure 3.19: Vegetation fraction by PFT 
ESA observations (left column), JULES using standard LAI (centre column) and JULES 
using modified LAI values (right column). From top to bottom BL= broadleaf, NL = 
needleleaf, C3 = C3 grass, C4 = C4 grass, Sb = shrub, BS = bare soil.  
 
 

 

Figure 3.20: Global mean fractions of PFTs 
JULES using standard LAI (left) and modified LAI (right). Trees = broadleaf and needleleaf, 
grasses = C3 and C4 grasses. S2 = no land-use. S3 = with land-use. 

 

Decreasing the values of LAI_min for trees results in a slight increase in the global 

means. This appears to make a slight improvement to the results, so I will 

therefore continue to use this set-up in further tests.  
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3.2.4.4 Tuning within a range of observations 

Having reviewed the g_area, burnt area and LAI for methods of tuning, I will now 

focus on assessing these results against a range of observations. As shown in 

section 1.3.2, ESA land cover CCI observations are often used for tuning models, 

and work has been done to categorise the land cover classes into the 5 JULES 

PFTs to make comparison between the model output and observations easier. 

Both in collecting the initial data and through this process of categorisation, 

uncertainty is introduced. To understand how this uncertainty impacts my results, 

I use the minimum and maximum values for the observations here, and tune the 

model further to ensure the total vegetation cover is within this uncertainty range. 

In these tests I try a new set of tuning tests with g_area, keeping the same values 

of burnt area per PFT and using the new values for LAI_min (Table 3.11).  

Table 3.11: Tests for g_area with modified LAI_min 

 Broadleaf 

Tree 

Needle-leaf 

Tree 

C3 Grass C4 Grass Shrub 

Standard 

set up 

0.009 0.0036 0.10 0.10 0.05 

Test 6 0.0045 0.0018 0.30 0.30 0.19 

Test 7 0.0045 0.0018 0.32 0.29 0.10 

Test 8 0.0045 0.0018 0.36 0.28 0.17 

 

The results of the additional tests show that with some small modifications to the 

g_area values for grasses and shrubs, it is possible to fit the results of the total 

modelled vegetation to be within the range of uncertainty values, although bare 

soil is too high (Figure 3.21). This does not solve the differences between the 

modelled distribution of vegetation and the mean observations, but it is another 

way of ensuring the results are reliable within certain bounds.  
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Figure 3.21: Tuning test 8 by PFT 
Total vegetation cover (Mkm2). BL = Broadleaf tree, NL = Needleleaf tree, C3 = C3 grass, 
C4 = C4 grass, SB = Shrub, Bs = Bare soil. Results of JULES test with fire shown in red 
crosses, compared to control run (JULES TRENDY S3 with land-use no fire).  ESA 
uncertainty bars shown in black. 

 

To check the burnt area still fits with observations, modelled burnt area is plotted 

here against GFED observations of total annual burnt area. The model does not 

capture the long term decline in burnt area that has been observed (Andela et al. 

2017), but it is within the right order of magnitude. 

 

Figure 3.22: Global total burnt area  
Global total burnt area (Mkm2) using JULES (red) and GFED 4.1s (black).  

 

Another way of achieving this may be to reduce fire disturbance for larger PFTs 

and increase fire disturbance for shrubs and grasses to achieve correct mean 

burnt area across all PFTs and improve the simulation of vegetation. This is 

reviewed in the following experiments (Table 3.12). 
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Table 3.12: Tests to reduce burnt area for trees 

 Broadleaf 

tree 

Needleleaf 

tree 

C3 

grasses 

C4 

grasses 

Shrub Notes 

Test 10 

g_area: 

avg_ba: 

 

0.0045 

0.1 

 

0.0018 

0.3 

 

0.05 

1.9 

 

0.1 

1.5 

 

0.1 

1.4 

 

Bare soil good, 

C3 too high, C4 

slightly low 

Test 11 

g_area: 

avg_ba: 

 

0.0045 

0.1 

 

0.0018 

0.3 

 

0.4 

1.9 

 

0.08 

1.5 

 

0.1 

1.4 

 

C3 too low, C4 

too high, shrub 

too high, bare 

soil slightly high 

Test 12 

g_area: 

avg_ba: 

 

0.0045 

0.1 

 

0.0018 

0.3 

 

0.2 

1.9 

 

0.12 

1.5 

 

0.12 

1.4 

All veg OK, bare 

soil still too high 

 

The first tests showed an improvement in the simulation of bare soil, but some 

PFTs were too high. I reduced this by increasing g_area. The end result still 

shows bare soil as too high compared to observations, and the distribution of 

PFTs still shows large disturbance across the Congo and Cerrado regions similar 

to previous experiments. The burnt area is well simulated for the historical period, 

but the present day burnt area is too high.  

 

In summary, the series of tuning experiments performed here have shown that 

when fire is included in the model, it is not possible to grow broadleaf vegetation 

in certain regions such as the Congo and Cerrado unless burnt area is reduced 

to very low levels that are much lower than observed. Competition in the model 

means that when trees cannot grow the carbon is allocated instead to grasses, 

resulting in high levels of grasses and shrubs with fire disturbance. When grasses 

are kept artificially low by increasing g_area in order to keep within an observed 

range, vegetation cannot be maintained and the bare soil fraction increases.  
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3.2.4.5 Diagnostic fuel consumption 

As part of the fire model intercomparison project (FireMIP), factors of fuel 

consumption have been assessed across a number of fire models, where I have 

contributed JULES results (Mangeon et al., in prep). Within INFERNO, the 

combustion completeness can be set as a minimum and maximum value for 

leaves and wood for each PFT, which currently impacts the carbon that is emitted 

within the diagnostic framework for the calculation of diagnostic emissions. If this 

testing is successful, this could be another factor to include within the coupled 

model to improve results in future developments.  

I started by decreasing values of combustion completeness within INFERNO for 

broadleaf, needleleaf and shrub vegetation. In theory, this should lead to less 

vegetation being converted into emitted carbon, and more remaining in the 

vegetation. The original and modified values are presented in Table 3.13. 

Table 3.13: Tests for altering fuel consumption 

Standard Values BL NL C3 C4 Sb 

ccleaf_max_io 1.0 1.0 1.0 1.0 1.0 

ccleaf_min_io 0.8 0.8 0.8 0.8 0.8 

ccwood_max_io 0.4 0.4 0.4 0.4 0.4 

ccwood_min_io 0.0 0.0 0.0 0.0 0.0 

Modified Values BL NL C3 C4 Sb 

ccleaf_max_io 0.5 0.5 1.0 1.0 0.9 

ccleaf_min_io 0.4 0.4 0.8 0.8 0.8 

ccwood_max_io 0.2 0.2 0.4 0.4 0.5 

ccwood_min_io 0.0 0.0 0.0 0.0 0.0 

 

The results of the model comparison are shown in Figure 3.23 (Mangeon et al., 

in prep). The first thing to note is that for tropical forests in particular there is a 

large range of uncertainty within the observations for fuel consumption, and a 
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large difference between field observations and GFED4s observation data. With 

the modified values, the results for INFERNO (JULES-INFERNO mod) are 

improved for grasses and boreal forests, but results for temperature forests are 

poorer. For tropical forests and croplands, the results are improved compared to 

field observations, and noticeably the range increases for tropical, boreal and 

croplands.  

 

Figure 3.23: Fuel consumption across FireMIP models 
By ecoregion (kgC/m2 burnt). Figure reproduced from Mangeon et al. (2017), and updated 
for ongoing analysis to be included in Mangeon et al. (in prep) 

 

The results indicate some improvement in altering values of combustion 

completeness for leaves and wood in certain biomes, but more work is needed 

to tune the values to each PFT within JULES, and by biome. In future 

developments of the model and when coupled to an atmospheric model or fully 

interactive ESM, this may be a useful area for further research.  

3.2.4.6 Final set up 

It is likely that a combination of all of the above factors will create the best results 

for modelling vegetation distribution. And again it should be reiterated that this is 

one method of tuning to observations, and does not take into account carbon 

stocks and emissions, productivity, or changes in the hydrological cycle. 

Furthermore, there are limitations on how much can be achieved by tuning the 

model to observations through modifying different parameters. To achieve a 
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fundamentally improved simulation of vegetation including fire disturbance, it is 

likely that a new vegetation dynamics scheme will be required that can represent 

age-class scaling so that the slow regrowth issue identified by Oliver and Jones 

(Appendix 3) can be addressed. This is a priority for the JULES community, and 

is starting to be addressed through the RED (Robust Ecosystem Demography) 

project, aimed at developing a new vegetation dynamics scheme which will 

enable smaller trees to be sustained without having to accumulate enough carbon 

for a full-height tree to be established (Moore et al., 2018). 

This section has shown that there are a number of ways of tuning the model, and 

a number of potential outcomes compared to differing observational datasets. 

The mean ESA CCI land cover dataset (2010) is commonly used by the JULES 

community for evaluating the global vegetation cover as simulated in the model. 

I therefore use a compromise of the most appropriate parameters for the fire and 

LULCC configuration to achieve results comparable to this dataset, by halving 

general disturbance for trees and increasing shrub disturbance by a factor of 

three as shown below (Table 3.14).  

The final set up of JULES with interactive fire is therefore as shown in Table 3.14. 

Table 3.14: Final set up of JULES with interactive fire 

PFT Broadleaf 

Tree 

Needle-

leaf Tree 

C3 grass C4 grass Shrub 

g_area (γ) 

(360 days)-1 

0.0045 0.0018 0.10 0.10 0.15 

LAI_min (λ) 

with fire 

1.0 1.0 1.0 1.0 1.0 

Average 

burnt area 

(km2) 

0.6 0.6 1.4 1.4 1.2 

 

3.2.5 Trend analysis 

As mentioned in the previous section 3.2.4 ‘Tuning the fire model’, JULES-

INFERNO does not capture the decline in burned area that Andela et al. (2017) 
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show from the observed global burned area. Observed decreases in burned area 

mainly occurred in areas of low and intermediate tree cover such as savanna 

areas, driven primarily by agricultural expansion and intensification, whereas 

closed-canopy forests showed an increase (Andela et al., 2017). To explore this 

in more detail, I evaluate the burned area trend in each region individually in the 

model and using GFED4.1s observations. 

Globally, there is a significant negative trend in burned area over the satellite 

period (1997-2016), whereas JULES-INFERNO projects a slight increase over 

the same period (Figure 3.24).  

 

Figure 3.24: Global burned area trend 
JULES-INFERNO modelled burned area (Mkm2) shown in red, with GFED4.1s observations 
in black. Regression line included for each dataset, with gradient of regression line (m) 
shown next to legend   

 

 

Looking in more detail at four key fire-prone regions, we can see that Africa shows 

the largest decline in the observations (gradient = -0.04), whereas SE Asia shows 

the smallest decline (gradient = -0.001). JULES-INFERNO projects an increase 

in burned area in Africa and SE Asia, but correctly captures a decrease in 

Australia and South America, with the trend in South America modelled 

reasonably well.  
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a    

b        

c   
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d  

Figure 3.25: Burned area regional trends 
Burned area trend by region. JULES-INFERNO modelled burned area (Mkm2) shown in red, 
with GFED4.1s observations in black. Regression line included for each dataset, with 
gradient of regression line (m) shown next to legend. Regions as follows: Africa (a); SE 
Asia (b); Australia (c); South America (d) 

 

 

The spatial trends are also plotted below, showing the gradient of each regression 

by gridpoint (Figure 3.26). It is apparent from the observations that there is a 

strong decline in northern hemisphere (NH) Africa which dominates; there are 

also declines across the Cerrado region of Brazil, Australia, and northern Asia. 

Conversely an increase is seen in east Brazil, southern hemisphere (SH) Africa, 

and the northern high latitude boreal regions. Much of this trend is actually 

captured well by JULES-INFERNO, including the boreal, Australia, South 

America and SH Africa. However the increase in east Brazil is not simulated by 

the model, and although a decrease is simulated in NH Africa, this is outweighed 

by a simulated increase further north which is not seen in the observations.  
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a            

b  

Figure 3.26: Map of trend in burned area 
The gradient of the regression over 1997-2014 is plotted for each gridpoint as simulated 
by JULES-INFERNO (a) and as observed by GFED4.1s (b) 

 

The decrease in burned area has been linked to change in land management 

practises and human suppression (Andela et al., 2017). These factors are not 

included in the model, and therefore it cannot be expected that these trends 

would be captured in the current configuration. An important next step to develop 

the model would therefore be to simulate fire suppression in cropland areas, 

which would diminish the large signals of increase seen in NH Africa and over 

India and would likely lead to the correct simulation of an overall decrease in 

global burned area over last 20 years.  

3.2.6 Experimental configuration 

JULES Vn4.9 was run here with CRU-NCEP7 forcing data, for climate and CO₂, 

and land-use ancillaries from HYDE (Hurtt et al., 2011; Le Quéré et al., 2016) 
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from 1860 to present day. The harmonised HYDE dataset estimates fractional 

land-use patterns and underlying transitions in land-use annually for 1500-2100, 

and is spatially gridded at 0.5° x 0.5° resolution. It does not include impacts of 

degradation, climate variability, forest management, fire management or pollution 

on land cover (Hurtt et al., 2006). This is then re-gridded for use in JULES at N96 

resolution (1.25° latitude x 1.875° longitude). 

For the fire experiments, the model was spun-up for 1000 years with fire on using 

pre-industrial land-use and CO₂ at 1860 prescribed as a climatology. INFERNO 

was run here with constant natural and anthropogenic ignitions, and interactive 

fire-vegetation on.  

The model was tuned with fire towards a PFT distribution from the European 

Space Agency Climate Change Initiative (ESA CCI, 2010) observations, using 

maximum spreading (λ) as LAI_min= 1.0, and the large-scale disturbance term 

(𝛾𝑣) modified as per Table 3.14. Altering LAI_min is a way of increasing the rate 

of spread of vegetation to account for a known deficiency in the model associated 

with slow regrowth. The large-scale disturbance of trees has been halved and 

disturbance of shrub increased by a factor of three to be within the error bars of 

ESA observations as far as possible.  

JULES was configured to the TRENDY set up (Sitch et al., 2015) using two 

experiments: S2 = CO₂ and climate forcing (with land-use constant at 1860, 

referred to as ‘No LULCC’); and S3 = CO₂, climate and land-use forcing, initially 

not including explicit fire for the purposes of comparison. These two experimental 

configurations were repeated including the new separate fire term (SF2 and SF3).  

3.2.7 Results 

Here I present results showing the effect of LULCC and fire on the vegetation in 

JULES. First, I present global vegetation by PFT to assess the present day spatial 

distribution of vegetation as a result of LULCC disturbance compared to 

observations. I then move on to fire disturbance, first reviewing how the new fire 

disturbance term modelled by the coupled INFERNO model compares to GFED 

observations of burnt area as validation for the fire model. I then present global 

vegetation by PFT for fire disturbance and show how this compares to 
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observations. Finally I show the global distribution of vegetation in the context of 

observations considering uncertainty bounds.  

Without explicit fire or LULCC disturbance, the model produces too much 

broadleaf vegetation compared to observations, especially over South America 

and SE Asia (Figure 3.27, second column). Both broadleaf and needleleaf trees 

are not simulated well in the high latitude boreal regions in JULES, and do not 

extend far enough across this region, which is not improved by adding 

disturbance. The introduction of LULCC generally results in a reduction in 

broadleaf, needleleaf and shrub vegetation, and an increase in C3 and C4 

grasses (Figure 3.27, fourth column). This is as expected, with the purpose of this 

disturbance term being to represent crop area with C3 and C4 grasses. With 

LULCC, the broadleaf fraction is much improved over South America compared 

to observations, but is not improved in the high latitude regions. C3 grass is 

improved with LULCC, but the fraction is still too low, whereas shrub fraction 

remains too high (also shown in Fig. 5). The bare soil fraction is too high in the 

model, but the inclusion of LULCC has little effect on this.  

 

Figure 3.27: Impact of land-use change on present day (2010-2015) vegetation fractions 
Present day (2010-2015) vegetation fractions for the TRENDY S2 (without LULCC) and S3 
experiment (with LULCC) by PFT, without fire, compared to observations. Left column 
shows ESA CCI observations (2010), second column shows vegetation without LULCC 
(S2), third column shows vegetation with LULCC (S3), fourth column shows the change 
resulting from LULCC (difference between column 2 and 3), and right column shows bias 
of S3 compared to observations (difference between column 1 and 3). BL = broadleaf, NL 
= needleleaf, C3 = C3 grasses, C4 = C4 grasses, Sb = shrub, BS = bare soil. 
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Now considering fire, compared to observations of burnt area from GFED 4.1s 

(including small fires) INFERNO captures the spatial extent and level of fire 

relatively well (Figure 3.28). INFERNO accurately simulates the areas of high fire 

occurrence found in GFED4.1s, especially over Africa, northern Australia, South 

America and SE Asia, although the model also shows high fire occurrence over 

India which is not seen in the observations (although combining MODIS and 

ATSR shows high fire counts over India, see Moritz et al. 2012 their figure 2). 

 

Figure 3.28: Modelled and observed burned area maps 
Average 2010-2015 burned area as modelled by JULES-INFERNO (left) and average 2010-
2015 burned area from GFED4.1s observations (right) 

 

To explore this in more detail, I assessed the impact of varying population and 

agriculture in this region. I plotted population data to assess the spatial pattern of 

population used by the model compared to fire (Figure 3.29), and assessed how 

fire is modelled in this area with both constant population and variable population 

(Figure 3.30). There is little difference in the two scenarios, indicating this is not 

the cause of the high burnt area. I created an agricultural mask based on the 

input data of agricultural fraction (Figure 3.31) to apply to the fire results in order 

to assess what fire would look like in the model if only natural areas of vegetation 

were allowed to burn (Figure 3.32). This is based on the assumption that lands 

used for farming and agricultural would be managed and any fires that occur 

would be controlled. A reduction in burnt area was noticeable across all fire-prone 

regions, indicating this could be a potential for further model developments in the 

future. It improves the simulation of fire over India compared to GFED 

observations for example, although on a global scale burnt area is reduced too 

much in other regions. Here I have used grasslands as a proxy for croplands, 

which is how land-use is represented in the model as described in section 3.2.4, 

but in reality this will include a large area of wild grasslands that are unmanaged 
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and will in fact be subject to fires. This method would not be able to represent 

fires that are intentionally ignited on agricultural land either, so is a simplistic way 

of treating agricultural land, but is useful as a first indicator.  

 

 

Figure 3.29: Global population data  
From HYDE. Used to run JULES-INFERNO 
 
 

 
Figure 3.30: JULES burned area 
With constant ignitions (left) and varying population and lightning ignitions (right), by 
gridbox fraction 
 

 

Figure 3.31: JULES present day agricultural fraction based on HYDE 
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Figure 3.32: JULES natural burned area 
JULES burned area including agricultural areas (top panel) and not including agricultural 
areas (bottom panel) by gridbox fraction 

 

Similarly to LULCC, fire disturbance also improves the representation of 

vegetation cover. Without explicit fire or LULCC disturbance, the model produces 

too much broadleaf vegetation compared to observations, especially over South 

America and SE Asia (Figure 3.33, second column). This is improved over South 

America with fire (third column), although in other areas fire creates too much 

disturbance and results in tree fraction being too sparse (notably across Africa). 

Both broadleaf and needleleaf trees are not simulated well in the high latitude 

boreal regions in JULES, and do not extend far enough across this region. C3 

grass fractions are generally too low compared to observations without fire, and 

this improves with fire and associated tuning. C4 grasses are fairly well modelled 

both with and without fire, but the fraction is slightly too high without fire and 

improved when fire is included. The shrub fraction is too high in the model 

compared to observations, but this is also improved when fire is included. There 

is too much bare soil in the model without disturbance, and this increases further 

with fire. The overall change as a result of fire is generally a reduction in the larger 

PFTs (broadleaf and needleleaf trees) and an increase in C3 grasses and bare 

soil (fourth column). Broadleaf trees show a loss in all regions, including the 

Cerrado region to the south of the Amazon, across the arid regions in Africa, SE 

Asia, and northern high latitudes. The changes in shrub and C4 grasses are more 

variable, and are region-dependent. The increase in C3 grass and bare soil 

reflects the burnt area as modelled by INFERNO (Figure 3.28), indicating a shift 

towards faster growing vegetation as a result of fire.  
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Figure 3.33: Impact of fire on present day (2010-2015) vegetation fractions 
Present day (2010-2015) vegetation fractions for the TRENDY S2 experiment (no LULCC, 
no fire) and SF2 (fire only) by PFT compared to observations. Left column shows ESA CCI 
observations (2010), second column shows vegetation without fire or LULCC (S2), third 
column shows vegetation with fire only (SF2), fourth column shows the change resulting 
from fire (difference between column 2 and 3), and right column shows the bias of SF2 
compared to observations (difference between column 1 and 3). BL = broadleaf, NL = 
needleleaf, C3 = C3 grasses, C4 = C4 grasses, Sb = shrub, BS = bare soil. 

 

Both disturbances together (Figure 3.34) results in over-disturbance in some 

areas, dominated mainly by the fire response (e.g. broadleaf fractions), but C4 

grass and shrub show some improvement when both disturbances are included 

(see also Table 3.15).   
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Figure 3.34: Impact of fire and land-use on present day (2010-2015) vegetation fractions  
Using the TRENDY S3 experiment (with LULCC) by PFT compared to observations. Left 
column shows ESA CCI observations (2010), second column shows vegetation without 
fire, third column shows vegetation with fire, and right column shows the change resulting 
from fire (difference between column 2 and 3). BL = broadleaf, NL = needleleaf, C3 = C3 
grasses, C4 = C4 grasses, Sb = Shrub, BS = bare soil 

 

Table 3.15: Total vegetation (percentage) globally 
Totals are shown for total tree cover, shrubs, grasses and bare soil, with and without 
disturbance as labelled. The percentage change between experiments and percentage 
difference compared to ESA CCI Observations is calculated and shown in the lower rows 

Global  Trees Shrubs Grasses Soil 

S2 no fire (S2) 

26.28 23.23 16.52 33.97 

S3 no fire (S3) 

21.46 14.83 28.91 34.80 

S2 + fire (S2F) 

16.59 10.57 32.07 40.77 

S3 + fire (S3F) 

15.08 6.81 37.50 40.61 

Observations (Obs) 23.01 

(range = 22.06) 

10.95 

(range = 2.87) 

32.94 

(range = 3.40) 

33.10 

(range = 25.56 ) 

     

% change S2 / S3F 

-42.60 -70.69 126.95 19.54 

% difference S2 / Obs 

13.26 71.83 -66.38 2.60 

% difference S3F / 
Obs 

-41.61 -46.66 12.94 20.38 
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Considering the distribution by vegetation type (trees, grasses, shrubs and soil), 

in all cases adding disturbance to the model brings the global mean fractions of 

vegetation closer to observations, although bare soil increases in the opposite 

trend (Figure 3.35). In the case of trees and shrubs, fire plus LULCC creates too 

much disturbance, (42% and 47% less coverage than observations respectively), 

but grasses increase (13% more coverage than observations). Trees are reduced 

by 43% when both disturbances are included (S2 no fire compared to S3 with 

fire), shrubs by 71%, and grasses increase by 127% (Table 3.15), taking into 

account the updated terms for γv (Table 3.14). There is an increase of 20% in bare 

soil with disturbance included. Overall, adding disturbance into JULES reduces 

the bias of shrubs from 72% to 47%, and grasses from -66% to 13% compared 

to observations. However there is more variation by biome. In all cases tree 

fraction is simulated as too low with both fire and LULCC, although the extent of 

this varies. In some cases shrubs improve (in the temperate and boreal forests), 

but in others there is too much disturbance (tropics, savanna and temperate 

grasses). Grasses are generally higher than observations, except for the 

temperate grasses biome. Both disturbance terms reduce the tree and shrub 

fractions, and increase grasses and bare soil fractions. In most biomes bare soil 

fraction is too high compared to observations, except in the tropics and boreal 

regions where the fraction is well represented compared to observations. 

Overall, the inclusion of these disturbance terms within JULES leads to a shift 

towards grass cover and a reduction in woody PFTs. This is as expected for land-

use, which replaces trees with grasses as a representation of crops. The regrowth 

rates for trees is much slower than for grasses, which spread fast and recover 

quickly (see section 3), which may be an important factor in the response to fire. 

With continuous disturbance which varies spatially and temporally now included 

in the model, the vegetation seems unable to recover trees in some areas, 

notably around the Cerrado and Congo regions, instead encouraging the growth 

of grasses in their place.  
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Figure 3.35: Present day (2010-2015) total vegetation (percentage)  
Present day (2010-2015) total vegetation (percentage) globally (top left), and by WWF 
biome (5 out of 8 shown here: tropical forest, temperate forest, boreal forest, tropical 
savanna, and temperate grasses. Tundra, Mediterranean wood and desert not shown). 
Trees = total broadleaf and needleleaf trees, grasses = total C3 and C4 grasses. Top left 
panel includes results prior to tuning, plus uncertainty bars for the observations shown in 
blue. 

 

 

As with all observational datasets, there are uncertainties associated with 

retrieving observations of land cover and the classification of these into a small 

number of plant functional types. The observations used here are from ESA CCI, 

which have been processed into the 5 PFTs used by JULES so as to be 
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comparable with the model output (Hartley et al., 2017), introducing a range of 

possible values for each vegetation type (Figure 3.36). The representation of 

vegetation distribution is further complicated by the seasonal variation, where 

peak growing season will have higher fraction of vegetation than low season, and 

high fire-risk areas will show burnt area as high bare soil in peak fire season. 

These uncertainties give a range of potential vegetation cover, and the 

developments to the representation of disturbance in JULES described here have 

been tuned to give reasonable distribution within this range of uncertainty as far 

as possible. The ‘best estimate’ of vegetation cover from ESA, known as the 

reference case, is otherwise used for comparison (see section 1.3.3 for more 

information). 

 

Figure 3.36: ESA Uncertainty range compared to JULES vegetation 
ESA CCI minimum (left column) and maximum (right column) vegetation for each PFT 
within JULES. Central column shows present day (2010-2015) vegetation fraction as 
simulated by JULES with LULCC and fire. BL = broadleaf, NL = needleleaf, C3 = C3 grasses, 
C4 = C4 grasses, Sb = Shrub, BS = bare soil 

 

As discussed in section 1.3, there is also variation across observational products 

and to understand how this relates to the results shown here I now consider two 
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other products: the WWF biomes and vegetation carbon from Avitabile et al. 

(2016).  

The WWF biomes and ecoregions used in Figure 3.35 is shown here (Figure 

3.37). This categorisation shows a small region of tropical forest across the 

Congo region, surrounded by a large area of savanna which represents trees and 

grasses. This is more in line with the simulations as modelled by JULES when 

fire is added, and agrees more with the minimum vegetation of the ESA CCI 

projections. This is a key point for the modelling of vegetation, where in many 

cases there are different classifications of the same area of vegetation within 

observations.  

 

Figure 3.37: WWF biomes and ecoregions 
Major global biomes based on 14 World Wildlife Fund’s ecoregions. Some ecoregions have 
been combined to reduce the total number to 8: Tropical forests = all tropical and  
subtropical forests plus mangroves; Mixed forest = temperate broadleaf and mixed forests  
plus temperate conifer forests; tropical savannas = tropical/sub-tropical grasslands,  
savanna, and shrubland; Grassland = temperate grasslands, savannas, shrublands,  
flooded grasses, montane grasses. Reproduced from Harper et al. (2016), Figure 3b. 

 

NASA’s Socioeconomic Data And Applications Centre (SEDAC) use this 

information to produce raster data of land cover, within the ‘Population, 

Landscape, And Climate Estimates’ (PLACE) map V3 series (CIESIN, 2012)24. 

Their biome map of Africa shows good agreement with the simulation of tropical 

forest and savanna produced by the JULES model when fire is included (Figure 

3.38). The area covered by forest is larger when fire is not included, and this is 

                                            
24 NASA PLACE maps: http://sedac.ciesin.columbia.edu/data/set/nagdc-population-landscape-climate-
estimates-v3/maps?facets=region:africa  

http://sedac.ciesin.columbia.edu/data/set/nagdc-population-landscape-climate-estimates-v3/maps?facets=region:africa
http://sedac.ciesin.columbia.edu/data/set/nagdc-population-landscape-climate-estimates-v3/maps?facets=region:africa
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replaced by savanna when fire is included as a separate process. This is 

considered also for South America – see section 3.3. The model does show 

desert (bare soil) extending too far south compared to PLACE vegetation 

however. 

 

 

Figure 3.38: Vegetation cover over Africa 
Vegetation cover from NASA’s PLACE (CIESIN, 2012) biome map of Africa (top): Dark 
green = moist broadleaf forest, light green = grasslands, savannas, and shrublands, 
orange = desert and semi-deserts. Vegetation fraction in Africa as simulated by JULES 
(bottom row), without fire (left) and with fire (right), with no land-use change: Green= 
tropical broadleaf forest, blue = grasses and shrubs, brown = bare soil. Colour bar shows 
fraction of tree vegetation; grasses and soil fractions are not shown but use the same 
scale in blue and brown respectively. 

 

I also compare the vegetation carbon as modelled by JULES with the Avitabile 

product, to show again that the dense vegetation carbon is spatially well-captured 

when fire is included in JULES (Figure 3.39). 
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Figure 3.39: Avitabile aboveground biomass  
Vegetation carbon (kg m-2), as modelled by JULES-INFERNO (left panel) and observations 
from Avitabile et al. (2016) (where vegetation carbon is taken as half total biomass) 

 

Here we can see that although there are some some differences between model 

output and the ESA CCI land cover product, other products show better 

agreement with the land cover as simulated with JULES-INFERNO.  

Overall there is a shift towards increased grasses (127%) and a reduction in trees 

(43%). The regrowth rates for trees is much slower than for grasses, which 

spread fast and recover quickly (see section 3.2.3.1), which may be an important 

factor in the response to fire. With continuous disturbance which varies spatially 

and temporally now included in the model, the vegetation seems unable to 

recover trees, instead encouraging the growth of grasses in their place.  

3.2.8 Discussion 

Fire and land-use are important global disturbances, and the results presented 

here have shown that when considered, they have a significant impact on the 

modelled vegetation as represented by JULES. In all cases, including 

disturbance brings the vegetation fractions closer to the observations compared 

to no disturbance, although in some cases there is a tendency towards over-

disturbance when both fire and LULCC are included, and bare soil increases too 

much compared to observations. Disturbance generally improves the simulation 

of shrubs and grasses, but tree fractions are often simulated as too sparse. 

LULCC mainly decreases trees and shrubs and replaces them with C3 and C4 

grasses (representing crop and pasture). Fire creates a more mixed response, 

decreasing vegetation in the boreal regions and high burned areas, and showing 

an increase in grasses. Both fire and LULCC reduce the larger woody vegetation 



159 
 

types such as trees and shrubs when added to the model (Figure 3.33 and Figure 

3.27). Without the inclusion of fire, this could result in an over-estimation in the 

amount of carbon released due solely to LULCC, which may have significant 

impact on carbon budgets.  

