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Abstract

Network models of healthcare systems can be used to examine how providers collaborate,

communicate, refer patients to each other, and to map how patients traverse the network of

providers. Most healthcare service network models have been constructed from patient

claims data, using billing claims to link a patient with a specific provider in time. The data

sets can be quite large (106–108 individual claims per year), making standard methods for

network construction computationally challenging and thus requiring the use of alternate

construction algorithms. While these alternate methods have seen increasing use in gener-

ating healthcare networks, there is little to no literature comparing the differences in the

structural properties of the generated networks, which as we demonstrate, can be dramati-

cally different. To address this issue, we compared the properties of healthcare networks

constructed using different algorithms from 2013 Medicare Part B outpatient claims data.

Three different algorithms were compared: binning, sliding frame, and trace-route. Unipar-

tite networks linking either providers or healthcare organizations by shared patients were

built using each method. We find that each algorithm produced networks with substantially

different topological properties, as reflected by numbers of edges, network density, assorta-

tivity, clustering coefficients and other structural measures. Provider networks adhered to a

power law, while organization networks were best fit by a power law with exponential cutoff.

Censoring networks to exclude edges with less than 11 shared patients, a common de-iden-

tification practice for healthcare network data, markedly reduced edge numbers and network

density, and greatly altered measures of vertex prominence such as the betweenness cen-

trality. Data analysis identified patterns in the distance patients travel between network pro-

viders, and a striking set of teaming relationships between providers in the Northeast United

States and Florida, likely due to seasonal residence patterns of Medicare beneficiaries. We

conclude that the choice of network construction algorithm is critical for healthcare network
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analysis, and discuss the implications of our findings for selecting the algorithm best suited

to the type of analysis to be performed.

Introduction

Network science can provide key insights into healthcare systems including patient referral

patterns [1–12], provider communities associated with better healthcare outcomes, or specific

drug prescribing patterns [13–15]. Network analysis is particularly useful for studying health-

care delivery by organizations (e.g. private practice groups and hospital networks) and provid-

ers (physicians, nurse practitioners, physical therapists, etc.). The research questions suited to

network science methods typically fall into three categories: 1) network topology; 2) patient

flow; and 3) provider clustering. Network topology questions include investigations of network

structure and properties, such as the effect of the rules and constraints under which provider

teams organize (i.e. referral bias, geographic proximity, insurance network restrictions)[16] or

identifying providers with high levels of influence. In contrast, questions about network flow

address patterns of patient movement, network capacity and dynamic instability (e.g. how

influenza epidemics or hospital closures affect network capacity). Provider clustering can iden-

tify highly collaborative groups of providers associated with specific patient outcomes. Such

work is crucial for identifying provider groups (e.g. communities, k-cliques or k-clans) with

good outcomes for patients with complex conditions, such as cancer, heart failure or kidney

disease [17–19].

All of these inquiries start by building a healthcare network model, with vertices represent-

ing providers or healthcare organizations, linked by edges representing the strength of the

connection, generally the number of shared patients [1, 8, 11, 20]. Several types of network

construction algorithms exist, each with specific applications. For example, matrix algebra

methods are often used to construct social networks from moderate sized data sets, such as a

provider-provider network [11]. In contrast, trace-route mapping algorithms are used to cre-

ate network representations for the study of network flow (e.g. digital information, transporta-

tion, supply chains). These types of methods have been used to map the flow of information

across the internet [21–23], through social networks [24–26], and metabolite flow in bacterial

biochemical pathways [27]. However, studies of the strengths and weakness of different algo-

rithms that might be used to construct healthcare networks are lacking in the literature.

The most basic algorithmic method of healthcare network construction is to find all the

instances where a specific provider xi sees a patient yi at least once, create a large patient-by-

provider table, and then transform it into a provider-provider network (PPN) with each vertex

representing a provider and each weighted edge representing the number of shared patients

between the two providers. This network construction method uses no temporal information

about the direction of the provider-patient visits, but simply specifies the volume of shared

patients over the sampling period. The resulting networks are well suited to identify provider

teams or links between healthcare organizations, organization-organization networks (OON),

that share large numbers of patients. In contrast, study of patient flow between providers

requires building a network representation that captures the sequence of patient visits to pro-

viders, using algorithms that build networks based on the temporal ordering of provider visits.

For example, adding up all of the visits where a patient goes from provider Pi! Pj, with the

time of the visits such that ti� tj and doing this for all providers in a data set, yields such a flow

network that describes how patients move through the healthcare provider network, and how
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they are linked. One such method (the sliding frame algorithm (see Methods section) has been

used by the United States Center for Medicare Services to construct the annual United States

Medicare Physician Referral Datasets [28–31], and to determine referral volumes from general

practitioners to specialists [16, 32, 33].

Crucial to healthcare network analysis is selecting a network construction algorithm appro-

priate for the analytic goal, and understanding how the algorithm affects the results obtained

from analysis. Despite the increasing use of network models to improve healthcare delivery

and outcomes [1, 4, 5, 11, 12, 34–36], rigorous published reports comparing the properties of

networks constructed with different algorithms are lacking. There is also little guidance

addressing the choice algorithms for different types of analyses. Different methods are likely to

result in networks with incongruent elements (e.g. numbers of vertices and edges), topology,

and properties (e.g. vertex degree and centrality distributions, edge weights, communities

identified). In addition, the relationship between network topology and meaning is complex

and tightly linked. For example, do edges represent referrals, the act of a sending a patient to a

provider for a specific consultation? What algorithms create networks best suited to identify

teaming, the grouping of providers that share many common patients and collaborate on their

care? Thus, the choice of network construction algorithm may have significant implications

for network properties and inferred meaning of network topology.

The choice of network construction algorithm is also affected by the size of the data set and

the computational complexity and memory required for the calculations [24, 37]. Healthcare

networks are generally constructed from data with a simple data structure, each record con-

taining the date, the provider’s unique identifier, type of event (e.g. visit, admission, lab test),

and the organization of which the provider is a member (e.g. practice group, healthcare sys-

tem). This data can then be linked to provider and patient demographic features and out-

comes. The 100% sample Medicare Part B annual data sets contain *150–200 million

individual claims from 800,000 providers for *25–40 million patients, giving *2.0 × 1013

data elements. This makes in-memory storage difficult, and network construction by conven-

tional matrix dot product calculations computationally expensive [38, 39]. Algorithmic

approaches, however, can provide an efficient and parallelizable implementation of network

construction.

Motivated by these issues, we characterize the consequences of choosing particular net-

work-generating algorithms on the study of healthcare delivery networks. In the following

manuscript, we compare the network topology and properties of Medicare PPN and OON

constructed from the same primary data set using three different algorithms, and discuss the

implications of each method for healthcare network analysis.

Materials and methods

Human subjects protection

Research data were coded such that patients could not be identified directly, in compliance

with the Department of Health and Human Services Regulations for the Protection of Human

Subjects (45 CFR 46.101(b) (4)). The analysis presented here is compliant with Center for Medi-

care Services (CMS) current cell size suppression policy as well as all data exclusivity require-

ments contained in the CMS Limited Data Set Data Use Agreement. This project was approved

by the University of Rochester Institutional Review Board under the “exempt” category.

