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Resumo  

 

Os indivíduos resultantes de hibridação são muitas vezes inviáveis ou inférteis, 

pelo que, durante décadas, foram vistos como ocorrências pouco frequentes e 

meros erros irrelevantes para o processo evolutivo. No entanto, esta perspectiva 

redutora tem vindo progressivamente a ser abandonada e actualmente, a 

hibridação e a poliploidia, fenómenos que aparecem muitas vezes associados, são 

aceites como processos evolutivamente relevantes.  

  Em relação ás plantas, a ocorrência de (alo)poliploides dentro deste grupo é 

bastante frequente, e estas sempre foram reconhecidas como sendo bastante 

tolerantes a alterações de ploidia e à hibridação.  Assim, os efeitos destes processos 

na expressão génica e na regulação das cópias de cada genoma têm sido 

amplamente estudados neste grupo. No entanto, a existência e importância da 

(alo)poliploidia em animais foi, por muitos anos, negligenciada e consequentemente, 

pouco se sabe sobre os seus efeitos na expressão génica e nos mecanismos da sua 

regulação em vertebrados (allo)poliplóides. 

Posto isto, esta tese apresenta-se, como um avanço na informação disponível 

sobre o tema da regulação da expressão génica em animais, contribuindo para 

desvendar as causas e os mecanismos que levam a que alguns genomas poliploides 

híbridos superem eficazmente o “choque genómico” resultante do aumento do 

número de cromossomas e da combinação de genomas divergentes. Os estudos 

aqui englobados são também a continuação e o amadurecimento de descobertas 

e resultados anteriores, uma vez que a sua génese baseou-se numa interessante 

teoria de “diploidização funcional” da expressão génica em alotriploides do 

complexo Squalius alburnoides mediante silenciamento alélico. Este complexo de 

peixes alopoliploides, endémico da Península Ibérica, foi assim o primeiro modelo a 

ser estudado neste âmbito, pois apresenta características que o tornam 

particularmente interessante.  O complexo resulta da hibridação interespecífica e 

não recíproca entre fêmeas de Squalius pyrenaicus (genoma P) e de uma espécie 

que se pensar estar actualmente extinta, próxima de Anaecypris hispanica (genoma 
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A). Inclui formas diploides e poliploides mantidas por diferentes modos de reprodução 

potenciando um sistema de trocas genéticas em que as diferentes formas diploides 

e poliploides se cruzam e contribuem activamente para a manutenção da 

diversidade e do potencial evolutivo da espécie. Apresenta ainda como caraterística 

um acentuado desvio na distribuição dos sexos, com uma predominância de fêmeas 

triplóides e ainda a ocorrência de uma linhagem aparentemente constituída 

exclusivamente por machos.  

O objectivo geral deste trabalho foi ajudar a esclarecer como se processa a 

expressão génica em alotriploides de S. alburnoides, bem como de mecanismos 

ligados à sua regulação. Em concreto, pretendeu-se esclarecer se os mecanismos de 

compensação da dosagem e o silenciamento alélico, anteriormente descritos 

recorrendo à análise de um número muito limitado de genes, são fenómenos com 

extensão genómica ou se estão limitados, específica ou aleatoriamente, a subgrupos 

de genes. No que respeita ao silenciamento alélico, pretendeu-se ainda esclarecer 

se existe enviesamento da expressão, favorecendo um ou outro complemento 

genómico, e, se sim, perceber a sua magnitude e a sua extensão no genoma. Sendo 

o silenciamento alélico o limite máximo do enviesamento da expressão alélica, e 

também o mecanismo de compensação de dosagem anteriormente proposto, este 

foi um tópico que mereceu uma análise mais aprofundada. 

O primeiro passo dado no âmbito desta investigação foi a verificação da 

ocorrência do fenómeno de mosaicismo de ploidia em S. alburnoides, um fenómeno 

nunca antes descrito neste complexo híbrido, mas bastante frequente em 

alopoliploides. A ocorrência de mosaicos de ploidia poderia explicar as diferenças 

de expressão alélica existentes entre indivíduos triploides e/ou entre órgãos do 

mesmo indivíduo triploide. Para explorar esta hipótese foram desenvolvidos 

protocolos de citometria de fluxo e sorting de células de forma a identificar indivíduos 

mosaicos de ploidia e isolar as populações com ploidia diferente permitindo que 

fossem analisadas de forma independente quanto ao seu padrão de expressão 

alélica.  Apesar da ocorrência do fenómeno de mosaicismo de ploidia em triploides 

de S. alburnoides, esta não explica os padrões de expressão alélica obtidos. 
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Embora o complexo S. alburnoides tenha sido usado como principal modelo 

de estudo, seguiu-se também uma abordagem multiespécies para comparar a 

expressão génica e a sua regulação entre peixes diploides e triploides, pois outro 

objectivo desta tese foi determinar se os mecanismos de regulação da expressão 

génica previamente especulados para S. alburnoides eram uma característica 

particular deste complexo ou se apresentavam uma ocorrência mais difundida entre 

vertebrados alopoliploides. Assim, recorrendo a indivíduos diploides e triploides de 

Oryzias latipes, Poecilia formosa e S. alburnoides, incluindo híbridos tri-genómicos 

produzidos em laboratório, foram feitas sequenciações de RNA de nova geração, 

“de novo assembly” de transcriptomas, comparação de níveis de expressão génica 

e de expressão alélica específica e determinação de níveis globais de metilação. 

Em relação ao complexo S. alburnoides, verificou-se que, apesar dos triploides 

serem afectados por uma significativa regulação negativa da expressão génica, esta 

não corresponde a uma “diploidização” funcional do genoma. Em vez disso, para os 

híbridos triploides, foi sugerida a existência de alguma flexibilidade dos níveis de 

expressão. Esta tolerância ou flexibilidade pode ser a base da resiliência dos 

vertebrados inferiores a mudanças de ploidia. 

 Para além disso, verificou-se também que a regulação negativa da expressão 

génica nos triploides de S. alburnoides não está dependente do silenciamento 

preferencial de cópias alélicas de um ou de outro complemento genómico, como 

previamente se havia especulado. Uma análise abrangente da contribuição de 

cada genoma heteromórfico para os padrões globais de expressão génica revelou 

a ocorrência de enviesamento da expressão alélica e não uma contribuição 

equitativa entre alelos. Para um número significativo de genes, foi verificado o 

favorecimento acentuado da expressão de um ou de outro dos genomas 

heteromórficos intervenientes no complexo e, em muitos casos, expressão exclusiva 

a partir de apenas um dos genomas envolvidos (silenciamento alélico). No entanto, 

a incidência do enviesamento da expressão alélica não foi significativamente 

afectada pelo nível de ploidia dos indivíduos, e a taxa de silenciamento alélico 

observada foi semelhante entre diploides e triploides. No decurso desta tese verificou-

se ainda a ocorrência de silenciamento em alotriploides de O. latipes e de P. formosa, 
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que tal como os triploides de S. alburnoides são resultado de fenómenos de 

alopoliploidização a cada geração.  

Este trabalho permitiu também corroborar a dependência dos padrões de 

expressão alélica da combinação genómica específica de cada híbrido e também 

a influência da história evolutiva de cada genoma interveniente. Os resultados 

apontaram, não só para um efeito notório dos processos evolutivos longos nos 

padrões de expressão alélica, mas também nos níveis de metilação. Relativamente 

a esta última, a hipótese de uma regulação negativa da expressão génica mediada 

pela ocorrência de metilação maciça dos genomas híbridos triploides não foi 

verificada em S. alburnoides nem em P. formosa. 

Adicionalmente, no âmbito desta tese, foi ainda produzido o primeiro 

transcriptoma de referência para o complexo S. alburnoides. 

Em suma, este trabalho demonstra a complexidade da alopoliploidia ao nível 

da regulação da expressão génica, corroborando a dificuldade em definir regras 

e/ou explicações universais aplicáveis a todas as condições alopoliploides, 

salientando a considerável diversidade de mecanismos inerentes a estes organismos. 

 

Palavras-Chave: alopoliploidia, Oryzias latipes, Poecilia formosa, regulação da 

expressão génica, Squalius alburnoides. 
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SUMMARY  

 

Plants, invertebrates and even lower vertebrates are known to deal with 

hybridization and polyploidy very successfully, surpassing the genetic constrains those 

phenomena bring. However, (allo)polyploidy in animals have been strongly 

neglected so, this matter remains largely unexplored. In that sense, the general goal 

of this thesis was to expand the existing limited knowledge on the topic, standing a 

significant step forward in the scarce information available on animal allopolyploid 

gene expression regulation.  

The inception of this work was a theory of occurrence of global dosage 

compensation by allele copy silencing in Squalius alburnoides complex. The 

elucidation of the inherent gene expression processes and mechanisms operating in 

S. alburnoides, and if they are a particular feature of this complex or have a more 

widespread occurrence among allopolyploids, were the main goals.  

The first step taken was the exclusion of ploidy mosaicism, a phenomenon here 

for the first time described to occur in S. alburnoides, as the source of the allele specific 

expression differences previously found. 

 Despite it was corroborated that S. alburnoides triploids are affected by a 

significant down regulation of gene expression, that does not correspond to a 

genome wide exact functional diploidization. Instead, a certain level of flexibility of 

expression within a range of mRNA amounts per locus was observed. That feature 

might be a key point in the mechanisms that allow lower vertebrates to endure and 

maintain ploidy changes so effectively. 

The down regulation of gene expression in triploid S. alburnoides was also found 

to be not dependent of allele copy silencing, as previously speculated. Extreme 

homoeolog expression bias, comprehending the complete silencing of alleles, have 

been found to affect a significant percentage of genes in S. alburnoides, as in 

laboratory produced triploid hybrid Oryzias latipes. However, the incidence of the 

homoeolog expression bias was not significantly affected by the ploidy level of the 

individuals, and the allelic silencing rate was similar between diploids and triploids. 
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Additionally, the hypothesis of a down regulation of gene expression mediated 

by massive methylation occurrence in triploid hybrid genomes was not sustained, 

neither for S. alburnoides nor for P. formosa. 

    

 Keywords: allopolyploidy, gene expression regulation, Oryzias latipes, Poecilia 

formosa, Squalius alburnoides.  
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CHAPTER 1 
INTRODUCTION 

1.1. General background 

For many years focus has been put on the negative effects polyploidy and 

hybridization may have on species evolution. However, in the recent years the 

emphasis is now on the alternative view, that polyploidy and hybridization are 

significant creative forces.  

It is now established that polyploidy in animals (vertebrates and 

invertebrates) is not as rare as it was initially assumed. There are in fact plenty 

examples from all major taxonomic animal groups, except for mammals, of 

successful polyploidization events (Gregory and Mable, 2005) and is accepted that 

most vertebrates are ancient polyploids (Wertheim et al., 2013). 

It is also long time established the existence of a strong association between 

polyploidy and hybridization (Mable et al., 2011) so, the wide prevalence of animal 

polyploidy indicates that natural animal hybridization is also widely prevalent. 

Those findings, together with the recent and continuous development of 

powerful genetic and genomic tools, like next generation sequencing (NGS), have 

given a new perspective to the general importance and increased interest in 

understanding the mechanisms and evolution of allopolyploids (polyploids 

resultant from hybridization events), both in plant and animal kingdoms (Stöck and 

Lamatsch, 2013). However, research on (allo)polyploids is still highly biased towards 

plants (Gregory and Mable, 2005). Animal allopolyploid research emerged much 

later, being significantly delayed most probably due to old rooted ideas that 

polyploidy is rare among animals and that hybrids are sterile “dead ends”. 

Because in the past years these ideas have been strongly challenged, the 

genetic and molecular mechanisms underlying animal allopolyploidy have started 

to be addressed more enthusiastically (Stöck and Lamatsch, 2013). However, 

1
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research on animal allopolyploids it is still far behind from the body of knowledge 

gathered around plant allopolyploids. (Gregory and Mable, 2005).  

 

1.2. Hybridization and polyploidy 

 A definition of hybridization is the interbreeding of individuals from two 

distinct populations or groups of populations, distinguishable by one or more 

heritable characters (Harrison and Larson, 2014), and comprehending several 

levels of taxonomical relation (e.g. within same genus, same species or same 

sub-species). 

 Hybridization can be homoploid, when occurs between individuals with the 

same ploidy level and giving rise to hybrids with the same number of chromosomes 

as the parental species (Yakimowski and Rieseberg, 2014). Homoploid hybridization 

gives rise mostly to diploid hybrids (Abbott et al., 2013; Yakimowski and Rieseberg, 

2014; Nieto Feliner et al., 2017) and stabilized introgressants (Lowe and Abbott, 

2015). Homoploid hybrids may be viable and perpetuating, but many present 

chromosomal incompatibilities and are often sterile due to the impossibility of true 

chromosomal pairing at meiosis (Stebbins, 1950). 

Hybridization can also be associated with changes in ploidy level, either 

resulting from hybridization between heteroploid entities or resulting from genome 

duplications after homoploid hybridization (Marques et al., 2017). Polyploidy 

among hybrid taxa is extremely prevalent and result either from the high rate 

production of unreduced gametes by diploid hybrids (Ramsey and Schemske, 

2002), or as a strategy to overcome the pairing problems between heterologous 

chromosomes, providing each chromosomal set with a compatible pair (Marques 

et al., 2017).  

Concerning polyploidy, it can be defined as the heritable condition of 

possessing more than two complete sets of chromosomes (Comai, 2005). It has two 

fundamental types, depending on the chromosomal composition and formation 

mechanism. There is autopolyploidy, when the polyploidization process occur 

isolated, with no hybridization step and involving only homospecific sets of 

chromosomes (Otto, 2007). On the other hand, as mentioned above, when 

2
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complete heterospecific sets of chromosomes are brought together by 

hybridization (Otto, 2007) there is allopolyploidy. 

Autopolyploids usually present polysomic inheritance, multivalent 

association of chromosomes during meiosis I and no prior differentiation in the 

chromosomal sets (Stebbins, 1947, Parisod et al., 2010, Wright et al., 2014). In 

contrast, most allopolyploids are balanced allopolyploids, rarely presenting 

multivalent association and have the same cytogenetic behavior as diploids since 

they contain multiples of diploid genotypes in one genome (Stebbins, 1947, Parisod 

et al, 2010, Wright, 2014).  

Stebbins (1947) was the first to propose a genetic/cytogenetic approach to 

distinguish auto-from allo-polyploids, that has been widely used. Nevertheless, it 

can be deceptive because chromosome pairing can be affected by other factors 

than the chromosomal structure (Jenczewski and Alix, 2004; Otto, 2007). 

Nevertheless, polysomic inheritance is considered a good indicative feature to 

distinguish autopolyploids from allopolyploids and has been regularly observed in 

natural populations (Jackson and Jackson, 1996; Landergott et al., 2006; Stift, et al., 

2008).  

Allopolyploid species conceptually have a high potential to adapt to a 

wider range of ecological niches and to unstable environments, better surviving 

than their diploid progenitors (Stebbins, 1950, 1971, Mable, 2013). On the other 

hand, autopolyploids have been found to be rare and suffering from several 

evolutionary disadvantages compared to their hybrid counterparts (Clausen et al., 

1945; Stebbins, 1971). Ramsey and Schemske (1998) estimated that the rate of 

autopolyploid formation is higher than that of allopolyploids but on the other hand, 

natural allopolyploidy have been more consensually considered “more common” 

than autopolyploidy (Abbott et al., 2013). 

For now, the relative frequency of autopolyploid versus allopolyploid origins 

remains uncertain (Doyle and Sherman-Broyles, 2017), and may be difficult to 

determine as in nature several intermediate situations might occur (Ramsey and 

Schemske, 1998; Mallet, 2007). In fact, many naturally occurring polyploids may be 

3
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incorrectly strictly classified as auto- or allo-polyploids, as they can be intermediates 

or “segmental allopolyploids” (Stebbins, 1947; Boff and Schifino-Wittmann, 2003).   

Through artificially manipulation undoubtable autopolyploids can be 

produced (Hegarty et al., 2013; Zhou and Gui, 2017) and have a key role in the 

study of polyploidy. Despite being experimentally less appealing and not the focus 

of this thesis, the study of autopolyploid systems is in fact also of graet interest, 

because they are fundamental to disentangle the effects of hybridization and 

ploidy rise onto gene expression regulation and output (Wang et al., 2006; Chen, 

2007). 

Further than being auto- or allo-, polyploids can be also classified based on 

their evolutionary age as neo-, meso- or paleopolyploids, ordered by increasing 

age (Comai, 2005). Additionally, polyploids occur naturally but can also be the 

result of experimental breeding (Sattler et. al., 2016).  

 

1.3. The prevalence of animal (allo)polyploidy 

It has been accepted since many years that different organisms typically 

display variable tolerance to polyploidy and hybridization, with plants generally 

being recognized as more tolerant than animals, and invertebrates more tolerant 

than vertebrates (Ohno, 1970; Stebbins, 1971). The “why that is so?” or even if “it is 

that so?” are questions not fully clarified.  

The fact is that hybrids and allopolyploids among animals have for long 

been considered simple errors of the evolutionary process, but the success and 

perpetuation of hybrid, polyploid and allopolyploid species, as also their significant 

frequency in many animal groups, like in fish, have been contradicting this old rood 

ideas.  

 

1.3.1. Historical perspective of “Why polyploidy is rarer in animals than in 

plants”  

Polyploidy has been known and recognized to be particularly prevalent 

among plants, both as an ancient and an ongoing evolutionary process (Adams 

and Wendel, 2005). But on the other hand, despite a considerable number of 

4
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successful and stable polyploid animal taxa have been revealed over the years, 

the role of polyploidy in animal evolution has been neglected and the focus has 

been put on deleterious aspects (Orr, 1990).  

The minor role for polyploidy in animal evolution was posed based on the 

classic arguments presented by Müller in 1925, stating that the animal occurrence 

of polyploidy would be impaired by its interference with sex determination 

processes and the disruption of gene dosage balance (Müller, 1925; Orr, 1990). 

Since then, this paradigm became progressively imprinted, and zoologists 

significantly reduced their interest in embracing research on the topic. On the 

contrary, with plants, research on polyploidy experienced a sound development 

within both conceptual and experimental frameworks. This high disparity between 

zoological and botanical research is evident in the literature, and a good example 

of that is the revision edited by Soltis and Soltis (2012) on polyploidy and genome 

evolution, where only 17% of the compilation being animal-related. 

While cytogenetic analysis of large samples of wild specimens is a common 

practice for botanists, it is much more uncommon for zoologists due to practical 

and conceptual reasons (Mable, 2004). So, if cytogenetic analysis was further 

applied to large samples of wild animal specimens, it is expected to greatly 

increase polyploidy occurrence discoveries within the animal kingdom. In fact, it 

seems that a positive correlation between records of natural animal polyploids and 

the efforts putt into taxonomic surveys by animal cytogeneticists can already be 

noticed (for example in Ráb and Collares-Pereira, 1995; Grishanin et al., 2006; 

Gromicho and Collares-Pereira, 2007; Hall, 2009). 

Interesting is also to note that zoologists have frequently a typological 

concept of karyotype as in Ráb and Collares-Pereira (1995), Gromicho and 

Collares-Pereira (2007) and Arai (2011). Also, many have assumed that any 

structural or numerical change in the karyotype would seriously compromise the 

fertility of the organism, and consequently will be negatively selected. In that 

scope, animal polyploids have been seen by zoologists as transitory mistakes with 

low or none evolutionary weight, and consequently have not been “worthy” of 

much research efforts. However, for example, in fish, the successful maintenance 
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and perpetuation of several polyploid species and lineages strongly suggests the 

opposite assumption (Le Comber and Smith, 2004).  

Another aspect to consider is that ancient polyploids are difficult to 

recognize. One reason is that polyploid genomes can be highly dynamic and post-

polyploidization events can be masked by large-scale genome reorganization 

events that are collectively termed ‘re-diploidization’ (Dodsworth et. al., 2016). 

Hence, many animals that now appear to be diploid might have been polyploid 

in origin. Anyhow, it is already established that ancient as well as recent 

polyploidizations have not only significantly shaped the genomes of plants but also 

the genomes of animals (Gregory and Mable, 2005). In summary, it is not by far a 

marginal process in animal evolution.  

 

1.3.2. Polyploidy in animals 

Concerning invertebrates, polyploidy has been documented nearly in all 

major phyla (Turbellaria, Trematoda, Nematomorpha, Tardigrada, Aracnidae, 

Rotifera, Insecta, Crustacea, Annelida and Mollusca) (Gregory and Mable, 2005). 

Among vertebrates, polyploidy is especially frequent among fish, but it is also 

frequent in amphibians and reptiles (Mable et al., 2011). The classical examples of 

polyploid amphibians are the anuran species Hyla versicolor (the Gray treefrog), 

Phyllomedusa burmeisteri (Walking leaf frog) and Odontophrynus americanus (the 

American ground frog) (White, 1978; Otto and Whitton, 2000) but other examples 

can be found in Urodela, as for example the Ambystoma jeffersonianum (Jefferson 

salamander) (Otto and Whitton, 2000). In reptiles, mostly in lizards and in one 

species of turtle, the Platemys platycephala (twist-necked turtle), polyploidy was 

also documented (Otto and Whitton, 2000; Gregory and Mable, 2005; Bogart et. 

al., 2007; Mable et al., 2011; Evans et al., 2012).  

In fishes the abundance of polyploidy examples in four highly species rich 

families (Acipenseridae, Catostomidae, Salmonidae, and Cyprinidae) (Otto and 

Whitton, 2000) have granted them a title of exemption regarding the generalized 

assumption of rarity of polyploidy in vertebrates. In fact, there are already several 

extensive studies that were dedicated to animal polyploidy which 
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showed/postulated a preponderant incidence in fish, for example, Leggatt and 

Iwama, (2003); Le Comber and Smith (2004) and Mable et al., (2011). To date, 

polyploidy in fish is hypothesized for Petromyzontiformes and is now confirmed in 

the classes Chondrichthyes, Sarcopterygii and Actinopterygii, in a total of 14 orders 

(Collares-Pereira et al., 2013). 

Among homeotherm vertebrates, polyploidy was found less widespread. It 

was erratically documented in Gallus domesticus (domestic chicken) and in a 

Psittaciform species, the Ara ararauna (blue-and yellow macaw) (Otto and 

Whitton, 2000; Gregory and Mable, 2005). It was also described for two octodontid 

rodents from Argentina’s deserts known as the Red and the Golden Viscacha rats 

(Tympanoctomys barrerae and Pipanacoctomys aureus) (Gallardo et. al., 1999, 

2004, 2006), but those findings have been strongly disputed (Svartman et al., 2005). 

In humans, constitutive total polyploidy also occurs, either in the form of triploidy or 

tetraploidy. It is estimated to happen in every 4.5–8.8% of human conceptions, but 

it leads consistently to an early developmental inviability (Egozcue et al., 2002). 

 

1.4. Fish as good models to study (allo)polyploid genome regulation.  

Polyploidy has been discussed as being particularly important and prevalent 

with regard to speciation of fishes (Le Comber and Smith; 2004). In fact, fishes are 

great model systems to study the origins and consequences of polyploidy. They 

offer opportunities to study and understand polyploidy in contexts, which are 

harder to find in plants. For example, dioecy is much rarer in plants than in animals 

(Renner and Ricklefs, 1995; Bull, 1983), and it is frequently genetically based. In 

genetically based sex determination systems, issues may emerge with ploidy 

increase (e.g. correct gene dosage achievement) (Müller, 1925; Mable, 2004). 

However, those issues have been creatively and diversely overcome in many 

polyploid fishes. Despite the variability of sex determination processes has been 

demonstrated among different vertebrate taxa (Grandont and Jenczewski, 2013; 

Stenberg and Saura, 2013), no other group offers so much diversity of sex 

determination mechanisms as teleost fish. In teleosts, a complete set of 

reproductive systems can be observed and studied in parallel with polyploidy. 
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Strictly bisexual and unisexual polyploid fish do occur (Tsigenopoulos et. al., 2002), 

but also many other types. These include asexual reproduction, hermaphroditism, 

sex determination based on the presence of a single or multiple central regulatory 

sex chromosome or based on the ratio of sex chromosomes to autosomal 

chromosomes (Otto and Whitton, 2000; Mank and Avise, 2009; Matos et al., 2010; 

Machado et al., 2016). All are common sex determination mechanisms found in 

fishes, strictly, simultaneously or sequentially. Additionally, because of the frequent 

convergence of hybridization with polyploidy, many altered distinct reproductive 

pathways with altered oogenesis and/or spermatogenesis (eg. meiotic 

hybridogenesis, clonal gametogenesis, non-reductional meiosis) are used by 

allopolyploid fish (Alves et al., 2001).  

Another asset of fishes that increases their value as model system in which to 

examine polyploidy is that polyploidy can be studied at different time scales. The 

ancestors of vertebrates went through two genome doubling events, one prior to 

the Cambrian explosion, and a second one in the early Devonian (Meyer and 

Schartl, 1999). Then, in the late Devonian, after the divergence of the lobe-finned 

fishes (Sarcopterygii) there was a third duplication, leading to the ray-finned fishes 

(Actinopterygii) (Amores et al., 1998; Vogel, 1998; Meyer and Schartl, 1999). As a 

consequence of this duplications, the multigene families in fish are larger than in 

mammals (Meyer and Schartl, 1999) and the resultant increased redundancy in 

gene copy number have been pointed out as a possible cause for the success and 

diversity of fishes (Meyer and Schartl, 1999).  

 

1.4.1. The hybridogenetic fish complex S. alburnoides 

S. alburnoides is described as an allopolyploid hybridogenetic complex, 

endemic from the Iberian Peninsula. “Hybridogenetic” refers to an alternative 

mode of reproduction resembling parthenogenesis, but rather than completely 

asexual, it is hemiclonal (Alves et al., 2001). “Complex” is the technical terminus 

denoting a natural system composed of parental species and their hybrids, with 

altered modes of reproduction and reproductive interdependence (Alves et al., 

2001). 
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In the origin of the S. alburnoides complex is a unidirectional hybridization 

event involving the sympatric S. pyrenaicus females (P genome) (Alves et al., 1997) 

and males from an already extinct species belonging to the Anaecypris hispanica 

lineage (A genome) (Alves et al., 2001; Robalo et al., 2006; Gromicho et al., 2006a; 

Collares-Pereira and Coelho, 2010). Concerning the age of the complex, as also 

concerning the number of original hybridization events, there is some controversy. 

While Cunha et al. (2004) suggested an origin around 1,400,000 years ago, Sousa-

Santos et al. (2007a) estimated an age of 700,000 years. In terms of reproductive 

modes, both sexual and nonsexual are found within this complex and the 

intervenient individuals are neither strictly clonal nor hemiclonal regarding their 

inheritance patterns (Crespo-López et al., 2006; Gromicho and Collares-Pereira, 

2007).  

The complex is widely distributed in the Iberian Peninsula (Figure 1).  

 

 

 

 

Figure 1. Iberian Peninsula - Distribution range of Squalius alburnoides and of the 3 

Squalius species which contribute to the reproductive dynamics 

of the complex. 
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From the mate of individuals with the original hybrid genomotype (PA) with 

individuals of other sympatric Squalius species (S. carolitertii in the Northern basins – 

C genome; S. pyrenaicus in the southern basins – P genome and S. aradensis in the 

independent southerly Quarteira basin – Q genome), several allopolyploid forms 

emerged, including forms with a replacement of the S. pyrenaicus nuclear 

ancestral genome by the genomes of the extant sympatric species through 

introgression (Alves et al., 2001; Pala and Coelho, 2005; Sousa-Santos et al., 2006a; 

Cunha et. al., 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nowadays, in Portugal, the complex comprise fertile and interdependent 

hybrids of both sexes, with several ploidy levels and genomic compositions 

including diploids (2n=50: PA, CA; QA;), triploids (3n = 75: PAA, PPA, CAA, CCA; 

QAA; QQA) and tetraploids (4n = 100: PAAA; PPAA, CCAA; QQAA) (Figure 

2b)(Alves et al., 2001; Collares-Pereira and Coelho, 2010; Collares-Pereira et al., 

2013) (Figures 2a and 2b), and despite not yet found in nature, other triploid and 

Figure 2. Different S. alburnoides genomotypes. a) hybrid zones; b) genomotypes 

found in natural populations; c) hypothetical artificial crosses leading to tri-

genomic hybrid (TGH) progeny.  
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tetraploid genomic combinations can be obtained in captivity. For example, 

triploids with three different genomic complements (tri-genomic hybrids) can be 

produced, either with PAQ, PAC or CAQ combinations (Figure 2c).  

The S. alburnoides mtDNA is usually S. pyrenaicus (the maternal ancestor), 

although some other introgressions have been reported (Alves et al., 1997; Sousa-

Santos et al., 2006a, 2007a).  

There are significant differences between populations concerning the 

relative frequency of each genomotype of S. alburnoides (Collares-Pereira et al., 

2013). However, in common they have a substantial sex bias towards females. In 

fact, triploids are mostly females, and triploids are the most abundant form in almost 

all populations of S. alburnoides. The exceptions are a couple of populations found 

in the Northern Portuguese basins, which are mainly constituted by symmetrical 

tetraploids (CCAA) with a balanced sex ratio (Cunha et al., 2008). 

A major difference between populations is the exclusive presence in central 

and southern populations of an all-male lineage of nuclear non-hybrids with AA 

nuclear genome and S. pyrenaicus (P) mtDNA. All AA individuals found so far were 

males, with exception from 2 females, 1 found by Carmona et al. (1997) and other 

by Sousa-Santos et al. (2006b). These males do not represent neither an 

independent nor a self-sustainable lineage as they are solely reconstituted within 

the complex by mating with allotriploid females (PAA or QAA).  

 Concerning the reproductive modes of S. alburnoides, they are highly 

diverse. Normal sexual reproduction, clonal inheritance, hybridogenesis and 

meiotic hybridogenesis have long been identified to occur in S. alburnoides 

(reviewed in Alves et al., 2001 and Collares-Pereira et al., 2013), but recently also 

androgenesis was added to this list (Morgado-Santos et al., 2017). Moreover, the 

reproductive interdependence between forms is highly complex, but it is 

considerably well-known for the most abundant forms of the complex (Alves et al., 

2001; Collares-Pereira et al., 2013; Morgado-Santos et al, 2016; 2017), and grounded 

on artificial crosses and analysis of distinct molecular markers (Alves et al., 2001; 

Pala and Coelho, 2005; Crespo-López et al., 2006; Morgado-Santos et al., 2016; 

2017). On the other hand, the reproductive modes of rarer genomotypes, such as 
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unbalanced tetraploids and most the genomotypes containing S. aradensis 

genome (Q), have not yet been identified.  