Previous work has shown that fire may be an important contributor to the 

existence of savannas (Cardoso et al., 2008; Bond et al., 2005; Staver et al., 

2011). The results shown here support this conclusion, showing that when fire is 

included in the model there is a shift towards open savanna-like states in areas 

that climatologically could support trees without the incidence of fire, including the 

Cerrado area of South Brazil, and savanna areas in Africa. Here we have shown 

that a large savanna region in South America is completely forested in the model 

without the addition of fire or anthropogenic LULCC.  

It should also be noted that here I have used the ESA CCI dataset as 

observations. Different observational products may give different results for 

vegetation cover; for example the ‘Population, Landscape, And Climate 

Estimates’ (PLACE) maps V3 from NASA’s Socioeconomic Data And 

Applications Centre (SEDAC) biome map of Africa (CIESIN, 2012), based on the 

WWF biomes, indicates a much larger area of ‘Grassland, Savannas and 

Shrubland’ over Africa than the ESA CCI dataset, which is approximately equal 

to the area modelled by JULES when fire is included (see section 1.3). However, 

it is important to consider regional improvements or degradation as well which 

can be masked in global scale analyses. It also suggests that there may be some 

overlap in the disturbances, which reflects the complicated nature of how fire and 

LULCC are often used together for land clearance. The HYDE LULCC dataset in 

this study has been developed from a combination of model, satellite and 

historical reconstructions of agricultural and population data, and the biomass 

quantities are noted to contain uncertainties due to lack of direct observations 

from the historical period (Hurtt et al., 2011). Some of what has been attributed 

to LULCC may include fire clearance, which is a key point for consideration for 

other DGVMs including fire and land-use together.  

When interactive fire was initially added to JULES, there was a tendency towards 

complete dominance by shrubs and significant tree reduction. This was tuned to 

the observations by increasing the general disturbance term (𝜸) and increasing 
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spreading (λ) (section 3.2.4), to account for the fact that fire was previously 

included in the total mortality rate. Grasses spread and recover quickly with 

TRIFFID, whereas larger PFTs take longer to re-establish. On this timescale the 

tree cover is not able to recover fast enough with constant disturbance from fire, 

and the results indicate that fire restricts tree growth and encourages a shift 

towards the more responsive vegetation types. Grasses can be given a higher 

mortality rate to prevent over-growth, but this has been tested and results in too 

much bare soil for this reason. As the carbon is unable to regrow into trees, and 

prohibited from re-growing in shrubs and grasses, it is then transferred into the 

soil pools leaving larger areas of bare ground. This was evident in the various 

tuning tests; when fire was introduced, the trees were kept low giving very high 

levels of grass and shrub growth. When these were also reduced, the bare soil 

increased. This was the case even when fire was reduced in certain PFTs (by 

reducing the average burnt area by PFT), indicating that the physical properties 

of the model do not allow regrowth in areas that are constantly disturbed, unless 

disturbance ceases. The fractions were low from the start of the run (1860) as fire 

was included in the spin-up, and the vegetation does not recover through the 

transient simulation due to continual disturbance, leading to present day levels 

being low. 

These results point to a need for faster regrowth of trees within TRIFFID to cope 

with disturbance, for example by representing age or mass classes within each 

PFT to enable a range of successional stages to be represented. It is also worth 

noting that the fire disturbance is high in the model compared to observations in 

some areas (Figure 3.28), which may lead to too much disturbance overall. In 

addition, there remains significant underlying complexity around the interaction 

of LULCC and fire as discussed in section 3.2.2. For example, agricultural land 

in some regions may be a cause of fire ignition, whereas in other areas may act 

as a fire break or generate anthropogenic fire suppression, and future 

development would benefit from reducing burnt area in cropland areas (Bistinas 

et al., 2014). One way forwards for this could be to identify the average field size 

based on surrounding vegetation, and mask fire in larger agricultural regions, but 

allow smaller fields to include the probability of burning. There will also be 

additional complexity around the PFTs themselves, where some species will be 

more fire resilient than other species, for example vegetation in high fire-risk 
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areas often develops thicker bark for protection from fire, whereas other species 

may adapt to the fire and use it as a method of reproduction (Pellegrini et al., 

2017), and this should also be a priority next step for further model development. 

This may also help the problem of over-disturbance in tree fraction. Finally, we 

have just considered two of the main disturbances here. We have not considered 

windthrow, pests, and diseases etc, which for now are still aggregated into the 

generic large-scale disturbance term in JULES.   

Overall there are still a number of regions that require improvement in the 

simulation of vegetation. In all of the JULES simulations there are too few 

needleleaf trees across the boreal regions compared to observations. With fire, 

notably the trees across the extratropics and savanna regions such as the Congo 

region in Africa is too low compared to ESA mean observations (although are 

more in agreement with other observational datasets). The representation of just 

five PFTs is a considerable simplification of the real world, and further work could 

develop these configurations into the 9 PFT set up by Harper et al., (2016). In 

particular, recent work has shown that the distinction between evergreen and 

deciduous needleleaf trees has led to an improved representation of boreal 

forests within JULES which could improve these simulations (Harper et al., 

2018a). However we now have improved modelling capability and complexity, 

enabling us to represent more processes around the interaction of fire and 

vegetation, and which gives us the ability to model future changes. It is often the 

case that when new processes are added to a model it may result in some 

degradation, but the increase in capability is pushing the frontiers of current 

scientific modelling ability which is crucial for continued development. The new 

interaction of fire and vegetation has been included here without any major global 

degradation of vegetation cover, which is a significant advancement, and an 

important step towards coupling to other aspects of the Earth system.  

3.2.9 Conclusion 

This work has described the first steps in developing the land surface model 

JULES to represent fire as a separate disturbance, alongside LULCC. The 

disturbances contribute significantly to changes in vegetation on a global scale. 

Without disturbance JULES simulates too much vegetation in most PFTs 

compared to observations, which is generally improved with the addition of fire 
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and LULCC, although there is still regional variation. Disturbance generally has 

the effect of decreasing tree cover (43%) and shrubs (71%) and increasing 

grasses (127%). In places the disturbance is too high with both fire and LULCC 

and leads to vegetation being reduced too much. The regrowth rates in TRIFFID 

also mean that with constant disturbance from fire, there is a shift towards faster 

growing PFTs that can recover and spread quickly. The simulation of shrubs and 

grasses is much improved, with the bias reducing from 72% to 47%, and from 

66% to 13% respectively. It is expected that fire danger will increase in the future 

with climate change as a result of hotter, drier conditions, but fire occurrence 

depends heavily on the interaction with LULCC. The developments to the model 

that have been outlined here now give the capability to model future interactions 

between fire and LULCC and the impact that this could have on future vegetation 

density, spread and carbon storage. Overall we have presented results for an 

improved representation of mechanistic processes of disturbance in JULES using 

a non-optimised approach, with positive results to vegetation cover. This is a 

significant first step in the representation of highly complex factors surrounding 

anthropogenic and natural disturbances in the model, and lays the foundation for 

future developments into Earth System Models. 

3.3 Implications for Brazil 

3.3.1 Introduction 

Until now fire has not been represented as an explicit disturbance process in 

JULES. The implications of developing JULES to include this new process for 

vegetation distribution globally has been assessed in the previous section, and 

now I will focus on the implications for South America, and specifically the 

Amazon region in Brazil. The south east area of the Amazon is of particular 

interest as discussed in Chapter 1, because this ‘arc of deforestation’ is 

vulnerable to land-use change, and is climatically warmer and drier than the rest 

of the Amazon and so may be more prone to fire.  

As previously discussed, most fires that occur across the Amazon are not 

naturally ignited from lightning, but depend on human ignitions and will only take 

hold when the climatic conditions and fuel are dry enough. The Amazon forest is 

dense and humid with high annual rainfall, and is made up of large tropical 
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evergreen vegetation. This makes it difficult for fires to ignite and to spread. 

Contrastingly, the area to the south of the Amazon forest has quite different 

qualities. The Brazilian Cerrado is a savanna ecosystem, climatically very 

different to the Amazon tropical forest biome, which supports entirely different 

vegetation, soils, and fire regimes.  The vegetation ranges from open grasslands 

to sparse woody vegetation, and precipitation is lower (see Figure 1.4). 

Fire can be the determinant factor in maintaining savanna vegetation in 

ecosystems that could otherwise support forest cover, including the Brazilian 

Cerrado (Moreira et al., 2000). Work by Staver et al. (2011) and Hirota et al. 

(2010), has shown that fire is an important contributor to the existence and 

creation of savannas. They used tree cover, climate, fire and soil data to show 

that on a global scale climate influences tree cover, but where climate is average 

(mild seasonality and intermediate rainfall), fire is the determinant of forest cover 

verses savanna, and that these can be alternative stable states over the Congo 

and Amazonia. Fire can act as a positive feedback, whereby fire suppresses the 

development of trees, and low tree cover provides more conducive fire conditions 

(see Figure 1.2). They argue that the expansion of savanna ecosystems probably 

occurred in a drier period in Earth’s history, the Miocene 20 million years ago to 

5 million years ago, at a time before humans began altering the landscape and 

as a result of a self-reinforcing fire-shaped landscape the savanna areas remain 

today even though climatically they could now support forests. This raises the 

question of whether we see evidence to support the theory of a fire-created 

savanna in Brazil in the JULES model, which I will address in this section.  

3.3.2 Methods 

To understand whether fire or land-use is a key driver in the evolution of the 

Brazilian Cerrado, I conduct four experiments with the coupled JULES-INFERNO 

model: 1) No disturbance, 2) only fire disturbance, 3) only land-use disturbance, 

4) both fire and land-use disturbance. For each experiment the model is spun-up 

separately, with fire on for experiments 2 and 4, and without fire for experiments 

1 and 3.  

I use the same model set up as before, running JULES Vn4.9 with CRU-NCEP7 

forcing data for climate and CO₂, and land-use ancillaries from HYDE (Hurtt et al. 

2011), and new parameters for disturbance as described in Table 3.14. S2 again 
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refers to the CO₂ and climate forcing experiment (with land-use constant at 1860, 

referred to as ‘No LULCC’), and S3 refers to the full CO₂, climate and land-use 

forcing experiment. TRIFFID is used to simulate dynamic vegetation in each 

scenario.  

3.3.3 Results 

I present the results of change in broadleaf fraction over the historical period to 

present day (1860-2015) over the South American continent, for each of the four 

experiments alongside a map showing the WWF classification of ecoregions. 

With no disturbance, forest extends right across Brazil joining the Amazon forest 

and the Atlantic forest, with no representation of the Cerrado (Figure 3.40, first 

column). It is only by prescribing land-use for the historical period that the Cerrado 

is represented, and this only changes from 1960 onwards (third column). When 

the new dynamic fire process is added, the model correctly simulates the Amazon 

forest as distinct and separate to the Atlantic forest, leaving the Cerrado region 

as a mix of shrub and grassland (second column). The Cerrado region is 

simulated mainly as shrub without any land-use (Figure 3.42), and with land-use 

this changes to be largely grassland from 1960 onwards which is more reflective 

of observations from ESA (Figure 3.41). This area is made up of a high proportion 

of agricultural land, which is simulated in JULES as grasses, but will also include 

shrubs and woody vegetation to make up the mixed-vegetation of the Cerrado 

(Ferreira and Huete, 2004). Another point of note is the simulation of the Atlantic 

forest. With land-use change (S3), at present day this is simulated in the model 

as a small area of forest, and predominantly grassland. Without land-use change 

(S2 + fire) the Atlantic forest is simulated more as broadleaf forest. Compared to 

the WWF biome map, the land-use change is too high in this area.  
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Figure 3.40: Fraction of broadleaf vegetation across South America 
From 1860 to present day (rows). Columns from left to right show S2 (varying CO2 and 
climate change), S2 with interactive fire, S3 (varying CO2, climate change and land-use 
change), and S3 with interactive fire in JULES. Right panel shows WWF biomes and 
ecoregions 
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Figure 3.41: Fraction of grasses across South America 
From 1860 to present day (rows). Grasses include C3 and C4. Columns from left to right 
show JULES S2 (varying CO2 and climate change), S2 with interactive fire, S3 (varying CO2, 
climate change and land-use change), and S3 with interactive fire. Right panel shows ESA 
grass fraction  

 

Fraction of grasses 
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Figure 3.42: Fraction of shrub across South America 
From 1860 to present day (rows). Columns from left to right show S2 (varying CO2 and 
climate change), S2 with interactive fire, S3 (varying CO2, climate change and land-use 
change), and S3 with interactive fire in JULES. Right panel shows ESA grass fraction 

 

To understand the role of land-use and fire in determining the carbon flux by 

ecoregion in Brazil, I calculate the Net Biome Productivity (NBP) for the S2 (no 

land-use change) scenario, the S3 (with land-use change) scenario, and the 

difference between the two, without fire and with fire. NBP is calculated as Net 

Primary Productivity (NPP) minus soil respiration and wood product emissions 

from land-use change. With the new interactive vegetation-fire capability, we can 

now also include the role of fire, so NBP becomes NPP minus soil respiration, 

wood product emissions and fire emissions. NBP is a measure of the net carbon 

accumulated in an ecosystem and can therefore be a useful indicator of the 

change in the carbon sink. A positive NBP represents an overall carbon uptake, 

or ‘carbon sink’, whereas a negative value of NBP indicates an overall source of 

carbon. Here ‘gross carbon uptake’ represents the S2 scenario without land-use, 

 

Fraction of shrubs 
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and the ‘net carbon uptake’ represents the S3 scenario with land-use, so that the 

‘land-use contribution’ is S3-S2. 

Without fire, the land-use emissions are relatively high, especially in the Cerrado 

region (Figure 3.43, bottom left plot), compared to SEEG (System for 

Greenhouse Gas Emissions and Removals Estimates) emissions data from 

Brazil (Figure 3.44). When fire is accounted for, the emissions from land-use are 

smaller in each ecoregion, and especially for the Cerrado, followed by the 

Amazon and the Pantanal. This is an important result; without fire processes 

included in the model, anthropogenic land-use (deforestation) is required to 

achieve the correct extent of forests across Brazil, resulting in very high land-use 

emissions from the Cerrado region. When fire is included, the model simulates 

the savanna region as a natural biome, and the land-use emissions from this 

region are reduced.  
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Figure 3.43: Carbon flux by ecoregion, Brazil 
Carbon flux (NBP, GtC per year) in JULES by ecoregion for Atlantic forest, Amazon forest, 
Pantanal wetlands, Caatinga and Cerrado, 1990-2015 mean. Top row shows gross carbon 
uptake (S2 scenario, no land-use), middle row shows net carbon update (S3 scenario, with 
land-use), and bottom row shows contribution of land-use (S3-S2).  
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Figure 3.44: Emissions data from Brazil 
Emissions from Land-use Change and Forestry (CO2e (t) GWP-AR5) by state for 2016. Data 
and map produced from SEEG Brazil25  

 

3.3.4 Discussion and conclusions 

In this section I have tested the hypothesis that fire is a key driver in the 

development and maintenance of the Brazilian Cerrado. Bond et al. (2008) 

suggest that a mix of resources, herbivory and fire may be responsible for limiting 

tree cover in C4 grasslands / savannas. Pivello (2011) asserts that in the past 

there have been questions over whether the Cerrado is man-made (through 

anthropogenic fire and deforestation) or natural. However their research argues 

that pollen and charcoal records show that fires were present before the arrival 

of humans around 12,000 years ago, and that major plant adaptations happened 

around 4 million years ago to accommodate frequent fire occurrence, long before 

human intervention. The results presented here support this study, showing that 

fire is a key determinant in the JULES land surface model in simulating the correct 

distribution of forest cover without the influence of humans changing the 

landscape through land-use change. When fire is included, the vegetation shifts 

from tropical broadleaf vegetation, which can be climatically supported (as shown 

by the S2 without fire scenario, Figure 3.40), to a mix of grasses and shrub which 

is what we see in reality (Figure 3.41 and Figure 3.42). Previously a large 

proportion of carbon emissions in this area have been attributed to LUC, as we 

                                            
25 http://plataforma.seeg.eco.br/map  

http://plataforma.seeg.eco.br/map
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see from Figure 3.43. Now that fire is accounted for, the land-use emissions from 

the Cerrado region in particular are much reduced. Similar results have been 

shown with other dynamic vegetation models, for example Hirota et al. (2010) 

used a simple climate-vegetation-fire model to show that under current climate 

conditions tropical forest would extend 200km further south into the savanna 

region without fire. The analysis for Africa here shows similar results, with the 

forest area extending further into the savanna region without fire (see section 

3.2.7).  

In conclusion, this study has shown that the impact of fire on the vegetation 

distribution and plant functional types is significant, especially across Brazil, and 

highlights the importance of being able to correctly simulate this additional 

disturbance process in modelling.   
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Chapter 4: Impacts of the 2015-2016 El Niño 

4.1 Abstract 

The link between El Niño events and related increases in droughts and fires is 

well-known. A number of studies have considered the impacts of the recent 2015-

2016 El Niño and found an increase in burnt area in some regions compared to 

La Niña years, but no studies have yet used a dynamic land surface model to 

consider how conditions might have differed had the El Niño not occurred. Here 

I use the JULES land surface model with interactive fire from INFERNO to assess 

the impact of the 2015-2016 El Niño on precipitation, temperature, burnt area, 

and the associated impacts on the carbon sink globally and for three key regions: 

South America, Africa and Asia, compared to a ‘no El Niño’ scenario based on 

mean climatological drivers. I find that the model projects a higher burnt area with 

El Niño conditions than without in most regions globally, although the results are 

more complex over Africa where there are areas of both increase and decrease. 

The timing of the impacts in Africa is also different, with the peak occurring earlier 

than in South America or Asia. South America shows the largest fire response 

with the El Niño (13% increase in burnt area and a 21% increase in emitted 

carbon), and this region is projected to change from a net sink of carbon to a 

carbon source. Peak fire occurs from August to October across central-southern 

Brazil, and temperature is shown to be the main driver of the El Niño-induced 

increase in burnt area during this period.  

4.2 Introduction 

South America usually experiences a regular ‘wet season’ dominated by the 

South American Monsoon System (SAMS) from October to April, which brings 

heavy rains across the continent particularly from December – February (Rao et 

al., 2014). The pattern of these rains varies across the Monsoon period, with the 

southern regions experiencing more rain in the first part of the Monsoon and the 

central and east regions staying drier, with a change to more rain in central and 

north regions towards the end of the Monsoon (Grimm et al., 2003). This 

influences the pattern of fire across the continent, where typically peak fire is seen 

August – October in the central and east regions, which then reduces as the wet 

season progresses (see Appendix 4).  
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The El Niño Southern Oscillation (ENSO) which is a reasonably predictable mode 

of variability that occurs every 2 – 7 years, can have a large impact on this regular 

rainfall pattern. An ENSO event is defined as a Sea Surface Temperature (SST) 

anomaly compared to a baseline period of 1971-2000, centred on the equatorial 

Pacific Ocean in the NINO 3.4 region (5°N–5°S, 120°–170°W), that is 0.5°C or 

larger over three consecutive months (Trenberth, 1997, and updated by NOAA, 

2003; Larkin and Harrison, 2005; Yu et al., 2017). ENSO years are characterised 

by unusually warm SSTs (El Niño) or by unusually cold SSTs (La Niña) in the 

Equatorial Pacific Ocean, but can have global impacts (Larkin and Harrison, 

2005). It is the largest mode of variability in the climate system and the global 

carbon cycle (Malhi et al., 2018). The El Niño phase of ENSO commonly results 

in higher temperatures and reduced precipitation across the tropics, although the 

timing of this varies globally (Chen et al., 2017). The impacts across the continent 

can also be variable, for example the south of South America often experiences 

wetter conditions, with the northern and central-east regions experiencing 

drought (Stauffer, 2015; Grimm et al., 2003). Brazil’s semi-arid northeast for 

example has been experiencing a severe drought since 2014, which has 

worsened with the 2015/16 El Niño (Stauffer, 2015), and up to 13% of the 

rainforest experienced extreme drought in February-March 2016 (Jiménez‐

Muñoz et al., 2016). These dry central and eastern regions overlap with the areas 

of highest fire occurrence for the continent, highlighting the link between El Niño 

conditions and increased fire activity. Figure 4.1 below shows the usual patterns 

of rainfall and temperature related to an El Niño event. 
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Figure 4.1: Rainfall and surface temperature during a typical El Niño event 
Reproduced from the Bureau of Meteorology26.  

 

In the last 20 years, there have been two large El Niños, and a number of smaller 

events. During 1997-1998 and 2015-2016, very high SST anomalies were 

recorded; the years 2002-2003, 2004-2005, 2006-2007, and 2009-2010 also 

showed higher than average SSTs (NOAA CPC27). Chen et al. (2017) shows from 

satellite data that during a typical El Niño cycle, fires increase across northern 

South America in Jan–Apr (mid- El Niño), Central America in Mar–May (mid-late 

El Niño), and the southern Amazon in Jul–Oct (late – post El Niño) and that overall 

fire emissions in pan-tropical forests increase by 133% in El Niño years compared 

to La Niña years (over 1997-2016).  

The 2015/16 El Niño was one of the strongest on record, beating the previous 

highest 1997/98 record for Niño-3.4 Index, although showing lower Nino3 and 

Nino 1+2 Eastern values (L’Heureux, 2016). There were initial signs of the 

developing El Niño in 2014 before it was announced as meeting the official El 

Niño criteria by the Australian Bureau of Meteorology in May 2015, before 

peaking in late 2015 and ending in May 2016. The event has been associated 

with a large rise in global levels of CO2 (Betts et al., 2016), most of which derives 

                                            
26 Bureau of Meteorology: http://www.bom.gov.au/climate/updates/articles/a018.shtml  
27 NOAA CPC:  http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php 

 

http://www.bom.gov.au/climate/updates/articles/a018.shtml
http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
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from the terrestrial tropics (Malhi et al., 2018), which has been attributed to 

different factors using satellite data that vary spatially (Liu et al., 2017): in tropical 

South America the cause has been linked to a decrease in GPP and reduced 

carbon uptake from reduced precipitation; in tropical Asia the increase has been 

linked to higher fire occurrence; and in Africa it is proposed that an increase in 

respiration led to increased carbon release. Other studies however show GPP as 

the main driver of carbon loss across the tropics as a whole, with a decline in 

photosynthesis (Bastos et al., 2018) and a 28% reduction tree growth (Rifai et al., 

2018; Santos et al., 2018) evident in the Amazon. Northeast Amazonia saw a 

temperature rise of up to 3°C and a 200mm decrease in precipitation (Jimenez et 

al., 2018), which led to a decline in photosynthesis and resulted in a reduction in 

GPP (Luo et al., 2018). Anderson et al. (2018) show that repeated exposure to 

drought over the last 40 years has increased the sensitivity of Amazon vegetation, 

as demonstrated by increasingly negative Enhanced Vegetation Index 

anomalies, suggesting that Amazonia is becoming more vulnerable to extreme 

drought events. 

The extent of fires across Indonesia was large with an estimated 4,604,569 

hectares (using Synthetic Aperture Radar data, with an overall accuracy of 84%) 

burned during the 2015 fire season, predominantly started deliberately for land 

clearance, and much of which was over high emission-producing peatlands 

(Lohberger et al., 2018). CO2 accounts for in excess of 90% of global fire carbon 

emissions each year (~2PgC total emissions), which usually peaks during El Niño 

years (Eldering et al., 2017). Recent research from Aragão et al. (2018) has 

shown that drought-induced fires in the Brazilian Amazon increased by 36% 

during the 2015/16 El Niño period, (calculated as the departure from the 2003 to 

2015 monthly averages excluding drought years 2005, 2010 and 2015) according 

to MODIS data, with the study concluding that emissions from drought-induced 

fires are as important as emissions from LULCC and need to be included in 

emission inventories. The eastern Amazon was found to be the region most 

affected by fire (Jimenez et al., 2018; Burton et al., 2018b). 

While a clear link has been found between the 2015-2016 El Niño and an 

increase in satellite and radar-detected fire events across a number of pan-

tropical regions as outlined above, a model-based assessment of the full impact 

of the El Niño has not yet been done. Using an interactive fire-vegetation model 
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within a land surface model to assess the impacts of the 2015-2016 El Niño 

compared to a mean climatology enables a comprehensive investigation to be 

conducted into the impacts of the El Niño across a range of variables, and their 

associated drivers.  

Here I use the JULES-INFERNO model to investigate the impact of the 2015/16 

El Niño on fire, and compare this to observations of burned area to address three 

research questions: 

1) What was the impact of the 2015/16 El Niño on fire? Did this vary globally, 

and why? 

2) What impact did the El Niño have on the carbon sink globally and 

regionally when fire is taken into account? 

3) How did the impacts of the 2015/16 El Niño vary spatially and in time 

across South America? 

4.3 Methods 

For this study the climatology from CRU-NCEP v7 is used to drive JULES, 

including precipitation, temperature, humidity, wind, air pressure and short and 

long wave radiation which models the observed El Niño (see section on Data 

Availability for suite ID). The model was run from 1860-2016 with this forcing, and 

then again using the mean climatology from the previous 10 years (2005-2014) 

to represent standard baseline conditions for 2015-2016 without the El Niño event 

occurrence, referred to in the results as “no El Niño” (driving data provided by 

Nicholas Viovy, IPSL). The experimental design used here is intended for use in 

investigating the impacts driven by the occurrence of the 2015/2016 El Niño, 

compared with a similar period without the observed SST anomaly. The period of 

2005-2014 is chosen to ensure conditions are as similar as possible to 2015/16 

in terms of climate and CO₂ levels, while the 10-year mean climate is chosen to 

even out anomalous and extreme years. The benefit using a land surface model 

to assess changes using a mean climatology from the previous 10-years is that 

CO2 and land surface conditions still represent 2015/16, using the same initial 

conditions as the control experiment, making a direct comparison of El Niño 

meteorological conditions with ‘average meteorological conditions’ possible. 
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We can define the 2015/16 perturbation as dominated by the significant El Niño, 

and study the impacts against a 10-year baseline. Changes referred to as ‘due to 

El Niño’ throughout this study are calculated as absolute change between the two 

model conditions (El Niño – No El Niño) or as percentage change (El Niño – No 

El Niño / No El Niño x100). I have chosen to use the period July 2015 – June 

2016 to study the impacts over 12 months covering the peak El Niño. This period 

is slightly later than the official El Niño period to capture some of the lag effect in 

fire response as identified by Chen et al. (2017). I analyse the results of the 

experiment to show how the impact of fire has changed as a result of the El Niño 

across a range of variables including burnt area and emissions using the 

interactive fire model INFERNO within the land surface model JULES. I use 

constant ignitions and land-use and then compare the results with varying 

ignitions and land-use. The results are analysed globally, and for three fire-prone 

regions; South America, Africa and Asia (see Appendix 4 for maps of each 

region). Observations used for comparison are from GFED4.1s including small 

fires (see section 1.3.1).  

 

4.4 Results 

Section 1:  What was the impact of the 2015/16 El Niño on fire? Did this vary 

globally, and why? 

The first question is addressed by assessing the burnt area in the El Niño and 

no- El Niño case. Here I produce simulations using the JULES-INFERNO model 

driven by observations and compare the results to the average climatology to 

show how the burnt area has changed with El Niño conditions. A direct 

comparison of the burnt area across the period July 2015 – June 2016 with and 

without El Niño shows the pattern of burnt area is very similar in both scenarios 

(Figure 4.2). Some increase in burnt area can be seen with El Niño across South 

America, Southern USA and India, whereas Saharan Africa shows a decrease.  
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Figure 4.2: Global burnt area fraction with El Niño 
July 2015 – June 2016 with El Niño (left) and without El Niño (right) simulated by JULES-
INFERNO 

 

Considering the percentage increase in burnt area with El Niño, areas of highest 

change can be seen across northern South America, southern USA and central-

southern Australia which see up to 100% increase in some regions (Figure 4.3). 

Some decreases in burnt area are seen across Canada, Sahara and Southern 

Africa and East Asia, although these are mostly smaller than the increases. 

 

Figure 4.3: Change in burnt fraction due to El Niño 
July 2015 – June 2016 simulated by JULES-INFERNO 

 

The increase in burnt area corresponds to an increase in emitted carbon in the 

same regions (Figure 4.4). Globally, the total carbon emitted from fires with El 

Niño is 2.74 PgC, compared to 2.59 PgC in the “no El Niño” scenario, giving a 

total of 0.15 Pg additional carbon (6% increase) released from fires due to the 

occurrence of the 2015/16 El Niño.  
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Figure 4.4: Carbon emissions from El Niño 
July 2015 – June 2016 with El Niño (top left) and without El Niño (top right), and percentage 
change in emitted carbon due to El Niño, July 2015 – June 2016 (bottom left) simulated by 
JULES-INFERNO 

 

Considering how fire occurrence changes throughout the year, the global total 

burnt area is higher in the latter half of 2015 with El Niño compared to no El Niño 

(Figure 4.5). In 2016 the El Niño signal weakens, with some months showing 

higher burnt area with El Niño (Jan, Feb, April), but some lower (March, May, 

June). As some regions show an increase in burned area and some show a 

decrease, the total global difference between the ‘El Niño’ and ‘no El Niño’ 

scenarios is not large. The global total burnt area across the year with El Niño is 

4.44 Mkm2, compared to 4.34 Mkm2 in the scenario without El Niño, giving a total 

change of 0.10 Mkm2 of burnt area due to El Niño from July 2015 - June 2016.  
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Figure 4.5: Global burnt area with El Niño 
Global total burnt area (Mkm2) with El Niño (red) and without El Niño (black), July 2015 – 
June 2016 simulated by JULES-INFERNO.  

 

The global total emitted carbon from fire is higher with El Niño consistently from 

July 2015 to April 2016 (Figure 4.6). Similar to the burnt area, in 2016 this is more 

variable with slightly higher emissions at the start of the year, increasing to a peak 

in February. In May the emissions ‘with El Niño’ decrease to lower than the 

‘without El Niño’ case. The variability reflects the changing pattern of fire 

occurrence globally, where the peak impacts of fire are experienced at different 

times in differing locations, as discussed below. 

 

Figure 4.6: Global emitted carbon with El Niño 
Global total emitted carbon from fire with El Niño (red) and without El Niño (black), July 
2015 – June 2016 simulated by JULES-INFERNO 
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Focusing on three key regions that are important for fire occurrence - South 

America, Africa and Asia - Asia experiences a higher burnt area across the latter 

half of 2015 with El Niño, and less of an impact in 2016 (Figure 4.7). This suggests 

that Asia has an important influence on the global trend in burnt area in late 2015. 

Because there is an increase in burned area in 2015 followed by a decrease in 

2016, again the total change over the period July 2015- June 2016 is small. The 

total burnt area with El Niño in Asia is 1.00 Mkm2 compared to 0.99 Mkm2 without 

El Niño, giving a total of 0.01 Mkm2 of burnt area due to the El Niño.  

 

Figure 4.7: Burnt area in Asia with El Niño 
Total burnt area in Asia with El Niño (red) and without El Niño (black), July 2015 – June 
2016 simulated by JULES-INFERNO 
 
 

The total burnt area for the African continent, conversely, is lower on average 

throughout the same period with El Niño (Figure 4.8). The total burnt area from 

July 2015 – June 2016 was projected as 1.73 Mkm2 with El Niño compared to 

1.82 Mkm2 without El Niño. This is partly because peak fire occurred earlier 

across Africa than other regions (Figure 4.9). Thus comparing the entire year 

2015, the burnt area with El Niño was projected as higher: 1.78 Mkm2 with El 

Niño and 1.73 Mkm2 without El Niño from January to December 2015.  
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Figure 4.8: Burnt area in Africa with El Niño 
Total burnt area across Africa with El Niño (red) and without El Niño (black), July 2015 – 
June 2016 simulated by JULES-INFERNO 

 

Figure 4.9: Burnt area in Africa with El Niño, 2015 
Total burnt area across Africa with El Niño (red) and without El Niño (black), January 2015 
– December 2015 simulated by JULES-INFERNO 

 

Considering the South American continent, the change in burnt area due to El 

Niño is projected as higher than for the other two regions considered in this study. 