Data sources

Network construction algorithms were initially developed in PERL 5.22.1 using the CMS

2008-2010 Data Entrepreneurs’ Center for Medicare Services Outpatient Claims DE-SynPUF
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(DE-SynPUF) [40]. This file contains institutional outpatient annual claim information for a

5% sample of Medicare members’ outpatient Part B claims (i.e. 5% of all claims randomly sam-

pled) spanning from 2008 to 2010. Each of the 15.8 million records in the DE-SynPUF file is a

synthetic outpatient claim. The DE-SynPUF dataset is publicly available for developers to test

algorithms [40].

After development, the algorithms were tested and validated on the 2013 Medicare Outpa-

tient Claims 100% Limited Data Set (LDS) obtained from the Center for Medicare Services

Research Assistance Data Center (ResDAC) [41]. These combined files contain over 160 mil-

lion Medicare fee-for-service claims data submitted by all organization and individual outpa-

tient healthcare service providers between January 1, 2013 through December 31, 2014, along

with a unique claim identifier number, dates of service, and unique National Provider Identi-

fier numbers (NPIs). All claims were included, as we wanted the analyses to be as close to the

CMS criteria used for network construction, which can be found here: http://downloads.cms.

gov/foia/physician_shared_patient_patterns_technical_requirements.pdf.

Provider information was abstracted from the National Plan and Provider Enumeration

System (NPPES) data file [42] This file contains identifier information for all current and past

United States licensed healthcare provider and organizations, each linked to a unique NPI

number, and associated provider locations, demographics, and medical specialty information.

We used the version from August, 2015, containing 4,763,891 NPI numbers of both organiza-

tions and individual providers. All NPI numbers were checked for validity using the Luhn

algorithm [43]. Provider locations matched to a geo-coded NPPES downloadable file from

July, 2014 by the North American Association of Central Cancer Registries (NAACCR) [44].

The file contains 4,180,737 NPI numbers and associated address, of which only 309 are lacking

enough data to accurately geocode, and 179,614 are geocoded only at the zip code centroid

level. Geocoding is to the second decimal point, giving a spatial resolution of 1.1 km (0.88

miles).

Data and algorithm availability. The Center for Medicare Services Outpatient Claims

DE-SynPUF (DE-SynPUF) [40] test set is publicly available from the CMS web site. The full

2013 Medicare Part B Limited Data Set for Medicare claims can be obtained from the Center

for Medicare Services. This data is bound by a privacy and limited distribution agreement, as

well as HIPAA regulations, and thus cannot be made public with this manuscript. However,

the files can be requested from the Center for Medicare Services by individual investigators

and used to reproduce our findings. Release of the derived networks is also limited by Medi-

care requirements to remove nodes and edges where the total number of shared patients�11.

This restriction is in place to prevent identification of individual patients based on a small

number of visits to a unique combination of geographically identifiable providers [28]. Net-

work construction algorithms are coded in PERL, can be found in S1 File and are released

under a GPL 3.0 license. Censored networks are can be found in S2 File.

Network construction algorithms

We constructed both provider and organization teaming graphs using three different algo-

rithms, which we refer to as: (1) binning; (2) sliding frame; and (3) trace-route methods, adapt-

ing the terminology from Karimi and Holme (2013), who describe such frames in the context

of dynamic networks [45]. The essential features of the algorithms are illustrated in Fig 1, with

the subsequent mathematical description below and associated nomenclature listed in Table 1.

Common algorithm features. All three algorithms selected data with a temporal visit

proximity frame, only counting graph edges if the provider visits were within tvisit� τ days of

each other, where τ is the frame interval. For each method described below, let C be the

Healthcare network construction algorithms
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Fig 1. Edge construction algorithms for healthcare teaming networks. Each vertex represents a

provider, with the index provider vertex in yellow. The collection of providers is for a single patient. (A) The

brackets show how the time frame τ = 30 days is applied to a series of temporally ordered provider visits. The

corresponding graphs show the edges that would be constructed between the provider vertices by each

algorithm for that first iteration: a single directed edge for the trace-route algorithm, a set of directed edges

(e.g. a star graph) for the sliding algorithm, and a complete graph with each vertex connected to all other

Healthcare network construction algorithms

PLOS ONE | https://doi.org/10.1371/journal.pone.0175876 April 20, 2017 5 / 28

https://doi.org/10.1371/journal.pone.0175876


collection of all Medicare claims such that ci(p, v, t) where p is the patient, v is the provider,

and ti the time of the patient visit for i = {1,2,3, ..s} where s is the number of claims. For all

three algorithms, we consider all the claims for each patient pj in the claims set C, where j =

{1,2,3, ..a} and a is the number of individual patients. Each claim records the time of the

patient visit to one provider. Claims are grouped by patient, and then sorted in ascending tem-

poral order. The subsequent steps differ by algorithm, and are described below.

Binning network construction algorithm. The binning algorithm creates non-directed

provider-provider network graphs. It is essentially an algorithmic implementation of the uni-

partite projection of a bipartite adjacency matrix [11, 12], with the potential advantage (for

very large claims data sets) of not requiring in-memory matrix dot products for network crea-

tion. For the binning method, we start with the subsets of claims for each individual patient pj,
where j = {1,2,3, ..a} and a is the number of individual patients. Iterating over each patient, we

consider all the claims in each set and create edges such that:

ejvk$vl if
jtl � tkj � t

vk 6¼ vl

(

ð1Þ

where ti refers to the time ordered instance of a particular claim (i being the identity of the pro-

vider). The total number of edges between vertices is

Evk$vl ¼
Xa

j¼1

ejvk$vl ð2Þ

where ti refers to the time ordered instance of a particular claim (i being the identity of the pro-

vider). For individual patient edge weights within τ, only the first interaction for any given

provider-provider pair and patient pj is counted. For example, if ejvk!vl occurs 4 times within

the frame τ, the weight is only counted once, or succinctly

oj
vk!vl
¼ 1 if ejvk$vl 6¼ 0: ð3Þ

The final edge weights O are calculated in a similar way as in the total edges by summing over

vertices for the binning method. This process is repeated for each patient by shifting the sampling frame

through the ordered visits for each patient. (B) Sampling frame shifting and edge weight construction. How

each algorithm shifts the sampling frame τ through the series of provider visits is shown here, and the degree

of shift for the next interval is shown by the new brackets. Please refer to the text for a discussion of edge

weight calculations.

https://doi.org/10.1371/journal.pone.0175876.g001

Table 1. Nomenclature.

Symbol Definition

vi Vertex (organization or provider) where i refers to identity of vertex type.

ki Degree of vertex i

ejvk!vl Directed edge between vertex vk and vl for patient j ($ when undirected).