Despite the diversity of reproductive modes found in S. alburnoides, the most 

characteristic of the complex, and the one undertaken by the most common S. 

alburnoides genomotypes (PAA), is meiotic hybridogenesis. In meiotic 

hybridogenesis the heterospecific genome is discard from the oocytes and the 

remaining (similar) genomes undergo a normal meiosis (Alves et al., 2001; Sousa-

Santos et al., 2007b). 

Although S. alburnoides individuals have distinct reproductive modes, they 

are gonochoristic, but a very few hermaphroditic individuals have been identified 

(Matos et al., 2010). Also, S. alburnoides lacks sexual dimorphism so, the sex of the 

individuals can only be determinable inside the reproductive season (once a year 

from March to May). Other interesting feature of the S. alburnoides complex is that 

a visual distinction between genomotypes is not a simple thing. For example, 

diploid and triploid hybrid forms are undistinguishable by morphometric characters 

(Cunha et al., 2009). On the other hand, PP, CC and AA genomotypes are easily 

distinguishable from each other and from the hybrids. Also, very few differences in 

growth and reproductive traits were found between PA and PAA females (Ribeiro 

et al., 2003). Concerning longevity, also only marginal differences have been 

observed between triploid (living up to 6 years), diploid females (living up to 5 years) 

and AA males (living up to 4 years) (Riberio et al., 2003).  

 Due to its unique features among polyploid taxa, the Squalius alburnoides 

complex of hybrid fish has been a desirable system to study genome regulation 

and interaction in animal allopolyploids. 

As an inter-generic allopolyploid, sequence differences have been easily 

found and used to discriminate between different genome-specific gene copies 

and determine if they contribute or not to the overall expression (Pala et al, 2008a; 

2010). Coupled with the diversity of ploidy levels and genomic constitutions, the 

complex offers a multitude of hybridization and ploidy scenarios to be studied. As 

a result, it was the first allopolyploid vertebrate model established to address 

questions on gene expression regulation (Pala et al., 2008a) and genomic 
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interactions (Pala et al., 2010). Furthermore, the presence of lineages within the 

complex, established differentially in time, further allowed to start exploring the 

evolutionary perspective of the mechanisms of gene expression regulation in 

vertebrate allopolyploids (Pala et al., 2010). However, even with a promising 

starting point of genetic information provided by Pala et al., (2005; 2008a; 2008b; 

2010) a wide-scale analysis of gene behavior throughout whole genomes have not 

yet been achieved due to lack of high throughput sequence data at that time. 

 

1.4.2. The gynogenetic fish complex P. formosa 

The Amazon molly (Poecilia formosa) is a small fresh water, live bearing fish 

that occurs in the Atlantic drainages of Central America, from Rio Tuxpan, Mexico, 

to South Texas, U.S.A. (Figure 3).  

 

 
Figure 3. Mexico Gulf - Distribution range of P. formosa, P. mexicana and P. lati-

pinna species.  
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The species is named after the Amazons, the mythical all-female tribe of 

warriors that used males from neighboring tribes to mate, and by killing all the 

resultant male progeny perpetuated as an all-female group. As the mythic Greek 

Amazons, Amazon mollies are all females, but instead of killing their male offspring, 

they simply do not produce them.  

As an all-female species Poecilia formosa, stands out as a vertebrate 

aquatic model. They present genetic clonality, a direct result of its unusual mode 

of reproduction, gynogenesis, which is a sperm-dependent parthenogenesis 

(Lampert and Schartl, 2008). P. formosa produce diploid eggs in absence of meiosis 

and these diploid eggs are pseudo-fertilized by sperm of males of closely related 

gonochoristic (bisexual) species (Lampert and Schartl, 2008). So, in nature, Amazon 

mollies always coexist with at least one of these three species: the Sailfin molly 

(Poecilia latipinna) in the USA and northern Mexico, the Atlantic molly (P. 

mexicana) and the Tamesi molly (P. latipunctata) in Mexico. These species are 

known to serve as sperm donors in the P. formosa natural habitats (Lampert and 

Schartl, 2008). However, the sperm normally do not contribute genetic information, 

being only used to trigger embryogenesis of the eggs (Lampert and Schartl, 2008). 

The paternal pronucleus does not fuse with the unreduced diploid oocyte nucleus, 

and the paternal genetic material is expelled. So, the vast majority of P. formosa 

are diploid and genetically identical (clones) to their mothers. But, in some rare 

instances paternal introgression occurs (Lampert and Schartl, 2008). Either small 

parts of male genetic material are included as microchromosomes (Nanda et al, 

2007), or the sperm nucleus may indeed fuse with the oocyte nucleus resulting in 

triploid offspring. Such triploids found in the wild are fertile and produce clonal all 

triploid female offspring (Lampert et al., 2005; 2007). However, the 

allopolyploidization events as the origin of such individuals are extremely rare and 

are considered ancient occurrences as they were traced back to the evolutionary 

past of P. formosa, in two instances (Lampert et al. 2005; Schories et al. 2007).  

In laboratory broods, allotriploids have been also obtained from diploid P. 

formosa as rare introgression cases of paternal genomes of closely related species 

(Nanda et al. 1995). Besides P. latipinna, P. mexicana and P. latipunctata that were 

14



CHAPTER 1 - INTRODUCTION 

 

 

previously mentioned, also aquarium/ornamental strains like Liberty mollies 

(derived from P. salvatoris) and Black mollies, are commonly used for that purpose. 

On the contrary to their natural triploid counterparts, this laboratory produced de-

novo triploids do not give rise to stable gynogenetic lines and can present different 

genomotypes depending on the parental species used for breeding. These include 

three different genome hybrids P. formosa. Different tri-genomic hybrids (TGHs) can 

be produced, for example, from P. formosa diploids (with ml genome) with 

introgressed genome from P. salvatoris, (s genome), or P. formosa diploids (ml 

genome) with introgressed genome from black molly (b genome) (Lamatsch et al., 

2010). TGHs are promising models for studying allele specific expression (Figure 4). 

 

 

 

 

Poecilia formosa has also been used as disease model, for example in 

cancer studies (Schartl et al., 1997; Woodhead et al., 1984) and infectious diseases 

(Tobler and Schlupp, 2005), but above all, the Poecilia formosa complex has been 

so far, an emblematic model in evolutionary biology (Tobler and Schlupp, 2005), 

mostly concerning the costs and benefits of sexual vs asexual reproduction 

(Schlupp, 2010).  

Despite that there is still a huge scarcity of genomic resources for Poeciliids 

in comparison to more conventional fish model organisms as Zebrafish, the Amazon 

molly genome sequence (GenBank Genome ID: 13072) and the genomes of P. 

latipinna (GenBank Genome ID: 17477) and P. mexicana (GenBank Genome ID: 

14658) have been recently published (Warren et al., 2018).   

Figure 4. Laboratory crosses leading to tri-genomic hybrid (TGH) progeny. a) P. 

formosa diploids (with ml genome), with introgressed genome from black 

molly (b genome) and b) P. formosa diploids (ml genome) with introgressed ge-

nome from P. salvatoris, (s genome). 
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1.4.3. The convenient laboratory engineered model Oryzias latipes 

Medaka (Oryzias latipes), which in Japanese means “tiny fish with big eyes”, 

is a small, egg-laying freshwater fish that since more than a century has been 

helping to pave the scientific path (Shima and Mitani, 2004; Naruse et al., 2011). It 

was scientifically first described as Poecilia latipes in 1850 and later renamed in 

1906, as Oryzias latipes. The name reflects the preference of Medaka (ricefish) to 

live in the rice (Oryza sativa) fields (Wittbrodt et al., 2002). 

In captivity, under laboratory-controlled conditions of 14h light/10h dark, 

temperature between 25º to 28ºC and successive mattings, the live span of 

Medaka is about 1 year. If they are not allowed to mate, put under a light/dark 

cycle of 10h light/14h dark and at a lower temperature of around 19ºC, Medaka 

can live about 2 years (Kirchmaier et. al., 2015).  

Medaka males and females present obvious sexual dimorphism. A slit in the 

dorsal fin and the hooks on the anal fin rays are evident in the males.  

 Medaka is native to Taiwan, Korea, China and Japan (Shima and Mitani, 

2004). Genetic differentiation among populations has been showed by 

phylogenetic analysis (Sakaizumi et. al., 1983 Matsuda et al., 1997; Takehana et al., 

2003, 2004, 2005), and the Medaka populations have been initially classified into 4 

genetically divergent groups: The Northern Japanese, the Southern Japanese, the 

Eastern Korean and the China-Western Korean (Takeda and Shimada, 2010) (Figure 

5). 

Figure 5: Sea of Japan - Dis-

tribution range of the four 

major Medaka groups in 

East Asia: China and West-

ern Korean, Northern Japa-

nese, Southern Japanese 

and East Korean. From the 

natural populations, labora-

tory inbred lines HNI, Hd-rR, 

and HSOK have been de-

rived.  
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Previously it was thought that the southern and northern Japanese 

populations of Medaka were the same species (O. latipes), but recently the 

northern population has been classified as a new species, O. sakaizumii. O. 

sakaizumii is now known as the northern medaka and O. latipes as the southern 

medaka (Matsuda and Sakaizumi, 2015).  

The haploid genome size of Medaka in approximately of 800 Mb (Kasahara 

et al., 2007) and the diploid karyotype of Japanese and East Korea populations is 

of 48 chromosomes, while medaka from West Korea and China have 46 

chromosomes due to a fusion of chromosome 11 and 13 (Uwa and Ojima, 1981). 

 Medaka is highly tolerant to inbreeding and this feature has been exploited 

decades ago to establish highly inbred strains from different wild populations 

(Hyodo-Taguchi 1980). As in some cases these strains have been inbred for more 

than 100 generations they can be considered as isogenic.  

 The northern and southern groups diverged approximately 4 to 18 million 

years ago. Presently, the degree of nucleotide polymorphism between inbred 

strains of these groups is extremely high, for example between HNI, from the 

Northern group and Hd-rR from the southern group it is in the range of 1% in coding 

and 4% in noncoding regions. Northern and southern groups are highly polymorphic 

and isogenic inbred lines have been established from both groups (Naruse et al. 

2004). Besides polymorphism between laboratory Medaka strains, there are also 

marked behavioral differences, body shape differences, strain specific brain 

morphology and strain specific susceptibility to mutagens (Ishikawa et al. 1999; 

Kimura et al. 2007). 

 Despite the zebrafish is still by far the fish model of election of the scientific 

community, probably due to its excellent biological features, abundant data and 

molecular resources, other fish species like medaka are being identified as good or 

better suited for answering several questions (Schartl, 2014). Although still much less 

used and with less information available, the medaka is equivalent in many ways 

to Zebrafish as a model system. For example, both have similar size, short generation 

time, are easy to breed, to maintain and to genetically manipulate under 
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laboratory conditions (Schartl, 2014). In fact, concerning genetic manipulation, 

genome editing with transgenic technologies as TALEN and CRISPR/Cas9 have 

been successfully and usefully applied to medaka (Zhu and Ge, 2018). There is also 

increasingly growing data availability and molecular resources on medaka. Several 

examples of presently available genomic information on medaka are reviewed in 

Kirchmaier et al., (2015). For instance, 1) the medaka genome is already 

sequenced and can be freely accessed through several genome browsers; 2) the 

medaka reference genome is based on the Hd-rRII1 inbred line but the genome 

sequence of HNI-II, Kaga, HSOK and Nilan and Kiyosu strains (Spivakov et al., 2014) 

are now also available; 3) blast searches against Hd-rR II and HNIII scaffolds as well 

as against raw shotgun reads of Hd-rRII are possible to do; and 4) searches for SNPs 

in the HdrR, HNI, Nilan, HSOK, and Kaga strains can also be performed. 

 Using medaka strains to produce synthetic allopolyploids have also been 

done (Figure 6) (Wakamatsu, 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These synthetic medakas are a very convenient model system for studies in 

allopolyploidy, with the advantages of having plenty of data bases and molecular 

Figure 6. Allotripoid medaka produced by nuclear transfer. Using three different 

strains, HNI-II (N), Orange-Red (S), and SOK (K) strains, each of which originated 

from different natural populations (North Japan, South Japan and East Korean, 

respectively). The nuclear transfer technique consisted in obtaining donor cell 

nuclei from blastula embryos of F1 hybrids between HNI-II and SOK, and on its 

transfer to recipient unfertilized eggs of OR, producing triploid tri-hybrid fish. 
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resources to study and to characterize radical genomic changes at early 

evolutionary states.  

 

1.5.  Genome regulation and interactions in animal allopolyploids. 

 

1.5.1. Allopolyploid genome puzzling questions 

The allopolyploidization process, namely, the addition of one or multiple 

complete sets of chromosomes inherited from different strains, sub-species, species, 

etc., results in increased total DNA content, increased number of alleles at each 

locus, increased heterozygosity and potentially increased interactions among loci 

(Johnson et al., 2007). These fundamental changes modify relationships within and 

between loci, with resulting alterations in gene expression and phenotype (Chen, 

2007). Hence, allopolyploidization is one of the most dramatic changes a genome 

can endure. So, it is absolutely fascinating how this phenomenon is so well tolerated 

and common in nature. 

(Allo)Tripoloidy is the polyploid state or condition of having three complete 

sets of chromosomes. Remarkably, even this euploid/uneven chromosomal state 

does not always result in catastrophic genomic imbalance. In mammals, it has 

serious deleterious effects (Antonarakis et al., 2004), but lower vertebrates, like 

reptiles, amphibians and fish cope very well with it (Otto and Whitton, 2000). This 

implies that either effective compensation is occurring or that there is no necessity 

for such mechanisms. 

It is important to understand what factors allow lower vertebrates to endure 

and maintain ploidy changes (Pignatta and Comai, 2009). Not only to know for the 

sake of knowledge but also having in perspective that it may shed some light on 

how to overcome deleterious expression of supplementary number of 

chromosomes that occur in higher vertebrates, and generally have very 

undesirable consequences in humans, like Down Syndrome (Antonarakis et al., 

2004) and many cancers (DePamphilis, 2016). 
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1.5.2. Gene expression retort to dosage increase and the pioneer model S. 

alburnoides. 

Lower vertebrates deal with hybrid constitution and gene dosage increase 

very effectively, as they survive and perpetuate (Otto and Whitton, 2000). This 

evolutionary success suggests that they developed, and/or make use of 

mechanisms that allow to overcome genomic shock and instability, potentiating 

species adaptation and viability. The effect of dosage on gene expression is the 

result of the stoichiometric interactions of multiple dosage sensitive trans-regulatory 

factors among themselves and with their target genes (Birchler and Veitia, 2007; 

Malone et al., 2012). In euploids the dosage of the genomic complement is 

changed proportionally, and the stoichiometric relationships are presumably 

maintained (Birchler and Veitia, 2010). Hence, in theory, the level of gene 

expression should be increased or decreased according to the ploidy variation, 

which in many cases does not happen (Birchler et al., 2010). A proposed regulatory 

mechanism to be operating in allopolyploid organisms, that could allow an 

efficient competition with their diploid equivalents, is dosage compensation (Pala 

et al., 2008a).  

As no obvious phenotypic differences are observed between diploid and 

triploid hybrid biotypes of S. alburnoides (Alves et al., 2001; Cunha et al., 2009) the 

occurrence of dosage compensation in triploids to the diploid level was easily 

speculated. The validation of this hypothesis at the expression level was first pursued 

by Pala et al. (2008a).  

First, from simultaneously extracted liver DNA and RNA of 2n PA and 3n PAA 

individuals, the ratio between β-actin transcripts to β-actin gene dosage was 

estimated. Although the numerical quantification was not easy, due to material 

amount limitations, a robust tendency towards lower RNA:DNA ratio in triploids was 

observed. Then quantitative real-time RT-PCR analysis of muscle, eye, liver, and 

gonad transcripts of these diploid and triploid fish was also performed. Three 

housekeeping genes (β-actin, rpl8, and gapdh) and three gonad-specific genes 

(amh, dmrt1, and vasa) were analysed. No significant expression level differences 

were found between diploid and triploid samples. This was taken as strong 
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indication that in triploid fish there was a reduction of gene expression to the diploid 

level, and so, dosage compensation was operating in here. Later (Pala et al., 2010), 

for the genes b-actin, rpl8, gapdh and ef1a, relative expression ratios were 

obtained from the comparison between average real time RT-PCR ct values of 

triploid and tetraploid samples of several genomic compositions (PAA; CAA; CCA; 

CCAA) and the diploid controls (PA; CA). It was observed that the 3n/2n and 4n/2n 

ratios were always approximately 1, which implies dosage compensation by 

regulation of gene expression to the diploid level in different ploidy levels and 

genomic compositions. 

 

1.5.3. Dosage compensation by gene copy silencing in the S. alburnoides 

complex 

Having sustained the hypothesis of dosage compensation in the S. 

alburnoides complex, the next logical question was “how does it work”. The most 

evident possibility was the transcriptional silencing of a whole genome in triploids. 

To assess this possibility (Pala et al., 2008a, 2010) the allelic expression patterns of 

four ubiquitously expressed genes (β-actin, rpl8, ef1a and gapdh), two gonad 

specific genes (amh and dmrt1) and one eye-specific gene (rhodopsin) were 

examined in diploid, triploid and tetraploid specimens.  

To follow the expression of different alleles, RFLP’s and Sanger sequencing of 

these gene transcripts were performed, and gene by gene, specific expression 

patterns were determined by the presence or absence of expression of the 

heteromorphic alleles (P and A, and C and A). Exclusive contribution of alleles of 

the A genome in some organs and/or genes of triploid PAA and CAA individuals 

was found, indicating that the P or C genome alleles would be inactivated in these 

samples. On the contrary, exclusive expression of the P or C genomes (unpaired 

minority represented genome) in triploid PAA’s and CAA’s was not detected (Pala 

et al., 2008a and 2010). Therefore, preferential usage of A alleles in PAA’s could be 

interpreted as matter of genomic homology to be at play in regulating the profiles 

of allelic expression of triploid individuals. 
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All these findings agree with the hypothesis of dosage compensation by 

silencing of only one allele in the triploids of S. alburnoides. It was proposed that the 

observed dosage effects on the allotriploids could be the result of the expression 

of the two homomorphic A alleles when P or C allele is not detected, and the result 

of silencing of one of the A copies, when both heteromorphic alleles are 

contributing to the overall expression of a gene. With these results, an apparently 

parsimonious hypothesis, of whole haplome inactivation (Auger et al., 2005) was 

excluded. Also, parental determined genomic imprinting (Alleman and Doctor, 

2000) does not fit, because organ-specific differences were found. Another option, 

random inactivation, was also discarded because the expected 1:2 ratio of AA to 

PA and/or AA to CC allelic expression per gene in triploid samples was not 

respected. An overall predominance of P genome-copy silencing for the analyzed 

genes was calculated for PAA samples (Pala et al., 2008a) and an almost exclusive 

biallelic expression (CA) in C genome containing triploids was observed (Pala et 

al., 2010).  

 

1.5.4. Genomic context driving the patterns of allelic expression in S. 

alburnoides 

Pala et al. (2010), using the roughly geographical location north vs south, 

revealed by the presence of C or P genomes in the allopolyploid biotypes, exposed 

a substantial difference in genome specific allele usage between genomic 

contexts. A preferential expression of A genome and silencing of P genome alleles 

was observed in most triploids of one southern population analyzed (Sorraia river, 

Tejo basin). Conversely, in two analyzed northern populations (Douro and 

Mondego river basins), in the vast majority of the samples, simultaneous expression 

of both C and A genome alleles was detected, irrespective of ploidy level or 

genomic composition. As such, the different patterns of allele specific silencing 

found within the complex are apparently dependent on the presence of P or C 

genome in the triploid hybrids.  

It is well documented, mostly in plants (Adams et al., 2003; Rapp et al., 2009; 

Collares-Pereira et al., 2013) but as well in invertebrates (McManus et al., 2010) that 
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the reunion of diverged regulatory systems in a hybrid organism produces different 

patterns of target gene expression. In S. alburnoides, despite P and C genomes 

having a good functional affinity with the A genome (validated by the viability and 

apparent equal success of both hybrid biotypes within each specific distribution 

area), the results from Pala et al. (2010) indicate a differential activity of the 

regulatory elements in the presence of P or C genomic complements.  

It is also known that the regulation of gene expression is different between 

ancient and newly formed polyploids (Adams et al., 2004; Adams and Wendel, 

2005) which renders the origin and timing of the polyploidyzation and/or 

hybridization occurrence relevant for the final expression outcome. In this context, 

S. alburnoides complex emerged around 1.4 MY ago according to Cunha et al. 

(2004) and less than 0.7 MY according to Sousa-Santos et al. (2007a). Yet, the 

colonization of the northern basins in Portugal and the introduction of the C 

genome through S. carolitertii is a much more recent event – 0.05 MY ago from Tejo 

to Mondego and only 0.01 MY ago from Tejo to Douro (Sousa-Santos et al., 2007a). 

So, the later acquisition of the C genome can be the cause for the different 

interaction with the A genome in the northern allotriploid biotypes.   

The differential patterns of gene expression according to genomic 

composition, for the S. alburnoides complex, point towards a strong influence of 

the type of genomes involved in the hybridization events occurring in each local 

population.  

 

1.5.5. Candidate regulators of gene expression in allopolyploid S. 

alburnoides. 

The direct players of gene expression, determining which genes are actively 

expressed and which remain silent, are the transcription factors. Transcription 

factors are proteins that recognize and bind to specific sequences of nucleotides 

enabling the assembly and action of the full transcriptional machinery upon the 

gene body sequences they are regulating. Nevertheless, other levels of complexity 

of the genome expression regulation than the simple availability of transcription 

factors have been disclosed over the years (Blighe et al., 2018). Epigenetic marking 
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and miRNAs condition the genome response to transcription factors and so, shape 

the gene expression programs in all cells. In the hybrid and polyploid contexts their 

role and mechanism of action has been also explored (Li et al., 2011; Greaves et 

al., 2015; Jackson, 2017), and as in any cell, both epigenetic marking and miRNAs 

are used by the (allo)polyploid cells to modulate gene expression. 

Concerning miRNAs, from genome-wide expression studies in allopolyploid 

plants, their involvement in hybrid and polyploid regulation was exposed (Hegarty 

et al., 2006; Ha et al., 2009). Several observations indicate that many genes and 

miRNAs are expressed non-additively (after hybridization events and/or ploidy 

increase). Later, for animals, an inverse correlation was established between 

miRNAs levels and the abundance of transcripts containing complementary 

binding sites for that specific miRNAs (Lim et al., 2005). As it is now known that animal 

miRNAs can induce target mRNA degradation and the molecular mechanistics 

behind it (Huntzinger and Izaurralde, 2011), Inácio et al. (2012) considered them as 

good candidate regulators for the observed silencing and compensation in S. 

alburnoides.  

With high-throughput arrays and sequencing technologies, and using 

Zebrafish as reference, the small RNA profiles in different genomic compositions 

interacting in the S. alburnoides complex (AA; PP; PA and PAA) were assessed and 

compared (Inácio et al., 2012). It was verified that diploid and triploid hybrids 

shared most of their small RNA sequences, and that the miRNA expression profiles 

between libraries were highly correlated. Yet, an overall view indicates an up-

regulation of several miRNAs in triploids and a global miRNA expression in triploids 

higher than the predicted from an additive model (Inácio et al., 2012). The results 

of this study significantly support that miRNAs are probably promoting or deeply 

involved in the genome stability that consents the evolutive success of the 

complex. 

Concerning to epigenetics, it refers to heritable properties of the genome 

not involving alterations of the DNA sequence, and are mediated by chromatin 

state (Bird, 2007). Epigenetic regulation of gene expression occurs by DNA and/or 

histone modifications and is widely associated with several phenomena including 
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gene silencing (Li et al., 2011). So far, the molecular mechanism responsible for 

allelic silencing and gene expression down regulation in the allotriploid S. 

alburnoides is unknown, but a reasonable explanation, so far not explored in this 

complex, is epigenetic regulation. 

It is a fact very well documented in plants, that hybridization and polyploidy 

events are often accompanied by epigenetic alterations. As epigenetic changes 

can be stable but also potentially reversible, epigenetics has been proposed as an 

effective and flexible mean to face the genomic shock and pass through the 

incompatibilities (allo)polyploidy may bring (Chen, 2007).  

Also, as the post-(allo)polyploidization genome evolution scenarios include 

restoring of a diploid-like state (Comai, 2005; Zhou and Gui, 2017), it is easy to think 

that gene silencing events epigenetically mediated and initially reversible, can be  

in time converted in genetically fixed and irreversible states.  

In animals the general topic of epigenetic changes associated to ploidy rise 

and hybridization has been only barely tackled, with very few examples of studies 

found on the topic, and all focusing on DNA methylation changes (Koroma et al., 

2011; Xiao et al., 2013; Covelo-Soto and Leunda, 2015; Jiang et al., 2016; Zhou et 

al., 2016; Zhu and Gui, 2017). Concerning histone modifications specifically in 

(allo)polyploid animals no references were found, but the structural role of histones 

and the proteins themselves, are highly conserved evolutionarily (Over et al., 2014) 

and in addition to their structural role, histones can also influence gene expression 

(Yadav et al., 2018).  Histones tails, that are exposed in nuclear environment can 

be chemically marked, altering the affinity between them and the DNA. The result 

is a local alteration of the chromatin packing and consequently accessibility of the 

transcriptional machinery to that DNA area (Over et al., 2014). For example, 

acetylation of histone tails by histone acetyltransferases loosens the contact with 

DNA.  That creates binding sites for transcription factors enabling or facilitating 

gene expression. Methylation of histone tails can be either activating or repressive, 

it depends on the specific amino acid where it occurs (Greaves et al., 2015).  

DNA methylation is a universal epigenetic phenomenon (Li et al., 2011) and 

is the most important epigenetic change found to be associated with plant 
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polyploidy and hybridization (Li et al., 2011; Greaves et al., 2015). Concerning 

animals, as mentioned above it is only stating to be investigated in the allopolyploid 

context. In the animal genomes DNA methylation occurs preferentially at cytosines 

that are followed by guanines, called “CpGs. Methylation of the 5-position of 

cytosine (5mC) is mediated by DNA methyltransferases DNMT3a and DNMT3b and 

maintained in dividing cells by DNMT1 (Choleva-Waclaw et al., 2016). For 

invertebrate genomes, methylation happens mostly at the gene bodies (exons and 

introns) while vertebrate genomes are heavily methylated, not only on the gene 

bodies but also and importantly in repetitive sequences as transposable elements. 

(Keller et al., 2016).  

 

1.6. Aims and structure of the thesis 

The original findings of this work are enclosed in chapters 2 to 6, 

corresponding to 4 full articles already published in indexed international scientific 

journals and 1article submitted for publication. Due to the complexity of the models 

and to the overlap and interdependence of results, chapters succeed each other 

by the chronological order of publication, reflecting the progression of the work 

over time. 

 

Over the last 20 years, the S. alburnoides hybrid complex has been used as 

a model system to study a variety of topics, from polyploidy (Gromicho et al., 2006a, 

2006b) to alternative reproductive strategies (Alves et al., 1999) and sex 

determination and differentiation (Pala et al., 2008a, 2009). It was also the first 

model used in the first studies tackling allopolyploid genome regulation and 

genome interactions in the vertebrate allopolyploid context (Pala et al., 2008b, 

2010). Those previous studies in S. alburnoides complex (Pala et al., 2008a, 2010) 

have led to the assemble of an interesting theory of gene expression global dosage 

compensation by allele copy silencing operating in the allotriploids of this complex.   

 Yet, many questions remained unanswered in what concerns global gene 

expression regulation in S. alburnoides complex. It is still unknown whether dosage 

compensation acts throughout the whole genome, or if its occurrence is restricted, 
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specifically or randomly, to a subset of genes. Also, it remains to be fully 

demonstrated and understood if allelic silencing is happening globally in the 

transcriptome; if it is randomly copied or if there exists a genomic bias; or even if all 

three genome copies are expressed but with strikingly allelic imbalance.  

So, the main goal of this thesis is to illustrate how a successful allopolyploid 

animal, the emblematic allopolyploid Squalius alburnoides, globally 

transcriptionally deals with the genomic stress derived from hybridization and 

polyploidy.  

Although there was a parsimonious option of occurrence of differential 

expression regulation due to differential genome interactions (Pala et al., 2008a, 

2010) to explain the irregular genome specific allelic silencing through the various 

forms and different tissues of the S. alburnoides complex, (Pala et al., 2008a, 2010), 

other possibilities exist that would explain the observations. For example, the 

expression differences between individuals and/or between organs could be the 

result of mosaicism between organs and/or within an organ. Hence, before starting 

an expensive and labor-intensive pursuit for further clarifications, at chapter 2 this 

simple possibility has first been investigated and excluded as reason for the 

observations.  

Another very significant void in the literature that this thesis aimed to clarify 

is whether the reported silencing mechanism in triploid S. alburnoides, that is very 

frequent among both natural and synthetized allopolyploid plants (Adams et al. 

2003, 2004), is also a common mechanism among other natural and synthesized 

allopolyploid vertebrates. Obviously starting from other fish, artificially produced 

allopolyploid medakas (Oryzias latipes) and natural and artificially produced 

allopolyploid amazon mollies (Poecilia formosa) were used as models to address 

this question at chapter 3 and 5 respectively.  

At chapter 4, RNA-seq Illumina sequencing was used to perform a first 

comparative transcriptomic analysis of S. alburnoides complex. Gene expression 

levels for diploid and triploid hybrids and of the parental genomic biotypes have 

been assessed and compared.  
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In this thesis, also the question of which mechanisms could be responsible for 

the reported allelic silencing described in the S. alburnoides system was addressed. 

In specific, at chapter 5, DNA methylation (5-mC) was evaluated as a possible 

candidate mechanism. 

At chapter 6, allele specific quantification was performed on a genome 

wide scale and frequencies of complete allelic silencing and of unequal expression 

of alleles were identified in diploid and triploid S. alburnoides. 

At chapter 7, the findings and partial discussions enclosed in each one of 

the previous 5 chapters (chapters 2 to 6) are compiled to provide an overview of 

the achievements of this work and the answers found to the several questions that 

were open at its beginning.  

The last part of the present thesis (Chapter 8) corresponds to the enunciation 

of the main achievements that this work has put forward. 
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Abstract

Background: Squalius alburnoides is an Iberian cyprinid fish resulting from an interspecific hybridisation between
Squalius pyrenaicus females (P genome) and males of an unknown Anaecypris hispanica-like species (A genome). S.
alburnoides is an allopolyploid hybridogenetic complex, which makes it a likely candidate for ploidy mosaicism
occurrence, and is also an interesting model to address questions about gene expression regulation and genomic
interactions. Indeed, it was previously suggested that in S. alburnoides triploids (PAA composition) silencing of one
of the three alleles (mainly of the P allele) occurs. However, not a whole haplome is inactivated but a more or less
random inactivation of alleles varying between individuals and even between organs of the same fish was seen.
In this work we intended to correlate expression differences between individuals and/or between organs to the
occurrence of mosaicism, evaluating if mosaics could explain previous observations and its impact on the
assessment of gene expression patterns.