The burnt area is consistently higher with El Niño throughout the period July 2015 

– June 2016 (Figure 4.10). The total burnt area over this period is 0.52 Mkm2 

compared to 0.46 Mkm2 without El Niño, giving a total of 0.06 Mkm2 change (13%) 

due to El Niño.  
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Figure 4.10: Burnt area in South America with El Niño 
Total burnt area across South America with El Niño (red) and without El Niño (black), July 
2015 – June 2016 simulated by JULES-INFERNO 

 

Taking the tropics as a whole (20° South to 20° North), the burnt area is higher 

with El Niño through late 2015 (Figure 4.11). The total burnt area for this region 

is 2.42Mkm2 with El Niño and 2.40Mkm2 without El Niño.  

 

Figure 4.11: Burnt area in the Tropics with El Niño 
Total burnt area for the tropics (-20 degrees to 20 degrees latitude) with El Niño (red) and 
without El Niño (black), July 2015 – June 2016 simulated by JULES-INFERNO 
 

Comparing all three regions together, Figure 4.12 (upper panel) shows that the 

largest total burnt area is in Africa both with and without El Niño, followed by Asia 

and then South America, while the largest change with El Niño compared to 

climatology is seen in South America (Table 4.1). Peak fire in the form of burnt 

area is in February for Africa, April/May for Asia and September for South 

America. This partly results from the larger land area in Africa and Asia, so burnt 
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area is also calculated as a percentage of total land area by region in the lower 

panel at Figure 4.12. Africa still shows highest burned area at the continental 

peak in February, but there is higher burned area in South America than across 

Asia from Jules 2015- February 2016, and the fire season peak in from August to 

October exceeds the burnt area in both Africa and Asia for that period.  

 

Figure 4.12: Burnt area for 3 regions 
Burnt area across Africa (red), Asia (green) and South America (black). Solid lines show 
El Niño, dashed lines show no El Niño simulated by JULES-INFERNO. Upper panel shows 
total burnt area (Mkm2), lower panel shows total burnt area as a percentage of the land 
area per region  
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Table 4.1: Summary of burnt area and emitted carbon  
Globally and by region, with and without El Niño for total burnt area (Mkm2) and emitted 
carbon (PgC) simulated by JULES-INFERNO 

Burnt Area (Mkm2) 

July 2015 – June 

2016  

With  

El Niño  

 

Without 

El Niño  

Change  

 

Percentage 

change 

Asia 1.00 0.99 0.01 1.01 

Africa 1.73 1.82 -0.09 -4.95 

Africa Jan-Dec 2015 1.78 1.73 0.05 2.89 

South America 0.52 0.46 0.06 13.04 

Tropics 2.42 2.40 0.02 0.83 

Global Total  4.44 4.34 0.10  2.30 

     

Emitted Carbon 

(PgC) 

July 2015 – June 

2016  

With El Niño  

 

Without 

El Niño  

Change  

 

Percentage 

change 

Asia 0.58 0.57 0.01 1.75 

Africa 0.92 0.94 -0.02 -2.13 

Africa Jan-Dec 2015 0.99 0.95 0.04 4.21 

South America 0.46 0.38 0.08 21.05 

Tropics 1.50 1.40 0.10 7.14 

Global Total  2.74  2.59  0.15  5.79 

 

The largest impact of the 2015-2016 El Niño was across South America (Figure 

4.13). On average there was a global total increase in burnt area and emitted 

carbon with the El Niño compared to no El Niño, although some areas 

experienced a reduction in fire including Africa which reduced the global totals.  
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Figure 4.13: Percentage change in burnt area and emitted carbon  
 

 

Considering the key drivers of the change in burnt area, across the north of the 

South American continent there was an increase in temperature and a decrease 

in precipitation and soil moisture due to the El Niño (Figure 4.14). These hotter, 

drier conditions are typical of the impacts that we expect to see with a strong El 

Niño (Figure 4.1), and have been linked to an increase in fire (van der Werf et al., 

200428). The change in burnt area across Africa however is more variable, with 

some regions showing an increase and some showing a decrease. Across the 

northern half of the continent the variability is in line with changes in precipitation, 

soil moisture and temperature, but there is a strong signal of decreased burnt 

area in the far south which does not fit this trend (Figure 4.14). In this region the 

precipitation and soil moisture are lower, and temperature is higher compared to 

the mean climatology, which would usually be expected to lead to higher burnt 

area, and indeed does lead to higher burnt area across other regions including 

South America.  

                                            
28 NASA: https://www.nasa.gov/press-release/nasa-examines-global-impacts-of-the-2015-el-ni-o 
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a  

b  c  

d  e  

f  

Figure 4.14: Drivers of burnt area with El Niño 
Drivers of change in burnt area due to El Niño, July 2015-June 2016. Percentage change in 
burnt area (a), percentage change in annual precipitation (b), change in mean temperature 
(c), percentage change in soil moisture (d), percentage change in humidity (e) global mean 
precipitation (mm/day) time series with El Niño (red) and without El Niño (black) (f) 
simulated by JULES-INFERNO 
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Considering the flammability of vegetation across this area of southern Africa, we 

can see that there is a decline in flammability of grasses that seems to be driving 

the decrease in burnt area (Figure 4.15). Picking two points in Africa with differing 

fire responses, we can see there is a difference in humidity between the north 

and south, with higher humidity throughout the year in Namibia in the south where 

there is lower fire (Figure 4.16). Humidity may therefore be an important driver of 

fire in this region, together with a decline of fuel, as indicated by a strong decrease 

in grass flammability (Figure 4.15) and fraction (Figure 4.17). This is an area of 

semi-desert, so fuel is likely to be an important factor here.  

 

Figure 4.15: Change in flammability 
 Change in flammability due to El Niño for trees (left panel) and grasses (right panel) 
simulated by JULES-INFERNO 

 

 

Figure 4.16: Specific humidity in two African regions 
Tsumeb, Namibia (southern Africa, low fire, solid lines) and Lagos, Nigeria (North Africa, 
high fire, dashed lines) for El Niño (red) and no El Niño (black) simulated by JULES-
INFERNO 
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Figure 4.17: Change in fraction of grass vegetation due to El Niño  
simulated by JULES-INFERNO 

 

Now considering ignition and land-use, I investigate if there is a large impact on 

the burnt area driven by the 2015-16 El Niño that is affected by anthropogenic 

change. For this experiment I repeat the simulation with S3 land-use change 

(varying 1860-present day) and varying ignitions based on population and 

lightning input data.  

The initial results of burnt area fraction show some changes in the global pattern 

of burnt area, with a larger area burnt in USA and South America, but smaller 

burnt area across Saharan Africa (but with higher peak burning), India and 

Northern Australia (Figure 4.18).  

 

Figure 4.18: Burnt area with constant and varying ignitions 
Burnt area (gridbox fraction) from July 2015 – June 2016 with constant land-use and 
ignitions (left panel) and varying land-use and ignitions (right panel) simulated by JULES-
INFERNO 

 

To understand the impact of these changes in the context of the El Niño event, I 

compare the percentage change in burnt area with El Niño with the ‘no El Niño’ 

climatology for constant and varying ignitions (as described in Chapter 3). The 

same pattern of increases and decreases in burnt area is seen in both cases, 

suggesting that the change in climatology is a more important driver of change in 

burnt area than anthropogenic changes (Figure 4.19).  



190 
 

               

Figure 4.19: Change in burnt area with El Niño with constant and varying ignitions 
Percentage change in burnt area (gridbox fraction) due to El Niño from July 2015 – June 
2016 with constant land-use and ignitions (left panel) and varying land-use and ignitions 
(right panel) simulated by JULES-INFERNO 

 

 

The monthly global burned area shows more inter-seasonal variability with 

varying ignitions and land-use, which is closer to the observations than constant 

anthropogenic drivers (Figure 4.20). This results in a smaller global total burned 

area, and greater variance between the El Niño and No El Niño burnt area (Table 

4.2).   

 

 

Figure 4.20: Global total burned area time series with varying ignitions 
JULES simulation with varying ignitions (dotted line) and constant ignitions (solid line), 
with El Niño (red) and without El Niño (black). GFED4.1s observations shown in blue 
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Table 4.2: Change in burnt area with varying ignitions and land-use 
Total annual global burned area July 2015 – June 2016 (Mkm2) with and without El Niño 
simulated by JULES-INFERNO, compared to GFED4.1s observations 

Burnt Area (Mkm2) 
July 2015 – June 
2016 

 

El Niño 

No  

El Niño 

 

Variance 

 

GFED4.1s 

Variance 

from obs 

Varying ignitions 

and land-use 

4.39 4.21 0.18 3.91 0.48 

Constant ignitions 

and land-use 

4.44 4.34 0.10  0.53 

 

For the three regions there are some changes in the seasonal variability of fire 

between the constant and varying ignitions and land-use (Figure 4.21). Peak 

burned area for Asia is in July (varying, “Asia V”) vs May (constant, “Asia C”), and 

for South America in October (varying, “South America V”) vs September 

(constant, “South America C”), whereas peak burned area for Africa is February 

for both constant and varying. 
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Figure 4.21: Burnt area for three regions with constant and varying input 
Burnt area (Mkm2) for Africa (red), Asia (green) and South America (blue), using constant 
ignitions and land-use (“C”, dark colours), and varying (“V”, light colours). El Niño shown 
with solid line, no El Niño shown with dashed line, simulated by JULES-INFERNO. Bottom 
plot includes GFED4.1s observations with dotted line 

 

I compare the modelled burned area from JULES-INFERNO with GFED 

observations (Figure 4.22). For Asia (green), the timing of peak emissions is more 

closely captured with constant input (dotted line) than varying input (dashed line), 

but both are off by at least one month, and are higher than the observed burned 

area (solid line). For South America (blue), the timing and magnitude is well 

captured when using constant land-use and ignitions (dotted), but too high and 

the peak too late with varying input (dashed). For Africa (red), the modelled 

burned area, both with constant and varying ignitions, is much lower than 

observations and less variable.  

 

Figure 4.22: Time series of burned area for three regions with observations 
Burned area (Mkm2) as simulated by JULES-INFERNO with constant ignitions and land-
use (dashed line), varying ignitions and land-use (dotted line) and GFED4.1s observations 
(solid line) for Africa (red), Asia (green) and South America (black) from January 2015 – 
December 2016 (model simulations up to June 2016 only) 
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Assessing the burned area across a time series it is apparent that the modelled 

burned area for Africa is notably lower than observations (Figure 4.22), and yet 

the global total burned area is higher in the model than the observations (Table 

4.2). Spatially we can see that the total burned area according to GFED 

observations for the period July 2015 – June 2016 is focused on Africa, with areas 

across South America and Asia having lower burned area than simulated by the 

model (Figure 4.23).  

 

 

Figure 4.23: Modelled and observed pattern of burnt area 
Burned fraction as modelled by JULES-INFERNO (top row) with varying land-use and 
ignitions (left) and constant land-use and ignitions (right) compared to GFED4.1s 
observations (right), for July 2015 – June 2016.  

 

The model enables us to compare how burned area may have changed as a 

result of the El Niño by driving the model with the mean climatology. Comparing 

the total area burnt by region, the results with varying ignitions and land-use also 

highlight South America as the region most affected by the El Niño, and a 

decrease in burnt area in Africa (Table 4.3).  
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Table 4.3: Burnt area and emitted carbon, with anthropogenic change 
Globally and by region, with and without El Niño for total burnt area (Mkm2) and emitted 
carbon (PgC) simulated by JULES-INFERNO 

Burnt Area (Mkm2) 

July 2015 – June 

2016  

With  

El Niño  

 

Without 

El Niño  

Change  

 

Percentage 

change 

Asia 0.69 0.67 0.02 2.99 

Africa 1.73 1.81 -0.08 -4.42 

South America 0.78 0.70 0.08 11.43 

Tropics 2.46 2.41 0.05 2.07 

Global Total  4.39 4.21 0.18 4.28 

     

Emitted Carbon 

(PgC) 

July 2015 – June 

2016  

With El Niño  

 

Without 

El Niño  

Change  

 

Percentage 

change 

Asia 0.43 0.43 0 0.00 

Africa 0.91 0.92 -0.01 -1.09 

South America 0.59 0.51 0.08 15.69 

Tropics 1.47 1.38 0.09 6.52 

Global Total  2.64 2.50 0.14 5.60 

 
 

It is perhaps surprising that there are not larger differences between the constant 

and varying ignitions and land-use scenarios. The results suggest that the 

changes in climate are more important drivers of change in burnt area than 

varying ignitions and land-use in this case. This result may lend support to recent 

work by Aragão et al. (2018) showing that fire is increasingly being decoupled 

from anthropogenic ignition, and increasingly being driven more by climatic 

changes.  

 

To answer the first research question, ‘Did the 2015/16 El Niño have an impact 

on fire occurrence? Did this vary globally and why?’ I have considered the change 

in burnt area and emissions globally and for three key fire-prone regions, South 

America, Africa and Asia. The results as simulated by the JULES-INFERNO 

model from July 2015 – June 2016 have shown that there was an impact on fire 
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occurrence due to the El Niño conditions of 2015/16, and that this impact was 

largest in South America where there was an increase in burnt area due to hotter, 

drier conditions. The response across Asia was more mixed, with some regions 

showing an increase and some showing a decrease, with an overall slight 

increase in burnt area. The response across Africa was also variable, with an 

overall decrease in fire over the period considered (but with higher burnt area in 

2015). This decrease was dominated by a large decline in burnt area across 

southern Africa, which may have been driven by a combination of higher humidity 

and low fuel availability. These general trends do not vary with changing ignitions 

and land-use. To focus on the climatic changes, and as the seasonality and 

magnitude of burnt area over South America is better captured by constant 

ignitions and land-use compared to GFED observations, I will continue to use this 

set up for the other research questions.  

 

Section 2:  What impact did the El Niño have on the carbon sink globally and 

regionally? 

To address the second research question, ‘What impact did the El Niño have on 

the carbon sink globally and regionally?’, I calculate the Net Biome Productivity 

(NBP) with and without El Niño, and then calculate the change in Gross Primary 

Productivity (GPP), respiration and emissions to understand what impact the El 

Niño has on the carbon sink in three key regions.  

NBP is calculated as Net Primary Productivity (NPP) minus soil respiration, wood 

product emissions from land-use change, and fire emissions. NBP is a measure 

of the net carbon accumulated in an ecosystem and can therefore be a useful 

indicator of the change in the carbon sink. A negative NBP indicates that an 

ecosystem is a net emitter of carbon, which can happen under conditions such 

as large El Niño events where carbon uptake is reduced because of higher 

temperatures negatively impacting photosynthesis, and due to higher fire 

occurrence.  

Here I use the last 10 years of data to explore whether the NBP in 2015/16 was 

unusual. I also include the previous large El Niño, 1997/98, as a comparison 

(Figure 4.24). The 2015/16 had the lowest NBP of any year in the series in the 
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second half of 2015, but from March 2016 had the second lowest with 1998 

having a lower NBP. The 1997/8 El Niño conditions were focused more in the 

Central Pacific, whereas the 2015/16 were more focused in the East Pacific (Betts 

et al., 2018), which is a likely reason why the lowest NBP occurred at different 

times in each case.  

 
Figure 4.24: Global NBP 
Global terrestrial (GtC/month) NBP for time series of 10 years from July – June. 2005-2014 
shown in grey, large El Niño years shown in red (1997-1998 dashed; 2015-2016 solid), mean 
climatology (‘No El Niño’) shown in black simulated by JULES-INFERNO 

 

Now considering net carbon flux for South America, Africa and Asia calculated 

as Gross Primary Productivity (GPP = carbon uptake) minus soil and vegetation 

respiration (carbon emissions), in all regions the net carbon flux is negative 

without the El Niño (Figure 4.25), indicating an overall carbon sink where carbon 

uptake exceeds emissions. With the 2015/16 El Niño, South America and Africa 

change to an overall source of carbon. Asia shows a net carbon sink both with 

and without El Niño, but the sink is reduced with the El Niño conditions. From 

Figure 4.27 we can see that this is influenced by a change in GPP and respiration 

(including vegetation and soil respiration). The GPP is higher than respiration in 

all cases without El Niño, giving an overall carbon sink, but with El Niño GPP is 

lower than respiration giving an overall carbon source in all cases except Asia 

where it results in a reduced sink. There is a reduction in both GPP and 

respiration in all three continents as a result of the El Niño, but the reduction in 
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GPP is higher than the reduction in respiration. This means less carbon is taken 

up, leading to a net carbon source for the South America and Africa regions, and 

a reduction in carbon uptake for Asia.  

When fire emissions are also included, Asia and Africa turn from a sink to a 

source both with and without El Niño, which is higher with El Niño (Figure 4.26). 

South America turns from a sink to a source with El Niño. The overall emissions 

are higher in all cases when fire is included (Figure 4.27), as would be expected 

when adding in additional processes not previously accounted for. 

 

Figure 4.25: Carbon flux for three regions 
Carbon flux (GtC) with (red) and without (blue) El Niño, taking account of NPP, soil and 
vegetation respiration simulated by JULES-INFERNO 

 

Figure 4.26: Carbon flux including fire 
Net emissions (GtC) with (red) and without (blue) El Niño, taking account of NPP, soil 
respiration, vegetation respiration and carbon emissions from fire  simulated by JULES-
INFERNO
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Figure 4.27: Map of carbon uptake and emissions 
Map of GPP, Respiration (vegetation and soil) and carbon emissions (GtC) from fire for three key regions: South America, Africa and Asia with 
El Niño (red) and without El Niño (black) simulated by JULES-INFERNO 
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The main losses of carbon (as indicated by reduction in NBP) are found across 

South America and southern Africa, with other areas of loss including western 

Europe, Asia, and northern Australia (Figure 4.28). The drivers of these losses 

are spatially heterogeneous, with fire and reduction in GPP driving the losses 

across South America, reduction in GPP driving the loss across southern Africa, 

and fire driving the loss in Asia (Figure 4.29). This supports the research 

conducted by Liu et al. (2017) showing that carbon losses due to the 2015-2016 

El Niño vary regionally, although the drivers here differ from their study; Liu et al. 

concluded that the main cause of carbon losses was reduction in GPP in South 

America, an increase in fire in tropical Asia, and respiration increase in Africa. 

Here the JULES-INFERNO model shows that fire is dominant in South America 

and tropical Asia, and reduction in GPP is dominant in Africa.  

  

Figure 4.28: Global NBP 
Net Biome Productivity (NBP) July 2015 – June 2016 (KgC) (left), and change in NBP due 
to El Niño (right) simulated by JULES-INFERNO 

a  

b  c     
Figure 4.29: Drivers of change in NBP 
Percentage change due to El Niño July 2015 – June 2016 for burnt area (a), respiration 
(vegetation and soil) (b), and GPP (c) simulated by JULES-INFERNO 
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I have considered three continents here that are important for fire contributions 

and known as global carbon sinks. The 2015/16 El Niño had a negative impact 

on the carbon sink, with the largest impact seen in the South American continent 

compared to Africa and Asia, dominated by decreases in GPP and increases in 

fire. South America turns from a sink to a source of carbon as a result of the El 

Niño. When fire is not included, Africa also changes from a sink to a source of 

carbon with El Niño, and when fire is included Africa and Asia become stronger 

sources of carbon due to decreases in GPP. Reduction of NBP in Africa seems 

to be dominated by a reduction in GPP in the south of the continent, whereas 

carbon losses in South America are driven by fire and GPP reduction. The 

response across Asia is mixed, but across tropical Asia fire also appears to be 

dominant.  

 

Section 3:  How did the impacts of the 2015/16 El Niño vary spatially and in time 

across South America? 

The third research question considers how the impacts of the 2015/16 El Niño 

varied spatially and temporally across South America. 

First I investigate whether temperature or precipitation is the largest driver of 

burnt area globally and for South America. I perform two new runs, the first just 

using the precipitation associated with observed El Niño together with the mean 

climatology  for other climatic variables, ‘ENSO-Precip’, and the second just using 

the temperature associated with the El Niño together with the mean climatology 

of other variables, ‘ENSO-Temp’ (Figure 4.30).  

Temperature is a larger driver of burnt area than precipitation in this experiment 

both globally and for South America. Further, the results suggest that globally the 

El Niño -related changes in precipitation on their own, without a rise in 

temperature, would in some months be sufficiently high enough to lead to a 

reduction in burnt area. Considering South America, temperature is an important 

driver of burnt area during the peak fire season August-October, but towards the 

end of the El Niño period over March-June this changes to precipitation being the 

more important driver. This coincides with the wet season in central Brazil, 

indicating that reduction in precipitation in the wet season is a more important 
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driver of fire than in the dry season where it is already hot, dry and fire-prone. On 

a local scale, precipitation is an important driver of changes in GPP and Net 

Ecosystem Exchange, whereas at larger spatial scales temperature is a more 

important driver as a result of two compensating water effects (Jung et al., 2017). 

The results here showing temperature as the dominant driver on large spatial 

scales may be reflective of this principle. 

 

a  

b  

Figure 4.30: Drivers of burnt area globally and for South America 
Burnt area (Mkm2) globally (a) and for South America (b) from January 2015 – June 2016 
simulated by JULES-INFERNO 

 

Burnt area for South America as a whole is highest across August – October 

(Figure 4.31), and comparing to a year without El Niño (2013-2014) the burnt 

area was higher in 2014-2015 as the El Niño was beginning, and higher again in 

2015-2016 with the full impact of the El Niño. Without the El Niño (dotted line) the 

burnt area would not have been as high as in 2015-2016 according to the 
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projections, but would still have been higher than the previous two years from 

August-October.  

 

Figure 4.31: Burnt area for South America 2014-2016 
Burnt area (Mkm2) over South America from July– June for years 2013-2014, 2014-2015, 
and 2015-2016 with and without El Niño simulated by JULES-INFERNO 

 

To understand how burnt area changed as a result of the El Niño across South 

America, Figure 4.32 shows the change in total burnt area with El Niño in 2015. 

We can see that the impacts on fire did change spatially, especially across Brazil, 

with an increase in burnt area across the Brazilian Cerrado region, but a decrease 

in the East. This is within the Caatinga area (Figure 1.4), and is likely driven by 

fuel limitation (Figure 3.36 panel d). Putting this in a global perspective, the 

pattern of change is mixed across all other continents as well (Figure 4.33).  



203 
 

a b                                         

c d  
Figure 4.32: Change in burnt area in South America 
Change in burnt area fraction due to El Niño across South America for 2015 (a), peak fire 
season Aug-Oct 2015 (b), and peak fire month September 2015 (c) simulated by JULES-
INFERNO. Change in mean vegetation carbon shown in (d) 

 

Figure 4.33: Change in global burnt area 2015 
Change in total burnt area fraction (left), and at the 90th percentile (right) due to El Niño in 
2015 simulated by JULES-INFERNO 

Over a period of 5 years, JULES-INFERNO does not show 2015-2016 to be an 

outstanding year in terms of high burnt area, with 2011 showing a similar extent 

(Figure 4.34a). It is only when we compare to average climatology for the year 

(‘No El Niño’, black line) that the increase in burnt area due to El Niño is evident. 

Overall for Brazil, the El Niño shows higher temperatures (b), lower rainfall (c), 

and reduced soil moisture (d), which leads to an increase in burnt area (a), a 

decrease in plant respiration (e) and reduction in vegetation carbon (f). 

Comparing two regions of Brazil, one in central Amazonia (Manaus, g) and one 

in the Cerrado region (Primavera do Leste in the state of Matto Grosso, h), both 

show higher burnt area with El Niño than without, but the location in the south 

shows much higher total burnt area (Figure 4.34, g and h).  
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a b  

c d          

e f    

g h  

Figure 4.34: Change in key variables due to El Niño 2011-2016 
Time series for 5 years 2011-2016 showing change with El Niño across a range of variables, 
as labelled. Manaus is taken as 1 to 5 degrees latitude, 298 to 302 longitude (62 to 58 West), 
and Primavera do Leste in the state of Matto Grosso, -13 to -17 degrees Latitude, 52 to 56 
West, simulated by JULES-INFERNO 
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To answer the question of how the impacts of the 2015/16 El Niño varied spatially 

and temporally across South America using the JULES-INFERNO model, I have 

investigated burnt area over a time series and spatially across the continent from 

2015-2016 using an experiment to demonstrate ‘No El Niño’ compared to the 

observed El Niño. The results have shown that the fire season was highest across 

August – October 2015, and that the burnt area overall was higher as a result of 

the El Niño. However the regional changes in burnt area were spatially 

heterogeneous, with the southern region of Brazil across the Cerrado showing 

higher modelled burnt area and the East of Brazil showing lower burnt area. 

Studies of two locations in Manaus and Matto Grosso in Brazil also demonstrated 

a higher burnt area across the South of Brazil. This picture of mixed impacts was 

also shown to be the case on a global scale. Investigating the driving variables 

that may have contributed to these results showed an overall increase in 

temperature, and overall decrease in mean precipitation, soil moisture, plant 

respiration and vegetation carbon in Brazil. An additional experiment changing 

only the precipitation and temperature separately showed that temperature was 

the more important driver of burnt area during the peak fire season in the 2015/16 

El Niño.  

Finally, I compare the model results to observations of burnt area from GFED4.1s 

to understand if the model is capturing the observed interannual variability.  

INFERNO is able to capture the right order of magnitude of the global burned 

area and emissions, and accurately represents a peak in burnt area in August, 

and a drop in emissions in November (Figure 4.35 a and b).  

 

Figure 4.35: Modelled burned area and emitted carbon with observations 
Global total burned area (Mkm2) (left) and emitted carbon (PgC) (right) July – June, as 
modelled by JULES-INFERNO (red and black, 2015-2016) and from GFED 4.1s observations 
(blue) 
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The large drop in burnt area in February shown in the GFED observations is not 

captured by JULES; to check this was not an anomalous year I examined the 

previous five years of data to see if this pattern is repeated (Figure 4.36). A large 

decrease in burnt area is seen every year in the last five years in February, so 

this is a robust seasonal variation that is not being captured by the model. As 

shown previously, the global trend is dominated by large burned area in Africa 

(Figure 4.22), and therefore this may drive the seasonality in the observations. 

Peak burning in Africa for example is in July in the South, and January in the 

North (Roberts et al., 2009). In some regions burning coincides with the end of 

the agricultural season rather than in the peak dry season, whereas human 

ignition datasets used in modelling are typically based on population on an annual 

to decadal timescale. Therefore this may not be a model deficiency, but rather a 

current inability to capture seasonality of human trends in burning.  

What is also apparent is that 2015-2016 was not a significant year for global total 

burnt area, contrary to the previous El Niño year 1997-1998 (Figure 4.36b). 

However the impacts of El Niño events are spatially heterogeneous, with some 

areas getting hotter and drier, and some experiencing increased rainfall. This 

results in areas of increased burnt area in some regions, and areas of decrease 

in other regions, which impacts the global mean. The model captures the low 

burned area in Sept-Oct 2013, and the peak in Sept 2011, but the high burned 

area of 1997-1998 does not stand out as an anomalous year in the model. The 

fires of the 1997/98 El Niño were dominated by widespread peatland fires which 

is not yet included in the model as a separate process, which may explain why 

1997-1998 is not shown as an unusual year. This analysis also highlights that the 

change due to El Niño in the model is not large compared to natural variability.  
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a  

b  

Figure 4.36: Global burnt area 2010-2015 with JULES and observations 
Global total burnt area (Mkm2) July-June from 2010 to 2015, plus 1997-1998 from JULES-
INFERNO (a) and GFED4.1s observations (b) 

 

To validate the model against observations over a longer time series I take data 

from 1997 to 2015 for burned area and emitted carbon (Figure 4.37). Again the 

model captures the right order of magnitude of burnt area and emissions over the 

period, and in some cases individual years are well modelled such as 2006-2008. 

From these results it is quite apparent that the global burned area is decreasing, 

as reported in Andela et al. (2017). This decline in fire is not being captured by 

JULES; the main suggested cause for this decline from Andela’s research is the 
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increasing conversion of savannas into managed agricultural lands and therefore 

human suppression and fire management is increasing in these ecosystems. As 

agricultural lands are not yet represented as distinct and exempt from fire, this is 

a probable explanation for why the model does not show a similar downwards 

pathway as the observations. Spatially the places where fire occurs are captured 

well compared to the observations (Figure 4.38), although notably fire across 

India is too high as previously discussed in Chapter 3.   

a  

b   

Figure 4.37: Modelled burned area and emitted carbon 1997-2015 with observations 
Global total burned area (Mkm2) (a) and emitted carbon (GtC) (b) 1997-2015, as modelled 
by JULES-INFERNO (red) and from GFED 4.1s observations (black) 
 

 
Figure 4.38: Map of modelled and observed burned area 
Global total burned area fraction as modelled by JULES-INFERNO (a) and GFED 4.1s 
observations (b) 1997-2015 mean 
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4.5 Discussion 

Here I have considered the impact of the 2015/16 El Niño on fire, compared to a 

mean climatology. The results suggest that there was an impact on fire, and this 

varied spatially and temporally. It is well known that the impacts of El Niño 

conditions vary, causing drought across Asia, some parts of Africa and northern 

South America, and wetter conditions across central-east Africa and western 

America (Met Office29). Both the 1997-1998 (Page et al., 2002) and the recent 

2015-2016 (Aragāo et al., 2018) El Niño events have been associated with an 

increase in fire, and the results here have shown that in some regions fire did 

increase with the 2015-2016 El Niño compared to a ‘no El Niño’ scenario. 

Surprisingly, in the three regions studied here, both the GPP and the respiration 

decreased with El Niño in all cases. However looking at the overall impact of 

these changes showed that the decrease in GPP was larger than the decrease 

in respiration, leading to an overall decline in the uptake of carbon in all regions, 

exacerbated by the additional emissions from fire which are included in the 

calculation of NBP here for the first time. The modelled carbon emissions are in 

agreement with GFED observations, producing a similar order of magnitude of 

emissions. These results therefore have important implications for the calculation 

of carbon budgets using JULES which have not included fire emissions explicitly 

up to now, potentially reducing the remaining budget. However it should be noted 

again that there are uncertainties in the GFED data (see section 1.3.3), and the 

data have been found to underestimate burned area and emissions from the 

2015/16 El Niño in Amazonia (Withey et al., 2018). 

Focusing on Brazil, there is an overall warming and drying of the region (Figure 

4.14, Figure 4.34) which gives some context to the increase in burnt area shown. 

It is a well-known feature of El Niño conditions that there is a drying over the 

Amazon region, which is associated with a weakening of the land carbon sink 

and thus higher rates of CO2 growth (Humphrey et al., 2018). 