Evk ! vl
Edge between vk and vl over all patients.

oj
vk!vl

Edge weight of ejvk!vl
Ωvk ! vl

Edge weight of oj
vk!vl

over all patients

V, E, Ω, P, C Respectively, sets of all vertices, edges, edge weights, patients, and claims

ti Temporal instance of vertex i

τ Censoring time frame interval (days)

https://doi.org/10.1371/journal.pone.0175876.t001
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all patients thus

Ovk$vl
¼
Xa

j¼1

oj
vk$vl ð4Þ

Sliding frame network construction algorithm. Time directed network construction

algorithms are designed to capture information contained in the temporal relationship of pro-

vider visits and used to build directed unipartite graphs. We first describe the sliding frame
algorithm, one algorithm of this class. The sliding frame algorithm is similar to the current

algorithm used to create the publicly available Medicare physician shared patient data sets

available from the Center for Medicare Services website [29, 46].

In this setting, two providers are connected with a directed edge if two claims for visits with

the same patient occur within time τwhen claims are sorted by increasing order of time. That is:

evk!vl if
0 < tl � tk � t

vk 6¼ vl

(

ð5Þ

The requirement for vk 6¼ vl excludes self-looping edges (e.g. sequential visits to the same pro-

vider). Edge weights are assigned as in the binning method described above, can be be weighted

by incidence within the frame such that o
pj
vk!vl is the number of occurrences of evk! vl for patient

pj within all frames τ. The final edge weight Ovk! vl within the entire graph of all patients P is

calculated by

Ovk!vl
¼
Xa

j¼1

o
pj
vk!vl ð6Þ

where a is the number of unique patients in P. If edges are counted more than once for a patient,

O represents the edge weight of shared patients. In contrast, if edges are counted each time they

occur between o
pj
vk!vl , they represent the total number of visits between providers of shared

patients.

We refer to this method as the sliding frame algorithm due to the sequential scanning for

relationships within the frame period τ. Some have proposed that this algorithm structure cap-

tures the urgency of patient “referrals” between providers, for example when τ = 30, where

patients are directed by one provider to receive care from a second provider for an urgent

medical issue [29].

Once the edges are created for each for patient, edge instances are tallied to obtain the over-

all edge weights for the entire network. Claims-weighted edges have the value of the total num-

ber of claims for patients shared by two providers summed over all shared patients. In

contrast, patient-weighted edges are the sum of the number shared patients between two pro-

viders irrespective of the number of claims. The resulting provider-provider network graphs

are weighted and directed.

Trace-route network construction algorithm. The trace-route algorithm is similar to

that used to create a map of the internet, and traces the route of a patient through temporally

sequential provider visits. The edges reflect provider-provider connections by sequential

patient visits, and the edge weights are the rates of patient flow from provider to provider

through the network for the period τ. The edge creation conditions can be specified by:

evk!vl if

( 0 < tl � tk � t

ck and cl are strictly sequential claims
ð7Þ

Healthcare network construction algorithms
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In contrast to other methods, self-loops are permitted such that evk! vk can be counted as an

edge. Self-loop structures are common in strict temporally sequential claims data and reflect

the case where an individual returns for successive visits to the same provider to address an

ongoing condition or follow up after a procedure. Calculation of edge weights is the same as

the sliding frame algorithm as noted above in Eq (4).

Network comparison

Network comparisons were performed using standard network metrics inMathematica 10.4.1
or in Oracle PGX (see below). The definition of most metrics can be found in the excellent

review by Newman [47]. Network metrics used in this manuscript included:

• Component enumeration: We enumerated the total number of vertices and edges within each

network, and the largest connected component (lco) [47]. These correspond to the total

number of unique providers or organizations, and the connections via shared patients

between them.

• Network diameter (d)was calculated using Oracle PGX software with a longest shortest geo-

desic distance between vertices within the largest network component [47, 48]. The geodesic

distance dij between any two vertices (i, j) is defined as the length of the shortest path

between them. The network diameter d is defined as max dij 8 (i, j).

• Network degree assortivity (r) is defined by the degree assortativity coefficient which has the

form:

r ¼
P

ijðAij � kikj=2mÞkikj
2m �

P
ijðkidij � kikj=2mÞkikj

:

Herem is the total number of edges, A is the adjacency matrix encoding the connectivity

structure, ki refers to the degree of vertex i, and δij is the Kronecker delta function [47, 49].

Assortativity is a measure of whether like vertices connect to like vertices (in this case those

with similar degree). This measure (which is formally equivalent to the Pearson correlation

coefficient) lies in the range −1� r� 1, with negative values associated with disassortative

mixing (i.e high degree vertices more often connected to low degree vertices) and positive

values with assortative mixing (i.e. similar degree vertices more often connected to each

other). In many networks (e.g. social networks), vertices tend to be connected to others with

similar degree values [50].

• Network reciprocity (ρ) is defined as the fraction of reciprocal edges over all edges in a

directed graph, where vi! vj and vj! vi constitute a reciprocal pair [51]. In a directed

graph, this provides a measure of how many bidirectional connections there are in a net-

work. A low reciprocity in a directed healthcare network may suggest that patients only flow

in one direction between two healthcare organizations vi! vj, without minimal reciprocal

flow, such as in hospice care referrals for terminally ill patients. In an undirected network,

reciprocity is trivially 1 for all pairs of vertices by definition.

• Global clustering coefficient (C) or transitivity We can quantify the level of transitivity in a

network as follows. If u knows v and v knows w, then we have a path uvw of two edges in the

network. If u also knows w, we say that the path is closed–it forms a loop of length three, or a

triangle, in the network. In the social network jargon, u, v, and w are said to form a closed

triad. We define the clustering coefficient to be the fraction of paths of length two in the net-

work that are closed. That is, we count all paths of length two, and we count how many of

them are closed, and we divide the second number by the first to get a clustering coefficient

Healthcare network construction algorithms
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C that lies in the range from zero to one [47, 52]. A high clustering coefficient in our net-

works can result when most providers are connected to other providers within the network,

for example in a group practice that shares patients between providers.

• Network density (D) is calculated as dm/n(n − 1) where n is the number of vertices,m the

number of edges, and d = 1 if the graph is directed or d = 2 if the graph is undirected [25,

53]. Network density provides a measure of how tightly connected elements of the network

graph are, a ratio expressing the number of actual edges between vertices to the number of

possible edges if the network were a complete graph (e.g. all vertices are connected to all

other vertices). This gives a measure of how interconnected the entire set of healthcare pro-

viders or organizations are. For geographic networks at the city or regional level, network

density may be quite high, but we might expect a low network density for the country as a

whole as vertices based in different cities tend to be sparse. Providers on either cost are not

likely to share many patients and therefore not be connected by edges.

• Largest component size (lco) is the number of vertices in the largest connected graph compo-

nent [47, 54]. Some graphs may have several components (e.g. groups of edges) that are dis-

continuous, containing no common connecting edges. This is a measure of network

fragmentation, for example when the lco is a small fraction of the total vertex count. In highly

connected networks, the lco is the dominant component containing the vast majority of

vertices.