Results: To achieve our goal, we developed flow cytometry and cell sorting protocols for this system generating
more homogenous cellular and transcriptional samples. With this set-up we detected 10% ploidy mosaicism within
the S. alburnoides complex, and determined the allelic expression profiles of ubiquitously expressed genes (rpl8;
gapdh and b-actin) in cells from liver and kidney of mosaic and non-mosaic individuals coming from different
rivers over a wide geographic range.

Conclusions: Ploidy mosaicism occurs sporadically within the S. alburnoides complex, but in a frequency
significantly higher than reported for other organisms. Moreover, we could exclude the influence of this
phenomenon on the detection of variable allelic expression profiles of ubiquitously expressed genes (rpl8; gapdh
and b-actin) in cells from liver and kidney of triploid individuals. Finally, we determined that the expression
patterns previously detected only in a narrow geographic range is not a local restricted phenomenon but is
pervasive in rivers where S. pyrenaicus is sympatric with S. alburnoides.
We discuss mechanisms that could lead to the formation of mosaic S. alburnoides and hypothesise about a
relaxation of the mechanisms that impose a tight control over mitosis and ploidy control in mixoploids.

Background
The chromosome theory of heredity rests on the consis-
tency and stability of chromosome number and compo-
sition [1]. This consistency and stability is achieved by
the existence of extremely precise and tightly controlled

mechanisms of chromosome replication and segregation
during cell divisions [2]. However, genetic information
and the way it is inherited are not so invariant and rig-
orous as previously thought [3]. Experimental findings
in reproductive genetics have shown that basic processes
such as mitosis, meiosis/gametogenesis, fertilization and
embryogenesis are often imprecise and present some
level of plasticity [4]. It is through this mechanistic plas-
ticity and the ability of organisms to cope with see-
mingly low frequencies of genetic aberrations that
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hybridization and polyploidy emerge as naturally occur-
ring phenomena. In this light, allopolyploids, like the
cyprinid fish Squalius alburnoides, constitute a paradig-
matic example of successful escapers from the canonical
rules of reproductive biology and heredity [5-9].
The Squalius alburnoides complex is endemic from

the Iberian Peninsula. It resulted from interspecific
hybridisation between females of Squalius pyrenaicus (P
genome) and males of an unknown species related to
Anaecypris hispanica (A genome) [reviewed in [10]].
S. alburnoides is described as an allopolyploid hybri-

dogenetic complex, where allopolyploid refers to an
increased ploidy level and hybrid genome composition
of particular forms within the system; hybridogenetic
refers to an alternative mode of reproduction; and com-
plex is the technical terminus denoting a natural system
composed of parental species and their hybrids, with
altered modes of reproduction and reproductive interde-
pendence [10].
Presently, and due to the altered reproductive modes

adopted by S. alburnoides and the reproductive relation-
ship established with several allopatric bisexual Squalius
species, mainly S. carolitertii (C genome) and S. pyrenai-
cus, a multitude of ploidy levels and genomic constitu-
tions can be found [10]. These include diploids (PA,
CA), triploids (PAA, PPA, CAA, CCA) and tetraploids
(PPAA, CCAA) depending on the geographical location
(Additional file 1, Figure S1). In the Iberian southern
basins an additional form is present, composed exclu-
sively of males designated as “nuclear non-hybrid AA’s”.
These males are also considered hybrids because they
carry mtDNA of S. pyrenaicus [6], despite their nuclear
non-hybrid genome composition that is maintained
through the reproductive dynamics of the complex
[reviewed in [11]].
Being composed of allopolyploid individuals, the S.

alburnoides complex is suited for qualitative and quanti-
tative assessments of allele-specific transcriptional con-
trol (e.g. P and A). In a recent work, Pala et al. [12]
showed a preferential expression of A alleles and an
absence of P allele transcripts in most PAA triploids
from one southern population (Sorraia River, Tejo
basin, additional file 1, Figure S1). Contrastingly, in two
analysed northern populations (from Douro and Mon-
dego river basins), for the majority of individuals, both
C and A genome alleles were simultaneously detected,
irrespective of ploidy level or genomic composition. As
such, the different patterns of allele usage found within
the complex correlate with the presence of P or C gen-
omes in the hybrid triploid forms, suggesting that differ-
ential expression regulation is due to differential
genome interactions [12]. Nonetheless, while for C-con-
taining forms the specimens were collected from two
distinct Northern river basins, the P-containing

individuals were all from the same river (Sorraia, Tejo
basin) [12,13]. Thus, this phenomenon could not be
considered to be generally connected to the simulta-
neous presence of P and A genomes, or whether it is a
population-specific feature of the Sorraia River and/or
Tejo basin. This, however, is crucial information to bet-
ter understand the putative genomic interactions and/or
other mechanisms regulating gene transcription
dynamics in this allopolyploid organism.
The overrepresentation in whole organ extracts of a

specific allele could be explained by the presence of sev-
eral cell types, contributing unevenly to the total RNA
extracted. Moreover, this effect can be more evident in
an allopolyploid context when comparing organ-specific
expression patterns between individuals of different
ploidy and genomic constitutions. As such, the detection
of expression differences between individuals and/or
between organs can be the result of mosaicism within
an organ and of different levels of mosaicism between
organs. Indeed, ploidy mosaicism is well established and
documented in vertebrates [14,15]. Natural ploidy
mosaicism appears often associated with interspecific
hybridization, as in the case of the reproductive com-
plexes of the fish Poecilia formosa [16], Cobitis taenia
[17] and lizards of the genus Lacerta [18]. Hence, in this
context, the S. alburnoides complex is a likely candidate
for the occurrence of this phenomenon. Moreover, in
some species like Platemys platycephala diploid-triploid
mosaics appear to be geographically and population
dependent [19].
To determine ploidy and gene expression profiles, we

developed a flow cytometry and cell sorting protocol for
S. alburnoides tissues. This ensured a more homoge-
neous cells sampling for each organ with respect to cell
number, size and complexity. In these samples we deter-
mined the expression profile of three widely expressed
genes (rpl8, gapdh and b-actin) in liver and kidney of
diploid and triploid forms of S. alburnoides from three
major Portuguese southern river basins.

Methods
(a) Specimens collection, preliminary genotyping and
preparation of cell suspensions
Samples of S. alburnoides and S. pyrenaicus were col-
lected (and handled) with the approval of the portu-
guese National Forest Authority (AFN, fishing credential
n° 29/2011) from several locations, distributed by three
major river basins, corresponding to the southern distri-
bution range of the complex in sympatry with S. pyre-
naicus (Tejo, Guadiana and Almargem basins)
(Additional file 1, Figure S1). All individuals were
brought alive to the laboratory, morphologically identi-
fied and maintained under international ethical guide-
lines (ASAB, 2006).
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From each individual a fin clip was obtained and each
specimen was identified following the method described
in Morgado-Santos et al. [20]. DNA was obtained by
standard phenol/chloroform extraction from fins and
the specimens were genotyped according to Inácio et al.
[21]. Each individual was sacrificed with an overdose of
the anaesthetic MS222 and blood was collected directly
from the heart, diluted in freezing solution (40 mM
citric acid trisodium salt, 0.25 M sucrose, and 5%
dimethyl sulfoxide) and immediately frozen at -80°C for
at least 30 minutes (to allow stabilization). Liver and
kidney were collected and immediately digested for 15
minutes in 0.25% Trypsin (Sigma) and mechanically dis-
sociated/homogenized using 26 G needle syringes. A
HBSS solution containing 2% FBS was added to each
sample to inactivate the enzymes and an 1100 rpm cen-
trifugation for 8 minutes at 4°C was performed. Cells
were resuspended in a HBSS + 2% FBS solution and fil-
tered through a 40 μm nylon mesh. Cell numbers, mor-
phology and viability (percentage of living cells from
each organ after digestion treatment) were assessed
using a Hemocytometer and Trypan blue staining.

(b) Ploidy assessment
After preparation of the cell suspensions from liver, kid-
ney and blood, nuclear staining was performed to assess
ploidy diversity among cells of each organ in a subsam-
ple of each cell suspension. DRAQ5 (Biostatus) was
added to aliquots of 0.5 × 106 or 1 × 106 cells of each
cell suspension according to manufacturer instructions.
Chicken blood (2.5 pg of DNA per erythrocyte) was

used as standard.
Cells were analysed on a FACSAria cytometer (BD

Biosciences, San Jose, CA) equipped with both a 488
nm (15 mW output) Coherent Sapphire solid state laser
(for light scatter analysis) and a 633 nm (18 mW out-
put) JDS Uniphase HeNe air cooled laser for Draq5
excitation. Draq5 emission was detected using a 660/20
bandpass filter. Data was acquired using FACSDiva soft-
ware (BD Biosciences, San Jose, CA) and acquisition of
cells was performed with gating to exclude cell doublets
and debris (FSC-W x FSC-A). The total number of col-
lected events for ploidy determination was >10,000 per
sample.

(c) Cell sorting
To the remaining fraction of the cell suspensions of liver
and kidney (DRAQ5 free), propidium iodide (P.I.: 1/5 of
stock solution at 0.5 ng/ml) was added and incubated
for 20 min at room temperature. Cells were analysed on
a FACSAria high-speed cell sorter using the 488 nm (15
mW output) Coherent Sapphire solid state laser for
light scatter analysis and P.I. excitation. P.I. emission
was detected using a 695/40 band-pass filter. Data were

acquired using FACSDiva software and acquisition of
cells was performed with gating to exclude cell doublets
and debris (FSC-W x FSC-A), and dead cells (P.I.
positive).
From the light scatter dot plots (FSC-A x SSC-A)

obtained from each organ digestion, a consistent pattern
of events was identified between samples of the same
organ, and two main regions (A and B: AL and BL in
liver, AK and BK in kidney) were defined for each organ.
For a set of individuals that presented homogeneous
ploidy level, one region (BL from liver and BK from kid-
ney) was chosen for cell sorting to increase the intra
and inter sample homogeneity. Also, from three non-
mosaic individuals (Sq18, Sq29 and Sq31), composed
exclusively of 3 n cells, both A and B populations from
both organs were sorted to assess whether expression
mosaics correlate with different cell types. In one of the
individuals where ploidy mosaicism was detected, both
regions (A and B) from each organ were independently
sorted because they roughly corresponded to 2 n and 3
n cells.
At least 2 replicates of 100,000 cells were sorted from

each organ/fish directly to Buffer RLT Plus of the All-
Prep DNA/RNA Mini Kit (Qiagen) and immediately fro-
zen at -80°C for posterior nucleic acid extraction.

(d) Genotyping and genome expression determination of
the sorted cells
RNA and DNA were obtained from the previously fro-
zen cells using AllPrep DNA/RNA Mini Kit (Qiagen).
The isolated DNA of BL sorted cell population of each

fish was used as template for the amplification of ß-
actin gene. Genotyping of that cell population was per-
formed based on analyses of ß-actin PCR products
according to Sousa-Santos et al. [22].
From the extracted RNA, first-strand cDNA was

synthesized with RevertAid First Strand cDNA Synthesis
Kit (Fermentas) by using oligo dT primers. Three genes,
ß-actin, rpl8 and gapdh were amplified with specific pri-
mers (Additional file 2, Table S1) and according to the
following PCR conditions: pre-heating at 94°C for 5
min, 35 cycles at 94°C for 1 min, 53°C (rpl8)/56°C
(gapdh and ß-actin) for 1 min and 72°C for 1 min 30 s
and a final extension at 72°C for 15 min. The PCR pro-
ducts were directly sequenced and analysed. Poly-
morphic sites for the two genomes (P and A) for
Almargem and Guadiana fish populations were identi-
fied for the three genes using genome control sequences
obtained from S. pyrenaicus and “nuclear non-hybrid” S.
alburnoides from the mentioned rivers [GenBank acces-
sion numbers: JN790945; JN802520-JN802528;
JN813376-JN802582]. For Tejo specimens the work of
Pala et al. [12,13] provided the sequences for Tejo P
and A genome specific polymorphisms for the three
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genes [EU199435-6; EU542913-6]. In hybrid samples,
the presence of cDNAs derived from single genome
copies or from both genomes was determined through
sequence comparison by sequence alignment using
Sequencher ver. 4.0 (Gene Codes Corporation, Inc.) and
based on the identified polymorphic sites between gen-
omes (P and A). Forward and reverse sequences for
each gene were obtained per individual/per organ.

Results
(a) Intra-organ differences in ploidy - Detection of mosaic
individuals
A total of 40 fish were analysed using flow cytometry for
ploidy determination in blood, liver and kidney cell sus-
pensions: four S. pyrenaicus, three nuclear non-hybrid S.
alburnoides and 33 hybrids S. alburnoides (Table 1).
All the analysed S. pyrenaicus and nuclear non-hybrids

S. alburnoides displayed exclusively diploid cells in liver,
kidney and blood. From the analysis of the hybrid indi-
viduals, four were identified as ploidy mosaics (Figure
1a; Table 1): three from Almargem and one from
Guadiana. In all four specimens, mosaicism was detected
both in liver and in kidney but not in blood (Figure 1a).
For mosaic individuals, the percentage of 2n and 3n
cells within each organ was assessed (Table 2). In kid-
ney, the percentages of 2n and 3n cells were quite con-
stant between individuals, amounting to around 50%. In
liver, the inter-individual variability was higher, and in
three of the four cases there were more of 3n than 2n
cells composing the organ. In blood, 100% of the cells
were diploid in one mosaic specimen and 100% triploid
in two others. In the fourth mosaic specimen vestigial
amounts, less than 1.5%, of 2n cells were detected.

(b) Determination of genotype and allele-specific
expression in mosaic and non-mosaic individuals
From the analysis of each cell suspension in the flow
cytometer a light scatter dot plot (FSC-A x SSC-A) of
each organ was obtained for all individuals (Figure 2).
The light scatter dot plots from all blood samples pre-
sented just one homogenous population and one region
was detected (AB) (Figure 2a). From the light scatter
plots obtained from liver and kidney, despite some
variability found between individuals, two main dot
regions, (A and B: AL and BL in liver, AK and BK in kid-
ney) could be identified for each organ for each speci-
men (Figure 2b and 2c).
b1) Gene expression patterns according to organ and
geographical location
The allele expression pattern of ß-actin, rpl8 and gapdh
genes of BK and BL cells was assessed for a total of 20
individuals pooled from the Tejo, Almargem and Guadi-
ana samples (Table 3). As expected, all PA individuals,
regardless of the basin of origin, expressed

simultaneously A and P alleles (biallelic expression) in
both analysed organs for the 3 analysed genes (ß-actin,
rpl8 and gapdh). In triploid PAA’s from Guadiana, the
expression of all 3 genes was also biallelic, both in liver
and kidney. rpl8 expression was as well consistently

Table 1 Specimens’ genotype, river basin, stream of
capture and ploidy status in liver, kidney and blood

Genotype1 Code Basin Stream Liver Kidney Blood

AL BL AK BK AB

AA Sq1 Almargem Almargem 2n 2n 2n 2n 2n

Sq22;

AA Sq23 Guadiana Murtega 2n 2n 2n 2n 2n

PA Sq62 Almargem Almargem 3n 2n 2n/
3n

3n 2n

PA Sq7;
Sq8

Almargem Almargem 2n 2n 2n 2n 2n

Sq24;

PA Sq25; Guadiana Foupana 2n 2n 2n 2n 2n

Sq26

PA Sq27 Guadiana Murtega 2n 2n 2n 2n 2n

PA Sq32 Tejo Ocreza 2n 2n 2n 2n 2n

Sq12;

Sq13;

Sq14;

Sq15;

PAA Sq17; Almargem Almargem 3n 3n 3n 3n 3n

Sq18;

Sq19;

Sq20;

Sq21

PAA Sq112 Almargem Almargem 3n 2n 2n/
3n

3n 3n

PAA Sq162 Almargem Almargem 3n 2n 3n 2n 2n/3n

PAA Sq28; Guadiana Murtega 3n 3n 3n 3n 3n

Sq29

PAA Sq302 Guadiana Caia 3n 2n 3n 2n 3n

PAA Sq31 Guadiana Caia 3n 3n 3n 3n 3n

Sq33;

PAA Sq34; Tejo Ocreza 3n 3n 3n 3n 3n

Sq35

Sq39;

PAA Sq40 Tejo Sorraia 3n 3n 3n 3n 3n

PP Sq2;
Sq3;

Almargem Almargem 2n 2n 2n 2n 2n

Sq4;
Sq5

Sq36;

PPA Sq37 Tejo Ocreza 3n 3n 3n 3n 3n

PPA Sq38 Tejo Sorraia 3n 3n 3n 3n 3n
1Genotyping from DNA extracted from fin clips
2Ploidy mosaic specimen

AL and BL defined cell dot regions in liver; AK and BK cell dot regions in
kidney
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biallelic in both organs in all analysed triploid PAA’s.
On the other hand, the expression profile of ß-actin and
gapdh in PAA individuals from Almargem and Tejo was
more variable. Despite the majority of biallelic expres-
sion detected for the 3 genes in both organs in the indi-
viduals from Almargem, there was one individual (Sq9)
where only A-gapdh genome transcripts were detected
in kidney and in liver samples. In two individuals from
Tejo (Sq33 and Sq40), only A allele expression of gapdh
was detected in kidney, but it was biallelic in the liver of
these specimens and in both organs of the other Tejo
individuals. ß-actin expression was biallelic in liver and
kidney of all individuals irrespective of the geographic
origin, except in the liver of one Almargem specimen
(Sq14), which presented only A transcripts.
The expression pattern of triploid PPA’s from Tejo

was also determined for ß-actin, rpl8 and gapdh genes,
and it was found to be biallelic for the 3 genes in both
organs.
The genotype of both A and B cells in liver and kid-

ney of controls for expression mosaic (non ploidy
mosaic triploid Sq18, Sq29 and Sq31) was PAA, and the
expression outcome was biallelic (Table 3) for all the

individuals for both organs and for both A and B cell
fractions.
b2) Analysis of ploidy mosaics
In two of the individuals (Sq16 and Sq30) where ploidy
mosaicism was detected, the 2n and 3n cell pools (P3n
and P2n) in liver and kidney corresponded to the light
scatter defined A and B regions in each organ (P3n = AK

= AL and P2n = BK = BL) for both organs. This natural
separation allowed sorting of 2n and 3n cells from liver
and kidney without nuclear staining. The use of interca-
lating dyes for cellular DNA content measurements
proved to be not compatible with on column DNA/
RNA extraction (tested on samples Sq6 and Sq11, that
were this way lost, data not shown). Only from Sq16
and Sq30 individual P2n and P3n sorted cells were iso-
lated without nuclear staining but only from Sq16 good
quality DNA and RNA were obtained from both diploid
and triploid cell pools.
The 2n and 3n cell pools were genotyped as P3n = AK

= AL = PAA genotype and P2n = BK = BL = AA
genotype.
The genome specific allele expression of gapdh, b-

actin and rpl8 in both 2n and 3n cell pools was as well
assessed. It revealed that P3n = AK = AL where P and A
transcripts were detected, and in P2n = BK = BL where
only A transcripts were detected.

Discussion
In the present work we studied the expression pattern of
S. alburnoides specimens from three southern Portu-
guese drainages (Tejo, Guadiana and Almargem), using
RNA obtained from homogeneous pools of cells form
whole organs. We used flow cytometry and cell sorting
to obtain homogeneous cell pools for RNA extraction
and to screen for the occurrence of somatic ploidy
mosaics in S. alburnoides.
Flow cytometry clearly revealed the occurrence of

diploid-triploid mosaicism in S. alburnoides complex.
The detected frequency of this phenomenon was
approximately 10%, indicating that the diploid-triploid
mosaics represent a non-regular component of the
genetic system of this complex rather than a stably
incorporated feature of its reproductive dynamics, as

Figure 1 DNA flow histograms of S. alburnoides liver, kidney
and whole blood cell suspensions. (a) example of one 2n/3n
mosaic specimen, (b) control diploid and triploid specimens. Plots
obtained from the analysis of Sq30; Sq2 and Sq9 respectively.

Table 2 Percentage of diploid and triploid cells in liver,
kidney and blood of mosaic S. alburnoides

Code Liver cells Kidney cells Blood

2n (%) 3n (%) 2n (%) 3n (%) 2n (%) 3n (%)

Sq6 31 69 56,6 43,4 100 0

Sq11 23,6 76,4 54,9 45,1 0 100

Sq16 20,6 79,4 52 48 1,3 98,7

Sq30 58,5 41,5 51,2 48,8 0 100

Figure 2 Typical FSCvsSSC dot plots obtained from the tissues
digestion. (a) whole blood (b) liver and (c) kidney cell suspensions
of S. alburnoides. Plots obtained from the analysis of Sq30.
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reported in Platemys platycephala [19] and Liolaemus
chiliensis [23]. Interestingly, the observed 10% ploidy
variation is qualitatively different from previous reports
of the same nature such as P. formosa [16] where this
frequency was 2 orders of magnitude lower. In this case,
being the occurrence of mosaic P. formosa very rare, the
phenomenon has been considered as a mistake of a
complicated reproductive system without evolutionary
meaning. On another hand, being higher, the S. albur-
noides mosaic frequency raises questions about whether
the phenomenon has a real impact on the evolutionary
dynamics of the species.
According to Dawley and Goddard [14], there are two

possible main mechanisms that lead to diploid/triploid
mosaicism: delayed fertilization and genome loss.
Delayed fertilization occurs when the sperm pronucleus
is slow to fuse with the female pronucleus and so, fails
to participate in the first mitotic division. In this case
the sperm nucleus is kept in one of the daughter cells
(blastomeres) and fuses with a maternal nucleus only
later, after a variable number of mitotic divisions. Con-
sequently, a mosaic arises with triploid cells resulting
from fertilization and diploid cells resulting from an
initial “gynogenetic” development. This is the case of
the diploid-triploid mosaics of Misgurnus anguillicauda-
tus [24] and possibly of the naturally occurring 2n/3n
mosaic P. formosa [16]. Another mechanism is genome

loss. Here, one parental chromosome set is selectively
eliminated. This selective loss of a whole genomic set
has been documented to occur during oogenesis of
hybridogenetic unisexuals, such as Rana esculenta [25]
and Bufo pseudoraddei baturae [26]. Both of the above
mentioned mechanisms may be causing mosaicism in S.
alburnoides, since this hybrid complex presents many
reproductive pathways with altered oogenesis (with
genomic exclusion) and spermatogenesis [reviewed in
[11]].
Considering the 2n(AA)/3n(PAA) mosaic individual

(Sq16), the possible routes (Figure 3) leading to this
mixed genotype can be explained considering the repro-
ductive modes of the different S. alburnoides forms
[reviewed in [11]]. PAA triploid individuals are the most
abundant form of the complex, and they are normally
produced throughout the syngamy of a diploid PA
oocyte with a haploid A sperm, or also by syngamy of
one haploid A oocyte with a diploid PA sperm.
Although uncommon, other path that leads to PAA for-
mation is the syngamy of a diploid AA oocyte (produced
by PAA females) with a haploid P sperm. If a P sperm
nucleus enters a diploid AA ovum, initially remaining
quiescent but later undergoing amphimixis with an early
cleavage cell (Figure 3, route I), a 2n(AA)/3n(PAA)
mosaic individual would arise through delayed fertiliza-
tion. Another delayed fertilization scenario that could

Table 3 b-actin, rpl8 and gapdh P and A allele-specific transcripts detected in liver and kidney cells of individuals from
Almargem, Guadiana and Tejo populations of the S. alburnoides complex

Code River Basin River site Ploidy Genotype1 Liver expression Kidney expression

b-actin rpl8 gapdh b-actin rpl8 gapdh

Sq22 Guadiana Murtega 2n AA A A A A A A

Sq23 Guadiana Murtega 2n AA A A A A A A

Sq1 Almargem Almargem 2n AA A A A A A A

Sq3 Almargem Almargem 2n PP P P P P P P

Sq4 Almargem Almargem 2n PP P P P P P P

Sq5 Almargem Almargem 2n PP P P P P P P

Sq27 Guadiana Murtega 2n PA PA PA PA PA PA PA

Sq8 Almargem Almargem 2n PA PA PA PA PA PA PA

Sq29 Guadiana Foupana 3n/3n PAA PA/PA PA/PA PA/PA PA/PA PA/PA PA/PA

Sq31 Guadiana Caia 3n/3n PAA PA/PA PA/PA PA/PA PA/PA PA/PA PA/PA

Sq9 Almargem Almargem 3n PAA PA PA A PA PA A

Sq13 Almargem Almargem 3n PAA PA PA PA PA PA PA

Sq14 Almargem Almargem 3n PAA A PA PA PA PA PA

Sq18 Almargem Almargem 3n/3n PAA PA/PA PA/PA PA/PA PA/PA PA/PA PA/PA

Sq16 Almargem Almargem 3n/2n PAA/AA PA/A PA/A PA/A PA/A PA/A PA/A

Sq38 Tejo Sorraia 3n PPA PA PA PA PA PA PA

Sq40 Tejo Sorraia 3n PAA PA PA PA PA PA A

Sq36 Tejo Ocreza 3n PPA PA PA PA PA PA PA

Sq37 Tejo Ocreza 3n PPA PA PA PA PA PA PA

Sq33 Tejo Ocreza 3n PAA PA PA PA PA PA A
1DNA extracted from liver cells
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lead to the occurrence of a 2n(AA)/3n(PAA) mosaic is
dispermy (Figure 3, route II). In such case a haploid
oocyte has been fertilized by two sperm cells carrying
distinct genomics sets. If karyogamy occurred only
between the oocyte nucleus (A) and the sperm carrying
the homologous genome, while the P sperm nucleus
remains inactive during one or more embryo cleavages
and only later fusing with an AA blastomere, a chimeric
2n(AA)/3n(PAA) organism would be obtained.
The 2n(AA)/3n(PAA) mosaics may also result from

the loss of a whole P genome from single dividing cells
in a triploid PAA embryo (Figure 3 routs III; IV, V and
VI). Genomic exclusion is documented to occur during
gametogenesis in hybridogenetic unisexuals, S. albur-
noides including. Studies in the hybridogenetic water
frogs Pelophylax esculentus [27] revealed that the gen-
ome exclusion from the germ line occurs prior to meio-
sis, during the prolonged phase of oogonial
proliferation. So, the extension of this phenomenon to
non-germinal lineages is not a big leap. In fact, the pro-
cess of elimination of chromatin from pre-somatic and
somatic cells is not an oddity, being in fact a very com-
mon mechanism in differentiation and development
[reviewed in [3]]. The viable occurrence of 2n/3n
human mosaics (or mixoploids) is also known [reviewed
in [28]] and was, at least circumstantially, related to
genomic exclusion and a phenomenon described as
postzygotic diploidization. These human mixoploids had
two paternal genomic contributions, so they originated
through a process similar of what is illustrated in routes
V or VI of Figure 3.
Regarding the other S. alburnoides specimens diag-

nosed as 2n/3n mosaics, we were not able to genotype

the 2n and 3n cell populations from liver and kidney, so
they might present other genomic compositions than 2n
(AA)/3n(PAA). Therefore, the possible ways and routes
that could lead to S. alburnoides 2n/3n mosaics may go
beyond the ones sketched in Figure 3.
Another aspect worth discussing is the percentage of

triploid and diploid cells that characterizes the mosaic
individuals. According to Lamatsch et al. [16], either in
the mosaics resulting from delayed fertilization or from
genomic exclusion (if occurring early in development), a
greater proportion of diploid cells, compared to triploid
ones, would be expected. Occurring early in develop-
ment, due to the lower DNA content, these diploid cells
should probably replicate their DNA faster than the tri-
ploid cells and would, therefore, be able to divide more
often than triploid cells. Nilsson and Cloud [29] postu-
lated that in organs in which cells are rapidly replicat-
ing, triploid cells are prone to lose extra chromosomes
and resume diploidy. So, if our results point to a phe-
nomenon of postzygotic diploidization by genomic
exclusion, it occurred in a not so early stage of develop-
ment, since no strong bias was detected towards diploid
cells (Table 2).
An unexpected result was found in blood ploidy mea-

sures. In this tissue, 100% of the cells were triploid in
two of the mosaic specimens, 100% diploid in another
and some vestigial 2n cells were detected in one sample
(less than 1.5%). Some cases confirm that the use of
blood is an accurate determinate of overall ploidy levels
[19], once the comparison of the proportions of diploid
and triploid cells in the blood with the ones determined
in other tissues of the same individual, it showed only
minor deviation. On the contrary, in our case, if only
blood have been analysed, the mosaics would have been
misdiagnosed as complete diploid and/or triploid indivi-
duals. The reasons why mosaicism is not present in the
S. alburnoides blood samples is difficult to explain, but
also in some specimens of the mosaic P. platycephala,
blood presented a non-mosaic phenotype while some
solid tissues of that same specimens were clearly 2n/3n
mixoploid [19]. In one case reported in humans, a 46,
XX/69,XXY mosaic also displayed a similar variation
between tissues. While the 2n/3n ratio was 2:3 in fibro-
blasts, in blood (lymphocytes) the ratio was 24:1 [30].
An explanation for these results is that the blood is
derived from the hematopoetic stem cells and has a
continuous proliferating ancestry which is different to
kidney and liver. While kidney and liver mosaicism may
reflect a situation that goes back to the embryo when
both organs were formed, the blood is reflecting the
adult situation. It may well be that in the hematopoetic
stem cell pool only one type of the two ploidy stages
will become more prevalent. If one ploidy state is advan-
tageous, there might be selection in the multiple rounds

Figure 3 Possible mechanisms leading to the formation of 2n
(AA)/3n(PAA) mosaic S. alburnoides. Alternative developmental
routs within the two main mechanisms of mosaic establishment
(delayed fertilization and genomic exclusion) that can lead to the
formation of 2n(AA)/3n(PAA) mosaics. Eggs (large circles) and sperm
(small circles with tail) contribute with P and A genomic
complements (maternal genomic contributions in black and
paternal genomic contributions in grey).
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of hematopoetic stem cell divisions. So 2n could be fas-
ter cycling than 3n and finally only 2n cells will be seen.
On the other hand 3n stem cells might have a greater
allelic repertoire and this could be advantageous.
The choice of liver, kidneys and blood as target organs

was related to technical issues, because the procedure
was attempted also in other organs but with no success.
The analysis of gonads would have been particularly
interesting because it is know from experimental crosses
that triploid S. alburnoides females can in fact, sporadi-
cally produce haploid and triploid eggs [7].
Beyond the existence of ploidy mosaicism, also the

possible occurrence of expression mosaics within the
organs was cursorily prospected (Table 1: Sq18, Sq29
and Sq31). No differences were detected, neither
between cell populations nor genes, being the expression
pattern constantly biallelic (PA) so we have not found
expression mosaicism at this level of analysis.
The prospection for mosaicism was one of the goals of

this work because if happening it could have some
impact in the expression patterns within and between
organs. The pattern of preferential homologue genome
usage previously detected for Tejo (Sorraia River popu-
lation) [12,13] could have been affected or biased due to
mosaicism. So, we analysed the expression pattern of
three genes, rpl8, gapdh and b-actin, for several S.
alburnoides individuals (which ploidy status had been
assessed), not only from Sorraia River (Tejo basin), but
also from some other populations of Tejo and other
southern drainages (Guadiana and Almargem). We
detected for all analysed specimens from Tejo a prefer-
ential biallelic expression in the cells sorted, both from
liver and kidney, for b-actin and rpl8 genes, and also in
liver cells for gapdh gene. Nevertheless, P genome tran-
scripts of gapdh were not detected in the kidney cells of
two non-mosaic triploid PAA’s, one coming from Sor-
raia and one from Ocreza. Consequently, we can con-
clude that a) the detection of only A transcripts is a
phenomenon independent of ploidy mosaicism; and b)
although P genomic complement is present, it is not
transcribed in some tissues and from some genes, as
presented and discussed by Pala et al. [13]. This allele
silencing is not restricted to individuals from a single
river (Sorraia), but also occurs in other river (Ocreza)
from the same drainage (Tejo basin), and in different
drainages (observed also in Almargem basin), along the
range of sympatry with S. pyrenaicus.
When a preferential allelic usage of A in PAA fish

happens, that could be interpreted as a matter of geno-
mic homology. If genomic homology plays a role in reg-
ulating allelic expression we would predict that in PPA
individuals we should detect P expression, predomi-
nantly. Therefore, we extended the analysis of Tejo

triploid S. alburnoides to three PPA individuals, a pre-
viously not analysed genomic constitution. For these
animals, expression is constantly biallelic (PA) suggest-
ing that genetic homology is unlikely to be at play in
regulating the profiles of allelic expression of triploid
individuals.
Also, the occasional occurrence of ploidy mosaics does

not correlate with the sporadically absent P allele
expression. Only A allele expression was observed to
occur in non-mosaic individuals, and when analysing
the expression pattern of the Sq16 mosaic specimen
(2n-AA/3n-PAA), the expression was biallelic (PA) for
the 3n (PAA) cells despite the monoallelic (A) expres-
sion of the 2n (AA) cells that composed the organs of
that individual.
In this work we detected the occurrence of ploidy

mosaics among S. alburnoides specimens, but we could
discard the influence of this phenomenon on the detec-
tion of variable allelic expression profiles in triploid
individuals. Alternatively, as previously proposed [13],
the absence of P allele transcripts in some genes of tri-
ploid PAA S. alburnoides, as we also report (Table 3),
can be explained by the occurrence of compensation by
gene-copy silencing. Consequently, PAA’ triploid indivi-
duals would only transcribe two alleles per gene (PA or
AA or PA’). In fact, some studies predominantly in poly-
ploid plants [31,32] have been pointing to a process of
functional diploidization as a way to balance gene
dosage [33]. So, if a functional diploidization is neces-
sary and is in fact the way through which S. alburnoides
can cope with allopolyploidy, the ploidy status of the
organism is not relevant. In this scenario, the occur-
rence of mixoploidy may emerge from the relaxation of
the mechanisms that impose a tight control over mitosis
and ploidy control.