The pattern of rainfall moves across Brazil from the West (central South America) 

in January, to the North from May through to July, with very low rainfall in August 

                                            
29 Met Office ENSO Impacts: https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-
outlooks/el-nino-la-nina/enso-impacts  

https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks/el-nino-la-nina/enso-impacts
https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks/el-nino-la-nina/enso-impacts
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and September across central South America, correlating with the highest burned 

area in this region (see Appendix 4, Figure A4.1).  The shift in fire occurrence is 

also evident across the year globally, for example the region of high burned area 

shifts from central Africa at the beginning of the calendar year, to Southern Africa 

from May through to September (see Appendix 4, Figure A4.2).  

The previous large El Niño of 1997-1998 showed a large spike in carbon 

emissions, as shown in the GFED observations (Figure 4.37; Figure A4.11). A 

significant part of this was due to emissions from peatlands across Indonesia 

(Page et al., 2002). The same peak in emissions was not seen in the JULES-

INFERNO model, and this points to an important development for the model to 

be able to represent peatland fires in future iterations.  

The period of 2005-2014 used for this study was chosen to ensure conditions are 

as similar as possible to 2015/16 in terms of climate and CO₂ levels, while 10 

years was chosen to reduce the effects of interannual variability. However this 

period does include the weak El Niño years of 2004-2005, 2006-2007, and 2009-

2010, meaning some of the impacts of the 2015/16 El Niño may look weaker than 

if compared to the previous 20 years. It should also be noted that this experiment 

cannot be defined strictly as an attribution study for El Niño impacts, as other 

modes of variability may have driven changes during 2015/16. For a more 

complete attribution study to be conducted, El Niño events could be isolated from 

the historical period and compared to standard years, however this is complicated 

by the relatively few occurrences of El Niño events, and large range in strengths 

across numerous indexes that make it difficult to compare each event. We can 

define the 2015/16 meteorological conditions as dominated by a significant El 

Niño in this case, and using models we are able to compare the impacts against 

a 10-year mean climatology which gives us greater insight into the causes and 

impacts of the El Niño event.  

4.6 Conclusion 

 In this chapter I have investigated three research questions: 

1) What was the impact of the 2015/16 El Niño on fire, and did this vary 

globally? 
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2) What impact did the El Niño have on the carbon sink globally and 

regionally? 

3) How did the impacts of the 2015/15 El Niño vary spatially and in time 

across South America? 

The first question was addressed by using the JULES-INFERNO model with an 

experiment where the observed 2015/16 El Niño did not happen using the 

average climatology from the previous 10 years. The results showed that the 

burnt area was impacted by the El Niño, with some areas showing an increase in 

burnt area (south USA, South America, central Australia) and others showing a 

decrease (Africa, east Asia, west Australia). This also affected emissions in the 

same way. Globally burnt area was higher with the El Niño in the last half of 2015, 

and emissions were higher for most of the period July 2015 – June 2016. Three 

fire-prone regions were considered; Asia, Africa, and South America; out of these 

regions South America showed the largest change (increase) in burnt area with 

the El Niño, which was the same with both constant and varying ignitions and 

land-use, driven by increased temperature and reduction in moisture availability. 

Africa showed a negative change driven by higher humidity and lower fuel 

availability. Overall, the impact of the 2015/16 El Niño on fire varied by region.   

To answer the second question I explored the change in NBP using the 

experiment with and without El Niño. I found that the year 2015-2016 had the 

lowest NBP in the series of 10 years, and lower for most of the year than the 

previous largest El Niño in 1997-1998. This resulted in converting South America 

and Africa from a sink to a source of carbon, and a reduction in the Asian carbon 

sink without fire due to decreases in GPP; with fire South America was still 

converted from a carbon sink to a source driven by increases in fire and 

decreases in GPP, and Africa and Asia became larger sources of carbon driven 

by reduction in GPP and increases in fire respectively. Reduction of NBP in Africa 

seem to be dominated by a reduction in GPP in the south of the continent. The 

response across Asia is mixed, but across tropical Asia fire also appears to be a 

dominant driver of NBP reduction. Overall the 2015/16 El Niño reduced the 

carbon sink globally and for each region studied. 

Thirdly I considered the drivers of the El Niño globally and for South America, and 

found that temperature was a larger driver than precipitation. Burnt area in South 

America was highest in August-October, and the change due to El Niño varied 
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spatially with the Cerrado region in the South of Brazil experiencing an increase 

in burnt area and the East showing a decrease. This gave an overall increase in 

burnt area for the country as a whole. The El Niño caused an increase in 

temperature, humidity and burnt area, and overall decrease in mean precipitation, 

soil moisture, plant respiration and vegetation in Brazil.  

The final section compared the model results to observations from GFED4.1s, 

and showed that the magnitude of burnt area and emissions are well modelled, 

but the seasonal variability in burnt area is less well captured from February – 

June across a year. Interannual variability is captured by the model, but the 

overall downward trend in burnt area is not, likely due to processes of 

suppression in agricultural lands not being captured yet in the model. Similarly 

the high burnt area in the previously large El Niño 1997-1998 was not represented 

in the model, likely due to lack of peat representation.  

In conclusion, this chapter has shown that although 2015-2016 was not a peak 

year for global total burnt area or fire emissions, the El Niño had an impact on fire 

which varied regionally, with the highest increase in South America, which led to 

an overall increase in burnt area and emissions compared to a ‘no El Niño’ 

scenario for 2015-2016. This contributed to a reduction in the sink of carbon 

globally and regionally. Across South America there were both positive and 

negative impacts on fire due to the El Niño, but overall the burnt area increased 

across the continent and this had a large negative impact on the carbon sink 

which changed to an overall source of carbon over the El Niño period.  
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Chapter 5: Future projections of fire, climate 
and land-use change  

5.1 Introduction 

There is low agreement in models on whether climate change will cause fires to 

become more or less frequent in the future due to the complexity of interactions 

and feedbacks, and lack of proper representation in models (Settele et al., 2014; 

Kloster and Lasslop et al., 2017). With climate change we can expect to see an 

increase in temperatures globally, which could lead to increased fire weather 

conditions. However, moisture is required for adequate vegetation growth and 

fuel production, and future projections of rainfall are less certain. In some regions 

precipitation may increase substantially, which could lead to a reduction in burned 

area if fuel becomes too wet to burn (Prentice et al., 2011).  

A number of studies have shown that on a global scale, fire occurrence may be 

decreasing. Changes in patterns of land-use including conversion of savanna 

land to agricultural farm lands have led to a downward trend in global fire 

occurrence according to Andela et al., (2017). Yet this can be conflated 

incorrectly with other aspects of the fire regime which are not necessary 

correlated; for example while the overall burned area has decreased, the number 

of fires has increased in some areas such as the Mediterranean, and in the USA 

national reporting shows fewer but larger fires (Doerr and Santin, 2016). In 

addition there is regional variation, with some areas such as the tropics having 

seen an increase in burned area from deforestation fires in the last half of the 

century (Mouillot and Field, 2005), although an important aspect of this is also 

the relaxation of fire suppression policies over this period (Doerr and Santin, 

2016). Moritz et al. (2012) project a decrease in fire activity across most of the 

southern hemisphere using a statistical model based on CMIP3 climate 

projections by the end of the century, although there is little agreement on the 

direction of change in the nearer term to 2040, and notably there is low agreement 

across the east of Brazil even by 2100. The primary driver of projected decreases 

for tropical rainforests is an increase in precipitation. However, while CMIP3 

projections show an increase in wet season precipitation and a decrease in the 

dry season across the Amazon in the future, the more recent CMIP5 projections 
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show a decrease in precipitation in both wet and dry seasons (Joetzjer et al., 

2013; Kanikicharla30).  

In contrast, other studies have projected increases in fire in the future. Liu et al. 

(2010) project higher fire danger by the end of the century across South America, 

Southern Africa and Australia, mainly due to warming and drying using the KBDI 

and four GCMs including HadCM3. Wu et al. (2015) found that burned area in 

eastern Europe may increase over the coming decades, based on LPJ‐GUESS‐

SIMFIRE and LPJmL‐SPITFIRE simulations. Kloster et al. (2012) use CLM with 

climate projections from ECHAM5/MPI-OM and CCSM to show projected 

increases in annual mean fire emissions by the end of the century, particularly in 

South America, mainly due to climatic changes although land-use and population 

changes were also factored in. They projected that overall, global carbon 

emissions from fire in 2075-2099 will be higher compared to present day by 17-

68% due to climate change. Fire may also be a significant danger in high latitude 

regions in the future. Permafrost thaw has already been associated with fire 

events in Western Canada, creating a positive feedback with more peatland 

consequently exposed to further burning (Gibson et al., 2018). But confidence in 

the magnitude of radiative forcing resulting from fires is low, and based on limited 

studies using wide-ranging modelling techniques, we cannot even be sure of the 

sign of the radiative response yet (Figure 5.1). Other studies show no detectable 

change in future fire (Knorr et al., 2016). 

 

Figure 5.1: A synthesis of the magnitude of biogeochemical feedbacks on climate.  
Black dots represent single estimates, and coloured bars denote the mean of the dots with 
no weighting or likelihood estimate. There is low confidence in the magnitude of the 

                                            
30 https://unfccc.int/sites/default/files/4_krishna_sbsta.pdf  

https://unfccc.int/sites/default/files/4_krishna_sbsta.pdf
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feedbacks, especially for those with few, or only one, dot. Reproduced from IPCC AR5 
Figure 6.20.  

 

HadGEM2-ES has been used in previous studies to assess future fire danger 

using the McArthur Forest Fire Danger Index (FFDI) to estimate how fire danger 

may change with different representative concentration pathway (RCP) scenarios 

(Betts et al., 2015). The results showed a general increase in FFDI under all 

emissions scenarios, with the greatest risk in the scenarios with highest warming 

(RCP8.5). Areas of particularly large increase in FFDI under RCP8.5 included 

eastern Amazonia. There are however added complexities associated with 

diagnosing fire occurrence that are not represented by indices of fire danger such 

as the FFDI, including fuel availability, as well as anthropogenic influences 

including both ignition and fire suppression, and therefore risk varies strongly by 

region (Ciais et al., 2013). To be able to represent all of these factors, an 

interactive land surface or Earth System Model with fire is required.  

One of the primary factors in the uncertainty of future fire trends is the uncertainty 

in future projections of precipitation. There is large disagreement across models 

concerning how precipitation will change by the end of the century, in particular 

over South America (Figure 5.2), predominantly related to changes in sea surface 

temperatures and land-sea temperature differences which cause shifts in 

convection and convergence (Kent et al., 2015). However the mean trend across 

CMIP5 models indicates a drying across the NE of South America, in line with 

projections from HadGEM2-ES. Over the Amazon, this drying is largely driven by 

plant physiology (Chadwick et al., 2016), whereby plant stomata open less under 

higher levels of CO2 which leads to reduced evapotranspiration (ET), and local 

warming and drying (Betts et al., 2008). While these physiological processes are 

represented in HadGEM2-ES, they are not yet included in all ESMs, leading to 

significant differences in the projections over this region.  
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Figure 5.2: CMIP5 projections of precipitation change 
Precipitation change for 2071–2100 minus 1971–2000, under the RCP8.5 emissions 
scenario, as follows: CMIP5 ensemble mean precipitation change (top left), model 
agreement on precipitation changes at a number of thresholds (bottom left), GFDL-ESM2M 
only (top right) and HadGEM2-ES only (bottom right). Areas where 1971–2000 precipitation 
is <200 mm yr−1 (top left), areas where <20 models have 1971–2000 precipitation of 
>200 mm yr−1 (bottom left), areas of desert and sea (right column) and are masked in white. 
Reproduced from Chadwick et al. (2016) figures 1 and 4. 
 
 

While the potential for changes in fire patterns will change globally in the future, 

and high latitude regions may also be at increased risk under a warming climate, 

here I focus on Brazil as a key region associated with high uncertainty in the 

future. 

Fire in the Amazon  

Generally across central Amazon today fire is not a major threat, with high levels 

of moisture and few ignition sources. However, as discussed in Chapter 1, fire 

may be at risk of increasing in the future as a result of warming and drying over 

the next century with climate change (IPCC AR5), especially in the south-east 

Amazon where fire danger is higher, and where most models project longer and 

more intense dry seasons in the future (Malhi et al. 2008; 2009), combined with 

increasing land-use frontiers. A recent study by Le Page et al. (2017) considers 

the risk of understory fires increasing in the Amazon in the future with different 

RCP scenarios; they show that fires are projected to increase in frequency and 

duration, burning up to 28 times more forest by the end of the century than 

present day. Limiting emissions and land-use activities as per scenario RCP4.5 

has some effect on reducing this to 0.9-5.4 times higher than present day, 

showing again the important interactions between climate and land-use in this 
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region. Drought years could increase fire danger further on top of this climate 

change signal, as was the case in the recent 2015/16 El Niño (Aragaõ et al., 

2018). 

CO2 fertilisation may go some way towards offsetting the vulnerability of 

vegetation to future drought, through increased photosynthesis, carbon uptake 

and water use efficiency, but this may be limited by nutrient availability, and there 

is still a high degree of uncertainty around the size of these potential changes 

due to the current lack of field observations (Ciais et al., 2013). 

Future fire danger in the Amazon will depend on both anthropogenic and climatic 

factors. It is estimated that currently 58% of the Amazon is too humid to support 

fires, but climate change may reduce this area to 37% by 2050 (Ciais et al., 2013) 

or even lower (Le Page et al., 2010), which will interact with human factors such 

as land-use, ignitions and suppression as well as changes to biomass (fuel). As 

stated in the IPCC AR5 report:  

“Climate change alone is not projected to lead to abrupt widespread loss of forest 

cover in the Amazon during this century (medium confidence), but a projected 

increase in severe drought episodes, together with land-use change and forest 

fire, would cause much of the Amazon forest to transform to less dense, drought- 

and fire-adapted ecosystems” (Settele, 2014).  

More recent work has added to our knowledge in this area, confirming the 

conclusions reached in the AR5 report, and providing further evidence of 

vulnerability of tropical forests to drought (Good et al., 2018).  

Golding and Betts (2008) used the McArthur FFDI to calculate the change in fire 

danger in the Amazon with the simulated changes in climate. They found a 

significant increase in central and eastern Amazonia by 2020, and high fire 

danger for over 50% of the forest by 2080; these areas also correlate with those 

projected to be most impacted by deforestation as projected by the SRES 

scenarios of LUC. They estimated that future vulnerability to fire may depend 

nonlinearly on both climate change and deforestation. However, this study was 

also based on HadCM3, which was subsequently shown to have a dry-bias in this 

region. 
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There is still much uncertainty around how forests will respond in the future to 

changing climatic conditions, and how this will interact with anthropogenic factors 

such as land-use change and fire. Some models show high resilience of tropical 

forests to climatic changes, but the Amazon in particular has been shown to be 

one of the most vulnerable to ecosystem changes (Betts et al., 2015; Good et al., 

2011), and other models have shown a higher vulnerability of tropical forests in 

general (Colwell et al., 2008; Bertrand et al., 2011). Recent research has 

suggested that when the impact of fire is included in analysis of future change 

over the Amazon,  the potential tipping point for the Amazon forest to a savanna-

like state may be lowered from the previous estimates of 40% deforestation to 

around 20-25% (Nobre et al., 2016; Lovejoy and Nobre, 2018). 

Tropical forests have high ET rates, leading to increases in precipitation and 

cooling, and studies in Amazonia have shown that conversion of forest to 

agricultural pasture land has had a warming and drying effect on the region 

(Bonan, 2008). There are additional complexities resulting from changes to 

albedo, where forests have a low albedo (low reflectivity and therefore higher 

heat absorption) leading to warming which is offset by strong evaporative cooling, 

but this process is reversed when forests are converted to pastures. It can be 

expected that fire will have a similarly disruptive impact on biogeochemical 

processes, including increasing albedo and reducing ET. These non-linear 

interactions between vegetation and atmosphere can amplify or reduce the 

effects of anthropogenic climate change.  

In this study, I use the land surface community model JULES (Joint UK Land 

Environment Simulator) (Best et al., 2011) with the latest version of the fire model 

JULES-INFERNO (Mangeon et al., 2016) to understand how fire danger may 

change in the future under three emission scenarios, RCP2.6, RCP4.5 and 

RCP8.5. I assess the response of vegetation to future fire using INFERNO 

coupled to vegetation dynamics (Burton et al., 2019) for the first time, to answer 

three key research questions: 

 

1) How is burnt area projected to change with climate change in the future 

and, together with changes in land-use, what impact does this have on 

vegetation coverage? 
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2) What is the impact of different warming levels, and does the pathway to 

reach them alter the impacts on the land surface? 

3) Could fire lead to a change in state from tropical forest to savanna by 

2100?  

The results are divided into three sections to answer each of these questions.  

5.2 Methods 

When modelling future change, it is necessary to consider how future 

concentrations of GHGs present in the Earth system may vary over time. To 

reflect current uncertainty that exists around future emission levels, climate 

sensitivity to those emissions, policy and mitigation options, technology, 

population levels, and changes in land-use, a set of Representative 

Concentration Pathway (RCP) scenarios were developed by the IPCC to 

represent a range of potential future greenhouse gas (GHG) concentration levels 

(see Appendix 2). If global mitigation policies are put in place, for example aiming 

at a high chance of limiting global mean temperature rise to 2˚C above pre-

industrial (PI) levels, emissions will be reduced and the concentration pathway 

RCP2.6 (2.6W/m2 radiative forcing) could be the future trajectory. On the other 

hand, if emissions are not curbed and we continue along a business-as-usual 

pathway into the future, we will see much higher concentrations greenhouse 

gases (GHGs), and higher radiative forcing such as represented in scenario 

RCP8.5 (8.5W/m2 radiative forcing).  

Underpinning these concentration scenarios are assumptions about how land-

use trends may change, as discussed in Chapter 2. For example in RCP2.6, to 

achieve high mitigation policy targets it is assumed that large amounts of land will 

be converted to biofuels (see Appendix 2). In RCP8.5, a large amount of land 

could be converted to agriculture to feed a rapidly growing population. In other 

middle-ground scenarios such as RCP4.5, reforestation is implemented as an 

alternative mitigation measure to help draw down carbon.  

In addition to variation in levels of GHGs and land-use change between 

scenarios, there are also different pathways for how aerosols may change in the 

future which varies by scenario. After reaching a peak around 2010, aerosol 

concentrations are projected to decrease over the twenty-first century in all 
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scenarios, with the strongest decline following mitigation of emissions in RCP2.6, 

with their associated cooling effects therefore becoming weaker (Szopa et al., 

2012). The highest aerosol optical depth (AOD) is assumed in RCP8.5 (Figure 

5.3) from high levels of emissions, leading to highest negative radiative forcing 

(Table 5.1). RCP4.5 follows a similar pathway to RCP8.5 until around the middle 

of the century, when the AOD starts to decrease faster than in scenario RCP8.5. 

This may have impacts on biogeophysical and biogeochemical responses (Jones 

et al., 2003), for example lower aerosol levels have been linked with a potential 

increase in drought conditions over the Amazon (Cox et al., 2008). 

 

Figure 5.3: Global average aerosol optical depth  
At 550 nm as simulated from CAM-chem (Community Atmosphere Model vn3.5 with 
interactive chemistry). Red curve = RCP2.6. Green curve = RCP4.5. Black curve = RCP6.0. 
Blue Curve = RCP8.5. Reproduced from Lamarque et al. (2011).  
 
 
Table 5.1: Clear sky radiative forcing (W/m2)  
With respect to 1850 by aerosol type. Reproduced from Lamarque et al. (2011). 

 

 

In this experimental configuration, JULES vn4.9 at revision 9986 is driven with 

HadGEM2-ES model data. Three different RCP scenarios are used for GHG 

concentrations, aerosols and land-use; a low emissions scenario RCP2.6, a 

medium emission scenario RCP4.5, and a high business-as-usual emissions 

scenario RCP8.5. JULES was spun-up for 120 years using one-year preindustrial 
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climatologies of 1860 CO2 data and land-use data from HYDE. The model was 

then run from 1860-2005 for the historical period with varying CO2 and land-use, 

and then 2005-2100 with the full data series of CO2 and land-use for each 

scenario (see ‘Data availability’ for fcm repository location). In this version of 

JULES, dynamic vegetation from TRIFFID is used, with five plant functional 

types, and including interactive fire and constant ignitions (see Chapter 3 for more 

information on the model development).  

For this study, I use three RCP scenarios to assess how climate may vary by the 

end of the 21st Century (2090-2099) dependent on GHG concentration levels 

under a high, medium and low emissions pathway, and investigate what impact 

this has on other aspects of the climate system compared to present day (taken 

as 1996-2005). I run simulations with and without fire, and with and without land-

use to determine the impact of drivers within the scenarios. For the ‘without land-

use’ scenario I use varying land-use over the historical period, and then set land-

use at a constant rate at 2005 for the whole future period. 

While the RCP scenarios give an indication of the GHG concentration limits 

compatible with limiting temperature to specific levels, e.g. RCP2.6 for limiting 

temperature rise to 2˚C above pre-industrial levels, pertinent policy-relevant 

questions around possible impacts requires analysis at specific levels of 

warming, for example how impacts will differ at 1.5˚C compared 2˚C. I therefore 

consider specific levels of warming in section 2, and assess what impact the 

differences in pathways has on a range of variables. 

Because JULES is a land surface model and temperatures are generally higher 

over land, model output data from the global Earth System Model HadGEM2-ES 

is used to define the time periods of specific levels of global mean warming at 

1.5°C, 2.0°C and 4.0°C above pre-industrial levels (Table 5.2). For each RCP 

scenario, the first year at which each temperature threshold is reached is 

recorded (n), and the time period for that temperature is taken as n-9 to n+10 to 

rule out year-to-year variations in temperature change. The difference at each 

specific warming level using a 20-year time slice is compared to present day, 

which is defined here as the period 1981-2010 (where mean CO2 is 362.43ppm 

and mean temperature above PI is 0.3°C). This method is based on the study by 

Johns (2017). 
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Table 5.2: Periods of specific levels of warming and associated CO2 from HadGEM2-ES 

 Pre-Industrial RCP85  RCP45  RCP26  

1.5°C 1861-1880 2019-2038 2025-2044 2023-2042 

2.0°C 1861-1880 2032-2051 2036-2055 2048-2067 

4.0°C 1861-1880 2066-2085   
 

CO2 
(ppm) 

PI (1861-1880) RCP85  RCP45   RCP26  

1.5°C 287.93 444.49 446.58 432.36 

2.0°C 287.93 498.04 474.81 441.58 

4.0°C 287.93 721.81   

 

 

The third section of this study focuses on the potential for a change of state from 

tropical forest to savanna vegetation. For this analysis I first use a drought factor 

based on the Keetch Byram Drought Index (Keetch and Byram, 1986), with 

varying soil moisture provided by JULES (based on Holgate et al., 2017, as used 

in Burton et al., 2018a): 

𝑫𝒓𝒐𝒖𝒈𝒉𝒕 𝒇𝒂𝒄𝒕𝒐𝒓 =
𝟎. 𝟏𝟗𝟏 ∗ (𝑺𝑴𝑫 + 𝟏𝟎𝟒) ∗ (𝑵 + 𝟏)𝟏.𝟓

𝟑. 𝟓𝟐 ∗ (𝑵 + 𝟏)𝟏.𝟓 +  𝑷 − 𝟏
 

 
Where P = precipitation (mm day-1) and N = number of days since last rain. I use 

varying soil moisture to calculate the soil moisture deficit (SMD) compared to the 

field capacity at a depth of 1m to account for varying ecoregions. Secondly I 

investigate the dry season resilience (DSR) of the forest following the method of 

Good et al. (2013), which investigated the tendency of two models HadCM3 and 

HadGEM2-ES to project tropical forest dieback in the future based on this 

resilience factor. This was based on the following equation for the calculation of 

DSR for HadGEM2-ES:  

DSR = (dry season length) + 0.25T – 0.0027CO2 – 14.7 

Where T = temperature in units of °C, CO2 is in units of ppm, and DSR is in units 

of months. Dry season length is defined as the number of months with less than 

100mm of precipitation (Good et al., 2011). The calculation is applied to the 

tropics, defined as 20.0°S to 20.0°N. I develop this experiment to assess the 

impact of adding fire to the JULES model, to give an indication of whether the 
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representation of fire in the model reduces the resilience of the forest in the dry 

season, making a shift to savanna vegetation cover more likely.  

 

5.3 Results 

Section 1:  How is burnt area projected to change with climate change in the 

future and, together with changes in land-use, what impact does this have on 

vegetation coverage? 

 

Before addressing the first research question, I start by assessing the impact of 

using model driving data on present day burnt area. Here I am using model output 

data from HadGEM2-ES to drive JULES offline for both the historical and future 

projections in this experiment for consistency, rather than using the CRU-NCEP 

observational dataset which was used for historical and present day simulations 

in previous chapters. The driving data has a significant impact on the results; the 

precipitation patterns from HadGEM2-ES show a warm and dry signal along the 

northeast coast of South America at present day, which is not seen in the CRU-

NCEP observed precipitation (Figure 5.4, panel a). Together with temperature 

and fuel availability (also driven by precipitation, panel b), this changes the 

pattern of burned area from southeast Brazil to northeast Brazil (panel c). 

Comparing the results with observations of burnt area, we can see that the 

present day model projections more accurately reflect the pattern of observed fire 

occurrence when the CRU-NCEP driving data is used, which will impact the future 

projections. As there is still a large uncertainty in how projections of precipitation 

will change in the future (Myneni et al., 2007; Ciais et al., 2013) as discussed in 

the Introduction (section 5.1), we cannot yet draw confident conclusions based 

on model data about the exact pattern or precise location of changes. However 

CMIP5 models generally agree that there will be warming and drying over this 

region in the future (see Figure 5.2).  
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a      

b  

c  

Figure 5.4: CRU-NCEP and HadGEM2-ES  
Present day (2005) simulations from JULES driven by HadGEM2-ES and CRU-NCEP. (a) 
shows annual precipitation (mm/yr) (left) and temperature (˚C) (right); (b) shows GPP 
(kgC/m2/yr) (left) and tree cover fraction (right); (c) shows burnt area fraction from 
HadGEM2-ES (left), CRU-NCEP (centre), and GFED4.1s observations (right) all for South 
America 

 

Looking at how the global mean temperature changes over time, we can observe 

a slow but steady increase over the historical period, and a faster increase in 

temperature from around 1980 to present day along with a similar rise in carbon 

GFED observations 
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dioxide (CO2) (Figure 5.5, a and b). The future scenarios show very different rates 

of change, with the RCP2.6 (high mitigation) scenario warming more quickly than 

the higher emissions scenarios initially, but then peaking and levelling off to 

stabilise temperatures at around 2.0°C of warming above pre-industrial levels. 

The RCP4.5 scenario shows a slower rate of warming, but by 2100 temperatures 

stabilise at around 1.0°C higher than the RCP2.6 scenario. The ‘business as 

usual’ scenario RCP8.5 shows rapid and consistent warming reaching 

temperatures well above the other RCP scenarios by the end of the century. 

Compared to the CMIP5 ensemble, this is not an unusual pattern of temperature 

change, with a number of models showing this rapid rise in temperature in the 

RCP2.6 scenario before stabilising at 2.0°C (Figure 5.6) in response to GHG 

concentrations. These ‘pathways’ to warming may have implications for the 

impacts seen at 1.5°C, 2.0°C and 4.0°C, due to differences in the timing of 

reaching each temperature scenario as well as the assumptions made in how 

each level of warming is reached, as I explore further in section 2.  

a b  

Figure 5.5: Global mean change in CO2 and temperature 
Time series of global mean change in CO2 (parts per million) (a) and global mean 
temperature change over time (degrees Celsius above pre-industrial (PI) 1861-1880) (b) 
from JULES (land-only) 
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Figure 5.6: CMIP5 global mean temperature projections 
Updated version of IPCC AR5 Figure 11.25a, showing time series of global mean 
temperature observations, and the CMIP5 model projections for different RCPs relative to 
1986-2005. The black lines represent observational datasets (HadCRUT4.5, Cowtan & Way, 
NASA GISTEMP, NOAA GlobalTemp, BEST). Figure from Ed Hawkins Climate Lab Book31 

 

Considering now the change in gross primary productivity (GPP) and burnt area 

over the same period (Figure 5.7 a and b), both show similar patterns of change 

to Figure 5.5 a and b, indicting a strong driver of temperature and levels of CO2 

with very strong increases in the RCP8.5 scenario. This is as expected for GPP, 

reflecting more available CO2 for photosynthesis and thus more productivity. The 

global burnt area also increases with temperature, staying approximately steady 

over the historical period but increasing sharply in the RCP8.5 scenario.  

Despite an increase in productivity, vegetation carbon declines over the historical 

period (panel c). From Figure 5.7 panel (d) we can see that a key driver of this 

change is due to increasing conversion of land for agricultural use. As discussed 

in Chapter 2, in the RCP4.5 scenario agricultural land-use change declines in the 

future and reforestation is implemented, and this leads to the highest total 

vegetation carbon by 2100 out of all three scenarios (c, solid lines). RCP8.5 has 

high land-use change, but this is somewhat compensated by an increase in 

productivity. The high mitigation scenario RCP2.6 has high land-use change and 

low productivity, leading to steady-to-declining levels of vegetation carbon. We 

can see by comparison that when land-use is kept constant at present day, 

vegetation carbon starts to increase again in all scenarios, and emulates the CO2 

                                            
31 Climate Lab Book: https://www.climate-lab-book.ac.uk/comparing-cmip5-observations/  

https://www.climate-lab-book.ac.uk/comparing-cmip5-observations/
http://blogs.reading.ac.uk/climate-lab-book/files/2014/01/fig-nearterm_all_UPDATE_2018-panela.png
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concentration and fertilisation effect with RCP8.5 showing the largest increase, 

followed by RCP4.5 and RCP2.6 (c, dashed lines).  

a b

c d  

Figure 5.7: Global change over RCP scenarios 1860-2100 
Panels a-c show time series of global total: (a) GPP (GtC), (b) burnt area (Mkm2), (c) 
vegetation carbon (GtC) (with land-use: solid line, with ‘no land-use (constant at 2005): 
dashed line); panel (d) shows agricultural fraction (fraction of gridbox). All panels show 
1860-2100 

 

Figure 5.8 shows how the change in burnt area is higher in the future for many 

areas, increasing with emission scenario. Regions around east Brazil, parts of 

Africa, and Europe are shown to be particularly exposed to increased fire danger, 

especially in scenario RCP8.5 by the end of the century. This can be compared 

with the McArthur Index for fire danger, as presented in Betts et al (2015) and in 

Appendix 5.  
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a  

b c  

d e  

Figure 5.8: Future burnt area as modelled by JULES-INFERNO  
Mean burnt area fraction 1970-1999 (a), 2070-2099 RCP2.6 (b), 2070-2099 RCP8.5 (c) change 
in burnt area 1970-1999 to 2070-2099 RCP2.6 (d), change in burnt area 1970-1999 to 2070-
2099 RCP8.5 (e) 

 

The impact of both fire and land-use change disturbances on total vegetation 

carbon is shown in Figure 5.9. Without fire or LUC, vegetation carbon generally 

increases globally in the future with CO2 fertilisation, with higher increases in the 

higher emission scenarios, however across central Brazil there is still a decrease 

in carbon compared to present day (top row). This is likely because LUC is held 

constant at 2005 levels in this experiment, and land-use fraction is already high 

in this area, so there is no opportunity for high-carbon vegetation i.e. trees to 

regrow. In the land-use only scenario (third row), land-use decreases in RCP4.5 

and as a result vegetation increases everywhere. With this exception, vegetation 
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carbon strongly decreases across central Brazil both from fire (second row) and 

LUC (third row). We can see the result of these changes specifically for Brazil 

below. 