• Betweenness centrality (Cβ) is calculated for an individual vertex vk and is the number of

shortest paths between all pairs of vertices that go through vk[47, 55]. For comparison

between graphs, we also calculate (C0β), which is the normalized betweenness centrality such

that C0β = Cβ(N − 1)(N − 2) for directed networks, and C0β = 2Cβ(N − 1)(N − 2) for undirected

networks. A provider with a high (Cβ) value might be an oncologist, who receives referrals

from many providers, but also refers patients to oncologic surgeons, radiation oncologists,

hospice care, and many other types of providers. If that oncologist leaves the network and is

not replaced, flow of patients from the

High performance and parallel computing environment

Analyses were run on BlueHive2, an IBM parallel cluster located at the Center for Integrated

Research Computing of the University of Rochester. We generally used two compute nodes,

each with 2 Intel Xeon E5-2695 v2 processors with 12 cores and 64 and 512 GB of physical

memory. Network analysis was performed using Oracle Labs Parallel Graph Analytics (PGX)

toolkit version 1.2.0 and WolframMathematica version 11.0 parallel computing and graph

analysis functions.

Results

Our focus here is the comparison of topology and properties of the healthcare network graphs

built using three algorithmic methods: (1) a sliding temporal frame algorithm similar to that

currently used to construct Medicare networks by the Center for Medicare Services [28, 29],

(2) a temporal binning method which captures all possible relationships within a given time

span (e.g. creates a complete graph of all providers who saw the patient), and (3) a trace-route

algorithm [21, 22] that builds networks based on sequential sequence of provider visits. We

have deliberately used networks generated from the Medicare Part B 2013 Outpatient Claims

Limited Data Set, comprised of over 160 million claims, as opposed to a smaller data set. Our

motivations were to (1) describe the differences in the topology of very large healthcare
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networks created by structurally different algorithms, (2) to investigate how these methods dif-

fer when used to study significant, real-world data sets, and (3) to examine the implications of

algorithm design.

Comparison of graph metrics

We first compared topological properties of network graphs constructed from the 2013 Medi-

care Part B Claims Data with the sliding frame, binning, and trace-route algorithms (Table 2).

For this comparison, we used network graphs with τ = 365 days. Medicare Part B Claims data

files contain insurance claims for all outpatient Medicare encounters in the United States over

the course of a year. They do not contain charges for medications or hospitalizations. Provider

vertices are individual providers that provided and billed for care during the data set period of

2013. Organization vertices represent provision of outpatient care by an organization. In addi-

tion, providers are generally associated with or belong to organizations (e.g. a group practice),

and each claim generally contains both a provider and their associated organization NPI num-

ber. Because provider-provider networks (PPN) and organization-organization networks

(OON) may have different network topologies and properties, and to separate the organization

and provider dependencies of vertices, we constructed and analyzed separate networks for

PPN and OON.

All three algorithms yielded sparse networks (D< 0.00015; Table 2), with the trace-route

method having the lowest density values(D = 0.00005). All algorithms also selected similar

numbers of vertices V, with the trace-route algorithm producing modestly more vertices due

to inclusion of degenerate self-loop edges (vi! vi), representing sequential visits to the same

provider. In contrast, the binning and trace-route algorithms resulted in PPN with markedly

fewer edges (73% and 44% less respectively) compared with the sliding method, along with a

higher graph density and and maximum vertex degree. The large components (lco) were

Table 2. Comparison of characteristics for patient co-care networks generated by different algorithms with τ = 365 days.

Metric Provider-Provider Networks Organization-Organization Networks

Sliding Binning‡ Trace-route Sliding Binning‡ Trace-route

Edges (E) 89,377,290 65,287,590 40,077,297 3,282,133 2,233,601 2,014,859

Edge Type Directed Undirected Directed Directed Undirected Directed

Vertices (V) 811,784 811,784 814,917 40,749 40,749 40,768

Eloop/E † - - 0.411 - - 0.122

Vloop/V † - - 0.938 - - 0.943

d 51 29 89 6 13 10

r 0.05534 0.06985 0.02521 0.14768 0.16542 0.15915

ρ 0.56975 1.0 0.77929 0.86637 1.0 0.97295

C 0.28097 1.0 0.21598 0.53721 1.0 0.57809

D 0.00014 0.00010 0.00005 0.00198 0.00135 0.00119

lco 811,099 811,099 810,952 40,749 40,749 40,749

Max. V degree. 19,320 12,836 10,857 8,905 5,248 6,485

Mean V deg. 126.4 12.13 67.34 7.982 2.057 3.364

Max. E weight. 75,985 3,128 22,166 376,808 32,039 472,774

Mean. E weight. 7.982 2.057 3.364 126.4 12.13 67.34

d: network diameter, r: assortivity, ρ: reciprocity, C: global clustering coefficient, D: network density, lco: number of nodes in the largest component.
‡Metrics for undirected graph
†Algorithm explicitly excludes self-loops.

https://doi.org/10.1371/journal.pone.0175876.t002
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essentially of identical size across all three methods, and for both PPN and OON graphs. In

order to check the variation of the degree distribution P(k) with temporal frame τ we plot the

rescaled degree k/kmax(τ) in function of P(k) finding that for both the sliding frame and trace

route algorithms, the vertex degree distribution properties are virtually identical for all τ. We

do note, however, some variation for the binning method at low k/kmax(τ) (Fig 2). While these

results give confidence that the algorithms capture virtually identical sets of providers or orga-

nizations, the large variation in the number of edges E resulted in correspondingly large varia-

tions in network properties.

Fig 2. Network stability with different sampling frames. To assess network stability at various τ, we plotted normalized vertex degree (k/kmax(τ))
versus P(k). Very small variations in the plots at τ = 30, 60, 90, 180 and 365 days indicate that network properties as a function of k/kmax(τ) do not vary

substantially.

https://doi.org/10.1371/journal.pone.0175876.g002
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The binning algorithm generates non-directed graphs, and thus cannot be used to detect

reciprocal events between providers with different edge weights (e.g. vk! vl coupled with

vl! vk), or to infer directionality of provider-provider interactions. However, the binning

algorithm generates a complete provider graph for each patient, which makes it ideal for cap-

turing complete “teaming” or for identifying larger communities of providers. In contrast, the

sliding frame algorithm can also have multiple identical provider-provider or organization-

organization edges (pairing weighted) for each patient, giving larger graph mean and maxi-

mum edge weights. This results from the sliding frame algorithm counting the same teaming

interaction multiple times even if these are not sequential.

The trace-route algorithm yielded the smallest networks in terms of edge counts, primarily

because edges are counted only when the visits between providers were sequential in time. The

PPN created with the trace-route algorithm had a high fraction of edges that were self-loops

(e.g. vi! vi). Self-loops were present in 41.1% of all edges and 94% of all vertices in PPN and

OON created with the trace-route algorithm. This reflects the common pattern where a patient

will see the same provider in succession multiple times. Degenerate self-loops are not captured

by the the binning or sliding frame algorithms. This is a key issue when creating networks to

model patient flow through healthcare systems. If a large proportion of visits are sequential

and to the same provider, algorithms that do not include degenerate self-loops cannot be used

to accurately estimate network flow or capacity. The sliding window algorithm, similar to that

used by the Center for Medicare Services to generate publicly available Medicare networks,

does not have this feature.