Conclusions
We have shown that ploidy mosaicism occurs sporadi-
cally within the S. alburnoides complex, but in a fre-
quency significantly higher than reported for other
organisms. Moreover, we could exclude the influence of
this phenomenon on the detection of variable allelic
expression profiles of ubiquitously expressed genes in
cells from liver and kidney of triploid individuals.
Finally, we determined that the expression patterns

previously detected only in a narrow geographic range is
not a local restricted phenomenon but is widespread in
rivers where S. pyrenaicus is sympatric with S.
alburnoides.
Altogether, our results point to interesting avenues of

research on the evolutionary and mechanistic interplay
between mitotic checkpoints, polyploidization and
mosaicism.

Matos et al. BMC Genetics 2011, 12:101
http://www.biomedcentral.com/1471-2156/12/101

Page 8 of 10

Chapter 2

56



Additional material

Additional file 1: Figure S1-Distribution of S. alburnoides in Portugal
and areas of sympatry with other Squalius species involved in the
S. alburnoides polyploid reproductive complex. Figure S1-Distribution
of S. alburnoides in Portugal and areas of sympatry with other Squalius
species involved in the S. alburnoides polyploidy reproductive complex.
Distribution of S. alburnoides in Portugal and areas of sympatry with
other Squalius species involved in the S. alburnoides polyploid
reproductive complex. Rivers from which S. alburnoides and S. pyrenaicus
were sampled are marked in red in the first panel: a) Ocreza; b) Sorraia,
c) Caia; d) Murtega; e) Foupana and f) Almargem. In the second panel
the major Portuguese river basins are identified.

Additional file 2: Table S1. Primer sequences and references for
each gene. Table S1. Primer sequences and references for each gene.
Primer sequences and references for each gene amplified for this work..
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Supplementary data 

 

 

Figure S1- Distribution of S. alburnoides in Portugal and areas of sympatry with other 

Squalius species involved in the S. alburnoides polyploid reproductive complex.  

Rivers from which S. alburnoides and S. pyrenaicus were sampled are marked in red 

in the first panel: a) Ocreza; b) Sorraia, c) Caia; d) Murtega; e) Foupana and f) 

Almargem. In the second panel the major Portuguese river basins are identified. 
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Table S1. Primer sequence and references for each gene 

Gene Primer Sequence References 

β-actin 
β-ACTIN-F1 

β-ACTIN-R1 

5’-CAACGGCTCCGGCATGTG-3’ 

5’-TGCCAGGGTACATGGTGG-3’ 

Pala et al., 2008 

Pala et al., 2008 

rpl8 
Rpl8 forward 

Rpl8 reverse 

5’-CTCCGTCTTCAAAGCCCATGT-3’ 

5’-TGTTCCTCGCAGTCTGCCAG-3’ 

Pala et al., 2008 

Pala et al., 2008 

gapdh 
GAPDH-F1 

GAPDH-Ri 

5’-ATCAGGCATAATGGTTAAAGTTGG-3’ 

5’-GGCTGGGATAATGTTCTGAC-3’ 

Pala et al., 2008 

- 
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Abstract

Assessing allele-specific gene expression (ASE) on a large scale continues to be a technically challenging problem. Certain
biological phenomena, such as X chromosome inactivation and parental imprinting, affect ASE most drastically by
completely shutting down the expression of a whole set of alleles. Other more subtle effects on ASE are likely to be much
more complex and dependent on the genetic environment and are perhaps more important to understand since they may
be responsible for a significant amount of biological diversity. Tools to assess ASE in a diploid biological system are
becoming more reliable. Non-diploid systems are, however, not uncommon. In humans full or partial polyploid states are
regularly found in both healthy (meiotic cells, polynucleated cell types) and diseased tissues (trisomies, non-disjunction
events, cancerous tissues). In this work we have studied ASE in the medaka fish model system. We have developed a
method for determining ASE in polyploid organisms from RNAseq data and we have implemented this method in a
software tool set. As a biological model system we have used nuclear transplantation to experimentally produce artificial
triploid medaka composed of three different haplomes. We measured ASE in RNA isolated from the livers of two adult,
triploid medaka fish that showed a high degree of similarity. The majority of genes examined (82%) shared expression more
or less evenly among the three alleles in both triploids. The rest of the genes (18%) displayed a wide range of ASE levels.
Interestingly the majority of genes (78%) displayed generally consistent ASE levels in both triploid individuals. A large
contingent of these genes had the same allele entirely suppressed in both triploids. When viewed in a chromosomal
context, it is revealed that these genes are from large sections of 4 chromosomes and may be indicative of some broad scale
suppression of gene expression.
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Introduction

Allele specific expression (ASE) is an important component of

gene regulation that is not well studied, but is thought to account

for a major part of the phenotypic variation within and among

species [1,2]. Among plants in general, and particularly in many

food crops, polyploidy also plays a major role in enhancing

phenotypic variation and is often associated with increased vigor

and the gain of desirable traits [3]. In plants made polyploid

through hybridization, homoeologous genes (ancestrally homolo-

gous genes incorporated in an allopolyploid organism) can have

uneven allele specific expression levels or overall gene expression

levels that differ greatly from the parents [4]. These homoeologous

genes bring together their accompanying regulatory elements

which interact with the rest of the regulatory machinery upon

hybridization to unevenly affect allele expression and may lead to

extensively altered phenotypes [5]. In order to understand the

impact of allopolyploidization on a molecular genetic level, it will

be necessary to study ASE on a genome-wide scale.

In addition to better understanding of plants important to our

food supply, understanding ASE in polyploid states is important to

human health. In many cases cancerous cells contain multiple

extra chromosomes leading to partial or full polyploidy [6].

Nondisjunction events also result in partially duplicated chromo-

somes and are mostly incompatible with life in humans, but in

other cases lead to large phenotypic disruptions [7]. All of these

situations are related to the more basic question of how ASE is

affected by the elevation of a diploid genome to a polyploid state.

In such a situation it may be that alleles of each gene are

expressed at the same levels in the polyploid environment as in the

diploid such that the total gene expression is greater than that of a

parent. Alternately there could be some form of dosage
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compensation such as silencing of individual alleles or of an entire

haplome (genetically distinct set of chromosomes). There may be a

bias for one haplome, or it could be random. In order to

sufficiently answer these questions it is necessary to study the whole

genome where all alleles can be distinguished, but this has proven

to be problematic. It is a problem common to many polyploid

biological systems and has been faced before largely in plant

studies but also some animals [5–9].

Several studies have addressed the basic issue of ASE in

polyploid systems in plants, and a recent review provides an

excellent summary of these findings [5]. In general a wide array of

expression patterns have been observed in hybrid systems [5,8,9].

In some cases expression from each allele may be additive. For

other genes, however, the expression is dominated by one allele.

These effects may be tissue-specific, responsive to environmental

cues, or they may be biased toward one parent. In general these

observations have been made on small gene sets. High throughput

studies include some use of microarrays [10,11] and a recent

analysis of allopolyploid (AD) cotton using RNAseq [4].

Examples of polyploid animals are rare especially among

vertebrates, but several examples exist among amphibians and

teleost fish. An especially notable example is that of the Squalius

alburnoides complex. This is a naturally occurring inter-generic

hybrid population descended from Squalius pyrenaicus females and

males of an extinct species in which individuals may contain

between 2–4 genome copies [12,13]. A mechanism of dosage

compensation is employed by this fish is the silencing of specific

alleles, but not of an entire haplome [12].

The ability to measure ASE in these situations is vital to better

understand global mechanisms of allele dosage compensation and

to disentangle gene interaction networks. Thus, we have generated

a model in which three haploid genomes with sufficient genetic

diversity to allow determination of allele specific gene expression

were combined to experimentally produce triploids. We used the

small laboratory fish medaka (Oryzias latipes) to produce two

triploid individuals through nuclear transfer of a diploid F1 nucleus

to a recipient ovum, thus incorporating haplomes from three

disparate medaka strains. We then developed a computational

methodology to derive allele-specific expression values from

RNAseq data obtained from isolated liver RNA from the triploid

and parental diploid fish. In the triploid medaka, we find that

alleles are expressed at similar levels in most cases, but allele

suppression is not uncommon and occurs consistently in the two

triploid fish. In some cases, the suppressed alleles are completely

silenced and in these cases the silenced allele is almost never

derived from the maternal genome component stemming from the

mother of the F1.

Results

In order to produce artificial triploid fish, diploid hybrid F1

embryos were first produced through the natural mating of two

genetically different strains (the Houiken Niigata-II, or HNI-II,

strain originates from a wild population in northern Japan and the

Sokcho, or SOK, strain originates from a wild population in east

Korea). Then diploid hybrid nuclei from the developing embry-

onic blastomeres were transplanted into unfertilized eggs of a third

medaka strain (the orange-red or OR strain is derived from a

commercially available variety originated from a southern

Japanese wild population). The resulting triploid embryos have

three genetically distinct sets of chromosomes (haplomes).

Through this technique two triploid fish were produced for this

study (from now on referred to as trpA and trpB) that incorporated

genetic material from three divergent strains of medaka

(Figure 1A). Both individuals were phenotypically female, and

developed as apparently healthy adults, but were infertile.

Determination of dSNPs
To distinguish alleles and determine the contribution of each

allele to overall gene expression we focused on using SNPs

identified in the three parental strains that had been used to

produce the triploids. Similar approaches for diploid organisms

have been successful [14–16]. In diploid organisms SNPs can be

used to discriminate expression levels of two alleles, but in the

triploid case it is uncommon for a single SNP position to

discriminate all three alleles. Instead we identified SNPs that were

found to have only one possible nucleotide in one strain that did

not overlap with the observed nucleotide possibilities in the other

two strains at the same position in the same transcript.

Short read data for the three parental strains were aligned using

the STAR aligner [17] (https://code.google.com/p/rna-star/).

The STAR aligner was utilized since it is fast and can accurately

handle several mismatches, indels and/or splice junctions. Since

the reference sequences were transcripts, the ability to align over

splice junctions was disabled, but alignment over short indels was

still allowed. Short read samples had between of 54 to 61% of the

reads alignedalign (Table 1). The reference sequences in ENSMBL

arewere largely based on high throughput sequencing of the Hd-

rR strain of medaka which, like the OR strain, also originates from

the southern Japanese population. This was further supplemented

with data from the HNI strain that is similar to the HNI-II strain

and also originates from northern Japan. Therefore it is

nottherefore surprisingsurprise these two strains had the most

reads aligned and fewest dSNPs and indels detected. The SOK

strain, originating from south Korea has the fewest reads aligned

and most dSNPs and indels. Even so, using the STAR short read

aligner that can work around mismatches and indels, the number

of SOK reads aligned is not drastically different from the number

of OR and HNI-II reads aligned (Table 1). We detected 9,913

putative indels throughout the full set of transcripts. The indels in

Figure 1. Parent strains and variant calling. (A) Parent strains and
gender of donor genomes (images provided by MS). HNI-II males were
mated with SOK females to produce F1 embryos. At the blastula stage,
cells were separated and diploid nuclei from them were injected into
OR ova where they fused with the haploid nucleus of the oocyte. (B)
Examples of variants called by VarScan. Only variant positions in which
at least one strain was completely and unambiguously different from
the others could be used (variant at position 343). Variant positions
were unsuitable where one strain was only partially different (i.e. from
heterozygosity) or where a strain had insufficient coverage to
confidently call a set of observed nucleotides (variants at positions 47
and 998). The total number of dSNPs identified for each strain is
indicated in the bottom line of red text.
doi:10.1371/journal.pone.0100250.g001
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general did not seem to be very large (typically between 2–7 bp

and up to 21 bp).

Using the set of cDNA records from the ENSEMBL 65 medaka

genome annotation as our reference, we initially detected 250,982

single nucleotide variant positions where at least one of the three

parent strains differed from the reference sequence. These

positions however included many that did not provide useful

information for the following reasons: one or more strains are

heterozygous such that none can be completely distinguished from

the other two (Figure 1B, position 47), the coverage in one strain is

too low to make a confident call of observed sequence (annotated

by VarScan as an N; Figure 1B position 998), or all three strains

agree with one another but disagree with the reference. Excluding

these cases left 109,581 informational sites which can distinguish

the expression of one allele from the other two. For the sake of

brevity, and convenience, we call these sites discriminatory SNPs

(dSNPs) throughout this report. In order to measure ASE values

for all three alleles in a gene, the dSNP number was further

reduced to a final total of 83,173 dSNPs that occurred in

transcripts containing at least one dSNP representative of each

parental strain (Figure 1B discriminatory SNPs). The reference

sequences we used were primarily based on data from the OR

strain, and thus this strain had the fewest dSNPs detected.

Another departure from normal diploid determination of ASE is

that each parental strain had a different set of dSNPs that

distinguish it, and therefore we cannot simply count the reads

attributable to each parental haplome. This is largely due to the

wide variability in the number of dSNPs for each parental strain

for some transcripts. For example, in a given reference transcript

one haplome may be represented by only 1 or 2 dSNPs while

another may have 20; this situation would bias read counts toward

the haplome having 20 dSNPs. A second reason for not

performing standard read counting is the large variability in

coverage depth possible over the length of a transcript. Each dSNP

can only sample the expression signal from one haplome at one

position along the transcript. Thus, it may be misleading should

the position of the dSNP coincide with a very low or very high

depth of coverage for a given transcript.

Our strategy was to use the depth of coverage information at

dSNP positions to identify the fraction of that coverage depth that

was attributable to the haplome for which each dSNP was specific.

Then the coverage fractions attributable to each haplome were

integrated to give a single ASE value for that haplome. In order to

derive ASE values from these single positions, fractional expression

values are combined from dSNPs in the same gene. We were

therefore constrained to the 4,282 transcripts (of 24,662 annotated

in ENSEMBL version 65) that had at least one dSNP represen-

tative of each of the three haplomes. The final set of 83,173 dSNPs

are present in these 4,282 transcripts resulting in an average of

19.4 dSNPs per transcript.

Determination of ASE from Normalized Coverage Depth
Short reads aligned to a reference transcriptome generally result

in uneven depth of coverage (Figure 2A raw coverage). Many

factors may contribute to this phenomenon and it is commonly

observed in all RNAseq data. For example the expression of

alternative splice forms, where two expressed splice forms may

provide the common exons and thus more reads in an additive

fashion, while differently incorporated exons would only be

expressed at the level of each splice form. Additionally, annotated

genes often include only some of the splice forms or possible exons

that actually make up a locus thus making an accurate measure of

gene expression more difficult. Another factor that may affect

coverage variability in some transcripts stems from the inability of
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short read aligners to distinguish between equally good alignment

locations. Some subsequences of the reference can be very

common and thus give the short read aligner a difficult choice.

In these situations it is common to simply not report alignments to

these regions, to randomly select one, or to report alignments to all

regions. Thus, choices made in these areas can result in more or

less reads aligned to them. To circumvent this problem in our

analyses we chose to assess the fractional expression at dSNP sites

in each transcript (Figure 2A fractional expression at dSNPs).

Herein the fractional expression values were multiplied by the

geometric mean of coverage depth of the transcript in which they

occur in order to obtain an allele specific expression value for each

dSNP position. We chose the geometric mean of coverage depth as

a measure of gene expression in order to mitigate the effects of

transcript length and lessen the bias in apparent expression value

due to spikes in coverage. The dSNP expression values specific to

each strain are then averaged in each transcript to arrive at an

allele specific expression (ASE) value for each allele in the

transcript (Figure 2A fractional expression at dSNPs). The ASE

values calculated may be found in Table S3.

Synthetic Data Test
To evaluate the ability of this technique to accurately establish

allele specific gene expression values, we devised a set of synthetic

data in which these values were known. We generated an artificial

set of short read data from the full set of medaka transcripts. To

generate these synthetic reads, we produced a strain-specific set of

transcript sequences wherein the strain-specific SNP nucleotides

were substituted into the reference sequence. The total number of

reads generated for each transcript was the same as that found by

mapping short reads from trpA to the reference sequences, and we

kept the allele balances consistent with those measured in trpA.

For 91% of the transcripts in this data set (3,891 out of 4,282), we

obtained a correlation of greater than 0.8 when comparing

measured to actual allele expression values, with the bulk of these

(3,684, 86%) having a correlation coefficient of 0.90 or greater

(Figure 2B).

We ruled out several factors that were speculated to adversely

affect the analysis in these 9% of cases including overall

expression, numbers of dSNPs per transcript, and frequently

found sub-sequences. The details of our efforts are given in Text

S1. The randomness of generated reads likely had a role in the

poor correlation of some transcripts in cases where the three alleles

had known values very close to one another. Presume for example

the known values were 255, 260, and 265 for the three alleles.

These quantities of reads would have been generated from

random locations along the length of the strain-specific references

to represent each allele. Some noise therefore is introduced and

the reconstructed ASE values may have been 11, 12, and 11. A

reasonably close result which nevertheless results in a correlation

coefficient of 0.

Validation of SNP Calls and ASGE Trends in the Triploid
Fish

We selected seven genes with extreme allelic expression patterns

for validation (Table S1 and Figure S1). We performed Sanger

sequencing of the PCR products for each target gene in the

triploid fish and for the three parental strains. All but two of the 36

SNP calls at dSNP sites were validated in all seven sequenced

transcripts (Table S2). The trends in usage of specific alleles in

triploid fish was also assessed using a previously published method

[12,18]. The trends in allele-specific expression observed by

Sanger sequencing were also consistent with our RNAseq-based

ASE method (Figure 3 and Table S2).

The Geometric Mean of Coverage Depth Compares Well
to Read Counting

We now discuss exclusively RNAseq reads from the biological

samples aligned to the set of 4,282 ASE-compatible medaka

transcripts. We are using the geometric mean of coverage in each

transcript as a measure of the total expression of that transcript.

Each dSNP gives us the fractional expression of one allele

measured from the coverage depth at that position. These

fractional expression values are averaged over all dSNPs specific

to each strain in order to arrive at a final ASE value for the three

strains. We observe a strong correlation between the sum of

calculated ASE values and the geometric mean of the coverage in

each transcript (Figure 4A). This indicates the method employed

accurately divides the overall expression between the three alleles.

In order to examine whether the geometric mean of coverage

depth was a good measure of gene expression, we compared it to

Figure 2. Illustration of ASE method and analysis of artificial
data. (A) Cartoon of the raw coverage observed when RNAseq reads
are mapped to an example mRNA transcript and the effect of
normalizing coverage across the transcript. In both raw and normalized
coverage plots, black vertical lines indicate the positions of dSNPs. In
the cartoon of normalized coverage, the colored vertical bars at dSNP
positions indicate the contribution of the discernible allele to the
overall expression, and the colored bars to the right indicate the
average of expression values measured at dSNP sites for each allele. (B)
Correlation of known ASE values to calculated ASE values for the
synthetic data test. The calculated allele-specific expression values are
compared with the original known values for each transcript by
calculating a Pearson’s correlation coefficient. This will measure how
well the trend in the calculated ASE values matches the trend in the
original ASE values. Over 75% of the transcripts (2,628) had a correlation
coefficient greater than 0.8.
doi:10.1371/journal.pone.0100250.g002
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the commonly used method of counting fragments mapped to

each transcript. The Spearman’s correlation was calculated

comparing the whole gene expression values calculated by the

two methods. A very high correlation is observed between the two

triploids (trpA r = 0.941, trpB r = 0.938 see Figure 4B). We chose

to use the Spearman’s correlation because, as shown in Figure 4B,

the rate of increase in the normalized expression values is reduced

as higher fragment counts are reached. This is likely due to the

normalized expression value being insensitive to the length of the

original transcripts whereas the read counting method produces

higher values for longer transcripts.

A Major Set of Allele-imbalanced Genes have Silenced
One Allele

Since we only have two individuals in our analysis we selected

two arbitrary boundaries in order to help interpret the data. We

are interested in dividing genes into groups that may be

differentially expressed in the triploid environment from those

that seem to be expressed at similar levels to the average of

parental expression. To this end we select a threshold of 2-fold

change either up or down in gene expression for each triploid with

respect to the average parental gene expression. The coefficient of

variation (cv) is used here as a normalized measure of dispersion of

the allele specific expression values. A low cv indicates the three

alleles for a given gene have relatively equal expression to one

another. As the cv rises the expression of the three alleles becomes

more divergent. The highest possible cv is 1.73 which corresponds

to the condition where one allele shows some expression while the

other two alleles are totally shut down. The data indicate a

significant clustering of genes have a cv of ,0.86. This corresponds

to the situation in which one allele is not expressed (zero or near-

zero expression levels) while the other two alleles make up the bulk

of expression. We use this as a second arbitrary threshold to divide

our data. These boundaries are shown in four quadrants of plots in

Figure 5 A and B. Quadrant 0 represents transcripts in which ASE

values are relatively equal to one another and in which the overall

gene expression is similar to that of the parental strains (3,166

transcripts in trpA and 3,415 transcripts in trpB with 2,918 shared

between them). Quadrant I represents transcripts in which ASE

values are more highly dispersed but in which the overall

expression values are similar to the average of the parental strains

(468 transcripts in trpA and 440 transcripts in trpB with 309

shared between them). Quadrant II represents transcripts in which

overall expression differs from the parents but in which the ASE

values are similar to one another (533 transcripts in trpA and 338

transcripts in trpB with 149 transcripts shared between them).

Quadrant III holds transcripts with dispersed ASE values and in

which overall expression has changed from parental strains (115

transcripts in trpA and 89 transcripts in trpB with 38 shared).

The distribution of coefficients of variance has a main peak

(cv<0.2) corresponding to transcripts with alleles that express at

roughly equal levels in a triploid individuals (Figure S1). There is

also a second peak (cv<0.86) that corresponds to transcripts in

which one allele does not appear to be expressed (Figure S1).

ASE Imbalance Categories are Similar in both Triploid
Fish

Allele specific expression values for each transcript were

analyzed to identify allele expression imbalances that may indicate

exceptionally high or low expression of one allele with respect to

the other two. We first applied a goodness of fit test where the null

hypothesis is that alleles express equally. This resulted in 1,593

transcripts in trpA and 1,447 transcripts in trpB for which the

resultant p-value was less than 0.01. These sets of transcripts which

deviate from equal allele expression were then broken down into

groups indicative of exceptionally high or low expression of one

allele.

In order to identify high or low expressing alleles, we chose to

use the median of allele expression in each transcript as a basis for

comparison since it is more resistant to outliers than the median.

This is especially true in cases where the number of observations is

Figure 3. An example of parental dSNP and tri-hybrid ASGE
validation. The represented transcript is ENSORLT00000013099
(ensembl Transcript ID). One dSNP per parental genome is represented.
(A) RNA-seq and Sanger obtained sequence alignments between the
parental strains (SOK, HNI-II and OR) and the Sanger obtained
sequences for both trpA and trpB triploids. (B) Aligned chromatograms
of the three parental strains and trpA and trpB. In both triploids the
allele expression pattern determined by Sanger is consistent with the
one obtained by RNA-Seq for this transcript. In this example SOK and
HNI-II dSNPs are observed in the triploid, but the OR dSNP is not
observed.
doi:10.1371/journal.pone.0100250.g003

Figure 4. Comparison of calculated ASE values to whole gene
expression. (A) Correlation of sum of ASE values per transcript
(calculated only from dSNP sites) to geometric mean of each gene
(calculated from coverage over entire transcript). (B) Plot of geometric
mean of read coverage against raw fragment count showing a strong
correlation between the two.
doi:10.1371/journal.pone.0100250.g004
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small and a single outlier will have a very strong effect on the

mean. We selected an arbitrary boundary of 2-fold above or below

the median as a threshold for selection as a high or low expressing

allele. Six separate categories indicate one of each of the three

alleles were expressed at 2-fold above, or below the median

expression of the three alleles in a given gene (these categories are:

HNI Up, HNI Down, OR Up, OR Down, SOK Up, and SOK

Down). Another ‘spread’ category indicates genes have deviated

from the expectation of equal expression, but not been incuded

into another category, and the final ‘even’ category contains

transcripts for which deviation from equal expression was not

rejected (legend of Figures 5 and 6).

These groups help to identify trends in the distribution of cv. In

both trpA and trpB the second peak (cv<0.86) is primarily

composed of transcripts in the HNI-Down category followed by

those in the OR-Down category (Figure S2). Of the 4,282

transcripts analyzed, 358 were found to have one allele suppressed

2-fold below the median in both triploids, while 104 were found to

have an allele expressed 2-fold higher than the median allele

expression in both triploids. When genes in these categories are

displayed in their chromosomal context, strong similarities appear

between the two triploid fish (Figure 6). In fact 3,353 transcripts

are in the same category in both triploids.

Discussion

Allele-specific Suppression is a Common Feature
Overall, most genes seem to be expressed at similar total levels

in triploid fish as those in the parental strains. In the case of an

imbalance the data suggest it is more common for one allele to be

suppressed than it is for one allele to dominate expression of the

gene (Figure 5 and Figure S2). A similar feature in which certain

genes are effectively diploidized has been observed in triploid

individuals of the naturally occurring intergenic hybrid S.

alburnoides complex [12,13,18]. There does not seem to be a

global preference for any given allele in transcripts based on either

differential gene expression or allele specific gene expression. On

the other hand, in both triploids, a majority of transcripts wherein

one allele has been suppressed to expression levels at or near zero

(Figure 5 and Figure S2 coefficient of variation near 0.87) are in

only two categories: HNI down and OR down (Figure S2).

Whatever mechanism is active in this regulation, it appears as

though it has a bias for the donor female-derived haplome. In both

triploids the male-derived haplome (HNI-II) is the most drastically

suppressed and it is followed by the haplome of the recipient ovum

(SOK). On the contrary, the donor female-derived haplome (OR)

was nearly unaffected by drastic allele suppression. This could be

reflective of some form of allele suppression that favors the donor

maternal genome. This may be somehow associated with the

different packing states of the chromatin since the diploid nucleus

taken from the blastula cell had been in an active state whereas the

chromatin of the recipient ovum may have still been in a more

dormant and packed form. Thus it may be that the donor female

haplome was able to impose some allele silencing regime on the

male haplome and the recipient female haplome.