 

Figure 5.9: Impact of disturbance on vegetation carbon 
Total vegetation carbon (kg m-2) at present day (1996-2005 mean) (left column) and change 
compared to present day (kg m-2) for three RCP scenarios (2090-2099), RCP2.6 (second 
column), RCP4.5 (third column), RCP8.5 (right column). Top row shows no fire with land-
use at 2005, second row shows fire with land-use at 2005, third row shows LUC and no 
fire, bottom row shows fire and LUC 

 

Now considering Brazil, the highest temperatures by 2100 are obviously 

projected in the high emissions RCP8.5 scenario, however the maximum 

temperature reached here is in the north of Brazil (Figure 5.10). In the RCP2.6 

scenario the maximum temperature reached is lower. In the RCP4.5 scenario the 

maximum temperatures are seen along the Northeast coast. Considering the 

change in precipitation (Figure 5.11), there is a mixed response. In the RCP2.6 

scenario central South America generally becomes drier, whereas in RCP4.5 the 

central region becomes wetter, and there is a strong drying response in the North 

to Northeast which is stronger again in RCP8.5. Soil moisture in the top layers 

exhibit a similar pattern of drying (Figure 5.12). As the East and Northeast regions 

experience warming and (in some areas) drying in the future, they also become 

more susceptible to fire. We can see the impact of this on burnt area in Figure 

5.13 and Figure 5.15. 
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Projected temperature 

a  

b  
Figure 5.10: Future change in temperature 
Panel (a) shows projected temperature (° C) at present day (1996-2005) and at the end of 
the century (2090-2099) for three future RCP scenarios.  Panel (b) shows projected change 
in temperature from present day (1996-2005) for three future RCP scenarios.  
 

Projected precipitation 

a  

b  

Figure 5.11: Future change in precipitation  
Panel (a) shows projected precipitation (mm/yr) at present day (1996-2005) and at the end 
of the century (209-2099) for three future RCP scenarios. Panel (b) shows projected change 
in precipitation from present day (1996-2005) for three future RCP scenarios.  
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Projected soil moisture

 

Figure 5.12: Future change in soil moisture 
Mean soil moisture in top two layers of soil (mm/m2/yr) at present day (1996-2005), and 
projected change from present day at the end of the century (2090-2099) for three future 
RCP scenarios.  
 
 

The burnt area as simulated by the model is centred on the area of maximum 

warming and drying, and increases with temperature across the RCP scenarios 

(Figure 5.13). In RCP2.6 the burned area is centred on the East of Brazil; in the 

RCP4.5 scenario this area is widened to include the northeast as well, and in the 

RCP8.5 scenario a large proportion of east Brazil is at risk of fire.  

Projected burnt area 

a  

b  

Figure 5.13: Future change in burnt area 
Panel (a) shows projected burnt area (gridbox fraction) at present day (1996-2005) and at 
the end of the century (2090-2099) for three future RCP scenarios. Panel (b) shows 
projected change in burnt area from present day (1996-2005) for three future RCP 
scenarios. 
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The change in GPP over time shows much less variation between scenarios for 

Brazil than globally but still shows an increase in GPP for RCP8.5 (Figure 5.14a), 

and both GPP and burnt area (a and b) show more inter-annual variability. With 

fire and land-use change, vegetation carbon continues to decline in scenario 

RCP8.5, whereas in scenario RCP4.5 it stays roughly constant from present day 

to 2100 (panel c, solid lines) due much less land-use change (panel d). We can 

see that if land-use change was kept constant at present day, the loss of carbon 

from fire in RCP4.5 would not be offset as much by reforestation and would follow 

a similar pathway as RCP2.6 (c, dashed lines). There is more variation in land-

use change between scenarios for Brazil than globally (d), with RCP4.5 showing 

a large decrease, RCP2.6 almost levelling, and RCP8.5 showing increasing land-

use conversion to the end of the century.   

 

a b

c  d  
Figure 5.14: Change over RCP scenarios 1860-2100 for Brazil 
Panels a-c show time series of totals for Brazil: (a) GPP (GtC), (b) burnt area (Mkm2), (c) 
vegetation carbon (GtC) ) (with land-use: solid line, with ‘no land-use’ (constant at 2005): 
dashed line); panel (d) shows agricultural fraction (fraction of gridbox). All panels show 
1860-2100 
 
 

With no disturbance, tree fraction increases in the future due to the CO2 

fertilisation effect, which is strongest in the high emission scenario RCP8.5 

(Figure 5.15, top row). Adding interactive fire to the model has a significant impact 
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on the tropical forest area across South America (second row). Some loss of tree 

fraction can be seen across the northeast Amazon and across the ‘arc of 

deforestation’ to the south in RCP2.6 by 2100. With land-use the model simulates 

a small loss of forest in scenarios RCP2.6 and RCP8.5, and shows and increase 

in forest in scenario RCP4.5 again reflecting the reforestation assumptions made 

in this scenario (third row). Both disturbances together result in high vegetation 

loss dominated by fire (bottom row), although in RCP4.5 there is also some 

regrowth in the South of Brazil from reforestation. This is symptomatic of the 

assumptions around land-use that underpin the scenarios, with strong 

reforestation in scenario RCP4.5 (see Chapter 2, and Appendix 2). In RCP8.5 

there is significant loss of around half of the Amazon forest across the East due 

to fire.  

Projected tree fraction 

 

Figure 5.15: Future tree fraction 
Panels show projected tree fraction at present day (1996-2005, left panels) and at the end 
of the century (2090-2099) for three future RCP scenarios as labelled, for ‘no disturbance’ 
(top row), ‘fire disturbance only’ (second row), ‘land-use disturbance only’ (third row), and 
‘both fire and land-use disturbance’ (bottom row). ESA CCI Land Cover map is shown to 
the left for comparison with present day vegetation cover. No LUC means land-use 
constant at 2005. 
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Future change in tree fraction 

Figure 5.16: Future change in tree fraction 
Change in tree (broadleaf and needleleaf) fraction: change at present day (2005) due to fire 
(PD fire – PD no fire) [far left]; change for each RCP scenario at 2100 from 2005 due to 
climate and LUC [top row]; change for each RCP scenario at 2100 from 2005 climate, LUC 
plus fire [centre row]; change for each RCP scenario at 2100 from 2005 due to fire (centre 
row minus top row) [bottom row] 

 

In summary, the results have shown that there is a projection of increased 

temperature across South America in the future, which increases with higher 

emission scenarios. Projections of rainfall are more mixed, with a strong drying 

in the North of the continent, and a wetting in central regions. As a result, burnt 

area is projected to increase in the future in all scenarios, but with the largest 

increase in RCP8.5. The areas that are most vulnerable to increased fire as a 

result of warming and drying are eastern Brazil (in all scenarios) and the 

Northeast coast (mainly in RCP4.5 and RCP8.5). This has a large impact on 

tropical forest cover across Brazil, with a significant loss of tropical broadleaf 

vegetation in RCP8.5 by 2100, and some loss in the northeast and southern 

Amazon in RCP2.6 and RCP4.5. However it should be noted here again that this 

assumes that all of the vegetation within the burned area dies, which is a limitation 

of the current set-up and of our understanding of fire-vegetation mortality. In 

reality there is likely to be some level of fire resilience according to species, bark 

thickness and fire-tolerance; in addition CO2 fertilisation may increase vegetation 
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resilience by increasing height, GPP and speed of recovery. There is some 

increase in forest cover in the south of the country in the RCP4.5 scenario here, 

which indicates the combination of fire and land-use disturbances.  

 

Section 2: What is the impact of different warming levels, and does the pathway 

to reach them alter the impacts on the land surface? 

 

In this section I explore whether these are any differences in a 1.5°C, 2°C and 

4°C world according to each RCP scenario as a result of the pathway taken to 

achieve each level of warming, and what the overall impact of each specific level 

of warming is. Differences may be due to the variance in timings of reaching each 

specific level of warming according to CO2 concentration (see Figure 5.5), or due 

to assumptions made in each scenario. For example, the treatment of land-use 

between scenarios varies and has large impacts on the vegetation cover (See 

Chapter 2), which will have biogeophysical effects such as reducing ET, and 

reducing precipitation patterns and local warming. The difference in aerosol 

levels in each scenario may also result in variation in results across specific levels 

of warming (Figure 5.3).  

Considering temperature first (Figure 5.17), although in each scenario the global 

mean temperature is the same, here we can see that there are some regional 

differences between each RCP scenario with some areas warming more than 

others. There is little change across the scenarios at 1.5°C, and in particular no 

change over Brazil. At 2°C there are more noticeable differences across the 

tropics, with larger areas of South America reaching 2°C or higher in RCP4.5 and 

RCP8.5 than in the RCP2.6 scenario, and more of Africa projected to see above 

2°C in the RCP8.5 scenario.  
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Change in regional temperature at global mean 1.5°C, 2.0°C and 4.0°C 

above pre-industrial 

 

Figure 5.17: Specific warming levels of temperature 
Global mean temperature change from present day (°C) at 1.5 (top row), 2.0 (centre row) 
and 4.0°C (bottom row) above pre-industrial, for each RCP scenario RCP2.6 (left column), 
RCP4.5 (centre column) and RCP8.5 (right column) 

 

There are some noticeable differences in specific humidity (Figure 5.18) at 1.5°C, 

with higher humidity in RCP2.6 and RCP8.5 over the Sahara. Across South 

America, there is higher humidity across the west in RCP4.5 and RCP8.5, and a 

region of reduced humidity in central/east Brazil in RCP2.6 (see Appendix 5 for a 

more detailed plots). There is higher humidity in the high northern latitudes in 

RCP4.5 than the other scenarios. At 2.0°C, humidity is lower across central 

Russia in RCP4.5, but lower across the far North in RCP2.6 including across USA 

/ Canada compared to the higher emission scenarios. At 4.0°C humidity is much 

increased across most of the world, with many regions seeing up to a 50% 

increase from present day, as would be expected with higher global 

temperatures.  
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Change in humidity at 1.5°C, 2.0°C and 4.0°C above pre-industrial 

 

Figure 5.18: Specific warming levels of humidity 
Specific humidity (percentage change from present day) at 1.5 (top row), 2.0 (centre row) 
and 4.0°C (bottom row) above pre-industrial, for each RCP scenario RCP2.6 (left column), 
RCP4.5 (centre column) and RCP8.5 (right column) 

 

With a warmer climate, precipitation patterns would also be altered. At all levels 

of warming, a reduction in precipitation is observable over South America in this 

model, which is more pronounced with higher temperatures (Figure 5.19). At 

1.5°C and 2.0°C precipitation is reduced more in scenarios RCP2.6 and RCP8.5 

than RCP4.5 over South America and south east Africa. In general drying 

response over the Southern hemisphere in the future, and a wetting over the 

northern hemisphere.  
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Change in precipitation at 1.5°C, 2.0°C and 4.0°C above pre-industrial 

 

Figure 5.19: Specific warming levels of precipitation 
Precipitation change from present day (mm/year) at 1.5°C (top row), 2.0°C (middle row) and 
4.0°C (bottom row) above pre-industrial, for each RCP scenario, RCP2.6 (left column), 
RCP4.5 (centre column) and RCP8.5 (right column) 

 

At both 1.5°C and 2.0°C of warming there is more projected burnt area in RCP2.6 

and RCP8.5 than in the RCP4.5 scenario (Figure 5.20). This does not seem to 

be a function of land-use change, as the same pattern is seen without land-use 

(Figure 5.21), but corresponds with areas of higher precipitation reduction (Figure 

5.19).  

Change in burnt area at 1.5°C, 2.0°C and 4.0°C above pre-industrial (with 

land-use change) 

 

Figure 5.20: Specific warming levels of burnt area 
Burnt area fraction (change in burnt area fraction from present day) at 1.5°C (top row), 
2.0°C (middle row) and 4.0°C (bottom row) above pre-industrial, for each RCP scenario, 
RCP2.6 (left column), RCP4.5 (centre column) and RCP8.5 (right column) 
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Change in burnt area at 1.5°C, 2.0°C and 4.0°C above pre-industrial (no 

land-use change) 

 

Figure 5.21: Specific warming levels of burnt area (no LUC) 
Burnt area fraction (change in burnt area fraction from present day) at 1.5°C (top row), 
2.0°C (middle row) and 4.0°C (bottom row) above pre-industrial for each RCP scenario, 
RCP2.6 (left column), RCP4.5 (centre column) and RCP8.5 (right column) 

 

The impact on vegetation carbon is shown in Figure 5.22 and Figure 5.23. 

Without fire, the land-use change projections have a larger impact on the 

vegetation; in all scenarios there is a loss of vegetation carbon around the ‘arc of 

deforestation’ to the south and east of the Amazon, increasing with temperature. 

In the RCP4.5 scenario however we see an increase in carbon across western 

South America and central Africa, and much less of a decrease across southern 

Brazil than in RCP2.6 and RCP8.5. There are also some increases in the northern 

high latitudes of Europe and Russia which increases with temperature which will 

be a function of increased levels of CO2. When interactive fire is included, there 

are again losses over South America centred on southern Brazil. The loss is 

higher in scenarios RCP2.6 and RCP8.5 as seen in Figure 5.21. There is some 

increase in carbon in the high latitudes, and across central Africa particularly in 

RCP4.5. 
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Change in vegetation carbon at 1.5°C, 2.0°C and 4.0°C above pre-industrial 

(without fire) 

 

Figure 5.22: Specific warming levels of vegetation carbon, no fire 
Vegetation carbon (kg m-2) presented as change from present day at 1.5 (top row), 2.0 
(centre row) and 4.0°C (bottom row) above pre-industrial, for each RCP scenario RCP2.6 
(left column), RCP4.5 (centre column) and RCP8.5 (right column) – without fire 

Change in vegetation carbon at 1.5°C, 2.0°C and 4.0°C above pre-industrial 

(with fire) 

 

Figure 5.23: Specific warming levels of vegetation carbon, with fire 
Vegetation carbon (kg m-2) presented as change from present day at 1.5 (top row), 2.0 
(centre row) and 4.0°C (bottom row) above pre-industrial for each RCP scenario RCP2.6 
(left column), RCP4.5 (centre column) and RCP8.5 (right column) – with fire 
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Generally with a warmer climate we see an increase in ET (Figure 5.24), also 

corresponding to regions of higher precipitation (Figure 5.19). However there is 

spatial heterogeneity, with some regions showing a reduction in ET. With loss of 

forest for example (Figure 5.23), we see a reduction in ET as expected. This 

would lead to local changes such as increased warming and drying. At 1.5°C and 

2.0°C, RCP2.6 shows the largest reduction in ET across South America, followed 

by RCP8.5, with RCP4.5 showing the smallest reduction. This corresponds to the 

areas with the largest forest losses. When fire is added to the model, these 

differences are still apparent at 1.5°C, but the differences between the scenarios 

at 2.0°C are reduced (Figure 5.25).  

Change in evapotranspiration at 1.5°C, 2.0°C and 4.0°C above pre-

industrial (without fire) 

 

Figure 5.24: Specific warming levels of evapotranspiration, no fire 
Evapotranspiration (mm yr-1) presented as change from present day at 1.5 (top row), 2.0 
(centre row) and 4.0°C (bottom row) above pre-industrial for each RCP scenario RCP2.6 
(left column), RCP4.5 (centre column) and RCP8.5 (right column) – without fire 
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Change in evapotranspiration at 1.5°C, 2.0°C and 4.0°C above pre-

industrial (with fire) 

 

Figure 5.25: Specific warming levels of evapotranspiration, with fire 
Evapotranspiration (mm yr-1) presented as change from present day at 1.5 (top row), 2.0 
(centre row) and 4.0°C (bottom row) above pre-indsutrial, for each RCP scenario RCP2.6 
(left column), RCP4.5 (centre column) and RCP8.5 (right column) – with fire 

 

Focusing on South America, we can see that the addition of fire reduces ET, with 

larger reductions at higher levels of warming (Figure 5.26). This also corresponds 

with larger areas of forest loss, as previously discussed. Again with reduced ET 

around northeast Brazil there would be increased warming and drying, creating 

a positive feedback with fire.  
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Change in evapotranspiration at 1.5°C, 2.0°C and 4.0°C above pre-
industrial over Brazil 

Without fire        With fire 

 
Figure 5.26: Change in evapotranspiration with fire 
Evapotranspiration (mm yr-1) presented as change from present day at 1.5 (top row), 2.0 
(centre row) and 4.0°C (bottom row) above pre-industrial, for each RCP scenario without 
fire (left) and with fire (right) for South America (with LUC) 
 

 

There are differences between the RCP scenarios at both 1.5°C and 2.0°C, 

where RCP2.6 shows larger areas of ET reduction without fire, followed by 

RCP8.5 and the smallest reductions in RCP4.5. With fire this is more evident at 

1.5°C, whereas the differences between RCP scenarios at 2.0°C of warming are 

reduced. It might be supposed that these variations between scenarios is due to 

changes in land-use, with higher reduction in forest area in RCP2.6 and RCP8.5. 

However, scenario RCP2.6 still has the largest reduction in ET without fire or 

land-use change (Figure 5.27), indicating that changes in climate such as 

precipitation patterns are more dominant, which can be seen in the overlap of dry 

areas in Figure 5.28. However it should be noted that any changes to precipitation 

a result of land-use cannot be separated out here, and would need to be 

investigated in the coupled ESM HadGEM2-ES with and without LUC.  
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Change in evapotranspiration at 1.5°C, 2.0°C and 4.0°C above pre-
industrial over Brazil 

Without LUC       With LUC 

 

Figure 5.27: Change in evapotranspiration with LUC 
Evapotranspiration (mm yr-1) presented as change from present day at 1.5 (top row), 2.0 
(centre row) and 4.0°C (bottom row) above pre-industrial, for each RCP scenario without 
LUC (left) and with LUC (right) for South America (without fire) 
 
 

Change in precipitation at 1.5°C, 2.0°C and 4.0°C above pre-industrial over 
Brazil 

 
Figure 5.28: Specific warming levels of precipitation over Brazil  
Precipitation (mm yr-1) presented as change from present day at 1.5 (top row), 2.0 (centre 
row) and 4.0°C (bottom row) above pre-industrial, for each RCP scenario South America 



245 
 

The positive feedback resulting from reduced ET will be offset to some extent by 

increased albedo in areas of forest loss. The RCP4.5 scenario shows lower 

albedo than RCP2.6 and RCP8.5 across all levels of warming (Figure 5.29), 

which we can see strongly across the tropics, including across South America 

(Figure 5.31). This results from the higher forest area in RCP4.5, which is darker 

and less reflective. When fire is added, there is a similar pattern of change with 

RCP4.5 showing lower albedo than RCP2.6 and RCP8.5 (Figure 5.30). At 4.0°C, 

RCP8.5 shows an increase in albedo across most of the South American 

continent resulting from vegetation loss. 

Change in Albedo at 1.5°C, 2.0°C and 4.0°C above pre-industrial (without 

fire) 

         

Figure 5.29: Specific warming levels of albedo, no fire 
Albedo (change from present day) at 1.5 (a), 2.0 (b) and 4.0°C (c) above pre-industrial, for 
each RCP scenario RCP2.6 (left column), RCP4.5 (centre column) and RCP8.5 (right 
column) – without fire  
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Change in Albedo at 1.5°C, 2.0°C and 4.0°C above pre-industrial (with fire) 

 

Figure 5.30: Specific warming levels of albedo, with fire 
Albedo (change from present day) at 1.5 (a), 2.0 (b) and 4.0°C (c) above pre-industrial, for 
each RCP scenario RCP2.6 (left column), RCP4.5 (centre column) and RCP8.5 (right 
column) – with fire  

 

Focusing on the changes over South America, fire generally results in an 

increase in albedo compared with no fire due to increased forest loss (Figure 

5.31). RCP4.5 still has a lower albedo than RCP2.6 and RCP8.5, which is due 

to less land-use change in this scenario. We can see this is the case from 

Figure 5.32 where albedo the same across all RCP scenarios at all levels of 

warming in the ‘no land-use’ scenario, but increases with land-use change in 

the ‘with land-use’ scenario for RCP2.6 and RCP8.5. There are no significant 

changes in albedo at 1.5°C vs 2.0°C. Albedo is highest in scenario RCP8.5 at 

4.0°C of warming, where forest loss is greatest from both changes in land-use 

(Figure 5.32) and fire (Figure 5.31).  
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Change in Albedo at 1.5°C, 2.0°C and 4.0°C above pre-industrial 

Without fire     With fire 

 

Figure 5.31: Change in albedo with fire 
Albedo (change from present day) at 1.5 (a), 2.0 (b) and 4.0°C (c) above pre-industrial for 
each RCP scenario without fire (left) and with fire (right) for South America, including LUC. 
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Change in Albedo at 1.5°C, 2.0°C and 4.0°C above pre-industrial 
Without LUC    With LUC 

   
Figure 5.32: Change in albedo with LUC 
Albedo (change from present day) at 1.5 (a), 2.0 (b) and 4.0°C (c) above pre-industrial for 
each RCP scenario without LUC (left) and with LUC (right) for South America (without fire) 

I summarise the changes in key variables for each RCP scenario and each level 

of warming (land only from JULES output), globally and for Brazil, using bar 

graphs including both fire and land-use disturbances. Globally there is an 

increase in precipitation with higher levels of warming which varies only 

marginally between RCP scenarios. Over Brazil however the overall trend is 

drying, which is highest in scenarios RCP2.6 and RCP8.5. Burnt area also 

increases with warming, with the highest response at 4.0°C. Burnt area over 

Brazil is higher than the global average, and is higher in scenarios RCP2.6 and 

RCP8.5 than RCP4.5 which is driven by differences in precipitation (Figure 5.28). 

Global mean albedo is reduced by up to 8% in the highest warming / emissions 

scenario, with higher reductions corresponding to higher levels of warming. As 

we have seen, this is dominated by a reduction in the northern hemisphere 

(Figure 5.30), driven by increased vegetation carbon (Figure 5.23) from additional 

warming and CO2 fertilisation. Conversely albedo increases across Brazil, in 

particular in RCP2.6 and RCP8.5, due to loss of forest cover from fire and LUC. 

Similarly ET also reflects the difference in global trends versus change in Brazil, 

with a global mean increase in ET but decrease over Brazil corresponding to 

forest loss and drying.   
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Figure 5.33: Summary of changes from present day  
For each RCP scenario and level of warming (with fire and LUC). Colours indicate 
temperature above pre-industrial 
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In summary, the results have shown that the pathway to reach specific levels of 

warming does have an impact on local biogeophysical responses. Temperature 

differences between scenarios are more evident at 2.0°C than 1.5°C, where 

higher emissions scenarios show larger areas reaching 2.0°C or higher than 

lower emission scenarios. Humidity generally increases with temperature, 

although RCP4.5 shows less of an increase than scenarios RCP2.6 and RCP8.5 

over the Sahara and Russia. Precipitation as well generally increases with 

warming, particularly over the northern hemisphere, but over northern South 

America there is a strong drying signal. There are changes in precipitation and 

ET patterns across each RCP scenario, which lead to differences in burnt area. 

Both temperature and precipitation were shown to be important drivers of burnt 

area, as fire increases with emissions scenario with RCP8.5 showing the largest 

change in burnt area. Burnt area was particularly increased in areas that are 

projected to become both hotter and drier, including eastern South America and 

southern Africa. The vegetation carbon also showed large differences between 

scenarios as a response of fire and land-use change, with RCP4.5 showing 

increases in vegetation carbon in many areas at 2.0°C in particular, and more of 

a dipole response in RCP2.6 and RCP8.5 especially at higher temperatures. 

Burnt area is high across the tropics leading to stronger reductions in vegetation 

carbon across all scenarios although again slightly less in RCP4.5. Forest loss 

from fire leads to reduced ET and a higher albedo. Overall there is a global mean 

increase in precipitation and ET and a reduction in albedo, whereas over Brazil 

the opposite response is seen with a mean decrease in precipitation and ET, and 

increase in albedo. Burnt area increases both globally and over Brazil, increasing 

with warming level. 

 

Section 3:  Could fire lead to a change in state from tropical forest to savanna?  

Previous studies have suggested that warming and drying in the future, together 

with interactions between fire and land-use change could lead to a “tipping point” 

for the Amazon, where the tropical forest area transitions into a bi-stable state of 

forest and savanna (Settele et al., 2014; Lasslop et al., 2016). Although a strong 

“dieback” was very noteably shown in HadCM3 due to a strong warming and 

drying signal (Cox et al., 2000; Huntingford et al., 2004; Malhi et al., 2009), 
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subsequent models have shown more resilience in the forest to increases in 

temperature, as demonstrated here using the HadGEM2-ES driving data within 

JULES in the scenarios without fire. Fire has now been added into the model as 

an interactive vegetation feedback for the first time, and the results have shown 

that with this extra interaction included, a forest transition is again shown to be a 

worse-case scenario by 2100 following a business-as-usual scenario. However it 

should be noted that the vegetation response to fire is strong even in the present 

day, with slow recovery times following disturbance within the TRIFFID dynamic 

vegetation model (see Chapter 3 and Appendix 3), and stronger drying in 

HadGEM2 in Northeast Brazil than CRU-NCEP (Figure 5.4). There is also as yet 

no interaction between fire and agricultural land in terms of suppression or 

ignition, which has been shown to have important interactions which vary 

regionally (Andela et al., 2017).  

As we have seen, fire has a large impact on forest area in the future, with large 

losses projected in the RCP8.5 scenario. I now consider if this may be a signal of 

a transition to a more savanna-like state, using land-use change and fire.   

Figure 5.34 shows the change in the mean vegetation fractions in Brazil, 

categorised into trees, grasses and shrubs. There was a reduction in mean tree 

cover in the future in all scenarios, with the highest reduction in RCP8.5. In 

RCP2.6 and RCP8.5 this is replaced by a large increase in grasses. In RCP4.5, 

the shift is towards more shrub-type vegetation. Savanna can be characterised 

by both shrubs and grasses, implying a definite shift towards a more savanna-

like state. This can be seen if we look at the pattern of vegetation cover spatially, 

in Figure 5.35 - Figure 5.37. 
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Figure 5.34: Vegetation type over time in Brazil present and future 
Mean vegetation fraction at present day (2005) and at 2100 in three RCP scenarios. Trees 
= broadleaf + needleleaf trees; Grasses = C3 + C4 grasses.  
 
 

Spatially we can see large forest losses across the South and East of the Amazon 

forest, especially in the high emission scenario RCP8.5 (Figure 5.35), which is 

replaced by grasses (Figure 5.36) and shrubs (Figure 5.37). Grasses are 

particularly increased in scenarios RCP2.6 and RCP8.5, and shrubs more prolific 

in scenario 4.5. This highlights the interaction of fire and land-use in the model, 

where there is large projected conversion to biofuels and cropland in this region 

in scenarios RCP2.6 and RCP8.5 respectively (see Chapter 2) which is 

represented in JULES by grasses. There is an increase in soil fraction in Eastern 

Brazil in scenario RCP2.6 and to a less extent RCP4.5, and in Northeast Brazil 

in RCP8.5 (Figure 5.38), and this increases with fire. One area in particular with 

a strong increase in bare soil fraction is Northeast Brazil in RCP8.5 with fire, which 

corresponds to a decrease in fire by 2100 (Figure 5.13) due to less available fuel. 
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Figure 5.35: Future tree fraction with and without fire 
Tree fraction (broadleaf and needleleaf), at present day (2005) and 2100 in three RCP 
scenarios, without fire (top row) and with fire (bottom row) 

 

Figure 5.36: Future grass fraction with and without fire 
Grass fraction (C3 and C4), from present day (2005) to 2100 in three RCP scenarios, without 
fire (top row) and with fire (bottom row) 
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Figure 5.37: Future shrub fraction with and without fire 
Shrub fraction, from present day (2005) to 2100 in three RCP scenarios, without fire (top 
row) and with fire (bottom row) 

 

Figure 5.38: Future soil fraction with and without fire 
Soil fraction, from present day (2005) to 2100 in three RCP scenarios, without fire (top row) 
and with fire (bottom row) 
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Another way to consider the potential impact of future changes in the climate is 

to use a drought factor to assess whether regions become more vulnerable to 

drought in the future with varying scenarios of climate change. Here I use a 

drought factor based on the Keetch Byram Drought Index (Keetch and Byram, 

1986), with varying soil moisture provided by JULES (based on Holgate et al., 

2017, as used in Burton et al., 2018a). 

We can see from Figure 5.39 that the drought factor increases in particular in the 

East of Brazil in the RCP2.6 scenario, and in the Northeast region in RCP8.5, 

making these areas more vulnerable to forest loss and to fire. This supports the 

findings of Figure 5.20 where we do indeed see higher burnt area in these 

regions.  

 

Figure 5.39: Drought factor (2100) for RCP2.6 and RCP8.5  

 

The final experiment in this chapter is based on the work of Good et al. (2013), 

which investigated the propensity of two models HadCM3 and HadGEM2-ES to 

project tropical forest dieback in the future, based on the dry season resilience in 

each model. The results of their study showed that the dry season length was 

longer in HadCM3 than HadGEM2-ES, resulting in a negative impact on tropical 

forest cover. Here I have developed this experiment to assess the impact of 

adding fire to the JULES model, to give an indication of whether the 

representation of fire in the model gives rise to more conducive conditions for a 

tipping point from tropical forest cover to savanna.  

The method (presented in Good et al., 2011) is based on a linear function of 

temperature, dry season length and CO2 concentration, and quantifies the 
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equilibrium response of tropical forests to climate and CO2 in order to simulate 

whether tropical forest is sustainable in the model under the conditions given.  

The blue diagonal lines on the plots represent the threshold of dry season 

resilience in HadGEM2-ES without fire (right plots), which can be compared to 

the reduced threshold when fire is included (left plots). The different positions of 

the blue lines between the historical (top plots) and future (lower plots) 

simulations shows the effect of changing CO2 concentration (higher CO2 leads to 

increased resilience). Without fire, the highest fraction of broadleaf tree (dark 

green points) declines slightly in the future scenarios, although the highest 

emission scenario RCP8.5 shows slightly less of a decline, which is most likely 

due to the increased levels of CO2 in this scenario giving rise to a fertilisation 

effect (Figure 5.40, right hand panels). When fire is added to the model, there is 

a sharper decline in high broadleaf fraction (fewer dark green points, and more 

red points below the blue line), which is reduced further with higher emission 

scenarios. The dry season resilience is thus reduced, with a longer dry season 

for more areas (more data points in the top of the range above 6) and lower 

fractions of broadleaf for the shorter dry season lengths.  