In order to uncover some of the spatial regularities associated with the constructed net-

works, we show a representative set in Fig 3, plotted with a geospatial layout. These networks

were created with the trace-route algorithm, and each edge represents a sequential pair of visits

between two providers. This is contrast to networks built with the sliding frame or binning

algorithms, where edges do not represent sequential visits (i.e. two providers may have an edge

despite the patient never having seen them in immediate succession). Given the rather large

number of edges in the networks, for visualization purposes, we excluded edges with weights

Oj = 1, which decreased the number of plotted edges for PPN by 76.9% and for OON by

59.9%. To further enhance the resolution of the visualizations, edges were sorted in ascending

order by the distance between two providers that constituted the vertices of an edge, and then

plotted in 16 separate network subsets of approximately by the geospatial distance between

vertices (i.e. providers or organizations).

The supplemental figures contain high-resolution geospatial network plots (using identical

thresholding) for PPN and OON created by the binning (S1 Fig), trace-route (S2 Fig), and slid-

ing frame (S3 Fig) algorithms, respectively. These plots contain 16 figures for each combination

of PPN or OON with each algorithm. Each of the 16 sub-plots contains a set of edges binned by

the geographic-distance between provider or organization vertices in the edges (e.g. 2-4 miles,

4-10 miles, etc.), allowing a direct geospatial comparison of each method across plots.

There are several noteworthy features visible in the networks constructed by the trace-route

method. The first is that the majority of edges appear to have very short distances (�10 miles),

suggesting that most Medicare patients have a set of providers in close proximity to each

other. This seems likely a result of the Medicare population mix, individuals over 65 years of

age, on dialysis, or with disabilities from complex medical conditions [56], as well as a general

preference not to travel long distances from home for medical care. Another striking feature is

the density of healthcare providers and organizations in the Eastern and Midwestern states,

which correlates well with population density. In addition, note the spoke-and-hub appearance

(Fig 3B, 3C, 3G and 3H) in both PPN and OON. This pattern appears to reflect travel between

rural and urban areas. Importantly, these edges do not reflect hospitalizations, which are not
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Fig 3. Geographic visualization of healthcare networks. Provider-provider (A-E) and Organization-Organization (F-J)

healthcare networks for the Medicare Part B 2013 Limited data set created using the trace-route algorithm with a temporal

frame τ = 365 days, and plotted using a geographic layout tied to provider location. The graphs are censored by removing

weighted edges with a value of 1 (only a single shared patient) and excluding them from the visualization giving edge counts of

9,267,241 for PPN and 808,358 for the OON. Each PPN image contains * 1–9 million edges, and each OON image

contains * 0.2-2 million edges. Images are binned by distance between providers:� 1 mile (A,F), 20-40 miles (B,G), 100-200

miles (C,F), 800-1000 miles (D,G), 2000-4000 miles (E,H).

https://doi.org/10.1371/journal.pone.0175876.g003
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contained in Medicare Part B claims data. Another notable feature is the presence of sequential

visits between providers in the Northeast and the State of Florida (Fig 3D and 3F). These likely

represent the “snowbirds”, patients who spend winters in Florida, and reflect a small propor-

tion of Medicare patients for Florida providers (<1% of all visits to Florida providers). The

migratory nature of this group is reflected in the north-to-south group of edges.

Furthermore, one can also see key differences between the PPN and OON in Fig 3. Nota-

bly the differences in edge counts are apparent in the visible edge densities, around *40 mil-

lion for the PPN and *2 million for the OON. High resolution images for both the PPN and

OON constructed using all three algorithms, censored and uncensored, are available in SI,

S1–S3 Figs. Our preliminary investigations, thus indicate the valuable insights that one can

glean through a geospatial representation of healthcare networks as it relates to patient jour-

neys and flows.

Censoring by edge weight markedly decreases network size

We next examined the effect of censoring edges with low edge weights. A key principle in

public release of healthcare network data is to prevent identification of any individual

patient, even within unipartite PPN or OON projections of bipartite networks where individ-

ual patients are not identified as vertices. An individual patient might be identified by a com-

bination of unique providers they see where the edge weights between the majority of those

providers is 1, and each provider can be identified by a geographic area. Such convergence to

unicity (i.e. the ability to identify an individual from a unique combination of attributes)

only requires a small number of attributes in very large data sets [57]. On consequence is

that this may lead to fragmented networks, with many small sub-networks unconnected to

the largest connected component. Medicare censors edges in publicly released provider

teaming data sets by excluding those with weights <11 (“Presumed shared relationships

based on claims for fewer than eleven distinct beneficiaries will be excluded from the

report.”) [28]. Alternatively, others have suggested that censoring improves the signal-to-

noise ratio for identifying strong provider-provider collaborations [12]. These studies have

suggested that censoring at edge weights of 8-9 shared patients reflects provider self-identifi-

cation of teaming partners [12].

To examine the effect that edge weight censoring has on the network properties, we com-

pared uncensored and censored provider and organization networks created by each algorithm.

We hypothesized that such censoring would lead to network fragmentation. We found that cen-

soring resulted in a striking reduction in both nodes and edges (Table 3), as well as network

density. This was most evident with respect to edges, where censoring for Ovj! vk�11 resulted

in removal of more than 86-97% of edges for PPN, and more than 85% of edges for OON. To

assess the effect of censoring level on network composition, we calculated vertex and edge

counts for censoring thresholds from 1-11 shared patients (S3 Table). For PPN, censoring for

edges with� 11 patients for the trace-route, sliding frame, and binning methods reduced vertex

numbers (49.9%, 31.2%, 70.8%) and edge numbers (2.3%, 2.1%, 13.8%) of the uncensored

counts respectively. The largest reductions were for PPN provider pairs with only 1 shared

patient for τ = 365. There modest relative decreases in both edges and vertices edge for weights

for censoring thresholds between 8 and 11 patients. There is currently no current standard for

labeling censored edges “noise”, with the true “signal” being the edges with Ovj! vk> n, where

n is the threshold level. Thus, while censoring reduces network edges substantially, the level at

which this contributes to improved community identification by improving signal-to-noise

ratios, or results in loss of information with respect to patient mobility estimates, requires fur-

ther validation with additional data that defines “true” and “noise” edges.
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Comparison of power-law characteristics of healthcare networks

We next tested networks generated by these methods to determine whether they were scale-

free and adhered to a vertex-degree power law distribution. Many large and sparse networks

are scale-free [26, 58–60], with power-law characteristics indicating a small number of central

hubs with many edges, and a small-world topology [60]. Networks that can be described by

power law distributions have distinct properties with implications for network formation and

evolution [47, 58, 61]. In the case of healthcare networks, power law behavior may suggest how

networks grow. For example a doctor in a new medical practice is likely to refer patients to

other highly established providers with many connections, a phenomenon known as preferen-

tial attachment in graph theory [58]. For the PPN and OON built in this manuscript, vertex

degrees k and their frequencies P(k) are shown in Fig 4. While both PPN or OON have heavy

tailed distributions, neither appear to obey a strict power law distribution (e.g. f(x)/ x − α).

Interestingly, uncensored OON had a P(k) distribution similar to that found in relatively high

density networks of internet discussion groups [62]. Censoring by edge weight ω< 11, how-

ever, decreased network density D, and altered the P(k) distributions in all networks.