ASE Imbalances are Similar between Triploid Fish
ASE analysis of two experimentally produced medaka triploids

shows a consistent pattern of allele-specific gene regulation

between the two triploid individuals. Of the 4,282 transcripts in

our analysis, 3,353 are in the same ASE imbalance categories in

both triploid fish (Figure 6). This implies common regulatory

mechanism(s) may direct ASE in both fish. This is surprising since

polyploidy is not commonly found in medaka populations, thus

there is no expectation for the existence of selective pressures to

develop a regulatory mechanism that would act consistently on

Figure 5. Overall gene expression compared to the dispersion in allele specific expression. A comparison of the change in gene
expression with the dispersion of allele specific expression in trpA and trpB are plotted in panels (A) and (B) respectively. The horizontal axes indicate
differential expression of the triploids with respect to the parent fish lines. The average of whole gene expression in trpA and trpB is compared to the
average of the 3 parent species. The vertical axis of (A) indicates the coefficient of variation (cv) of ASE values for each transcript in trpA, while (B)
indicates the same quantity for trpB. cv values near 0 indicate that the three alleles are expressed at near equal levels, and increasing cv values
indicate a greater dispersion of allele-specific expression. A line at a cv value of 0.86 is drawn because this value correlates with the situation where
one allele is shut down entirely and the other two are expressed at similar levels to one another. Similarly the line at a cv value of 1.73 correlates with
transcripts in which two alleles have been shut off. Additionally, a grid is drawn to separate the plot into four quadrants. Quadrant ‘09 has transcripts
in which ASE values are least dispersed and gene expression is similar to the average of parental strains. Quadrant I contains transcripts which are
expressed at levels similar to those in the parents but in which ASE levels are more highly dispersed. Quadrant II contains transcripts in which
expression levels are dissimilar to the parents, but with low ASE dispersion. Quadrant III contains transcripts in which expression levels were dissimilar
to the parents and ASE dispersion was increased. Points are colored to reflect categories defined by the balance of allele expression in each transcript
(allele imbalance categories).
doi:10.1371/journal.pone.0100250.g005
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ASE in the medaka genome in a polyploid state. In some cases in

plants particular crosses have predictable patterns of ASE

dominance/suppression [3] and in S. alburnoides the pattern of

suppression is different between, yet consistent within, geograph-

ical populations [13]. In both of these cases, however, the

similarities are due to preferential suppression of one whole

Figure 6. dSNP-complete transcripts which can be placed in chromosomes. Each chromosome is represented by large vertical white bar
outlined in gray. Transcripts are represented by horizontal bars of uniform size and are placed in the rank order in which they occur in each
chromosome. The bars are colored to indicate the allelic imbalance category to which the transcript belongs based on exceptional high or low
expressing alleles. Blank spaces represent transcripts that could not be said to deviate from equal allele expression. Each chromosome is divided into
a left and right half by a black line. The left half of each chromosome gives the plot for trpA, while the right half gives the plot for trpB. The tallest bar
(that for chromosome 8) is comprised of 329 transcripts in the order they occur on the chromosome with ties being assigned sequential ranks. The
total numbers of transcripts that fall into the same category in both trpA and trpB are indicated in parenthesis after each category name in the
legend.
doi:10.1371/journal.pone.0100250.g006
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haplome whereas we do not see evidence of this in the medaka

triploids.

Some chromosomes have large regions in which one allele is

predominantly affected in a similar manner. Specifically, chromo-

somes 6, 7, 9 and 19 each have large regions in which most of the

allelic imbalances observed resulted from suppression of the HNI

allele in both triploid fish (Figure 6). We explored the possibility

the four chromosomes might have been related through duplica-

tion in the teleost-specific whole genome duplication event [21].

However, according to a recent analysis, these chromosomes are

thought to have originated from separate ancestral chromosomes

[22], so it is unlikely that they have a common set of ancestral

regulatory regions. One possible explanation is that the triploid

fish are genetically very similar and so the possible regulatory

schemes are likely limited. The three parental strains are

genetically very homogeneous due to the closed colony breeding

in which genetic bottlenecks also occur. Additionally these artificial

triploid fish could share a common parentage. Donor blastula cells

and host ova were pooled during the nuclear transfer proceedure

and it is possible the donor nuclei for both triploids were derived

from sister blastula cells leading to a very similar set of genetic

material from both HNI-II and SOK strains.

Improvements Could Expand the Available Gene Set
In the current study we limited ourselves to producing ASE

values for transcripts in which each allele was represented by at

least one SNP. We were thus limited to a set of 4,282 transcripts

out of 24,662 possible transcripts representing 4,181 of 19,687

genes that were annotated in the medaka genome (ENSEMBL

version 65). One way it may be possible to expand the data set is to

incorporate cases where one allele lacks dSNPs. In this case the

ASE value of the remaining allele can be extrapolated from the

calculated values of the two alleles with dSNPs. Doing this would

expand the number of transcripts in our analysis by 1,728 or 40%.

One of the limitations on the number of transcripts amenable to

ASE analysis was the variant calling step. We set very conservative

thresholds when calling consensus sequences using VarScan,

which likely precluded many lowly expressed transcripts from

inclusion into our analysis. It is likely that many more variants

could be reliably identified using an approach that specifically

targets the genome and provides more even coverage, such as

exome sequencing [19]. With a more robust and complete set of

SNPs, it should be possible to significantly increase the number of

genes in the analysis.

Another limitation of our method is that RNA-seq reads from

three divergent strains were aligned to one common reference.

This may cause a bias in relative expression levels since too many

sequence differences occuring near one another may be a barrier

to read alignment for those that do not originate from the same

species or strain as the reference [20]. We ultimately used the

STAR aligner which is permissive and can accurately align short

reads over mismatches and indels and this aligner proved capable

of greatly increasing the number of dSNPs able to used compared

with others we employed (i.e., Bowtie).use. Additionally using the

STAR aligner we found the balance of overall allele expression to

be nearly equal (Figure S3) with only slight biases remaining

against the most distant medaka strain. A more accurate yet more

restrictive procedure is outlined in a recent report by Stevenson et.

al. where only sites without such clusters of sequence variants are

considered for ASE [20].

In summary, this complex data set has revealed several

interesting biological features of the molecular-genetic activities

of experimentally produced triploid medaka. The data made

available by RNAseq based polyploid ASE analysis provide a

highly detailed basis for the future analysis of genetic regulatory

networks. This was enabled by the method we describe here for

determining allele-specific expression in polyploid organisms on a

large scale. Much of the software developed was created in such a

way as to accommodate any ploidy number so as to be applicable

to the more common diploid and/or the rare/exceptional higher-

ploidy organisms with little modification. We expect this will

expand our ability to understand the importance of ASE in other

biologically and medically interesting systems.

Methods

Ethics Statement Regarding Animal Subjects
The research presented here complies with the applicable EU

and national German legislation governing animal experimenta-

tion, especially the Tierschutzgesetz der Bundesrepublik Deutsch-

land (German Federal Law of Animal Protection). The institution

at which animal experiments were carried out is controlled by the

Tierschutzbeauftragte (Animal Protection Officer) of the Univer-

sity of Wu?rzburg, Dr. Wolfgang Geise (Stabsstelle Arbeits-, Tier-

und Umweltschutz, Marcusstrabe 9-11, D-97070 Würzburg), and

therefore by the Veterinary Office of the District Government of

Lower Franconia, Germany (Authorization number: 55.2-

2531.01-49/08). Animal research conducted under this study has

been approved by the institutional animal care and use committee

of the University of Würzburg.

Parental Strains
Three strains were used as parents to generate the allotriploid

fish (Figure 1A). The OR (orange-red) strain of medaka, Oryzias

latipes [23], is derived from a commercially available orange-red

variety that primarily originated from a southern Japanese wild

population. The SOK (Sokcho) strain of medaka [24], originated

from a wild population in east Korea. The HNI-II (Houiken-

Niigata-II) strain of medaka [25] (recently taxonomically described

as separate species, Oryzias sakaizumi) is a strain originating from a

wild population of the north of Japan. All three strains were

maintained as closed colony stocks and propagated in the

aquarium facilities of the Biocenter in the University of Würzburg

under standard conditions [26].

Donor Cells and Recipient Egg Preparation
F1 embryos were obtained from crossing males of HNI-II with

females of SOK. Donor cells were obtained from these embryos.

Eggs from OR females were used as recipients. Donors and

recipients were prepared according to Niwa et al. [27]. Briefly, 20

to 30 donor F1 embryos at the early blastula stage were

dechorionated with medaka hatching enzyme solution. Their

blastoderms were dissociated into single cells. The cells were then

collected by centrifugation and stored until use (up to 6 h) at 4uC
in a buffer solution containing 0.25 M sucrose, 120 mM NaCl,

0.5 mM spermidine trihydrochloride (Sigma, St. Louis, MO),

0.15 mM spermine tetrahydrochloride (Sigma) and 15 mM

HEPES (pH 7.3). Mature unfertilized eggs were collected from

the ovary of female fish and kept in a balanced salt solution (BSS)

for medaka [28] at 18uC until use (up to 5 hrs).

Nuclear Transfer
Nuclear transfer was performed according to Niwa et al. [27]

with small modifications. An oil pressure injector made by the

technical department of University of Würzburg connected to a

micromanipulator (MM 33, Märzhäuser, Wetzlar, Germany) was

used along with a stereomicroscope (MZ16F; Leica, Weltzlar,

Germany). Also, the entire procedure was performed at 7uC. Six
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days after the nuclear transplant, normally developing embryos

were dechorionated with medaka hatching enzyme solution and

kept at 26uC in BSS supplemented with 100 units/mL penicillin +
100 mg/mL streptomycin [29] until hatching. Hatched larvae

were reared normally to the adult stage.

RNA Isolation
The liver of two triploid female medaka and the liver of one

male of each parental strain (HNI-II, SOK and OR) ware

collected in RNAlater (Qiagen) and used thereafter for RNA

isolation. Total RNA was obtained with the RNeasy Mini Kit

(Qiagen) and DNase treated on-column with the RNase-free

DNase Set (Qiagen). Evaluation of integrity and quantification of

the extracted RNA was performed with Nanodrop 1000 (Thermo

Scientific) and 2100 Bioanalyser (Agilent Technologies) equip-

ment. All five samples presented a RIN value of above 9

(Bioanalyser). RNA was divided in aliquots of at least 15 mg per

sample and stored in RNAstable TM tubes (MoBiTec) at 280uC
until further processing.

RNA Sequencing
RNAseq library build and sequencing steps were performed at

Expression Analysis (Durahm, NC). Purified, poly-A selected liver

RNA from each of the two triploid individuals were sequenced in

one lane each of an Illumina HiSeq instrument. RNA from the

three parental lines was multiplexed into a third lane, and all three

lanes were sequenced as 100 bp paired ends. The resultant short

reads were filtered for quality using a custom filtration pipeline. In

general, steps include removing adapter sequence, trimming away

low quality regions, and merging overlapping reads. Less than 5%

of reads were lost during filtration and the parental strain short

read libraries each consisted of approximately 64 million reads,

while each of the triploid fish libraries consisted of around 200

million reads (Table 1). Short read libraries have been deposited in

the sequence read archive (SRA) under BioProject accession:

PRJNA246137 (https://www.ncbi.nlm.nih.gov/bioproject/).

SNP Calling
Reads from each of the three parental strains were separately

aligned to the reference transcript sequences (Medaka cDNA ‘all’

not ‘ab initio’ records from ENSEMBL v 65) using STAR version

2.3.0e (linux 64-bit pre-compiled binary) [17] to produce output

files in the SAM format which were converted to sorted BAM files

using samtools (Protocol S1). Each sample was aligned separately

to produce three output files in total. These files were then

converted to BAM format, sorted, and finally converted to

mpileup format using samtools version 0.1.18 [30]. These mpileup

files were then inputs for the VarScan (version 2.3.6 varscan.-

sourceforge.net) [31,32] mpileup2cns tool which produces an

IUPAC ambiguity code for each position of the reference

sequences for which the quality constraints are satisfied. We

selected conservative constraints such that a position must have an

overall coverage depth of 15x to be considered at all. Reads must

have an read quality of 25 or more at the position of the variant to

be considered. In order to call a variant, it must be supported by

20% of the reads that cover it and in lower coverage cases a

minimum of 5 reads must support it. These two settings specifically

should serve to minimize the likelihood of erroneous calls from

sequencing errors. Further, a p-value (calculated via Fisher’s Exact

Test and indicates the likelihood of the call) must be below 0.01.

Lastly a strand filter is applied to help identify variants that could

be the result of PCR over-amplification. Full command line

parameters and a flow chart describing this process are in Protocol

S1.

Finding Discriminatory SNPs
The consensus calls for the three parental strains were

compared and any position where one strain was found to be

different from the other two strains was noted. In order for a

position to be considered different in one strain, that strain had to

be homozygous for the difference, and the observed nucleotides in

the other strains had to be supported by the same constraints as

were described in the SNP calling section above. The discrimi-

natory SNPs (dSNPs) were then annotated with Ensembl

transcript and gene IDs and grouped by transcript. Full command

line parameters and a flow chart describing this process are in

Protocol S1.

Determining ASE
Two main steps are required to enable the determination of

ASE values. The first step involves normalizing to control for

sample size variations and scaling coverage. The first step

appropriately scales overall transcript expression values to enable

comparisons between samples. In the second step the values of

discriminating SNPs are integrated to estimate the contribution of

each genome to the overall expression of a given gene.

Short reads from triploid samples were mapped using the STAR

aligner, and the resulting SAM output was converted to mpileup

format as previously described (Protocol S1). Then a perl script

was used to extract the depth of coverage for each position in the

reference sequences in each sample, and calculate the geometric

mean of the depth of coverage for each transcript as a measure of

the expression value. Only positions for which the coverage depth

is greater than 0 are considered, therefore we define the covered

length lc to be the subset of positions in the transcript that have a

coverage depth of 1 or greater. The geometric mean of the

coverage depth over each transcript (gt) with covered length (lc)

and coverage depth at each position (di) is described below.

gt~ P lc
i~1di

� �1=lc

We then use the geometric mean of coverage depth in a transcript

as a measure of transcript expression.

Because the amount of data generated varies by sequencing lane

and sample, we next normalized the data to control for variations

in overall sample size. Briefly, the geometric mean of each

transcript expression value across samples is taken as a represen-

tative transcript expression value. Then the transcript expression

values in each sample are divided by their associated representa-

tive expression values. The median of these quotients in a given

sample is then taken as the size factor with which to adjust each

individual transcript expression value in that sample. This method

is the same as is described by the authors of the DESeq package

[33] with the exception that instead of total read counts here we

use the geometric mean of read depth as our transcript expression

value.

Next the fractional expression is measured at dSNP sites. This

simply involves identifying what fraction of reads covering a dSNP

position are attributed to the strain identified by that dSNP then

multiplying that by the geometric mean of the coverage depth.

The fractional expression (fi) at position i for a given strain s is

given by the following formula:

fi~gt

di,s

di

where gt is the geometric mean of coverage depth in the transcript,
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di is the number of reads covering position i, and di,s is the number

of reads covering position i that are attributable to strain s.

Only transcripts that have at least one dSNP representative of

each allele are considered. The fractional expression values

determined for all of the dSNPs of a given allele for a given

transcript are averaged to determine that allele-specific expression

(ASE) value. Only values greater than zero are considered for the

signal averaging, but if all expression values are zero then that is

the reported value. Full command line parameters and a flow

chart describing this process are in Protocol S1.

Parental dSNP and Hybrid ASE Validation
From the list of transcripts identified as presenting informa-

tive dSNPs, seven were selected for further analysis: EN-

SORLT00000001009; ENSORLT00000013099; ENSORLT-

00000024856; ENSORLT00000008958; ENSORLT000000-

14111; ENSORLT00000013388; ENSORLT00000012489. The

selection of these transcripts was based on the allelic expression

patterns observed in the tri-hybrids. The selected targets are

representative of different extreme possibilities of allelic usage in

this ‘‘three allelic’’ context (Figure S1). Specific primers for each of

these transcripts (Table S1) were designed based on the sequences

alignment of the three alleles (OR, HNI-I, SOK) with Bioedit

v7.2.0.

From an aliquot of each RNA sample, first-strand cDNA was

synthesized with RevertAid First Strand cDNA Synthesis Kit

(Fermentas). Amplification of each target transcript was performed

for each sample (Table S1) according to the following PCR

conditions: pre-heating at 95uC for 5 min, 35 cycles at 95uC for

30 s, 55uC or 57uC for 30 s and 72uC for 45 s and a final

extension at 72uC for 10 min. The PCR products were Sanger

sequenced and the sequences analyzed (Sequencher ver. 4.0, Gene

Codes Corporation, Inc.) in order to validate the SNP calling

between the three parental lines and the presence of expression

derived from any single allele, any two, or all three alleles in the

tri-hybrids.

Synthetic Data Set
The synthetic data were generated to match the calculated ASE

values of trpA. The total number of reads generated per transcript

were the same as found by aligning short reads from trpA to the

reference. The fraction derived from each strain was determined

by multiplying this total, by the fraction of total expression

attributed to each strain. For example, if for a given transcript, the

ASE values of HNI-II, OR, and SOK were 10, 20, and 30

respectively and the total number of fragments aligned to that

transcript were 500, then the number of reads generated for

HNI-II, OR, and SOK variants would be
10

60
|500~83,

20

60
|500~167, and

30

60
|500~250 respectively. In order to

generate the fragments contributed by each strain we created

strain-specific reference sequences with the strain-specific SNPs

substituted in to the reference transcript sequence. Then the

required number of fragments were generated as paired 100 bp

reads with a fragment size of 250 bp taken at randomized start

positions along the transcript length. This short read data set was

then analyzed using the same software pipeline.

Supporting Information

Figure S1 Genes selected for dSNP confirmation. Genes

selected for confirmation of dSNPs were taken from all 4

quadrants and are shown here as red circles overlaid on a

background of grey points showing the change in gene expression

vs. the dispersion of allele specific expression in trpA. The horizontal

axis indicates differential expression of the triploids with respect to

the parent fish lines. The average of whole gene expression in trpA

and trpB is compared to the average of the 3 parent species. The

vertical axis of indicates the coefficient of variation (cv) of ASE

values for each transcript in trpA. cv values near 0 indicate that the

three alleles are expressed at near equal levels, and increasing cv

values indicate a greater dispersion of allele-specific expression.

(TIF)

Figure S2 Stacked histograms of cv values in all allelic
imbalance categories. Stacked histograms of coefficient of

variation of allele expression values in transcripts grouped by allele

imbalance categories. A cv value near 0.87 is consistent with complete

suppression of one allele. This shows the clear preference for HNI-II

and OR silencing (spike in bin of cv values covering 0.85 to 0.90).

(TIF)

Table S1 Primers for dSNP validation. Primers used for

validation of dSNPs by Sanger sequencing are listed along with the

gene and transcript IDs and other descriptive information from

ENSEMBL version 65. The quadrants listed are a reference to

those defined in Figure 6.

(XLSX)

Table S2 Confirmation of dSNPs by Sanger sequencing.
This table lists the Sanger sequencing results of dSNP sites from

seven transcripts and whether or not they confirm the consensus

nucleotide calls made by VarScan using RNAseq data. In total 32

out of 36 dSNPs are confirmed. The four misses were shown to be

heterozygous in the parental strains by Sanger sequencing.

(XLSX)

Table S3 Allele specific expression values. This table lists

allele specific expression values for trpA and trpB and whole gene

expression for the three parental line samples as calculated by our

methods. The non-bold text in blue, green, and red colored cells

lists the expression values detected for HNI-II, OR, and SOK

alleles respectively for trpA and trpB. The bold text lists whole

gene expression values for trpA, trpB, HNI-II, OR, and SOK as

calculated by our software pipeline. The whole gene expression

values are the sum of allele-specific expression for each transcript.

ENSEMBL transcript IDs are used to identify each transcript.

(TXT)

Protocol S1 Flowcharts and command lines for software
tools used. An extensive set of flow charts with command line

options used for our analysis. This includes several custom perl

scripts which are available upon request.

(PDF)

Text S1 Tests to determine association of several
factors with low accuracy of ASE. A short summary of extra

tests done to investigate possible causes of low accuracy of ASE

measurements.

(DOCX)
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Figure S1. Genes selected for dSNP confirmation. Genes selected for confirmation of dSNPs 

were taken from all 4 quadrants and are shown here as red circles overlaid on a background 

of grey points showing the change in gene expression vs. the dispersion of allele specific 

expression in trpA. The horizontal axis indicates differential expression of the triploids with 

respect to the parent fish lines. The average of whole gene expression in trpA and trpB is 

compared to the average of the 3 parent species. The vertical axis of indicates the coefficient 

of variation (cv) of ASE values for each transcript in trpA. cv values near 0 indicate that the 

three alleles are expressed at near equal levels and increasing cv values indicate a greater 

dispersion of allele-specific expression. 
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Figure S2. Stacked histograms of cv values in all allelic imbalance categories. Stacked 

histograms of coefficient of variation of allele expression values in transcripts grouped 

by allele imbalance categories. A cv value near 0.87 is consistent with complete 

suppression of one allele. This shows the clear preference for HNI-II and OR silencing 

(spike in bin of cv values covering 0.85 to 0.90).  
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Table S1. Primers for dSNP validation. Primers used for validation of dSNPs by Sanger 

sequencing are listed along with the gene IDs and other descriptive information from 

ENSEMBL version 65. The quadrants listed are a reference to those defined in Figure 6. 

 

 

ENST Quadrant EXT_ Name Description Primers (5’-3’) TA 

ENSORLT00000001009 III OLA.4344-201 - 
PF- GGATGTGAACGGGAAGGAT 

PR-GGCTGAGGAGCTTCTTGATG 
57ºc 

ENSORLT00000013099 III ANXA3 

annexin A3 [Source:HGNC 
Symbol;Acc:541] 

 

PF-TCTGCAGGAGAGCATTGAAA 

PR-GTTGGTCAGTCAGCATCCAA 
55ºc 

ENSORLT00000024856 III MT-CO2 

mitochondrially encoded 
cytochrome c oxidase II 

[Source:HGNC Symbol;Acc:7421] 
 

PF-GATGCAGCTTCACCCGTTAT 

PR-CGGTATACTCATAACTTCAATACCAC 
55ºc 

ENSORLT00000008958 I PXMP2 

peroxisomal membrane protein 
2, 22kDa [Source:HGNC 

Symbol;Acc:9716] 
 

PF-CAAAATTGGAACCCCAGCTA 

PR-CCTCCCATCCTTTAGCTTCC 
55ºc 

ENSORLT00000014111 I 
EIF4EBP1 (2 of 

2) 

eukaryotic translation initiation 
factor 4E binding protein 1 

[Source:HGNC Symbol;Acc:3288] 
 

PF-CACCACGAGCCTGGAGAT 

PR-GGGAGGTTATTGGGAGGTGT 
55ºc 

ENSORLT00000013388 0 A0FDJ6_ORYLA 

60S ribosomal protein L8  
[Source:RefSeq 

peptide;Acc:NP_001098379] 
 

PF-TCAAGGGGATTGTGAAGGAC 

PR-CAGCAACCACACCGACAAC 
57ºc 

ENSORLT00000012489 I 
- 
 

- 
PF-GATCGTGTCGAGCACAAAGA 

PR-TCGTTCACACAAAGTGGATCA 
57ºc 
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Table S2. Confirmation of dSNPs by Sanger sequencing. This table lists the Sanger 

sequencing results of dSNP sites from seven transcripts and whether or not they confirm 

the consensus nucleotide calls made by VarScan using RNAseq data. In total 34 out 

of 36 dSNPs are confirmed. The four misses were shown to be heterozygous in the 

parental strains by Sanger sequencing.  

 

 

 

 

 

 

 

ENST EXT_Name HNI-II OR SOK Status

SNP Position HNI-II OR SOK Tri-hyb A Tri-hyb B

249 A A T W W A A T confirmed

327 C T C Y Y C T C confirmed

342 T C C C C T C C confirmed

412 T T C Y Y T T C confirmed

439 A C C M M A C C confirmed

440 C A A M M C A A confirmed

520 C G G S S C G G confirmed

550 C T C C C C T C confirmed

582 G T T K K G T T confirmed

583 C G G S S C G G confirmed

274 T/c C C C C T C C confirmed

276 A A G A A A A G confirmed

294 T T C T T T T C confirmed

303 A/g G G G G A G G confirmed

330 C T C Y Y C T C confirmed

365 A C C C C A C C confirmed

386 C C G S S C C G confirmed

411 C C T Y Y C C T confirmed

108 A G G R R A G G confirmed

111 A G A R R A G A confirmed

123 C C T C C C C T confirmed

253 T T C Y Y T T C confirmed

296 C C T Y Y C C T confirmed

347 G A/r G R R G A G miss

377 A C C M M A C C confirmed

491 C C T Y Y C C T confirmed

497 C A A M M C A A confirmed

500 A G A R R A G A confirmed

1547 T T G K K T T G confirmed

1555 C C A M M C C A confirmed

1579 A C C M M A C C confirmed

1721 G G A R R G G A confirmed

1746 T A A W W T A A confirmed

1753 G T/g G K G G T G miss

1804 A A G R R A A G confirmed

1827 C C T Y Y C C T confirmed

ENSORLT00000013388

ENSORLT00000012489

A0FDJ6_ORYLA

ENSORLT00000024856 MT-CO2

ENSORLT00000008958 PXMP2

ENSORLT00000014111 EIF4EBP1 (2 of 2)

Sanger Sequencing Call

RNA-Seq SNP Call

ENSORLT00000001009 OLA.4344-201 

ENSORLT00000013099 ANXA3
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Table S3. Allele specific expression values. This table lists allele specific expression 

values for trpA and trpB and whole gene expression for the three parental line 

samples as calculated by our methods. The non-bold text in blue, green, and red 

colored cells lists the expression values detected for HNI-II, OR, and SOK alleles 

respectively for trpA and trpB. The bold text lists whole gene expression values for 

trpA, trpB, HNI-II, OR, and SOK as calculated by our software pipeline. The whole 

gene expression values are the sum of allele-specific expression for each transcript. 

ENSEMBL transcript IDs are used to identify each transcript. 

Assessible at: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063754/bin/pone.0100250.s005.txt 
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Protocol S1. Flowcharts and command lines for software tools used. An extensive set of flow 

charts with command line options used for our analysis. This includes several custom perl 

scripts which are available upon request. 
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Text S1. Tests to determine association of several factors with low accuracy of ASE. A 

short summary of extra tests done to investigate possible causes of low accuracy of 

ASE measurements. 

Tests to determine association of several factors with low accuracy of ASE 

A plot of total gene expression in calculated vs original data sets with points colored 

by correlation value shows no obvious pattern. Low and high correlation points are 

scattered evenly across the distribution 

  

We next examined the effect of transcripts with low dSNP counts. We determined the 

count of dSNPs representative of the allele with fewest dSNPs for each transcript and 

called this value a dSNP.min. Then we split transcripts into  two groups: those with a 

correlation coefficient of less than 0.8, and those with one of greater than or equal to 

0.8. We then observed the distribution of min.snp (minimum dSNP count) in each group 

as a histogram. The distributions are not obviously different. 
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We also examined whether the mappability (subsequences which are highly similar 

to others in the reference set) played a role.  We used the GEM-mappability program 

from the GEM toolkit (ref) to identify sub-sequences with a higher frequency within 

the reference set. We searched for 31bp regions and processed the output to 

identify the highest mappability score in any subsequence of a given reference 

transcript.  The table below shows the distribution of peak mappability scores in the 

set of transcripts which had low correlation to the original data. The higher the score 

the more likely it would be that a read aligner could have trouble aligning to at least 

part of the target sequence. The majority of these problematic transcripts do not get 

above a mappability score of 3 so this does not seem to be a major factor in 

general.  

 peak mappability score 

 1 2 3 4 5 6 7 8 47 83 

Frequency 165 132 50 17 7 5 2 1 1 1 
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Abstract
How allopolyploids are able not only to cope but profit from their condition is a question that

remains elusive, but is of great importance within the context of successful allopolyploid

evolution. One outstanding example of successful allopolyploidy is the endemic Iberian cyp-

rinid Squalius alburnoides. Previously, based on the evaluation of a few genes, it was re-

ported that the transcription levels between diploid and triploid S. alburnoides were similar.

If this phenomenon occurs on a full genomic scale, a wide functional ‘‘diploidization’’ could

be related to the success of these polyploids. We generated RNA-seq data from whole juve-

nile fish and from adult livers, to perform the first comparative quantitative transcriptomic

analysis between diploid and triploid individuals of a vertebrate allopolyploid. Together with

an assay to estimate relative expression per cell, it was possible to infer the relative sizes of

transcriptomes. This showed that diploid and triploid S. alburnoides hybrids have similar

liver transcriptome sizes. This in turn made it valid to directly compare the S. alburnoides
RNA-seq transcript data sets and obtain a profile of dosage responses across the S. albur-
noides transcriptome. We found that 64% of transcripts in juveniles’ samples and 44% in

liver samples differed less than twofold between diploid and triploid hybrids (similar expres-

sion). Yet, respectively 29% and 15% of transcripts presented accurate dosage compensa-

tion (PAA/PA expression ratio of 1 instead of 1.5). Therefore, an exact functional

diploidization of the triploid genome does not occur, but a significant down regulation of

gene expression in triploids was observed. However, for those genes with similar expres-

sion levels between diploids and triploids, expression is not globally strictly proportional to

gene dosage nor is it set to a perfect diploid level. This quantitative expression flexibility

may be a strong contributor to overcome the genomic shock, and be an immediate evolu-

tionary advantage of allopolyploids.
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Introduction
In polyploid lineages resulting from hybridization (allopolyploids), the combination of homeo-
logous chromosomes from divergent species promotes a multitude of biological events [1].
Heterozygosity, divergence of duplicate genes, and novel gene interactions lead to genetic and
phenotypic variability [2] that are stably and successfully maintained in these lineages [1]. Allo-
polyploids are, in this scope, great evolutionary projects full of opportunities for selection and
adaptation. On the other hand, allopolyploid lineages have to face an important challenge,
namely to overcome genomic shock caused by the simultaneous high level of heterozygosity
(due to hybridization) and gene dosage increase (due to polyploidy) [3]. However, mostly
plants and invertebrates but also lower vertebrates, deal with these challenges very successfully
[4] as they survive and perpetuate. The evolutionary success of several animal allopolyploid lin-
eages like Squalius alburnoides [5], Rana esculenta [6], Bufo viridis [7] or Poecilia formosa [8],
outdates research that suggests that the fate of (allo)polyploids is a rapid extinction, and sug-
gests that such animals might developed mechanisms that stabilize their genomes as already
widely reported in plants [9].

In allopolyploid plants, the reduction of gene redundancy towards a functional diploidiza-
tion (dosage compensation) has been pointed out as a way to cope with gene dosage increase
[10], but in vertebrates this hypothesis has been scarcely investigated. However, the recent rec-
ognition that hybridization and polyploidy are much more frequent in animals than previously
inferred [11] and that this might have significantly shaped vertebrate genomes [4] highlighted
the importance to extend these studies further than to allopolyploid plants and invertebrates.
In a first attempt to study gene expression regulation in a vertebrate allopolyploid context, the
expression level of 7 genes (gene set encompassing tissue specific and housekeeping genes),
were evaluated and the occurrence of a compensation mechanism was reported in the allopoly-
ploid cyprinid Squalius alburnoides [12]. In this fish, for those first analysed genes, the exis-
tence of a dosage compensation mechanism that brings transcript levels in triploids to the
diploid state was shown. Yet, the genomic extension of the phenomenon remains unknown. It
may be a global gene dosage compensation event, acting without exception throughout the
whole genome. On the other hand, a certain number of genes may escape the dosage-regulation
mechanism, or dosage compensation may be restricted to specific subsets of genes, or any
other still unformulated conjecture [12]. However, either taking place on a full genomic scale
or only partially, the occurrence of similar transcription levels between diploids and triploids
can be a relevant factor contributing to the success and perpetuation of polyploids among
lower vertebrates. Analyses of entire transcriptomes (RNA-seq), available in the meantime, are
now the imminent choices to disentangle this kind of questions, [13, 14, 15]. RNA-seq allows
in a fast and cost-effective way to do a simultaneous qualitative and quantitative analysis of
complex transcriptomes [16]. It showed to be a general improvement compared to microarrays
[17] and was extensively validated by qPCR, exceeding it in range [14, 18].