Dashed lines are shown on each plot at 5 and 6 months for comparison between 

the fire and the no-fire scenario; the threshold of forest transition (where green 

points change to red) is around 6 months with fire in the historical period (top left 

plot), but is around 8 months without fire (top right plot). In the future simulations 

the threshold is around 5 months with fire, and 8 months without fire. The data 

suggest that the dry season resilience of the forest is reduced by about three 

months when fire is added to the model, leading to a higher possibility for a tipping 

point threshold to be reached whereby tropical broadleaf vegetation could incur 

a ‘dieback’ and / or transition to more grassland-savanna like vegetation, as 

shown in Figure 5.35 - Figure 5.37.  
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Figure 5.40: Tropical forest dry season resilience 
Bioclimatic zone plots for JULES with fire (left colum) and without fire (right colum). From 
top to bottom, plots show 10 years of data: top row pre-industrial 1860-1869; bottom two 
rows 2090-2099 RCP2.6 (centre row) and RCP8.5 (bottom row). Colours represent mean 
broadleaf fraction (Red: BLF <0.2. Orange: 0.2 > BLF > 0.4. Light green: 0.4 < BLF < 0.6. 
Dark green: BLF > 0.6). Dashed lines show dry season length of 5 and 6 months, and 
T=27.5°C. Blue line shows dry season resilience  
 
 

In summary, I have shown that adding interactive fire into the JULES model could 

lead to a change in state from tropical forest to savanna in the future. In the 
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experiments where fire is added, we can observe a shift from broadleaf 

vegetation cover to more grasses (RCP2.6 and RCP8.5) and shrubs (RCP4.5). 

We also see a shift in the East and Northeast of Brazil to hotter, drier conditions, 

leading to more vulnerability to drought which can lead directly to forest loss and 

also indirectly to forest loss through higher fire occurrence. This has implications 

for the resilience of the forest when fire is added to JULES, leading to higher risk 

of forest ‘dieback’. 

5.4 Discussion 

Levels of CO2 and global mean temperatures increase in the future as per the 

emissions scenarios, with RCP8.5 (the highest emission scenario) showing the 

highest CO2 concentration and temperature rise, followed by RCP4.5, and 

RCP2.6 (the lowest emission scenario) showing a lower rise in CO2 and 

temperature from present day to 2100 (Figure 5.5). From these factors alone we 

can expect multiple interactions with vegetation, for example between a 

fertilisation effect from higher levels of CO2 concentration, offset by potential heat 

stress at higher temperatures. An increase in maximum temperatures or a 

lengthening of time at which higher temperatures are experienced can have a 

strongly negative effect on growth rates by increasing respiration, reducing 

stomatal conductance, and reducing photosynthesis (Schippers et al., 2015). 

These effects can be further compounded by a reduction in precipitation, leading 

to potentially longer and more intense dry seasons, and also by anthropogenic 

factors including land-use change which reduces ET and creates local warming 

and drying, and thus higher risk of fires which cause further forest losses. 

Evaporation and transpiration are important processes in maintaining the 

moisture required to sustain tropical rainforest ecosystems, especially where the 

large-scale factors for rainfall formation are weak such as in the central and 

Eastern Amazon (Lovejoy and Nobre et al., 2018). ET rates in most areas of the 

Central and Western Amazon increase in the dry season due to higher solar 

radiation, so that dry season ET is approximately equal to wet season ET even 

though there is less moisture available; in the South and Southeast Amazon 

where precipitation is lower and the dry season is longer, this is not the case and 

ET decreases considerably in the dry season, making these regions much more 

vulnerable to drought (da Rocha et al., 2009). 
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Gross Primary Productivity (GPP) shows a similar pattern of increase to 

temperature and CO2, with the highest productivity in RCP8.5 (Figure 5.7a). The 

GPP is the amount of carbon fixed through photosynthesis, so it is expected that 

this will increase as the amount of CO2 available increases in the future. However 

there is still large uncertainty around this process, for example nutrient limitation 

may reduce the CO2 fertilisation effect significantly. A lack of ground-based data 

means we cannot yet be confident of how vegetation will respond to higher levels 

of CO2. 

Using JULES-INFERNO, I have shown that burnt area is also projected to 

increase in the future, closely following the same trend as temperature for the 

three emission scenarios (Figure 5.7b). However the projections of vegetation 

carbon (Figure 5.7c) show that the maximum vegetation carbon will be seen in 

scenario RCP4.5, and the lowest vegetation carbon in scenario RCP2.6. The 

lower vegetation carbon in the RCP2.6 and RCP8.5 scenarios may be caused by 

a number of factors, including lower plant productivity in RCP2.6 due to lower 

levels of CO2, and also projected land-use changes. Land-use change is 

projected to be highest in these two emission scenarios, changing forest to crops 

to feed a high population in RCP8.5, and to biofuels for higher climate change 

mitigation in RCP2.6 (Settele et al., 2014). 

Over South America, the region showing the highest projected warming is 

approximately over the Amazon, with RCP8.5 showing the largest change from 

present day (Figure 5.10). Some warming is projected over most of the continent 

in all scenarios, although this is low in RCP2.6. The projected change in 

precipitation is more varied, with some regions getting drier and some getting 

wetter, and these vary by scenario (Figure 5.11). In RCP2.6 there is a weak 

drying signal over central Brazil, whereas in RCP4.5 and RCP8.5 the drying 

seems to be more towards the northeast, with strong drying in RCP8.5. The 

projections show a signal of increased precipitation along the Southeast coast of 

the continent, in particular in RCP4.5 and RCP8.5. The fire disturbance in the 

model mirrors this trend of warming and drying of the east of Brazil, with higher 

burned area across the northeast coast in RCP4.5 and especially in RCP8.5 

(Figure 5.13). Considering the continent as a whole, burned area is projected to 

increase strongly in RCP8.5, and moderately in RCP4.5 and RCP2.6. Again it 

should be noted that future projections of precipitation are currently not well 
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constrained, which will have an important impact on how fire danger will change 

across Brazil in the future. There will also be further interactions between fire, 

vegetation mortality, and agricultural land which are not fully represented by the 

model yet, as outlined in Chapter 3.  

The results of increased burned area may seem contradictory to the declining 

global trend that has been seen in the observations in the last 20 years (Andela 

et al., 2017). However the global trend is dominated by a decline in areas of high 

burned area such as Africa, where there has been an expansion and 

intensification of agriculture, reducing fuel and ignitions. In the current model set-

up, agricultural land is treated as the same as grassland and is thus equally 

flammable, and ignitions are based on population and do not take account of 

changes in land management practises which can alter ignition frequency. It is 

important to consider the results in the context of these limitations. Furthermore, 

while the global trend shows a decline in burned area, there are regions which 

have shown an increase in burned area over the last few decades, for example 

deforestation fires have increased burned area in the tropics exponentially 

(Mouillot and Field, 2005) (also see section 3.2.5 for trend analysis of the model 

compared to observations).  

Assessing the impact of fire disturbance on broadleaf vegetation, Figure 5.15 

shows some loss of the Amazon forest in RCP2.6 over the south and east. This 

change is more substantial in the RCP8.5 scenario, with a significant loss of forest 

across the eastern side. This ‘dieback’ is not seen in the model without interactive 

fire included (right hand panels). As outlined in Chapter 3, fire has previously only 

been represented in JULES as a constant disturbance and projections of future 

vegetation cover have therefore not taken changes in fire occurrence into 

account. Here it is shown that by adding fire into the model the projections of 

Amazon forest cover change significantly.  

Assessing how the impacts change at 1.5°C, 2.0°C and 4.0°C across the RCP 

scenarios, we can see that there are small local differences in some of the 

patterns of change. This could be due to the underlying assumptions that are 

used in the creation of the scenarios, including difference in the way land-use is 

treated, and how air quality and emissions policies affect the presence of aerosols 

in each scenario. For vegetation carbon for example, at 1.5°C there are greater 
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losses of vegetation across the Southeast of the Amazon in scenarios RCP2.6 

and RCP8.5, but a small loss in RCP4.5. At 2.0°C there are larger losses in the 

same area in RCP2.6 and RCP8.5, but there are also increases in vegetation 

across the northwest of the South American continent, especially in scenario 

RCP4.5 where the overall impact is an increase in vegetation carbon. Much of 

this will be a result of land-use policies, where reforestation is projected to be 

strong in this region in RCP4.5 (see Chapter 2:). We see more growth in the 

northwest region with higher temperatures, which will likely be a result of CO2 

fertilisation.  

The results showed that the pathway to reach specific levels of warming does 

have an impact on local biogeophysical responses. Higher temperatures are 

projected across more of Brazil in RCP8.5 than RCP2.6 at 2.0°C of warming, and 

there is higher humidity in scenarios RCP4.5 and RCP8.5 than RCP2.6 at 1.5°C, 

but there was less of a response in precipitation between scenarios. Burnt area 

increased with warming levels, which was particularly increased in areas that are 

projected to become both hotter and drier, including eastern South America and 

southern Africa. Burnt area was lower in RCP4.5 than RCP2.6 and RCP8.5 at 

both 1.5°C and 2.0°C, especially over South America, resulting from differences 

in precipitation patterns. The forest loss from fire leads to reduced ET, and forest 

loss from both fire and land-use change leads to a higher albedo. In a fully 

interactive climate model we could expect this to have biogeophysical and 

biogeochemical effects on the atmosphere as well (including changes to levels of 

CO2, temperature, precipitation, clouds and aerosols). For example, land-use 

change may lead to a reduction in ET and precipitation in HadGEM2-ES, which 

is then used to drive JULES. As JULES is used offline in this study, these potential 

impacts on the climate cannot be evaluated here and the results focus instead on 

land surface impacts.  

The third part of this study has addressed the issue of whether adding a new 

process, fire, into the model creates an increased likelihood of a dieback 

response in the Amazon in the future. The results have shown that there is a 

substantial loss of forest from fire by 2100, especially in the higher concentration 

scenarios, as a result of increasing drought. This was raised as a potential 

concern in the IPCC AR5 report, where it was suggested that land-use change 

and fire could interact with changes to the climate, catalysing a transition to low-
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biomass vegetation (Settele et al., 2014). Recent research has also suggested 

that when the interaction of fire and climate change are considered, the potential 

tipping point for the Amazon forest may be lowered from the previous estimates 

of 40% deforestation to around 20-25% (Lovejoy and Nobre, 2018; Nobre et al., 

2016). Silva et al. (2018) found that fires have already had a negative long-term 

impact on carbon stores in the Amazon, reducing forest biomass by an average 

of 25% and inducing a permanent shift of state to altered forest dynamics. This 

reduction was found to be mainly driven by delayed mortality of large, high-

biomass trees that failed to recover decades after a drought or fire, with their slow 

regrowth meaning they are unable to re-establish before the next mortality event. 

This has implications for the recovery of the forest in the future if drought and/or 

fires become more frequent. The results from this study support these 

hypotheses, showing tipping point behaviour at future levels of warming when fire 

is added to the model. 

5.5 Conclusion 

Through this chapter I have addressed three key research questions: 

o How is burnt area projected to change with climate change in the 

future and, together with changes in land-use, what impact does 

this have on vegetation coverage? 

o What is the impact of different warming levels, and does the 

pathway to reach them alter the impacts on the land surface? 

o Could fire lead to a change in state from tropical forest to savanna?  

It has been shown here that burnt area is projected to increase in the future with 

climate change, as a result of hotter, and in some regions drier conditions 

projected over Brazil by 2100. Areas that are particularly at risk are the far east 

of Brazil in scenario RCP2.6, the northeast in RCP4.5, and both the east and 

northeast of the country in scenario RCP8.5 which shows strong warming and 

drying. Using the interactive fire-vegetation model, this leads to significant forest 

loss across the east of the Amazon, with the model projecting a shift from tropical 

broadleaf forest to shrubs (RCP4.5) and grasses (RCP2.6 and RCP8.5). With the 

projected forest loss we see a decrease in ET and increase in albedo.  

I have also shown that the pathway to reach specific levels of warming can have 

different regional impacts. At global mean temperatures of 2.0°C above pre-
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industrial levels, the temperature is higher across more of Brazil in the RCP8.5 

scenario than in the RCP4.5 and RCP2.6 scenario. The humidity at 1.5°C is lower 

in RCP4.5 than RCP2.6 and RCP8.5 across the North of Brazil. Burnt area is 

higher in RCP2.6 and RCP8.5 leading to greater vegetation loss; however without 

fire there are increases in vegetation across the Northwest of the South American 

continent, especially in scenario RCP4.5, and RCP8.5 at 4.0°C from CO2 

fertilisation and changes in land-use patterns. RCP4.5 shows the largest 

vegetation carbon growth in the future with land-use, and RCP8.5 shows larger 

carbon accumulation without land-use. Over South America there is a strong 

projected warming and drying across the East of Brazil in the high emission 

scenario RCP8.5, which leads to higher burnt area in this region. This results in 

a substantial loss of broadleaf forest across the East of the Amazon in RCP8.5, 

although the loss is less significant in the lower emission scenarios. These initial 

results seem to support the conclusion in the IPCC report that Amazon dieback 

is unlikely to happen as a result of climate change alone, but the interaction of 

warming and drying, land-use change and fire may result in a loss of dense 

broadleaf rainforest in this region. The vegetation loss leads to higher albedo, 

and lower ET across the east (RCP2.6) and northeast (RCP4.5 and RCP8.5). 

This ET reduction is highest in RCP2.6, followed by RCP8.5 and finally RCP4.5 

at 1.5°C and 2.0°C, mirroring changes in precipitation. Finally this study has 

shown an increasing vulnerability of the northeast and eastern regions of Brazil 

to drought, and adding fire increases the risk of the forest transitioning to lower 

biomass vegetation especially in higher emission scenarios.    

This is the first time that the interactive fire-vegetation model JULES-INFERNO 

has been used to assess how fire danger may change in the future and what 

impact this may have on the land surface biogeophysics and the tropical 

rainforest of Brazil. Limitations to the model include a strong response of 

vegetation to fire, which could be a result of a number of factors including the 

mortality rate of vegetation being too high, a slow regrowth rate in the dynamic 

vegetation model TRIFFID, and current lack of interaction with land-use (i.e. no 

suppression of fire in agricultural areas). To improve this work in the future, 

addressing these issues would be a useful step.  
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Chapter 6: New horizons: limiting temperature 
rise to 1.5˚C with SRM 

6.1 Introduction 

One of the central reasons why we create and use models is so that we can use 

them to run simulations of future scenarios. It is important to verify models against 

a historical period where observations are available to ensure they reproduce a 

realistic representation of the real world, so that we can use them to create ‘new 

worlds’ in the future. We can modify elements of the land, atmosphere, climate 

and oceans to see what the world may look like if emissions change, if the climate 

changes, if land-use activities change, and understand a range of impacts 

spatially and temporally. The importance of this research is in understanding the 

impacts in a ‘safe’ model environment before they occur in the real world, offering 

the potential for mitigation and adaptation.  

One of the largest sources of uncertainty for the future of the Earth system is in 

how emissions may change, and the resultant impact on the climate (Nakicenovic 

and Swart, 2000). Together with uncertainties in emissions, we do not know 

exactly how population levels will change, how land-use activities will vary, and 

how sensitive the climate and Earth system will be to these variations. A number 

of future scenarios have been developed to enable us to address these 

uncertainties within climate model simulations, giving us possibilities for high 

emissions/ high population / high land-use (e.g. RCP8.5) versus low emissions / 

controlled population growth / mitigation through biofuels or reforestation (e.g. 

RCP2.6 and RCP4.5) (see Appendix 2 for explanation of underlying assumptions 

in RCP scenarios).  

In the latest IPCC 5th assessment report, RCP2.6 is the lowest emission / highest 

mitigation scenario out of four highlighted for climate modelling use, which is 

designed to limit warming to 2°C (Figure 6.1). Most of the scenarios considered 

to achieve this lower level of warming are dependent on net negative emissions 

(van Vuuren et al., 2011; Fuss et al., 2013), mostly in the form of carbon dioxide 

removal (CDR) through Bioenergy Carbon Capture and Storage (BECCS). This 

option has the advantage of converting to non-fossil fuel energy production, as 

well as capturing resultant CO₂ from burnt fuel. However the total land area 
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required to meet the 2°C target through BECCS would be around 50% of present-

day cropland area (Harper et al., 2018b), raising questions around the feasibility 

and potential conflicts with land needed for food production. An alternative option 

for limiting temperature rise could be through solar radiation management (SRM), 

which is the focus of this experiment.  

 

Figure 6.1: Time series of fossil fuel emissions for four RCP scenarios 
Time series of compatible fossil fuel emissions simulated by the CMIP5 ESMs for the four 
RCP scenarios (PgC yr–1). Dashed lines represent the historical estimates and emissions 
calculated by the Integrated Assessment Models (IAMs) used to define the RCP scenarios, 
solid lines and plumes show results from CMIP5 ESMs (model mean, with 1 standard 
deviation shaded) (reproduced from IPCC WGI Chp6 Figure 6.25) 

 

At the COP21 meeting in Paris in 2015, nations came together for the first time 

to state their commitment to keeping global mean temperature risk below 2°C 

above pre-industrial levels, and in a further pledge an agreement was reached to 

“pursue efforts to limit warming to 1.5°C”. The ‘Paris Agreement’ was 

subsequently ratified by 174 countries in New York in 2016. It is now important 

for research to begin to understand the implications of this new target, including 

how it might be achieved, and what difference it could make in avoided impacts.  

The remaining carbon budget consistent with a median chance of limiting 

warming to 2°C is ~1300 GtCO₂ which is likely to be exhausted in the next ~25 

years. Keeping warming to 1.5°C or below gives a remaining budget of 550 

GtCO₂ (IPCC SYN table 2.2), which could be exhausted in the next ~10 years 

with a 50% chance at today’s emission levels from 2016, or just 5 years for a 66% 

chance32. This therefore means it would be necessary to convert to zero 

                                            
32 Met Office: 
http://www.metoffice.gov.uk/binaries/content/assets/mohippo/pdf/climate/cop22/theme_2-carbon-
budgets.pdf 

http://www.metoffice.gov.uk/binaries/content/assets/mohippo/pdf/climate/cop22/theme_2-carbon-budgets.pdf
http://www.metoffice.gov.uk/binaries/content/assets/mohippo/pdf/climate/cop22/theme_2-carbon-budgets.pdf
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emissions much sooner in order to reach the 1.5°C target, or alternatively a 

scenario of overshoot and subsequent strong mitigation / negative emission 

methods to bring carbon back down to the required levels would be needed. 

Converting to zero emissions would involve rapid and substantial transformation 

of our energy demand and supply methods, which is unlikely to be achievable on 

these timescales.  

One option for achieving the 1.5°C target is through SRM in the form of 

stratospheric aerosol injection of sulphur dioxide (SO₂). Aerosols cool the climate 

by reflecting incoming solar radiation, as was the case following the 1991 Mount 

Pinatubo eruption where global temperatures were reduced by around 0.5°C for 

two years following the event due to the high volume of particulate matter 

released into the stratosphere (Stowe et al., 1992). Volcanic eruptions of this 

nature increase Aerosol Optical Depth, which reflects incoming solar radiation 

more effectively than trapping the outgoing Earth radiation, producing a net 

cooling effect. The aerosol must be evenly distributed within the stratosphere to 

ensure that the particles are long-enough lived to impact global temperatures, 

where particles injected at lower levels in the troposphere would be precipitated 

out too quickly (Haywood et al., 2013). Figure 6.2 below shows the temperature 

profile for three standard RCP scenarios, with the new scenario limiting 

temperature to 1.5°C.  

  

Figure 6.2: Time series of temperatures for SRM scenario 
Temperature profiles for three standard RCP scenarios, together with new SRM scenario 
(figure courtesy of A. Jones, in Wiltshire et al. (in prep)) 

 

In this Chapter I explore the impacts of limiting global mean temperature rise to 

1.5°C compared to 2.0°C above pre-industrial levels. For this I use the 

established McArthur Forest Fire Danger Index (FFDI) to enable a focus on 
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change in fire danger conditions as a direct result of a change in meteorological 

conditions in the two emissions scenarios. The SRM scenario was created using 

HadGEM2-ES; this is an Earth System Model, enabling atmospheric response to 

aerosol forcing to be simulated which could not be done in JULES. Fire indices 

were chosen here for the analysis in order to be able to meet the deadline for the 

IPCC 1.5 degree special report. The land surface scheme in HadGEM2-ES is 

based on MOSES-2 but is further improved to include sub-gridscale soil moisture 

variability (Clark and Gedney, 2008; Martin et al., 2011), showing substantial 

improvements from previous hydrology modules compared to observations 

(Good et al., 2013), and which is used in the FFDI calculation for soil moisture. 

The land surface scheme is approximately equivalent to the JULES-C 

configuration. A scenario limiting temperature rise to 1.5°C above pre-industrial 

is not yet available as a standard RCP scenario, and therefore this first-order test 

uses a simple fire index to assess potential impacts of limiting temperature rise 

to 1.5°C compared to 2.0°C. This is the first step in assessing future scenarios of 

fire at lower emission levels. Other factors including ignitions and biomass can 

introduce further complexities and uncertainties so are not considered here; 

however we now have the capability to include these within INFERNO and future 

work could address this. 

6.2 Future fire danger at 1.5°C 

This paper has been published in GRL, as Burton et al. (2018a).   

6.2.1 Abstract 

The commitment to limit warming to 1.5 °C as set out in the Paris Agreement is 

widely regarded as ambitious and challenging. It has been proposed that 

reaching this target may require a number of actions, which could include some 

form of carbon removal or Solar Radiation Management in addition to strong 

emission reductions. Here we assess one theoretical solution using Solar 

Radiation Management to limit global mean warming to 1.5 °C above preindustrial 

temperatures and use the McArthur fire danger index to evaluate the change in 

fire danger. The results show that globally fire danger is reduced in most areas 

when temperatures are limited to 1.5 °C compared to 2.0 °C. The number of days 

where fire danger is “high” or above is reduced by up to 30 days/year on average, 
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although there are regional variations. In certain regions, fire danger is increased, 

experiencing 31 more days above “high” fire danger. 

6.2.2 Introduction 

As climate change brings hotter, drier conditions to many parts of the world, fire 

danger is likely to increase in some areas. Fire is one of the most important 

disturbances globally, impacting vegetation, hydrological cycles, atmospheric 

chemistry, and the carbon cycle, as well as having socioeconomic impacts 

through loss of life and property (Hanston et al., 2016). Studies have previously 

attributed fire events to anthropogenic climate change, such as the Californian 

fires of 2014 (Yoon et al., 2015), showing that climate change has already 

increased the likelihood of fire occurrence in some areas. Other studies have 

shown that global fire risk may change under different emission scenarios (e.g., 

Betts et al., 2015; Gonzalez et al., 2010; Settele et al., 2014), showing in general 

an increase in fire danger with higher levels of climate change above 2 °C in the 

future, and a shift towards a more climate driven fire regime (Pechony & Shindell, 

2010). However, there is inhomogeneous response, and in some areas fire risk 

may decrease with climate change in the future (Moritz et al., 2012).  

At the Conference of Parties meeting in Paris in 2015 (COP21), for the first time 

nations across the world committed to limit global mean warming to 2.0 °C and 

to “pursue efforts to limit warming to 1.5°C” (UNFCCC, 2015) in an attempt to 

limit the negative impacts of climate change. Work is now ongoing to understand 

how this more ambitious climate goal might be achieved, and the potential costs, 

benefits, and impacts of a 1.5 °C verses a 2.0 °C world. It will also be important 

to fully understand the impacts of the methods used to achieve this in order to 

make informed choices moving forward.   

For a high probability of stabilizing temperatures at 1.5 °C, it will be necessary to 

reduce greenhouse gas emissions substantially and rapidly (Millar et al., 2017). 

It is also suggested that this will require net negative emissions by the end of the 

century or sooner (Rogelj et al., 2016), or alternative means of limiting warming. 

These could be achieved through deployment of geoengineering solutions, either 

by removing carbon dioxide from the atmosphere (Carbon Dioxide Removal), for 

example, through Bioenergy Carbon Capture and Storage (Fuss et al., 2014; 

Smith et al., 2016) or by reducing the incoming solar radiation through Solar 
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Radiation Management (SRM; Kravitz et al., 2013; Vaughan & Lenton, 2011). 

However, these technologies are mostly untested, and the impacts of employing 

such methods of mitigation are not well understood.  

One option for SRM could be in the form of stratospheric aerosol injection of sulfur 

dioxide (SO₂; Crutzen, 2006). Relatively small amounts of SO₂ injection would be 

required (Keith et al., 2010), and this would have reasonably quick effects on 

reducing global temperatures. However, it has been noted that this could alter 

regional climate patterns (Haywood et al., 2013) and hence could modify fire 

regimes. Here we perform the first assessment of the potential impact on global 

patterns of fire danger using SRM to limit global warming to 1.5 °C, compared to 

a 2.0 °C achieved solely through limiting the rise in greenhouse gas 

concentrations. 

It should be noted that once injected, SO₂ emissions would need to be repeated 

every year to maintain temperature reduction, and if stopped, the temperature 

would rise sharply up to pre‐SRM levels (Jones et al., 2013), unless greenhouse 

gas concentrations levels were simultaneously reduced. SRM may therefore 

allow some additional time for reducing greenhouse gas emissions but is viewed 

as an unsuitable replacement for such reductions in the long term (Keith & 

MacMartin, 2015). It has been shown that this termination effect would be 

particularly severe in high‐emission scenarios such as RCP8.5, and 

consequently, it is impractical to consider the use of SRM in this context 

(McCusker et al., 2014). This study therefore focuses on the potential impact of 

employing SRM together with strong mitigation efforts using the Representative 

Concentration Pathway (RCP) 2.6 (van Vuuren et al., 2011). It should also be 

noted that there are a number of other potential hazards of SRM which should be 

taken into consideration, including negative impacts on stratospheric ozone 

(Keith et al., 2010), hydrology and regional climate (Trenberth & Dai, 2007), 

nutrient cycles, and vegetation loss resulting from sulfur deposition (Crutzen, 

2006), and continued ocean acidification (Robock, 2008). These additional 

impacts are outside the scope of this paper. 

6.2.3 Methods 

Here we use a theoretical SRM geoengineering scenario to model the potential 

impacts of fire danger on a global scale at 1.5 °C compared to 2.0 °C. We use 
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output from the Earth System Model HadGEM2‐ES (Collins et al., 2011; Jones et 

al., 2011) at a spatial resolution of 1.875° × 1.25°, driven by concentrations 

following the strong mitigation scenario RCP2.6, and in a second experiment 

setup a new run of RCP2.6 + SRM is initialized at 2020 and run to the end of the 

21st century with SO₂ injected continuously and uniformly into the stratosphere 

at a height of 16–25 km in four member ensemble simulations. In the model, the 

SO₂ oxidizes to form a sulfate aerosol that reflects incoming solar radiation and 

creates a cooling effect on the climate, simulating the effect of SRM in order to 

keep climate warming to 1.5 °C. The results are then analyzed in terms of 

potential fire impacts. We use the McArthur Forest Fire Danger Index (FFDI) to 

compare fire danger for both scenarios RCP2.6 and RCP2.6 + SRM, using the 

mean from the four member ensemble runs. A period of 10 years 2061–2070 is 

chosen to represent the future state, as the decade at which maximum warming 

occurs in the RCP2.6 scenario. We also compare the results to the present‐day 

fire danger, where present day is taken as the period 2006–2015.  

The assessment of fire danger is a way of determining the risk of fire occurrence 

and impact in a region, in terms of ignition, rate of spread, ability to control, and 

potential impact, based on a number of input variables (de Groot et al., 2015). 

The McArthur FFDI (McArthur, 1967; Noble et al., 1980) was designed for use in 

Australia, but it can be used for assessing global fire danger, (Betts et al., 2015; 

Golding & Betts, 2008) and uses meteorological conditions to calculate the risk 

of fire occurrence in the following equation: 

 

𝑭𝑭𝑫𝑰 = 𝟏. 𝟐𝟓 ∗ 𝑫 ∗ 𝒆𝒙𝒑 ⌊
𝑻 − 𝑯

𝟑𝟎. 𝟎
+ 𝟎. 𝟎𝟐𝟑𝟒 ∗ 𝑽⌋  

 

 

where D = drought factor, T = temperature (°C), H = humidity (%), and V = wind 

speed (km/hr1). The drought factor (D) is calculated as follows: 

 

𝑫 =
𝟎. 𝟏𝟗𝟏 ∗ (𝑺𝑴𝑫 + 𝟏𝟎𝟒) ∗ (𝑵 + 𝟏)𝟏.𝟓

𝟑. 𝟓𝟐 ∗ (𝑵 + 𝟏)𝟏.𝟓 +  𝑷 − 𝟏
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where P = precipitation (mm/day) and N = number of days since last rain. Here 

we use varying soil moisture from the Earth System Model to calculate the soil 

moisture deficit (SMD) compared to the field capacity at a depth of 1 m to account 

for varying ecoregions, based on Holgate et al. (2017). Soil moisture is calculated 

based on inputs and outputs of precipitation, snowmelt, evapotranspiration, and 

drainage. The land surface scheme is based on MOSES‐2 (Essery et al., 2003) 

but further improved to include subgridscale soil moisture variability (Clark & 

Gedney, 2008; Martin et al., 2011).  

This fire danger system is used operationally in high fire‐risk areas such as across 

Australia as a way of providing early warning for dangerous fire events (de Groot 

et al., 2010). It provides a way of managing the resources needed for fire 

management and suppression and underpins evacuation plans for national 

safety.  

Here we use daily input data to calculate the FFDI. We first present the change 

in key meteorological variables, temperature and precipitation (Figure 6.3). We 

use the 90th percentile of daily maximum temperature to understand the extremes 

that contribute to fire danger and the mean change in precipitation to understand 

the overall pattern of change. We then assess the change in the 90th percentile 

of fire danger between the RCP2.6 and RCP2.6+SRM scenario compared to 

present day, and explore how regions experiencing ‘high’ fire danger may change 

with each scenario (Figure 6.4). The results of these analyses are presented by 

Giorgi region (Giorgi and Francisco, 2000) (Figure 6.5). 

6.2.4 Results 

Compared to present day climate, the temperature increases globally in the future 

under scenario RCP2.6 (Figure 6.3, panel a) as expected. However, this increase 

is not homogenous; the mean change shows greater warming in the northern 

high latitudes (Figure 6.8), and at the 90th percentile the regions in central and 

eastern United States and NE Asia show minimal to negative change. With the 

application of SRM, overall the temperature decreases compared to RCP2.6, 

however the same regions (United States and NE Asia) show an increase in 

temperature (Figure 6.3, panel c). There are also regions where the change 

between RCP2.6 and SRM is approximately 0, such as across Scandinavia.  
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The change in mean precipitation is even more heterogeneous. Across the 

northern hemisphere the change is mostly an increase in precipitation with 

RCP2.6 compared to present day (panel b). Across the Southern Hemisphere, 

the change is mostly a decrease in precipitation with particularly strong drying 

across South America, except for two regions that show an increase in 

precipitation (east Brazil and south Brazil / Uruguay). With deployment of SRM, 

the results show a decrease in precipitation in many areas compared to RCP2.6, 

including central and eastern United States and NE Asia (panel d). However 

some regions show an increase in precipitation compared to RCP2.6, including 

Central America, a band across Brazil, central Africa, West Asia, and most of 

Australia. Most of the Sahara region shows no noticeable change. 

 
Figure 6.3. Change in daily climate variables 
90th percentile of daily maximum temperature (°C) at 1.5m (left column), and mean 
precipitation change (mm/day) (right column). Upper row shows RCP2.6 (2061-2070) minus 
present day (2006-2015). Lower row shows the change in fire danger with SRM, calculated 
as change in RCP2.6+SRM (2061-2070) from Present Day (2006-2015) minus change in 
RCP2.6 (2061-2070) from Present Day (2006-2015). 