We then used the method of Clauset et al. [60] to test PPN and OON network degree distri-

butions for goodness of fit with a power law distribution, and to compare the fit with other dis-

crete distributions (power law with exponential cutoff, exponential, log normal, Weibull, and

Yule). If the power law had p> 0.1 then we accepted the null hypothesis that the data followed

a power law distribution. To determine if the plausibility was significant we used the likelihood

ratio (LR) to compare the fit with one of the other discrete heavy tailed distributions listed

above [60]. If the LR values were negative with p< 0.05, we concluded that the network fol-

lowed the alternative distribution being tested rather than the the power law distribution. The

distribution with the most negative LR was selected as the best fit.

In our analysis (Fig 5), all but one of the full and censored PPN adhered to the power law

distribution with thresholding, that is beyond a value of xmin, with statistical significance S2

Table. Goodness of fit testing for the Poisson distribution yielded likelihood ratio results that

were approximately the order of magnitude of 5 (i.e. 105), and hence insignificant. However,

none of the other heavy tailed distributions fit the full PPN created with the sliding frame algo-

rithm, and all had an LR>0.

Table 3. Effect of edge weight censoring‡.

Uncensored Censored VCensored
VUncensor

ECensored
EUncensorlco VN VN

V
lco VN VN

V
Provider

Sliding 810,099 685 <0.001 191,414 30,545 0.1376 0.273 0.017

Binning 810,099 685 <0.001 229,054 24,358 0.0961 0.312 0.045

Trace-route 810,952 3,963 0.005 87,533 228,444 0.7230 0.388 0.018

Organization

Sliding 40,749 0 - 35,733 44 0.001 0.878 0.102

Binning 40,749 0 - 36,338 30 <0.001 0.892 0.092

Trace-route 40,749 19 <0.001 36,680 1,966 0.054 0.899 0.140

lco: vertices in largest component, VN: vertices not connected to largest component, V: total number of vertices, VCensored: total number of vertices in

networks with censoring of edges with weights�11, E: total number of edges in uncensored networks; ECensored: total number of edges in networks with

censoring of edges with weights Ωvj ! vk
�11, V: total number of vertices in uncensored networks;

‡Metrics for undirected networks with τ = 365 days.

https://doi.org/10.1371/journal.pone.0175876.t003
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In contrast to PPN, the best goodness of fit on the OON was the power law with exponential

cutoff (PLEC; S2 Table). This distribution is often seen in network analysis of human mobility

[61], reflecting an opportunity cost for traveling larger distances, or building networks that are

geographically constrained by physical limits, such as power grids. Similarly, the spatial distri-

butions of for-profit and public facilities obey a PLEC distribution, which is consistent with

previously described models where there is a higher financial cost for locating facilities in areas

of sparse population [59]. In the case of OON, the better fit to a PLEC distribution suggests

that shared numbers of patients between healthcare organizations decay proportional to the

distances between organization service areas. We hypothesize that this may be due to the struc-

ture of the data, where every Medicare Part B claim must have an organization listed, and

>99% of the claims list both a provider and an organization. Thus OON may be considered a

dimensionally reduced PPN, and we hypothesize that this may account for differences in fit-

ting to power law distribution variants.

Vertex centrality distribution varies by network construction algorithm

We next analyzed differences in the centrality and connectivity of individual vertices (provid-

ers or organizations) between the networks generated by the three algorithms. Centrality met-

rics may be used to rank organizations by the proportion of shared patients with many other

organizations, and can also be used to analyze healthcare service provision disparities or reve-

nue potential. (Fig 6) Normalizing betweenness centrality (C0β—see Methods), and plotting

the frequency rather than absolute distribution, allows direct comparison of all the networks

despite their differing size and scales.

The C0β distributions of networks produced by the different algorithms are quite similar.

The major difference is between full and censored networks. The addition of nodes that are

only connected by edges with Ovj! vk� 11 introduces a bimodal distribution of C0β, reflecting

the low centrality of the previously censored nodes. This is consistent with the hypothesis that

Fig 4. Network vertex degree distribution by algorithm for τ = 365 days.

https://doi.org/10.1371/journal.pone.0175876.g004
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most of these providers or organizations are on the periphery of the network backbone, and

are unlikely to create new connections between other providers or organizations that already

have high C0β or ki values. Another possibility is that the this phenomenon reflects variation in

the proportions of total patients with Medicare insurance seen by providers. Some providers

may see a large percentage of Medicare patients (e.g. nephrologists and geriatric medicine

practitioners), while others may see only a small number of Medicare patients but a much

higher proportion of patients with private insurance, leading to a bimodal distribution of C0β.

Network variation by temporal sampling frame interval

Healthcare networks are dynamic; the shared number or volume of patients between providers

(e.g. edge weights) changes over time based on frequency of patient visits and, less frequently,

as new providers are added to or leave the network. Of particular interest has been the number

of patients shared between two providers during a specific time period. This measure might

reflect the efficiency of patient flow through a healthcare system. For example, if the number

of edges reflecting shared provider visits within 30 days is small, it might suggest that patients

are unable to get urgent consultations in a timely manner. Alternatively, examining networks

built from visits during a time frame τ can help determine if longer τ provide a fuller picture of

the network (Fig 7). We found that over� 98% of vertices and edges are captured with τ� 90

days for both PPN and OON by the trace-route and sliding frame algorithms (see S1 Table).

Considerable variation, however, occurs with the binning method, and the number of vertices

or edges included converges on that of the binning and trace-route methods only as τ

Fig 5. Healthcare networks power law with cutoff properties. We analyzed PPN and OON for adherence to power a law distribution starting from a

minimum vertex degree, (xmin), using the method of Clauset, et al [60] with τ = 365 days. The orange points are the CDF of the vertex degree, and the

blue dashed line is the power law fit of the CDF given xmin and α.

https://doi.org/10.1371/journal.pone.0175876.g005
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approaches 365 days. These findings suggest that the major topology of claims-derived health-

care networks can be captured by the trace-route and sliding frame algorithms with τ� 180

days, while the binning method may not converge until τ� 365 days.

Variations in network community identification

One use of PPN is to identify highly collaborative teams or communities of providers. Such

communities can arise from shared patients or membership in administrative organizations

(e.g. Accountable Care Organizations, practice networks, or group practices). Provider teams

can be identified by network community identification algorithms [26], as well as hierarchical

or agglomerative clustering methods [63, 64]. Prior work on community detection has also

used geographic or administrative regions to further refine the clustering constraints. The

composition and number of communities identified will vary by method, and is a function of

vertex connections via edges and edge weights [8, 9, 11, 12]. Thus, it is highly likely that net-

works built using different algorithms, when analyzed by the same community identification

Fig 6. Betweenness centrality C0β of healthcare networks by algorithm for τ = 365 days betweenness centrality was calculated for all

networks using the Oracle PGX algorithm. Results are displayed with algorithmic binning of C0β = Cβ / (N − 1)(N − 2) for directed graphs

produced by the sliding frame and trace-route algorithms, and C0β = 2Cβ / (N − 1)(N − 2) for undirected networks produced by the binning

algorithm. All plots are scaled in the y-axis to frequency, allowing direct comparison of centralities. Note that edge-weight censoring (excluding

edges withΩvj! vk
� 11) markedly changes the centrality distribution of all networks.

https://doi.org/10.1371/journal.pone.0175876.g006
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method, will yield different groups of providers. To test this hypothesis, we examined commu-

nity assignments resulting from networks generated using the same data by each algorithm.