Squalius alburnoides is an allopolyploid cyprinid, resulting from interspecific hybridization
between females of Squalius pyrenaicus (P genome) and males of a now extinct species related
to Anaecypris hispanica (A genome) [5, 19] (Fig. 1A). S. alburnoides natural populations are
composed of animals of different ploidy levels and genomic constitutions (Fig. 1B) referred to
as genomotypes, and include fertile sexual and non-sexual forms (Fig. 1C) Currently, in the
Iberian southern basins the predominant S. alburnoides genomotypes are the hybrid triploid
PAA, diploid PA, and the parental-like diploid AA. Individuals of AA genomotype are all
males, and are only reconstituted from hybrids within the complex [5], so despite the homoge-
nomic A. hispanica-like nucleus, they carry P mitochondrial DNA and are called nuclear non-
hybrids (Fig. 1C).
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In this work, our goal is to expose how an evolutionary successful allopolyploid vertebrate,
the cyprinid S. alburnoides, deals on the transcriptional level with the genomic stress derived
from hybridization and polyploidy. Also, this study aims to contribute to understand the role
of gene dosage compensation in the S. alburnoides breeding complex.

In the present work, the quantitative expression profiles of diploid and triploid S. albur-
noides were compared after RNA-sequencing and de novo assembly of the S. alburnoides tran-
scriptome. Since it is known that there are many transcriptional changes from juveniles to
adults [20] and that gene expression patterns can be tissue-specific [12, 21], RNA-seq was done
both from whole bodies and at a single tissue level.

However, the RNA-seq transcript profiling experiments the differences in expression of a
gene between two samples are in fact differences in expression per unit of RNA or “per tran-
scriptome. To directly infer global expression dosage responses from the RNA-Seq transcript
profiling experiments the transcriptomes compared must be of equal size. Without informa-
tion about the sizes of the transcriptomes compared, direct assumptions about the expression
per gene copy or expression per cell drawn from the transcriptome-normalized expression can
be flawed [22; 23]. Based only on the expression per transcriptome, the differences in expres-
sion per cell that are proportional to the change in the total transcriptome size will appear as
equal expression per transcriptome [23]. Consequently, we also estimated the relative tran-
scriptome size from liver samples between diploid and triploid S. alburnoides hybrids.

Materials and Methods

Fish samples and genotyping
Adult specimens. From the area of sympatry of S. pyrenaicus and S. alburnoides, in south-

ern Portuguese river basins, a total 20 specimens (6 S. pyrenaicus and 14 S. alburnoides) were
collected to perform experimental crosses and provide adult biological material. Individuals
were collected from tree locations: Algarve basin, Almargem stream (29 S; 622495.24 m E;

Fig 1. S. alburnoides complex simplified overview. A) Initial hybridization event in the origin of the
complex. B) Diversity of genomotypes found in the main southern portuguese river basins. In gray
background are the S. alburnoides genomotypes more frequent in nature, which are in focus in this work.
Dashed lines indicate naturally occurring but rare genomotypes. C) Diversity of gametes, produced through a
variety of mechanisms—clonally, by hybridogenesis, meiotic hybridogenesis or normal meiosis, depending
on the sex and genomic composition of the individual. Asterisk represents mitochondrial genotype: blue from
S. pyrenaicus and red from A. hispanica-like.

doi:10.1371/journal.pone.0116309.g001
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4113964.49 m N (UTM)); Guadiana basin, Oeiras stream (29 S; 604985.29 m E; 4164883.94 m
N (UTM)) and Tejo basin, Cobrão stream (29 S; 606212.42 m E; 4398531.98 m N (UTM)).
Sampling locations were chosen according with the legal permits and considering the existence
of a differential geographical distribution of genomotypes, different relative frequencies of each
genomotype in each river basin and the fact that diploid and triploid S. alburnoides are not
morphologically distinguishable [5]. All specimens were adults, sexually mature (determined
by obvious abdominal distension and gametes releasing upon slight abdominal pressure) and
approximately one to three years old (estimated from the length of each specimen). Fish were
captured by electrofishing and brought alive to the laboratory. Each fish was photographed to
posterior identification by Scaleprinting [24]. Also, DNA was obtained from fin clips and the
specimens were genotyped according to [25]. Fish were acclimated for three weeks in high-
quality glass tanks (30 l capacity) equipped with filtration units, under the same standard con-
ditions of light (14 hours light, 10 hours dark), temperature (22°C ±1 °C), water quality (pH be-
tween 6.5 and 7.30) and nutrition (twice a day feeding with frozen anthemia and commercial
fish food flacks).

Fourteen individuals (6 PA; 6 PAA; 1 AA and 1 PP) were sacrificed and organs were dissect-
ed and preserved in RNA later (Ambion) at -20°C.

Juveniles. During the reproductive season, and before its use in the previous section, all
adults of S. alburnoides and S. pyrenaicus (previously genotyped) and visibly sexually maturat-
ed were used to perform defined experimental crosses in order to obtain progenies specifically
with PAA, PA, AA and PP genomotypes [5, 26]. For each cross, eggs and sperm were collected
(by gentle abdominal pressure) from the selected individuals and used for embryo production
in petri dishes. Successful fertilization was assessed by observation under the stereoscope after
2h. Viable progeny wit PP genomotype was not obtained. At least 2 viable progenies of each,
putatively of AA, PA and PAA genomotypes were reared in high-quality glass tanks (5 l capaci-
ty) equipped aerating units, under the same standard conditions of light (14 hours light, 10
hours dark), temperature (20°C ±1°C), water quality (pH between 6.5 and 7.30) and nutrition
(twice a day feeding with commercial powder food for fish larvae). 30 days after hatching (dah)
several siblings from the same clutch and from each genotype were collected and preserved in
RNA later (Ambion) at-20°C. Simultaneous extractions of DNA and total RNA were per-
formed with the AllPrep DNA/RNAMini Kit (Qiagen). The extracted DNA was used to assess
the genomic composition of the selected progenies according to [25].

Library construction and sequencing
Total RNA extracted with the AllPrep DNA/RNAMini Kit (Qiagen) was DNase treated on-
column with the RNase-free DNase Set (Qiagen). At least 15 μg of RNA were obtained per
sample. Integrity evaluation and quantification of the extracted RNA was performed with
Nanodrop 1000 (Thermo Scientific) and 2100 Bioanalyser (Agilent Technologies). All samples
presented a RIN higher than 8.5 (Bioanalyser). Normalized juvenile cDNA libraries were
homemade prepared according to [27]. Non-normalized liver libraries were prepared with
TruSeq RNA Sample Preparation Kit (Illumina) according to the Illumina specifications. All li-
braries were paired-end sequenced using Illumina HiSeq 2000.

Juvenile samples. Three barcoded RNA libraries were constructed: juvenile-AA, juvenile-
PA and juvenile-PAA. For the construction of the 3 libraries RNA was purified from whole
bodies of pools of 4 larvae of each genomotype at 30 dah. At this age, all major organs (except
the reproductive systems that are not yet fully defined) are already formed in all 3 investigated
genomic forms of S. alburnoides (unpublished data). We did pooling of individuals in order to
obtain the minimal amount of RNA required for library construction and sequencing. For each
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library only siblings from the same cross were used. The 3 libraries were sequenced producing
12 Gb clean data (~ 4Gb per library) in 3 data sets (juv-AA; juv-PA; and juv-PAA) of Illumina
HiSeq short paired-end sequence reads (90 bp). The output statistics of sequenced data is avail-
able as S1 Table.

Liver samples. Four barcoded RNA libraries were constructed: one for S. pyrenaicus
(liver- PP) and three for S. alburnoides (liver-AA, liver-PA and liver-PAA). For the construc-
tion of the libraries RNA was purified from livers, independently for each sample/library. The
4 libraries were sequenced producing 4Gb of clean data (~1Gb per library) in 4 data sets (liv-
AA; liv-PA; liv-PP and liv-PAA) (short paired-end sequence reads around 50 bp). The output
statistics of sequenced data is available as S2 Table.

Processing of RNA-seq data for gene expression quantification
The raw data of juv-AA, juv-PA, and juv-PAA were processed into clean data by removing
reads with adaptors, reads with more than 5% of unknown nucleotides and reads where more
than half of the bases’ quality values were less than 5. Also, orphan reads were excluded.

Transcriptome de novo assembly was carried out with Trinity [28]. Assemblies were taken
into further processes of sequence splicing and redundancy removing with the sequence clus-
tering software TGICL [29]. After clustering, UniGenes were divided in two classes: clusters
(prefix CL) and singletons (prefix unigene) (Statistics of assembly quality provided as S3
Table). blastx alignment (e-value< 0.00001) between unigenes and protein databases (nr,
Swiss-Prot, KEGG, COG) was performed, and the best aligning results were used to decide se-
quence direction. When results of different databases conflicted, the priority order of nr, Swiss-
Prot, KEGG and COG was followed (statistics of annotation results provided as S4 Table). Uni-
genes that were not aligned to any of these databases were scanned by ESTScan (v2.1) [30], to
decide the sequence direction. The expression level of each unigene was calculated as FPKM,
defined as fragments per kilobase of exon model per million mapped fragments [31], with the
Cufflinks package (v0.9.3).

Concerning raw sequencing data of liv-AA, liv-PA, liv-PP and liv-PAA, quality filtering was
performed: low quality (phred score<20), and ambiguous nucleotides were trimmed off and
the quality assessed using FastQC v0.10.1. Reads were mapped to the Danio rerio reference ge-
nome (Ensembl Danio rerio genome Zv9.69) using Stampy v1.0.21 (substitution rate of 11%
and no multiple hits allowed) (Mapping statistics are presented as S2 Table). To use the map-
ping approach the divergence rate between D. rerio and S. pyrenaicus (11%) and D. rerio and S.
alburnoides AA genomotype (10%) had to be assessed and the higher value was used (11%).
Fragments mapped into genes were counted using HTSeq v0.5.3p9 (htseq-count option for no
stranded data). FPKM values were calculated using fragment counts from HTSeq and total
fragments mapped obtained with Samtools v0.1.18. (flagstat option, counting pair reads plus
singletons mapped). Differentially expressed genes were calculated using Bioconductor edgeR
package v3.0.8 (for a FDR<0.05) after data normalization using Bioconductor EDASeq pack-
age v1.4.0 (first normalized to gene length and second to the libraries size).

Comparative analysis of expression levels
Expression differences were obtained by dividing the normalized expression values (FPKM) in
one library by the corresponding expression value of the same transcript in each other library
(fold change) independently for juveniles and livers. The quantitative comparative profiles
were displayed through orderly plotting of log2 (fold change). The value of |log2(Ratio)|<1 was
considered to be the threshold for similar expression. A false discovery rate (FDR)� 0.05 was
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used as cutoff threshold to determine the significance of differential expression (FDR correc-
tion, version for dependent tests, applied to the raw p-value of all transcripts).

Also, the observed gene expression level of each transcript in the hybrids was compared to
an expected expression level if P and A alleles are expressed exactly at the same level as in the
non-hybrid situation (additivity expectation). The expression level of each gene in the parental
diploids (AA and PP) was used to calculate the expected additive expression for each gene in
both hybrids. Then, the observed expression value (obs) of each transcript was divided by its
corresponding expected additive value (exp), both in liv-PAA and in liv-PA. These ratios were
log2 transformed and when within the interval -1<log2(observed FPKM/expected FPKM)<1,
the transcripts were considered as additively expressed.

When appropriate, the χ-square test was applied to the data and is indicated.

Functional analysis
Functional enrichment analyses were carried out using DAVID Bioinformatics Resource 6.7
(http://david.abcc.ncifcrf.gov/). The top blastx hits in nr database corresponding to each S.
alburnoides unigene were used as customized reference background for juveniles’ data set. As
liver gene expression reference background we used the mapped genes with expression in at
least one of the 4 liver libraries. DAVID sorting thresholds were changed to EASE score (modi-
fied Fisher exact test)� 0.01. Significant enrichment was only considered when Benjamini cor-
rected p-value� 0.05.

Data accessibility
Files containing the clean reads for S. alburnoides juvenile transcriptome assembly and the
clean reads for the S. alburnoides liver transcriptome mapping are available in ArrayExpress,
accession number E-MTAB-3174.

qRT-PCR genome-normalized expression assay and relative
transcriptome size estimation
RNA and gDNA (total nucleic acid [TNA]) were co-extracted from RNA later (Ambion) pre-
served livers according to the extraction protocol described in [32] with minor modifications.
TNA were extracted independently from 5 livers of each diploid and triploid hybrid (PA and
PAA; total n = 10) and the presence of both RNA and gDNA confirmed in a 1,5% agarose gel
for all 10 samples. 1 μg of TNA per sample was reversed transcribed with RevertAid First
Strand cDNA Synthesis Kit (Fermentas) with oligo dT primers.

Primers for target genes were designed to be specific to either cDNA or gDNA (S5 Table).
For cDNA-specific primers, one or both primers in a pair were designed to span exon-exon
splice junctions and for gDNA-specific primers, one or both primers were designed to prime at
least partially within an intron. Template specificity was confirmed for all primer pairs by
qPCR with cDNA and gDNA templates. Primers specific to cDNA were designed for 6 genes
(rpl8, rpl35, actb2, pabpc1a, eef1a and rpsa) and primers specific to gDNA were designed for 3
genes (rpl8, eef1a and actb2) (S5 Table).

The cDNA/gDNAmix was diluted 1:1 in nuclease free-water and was 1 μl used as template
for each qRT-PCR reaction.

Real-time PCR reactions were performed in BioRad’s CFX96 Real-time PCR system (C1000
Thermal Cycler). Real-time PCRs were done in a final volume of 10 μl, with SsoAdvanced Uni-
versal SyberGreen Supermix (BioRad) in accordance to the specification of the supplier. The
thermal cycling protocol was as follows: initial denaturation step at 95°C for 30s, followed by
40 cycles at 95°C for 10s and 60°C for 30s. For each primer pair, we amplified three technical
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replicates from each of the five biological replicates of each of the two genomotypes. Expression
of each target gene (cDNA-specific amplification) was normalized to the geometric mean of
amplification from the three gDNA-specific targets. Relative genome-normalized expression
values were calculated by the Livak method [33].

We calculated expression per cell in PAA relative to PA as 1,5x the relative expression
per genome.

RPKM values from the liver data set, obtained as described above, were taken as the tran-
script abundance per transcriptome for any given gene.

To estimate the hybrid triploid liver transcriptome relative to the hybrid diploid liver tran-
scriptome the per cell expression ratios from the qRT-PCR assay were divided by the per tran-
scriptome expression ratios from the liver RNA-seq data set.

Ethics Statement
Fish captures and handling needed the permission of Instituto de Conservação da Natureza e
das Florestas (ICNF), the Portuguese national authority and relevant body concerned with pro-
tection of wildlife. ICNF considered that our study was not intrusive issuing the permits AFN,
fishing credential n° 82/2012 and ICNB license n°142/2012/CAPT. The studied species are not
endangered or protected, nevertheless the selected populations for the captures ware not im-
periled, and sampling was done avoiding depletion of the natural stock. Electrofishing was per-
formed in low duration pulses to avoid killing juveniles (300 V, 2–4 A) and the transport to the
laboratory was made in appropriate aerated containers. The maintenance and use of animals in
the animal facility of the Faculdade de Ciências da Universidade de Lisboa had the approval of
the Direção-Geral de Veterinária, Direção de Serviços de Saúde e Proteção Animal (DGV-
DSSPA), stated in the “ofício circular” n° 99 0420/000/000/9/11/2009. Fish were handled fol-
lowing the recommended ethical guidelines in [34] and at all times, all efforts were made to
minimize suffering. All required manipulations for identification, genotyping and to accom-
plish the experimental crosses were performed under light anesthesia (40 ppm of MS222 dis-
solved in the water). Fish used for the experimental crosses that were not sacrificed were later
returned to their original capture site. The sacrificed individuals were submitted to an overdose
of MS222 (400 ppm of MS222 dissolved in the water) and kicky decapitate previously to the or-
gans harvesting to guarantee the death prior to the harvesting.

Results

Comparative expression profiling from triploid and diploid juveniles
To investigate if the quantitative expression profile of mRNAs changes with ploidy increase we
made pairwise comparisons between the expression level profiles of each pair of triploid vs dip-
loid juvenile S. alburnoides genomotype. We plotted the log2 FPKM ratios (juv-PAA/juv-PA)
(Fig. 2A) and log2 FPKM ratios (juv-PAA/juv-AA) (Fig. 2B), producing crescent curves where
positive values indicate mRNAs with higher expression in juv-PAA than in juv-PA or juv-AA,
and negative values represent mRNAs with lower expression in juv-PAA then in juv- PA or
juv-AA respectively. The same comparative expression profiling was performed between juv-
PA/juv-AA (Fig. 2C) to illustrate a comparison at the diploid level.

We observed a significant (χ-test, p<0.001) higher amount of lower expressed unigenes in
juv-PAA compared to juv-PA (Fig. 2A) and also (χ-test, p<0.001) in the comparison of juv-
PAA with juv-AA (Fig. 2B). This is contrary to what would have been expected from a dosage
effect between triploid and diploid organisms. For a dosage effect it would be expected that
most transcripts would be higher represented in triploids then in diploids, or similarly repre-
sented in case of dosage compensation. Concerning the comparison between juv-PA and juv-
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AA, where ploidy rise has no part (only hybridization), despite significant (χ-test, p<0.001) a
much less conspicuous difference in the number of lower vs higher expressed transcripts is ob-
served (Fig. 2C).

Focusing only on the ploidy level effect, we compared the amount of unigenes that are lower
(n = 55545) and higher (n = 35411) expressed between juv-PAA and juv-AA with those lower
(n = 50942) and higher (n = 40004) expressed between juv-PA and juv-AA. The expression
pattern of the hybrids compared to a diploid non-hybrid is significantly affected (χ-test,
p<0.001) by the ploidy level of the hybrids. However, the expression profile of the other paren-
tal diploid genomic composition (PP) is needed to make a firm conclusion.

Comparative expression profiling of livers from diploid and triploid adults
Unlike for juveniles, material from adult S. pyrenaicus (PP) could be easily obtained. Therefore,
a second set of quantitative expression data, using adult tissues (livers) was produced.

As for the juveniles, the expression profiles for the liver were obtained per genomotype, and
pairwise comparisons were performed (Fig. 3). The comparison between triploid and diploid
levels showed in all cases a significant difference in the number of higher and lower represented
transcripts (χ-test, p<0.001) (Fig. 3A-3C), indicating that globally, ploidy level affects the
quantitative expression pattern. Despite the higher gene dosage in the triploid, there is a higher
amount of lower represented transcripts in liv-PAA compared to both diploid liv-PA and liv-
AA (Fig. 3A-3B). This was consistent with what was observed in the whole body juvenile data
set (Fig. 2). Moreover, there is a substantially high amount of higher represented transcripts in
liv-PAA when compared to liv-PP (Fig. 3C).

The quantitative relative expression patterns within the same ploidy level (2n) were also in-
spected (Fig. 3D-3F). First, in the comparison between the two parental diploid genomotypes
(AA vs PP), it was observed that a massive amount of transcripts were represented at higher
levels in AA liver than in PP liver (Fig. 3D). Then, when comparing PA with each one of the
parental genomotypes (AA and PP), we observe that in comparison with liv-AA, the difference
between lower and higher represented transcripts is only marginal (Fig. 3E), while in the com-
parison with liv-PP it is really high (Fig. 3F).

Additivity
We observed that for liv-PAA only 36% of transcripts are represented in the range of the ex-
pected/additive expression level, and from the transcripts that are not additively expressed, a
very significant (χ-text, p<0.001) majority (56% of the total) are under-expressed compared to
the additivity expectations (Fig. 4). Hence, in triploid hybrids gene expression in the liver is
mostly negatively non-additive.

In the case of the diploid hybrid (PA), we observed that the percentage of additively express-
ed transcripts rises to more than half of the transcripts (60%) (Fig. 4). From the non-additively
expressed ones a significant (χ-text, p<0.001) majority (30% of the total) is also under-express-
ed in comparison to the additivity expectations (Fig. 4).

Fig 2. Comparative gene expression profiles between three juvenile genomotypes of the S.
alburnoides complex. Logarithmized ratios of gene expression for each unigene were orderly plotted
producing characteristic crescent curves where positive values indicate transcripts with higher expression
and negative values transcripts with lower expression. Median is marked with a cross and indicates if most
values are positive or negative. For all comparisons, the difference in the number of lower vs higher
expressed transcripts is significant (χ-test, p<0.001). The percentages of positive and negative values in
each comparison are indicated.

doi:10.1371/journal.pone.0116309.g002
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Fig 3. Comparative gene expression profiles in adult liver between the most common forms of the S. alburnoides complex. Logarithmized ratios of
expression for each mapped transcript ware orderly plotted producing a crescent curve where positive values indicate transcripts with higher expression and
negative values transcripts with lower expression. Median is marked with a cross and indicates if most values are positive or negative. For all comparisons,
the difference in the number of lower vs higher ex-
pressed transcripts is significant (χ-test, p<0.001).The percentages of positive and negative values in each comparison are indicated.

doi:10.1371/journal.pone.0116309.g003
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Similar gene expression and dosage compensation
We quantified the similarly expressed transcripts (SE) between each pair of 3n vs 2n genomo-
types, both in juveniles and liver data sets (S6 Table). Focusing on the comparisons between
hybrids (Table 1), we observe that 64% of the transcripts in juveniles and 44% in the livers are
represented similarly in diploids and triploids. Within the SE group we also evaluated the oc-
currence and/or extension of strictly diploid expression levels in triploids (fold change equal to
1) and also of increased expression in triploids proportional to dosage increase (1.5 fold
higher). So, we sorted the SE transcripts into 4 classes. Class I comprises the compensated tran-
scripts, with ratio PAA/PA approximately equal to 1 and within the interval] 0.75;1.25[; in
class II are the dosage sensitive ones, with ratio approximately equal to 1.5 and within]
1.25;1.75[; in class III are transcripts affected by some repression, with ratios lower than 0,75
and; in class IV are transcripts overexpressed, with ratios higher than 1.75 (Table 1). The results
show that in triploid hybrids more than one third of the SE transcripts are strictly dosage com-
pensated to the diploid hybrid level (45% in juveniles and 35% in liver) (Table 1). On the other
hand, there is a much smaller representation of SE transcripts that follow the “1.5-fold rule”,
being expressed proportionally to gene dosage (17% in juveniles and 13% in liver) (Table 1). Of
notice is that in both data sets only a very small percentage of the SE PAA transcripts (4% in juve-
niles and 3% in livers) present an expression level higher than 1.5 fold (class IV), while 34% in ju-
veniles and 49% in livers are repressed beyond dosage compensation (class III).

Differential expression
Considering the significance criteria for differential gene expression (see material and meth-
ods) we quantified the significantly different expressed transcripts between diploid and triploid
juveniles and livers (S7 Table). Focusing on the comparisons between hybrids (Table 2), we ob-
served that 22.5% of unigenes in juveniles and 0.83% genes in livers are DE between diploids
and triploids. Also, both for juveniles and livers the significant majority of the DE transcripts
are higher represented in PAs then in PAAs, despite the higher gene dosage in triploids
(Table 2).

Fig 4. Gene expression additivity in hybrids. Additivity for each transcript was calculated by dividing the observed FPKM value by the expected FPKM
value. The expected values were obtained using the expression values of the non-hybrid diploids—AA and PP. The expected value for PAA is (PP/2)+(AA/2)+
(AA/2) and the expected value for PA is (PP/2)+(AA/2). Transcript were than evaluated as having lower observed expression then the additivity expectation
(obs<exp), observed expression similar to the additivity expectation (obs = exp) or higher observed expression then the additivity expectation (obs>exp).
The percentages of transcripts in each category, for both a) PA and b) PAA are represented.

doi:10.1371/journal.pone.0116309.g004

Table 1. Similarly expressed transcripts (SE) between triploid and diploid S. alburnoides hybrids in juveniles and livers.

Comparisons SE (% of total) SE per class % of SE % of total

Juveniles PAA/PA 58076 (64%) I 26376 45 29

II 9935 17 11

III 19672 34 22

IV 2093 4 2

Liver PAA/PA 10068 (44%) I 3508 35 15

II 1308 13 6

III 4947 49 21

IV 305 3 1

Total numbers and percentages of SE unigenes (juveniles) or mapped genes (livers) and total numbers and percentages of SE’s per expression class.

doi:10.1371/journal.pone.0116309.t001
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Functional enrichment analysis
We used the annotated de novo assembled transcriptome of juveniles and the mapping of the S.
alburnoides liver transcriptome to the Zebrafish genome to perform a functional analysis [35].
In order to look for the biological context for the gene expression dosage regulation observed
between diploid and triploid hybrids, we performed a GO and a KEGG pathway enrichment
analysis in DE and SE groups.

We found significant functional enrichment in both DE and SE groups in juveniles
(Table 3) and livers (Table 4), and the analysis is quit consistent between the two data sets.
Briefly, the SE group is enriched in terms associated with metabolic processes, intracellular
parts and constitutes of the ribosomes, while DE is mostly enriched in terms associated with
the cell membrane (e.g. transport, adhesion, motility). From the KEGG pathway analysis in the
SE group we observed that it is consistent with an enrichment of ribosomal components and ri-
bosomal-linked pathways in both data sets. KEGG pathway analysis of the DE group of juve-
niles is significantly enriched in components of the circadian rhythm, Wnt signaling and
melanogenesis pathways. The DE group in the liver data set is significantly enriched in compo-
nents of the sphingolipid metabolism and PPAR signaling pathways. Within the SE group we
also looked for differential functional enrichment between classes I and II in both juveniles and
liver data sets (Table 5). Within our criteria of significance, no significant functional enrich-
ment was detected in class I, both in juveniles and livers. Class II of juveniles is enriched in
terms linked to ribosomal complex, to the respiratory chain and to the hemoglobin complex.
Livers class II is enriched in terms linked to ribosomes.

Relative transcriptome size
To estimate the relative size of the PAA transcriptome vs the PA transcriptome we used livers
from both hybrid genomotypes and analyzed six target genes (rpl8, rpl35, actb2, pabpc1a, eef1a
and rpsa) to obtain genome-normalized expression estimates through a qRT-PCR assay and
transcriptome-normalized expression estimates from the RNA-Seq assay.

In order to estimate relative expression level per genome, we used a qRT-PCR strategy de-
vised by [23] that normalizes cDNA amplification to genomic DNA (gDNA) amplification.
The simultaneous RNA and gDNA extraction from the same cells preserves the in vivo RNA/
gDNA ratios. This allowed us to normalize gene expression (cDNA amplification) to genome
copy number (gDNA amplification), which directly gives the transcript abundance per ge-
nome. With this approach we quantified the expression per genome in the allotriploid (PAA)
S. alburnoides relatively to its diploid counterpart (PA) for the six target genes (Table 6).

Because PAA has three copies of each gene, for every two copies in PA diploids we calculat-
ed expression per cell in PAA relative to PA as 1,5x the relative expression per genome
(Table 6).

Table 2. Differentially expressed transcripts (DE) between triploid and diploid S. alburnoides hybrids in juveniles and livers.

Comparisons DE (% of total) DE group DE per group % of DE % of total

Juveniles PAA/PA 20468 (22.5%) DEH 6813 33 7,5

DEL 13655 67 15

Livers PAA/PA 195 (0.83%) DEH 41 21 0,17

DEL 154 79 0. 65

Total numbers and percentages of differently expressed (DE) unigenes in juveniles or mapped genes in livers. DE's were divided in two groups:

significantly higher expressed in PAA compared to PA (DEH), and significantly lower expressed in PAA compared to PA (DEL).

doi:10.1371/journal.pone.0116309.t002
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The transcript abundance per transcriptome (RPKM values) for all six target genes were
searched within the liver data set and the relative expression per transcriptome between liv-
PAA and liv-PA was calculated (Table 6, Fig. 5). With this approach we obtained six indepen-
dent estimates of the size of the triploid transcriptome relative to the diploid hybrid transcrip-
tome. As expected, there was variation among individual gene estimates, but on average the
PAA transcriptome was equal in size to the PA transcriptome. With these data we rejected the
null hypothesis that the triploid hybrid transcriptome was subjected to a genome-wide dosage
effect, as it was not increased 1.5 fold relative to the diploid hybrid transcriptome (P<0,0001;
One sample t-test). On the other hand, the null hypothesis that PAA transcriptome was equal
in size (genome wide dosage compensation) to the PA transcriptome was not rejected (P =
0.8867; One sample t-test).

Discussion

Transcriptome size and overall expression
To directly infer global expression dosage responses from the RNA-Seq transcript profiling ex-
periments the transcriptomes compared must be of equal size [23]. When comparisons are
made between different ploidy levels, intuitively this assumption is flawed due to the real

Table 3. Functional enrichment in GO terms and KEGG pathways of PAA vs PA similarly expressed and differentially expressed gene groups
for juveniles.

Term # FE p-val.

SE BP catabolic process 326 1,1 4,6E-3

BP macromolecule metabolic process 1993 1,0 3,6E-2

BP primary metabolic process 2496 1,0 4,7E-2

CC intracellular part 2829 1,0 6,7E-4

BP ribonucleoprotein complex 195 1,1 7,1E-4

BP cell part 4913 1,0 6,9E-4

BP intracellular 3450 1,0 6,0E-4

BP intracellular organelle 2358 1,0 6,3E-4

MF structural constituent of ribosome 94 1,1 3,0E-2

KEGG Spliceosome 93 1,2 1,4E-3

DE BP cell adhesion 85 1,7 2,1E-6

BP cellular developmental process 154 1,3 1,5E-2

BP cellular component morphogenesis 61 1,5 1,0E-2

BP anatomical structure development 282 1,2 8,5E-3

BP cell motion 56 1,5 4,8E-2

BP anatomical structure morphogenesis 169 1,2 5,0E-2

CC extracellular region part 57 1,5 1,2E-2

CC extracellular matrix 37 1,6 4,7E-2

MF signal transducer activity 272 1,3 3,9E-5

MF ion binding 620 1,1 1,2E-3

KEGG Circadian rhythm 12 3,1 3,2E-2

KEGG Wnt signaling pathway 43 1,5 4,7E-2

KEGG Melanogenesis 31 1,6 3,9E-2

(BP) Biological process, (MF) molecular function, (CC) cellular component, (KE) KEGG pathway, (#) number of transcripts, (FE) fold enrichment, (p)

Benjamini corrected p-value. GO enrichment analysis was performed at the secondary classification of terms. Terms with FE � 1.5 [35] are in bold.

doi:10.1371/journal.pone.0116309.t003
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Table 4. Functional enrichment in GO terms and KEGG pathways of PAA vs PA similarly expressed and differentially expressed gene groups
for livers.

Term # FE p-val.