 

We assess how the 90th percentile of fire danger may change with RCP2.6 and 

RCP2.6+SRM (Figure 6.4) to understand if more areas are exposed to ‘high’ fire 

danger in the future due to these meteorological changes. We also calculate if 

the number of days where the fire danger is ‘high’ or above changes between 
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scenarios, to understand if regions become vulnerable to dangerous fires more 

often.  

In the present day, the Sahara, Middle East, and parts of west and central 

Australia show ‘severe’ fire danger (Figure 6.4, panel a), which also corresponds 

to the highest number of days above ‘high fire danger (panel b). 

Compared to present day fire danger, RCP2.6 shows an increase in the 90th 

percentile of fire danger across most regions globally, with the highest change of 

8 (panel c). The areas most affected by increased fire danger in this scenario 

include South America, Europe, Arabia and western Australia. Interestingly, there 

are also regions that decrease in fire danger in this scenario, such as USA and 

NE Asia, with the largest change of -5. These regions correspond to reduced 

temperatures and increased precipitation with RCP2.6 (Figure 6.3, a and b). The 

number of days where fire danger is ‘high’ or above is also mostly increased in 

RCP2.6 compared to present day (panel d), with the highest change across 

Southern Africa, Australia and South America, and a maximum increase of 62 

days per year on average (619 days across the 10 year period). A similar pattern 

of decreased fire danger in the United States and NE Asia can be seen in both 

the change in the 90th percentile of fire danger (panel c) and the change in 

number of days above ‘high’ FFDI (panel d). Panel (d) also shows a decreased 

number of days of high fire danger across East Brazil.  

Compared to present day fire danger, RCP2.6+SRM also shows an increase in 

fire danger for most regions in the future (Figure 6.4, panel e), although this is 

generally less than in the RCP2.6 scenario. However, the two regions (USA and 

NE Asia) that showed a decreased danger in the RCP2.6 scenario do not show 

as much of a decrease with SRM, and in fact some parts of these regions show 

higher danger with SRM in both the 90th percentile and the number of days above 

‘high’ FFDI. Parts of Central America and western Asia show a marked decrease 

with SRM.  

Overall the 90th percentile of fire danger is reduced with the application of SRM, 

but there are some regions that show the opposite trend (Figure 6.4, panel g). 

NE Asia and the Unites States show an increase in the 90th percentile of fire 

danger reached with RCP2.6+SRM compared to RCP2.6, with a maximum 

increase of 5.5. This is partly due to a decrease in fire danger seen in the RCP2.6 
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scenario compared to present day that is not as marked with SRM (Figure 6.4, 

panel c and e). Most other regions show a decrease, with the highest reduction 

being 3.8. In some areas there is no clear change, such as across western South 

America, and the northern high latitude regions. The change in number of days 

above ‘high’ fire danger with SRM shows a similar increase in fire danger across 

NE Asia, and America compared to the RCP2.6 scenario (Figure 6.4, panel h). 

These regions show a maximum of 31 more days at ‘high’ fire danger on average 

per year at 1.5°C compared to 2°C. Again the general global trend is a decrease 

in the number of days of ‘high’ fire danger in the RCP2.6+SRM scenario 

compared to RCP2.6 with a maximum reduction of 30 days per year on average, 

although some areas show no obvious change including central Asia.  
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Figure 6.4. Change in fire danger 
90th percentile of fire danger (left column) and number of days where fire danger is 
above’high’ on the McArthur scale (right column). Top row shows present day (2006-2015). 
Second row shows the change in RCP2.6 (2061-2070) minus Present Day (2006-2015). Third 
row shows the change in RCP2.6+SRM (2061-2070) minus Present Day (2006-2015). The 
bottom row shows the change in fire danger with SRM, calculated as change in 
RCP2.6+SRM (2061-2070) from Present Day (2006-2015) minus change in RCP2.6 (2061-
2070) from Present Day (2006-2015). Panel (a) uses the McArthur FFDI scale categories as 
follows: 0-11 = Low-moderate fire danger; 12-24 = High fire danger; 25-49 = Very high fire 
danger; 50-74 = Severe fire danger; 75-99 = Extreme fire danger; 100+ = Catastrophic fire 
danger. 

 

The results show that where mean temperature reduction with SRM is minimal 

(Figure 6.8 panel b), and where the 90th percentile of temperature change shows 

an increase compared to RCP2.6 (Figure 6.3c), together with a marked reduction 
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in precipitation (Figure 6.3d), there is increased danger of fire for two key regions. 

These regions may be exposed to higher fire danger for longer periods under an 

SRM scenario compared to RCP2.6.  

Considering the Giorgi regions, Figure 6.5 shows that in most regions overall fire 

danger is increased in the future under both scenarios. The largest difference in 

90th percentile fire danger is in Northern Australia (NAU), where application of 

SRM decreases the danger overall. Southern Australia (SAU) and Central Asia 

(CAS) also show among the highest decreases. Other regions show small 

changes, such as Alaska (ALA). In some cases the fire danger is reversed, with 

SRM causing increased fire danger at the 90th percentile compared to RCP2.6. 

In East Asia (EAS), Eastern North America (ENA) and Central North America 

(CNA) the highest fire danger increases with application of SRM, which supports 

the findings in Figure 6.4. A similar trend is seen in the number of days where fire 

danger is high or above. This is usually lower in the SRM scenario compared to 

RCP2.6, but in the same regions it is increased (EAS, ENA, CNA). In some cases 

the overall fire danger is changed to negative with SRM, including Central Asia 

(CAS), Central America (CAM), and West North America (WNA). 

 
Figure 6.5. Graph of change in McArthur FFDI  
From 2061-2070 compared to present day (2006-2015), for 90th percentile of fire danger (a) 
and number of days at ‘high’ fire danger or above (b). Red bars represent the RCP2.6+SRM 
scenario, blue bars represent RCP2.6 scenario. Full list of Giorgi regions can be found in 
the Supplementary Material.  

 

6.2.5 Discussion 

The results presented here have shown that in general, meteorological fire 

danger increases in the future (Figure 6.3 and Figure 6.4), even in a scenario of 

strong climate change mitigation. Here we have compared the highest mitigation 
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scenario from the IPCC Representative Concentration Pathway scenarios, 

RCP2.6 which limits committed warming to 2.0°C, with an even stricter mitigation 

target of 1.5°C achieved through implementation of SRM. If we were to compare 

this with a business as usual scenario, RCP8.5, we would likely see a significant 

difference in fire danger globally and regionally, with global temperatures 

expected to reach approximately 5.5°C above pre-industrial in this high emission 

scenario (Settele et al., 2014; Betts et al., 2015). This could also result in different 

patterns of increase / decrease in fire frequency and probability, for example 

Mortiz et al. (2012) show a reduction in fire across the tropics with future high 

emissions scenarios in a range of global climate models. We have compared 

these two mitigation scenarios here to determine if there is a difference in fire 

danger, if so by how much, and if this the same everywhere in the world. The 

results have shown that the highest fire danger, the 90th percentile of the 

distribution, has shifted so that more regions globally experience higher fire 

danger in the future under RCP2.6 compared to present day (Figure 6.3c). 

Regions may also experience prolonged exposure to higher levels of fire danger 

in the future (Figure 6.3d). However, fire danger does not increase 

homogenously, and some areas show decreased fire danger (some parts of USA 

and NE Asia). These regions would experience higher fire danger with 

implementation of SRM, partly due to the decrease seen in the RCP2.6 scenario. 

These areas show the smallest decrease in temperature, and are vulnerable to 

decreased precipitation and humidity with SRM (Figure 6.1 and Figure 6.8 and 

Figure 6.10). A decrease in precipitation as seen here may be partly due to 

circulation changes caused by lower temperatures, and research has also shown 

a direct impact of aerosols on the hydrological cycle and transport of latent heat, 

leading to a reduction in precipitation (Trenberth and Dai, 2007). This has direct 

implications for the use of aerosols in SRM methods. This highlights an important 

message, that although temperatures could be decreased globally by using 

geoengineering methods such as SRM, the impacts are not felt evenly across the 

world. This spatial heterogeneity in fire danger response underlines the 

importance of conducting a thorough assessment of potential impacts when 

considering new geoengineering technology, as there may be unintended and 

unanticipated consequences on both a regional and global scale.  
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The McArthur Index is useful in providing an indication of fire danger as it includes 

a number of meteorological variables as well as a drought index. However, it is 

worth noting that it was designed and calibrated for Australian vegetation (de 

Groot et al., 2006), and therefore its applicability outside of this region is less 

certain, where other species may have a different tolerance and resistance to fire 

(Golding and Betts, 2008). Moreover, there will be some bias in the fire index as 

a result of using model input data instead of observations. To ensure the results 

were not dependent on the fire index used, we also assessed the mean response 

with the Angström Index (Chandler et al., 1983) (see Supporting Material). The 

Angström Index is a very simple fire index using only two variables, temperature 

and relative humidity. The index gives very similar results, with global mean fire 

danger increasing in the future, and the RCP2.6+SRM scenario generally 

showing a smaller increase in fire danger than the RCP2.6 scenario. Similar 

regions also show an increase in fire danger with SRM in both the McArthur and 

the Angström Index. However, the largest difference in the mean fire danger in 

the McArthur FFDI is in Australia, whereas the largest difference in the Angström 

Index is in Europe, both reflecting the regions they were designed for. Many fire 

indices were initially designed for other regions, such as the National Fire Danger 

Rating System (NFDRS) in America (Bradshaw et al., 1983), and there may 

therefore be some small variations in the extent of the change using different fire 

indices. 

It should also be noted that both indices used here provide an indication of fire 

danger given certain meteorological conditions, and do not take into account the 

availability of fuel or ignitions. For a full assessment of fire prediction using fuel, 

flammability and ignition, a land surface or Earth System model including fire 

disturbance is required. This said, the inclusion of additional inputs introduces 

greater uncertainty, and fire indices are therefore useful in providing a simple 

guide of how fire conditions may change in the future with climate change, and 

give an indication of how different temperature scenarios are likely to affect fire 

danger. They are also used operationally to manage fire danger, with the 

McArthur Index being used frequently in high fire-risk areas in Australia to 

manage dangerous fire events (de Groot et al., 2015).   
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6.2.6 Conclusion 

This study has shown that there is a noticeable change in the fire danger with 

RCP2.6+SRM compared to RCP2.6. In most areas this change is a reduction in 

fire danger, with a maximum decrease of 3.8 in the 90th percentile, and 30 fewer 

days per year on average of high fire danger. However, the changes are not 

homogenous and there are regions where the fire danger is increased due to 

reduced precipitation and minimal temperature reduction with the implementation 

of SRM, in particular parts of NE Asia and the USA, and also due in part to the 

reductions seen in the RCP2.6 scenario which are not seen in the RCP2.6+SRM 

scenario. The maximum increase due to SRM is 5.5 on the McArthur FFDI and 

31 more days of above ‘high’ fire danger per year on average. Considering the 

Giorgi regions, the greatest difference between the scenarios is in Australia and 

central Asia. In some cases the overall fire danger is changed to negative with 

SRM, including Central Asia (CAS), Central America (CAM), and West North 

America (WNA). 

These results highlight the importance of thoroughly assessing all of the potential 

impacts on a regional scale when considering geoengineering options, to rule out 

any potential unintended consequences that may be caused by large scale 

geoengineering. The changes to key impact metrics need to be evaluated 

thoroughly in order to weigh them against the potential costs and risks of 

mitigation options such as this. The method of geoengineering chosen here also 

does not address CO₂ levels by itself, and additional mitigation methods would 

need to be simultaneously employed to reduce emissions. While it has been 

shown that there would be some benefits from this method of SRM in the form of 

an overall reduction in meteorological fire danger, the negative impacts of SRM 

also need to be carefully considered, and more work is needed to fully understand 

the potential impacts across a range of variables. 
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Supporting Material 

This supporting information gives further analysis on the climate variables and 

fire indices at 1.5ºC compared to 2.0ºC. The Giorgi regions used in Figure 6.5 of 

the main paper are also listed here in full.  

Another fire index was used in support of the work done with the McArthur Index. 

The aim was to ensure the results of the analysis of fire danger at 1.5°C and 2°C 

were not dependent on the fire index used. The results show very similar results 

to the McArthur Index, with overall increased fire danger with future scenarios, 

higher fire danger with the RCP2.6 scenario compared to RCP2.6+SRM, and the 

same regions showing increased fire danger with SRM.  

 

The Giorgi regions used in Figure 6.5 are as follows: 

 

North America: 

Alaska = ALA 

Greenland = GRL 

Western North America = WNA 

Central North America = CNA 

Eastern North America = ENA 

Central America = CAM 

http://dx.doi.org/10.5285/70ac55eb85344c3bb2239ed2d7b7575d
http://dx.doi.org/10.5285/75a7e567fe2342a493663a7a085d015e
http://dx.doi.org/10.5285/75a7e567fe2342a493663a7a085d015e
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South America: 

Amazonia = AMZ 

Southern South America = SSA 

 

Europe: 

Northern Europe = NEU 

Mediterranean = MED 

 

Africa:  

SAH = Sahara 

WAF = West Africa 

EAF = East Africa 

SAF = South Africa 

 

Asia: 

Northern Asia = NAS 

Central Asia = CAS 

Tibet = TIB 

Eastern Asia = EAS 

Southern Asia = SAS 

South East Asia = SEA 

 

Australia: 

Northern Australia = NAU 

Southern Australia = SAU 

 

The Angström Index was used to verify the results of the McArthur Index. This 

fire index, of Swedish origin, uses just two variables, temperature and humidity, 

to determine fire danger. The index uses a reverse scale where a low index value 

corresponds to a high fire danger, as shown in Table 6.1:  

The index, I, is given by: 

𝑰 = ( 
𝑹

𝟐𝟎
) +  (

𝟐𝟕 − 𝑻

𝟏𝟎
) 
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Where: 

R = Relative humidity (%)  

T = Air temperature (°C) 

 

Table 6.1: The scale of fire danger used in the Angström index 

Index value Meaning 

I > 4.0 Fire occurrence unlikely 

4.0 > I > 2.5 Fire conditions unfavourable 

2.5 > I > 2.0 Fire conditions favourable 

I < 2.0 Fire occurrence very likely 

 

Mean changes in fire danger were analysed with both the McArthur Index and 

Angström Index to check if there were any significant differences in the trend of 

change as a result of the fire index chosen. The results show that the both indices 

give similar results, showing an increased danger of fire with future scenarios, 

and a higher overall fire danger with RCP2.6 compared to RCP2.6+SRM.   

The mean change in the McArthur fire index shows that there is increased fire 

danger in the future in all 6 domains, but that this is reduced with SRM (Figure 

6.6). The largest difference between scenarios can be seen in Australia.  

 

Figure 6.6: Graph of change in mean McArthur FFDI 
From 2061-2070 compared to present day (2006-2015). Red bars represent the 
RCP2.6+SRM scenario, blue bars represent RCP2.6 scenario. Giorgi domains are as 
follows: AUS = Australia, ASA = Asia, NAM = North America, EUR = Europe, SAM = South 
America, AFR = Africa, GLO = Global.  
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The mean change in the fire danger was also calculated using the Angström 

Index to verify the change compared to the McArthur Index. The results show that 

the fire danger also increases in this index in the future compared to the present 

day, and that the fire danger is higher in the RCP2.6 scenario compared to 

RCP2.6+SRM in all domains and globally (Figure 6.7). The change using this 

index is higher in Europe, closely followed by Australia and North America.  

 

 

Figure 6.7: Graph of change in mean Angström Index 
From 2061-2070 compared to present day (2006-2015). Red bars represent the 
RCP2.6+SRM scenario, blue bars represent RCP2.6 scenario. Giorgi domains are as 
follows: AUS = Australia, ASA = Asia, NAM = North America, EUR = Europe, SAM = South 
America, AFR = Africa, GLO = Global. The Angström Index uses a reverse scale, where 
lower numbers represent higher fire danger. 

 

The mean values for temperature were also calculated as context for the mean 

fire danger: 
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Figure 6.8 Change in mean daily maximum temperature 
Temperature (°C) at 1.5m, for RCP2.6 (2061-2070) minus present day (2006-2015) (a) and 
RCP2.6+SRM - RCP2.6 (2061-2070) (b). 

 

In addition to the mean values, the extremes of fire danger were also calculated 

for the Angström Index  using the same criteria as used for the McArthur FFDI 

(although note that because the Angström Index scale is reversed, the 10th 

percentile was used instead of 90th percentile). The results show a very similar 

trend to those from the McArthur FFDI, and the same regions of increase with 

SRM.  
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Figure 6.9: Change in fire danger using the Angström Index 
10th percentile of fire danger (left column) and number of days where fire danger is below 
2.5 (favourable) on the Angström Index (right column) averaged over 10 years. Top row 
shows present day (2006-2015). Second row shows the change in RCP2.6 (2061-2070) 
minus Present Day (2006-2015). Third row shows the change in RCP2.6+SRM (2061-2070) 
minus Present Day (2006-2015). The bottom row shows the change in fire danger with SRM, 
calculated as change in RCP2.6+SRM (2061-2070) from Present Day (2006-2015) minus 
change in RCP2.6 (2061-2070) from Present Day (2006-2015).  

 

The other variables that contribute to fire danger have been included here to give 

further context to the calculations. 
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Figure 6.10: Change in humidity 
Change in daily minimum relative humidity (%) (top row), daily mean wind speed (km hr-1) 
(middle row), and drought factor (bottom row) for RCP2.6 (2061-2070) minus present day 
(2006-2015) (left column) and RCP2.6+SRM - RCP2.6 (2061-2070) (right column). 
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Mean, minimum and maximum values of change were calculated for each change 

in fire danger in the main paper for Figure 6.4 (panels c-f). The results are shown 

below in Table 6.2. 

 

Table 6.2: Mean, maximum and minimum values of change in fire danger, according to 
scenario, shown per 10 year period analysed 

Maximum fire FFDI (90th percentile) Number of days above ‘high’ FFDI 

RCP2.6 – Present Day RCP2.6 – Present Day 

MAX MIN MEAN MAX MIN MEAN 

7.917488 -4.75938 0.262291 619 -335.5 10.02265 

      
RCP2.6+SRM - Present Day RCP2.6+SRM - Present Day 

7.986501 -7.61999 0.156555 369.75 -429.25 5.619522 

      
SRM - RCP SRM - RCP 

5.507972 -3.76442 -0.10574 310.25 -298.75 -4.40313 
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Chapter 7: Synthesis and conclusions 

7.1 Summary of key findings 

The aim of this PhD has been to understand how fire and land-use change impact 

vegetation cover today, and how this may change with climate change in the 

future, with a focus on the Brazilian Amazon, South America. In order to address 

this research question, I have developed the INFERNO fire model so that it 

interacts with dynamic vegetation within the land surface model JULES. This work 

enables us to represent interactive fire disturbance and mortality as a separate 

process for the first time in JULES, fulfilling an important missing component of 

the terrestrial carbon cycle. Fire has multiple impacts on the Earth system, 

including on vegetation, the carbon cycle, the water cycle, atmospheric 

chemistry, albedo and radiative forcings, which can be compounded or 

diminished by processes of land-use and land cover change, making it a critical 

disturbance factor to understand.  

First I conducted an in-depth literature review to understand the context of fire 

and land-use globally and in the Brazilian Amazon, and outlined the current status 

of fire modelling. This showed that while prominent early studies showed a 

dieback response of the Amazon forest in the HadCM3 model due to strong 

warming and drying, subsequent models such as HadGEM2 have not shown 

such a strong sensitivity of the forest to future climate changes, and project a less 

intense drying signal. However these models did not include fire as a separate 

process. It was postulated in the IPCC AR5 report that fire could be a key missing 

process that has the potential to interact with drought and land-use change, to 

alter the ecosystem balance enough to initiate a transition to a low-biomass fire 

adapted vegetation such as grasses and shrubs, and other studies have shown 

that the Amazon is the most vulnerable tropical forest to this kind of mass tipping 

point. However there are few studies that have considered future scenarios of fire 

danger, and there is still high uncertainty about how forests may respond to 

changes in fire and climate. A limited number of studies have used the McArthur 

FFDI to show that fire danger may increase in the future, but these did not include 

vegetation interactions. Other work has shown that fire danger may decrease in 

tropical regions in the future, and that we are already seeing a decrease in fire in 
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some areas due to increasing conversion of land to savanna through 

deforestation. This review gave an overview of available observations, fire indices 

and fire models, including potential flaws and uncertainty factors that need to be 

considered when using them. 

I analysed available land-use datasets in Chapter 2, and showed how land-use 

is projected to change in the future under different emission scenarios, with high 

disturbance in scenarios RCP2.6 and RCP8.5, and reforestation in RCP4.5 and 

RCP6.0. I analysed the impact of land-use globally and for Brazil, and performed 

a multi-model analysis across the TRENDY models to assess the uncertainty in 

the land sink across biomes in Brazil, showing the largest uncertainty range in 

the Cerrado region. Including fire in the analysis significantly reduces the 

modelled emissions attributed to land-use in this region, shown later in Chapter 

3.  

Chapter 3 focused on model development, where I first performed initial 

simulations to test the capability of coupling the fire to dynamic vegetation, which 

showed promising results. I then described the coupling process, and the 

representation of the new disturbance terms in the form of equations for 

vegetation competition. This is the first time that fire-vegetation interactions have 

been included for JULES-INFERNO. The results of the coupling were shown in 

terms of fractional vegetation cover. Overall there was a tendency towards the 

faster growing PFTs with a loss of forest, and when both fire and land-use were 

included together there were some areas of ‘over-disturbance’. The loss of woody 

PFTs was likely a result of slow regrowth times, and / or too high a mortality rate. 

Spatial distribution of vegetation improved significantly with tuning, and overall 

the results were mostly within the range of uncertainty from ESA observations 

although there were variations by biome. Across Brazil this showed an important 

result; without land-use or fire, climatically the model supports forest right across 

the savanna region. It is only with the introduction of fire or prescribed land-use 

that this area of savanna is correctly simulated in the model as shrub and grass. 

This supports the findings of Staver et al. (2011) and Hirota et al.  (2011) showing 

that fire is a fundamental process in the development of savannas. This also 

impacts on our ability to quantify land-use emissions from this region. Previously 

in JULES a significant proportion of emissions in Brazil were attributed to land-

use in the Cerrado region, due to the simulation of too much tree cover by the 
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model. Now fire is included, this Cerrado area is no longer simulated as broadleaf 

tree cover, but a mixture of grasses and shrubs without prescribed land-use 

change. As a result, emissions from Brazil are now higher from the Amazon than 

from the Cerrado region, which is more in line with the SEEG emission records.  

I then used the new interactive fire-vegetation model to assess a case study of 

the 2015-2016 El Niño to understand the impact of climate variations on fire in 

Chapter 4. The year 2015/16 did not show an anomalously high burnt area or 

emissions according to GFED data, but I used the JULES-INFERNO model with 

observed climatology and with mean climatology from the previous 10 years to 

investigate whether the El Niño may have caused a higher burnt area than would 

have been the case without the El Niño event. I found that burnt area was higher 

with the El Niño in some areas (south USA, South America, central Australia), but 

lower in others (Africa, east Asia, west Australia). Globally burnt area was higher 

with the El Niño in the last half of 2015, and emissions were higher for most of 

the period July 2015 – June 2016. Three fire-prone regions were considered; 

Asia, Africa, and South America; out of these regions South America showed the 

largest change in burnt area and fire emissions with the El Niño, driven by 

increased temperature and reduction in moisture availability, and Africa showed 

a negative change driven by higher humidity and lower fuel availability. 2015-

2016 had the lowest Net Biome Productivity in the series of 10 years, and was 

lower for most of the year than the previous largest El Niño in 1997-1998. As a 

result South America was converted from a net carbon sink to a source of carbon 

driven by decreases in GPP and increases in fire, and Africa and Asia became 

larger sources of carbon driven by a reduction in GPP and increases in fire 

respectively. I found that temperature was a larger driver of burnt area than 

precipitation. Burnt area in South America was highest in August-October, and 

the change due to El Niño varied spatially with the Cerrado region in the South of 

Brazil experiencing an increase in burnt area and the East showing a decrease. 

This gave a net increase in burnt area for the country as a whole. The El Niño 

caused a global mean increase in temperature, humidity and burnt area, and 

overall decrease in mean precipitation, soil moisture, plant respiration and 

vegetation carbon. This supports other research that has shown an increase in 

fire activity related to drought conditions e.g. Aragāo et al. (2018). It is possible 

that El Niño-related droughts and increases in temperature may become more 
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intense in the future with climate change, which is a cause for concern for 

potential increases in fire during such events. Compared to GFED observations 

of burnt area, the model showed good overall magnitude of burnt area and 

emissions, but less accuracy in seasonality. The downward trend in burnt area 

over the last decade that is seen in the observations is not captured by the model, 

likely due to processes of suppression in agricultural lands not yet being 

represented.  

I then investigated a number of scientific questions around the nature of fire and 

how climate change may impact its prevalence in the future, focusing on different 

aspects of the fire regime. I first considered how fire danger may change under 

‘conventional’ future scenarios, using the Representative Concentration 

Pathways (RCPs) to assess how fire and land-use interact with high emissions 

and high mitigation pathways in Chapter 5. For this I used the new coupled 

JULES-INFERNO model to investigate potential changes in vegetation and 

biogeochemical processes, driven by HadGEM2-ES at RCP2.6, RCP4.5 and 

RCP8.5. The model projects an increase in burnt area in the future with climate 

change, particularly over Brazil as a result of hotter and (in some regions, such 

as the northeast) drier conditions, which is highest in the high emissions scenario 

RCP8.5. This supports the findings of Betts et al. (2015) in their study of future 

fire danger using the McArthur FFDI, and contradicts Moritz et al. (2012) who 

showed that burned area will decrease in tropical regions. In many ways this 

outcome might be expected, considering the same base model HadGEM2-ES is 

used in both this study and the Betts et al., (2015) study, although here I have 

used a more sophisticated fire model which includes vegetation interactions. It is 

also worth noting that HadGEM2-ES includes critical physiological processes that 

many of the models used in the Mortiz et al., (2012) study do not, which has been 

shown to have an important impact on the precipitation in Brazil (Betts et al., 

2008; Chadwick et al., 2017), and additionally that HadGEM2-ES projections are 

more in line with CMIP5 model mean projections of precipitation for this region. 

As precipitation is a key determinant of fire danger in these model studies, it may 

be concluded that other CMIP5 models would also project an increase in burnt 

area in the future in line with this warming and drying signal over South America. 

However it should also be noted that these two studies do not use the same 

indicators of fire activity, with one using fire danger and the other using burned 
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area; they are therefore not directly comparable and this may be another cause 

of the differences in results.  

In this study, the increase in burnt area and fire activity leads to significant forest 

loss across the east of the Amazon, with the model projecting a shift from tropical 

broadleaf forest to shrubs (RCP4.5) and grasses (RCP2.6 and RCP8.5). The 

RCP4.5 scenario assumes land-use changes in the form of reforestation, which 

lessens the impact of forest loss compared to the other scenarios which assume 

high deforestation for biofuels (RCP2.6) and agriculture (RCP8.5). With the 

projected forest loss there is a corresponding decrease in evapotranspiration and 

increase in albedo.  

The pathways to warming have regional impacts as well. At global mean 

temperatures of 2.0°C above pre-industrial levels, the temperature is higher 

across more of Brazil in the RCP8.5 scenario than in the RCP4.5 and RCP2.6 

scenario. The humidity at 1.5°C is lower in RCP4.5 than RCP2.6 and RCP8.5 

across the North of Brazil. Over South America there is a strong projected 

warming and drying across the East of Brazil in the high emission scenario 

RCP8.5. These drivers lead to a higher burnt area in RCP2.6 and RCP8.5, and 

a greater vegetation loss when fire is included, resulting in a higher albedo, and 

lower ET across the east (RCP2.6) and northeast (RCP4.5 and RCP8.5). The 

results show an increasing vulnerability of the northeast and eastern regions of 

Brazil to drought, and the potential for the interaction of climate, land-use and fire 

to result in a shift from tropical forest vegetation to a mixture of shrubs and 

grasses in the future especially in higher emission scenarios. However the 

location of these transitions is not certain and will be dependent on how 

precipitation changes in the future, along with policies around deforestation and 

the use of fire.  

Finally, I addressed a new future scenario considering the impact of limiting 

temperature rise to 1.5°C above pre-industrial levels on fire danger in Chapter 6. 

In 2015 the ‘Paris Agreement’ showed an international commitment to pursue 

efforts to keep global mean temperature rise to below 1.5°C above pre-industrial 

levels. For the first time this means temperature scenarios below 2°C need to be 

considered as part of a range of ‘realistic’ future possibilities. There is a strong 

argument that limiting temperature rise to below 2°C will not be possible without 



293 
 

some form of negative emissions which could include carbon dioxide removal 

(CDR) or solar radiation management (SRM), yet the impacts of implementing 

such methods of climate control are not yet fully understood. As a first 

assessment of how fire danger may change at 1.5°C compared to 2°C, I used the 

McArthur FFDI to investigate if limiting warming was beneficial and if so to what 

extent. I chose to use a fire index in this instance because it is a well-known 

method of assessing fire danger, widely used both in research and operationally, 

and allows the focus of the assessment to be purely on meteorological changes, 

which was the purpose of this study between 1.5°C and 2.0°C. The HadGEM2-

ES model was used to enable climate interactions, using a theoretical SRM 

scenario where aerosol injection limits warming to 1.5°C. The results showed that 

generally ‘high’ fire danger is lower at 1.5°C compared to 2.0°C by up to 30 days 

per year on average. However in two regions, parts of central USA and NE Asia 

experience higher fire danger with up to 31 more days of ‘high’ fire danger on 

average, resulting from a lack of temperature reduction combined with drier 

conditions in the SRM scenario. The results indicate that further research into 

temperature limitation is useful and necessary, but while there may be benefits in 

climate mitigation on this scale, the method of mitigation is equally important and 

needs to be fully investigated. While other studies have used the McArthur FFDI 

to assess future fire danger, this is the first time fire danger at 1.5°C and 2.0°C 

has been assessed.  

In conclusion, this PhD has contributed to the scientific understanding of fire-

vegetation-climate interactions by addressing new research questions around 

future warming scenarios, and the 2015-16 El Niño event. In addition, JULES 

now has the capability to represent fire as a new and distinct disturbance process 

which is important for the accurate simulation of vegetation distribution. This new 

capability is available in the trunk of the community model, and will be available 

for scientists across the world to continue to use for new experiments and for 

further model development.  

Although fire danger is decreasing globally, there is regional variation and in 

some cases it may increase in the future through a combination of climate change 

and land-use change, with the highest impacts in high emission and high land-

use scenarios such as RCP8.5. Keeping global mean temperature to 1.5°C 

above pre-industrial levels may help reduce fire danger, but ways of reaching this 
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goal are important and may have negative impacts in some areas. The JULES-

INFERNO model projects large increases in drought and fire in the Brazil region 

in South America in future high-emission climate scenarios such as RCP8.5, 

based on the ESM HadGEM2-ES. This has important implications for its ability to 

continue to act as a sink of carbon, especially in years of extreme drought and 

high temperatures such as El Niño events. So while deforestation rates have 

reduced significantly since 2004, and many models no longer show dramatic 

dieback scenarios as a result of climate change alone, we cannot assume that 

the Amazon is now ‘safe’ from future changes. Research must continue to assess 

the impacts across a complete range of Earth system processes under climate 

and land-use change scenarios on this important region, both for our 

understanding today and to ensure its continued existence in the future.  