Fig 8 illustrates how networks built from the same data set using the trace-route, sliding

frame, and binning methods yield different provider communities. For simplicity of compari-

son and computational efficiency, we selected only edges where both providers were located in

NY State. A community is defined as a set of vertices (e.g. providers) who have a larger number

of connections (e.g. shared patients) with each other than vertices outside the community. For

this analysis, we started with PPN for τ = 365 days, and censored for edge weights� 11. Com-

munities were identified by the Girvan-Newman modularity community finding algorithm

[26]. We found marked variation in the number, size, and composition of the resulting com-

munities. Similar results were found when this procedure was applied to other states. Not only

is the number and geographic distribution of providers belonging to communities different

(Fig 8A and 8B), but the community size and geographic distribution ranked by number of

providers also differs substantially. The community partitioning of the trace-route networks

yielded a large number of small communities (97% with n� 6) compared to the sliding frame

and binning method networks (46% and 44% with n� 6 respectively). The geographic loca-

tion of the communities, when ranked from largest to smallest, also differed substantially (Fig

8C). This analysis highlights the significant differences seen in identifying provider communi-

ties when networks are built with different algorithms. For example, the trace route method

has a lower representation of providers in New York City in the largest 5 communities than

the binning or sliding frame algorithms.

Fig 7. Network vertex counts, edge counts and density as a function of the sampling frame interval τ. Vertex counts, edge counts and

network density plotted for provider and organization networks for the binning (red), trace-route (orange) and sliding frame (blue) algorithms for τ =

30, 60, 90, 180, and 365 days. Solid lines represent networks where vertices were included if the minimum edge weight > = 1, while dashed lines

represent censoring where only edges with a minimum edge weight > = 11 are included. The latter is the current standard for aggregate provider

network data release by the Center for Medicare Services so that individual patients cannot be identified by a unique combination of providers

sharing only a single patient.

https://doi.org/10.1371/journal.pone.0175876.g007
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Discussion

Healthcare networks are commonly constructed from insurance claims data to study patient

referrals, provider teaming and communication. They are used to identify network topology,

patterns of provider association, and to test whether these correlate with healthcare outcomes

or as part of comparative effectiveness research. The results of such analyses are increasingly

used to shape healthcare services delivery and policy, with potential to impact millions of

Fig 8. Variation in provider community identification. We analyzed undirected Provider-Provider networks constructed with the trace-route, sliding

frame and binning algorithms for τ = 365 days, and censored for edge weights� 11. Provider-Provider community teams identified for providers within

NY State from each network using the Girvan-Newman modularity community finding algorithm [26] implemented in Mathematica. Each provider was

assigned to only one community. (A) Provider densities. Hexagonal bins show the counts of providers that were members of any community within

each geographic region color coded by range. Note the different geographic density patterns for each method. (B) Histogram of number of providers

per community. Note the large number of communities (n) in each histogram, with the majority having only 2 providers. Community sizes, compositions

and number differed between all 3 methods. (C) Shows the five largest communities identified in each network.

https://doi.org/10.1371/journal.pone.0175876.g008
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providers and patients, However, little work has been published addressing how network algo-

rithm selection may effect network topology and analysis. Our results demonstrate that differ-

ent algorithms will yield networks with different topologic properties, and analysis of these

networks yeilds quite different results. These results support our conclusion that algorithms

should be carefully selected based on the question being asked, the algorithmic approach used

to define edges and edge weights, the sequence and frame used for temporal data, and the

degree of edge weight censoring.

It is critical to select a network building algorithm designed to study the questions being

asked, specifically network flow versus community identification. In the context of the work

presented here, flow represents the aggregate mobility pattern of patients traveling between pro-

viders or organizations in the underlying network. The trace-route algorithm is specifically

designed to focus on directed and sequential pair-wise interactions, including sequential visits

to the same provider, reflecting almost exclusively the underlying mobility network [21, 22].

Trace-route networks are commonly used to model flow of packets through computer networks

[23], vehicles through highways [65], and goods through supply chains [66]. In contrast, the

sliding frame or binning algorithms are based on a computational approach designed to capture

the emergence of abstract (and possibly hidden) collective structures, such as clusters and com-

munities [21, 28, 29]. Importantly, these networks capture provider teaming and identify linked

communities even if patients do not sequentially visit all providers within their team. To illus-

trate, imagine a patient visits providers A, B and C, and then travels to another state and visited

providers D and E. The binning or sliding frame algorithms would create connections between

all the five providers. This network would include clusters and sequential patient flow patterns

that are absent from the original data (e.g. A! C, B! D, etc.) and do not exist from a mobility

perspective. Such frame-based approaches are even more problematic when dealing with large

scale healthcare networks, where less frequent, long range, geographic connections will form

the backbone of the nationwide network. Thus, the choice of algorithmic approach should be

considered by the problem at hand (e.g. community identification versus flow analysis).

Another important consideration in the interpretation of healthcare networks is the mis-

taken inference of causality. For example, both the trace-route and the sliding window meth-

ods use temporal ordering of claims. However, this simple temporal sequence and does not

imply causality. For example, a patient may have been to their oncologist, then 5 days later to

the Emergency Room, next had a yearly physical with their Family Practitioner, and then a fol-

low up to the ER visit some days later. Here we are simply capturing that sequence. The

oncologist may not have referred the patient to the ER five days later (e.g. after an automobile

accident unrelated to breast cancer 5 year follow up), and the ER visit did not “cause” the phys-

ical. Similarly, we should be careful inferring that teams identified in network analysis imply

deliberate and preferential teaming of specific providers. The choice of providers may be

highly determined by external factors such as geography (e.g. there is only one abortion pro-

vider within 300 miles) or payment constraints (e.g. the patient’s insurance will only reimburse

for visits with specialists within the insurance network). Thus, careful analysis and external val-

idation are needed when using network structure to infer voluntary teaming for laudable goals

(e.g. providing the best care for prostate cancer) or more sinister intent (e.g. insurance fraud

or inappropriate narcotics prescriptions).

Another key finding of our work is the difference between the vertex degree distribution of

organization and provider networks. Organization networks tended to follow a power law

with exponential cutoff, while the provider networks followed a power law. This is likely due

to geographic constraints. Medicare is administered at the state level, and providers are geo-

graphically based. This suggests that there may be a threshold that limits the value for organiza-
tions to extend their interactions (e.g. share patients), or for patients to obtain medical supplies
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or seek outpatient care, over long distances. Practically, this limits the vertex degree of health-

care organizations, and their regional associations. It is interesting that provider-provider rela-

tionships do not exhibit the same constraints, especially as our analysis indicates that most

patients see providers located within a small radius of care. Providers in PPN tend to add con-

nections exponentially such that new providers tend to link with established and well con-

nected providers. In addition, patients may be willing to travel longer distances for certain

specialty care (e.g. cancer therapy, organ transplantation), but unlikely to travel far for lab test-

ing or medical equipment in OON. This suggests that the presence of underlying differences

in the social, structural and economic motivations between providers and organizations, and

that further work to better define these could be done comparing different healthcare systems

(e.g. single versus multi-payer systems, differences in geographic constraints, etc.), and further

detailed analysis using network segmentation by claim codes.