SE BP cellular metabolic process 1442 1,1 1,0E-16

BP macromolecule metabolic process 1259 1,2 5,3E-16

BP primary metabolic process 1529 1,1 5,9E-11

BP ribonucleoprotein complex biogenesis 42 1,8 1,8E-5

BP nitrogen compound metabolic process 663 1,1 2,0E-5

BP biosynthetic process 656 1,1 1,4E-4

BP catabolic process 205 1,2 9,0E-3

BP macromolecular complex subunit org. 82 1,3 9,4E-3

BP establishment of RNA localization 18 1,9 1,9E-2

BP translational initiation 24 1,7 2,0E-2

CC ribonucleoprotein complex 185 1,6 2,3E-18

CC intracellular 2021 1,1 5,3E-15

CC intracellular part 1652 1,1 4,5E-12

CC intracellular organelle 1369 1,1 4,7E-9

CC organelle lumen 138 1,5 1,3E-8

CC membrane-bounded organelle 1164 1,1 8,1E-8

CC cell part 2750 1,0 2,9E-4

CC intracellular organelle part 446 1,1 2,5E-3

CC organelle part 446 1,1 2,5E-3

CC non-membrane-bounded organelle 322 1,1 4,6E-3

MF nucleic acid binding 1002 1,2 1,2E-15

MF structural constituent of ribosome 104 1,7 9,3E-13

MF nucleotide binding 793 1,1 1,5E-7

MF translation factor activity 60 1,7 1,3E-6

MF nucleoside binding 501 1,1 1,6E-3

MF transferase activity 630 1,1 1,9E-3

MF ion binding 1052 1,1 4,2E-3

MF ligase activity 116 1,2 2,0E-2

KEGG Ribosome 79 2,0 2,1E-19

KEGG Spliceosome 89 1,7 6,5E-10

KEGG Ubiquitin mediated proteolysis 76 1,4 3,6E-3

KEGG RNA degradation 38 1,5 2,2E-3

DE BP transport 28 2,7 1,5E-5

BP establishment of localization 28 2,7 9,1E-6

BP transmembrane transport 11 3,6 1,1E-2

CC membrane 34 1,5 3,6E-2

CC apical part of cell 3 37,5 2,3E-2

MF substrate-specific transporter activity 17 4,3 1,7E-5

MF hydrolase activity 26 2,5 1,1E-4

MF transmembrane transporter activity 13 3,5 1,6E-3

KEGG Sphingolipid metabolism 4 16,8 2,2E-2

KEGG PPAR signaling pathway 4 13,3 2,2E-2

(BP) Biological process, (MF) molecular function, (CC) cellular component, (KE) KEGG pathway, (#) number of transcripts, (FE) fold enrichment, (p)

Benjamini corrected p-value. GO enrichment analysis was performed at the secondary classification of terms. Terms with FE � 1.5 [35] are in bold.

doi:10.1371/journal.pone.0116309.t004
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genome-wide differences in gene dosage. However, in the S. alburnoides case, the hypothesis
put forward in [12] and explored in the present work, is that there is a common “diploid” state
of genic activity between diploid and triploid S. alburnoides individuals. Following the method
described and implemented in [23], that couples transcript profiling data with a genome nor-
malized qRT-PCR assay we estimated the liver transcriptome size of the S. alburnoides triploid
hybrid (PAA) relatively to the liver transcriptome size of the diploid S. alburnoides hybrid
(PA). We showed that the two compared transcriptomes are fairly the same size. This validates
the direct use of the RNA-Seq transcript profiling experiments to infer the “gene by gene” glob-
al pattern of expression dosage responses between diploid and triploid S. alburnoides. More-
over, it supports at an overall scale the previous conjecture of transcriptional equivalence
between diploid and triploid S. alburnoides.

Allopolyploid genome regulation
One of the puzzling features of S. alburnoides complex is the extraordinary morphological sim-
ilarity between PA and PAA individuals, which are even undistinguishable by morphometric
characters [36]. Conversely, PP and AA genomotypes are easily distinguishable from each

Table 5. Differential functional enrichment in GO terms and KEGG pathways between class I and II, both in juvenile and liver data sets.

Juveniles

Term # FE p-val.

Class I No significant enrichment

Term # FE p-val.

Class II BP heterocycle biosynthetic process 21 2,9 3,9E-3

BP tetrapyrrole metabolic process 12 4,0 1,2E-2

BP tetrapyrrole biosynthetic process 11 4,2 1,2E-2

MF structural molecule activity 65 1,6 3,4E-2

MF heme-copper terminal oxidase activity 10 4,1 3,7E-2

MF cytochrome-c oxidase activity 10 4,1 3,7E-2

MF oxidoreductase activity, acting on heme group 10 4,1 3,7E-2

KEGG Ribosome 21 2,6 5,7E-3

Liver

Term # FE p-val.

Class I No significant enrichment

Term # FE p-val.

Class II BP translation 71 3,0 1,4E-16

CC ribosome 62 3,4 3,7E-20

CC ribonucleoprotein complex 65 2,3 1,6E-10

CC intracellular non-membrane-bounded organelle 82 1,7 6,6E-6

CC non-membrane-bounded organelle 82 1,7 6,6E-6

CC ribosomal subunit 11 3,8 6,3E-3

CC small ribosomal subunit 7 4,6 4,8E-2

MF structural constituent of ribosome 60 4,3 8,5E-24

MF structural molecule activity 72 3,4 2,9E-21

KEGG Ribosome 60 5,4 5,2E-35

(BP) Biological process, (MF) molecular function, (CC) cellular component, (KE) KEGG pathway, (#) number of transcripts, (FE) fold enrichment, (p)

Benjamini corrected p-value. GO enrichment analysis was performed at the slim classification of terms.

doi:10.1371/journal.pone.0116309.t005
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other and from the hybrids. The stable phenotypic similarity between PA and PAA hybrids
could be interpreted as indication of similar gene expression between them [12, 37]. At its
quantitative component, this hypothesis was corroborated on a small scale [12, 38], when dip-
loid and triploid individuals were found to have similar expression levels for a small analyzed
gene set. Conversely, our genome wide approach shows that, despite many genes do not pres-
ent a significant differential expression between diploid and triploid hybrids, PAA gene

Table 6. Data and calculations used for estimating relative triploid vs diploid hybrid transcriptome size.

Gene 1Transcripts/
genome (qRT-
PCR; N = 5)

2Transcripts/cell (qRT-PCR; N = 5) 3Transcripts/transcriptome (RPKM; N = 1) 4Transcriptome size

PAA/PA SD PAA/PA PAA/PA PAA/PA

rpl8 0,8 0,1 1,1 1,5 0,8

eef1a 0,8 0,1 1,1 1,3 0,9

actb2 0,6 0,2 0,9 0,6 1,6

rpsa 0,9 0,3 1,3 1,5 0,9

pabpc1a 0,8 0,2 1,2 1,0 1,2

rpl35 0,8 0,2 1,2 1,5 0,8

media 0,8 1,2 1,0 1,0

SD 0,1 0,1 0,3 0,3

1-Expression quantified by qRT-PCR, using total nucleic acid as the template for reverse transcription and normalization to genome copy number.
2- Because PAA has 3 genomes per cell, meaning 1,5x the amount of genomes per diploid cell, the transcripts/cell values for PAA/PA are equal to 1,5x

the values for transcripts/genome.
3-For each target gene RPKM values were derived from the liver RNA-Seq data set.
4-Trascriptome size is determined by dividing “transcripts/cell” by “transcripts/transcriptome”.

doi:10.1371/journal.pone.0116309.t006

Fig 5. S. alburnoides PAA transcriptome size relative to the transcriptome of the diploid PA. Six individual gene-based estimates of relative
transcriptome size and average estimate (±SD; N = 6) of the triploid hybrid transcriptome relative to the diploid hybrid transcriptome. DE represents the
expected value if the PAA transcriptome experienced a genome-wide dosage effect. DC represents the expected value if PAA transcriptome experienced
genome-wide dosage compensation. Dashed blue line represents the tendency curve of the sactterplot. The blue arrow indicates a possible outlier in the
data set but that hypothesis was rejected (Tukey's Method).

doi:10.1371/journal.pone.0116309.g005
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expression levels are not globally identical to the ones of PA, or to any of the other diploids. So,
the morphological similarity between PAA allotriploids and PA allodiploids is not due to strict-
ly conserved mRNA levels between these genomotypes. On the other hand, the similarities
may be at the relative transcriptional contribution of each genome type (P and A alleles) to the
overall expression level of each gene, regardless of the total expression level of each gene on
each hybrid. Other alternative to the above stated, would be the occurrence of conserved pro-
tein levels and identities between 2n and 3n hybrids [39]. So, the regulation between PA and
PAA at the translational and post-translational levels and the allele specific contribution to the
overall expression of each gene should be investigated in a near future.

However, at the transcriptional level, though we ruled out the hypotheses of a global strict
full “functional diploidization” of triploids, the majority of transcripts is less represented in
PAA then it is in PA and AA genomotypes. One could expect that the level of gene expression
would change proportionally to the ploidy variation [40] and not the opposite. But, as an allo-
polyploid, S. alburnoides combines “ploidy rise” with hybridization and so, the effects associat-
ed to hybridization have to be considered. The pre-existing differences between the expression
profiles of the parental genomotypes and also unpredictable effects of the complexities of an
inter-genomic gene expression regulation are manifesting in the expression profiles of the S.
alburnoides hybrids. We observed that the comparisons of both hybrids with PP are consistent
with the comparative profile of AA vs PP, where the vast majority of transcripts are less repre-
sented in PP. Additionally, we observe a higher amount of transcripts that are less expressed in
PAA then in PA. The observed “overcompensation” supports that between triploid and diploid
hybrids, dosage compensation occurs, but it is not accurate. We can speculate that in PAA allo-
triploids the unbalanced genomic contribution and/or a faulty interaction between the different
genomes might have to be compensated through allele specific expression regulation [12], and
it may well be that the expression level of each allele might be quite variable and adaptable. So,
as in plants and invertebrates, also in the S. alburnoides allopolyploid complex there is disrup-
tion, due to hybridization and anorthoploidy (odd ploidy) [41] of the quantitative assumptions
of additivity, that are usually valid in the case of most homogenomic diploids and autopoly-
ploids [9].

Another hypothesis we can put forward to explain the absence of a positive correlation be-
tween copy number and mRNA amount is that the expression level profiles of PAA and PA
genomotypes, may be influenced by differences in cell size, which are expected to exist between
individuals of different ploidy levels [42]. This hypothesis was not yet explored within the S.
alburnoides complex, and is barely investigated in other organisms [43].

Additivity
In any hybrid, gene expression is under the influence of divergent genomes, so new qualitative
and quantitative gene expression networks are expectedly established, resulting from the inter-
actions of the divergent alleles. In S. alburnoides, we observed that for most genes this expres-
sion level divergence from the parental genomotypes was not achieved by averaging the
parental allelic contributions.

The analysis for additive expression showed that this occurs only for a subset of genes, both
in diploid and triploid hybrids of S. alburnoides (Fig. 4). The occurrence of non-additive gene
expression in hybrids and allopolyploids has been extensively reported in plants, for example
in maize [44], rice [45] and Arabidopsis [46]. Also in animals as oysters [47] and Drosophila
[13] the topic was explored and conclusions extended to the animal kingdom. However, for
vertebrates, genome wide quantitative gene expression studies were missing.
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Interestingly, the results of the available studies on plants and invertebrates are not all coin-
cident. Several showed that the majority of genes are expressed additively [48, 49], while other
studies found higher levels of nonadditive expression [13, 44]. The causes for these apparent
discrepancies are not yet clear [50]. Anyway, the considerable body of data gathered so far
shows a possible positive correlation between size of the fraction of the nonadditively expressed
genes and the magnitude of heterotic response. Also, increasing the number of diverse genome
copies in an allopolyploid, usually leads to increasingly greater magnitudes of heterosis [51].
Nevertheless, there is no consensus about the amount or identity of the nonadditively express-
ed genes [50, 52]. Concerning the S. alburnoides complex, the phenomenon of heterosis has
been barely addressed, except for a few comparisons of growth and reproductive traits between
diploid and triploid hybrids [53] and a comparative morphometric study [36], where the AA
and PP parental genomotypes were not included. From these studies, mostly non-significant
differences between diploid and triploid hybrids have been found, except for a marginal lon-
gevity increase in triploids. Yet, the PAA genomotype is far more frequent in the natural popu-
lations than PA. So, if we consider the number of non-additively expressed transcripts as an
indicator of heterosis, PAA S. alburnoides are favored since the amount of additively expressed
transcripts is higher than in PA genomotype. Also, according the Bateson-Dobzhansky-Muller
Model a lower fitness in hybrids might result from a bad interaction between divergent ge-
nomes due to the differential capacity of interaction between their proteins [54]. In this light,
allopolyploid individuals have better chances to evade this weakness. Allopolyploids have more
options to non-additively combine allele-specific regulated expressions and so, have higher
chances to achieve an optimized and more functional expression pattern than one achieved
merely additively.

Dosage responses across the S. alburnoides hybrid transcriptome—
Expression level regulation
In our genome wide prospection for gene expression dosage compensation, a genome wide reg-
ulatory mechanism that brings all genic activity of triploids to the diploid state, in a “strict
diploidization” of triploids was not seen. However, in both juveniles and liver data sets, we
found a considerable fraction of all transcripts (29% in juveniles and 15% in livers) that really
suffices the most stringent parameter definition for “fully dosage compensated”. So, “diploidi-
zation”might not mean that all genes are down regulated to the diploid level, but only those
that need to be “diploidized” in RNA amount to function correctly. Also, a considerable part of
all transcripts (around half) do not have a significantly different representation between diploid
and triploid hybrids (SE group), and from the SE transcripts that do not belong to class I, the
majority are lower represented in PAA than in PA (class III). In fact, there is only a very small
percentage of triploid transcripts that are represented strictly proportionally to gene dosage
(class II) or even higher (class IV). Thus, our results show a significant “diploidization” in trip-
loid PAA genomotype, but not as a strictly regulated and fine-tuned phenomenon. That is con-
sistent with a switch-like way to regulate the mRNA concentrations, where transcription is
turned “on” or “off”, regardless of exact concentrations [55], but within boundaries of
similar expression.

The mechanisms involved in this regulation of gene expression in S. alburnoides triploids vs
diploids are still elusive, but miRNA’s were recently pointed [37] as significant regulators for
the functional stability of triploidy in the S. alburnoides complex [37].

The quantitative PAA/PA gene expression analysis in juveniles and livers are conceptually
coincidental so, most conclusions should be valid both at the single tissue gene expression reg-
ulation as at the full-body scale. There is also convergence between our study and the ones the
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ones that preceded it. For the same S. alburnoides genes analyzed in [12] and [38] we inspected
the PAA/PA expression obtained in our study. All were place inside the SE group (data not
shown), except amh and dmrt1 (that are not expected to fit with the dataset).

Functional context of the S. alburnoides genome regulation
In both, juveniles and liver data sets, the SE group is enriched in terms related to the basal bio-
logical maintenance of the cells (eg. metabolism), and mostly in ribosome-linked terms. But re-
gardless of the statistical significance for the enrichment (corrected p-value< 0.05), the fold
enrichment of each term is approximately 1. So, in the context of global expression, this enrich-
ment may not be meaningful [35] or may indicate that between triploid and diploid hybrids
genes with expression within boundaries of similar RNA amount can occur at any quantity
without compromising there function. This expression level flexibility may be a strong contrib-
utor to overcome the allopolyploid “genomic shock”. Also it gives an immediate evolutionary
advantage to the (allo)polyploids.

Within the SE group, we looked for functional enrichment in the strictly dosage compensat-
ed class (I) but no significant enrichment was found. That reinforces the previous idea, yet the
very small class II, composed of genes with expression strictly proportional to gene dosage,
presents a significant enrichment in terms associated to multi-subunit complexes, namely ribo-
somes. However, the detection of dosage sensitivity in genes whose products are part of multi-
subunit complexes is in accordance with the gene balance hypothesis [40, 52], which posits
that changes in the stoichiometry of the individual subunits would be deleterious.

The functional enrichment of the DE gene group may shed some light on phenotypic differ-
ences between PAA and PA genomotypes. We verified that in both, the liver and juvenile data
sets the GO term enrichment is mostly associated to cell surface and to processes intimately
linked to the cells membrane. Previously, it was described the same enrichment for differential
expression between budding yeasts (S. cerevisiae) with different ploidy levels [42]. The authors
suggested that the differential gene expression observed between ploidy levels was due to cell
size and geometry differences between yeasts of different ploidies and not directly to the gene
dosage increase [42]. In addition to yeasts, in many other polyploid organisms, including fish
[56, 57, 58], the nucleus and cell volumes expand proportionally to accommodate the enlarged
genome of polyploid cells [56]. However, there is a reduction in surface area relative to cell vol-
ume [43]. Consequently, the interactions between surface and cytoplasmic signaling, transport
of metabolites and the cellular component organization are expected to be affected.

Concluding Remarks
To our knowledge, this is the first study that globally quantitatively and comparatively profiled
by mRNA-seq the transcriptomes of diploid and triploid forms of an allopolyploid
vertebrate organism.

Our results point towards a certain level of flexibility of expression within a range of mRNA
amounts per locus between diploid and triploid hybrids of the S. alburnoides complex. For
these allotriploids, gene expression levels are similar to the ones of allodiploids but are neither
genome wide strictly diploidized nor strictly proportional to gene dosage. The occurrence of a
non-fine-tuned expression regulation at the transcription level might be a key factor for the
evolutionary success of allopolyploids. Similar to nucleotide sequence variation, variability at
the mRNA expression levels may be also a source for regulatory adaptation to selective pres-
sures. Moreover, the evolution of new functions and subfunctionalizations from redundant
genes, that are well known to occur in the allopolyploid situation, are probably facilitated in a
context of expression dosage plasticity.
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In conclusion, this work illustrates how a successful allopolyploid vertebrate transcriptional-
ly deals with the genomic stress derived from hybridization and polyploidy and may shed some
light on important features of genome evolution in allopolyploids.
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Table S2. Sequencing and mapping statistics for livers data set. 
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Mapped     

reads 
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paird (%) 
Fragments 
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32784631          

(59%) 
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(31%) 
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(35%) 
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(27%) 
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(14,7%) 

liv-PAA 56266096 
31553986 

(56%) 

15357742 

(27)%) 
11574116 

8405754 

(14,9) 

* also QC-passed reads 

 

 

 

 

 

 

Samples 
Total Raw 

Reads 

Total 

Clean 

Reads 

Total Clean 

Nucleotides 

(nt) 

Q20 

percentage 
N % GC % 

juv_AA 86.210.418 80.706.646 7.263.598.140 98.18% 0.00% 49.49% 

juv_PA 87.256.908 82.315.202 7.408.368.180 98.18% 0.01% 49.68% 

juv_PAA 84.446.254 79.595.526 7.163.597.340 98.16% 0.00% 49.31% 
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Table S3. Statistics of assembly quality for juveniles’ data set. 

 

 

 

 

 

 

 

 

Table S4. Summary of annotation results for juveniles’ data set (cds information). 

 

 

 

 

 

 

 

 

 

 

 

 

Sample   
Total 

Number 

Total 

Length 

(nt) 

Mean 

Length 

(nt) 

N50 

Total 

Consensus 

Sequences 

Distinct 

Clusters 

Distinct 

Singletons 

juv_AA 
C

o
n

ti
g
 141,478 64,387,301 455 1008 - - - 

juv_PAA 176,458 61,061,715 346 641 - - - 

juv_PA 165,484 64,691,831 391 825 - - - 

juv_AA 

U
n

ig
en

e 

89,668 75,011,295 837 1543 89,668 19,292 70,376 

juv_PAA 96,276 62,638,402 651 1079 96,276 24,034 72,242 

juv_PA 94,919 71,915,349 758 1366 94,919 26,222 68,697 

All* 92,137 91,274,231 991 1731 92,137 36,870 55,267 

* The contigs from the 3 juveniles libraries   

Sequence File NR SwissProt KEGG COG ALL 

juv_AA 51,173 44,715 36,636 14,849 71,979 

juv_PA 53,067 45,830 37,219 14,664 75,095 

juv_PAA 54,769 47,333 37,663 13,871 76,641 

All* 52,460 46,149 38,361 16,967 74,463 

*joining the 3 juveniles libraries  
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Table S5. qRT-PCR primers.

 

Table S6. Similarly expressed transcripts (SE) between each pair of 3n vs 2n S. 

alburnoides genomotypes, both in juveniles and liver data sets. 

    

Comparisons 

  

SE    
SE 

class 
  

SE per 

class 
  

% of 

SE 
  

% of 

total 

                          

ju
v

en
il

es
 

  

PAA/PA 

  

58076 

(64%) 

  I   26376   45%   29% 

      II   9935   17%   11% 

      III   19672   34%   22% 

      IV   2093   4%   2% 

                        

  

PAA/AA 

  

49778 

(55%) 

  I   20925   42%   23% 

      II   7148   14%   8% 

      III   20087   40%   22% 

      IV   1618   3%   2% 

                          

li
v

er
s 

  

PAA/PA 

  

10068 

(44%) 

  I   3508   35%   15% 

      II   1308   13%   6% 

      III   4947   49%   21% 

      IV   305   3%   1% 

                        

  

PAA/AA 

  

9075 

(38%) 

  I   3823   42%   16% 

      II   1359   15%   6% 

      III   3553   39%   15% 

      IV   340   4%   1% 

                        

  

PAA/PP 

  

9013 

(41%) 

  I   3473   39%   16% 

      II   2970   33%   13% 

      III   990   11%   4% 

      IV   1580   17%   7% 

 

Total numbers and percentages of SE unigenes (juveniles) and mapped genes 

(livers) and total numbers and percentages of SE’s per expression class.  

Target 

Genes
Fwd Rev Specificity1 Fwd Rev Fwd Rev

Product 

size (bp)

eef1a eef1a PF2qDNA ef1a PR2  qDNA gDNA GTTTTCAGGTTTTAATTGGCATT ACCGCTAGCATTACCCTCCT intron 4-5 exon 5 95

rpl8 rpl8_PF1_qDNA rpl8_PR1_qDNA gDNA GCAAGCAAACATCCCAGTCT TTCCAGACAGCAGACAATGG intron3-4 exon 4 137

actb2 actb2_PF1_qDNA actb2_PR1_qDNA gDNA GGATRAATAGWTTTGGGCTGA CCTTCTGTCCCATACCAACC intron 2-3 exon 3 144

eef1a eef1a PF2 qcDNA eef1a PR 2 qcDNA cDNA TCTTGATGCCCTGGATGC CAGTTCCAATACCTCCAATTTTGT exon 5 exon 5/6 101

rpl8 rpl8_PF2_qcDNA rpl8_PR2_qcDNA cDNA CAAGAAAGCCCAGCTGAACA GGATCCAGATGGAAGCTTGA exon 3/4 exon 4/5 190

actb2 actb2_PF1_qcDNA actb2_PR1_qcDNA cDNA ACATCAGGGTGTCATGGTTG TCCATATCGTCCCAGTTGGT exon 2/3 exon 3 99

rpsa rpsa_PF3_ qcDNA rpsa icDNA R2 cDNA GTGACTGATCCTCGTGCTGA CACAGAGTGGGGACCTTTGT exon 4 exon 4/5 144

pabpc1a pabpc1a_PF3_qcDNA pabpc1a_PR3_qcDNA cDNA CAGCCAGTACATGCAGAGGA ATTCTGAGCCTGTGGAATGG exon 8 exon 8/9 118

rpl35 rpl35_PF1_qcDNA rpl35_PR1_qcDNA cDNA CCATCGAGAAAAATGGCAAA GTCATCCAGCTGTTTCAGCA exon 1/2 exon 2 81

1
Primers exclusively amplify spliced complementary DNA (cDNA) or exclusively amplify unspliced genomic DNA (gDNA)

2
underlined portion of sequences corresponds to the second gene region in the "Primer binding sites" column

Primer IDs  Primer sequences2 Primer binding sites
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Table S7. Significantly differently expressed (DE) transcripts between each pair of 3n vs 

2n S. alburnoides genomotype, both in juveniles and liver data sets. 
 

     Comparisons   DE 

                   

ju
v

en
il

es
 

   

PAA/PA 

  

20468 

(22.5%) 

  
Up 

  6813 

(7,5%)          

             

       
Down 

  13655 

(15%)          

                 

   

PAA/AA 

  

30024 

(33%) 

  
Up 

  12504 

(14%)          

             

       
Down 

  17520 

(19%)          

                   

li
v

er
 

   

PAA/PA 

  

195 

(0.83%) 

  
Up 

  41 

(0.17%)          

             

       
Down 

  154 

(0.65%)          

                 

   

PAA/AA 

  

261 

(1.1%) 

  
Up 

  64 

(0.27%)          

             

       
Down 

  197 

(0.83%)          

                 

   

PAA/PP 

  

52 

(0.23%) 

  
Up 

  39 

(0.18%)          

             

       
Down 

  13 

(0.06%)          

          

 Total numbers and percentages of differently expressed (DE) 

unigenes in juveniles and mapped genes in livers. DE's were 

divided in two groups: significantly higher expressed in PAA 

compared to PA (DEH), and significantly lower expressed in 

PAA compared to PA (DEL). 
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RESEARCH ARTICLE

Gene copy silencing andDNAmethylation in natural and artificially
produced allopolyploid fish
Isa M. N. Matos1,2,*, Maria M. Coelho1 and Manfred Schartl2,3,4

ABSTRACT
Allelic silencing is an important mechanism for coping with gene
dosage changes in polyploid organisms that is well known in
allopolyploid plants. Only recently, it was shown in the allotriploid
fish Squalius alburnoides that this process also occurs in
vertebrates. However, it is still unknown whether this silencing
mechanism is common to other allopolyploid fish, and which
mechanisms might be responsible for allelic silencing. We
addressed these questions in a comparative study between
Squalius alburnoides and another allopolyploid complex, the
Amazon molly (Poecilia formosa). We examined the allelic
expression patterns for three target genes in four somatic
tissues of natural allo-anorthoploids and laboratory-produced tri-
genomic hybrids of S. alburnoides and P. formosa. Also, for both
complexes, we evaluated the correlation between total DNA
methylation level and the ploidy status and genomic composition
of the individuals. We found that allelic silencing also occurs in
other allopolyploid organisms besides the single one that was
previously known. We found and discuss disparities within and
between the two considered complexes concerning the pattern of
allele-specific expression and DNA methylation levels. Disparities
might be due to intrinsic characteristics of each genome involved
in the hybridization process. Our findings also support the idea
that long-term evolutionary processes have an effect on the allele
expression patterns and possibly also on DNA methylation levels.

KEY WORDS: Allelic silencing, Allopolyploidy, DNA methylation,
Freshwater fish, Poecilia formosa, Squalius alburnoides

INTRODUCTION
In allopolyploid organisms, ancestral homologous alleles that
diversified during evolution, designated ‘homoeologs’, are
brought together again in one individual. Consequently, a
successful allopolyploidization process requires the reconciliation
of two or more sets of diverged genomes in the same nucleus
(Feldman et al., 2012). Importantly, the regulatory interactions
between genomes must be stabilized as the increased ploidy level
and increased heterozygosity lead to gene redundancy, altered gene
dosage and altered relationships within and between loci (Feldman
et al., 2012; Yoo et al., 2013). These features make allopolyploid

plants and animals exciting objects for understanding the molecular
mechanisms of gene regulation in an evolutionary context.

However, studies of the different aspects of allopolyploidy are
strongly biased towards plant models (Mable, 2003; Stöck and
Lamatsch, 2013). A few years ago, data on the mechanisms
underlying gene expression regulation and the dynamics of genome-
specific expression in vertebrate allopolyploids were almost absent.
Pala et al. (2008) reported for the first time a regulation mechanism
of ‘functional diploidization’ involving gene-copy silencing in an
allopolyploid vertebrate, the S. alburnoides complex. Squalius
alburnoides is a hybridogenetic fish that resulted from a cross of a
Squalius pyrenaicus female (contributing the p genome) with an
Anaecypris-like male (contributing the a genome) (Alves et al.,
2001) (Fig. S1A). It emerged between 1.4 million years ago (MYA)
(Cunha et al., 2004) and less than 0.7 MYA (Sousa-Santos et al.,
2007). In present days the complex comprises several ploidy levels
and genomic compositions distributed across the Iberian Peninsula
(Alves et al., 2001; Collares-Pereira et al., 2013). Taking advantage
of the hybrid status of S. alburnoides, genome-specific sequence
differences were used to determine the contribution of each parental
genome to the overall expression of loci individually analyzed in
diploid and triploid hybrid individuals (Pala et al., 2008). Results
showed that in most triploid S. alburnoides of paa genome
composition, which is the most common form in Iberian southern
river basins, for several loci and in different tissues the unpaired
minority genome, the p haplome, was not contributing to the overall
expression, whereas it was contributing to expression in other
tissues. Also, the observed allelic expression patterns were different
between genes and between different tissues for the same gene. This
indicated a most extreme case of homoeolog expression bias
(Grover et al., 2012), namely, allele silencing (AS). Therefore, in
S. alburnoides, the problem of keeping the balance of the expression
regulatory networks in an uneven-numbered genomic context might
have been solved by AS. These observations were in accordance
with gene regulation phenomena already reported in polyploid
plants, which showed patterns of differential expression according
to organs (Adams et al., 2003) and non-additiveness of expression
following gene copy rise (Auger et al., 2005; Wang et al., 2006).