7.2 Limitations and future work 

This PhD has focused on the first coupling of the fire model INFERNO to 

vegetation mortality within the land surface model JULES. The coupling and 

tuning developments as outlined in Chapter 3 have resulted in the model 

successfully simulating vegetation cover within an uncertainty range compared 

to ESA CCI observations. However the analysis showed that trees were slower 

to respond after disturbance than grasses and shrubs, resulting in lower tree 

fractions and lower vegetation carbon. This is likely to be due in part to slow 

regrowth times within TRIFFID which is a known issue (see Appendix 3), and one 

which has been prioritised for development by the JULES modelling community, 

and also by a project focused on developing a new vegetation dynamics scheme 

called RED (Robust Ecosystem Demography). The aim of RED is to introduce a 

new growth and morality scheme which is mass-time dependent, allowing for 

different sizes of vegetation and smaller trees to be sustained (Moore et al., 

2018). Currently TRIFFID requires enough carbon for a full-height mature tree to 

be sustained before a forest can develop. If the new RED scheme is successful 

in replacing TRIFFID within JULES in the future, this will likely have a positive 

impact on how fire disturbance effects tree cover.  

Other possible causes of lower vegetation carbon are due to burnt area being too 

high, for example there is currently no land-use suppression in managed 

agricultural areas, and/or that the assumed mortality rate is too high. Here I 
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assumed a direct conversion of the area burnt into vegetation mortality, where in 

reality this will likely vary by biome, species of vegetation (i.e. bark thickness and 

fire resilience), fire intensity and duration of the fire (Lasslop et al., 2018). As 

INFERNO is a simple fire model, many of these parameters are not available 

within INFERNO or JULES, but some method of scaling burned area by PFT to 

reduce the impact of fire on trees compared to grasses (e.g. Sitch et al., 2003) is 

likely to be beneficial to tree cover and to vegetation carbon, and optimising this 

function for JULES-INFERNO should be a priority next step for the further 

development and improvement of the model. 

The benefit of using models is that we can simplify a large range of complex 

interactions into something that is manageable, for example a small range of plant 

functional types, however we need to be able to strike the right balance between 

over-simplification and over-complication, both having their drawbacks. While we 

probably cannot or would not want to represent every single vegetation type that 

exists in the real world, an obvious next step for this work would be to develop 

the fire-vegetation interaction with 9 PFTs within JULES, and to conduct further 

research around how the mortality rate and combustion completeness should be 

represented within each PFT. Further work after that might focus on the 

representation of land-use, including suppression of fire in managed land, and 

potentially a new way of representing ignition from deforested areas rather than 

based on population which would be of particular importance in areas like the 

Amazon.  

Work is now ongoing in other projects to couple INFERNO to atmospheric 

chemistry, which is an important step in developing a fully interactive 

biogeochemistry model including modelled lighting input and interactive 

emissions. Future work to combine the emissions coupling with the 

biogeophysical interactions developed in this PhD will enable us to implement 

INFERNO within a full Earth System Model such as UKESM further along the 

line.  

This PhD has focused primarily on changes to fire as a result of climate change, 

and the interaction of these changes with historical and projected land-use 

change. Early simulations with the coupled model showed that the model was not 

sensitive to ignitions, and therefore for the purposes of the development of the 
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model with vegetation mortality the focus was on fire-vegetation interactions with 

constant ignitions. For future simulations as well the focus has been on a 

changing climate and land-use across Brazil and South America, and to isolate 

these impacts further uncertainty around population and lightning were not 

included. Further work could assess how projected changes population and 

lightning might affect ignitions in the future and if this has any significant impact 

on the simulation of burnt area. Future work could also evaluate other significant 

drought events outside of the 2015/16 El Niño assessed here, such as the 2005 

and 2010 droughts which impacted Brazil.  

Although the FFDI is a useful indicator of how fire danger may change in the 

future at 1.5°C compared to 2.0°C, it lacks vegetation interactions, fuel input and 

ignitions which are now available within JULES-INFERNO. To develop this work 

further the SRM experiment in Chapter 6 could be repeated to include these 

factors. The two regions showing higher fire danger at 1.5°C comprise crop and 

grass lands, which in the current model set up are treated as the same and 

allowed to burn. If croplands were excluded from burning this may have an impact 

on the results and reduce burned area in these areas. 

Finally another known issue with the INFERNO model is around the lack of 

representation of peat burning. As yet there is no representation of peat in the 

JULES model, yet this is an important soil type for the spread of fire and for the 

resultant emissions from its burning; as the prolific Indonesian fires of 1997-98 

and the more recent UK moorland fires in summer 2018 have shown, these 

smouldering underground fires are difficult to manage and result in extensive 

damage. Further work could be to develop peat within JULES and couple this to 

INFERNO to improve the representation of these fire types.   

7.3 Wider implications of this work 

It was show in the last IPCC report at AR5 that models are still at the early stages 

of development with processes such as fire and land-use, and in particular few 

Earth System Models are capable of representing these interactions fully. The 

development of capability for biogeophysical interactions here within a land 

surface model lays the foundations for these processes to be implemented within 

a fully coupled ESM in the future. This will enable improved understanding of how 
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the Earth system and carbon cycle responds today to carbon emissions and 

uptake, and will help improve projections of future changes. There is currently a 

large uncertainty around exactly how much carbon is stored in the Earth system 

through atmosphere, land and ocean sinks, and by improving our ability to model 

more processes we can improve our understanding of how carbon has been 

absorbed historically and how this may change in the future, as well as supporting 

land and fire management practises.  

We are not yet sure how forests will respond in the future to a changing climate, 

increases in CO2, how precipitation and nutrient availability will change, and how 

these factors interact with fire and land-use. Will forests such as the Amazon 

continue to take up carbon and act as an important global sink with CO2 

fertilisation stimulating additional growth, or will factors such as increasing fire, 

drought, dry season length, deforestation and nutrient limitation act to increase 

death and respiration, tipping the forest into a source of carbon to become a 

positive feedback of climate warming?  

An improved understanding of the Earth system now and in the future means we 

can better inform and support the development of climate policies around 

mitigation and adaptation to a changing climate. Ultimately this ensures our 

society can maintain resilience to future challenges, and enables us to take action 

against further change, ensuring the future survival and diversity of our global 

ecosystems.  
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Appendices 

Appendix 1: Fire and drought indices 

The Met Office Fire Severity Index (FSI) is an assessment of how severe a fire 

could become if started, based on information such as wind speed, 

temperature, time of year and rainfall 

(http://www.metoffice.gov.uk/public/weather/fire-severity-index/#?tab=map). 

This is measured on a scale of 1-5 (1 = low severity, 5 = exceptional fire 

severity). More common, is a fire danger index which gives an indication on the 

risk of a fire starting in a certain location, as outlined in section 1.4.  

 

Drought indices are used as sub-models in the McArthur Forest Fire Danger 

Index (FFDI) and the Canadian Fire Weather Index (FWI) to give more context to 

the calculations with the aim of making them more realistic to current conditions. 

The examples below for some of these drought indices are based on information 

from Mantzavelas et al. (2006). The FWI includes three drought induces as part 

of the risk calculation: 

Fine Fuel Moisture Code (FFMC)  

Represents the moisture level in the top of litter layer, 1.2cm deep, which gives 

an indication of the ease of ignition from 0 (high moisture, low flammability) to 

100 (dry fuel, high flammability). It is calculated from rainfall, relative humidity, 

wind speed and temperature.  

Duff Moisture Code (DMC)  

Represents the moisture level in the deep litter layer, 7cm deep. Higher values = 

dry litter and high fire danger/spread. It is calculated from rainfall, relative humidity 

and temperature.  

Drought Code (DC)  

Represents the moisture level in the deep compact organic matter layer, 18cm 

below the DMC layer. It gives an indication of the smouldering potential and of 

seasonal drought. It is calculated from rainfall and temperature data.  

http://www.metoffice.gov.uk/public/weather/fire-severity-index/#?tab=map
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The FFDI uses the Keetch-Byram drought index as part of the risk calculation: 

Keetch-Byram drought index (KBDI) 

Represents a cumulative estimate of moisture deficiency in the upper soil and 

surface litter layers, specifically designed for use in fire-risk calculations. It is 

calculated from maximum daily temperature, total daily precipitation and average 

annual precipitation. It can be calculated in a number of ways; as outlined by 

Noble et al. (1980) and shown in section 1.4 of this thesis, or alternatively as 

outlined by Mantzavelas et al. (2006) as follows: 

KBDIt = KBDIt-1 + DF (Drought factor) 

while: 

 [800-KBDIt-1] [0.968 exp(0.0875T+1.5552)-8.30] dt 

DF =----------------------------------------------------------------x 10-3 

 1 + 10.88 exp(-0.001736R) 

Where: 

 

T = daily maximum temperature (oC) 

R = mean annual rainfall (mm) 

Dt = is the time increment (days) 

KBDIt-1 = Keetch-Byram Drought index for time t-1 

 

The KBDI can also be used as a stand-alone index to measure the effects of 

seasonal drought on fire potential. 
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Table A1.1: Description of moisture conditions and fire potential for relative KBDI 

KBDI range General description Forest fire potential 

0-150 Upper soil and surface litter are wet Fire potential is 
minimal 

150-300 Upper soil and surface litter are moist 
and on not contribute to fire intensity 

Fire behaviour is 
predictable 

300-500 Upper soil and surface litter are dry and 
may contribute to fire intensity 

Fire behaviour is 
somewhat 
predictable 

500-700 Upper soil and surface litter are very 
dry. Surface litter and organic soil 
material contribute to fire intensity 

Fire suppression is a 
significant 

undertaking 

700-800 Upper soil and surface litter are 
extremely dry. Live understory 
vegetation  burns actively and 

contributes to fire potential 

Fire behaviour is 
unpredictable 

 

Sharples Fuel Moisture Index (FMI) (Sharples et al., 2009) 

The FMI gives an estimate of moisture content of eucalypt litter which has been 

used as an input to measuring fire potential in southeast Australia. Compared 

against the more complex FFDI, it gives a remarkably accurate projection for fire 

danger in this region. The simple index uses the following calculation: 

𝑭𝑴𝑰 = 𝟏𝟎 − 𝟎. 𝟐𝟓(𝑻 − 𝑯) 

Where: 

T = Temperature (°C) 

H = Relative humidity (%) 

 

This can be combined with wind speed (U) and drought factor (D) to give a fire 

danger index that incorporates the effects of variable fuel availability:  

 

𝑭𝑫 = 𝑫
𝐦𝐚𝐱 (𝑼𝟎, 𝑼)

𝑭𝑴𝑰
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Appendix 2: Emission scenarios 

The first emission scenarios were released in 1990 (‘SA90’) which were used in 

the Global Climate Models (GCMs) for the First Assessment Report (AR1). The 

following table shows the development of scenarios over time with each 

successive assessment report.  

 

Table A2.1: History of emission scenarios 
(Source: https://www.sei-international.org/mediamanager/documents/A-guide-to-
RCPs.pdf ) 

Year Name Used in 

 

1990 SA90 First Assessment Report 

1992  IS92 Second Assessment Report 

2000 SRES - Special Report on 

Emissions and Scenarios  

Third and Fourth Assessment 

Report 

2009 RCP – Representative 

Concentration Pathways 

Fifth Assessment Report 

 

The SRES scenarios, released in 2000 (Nakicenovic and Swart, 2000), consist 

of 40 different future pathways, spanning the wide range of uncertainty in future 

emissions, demographic, social, economic, and technological changes (Figure 

A2.1). 

 

Figure A2.1: SRES scenarios of emissions over time.  

https://www.sei-international.org/mediamanager/documents/A-guide-to-RCPs.pdf
https://www.sei-international.org/mediamanager/documents/A-guide-to-RCPs.pdf
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Source: https://www.ipcc.ch/pdf/special-reports/spm/sres-en.pdf 
 

However the SRES scenarios avoided including any mitigation policy options for 

reducing greenhouse gases in the future, so in 2005 the IPCC updated these 

scenarios and developed what we use in climate modelling today, the 

Representative Concentration Pathways (RCPs). The RCPs are a consistent set 

of projections that only use the components of radiative forcing and do not include 

the direct impacts of land-use (albedo) or the forcing of mineral dust. They have 

been generated from four Integrated Assessment Models (IAMs), and selected 

from over 300 scenarios of future GHG emissions (Figure A2.2); the data 

provided for the scenarios is extensive, and has undergone several procedures 

to assure quality and consistency, to harmonize regional base year emissions to 

recent inventories, and to downscale the projections to 0.5 x 0.5 degree.   

 

Figure A2.2: RCP radiative forcing and CO2 emissions 
Source: van Ypersele (2010) 
 
 

The RCP scenarios are space and time dependent trajectories for concentrations 

of the full  suite  of  GHGs and  chemically  active  gases,  as  well  as  land -use 

and land cover (Moss et al., 2010). The scenarios are developed around the 

assumption that increased population levels do not necessarily imply increased 

fossil fuel consumption as renewable sources could be introduced, so rather than 

prescribing economic development, as was the case in the SRES scenarios, it is 

possible with the RCPs to pick a pathway that is compatible with 2°C of warming. 

Another key difference is that the RCPs are spatially explicit and provide 

information on a global grid at a resolution of approximately 60 kilometres. This 

https://www.ipcc.ch/pdf/special-reports/spm/sres-en.pdf
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gives the spatial and temporal information about the location of various emissions 

and land-use changes. This is an important improvement as the location of some 

emissions affects their warming potential. The RCP scenarios are defined by their 

total radiative forcing pathway and level by the year 2100, where radiative forcing 

refers to the total energy in the system resulting from GHG concentrations and 

other forcing agents from all sources, measured in Watts per square meter33, i.e. 

from 2.6 W/m2 (RCP2.6) to 8.5 W/m2 (RCP8.5). They are based primarily on 

atmospheric concentrations of GHGs, which can then be used in coupled carbon-

cycle models to calculate emission levels associated with each level of radiative 

forcing. For each scenario, the level of CO2 varies, along with levels of aerosols, 

and land-use change. Below is a detailed overview of the assumptions that make 

up each of the four RCP scenarios (from Settele et al., 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                            
33 IPCC RCP overview: http://sedac.ipcc-data.org/ddc/ar5_scenario_process/RCPs.html 
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Table A2.2: Detailed overview of the assumptions that make up each of the four RCP scenarios (from Settele et al., 2014) 
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Appendix 3: Regrowth in TRIFFID 

Table A3.1. Summary of terms used in Chapter 3 

 

Variable Symbol Unit Source of 

variable 

Combustion completeness μ  Parameter 

Competition term cij  TRIFFID 

Crop indicator 𝑎𝑖  Parameter 

Disturbed fraction 𝛼 Fraction of 

land surface 

Input Map 

Fire disturbance βi yr-1 INFERNO 

Fraction of NPP allocated to PFT 

area expansion 

λ  Parameter 

Fractional coverage v Fraction of 

land surface 

TRIFFID 

Large scale disturbance γv yr -1 Parameter 

Litterfall rate without fire or land-

use change 

Λc kg C m-2 yr-1 TRIFFID 

Local litterfall rate Λl kg C m-2 yr-1 TRIFFID 

NPP per unit of vegetated area Π kg C m-2 yr-1 JULES 

PFT indices (i refers to dominant, j 

refers to sub-dominant vegetation 

types) 

i, j   

Soil carbon in soil pool k Ck kg C m-2 TRIFFID 

Soil flux fs kg C m-2 yr-1 INFERNO 

Vegetation carbon density Cv kg C m-2 TRIFFID 

Vegetation carbon loss due to fire ΛFire kg C m-2 yr-1 TRIFFID 

Vegetation carbon loss due to 

land-use change 

ΛLUC kg C m-2 yr-1 TRIFFID 

Vegetation carbon loss due to 

litter, fire and land-use change 

ΛCvLoss kg C m-2 yr-1 TRIFFID 
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The following table had been reproduced from an unpublished study by Rebecca Oliver and Chris Jones assessing the recovery timescales 

of vegetation in JULES following the effects of land disturbance (agricultural abandonment). Three sites were used in the study: Harvard, 

USA, temperate forest; Hyytiala, Finland, boreal forest; and Manaus, Brazil, tropical forest. Following a period of spin-up, each simulation 

was run for approximately 1000 years, allowing for a 50 year period of disturbance, followed by 950 years of recovery from disturbance. 

Table A3.2. Vegetation recovery in JULES. 
Comparison of regional values associated with changes in carbon in vegetation and soil due to clearing of natural ecosystems for croplands from Houghton 
and Hackler (2001) with values simulated by JULES model with a 50 year period of imposed clearing for agriculture followed by abandonment. Values from 
Houghton and Hackler (2001) can be found at http://cdiac.ornl.gov/epubs/ndp/ndp050/ndp050appC.html 
*Temperate deciduous forest (North America, China, Europe, Pacific Developed Region and North Africa and the Middle East clearing response curve from 
Houghton and Hackler (2001)). 
** Boreal forest (North America, China, Europe, Pacific Developed Region and North Africa and the Middle East clearing response curve from Houghton 
and Hackler (2001)). 
*** Tropical equatorial forest (South and Central America clearing response curve). 
Reproduced with permission from R. Oliver and C. Jones, from their Table 2. 

  Harvard* Hyytiala** Manaus*** 

  JULES Houghton JULES Houghton JULES Houghton 

C in undisturbed veg. (Mg C/ha) 95.71 135.00 84.30 90.00 61.59 200.00 

C in crops (Mg C/ha) 2.22 5.00 2.07 5.00 4.04 5.00 

C in undisturbed soil (Mg C/ha) 161.00 134.00 233.69 206.00 53.16 98.00 

Minimum soil C (Mg C/ha) 148.75 101.00 216.77 155.00 45.97 74.00 

Recovery time vegetation (years) 749 50 950 50 +954 40 

Time to min. soil C (years) 5 30 6 50 2 20 

Recovery time soil from min. (years) +1039 40 +994 35 +1002 40 

http://cdiac.ornl.gov/epubs/ndp/ndp050/ndp050appC.html


Appendix 4: El Niño 

Annual cycle of burned area and precipitation, 2015 

 JULES burned area      GFED burned area     JULES precipitation       

January    

February     

March            

April            
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JULES burned area      GFED burned area     JULES precipitation       

May          

June           

July              

Aug                  (cont.) 

 

 

Figure A4.1: Modelled and observed burned area by month, with rainfall data 
Left column: Monthly total burned area as modelled by JULES-INFERNO (fraction of 
gridbox). Centre column: Monthly total burned area from GFED observations (fraction of 
gridbox). Right column: Monthly total precipitation modelled by JULES (mm), all for South 
America  
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JULES burned area      GFED burned area     JULES precipitation       

Sept                  

Oct               

 Nov        

Dec        

           

 

 
Figure A4.1: Modelled and observed burned area by month, with rainfall data 
Left column: Monthly total burned area as modelled by JULES-INFERNO (fraction of 
gridbox). Centre column: Monthly total burned area from GFED observations (fraction of 
gridbox). Right column: Monthly total precipitation modelled by JULES (mm), all for South 
America  
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(cont.) 
Figure A4.2: Global burned area by month 
Left column: Monthly total burned area as modelled by JULES-INFERNO (fraction of 
gridbox). Right column: Monthly total burned area from GFED observations (fraction of 
gridbox).  



312 
 

 

 

Figure A4.2: Global burned area by month 
Left column: Monthly total burned area as modelled by JULES-INFERNO (fraction of 
gridbox). Right column: Monthly total burned area from GFED observations (fraction of 
gridbox).  
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Figure A4.3: GFED Global burned area by year 
GFED total burned area (fraction) from July to June, 2009 – 2016 and including 1997-1998 
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Figure A4.4: Modelled and observed global burned area  
Mean annual burned area 2010-2015 (fraciton of gridbox), as modelled by JULES-INFERNO 
(left) and GFED4.1s observations (right), showing low fractions of burnt area 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A4.5: JULES burned area and INPE data 
Top left: Number of fire counts in Brazil from the maximum, average and minimum values 
by month, in the period from 1998 to 03/08/2018 (blue line shows current year 2018). Top 
right: burnt area as projected by JULES by month for 2015. Bottom left: historical series 
of the total number of active fires detected by satellite, in the period from 1998 to 
24/05/2018. Bottom right: burnt area time series as projected JULES-INFERNO, 1998-2016. 
INPE data is avilable from their fire moniroting programme website34 

                                            
34 INPE fire data: http://www.inpe.br/queimadas/portal 

http://www.inpe.br/queimadas/portal


 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure A4.6: Modelled and observed burned area and precipitation  
Top row shows January, bottom row shows September data. Left to right plots show: precipitation from JULES (mm), precipitation from INPE (mm),  burned 
area from  JULES (gridbox fraction), GFED (gridbox fraction),  fire counts from INPE28. All for year 2015
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Figure A4.7: Hovmöller temperature plots with El Niño 
Hovmöller plots showing difference in temperature (°C) with El Niño (left) and without the 
El Niño (right) 2015-2017  

 

 

Figure A4.8: Hovmöller precipitation plots with El Niño 
Hovmöller plots showing difference in precipitation (mm) with El Niño (left) and without 
the El Niño (right) 2015-2017  
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Figure A4.9: Hovmöller burned area plots with El Niño 
Hovmöller plots showing difference in burnt area fraction with El Niño (left) and without 
the El Niño (right) 2015-2016  
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a  

b  

Figure A4.10: Global total burned area 2005-2016 
Global total burnt area (Mkm2) as modelled by JULES-INFERNO (a), and from GFED4.1s 
observations (b) for 2005-2016 and including previous large El Niño year 1997-1998  (as 
per Figure 3.35, covering additional years 2005-2010) 
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a  

b  

Figure A4.11: South America total burned area 2010-2016 
Total burnt area across South America (Mkm2) as modelled by JULES-INFERNO (a), and 
from GFED4.1s observations (b) for 2010-2016 and including previous large El Niño year 
1997-1998 (as per Figure 3.35, for South America) 
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a  

b  

Figure A4.12: Global fire emissions 2010-2016 
Global total carbon emissions from fire (PgC) as modelled by JULES-INFERNO (a), and 
from GFED4.1s observations (b) for 2005-2016 and including previous large El Niño year 
1997-1998   
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Figure A4.13: Outline of region for Chapter 4 
Outline of regions for Africa, Asia and South America as used in Chapter 4 analysis 
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Appendix 5: Future fire danger 

The HadGEM2-ES ensemble members used to drive JULES in each experiment 
in Chapter 5 were as follows: 

RCP2.6: kaadc 
RCP4.5: kaadd 
RCP8.5: kaadf 

 

Figure A5.1: Change in humidity at 1.5°C, RCP2.6 
(see Figure 5.18 for full figure) 
 

 
Figure A5.2: Specific warming levels of humidity 
Humidity (change from present day, kg/m2) at 1.5 (top row), 2.0 (centre row) and 4.0°C 
(bottom row) for each RCP scenario RCP2.6 (left column), RCP4.5 (centre column) and 
RCP8.5 (right column) 
(see Figure 5.18 for percentage change) 
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Figure A5.3: Hovmöller plot showing burnt area 2090-2099, RCP2.6 

 

Figure A5.4: Hovmöller plot showing burnt area 2090-2099, RCP8.5 
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Figure A5.5 Future McArthur FFDI, varying soil moisture  
As modelled by JULES with varying soil moisture 1970-1999 (a), 2070-2099 RCP2.6 (b), 
change in burnt area 1970-1999 to 2070-2099 RCP2.6 (c), 2070-2099 RCP8.5 (d), change in 
burnt area 1970-1999 to 2070-2099 RCP8.5 (e)  
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Figure A5.6: Future McArthur FFDI, constant soil moisture 
As modelled by JULES with constant soil moisture (120mm) 1970-1999 (a), 2070-2099 
RCP2.6 (b), change in burnt area 1970-1999 to 2070-2099 RCP2.6 (c), 2070-2099 RCP8.5 (d), 
change in burnt area 1970-1999 to 2070-2099 RCP8.5 (e)  
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Glossary 

AMAZALERT EU-funded research project that ran from 2011-2014, 

focused on the impacts of climate change and LUC in 

Amazonia. It comprised 14 partners from 6 EU countries and 

3 South-American countries, including the Met Office in the 

UK, and INPE in Brazil. 

Biogeochemical  Natural chemical processes relating to the Earth’s biotic 

(biosphere) and abiotic (lithosphere, atmosphere, 

hydrosphere) environment (i.e. carbon, oxygen, nitrogen, 

phosphorus, sulphur, and water). 

Biogeophysical  Natural biological processes relating to the Earth’s geological 

and physical processes (i.e., plant and animal species, 

ecological interactions, biotic productivity; rock types, soil 

types, geomorphic history, sedimentation, erosion; heat, 

light, electrical, gravitational) (Schwartz, 1976). 

C3 grass Uses a basic process of capturing carbon using a 3-carbon 

molecule. Adapted to cool seasonal growth, with greater 

tolerance to frost, requiring less light and more moisture than 

C4 grass. Productivity is lower than C4.  

C4 grass Uses a more evolved process for capturing carbon, 

developed in the wet and dry tropics which uses a 4-carbon 

molecule. Adapted to warm / hot seasonal growth.  

Diagnostic  A set-up mode within the model that does not affect any other 

variable or calculation, for example ‘diagnostic burnt area’ is 

a calculation of which areas would burn given certain 

meteorological conditions and given enough fuel and 

ignitions, but this does not affect the vegetation, atmosphere,  

climate or any other aspects of the Earth system. 

Disturbance Used in this thesis to refer to processes including land-use 

change, fire, deforestation and degradation that can impact 

vegetation cover. 
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Fire intensity Measured by the amount of energy that is released through 

combustion during a fire event. 

Fire severity Measured by the amount of matter lost as a result of a fire 

event. 

Risk A combination of a hazard (an event e.g. fire) x exposure 

(whether people will be affected) x vulnerability (conditions 

that affect the impact such as early warning systems and 

infrastructure resilience) 

Tipping element Refers to a large-scale (subcontinental or larger) component 

of the Earth system that may induce a mass tipping point or 

abrupt change (Lenton et al., 2008). A critical threshold 

where a small perturbation can rapidly and qualitatively alter 

the state and dynamics of the system, producing large-scale 

and long-term consequences on human and ecological 

systems which persist even if the drivers of the change are 

abated (Settele et al., 2014). 

TRENDY  A project comprising an international consortium of Dynamic 

Global Vegetation Model (DGVM) groups / land surface 

models aimed at investigating changes in land carbon 

exchange over the historical period. 

MIP  Model Intercomparison Project. A range of projects focused 

on specific areas of research. Each MIP comprises a 

consortium of models that perform factorial experiments that 

can be compared against one another, and / or to 

observations where available, and can be used to create a 

range of uncertainty in particular areas. 
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https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks/el-nino-la-nina/enso-impacts
http://modis-fire.umd.edu/index.php
https://earthobservatory.nasa.gov/Features/AmazonFire/amazon_fire2.php
https://www.nasa.gov/press-release/nasa-examines-global-impacts-of-the-2015-el-ni-o
https://www.nasa.gov/press-release/nasa-examines-global-impacts-of-the-2015-el-ni-o
http://sedac.ciesin.columbia.edu/data/set/nagdc-population-landscape-climate-estimates-v3/maps?facets=region:africa
http://sedac.ciesin.columbia.edu/data/set/nagdc-population-landscape-climate-estimates-v3/maps?facets=region:africa
http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes
https://www.arcgis.com/home/item.html?id=4160f715e12d46a98c989bdbe7e5f4d6
https://www.arcgis.com/home/item.html?id=4160f715e12d46a98c989bdbe7e5f4d6
http://cera-www.dkrz.de/WDCC/ui/Entry.jsp?acronym=RECON_LAND_COVER_800-1992
http://cera-www.dkrz.de/WDCC/ui/Entry.jsp?acronym=RECON_LAND_COVER_800-1992
http://plataforma.seeg.eco.br/map
http://www.exmoor-nationalpark.gov.uk/living-and-working/info-for-farmers-and-land-managers/swaling
http://www.exmoor-nationalpark.gov.uk/living-and-working/info-for-farmers-and-land-managers/swaling
http://dgvm.ceh.ac.uk/
https://ukesm.ac.uk/
https://www.census.gov/topics/preparedness/events/wildfires/2017-ca-wildfires.html
https://www.census.gov/topics/preparedness/events/wildfires/2017-ca-wildfires.html
http://newsinfo.inquirer.net/148611/wildfires-kill-339000-people-per-year-study
http://newsinfo.inquirer.net/148611/wildfires-kill-339000-people-per-year-study
https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
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Data availability 

The JULES code used in these experiments is freely available on the JULES 

trunk from version 4.8 (revision 6925) onwards. Driving data for JULES comprises 

short and longwave radiation, precipitation, air temperature, air specific humidity, 

wind, and air pressure.  

The rose suite used for the experiments in Chapter 3 is u-ap845, using JULES at 

Vn4.9 r9986. The set up uses a configuration of JULES based on JULES-

TRENDY with the addition of fire, driven with CRU-NCEP data, HYDE land-use, 

Brooks and Corey soil hydraulics, at N96 resolution (140km grid size / 2 degrees 

resolution).  

The rose suite used for the experiments in Chapter 4 is u-an205, using JULES at 

Vn4.9 r9522. As above, the set up uses a configuration of JULES based on 

JULES-TRENDY with the addition of fire, using HYDE land-use data, Brooks and 

Corey soil hydraulics, at N96 resolution (140km grid size / 2 degrees resolution). 

This experiment uses driving data based on CRU-NCEP, but modified as 

described in the Methods section of the Chapter to simulate an additional ‘No El 

Niño’ state using a mean climatology from the previous 10 years for 2015/2016. 

The rose suite used for the experiments in Chapter 5 is u-as280, using JULES at 

Vn4.9 r9986. As above, the set up uses a configuration of JULES based on 

JULES-TRENDY with the addition of fire, using Brooks and Corey soil hydraulics, 

at N96 resolution (140km grid size / 2 degrees resolution). This experiment uses 

driving data from HadGEM2-ES, which uses the land surface scheme MOSES2, 

which is approximately comparable to the JULES-C configuration, including 

dynamic vegetation. The future scenarios use the RCPs for CO2 concentration 

and land-use change for RCP2.6, RCP4.5 and RCP8.5.  

Chapter 6 uses data from HadGEM2-ES, with an additional SRM scenario using 

SO2 aerosol injection to limit future temperature rise to 1.5°C above pre-industrial 

levels, as described in the chapter. The model output was then used to compute 

the McArthur FFDI and Angström Indices. The fire index data is available through 

BADC at: 
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McArthur FFDI: 

http://dx.doi.org/10.5285/70ac55eb85344c3bb2239ed2d7b7575d 

Angström Index: 

http://dx.doi.org/10.5285/75a7e567fe2342a493663a7a085d015e   

All JULES suites and code are available on the JULES FCM repository: 

https://code.metoffice.gov.uk/trac/jules (registration required). 
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