The level at which to censor patient weighted edges remains an active area of discussion in

the literature, either to prevent patient identifiability or to improve the signal-to-noise when

using clustering to identify provider teams [11, 12, 67]. Medicare uses a cutoff of 11 shared

patients for censoring edges to prevent patient identifiability by a unique pattern of providers.

Other work has used external validation via survey data to assess at what level of patient shar-

ing pairs of providers would consider each other as collaborating [11], finding that a threshold

of 9 shared patients correlated well with provider teaming identification [12]. Given the scope

of our analysis, 4 − 8.5 x 107 edges and 880,000 providers, such survey work would require sta-

tistically guided sub-sampling of provider pairs [11, 12]. Sensitivity analysis, assessing results

of community identification at different censoring thresholds, may also provide guidance.

Thus, an important area for further work is external validation of provider community identi-

fication under different levels of censoring.

As far as we are aware, this is the first comparative analysis of how network algorithm struc-

ture influences the topology of healthcare networks built using administrative claims data.

Such inference of network topology based on analysis and comparisons of algorithm structure

is common in the computer science and informatics literature [68–70]. Overall, our work

makes two types of inferences: those based on examining and comparing algorithm structures,

and those resulting from analysis of networks created by applying the algorithms. Our analysis

suggests the use of trace-route type algorithms for creating networks intended to study time-

ordered migration of patients from one provider to another. The trace-route algorithm struc-

ture shows that edge construction is constrained to sequential provider visits; this is intrinsic

to the algorithm, and independent of the data used to build a network. Thus, by definition,

trace route networks only contain edges that reflect sequential temporal ordering. In contrast,

the binning and sliding window algorithms create additional edges that reflect possible, but

not actual, temporally sequential patient visits. With respect to inferences drawn from analysis

of the networks, censoring by edge weight dramatically reduces the number of network edges

and alters network topology. Furthermore, depending on the type of analysis undertaken, mix-

ing provider and organization vertices can be problematic given the dependencies between

organizations and providers (e.g. provider connections may be highly dependent on organiza-

tion membership), and the differences in network topology between PPN and OON.

Currently, the Center for Medicare Services has not released the data selection methods or

algorithm code used to construct the deidentified and censored provider teaming networks,

although the resulting networks are publicly available to researchers, policy makers, and busi-

nesses. This is a substantial issue for health services research rigor and reproducibility [71, 72],

with implications for healthcare policy discussions. Without knowing the algorithm structure

or performing sensitivity analyses, the dependencies of the resulting networks on claims filter-

ing or network construction methods remain unknown. Together, these findings suggest that
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research rigor and reproducibility may be improved by building networks from Medicare

claims data using verifiable algorithms, and analyzing the sensitivity of network topology to

the censoring criteria. Future studies will be needed to address the issue of which algorithms

are “optimal” for specific research questions (e.g. with respect to computational efficiency,

community identification, and other measures).

Finally, our work suggests several other directions of inquiry, including comparisons of net-

works between states with different Medicare structures, detailed investigation geographic

dependencies of community identification algorithms, analyses of provider team composition

and outcomes, studies to identify provider migration to different geographic locations, and

studies of patient flow through healthcare systems.

Conclusion

The topology of healthcare networks constructed from claims data varies is a function of the

algorithms used to construct them. Consequently, the analytic results obtained will vary

accordingly, including network density, edge weights, vertex centrality measures, and commu-

nity identification. The size and topology of healthcare networks built using administrative

data is particularly sensitive to the effect of edge censoring, and the methods used to construct

and weight edges. Sensitivity analysis of network topology as a function of these factors can aid

in identifying these issues.

Supporting information

S1 Fig. Healthcare network plots created with the binning algorithm. Provider-provider and

organization-organization network plots for τ = 365 days as discussed in the Results section.

Networks are plotted using geospatial coordinates accurate to within 0.8 miles in the continen-

tal United States. Each sub-plot represents a range of distances for edges between providers or

organizations to allow comparisons across methods. These are also available online: PPN

(https://figshare.com/s/1054f48521ee7f75b715; doi: 10.6084/m9.figshare.3827220), OON

(https://figshare.com/s/8e4c310b512d5c285c03; doi: 10.6084/m9.figshare.3827217).

(ZIP)

S2 Fig. Healthcare network plots created with the trace-route algorithm. Provider-provider

and organization-organization network plots for τ = 365 days as discussed in the Results sec-

tion. These are also available online: PPN (https://figshare.com/s/ef453524484445b9f3e3; doi:

10.6084/m9.figshare.3827532), OON (https://figshare.com/s/eb15be0bed3fd0b71f82; doi: 10.

6084/m9.figshare.3827520).

(ZIP)

S3 Fig. Healthcare network plots created with the sliding window algorithm. Provider-pro-

vider and organization-organization network plots for τ = 365 days as discussed in the Results

section. These are also available online: PPN (https://figshare.com/s/638bd98a64c59c620978;

doi: 10.6084/m9.figshare.3827505), OON (https://figshare.com/s/7c68005ef9d19a2ab6b7; doi:

10.6084/m9.figshare.3827361).

(ZIP)

S4 Fig. Healthcare community identification for NY state. Provider-provider communities

with n>5 providers were identified in networks built for New York State providers only.

These plots show all of the provider locations for each identified community. Major cities

are identified in red. Figures are also available online: PPN (https://figshare.com/s/

638bd98a64c59c620978; doi: 10.6084/m9.figshare.3827505).

(PDF)
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S1 File. Network construction algorithms. This file contains the sliding, trace-route and bin-

ning PERL algorithms for network construction, and are also available online at figshare.com.

(https://figshare.com/s/4f926e28a36700fc20a5, doi: 10.6084/m9.figshare.3837717).

(ZIP)

S2 File. Censored networks. This file contains the data used to construct all the censored net-

works. Censored network files are also available from figshare.com at (https://figshare.com/s/

915649f63d8fe8b08c5e, doi: 10.6084/m9.figshare.3833943).

(ZIP)

S1 Table. Table of graph metrics as a function of measurement frame τ. This table, in TSV

format, contains all of the the metrics for 200 networks built using the binning, trace-route,

and frame algorithms for providers or organizations, with or without censoring, directed or

undirected edges, and edge weights reflecting shared patients, or total numbers of visits for the

shared patients.

(CSV)

S2 Table. Power law best-fit results for patient co-care networks with τ = 365 days. This

table contains results for fitting of power law distributions to patient co-care networks.

(PDF)

S3 Table. Edges and node fractional reduction as a function of thresholding by edge

weight. This table has shows the fraction reduction in edges and nodes as a function of thresh-

olding the edge weights.

(PDF)
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