However, it remained unclear whether the silencing mechanism
reported for triploid S. alburnoides, which is very frequent among
both natural and synthesized allopolyploid plants (Adams et al.,
2003), was also a common mechanism in allopolyploid vertebrates.
A further restriction for generalization is that the allotriploid
S. alburnoides analyzed so far were all carriers of a duplicated
genomic set from one parental species and an unpaired genomic set
from another parental species: paa and ppa in southern populations,
and cca and caa in northern populations, where S. pyrenaicus is
absent and is replaced by Squalius carolitertii (contributing the c
genome) (Pala et al., 2008, 2010). This situation did not allow the
exclusion of monoallelic expression in those cases where the
minority genome was not expressed.Received 13 March 2016; Accepted 19 July 2016
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So far, the molecular mechanism responsible for AS in the
S. alburnoides complex is unknown. A reasonable explanation
could be an epigenetic regulation. CpG methylation has long been
recognized as a gene expression regulation mechanism by which
genes can be silenced by methylation and turned on by
demethylation (Martienssen and Colot, 2001). In allopolyploid
plants, it is known that among the dramatic genome reconfigurations
that can be induced by allopolyploidy, epigenetic changes can play a
major role (Wang et al., 2014). However, epigenetic research in
(allo)polyploid animals is scarce (Xiao et al., 2013; Covelo-Soto
et al., 2015).
To answer these questions and contribute to a better

understanding of gene expression regulation in a genomic context
of raised ploidy and heterozygosity, we performed a comparative
study between S. alburnoides and another allopolyploid complex,
the Amazon molly (Poecilia formosa). Poecilia formosa is a
unisexual all-female species that originated from a hybridization
event between a Poecilia mexicana limantouri female (m genome)
and a Poecilia latipinna male (l genome) (Lampert and Schartl,
2008) (Fig. S2A), and occurs in the Atlantic drainages, from Rio
Tuxpan, Mexico, to South Texas, USA. It reproduces by
gynogenesis, thus it depends on sperm from closely related
gonochoristic (bisexual) species to trigger embryogenesis of their
unreduced diploid eggs (Lampert and Schartl, 2008). Generally,
paternal genes do not contribute to the next generation because the
paternal pronucleus does not fuse with the unreduced diploid oocyte
nucleus. Hence, the vast majority of P. formosa are diploid and
genetically identical to their mothers. However, in rare cases, the
exclusion mechanism fails and paternal introgression occurs
(Lampert and Schartl, 2008). In one scenario, small parts of male
genetic material are included as microchromosomes (Nanda et al.,
2007). In other cases, the sperm nucleus fuses with the oocyte
nucleus, resulting in triploid offspring. Such triploids are found in
the wild and are true natural allopolyploids having an mml
genomotype (Fig. S2B). They are fertile and produce all triploid
offspring. It has, however, been demonstrated that the formation of
such persisting triploid clones is an extremely rare event (Lampert
et al., 2005; Schories et al., 2007). These allopolyploidizations were
traced back to the evolutionary past of P. formosa and have to be
considered as ancient events.
The naturally occurring old triploid P. formosa (mml) are

gynogenetically maintained in nature and in the laboratory. On the
contrary, triploids that are obtained de novo from diploid P. formosa
as rare introgression cases in laboratory broods (Nanda et al., 1995)
do not give rise to stable gynogenetic lines. These de novo triploids
comprise different genomotypes depending on the parental species
used for breeding, including tri-genomic hybrids (TGHs) with mls
(P. formosa, ml, with introgressed genome from P. salvatoris, s) or
mlb (P. formosa,ml, with introgressed genome from black molly, b)
genomic composition (Lamatsch et al., 2010) (Fig. S2C). Such
individuals are of great advantage for studying AS in allopolyploids

because they offer the opportunity to distinguish all three alleles and
evaluate their expression contribution if diagnostic single
nucleotide polymorphisms (SNPs) can be found.

To also obtain TGHs of the S. alburnoides complex, advantage
was taken from the existence of another Squalius species, Squalius
aradensis (q genome), which was reported to naturally hybridize
with S. alburnoides (Sousa-Santos et al., 2006). Thus, triploid
hybrids with the pqa genomotype can be produced and studied.

In this work, we examined the allelic expression patterns in
several somatic organs of diploid and allotriploid S. alburnoides and
P. formosawith particular analyses of TGHs. As a first step towards
a mechanistic explanation, we also evaluated the correlation
between levels of DNA methylation and the ploidy status and
genomic composition of S. alburnoides and P. formosa.

We show that AS occurs both in S. alburnoides and in P. formosa.
However, we found disparities within and between the two
allopolyploid complexes concerning the pattern of allele-specific
expression and DNA methylation levels. Our results indicate that
long-term evolutionary processes affect allele expression patterns
and DNA methylation levels. This study highlights that the
relationships between polyploidy, hybridization, methylation and
AS are far from linear, and underscores once more the need for
further studies in this field.

MATERIALS AND METHODS
Fish samples
Squalius alburnoides (Steindachner 1866) and S. pyrenaicus
(Günther 1868) were collected from the Almargem stream [29°S;
622,495.24 m E; 4,113,964.49 m N (UTM)], and S. aradensis
(Coelho, Bogutskaya, Rodrigues & Collares-Pereira 1998)
specimens were collected from Arade River basin [29°S;
545,693 m E; 4,133,136 m N (UTM)]. Fish were captured by
electrofishing and brought alive to the animal facility of the
Faculdade de Ciências da Universidade de Lisboa. Fish were
maintained in high-quality glass tanks (30 litres capacity) equipped
with filtration units, at 18°C and under a 14 h:10 h light:dark cycle.
A pa S. alburnoides female and an S. aradensis male (previously
genotyped) with evident sexual maturation and ready for breeding
were used to perform an experimental cross in order to obtain a
progeny specifically with pqa genotypes. Eggs and sperm were
collected from the selected individuals applying gentle pressure to
the abdomen and immediately mixed in a Petri dish with water. For
1 year, the progeny was reared constantly at 20°C. Several
individuals were genotyped according to Sousa-Santos et al.
(2005) in order to confirm the pqa genotype of the batch.

Poecilia mexicana limantouri (Jordan & Snyder 1899), Poecilia
latipinna (Lesueur 1821), Poecilia salvatoris (Regan 1907), black
molly and Poecilia formosa (Girard 1859) individuals were raised
and maintained at standard conditions according to Kallman (1975),
under a light cycle of 14 h:10 h light:dark. All fish were derived
from laboratory stocks of the aquarium of the Biocenter at the
University of Würzburg, Germany, that were originally established
from fish collected in the wild, except for black molly, which is an
ornamental variety of the P. mexicana/P. sphenops species
complex. The strains used in this work are listed in Table S1.

Ethics statement
Fish were captured, handled and euthanized with the approval of the
Portuguese National Forest Authority (AFN; fishing credentials nos
53/2013 and 51/2014) and the Biodiversity and Nature
Conservation Institute (ICNB; license nos 235/2013/CAPT and
262/2014/CAPT), the Portuguese national authority and relevant

List of abbreviations
5-mC 5-methylcytosine
AS allelic silencing
HK housekeeping (gene)
SNP single nucleotide polymorphism
TF transcription factor
TFBS transcription factor binding site
TGH tri-genomic hybrid
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body concerned with protection of wildlife. The maintenance and
use of animals in the animal facility of the Faculty of Science of
University of Lisbon (FCUL) had the approval of the Portuguese
Directorate-General of Veterinary (DGV), Directorate of Health
Services and Animal Protection (DGV-DSSPA) (circular letter no.
99-0420/000/000-9/11/2009).
The selected populations for the fish captures were not imperiled,

and sampling was done avoiding depletion of the natural stock. Fish
were handled following the recommended ethical guidelines
described in the ‘Guidelines for the treatment of animals in
behavioural research and teaching’ (Animal Behaviour, 2006, 71,
245–253), and at all times, all efforts were made to minimize fish
discomfort. Individuals were submitted to an overdose of the
anesthetic MS222 before they were quickly decapitated. Only then
were the organs harvested. Fish that were not used were later
returned to the collecting site.
All P. formosa individuals and fish from parental species used in

this study were raised under standard conditions in the aquarium
facility of the Biozentrum at the University of Würzburg, where
studies were approved by the Institutional Review Board.

Ploidy determination
Fin cells were stained with DAPI as described previously (Lamatsch
et al., 2000). At least 10,000 cells were measured per sample.
Chicken blood (2.5 pg of DNA per erythrocyte) was used as
standard (Vinogradov, 1998).

DNA and RNA extraction
Total genomic DNA was obtained from dissected livers
and muscle with a standard phenol/chloroform/isoamyl alcohol
(25/24/1) protocol (Blin and Stafford, 1976). DNA was quantified
using a Qubit 2.0 Fluorometer (Life Technologies, Carlsbad,
CA, USA).
RNA was extracted from dissected livers, eyes, muscle and gills

preserved in RNAlater (Ambion, Foster City, CA, USA) at −20°C.
Total RNA was extracted using the Tri-Reagent (Ambion)
following the supplier’s instructions. Contaminant DNA was
eliminated by the addition of TURBO DNase (Ambion) followed
by purification with phenol/chloroform. Ethanol and glycogen were
used to precipitate the RNA. RNA amount and quality evaluation
was performed with Nanodrop 1000 (Thermo Fisher Scientific,
Waltham, MA, USA) and a 2100 Bioanalyser (Agilent
Technologies, Santa Clara, CA, USA).

Sequence analysis and genome-specific expression
From the extracted RNA, first-strand cDNA was synthesized with
the RevertAid First Strand cDNA Synthesis Kit (Fermentas,
Thermo Fisher Scientific) with oligo dT primers. Primer
sequences and amplification conditions for actb, rpl8 and gapdh
with Squalius and Poecilia samples are given in Table S2.
In S. alburnoides, SNPs between the P and A genomes for the

three genes have already been reported (Pala et al., 2008; Matos
et al., 2011). For the S. aradensis derived Q genome of the
S. alburnoides complex and for all genomes present in allotriploid
P. formosa, SNPs were identified in the present study.
PCR products were sequenced and sequences were aligned and

compared with Sequencher ver.4 (Gene Codes Corporation, Ann
Arbor, MI, USA). Within each of the fish complexes, polymorphic
sites between the intervenient genomes were identified.
cDNA samples from adult liver, eye, gill and muscle of

S. alburnoides and P. formosa diploid and triploid natural hybrids
and TGHs were used as templates for independent amplifications

and direct sequencing of gene products of the three target genes
(actb, rpl8 and gapdh). Through sequence comparison, on the basis
of the identified polymorphic sites between the involved genomes p,
a and q, or m, l, s and b, the contribution of each genome-specific
allele to the overall expression at each of the three target loci was
determined.

Global DNA methylation quantification
The percentage of methylated DNA for the genomotypes of each
one of the allopolyploid complexes was determined by colorimetric
quantification of 5-methylcytosine (5-mC). Three to five specimens
were sampled and analyzed independently for each genomotype.
One hundred nanograms of DNA of each individual were loaded
into each well of the MethylFlash Methylated DNA Quantification
Kit (Epigentek, Farmingdale, NY, USA). The protocol and
calculations were performed according to the manufacturer’s
instructions.

In addition, the observed mean methylation level for each
genomotype in the hybrids (diploids and triploids) was compared
with an expected methylation level, which was calculated by
considering that each of the p, a and q genomes in the hybrids
would be methylated at the same level as in the non-hybrid
situation. The mean methylation level obtained for each parental
diploid genomotype ( pp, aa and qq) was used to calculate the
expected methylation level for each hybrid genomotype [( pp/2)+
(aa/2)+ (qq/2)=additive expectation]. Expected additive values for
P. formosa were calculated accordingly.

The mean observed methylation value (obs) for each hybrid
genomotype was divided by its corresponding expected additive
value (exp) (Table S3).

Comparative sequence analysis for promoter and CpG island
predictions
Sequences for P. formosa, P. mexicana and P. latipinna rpl8 (ID:
103134768, 106918910 and 106964237, respectively), gapdh
(ID: 103136734, 106921370 and 106955760, respectively)
and actb (ID: 103153440, 106927995 and 106956540,
respectively) were obtained from GenBank. Ensemble84 Amazon
molly gene annotations were used to identify exons, introns and
untranslated regions. Putative promoter regions were defined as
2000 bp 5′ of the first nucleotide of the first exon (adapted from
Farré et al., 2007).

For each gene, sequences were aligned and compared using
Bioedit (Hall, 1999) with ClustalW multiple sequence alignment.
The putative promoter regions served as templates for the design of
degenerated primer pairs that were used to amplify the
homoeologous DNA regions from P. salvatoris and black molly
liver DNA samples. Primer sequences and amplification conditions
are given in Table S2.

PCR products were sequenced and all sequences for each gene
were aligned as previously.

Several tools were employed to analyze the nucleotide sequence
of the putative promoter regions of rpl8, gapdh and actb between
mm, ll, bb and ss genomes. Identity matrices were obtained with
BioEdit. Promoter 2.0 Prediction Server (Knudsen, 1999) and the
Gene Promoter Miner (Lee et al., 2012) were used to predict RNA
polymerase II (Pol.II) promoters in Poecilia DNA sequences. With
the Sequence Manipulation Suite – CpG Islands Sequence Analysis
option (Stothard, 2000), the occurrence of CpG islands was
predicted. Also, with DBCAT (Kuo et al., 2011) the occurrence
of CpG islands was investigated as well as the number of CpG per
1 kb within the mm, ll, bb and ss sequences.
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RESULTS
Analysis of allele-specific gene expression in triploid
S. alburnoides
In S. alburnoides individuals we analyzed the qualitative pattern
of allele-specific contribution for three genes, actb, rpl8 and
gapdh, in liver, muscle, eye and gill of naturally occurring
allotriploids ( paa genomotype) and laboratory-produced TGHs
( pqa genomotype).
Several informative SNPs between p and a alleles for actb, rpl8

and gapdh were previously reported (Pala et al., 2008; Matos et al.,
2011) and used for this study.When q sequences were inspected and
compared with p and a sequences, diagnostic SNPs between them
were also identified.
The sequencing of reverse-transcribed PCR products of these

three genes from all four organs once again confirmed that in paa
individuals, AS of p is occurring (Table 1). Consistent with previous
reports, monoallelic expression of the single p allele was not
detected.
In contrast, in the TGH hybrids containing the q genome,

sequencing of the reverse-transcribed PCR products of all three
genes revealed no indication of silencing in any of the four analyzed
tissues. The observed qualitative pattern of allele usage in the TGH
individuals was consistently tri-allelic (Table 1).

Allele-specific expression in triploid P. formosa
For naturally occurring P. formosa allotriploids (mml) and
laboratory-produced TGHs (mlb and mls), the qualitative pattern
of allelic-specific contribution in actb, rpl8 and gapdh in the liver,
muscle, eye and gill was inspected (Table 2). Contrary to what was
observed in S. alburnoides, in natural triploid P. formosa (mml) no
evidence for AS was obtained.
We then looked at the laboratory-generated TGHs, either with

mlb or mls genomic composition (Table 2). For both types of TGH
we clearly detected allele-specific silencing. Moreover, in mls
TGHs for gapdh and rpl8, even monoallelic gene expression
(silencing of two alleles) was detected.

Global DNA methylation in S. alburnoides of different ploidy
levels and genomic composition
Allele-specific silencing can be due to an epigenetic mechanism.
Therefore, we determined the total amount of 5-mC in total DNA
extracts from livers and muscle of natural allodiploid ( pa),
allotriploid ( paa) and laboratory-produced TGH ( pqa)
S. alburnoides, as well as from the parental non-hybrids – aa, pp
and qq (Fig. 1A,B). In both liver and muscle samples, there was a
significantly higher amount of 5-mC in the aa diploids than in all
other diploids. We found also that both natural triploids ( paa) and
the TGH triploids ( pqa) have a similarly high level of 5-mC as the
aa diploids, and again significantly higher (t-test for independent
samples, P>0.05) than the pp, qq and pa diploids.

Global DNA methylation in P. formosa of different ploidy
levels and genomic composition
For P. formosa we determined the global 5-mC levels in natural
allodiploids (ml), allotriploids (mml), TGHs (mls andmlb) and in all
the parental diploids (mm, ll, bb and ss) (Fig. 1C,D). For all Poecilia
genomotypes, the pattern of 5-mC was consistent between the
two analyzed tissues. In both liver and muscle, higher levels of
5-mC were found in the natural diploid and triploid hybrids, while
all diploid parental genomotypes (mm, ll, bb and ss) and the
laboratory-produced TGH (mlb and mls) displayed a similar low
methylation level.

Additivity of global DNA methylation in S. alburnoides and
P. formosa allopolyploid complexes
For each hybrid genomotype we performed a simple relative
comparison (ratio) between the mean observed methylation value
and an expected methylation level in case of additivity (obs/exp)
for a hybrid situation (Table S3). Results show that the
genomotypes of both allopolyploid complexes can be separated
into two distinct groups. One group is composed of pa, paa,
pqa, mlb and mls genomotypes, with obs<exp, and a second
group is composed of ml and mml genomotypes, with obs>exp
(Fig. 2).

Promoter and CpG island prediction of Poecilia target genes
We used available genomic sequences of P. mexicana, P. latipinna
and P. formosa as templates to isolate and characterize the
homoeologous sequences in P. salvatoris and black molly. The
selected target zones were the 2000 bp 5′ of the first nucleotide of
the first exon of rpl8, gapdh and actb. We could amplify between
1100 and 1429 bp for P. salvatoris and black molly within
these template regions. For each gene, we found, as expected
for comparisons between species and/or strains, a high percentage
(98–99% for actb, 93–99% for gapdh and 97–99% in rpl8)
of positive similarity between mm, ll, bb and ss sequences
(Table S4).

Within the selected sections for mm, ll, bb and ss we could
predict for gapdh and for actb a highly likely promoter region –
gapdh, from −592 to −294 bp of the first nucleotide of the first
exon; and actb, from −611 to −296 bp of the first nucleotide of
the first exon. Concerning CpG islands, for none of the individual
genomes at any of the three genes were any CpG islands predicted
with the DBCAT within the defined target zone, but with the
Sequence Manipulation Suite a CpG island was found within the
defined target zone for rpl8 (from −498 to −283 bp of the first
nucleotide of the first exon) and actb (from −1411 to −1204 bp of
the first nucleotide of the first exon). Also, we quantified the
number of CpG sites per 1 kb within the mm, ll, bb and ss
sequences (Table S5), but no substantial differences were found
between the genomotypes for each gene.

Table 1. Allelic expression pattern of actb, rpl8 and gapdh in liver, eye, gill and muscle of Squalius alburnoides

Ploidy level n Genotype

Liver Eye Gill Muscle

actb rpl8 gapdh actb rpl8 gapdh actb rpl8 gapdh actb rpl8 gapdh

2n 2 pa p+a p+a p+a p+a p+a p+a p+a p+a p+a p+a p+a p+a
3n 5 paa p+a p+a p+a p+a p+a p+a p+a p+a p+a p+a p+a p+a
3n 1 paa a p+a p+a p+a p+a p+a p+a p+a p+a p+a p+a p+a
3n 1 paa a p+a p+a p+a a p+a p+a p+a p+a p+a p+a p+a
3n 6 pqa p+q+a p+q+a p+q+a p+q+a p+q+a p+q+a p+q+a p+q+a p+q+a p+q+a p+q+a p+q+a

Allelic silencing is highlighted in bold.
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DISCUSSION
In this work we intended to answer three fundamental questions
concerning the mechanism underlying gene expression regulation
and the dynamics of genome-specific expression in vertebrate
allopolyploids. First, we wanted to explore whether the silencing
mechanism reported for natural triploid S. alburnoideswas common
to another allopolyploid vertebrate. Second, we wanted to
investigate whether, in an allotriploid condition with increased
heterozygosity, one of the three alleles is consistently silent,
converting triploids into functional diploids. Third, it was our goal

to begin to identify possible mechanisms responsible for allele
silencing. Specifically, we wanted to evaluate CpG methylation as a
candidate mechanism, but other possibilities have been considered.

Allele-specific silencing in P. formosa
In TGH P. formosa triploids of mlb and mls genomic composition,
AS was obvious and quite frequent. This shows for the first time that
AS is indeed not a unique phenomenon in the S. alburnoides
complex, but is morewidespread. This is in linewith earlier findings
that the variation in pigmentation phenotypes between TGH of

Table 2. Allelic expression pattern of actb, rpl8 and gapdh in liver, eye, gill and muscle of Poecilia formosa

Ploidy level n Genotype

Liver Eye Gill Muscle

actb rpl8 gapdh actb rpl8 gapdh actb rpl8 gapdh actb rpl8 gapdh

2n 2 ml m+l m+l m+l m+l m+l m+l m+l m+l m+l m+l m+l m+l
3n 9 mml m+l m+l m+l m+l m+l m+l m+l m+l m+l m+l m+l m+l
3n 1 mls m+l+(s) _ s _ _ s m+l+(s) _ _ m+l+(s) _ _
3n 1 mls l+s m+l+(s) s m+l+(s) m+l+(s) _ m+s _ s l+s m+l+(s) s
3n 1 mls m/s+l m/s+l m+l m/s+l m/s+l m/s+l m/s+l m/s+l m/s m/s+l m/s+l m/s+l
3n 1 mls m+l+(s) m/s+l l+s+(m) m+l+(s) m/s+l l+s m+l+(s) m/s+l m+l+s m+l+(s) m/s+l m+l+s
3n 1 mls m+l+(s) m/s m+s m+l+(s) m/s m+s m+l+(s) m/s m+s m+l+(s) m/s m+l+s
3n 1 mls m+s m/s m+s m+s m/s m+s m+s m/s m+s m+s m m+s
3n 1 mls m+l+(s) m/s m+s m+l+(s) _ m+s m+l+(s) m/s m+s m+l+(s) m m+s
3n 1 mls m+l+(s) m/s+l m+l+s m+l+(s) m/s+l m/s+l m+l+(s) m/s+l m+l+s m+l/s m/s+l m+l+s
3n 1 mlb _ _ _ _ _ _ m/b+l m/b _ _ _ _
3n 1 mlb m/b+l m/b m/b m/b+l m/b+l m/b m/b+l m/b+l m/b+l m/b+l m/b m/b+l
3n 1 mlb m/b+l m/b+l m/b+l m/b+l m/b+l m/b+l m/b+l m/b+l m/b+l m/b+l m/b m/b
3n 1 mlb m/b+l _ _ m/b+l m/b+l _ m/b+l m/b+l _ m/b+l _ _
3n 1 mlb m/b+l m/b+l m+l+(b) m/b+l m/b+l m/b+l m/b+l m/b+l m+l+(b) m/b+l m/b+l m+l+(b)
3n 1 mlb m/b+l m/b+l m+l+(b) m/b+l m/b+l m/b+l m/b+l m/b+l m+l+(b) m/b+l m/b+l m+l+(b)

Allelic silencing is highlighted in bold. /, to be read as ‘either or’; (), presence or absence of the allele not unequivocally determined; _, allele expression pattern not
assessed.
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Fig. 1. Levels of global DNA methylation within the Squalius alburnoides and Poecilia formosa allopolyploid complexes. Global DNA methylation in
(A) liver and (B) muscle tissue of several S. alburnoides complex intervenient genomotypes. Global DNA methylation in (C) liver and (D) muscle tissue of the
P. formosa complex intervenient genomotypes. 5-mC, 5-methylcytosine; L, liver; M, muscle. Data are means±s.e.m. *Significant difference (P<0.05) between the
underneath genomotypes and all other groups.
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P. formosa individuals may be the consequence of differential
contribution of genomes to overall expression (Lamatsch et al.,
2010, 2011).
The failure then to detect AS also in the naturally occurring

triploid of the mml genomic constitution was somehow unexpected
as the naturally occurring triploid P. formosa were proposed earlier
as good candidates where a comparable gene-copy silencing
phenomenon like in S. alburnoides could occur (Pala et al.,
2008). Comparison of expression levels at several allozyme loci
between diploid and triploid P. formosa revealed them to be
indistinguishable quantitatively (Turner et al., 1983), which could
be a consequence of AS.
Our failure to detect AS in the naturally occurring P. formosa

could be due to the following reasons. (1) AS is not random and
it is always one of the ‘m’ alleles that is silenced. This
phenomenon would escape our observation because our
sequencing chromatograms did not allow for quantitation of
peak heights at SNP positions. (2) AS does not occur on a full
genomic scale and the three selected genes are not subjected to
this phenomenon. However, if there were genome-wide
occurrence of AS in triploid P. formosa, our study would most
likely have been sufficient to detect it. Considering a
parsimonious null hypothesis of random inactivation of one of
the genomes (neither haplome nor tissue dependent), for each
gene and per tissue, 2.7 instances of AS occurrences would be
expected (n=9). We analyzed the allele expression pattern in four
tissues, so in total per gene, approximately 11 (2.7+2.7+2.7+2.7)
‘l’ allele silencing occurrences should be seen in our evaluation if
this phenomenon exists. If AS is not random and affects only a
subset of genes or cell types, more genes and other organs need
to be investigated in the future, preferably using transcriptome-
wide approaches as recently described by Garcia et al. (2014). (3)
AS does not occur at all in the mml genomotypes. Although this
is a valid assumption in this context, as we did not find AS in
naturally occurring allotriploid P. formosa, we cannot promptly
discard that it does not occur at all. In fact, the occurrence of
variegated skin phenotypes presented by some individuals is a
strong contra-indicator of this third hypothesis.
The difference between the natural occurring mml and the TGH

P. formosa triploids may be explained by different magnitudes of
‘genomic shock’. ‘Genomic shock’ refers to a series of genomic
perturbations at both genetic and epigenetic levels, and has been
described in many plant allopolyploid systems (Wang et al., 2014).
Some of its most frequent consequences are deviations from
expected expression levels and allele specific expression patterns.
Also, in plants it has been found that hybridization usually has a
greater impact on gene silencing than does genome doubling
(Chelaifa et al., 2010; Buggs et al., 2014). Despite both P. formosa

types having the same ploidy level, the increased diversity of
genomes in the TGHs may lead to a higher level of ‘genomic
shock’. Compared with natural allotriploids, where only two distinct
genomes have to be managed, the interactions and simultaneous
regulation of three different genomic sets may pose additional
challenges with different outcomes. In addition, it has to be
considered that some intergenomic combinations are not well
tolerated and can lead to hybrid incompatibilities and dysgenesis
(Bomblies and Weigel, 2007; Ishikawa and Kinoshita, 2009; Walia
et al., 2009; Malone and Hannon, 2009). So, immediate allele-
specific expression adjustments in the TGH P. formosa may be a
necessity to allow for the viability of these organisms.

Absence of AS in TGHs of Squalius
Contrary to what was observed in the naturally occurring
allotriploid S. alburnoides, AS was not observed in any of the
analyzed tissues in TGH individuals. It has been previously shown
(Pala et al., 2010) that the patterns of gene expression in triploid
S. alburnoides depend on the genomic contexts brought about by
different parental contributions. For instance, the presence of c or
p genomes in allopolyploid S. alburnoides biotypes results in
substantial difference in genome-specific allele usage in either paa
or caa genomic contexts (Pala et al., 2010). Because the effect of
the q genome to the overall gene expression in natural occurring
S. alburnoides of qaa and qqa genomotypes has never been
assessed, the absence of AS in the TGH fish with one q haplome
is difficult to assess, and the effects of the presence of the q
genome are difficult to infer. However, we can at least say that the
absence of AS in TGH S. alburnoides supports the previous
conclusion that different genome combinations lead to different
mechanisms of how to cope with genomic shock. In contrast, the
absence of AS in TGH Squalius is not readily explained by the
simple reasoning presented for AS occurrence in the TGH
P. formosa, where we relate the higher genomic shock with the
need for AS. This demonstrates the complexity of the
phenomenon where two different deviations from normal come
together, namely ploidy change and hybridization.

Despite our inability to show AS in the TGH S. alburnoides, its
occurrence cannot be totally discarded, based on the same
considerations presented for the naturally occurring P. formosa.
So, to fully enlighten this matter, applying a transcriptome-wide
approach to S. alburnoides would also be desirable.

However, despite new and promising tools that are constantly
emerging (Shen et al., 2012a,b, 2013), assessing allele-specific
gene expression on a large scale is still a technically challenging
problem (Garcia et al., 2014), even more so in species with scarce
genomic resources, and as in this case, higher levels of ploidy than
diploidy.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

 

 

 1.8  1.6  1.4  1.2  1  0.8  0.6  0.4  0.2 0
obs<exp 

obs=exp 
obs>exp 

obs=exp 
obs<exp obs>exp 

mml 
ml 

mls 
mlb 
pqa 
paa
pa 

Muscle % 5mC (obs/exp) Liver % 5mC (obs/exp) Fig. 2. Additivity of global DNA
methylation in S. alburnoides and
P. formosa allopolyploid complexes.
Ratio between the mean observed
methylation value and an expected
methylation level in the case of additivity
(obs/exp), in muscle and liver tissues. pa,
paa, pqa, mlb and mls genomotypes
present observed 5-mC levels<expected
5-mC levels, whereas ml and mml
genomotypes have observed 5-mC
levels>expected 5-mC levels. Dashed red
line indicates the position at which
observed 5-mC level=expected 5-mC level.
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Differences in global DNA methylation between
genomotypes
DNA methylation modifications associated with ploidy changes
have been studied extensively in plants (Diez et al., 2014). It has
been shown that normal function and structure of newly formed
polyploid genomes are intimately related with this epigenetic
process (Matzke et al., 1999; Salmon et al., 2005; Chen and Ni,
2006; Wang et al., 2014). Also, it is known that methylation impacts
directly on gene transcription (Wang et al., 2014; Sehrish et al.,
2014). In general, it is assumed that methylated DNA sequences are
transcriptionally inactive (Wang et al., 2014). So, one goal of this
study was to relate AS occurrence in these fish to the degree of total
DNA methylation.
We determined the total amount of DNA methylation in

two tissue types (liver and muscle) for all the available
genomotypes involved in both allopolyploid complexes. If the AS
phenomenon was 5-mC mediated, our hypothesis was that the total
methylation level would be higher in those triploid individuals
where AS occurs. However, the pattern of global methylation in
both the S. alburnoides and P. formosa allopolyploid complexes
does not fit this initial expectation, nor does it help to clarify the
different AS patterns between S. alburnoides and P. formosa. For
instance, AS occurs in P. formosa TGH, where we identified low
levels of methylation compared with naturally occurring diploids
and triploids in which AS was not detected. Also, TGH
S. alburnoides, where no AS was detected, presented similar
high levels of methylation as the naturally occurring triploid
S. alburnoides ( paa genomotype), where AS has been encountered.
So, global methylation levels do not seem to reflect the AS status.
This is in line with findings in Arabidopsis, where for most of a pool
of 77 analyzed genes, expression did not directly correlate with the
methylation level (Shen et al., 2012a). In contrast, in Tragopogon it
was shown that by DNA methylation one homeolog can be
completely silenced (Sehrish et al., 2014).
We further observed that the levels of DNA methylation were

non-linearly related to the ploidy level in each tested allopolyploid
series. Higher ploidy level did not consistently correspond to higher
or lower levels of DNA methylation in either of these allopolyploid
complexes. Additionally, our results do not show a linear
correspondence between higher levels of heterozygosity and
higher or lower levels of DNA methylation.
Similar results have been found in an analysis of genomic DNA

methylation in several annual herbaceous and woody perennial
plants of several ploidy levels (Li et al., 2011). In addition, in a study
that investigated DNA methylation changes associated with ploidy
in Salmo trutta, no evidence of genome-wide methylation
differences between diploid and triploid specimens was found
(Covelo-Soto et al., 2015). However, inCyprinus carpio×Carassius
auratus hybrids it was found that hypermethylation was more
prominent in the allotetraploids than in the diploid parental
individuals (Xiao et al., 2013).
We have determined global methylation levels, but with this

broad approach, underlying mechanisms of methylation as effectors
at the single-locus scale are diluted. In this sense, investigating
differences in 5-mC of promoters of genes presenting AS would be
interesting. Methylation of promoters is canonically associated with
stable, long-term transcriptional silencing, and one of the reasons is
that a transcription factor (TF) is physically prevented from binding
to its specific transcription factor binding site (TFBS) if the TFBS is
methylated (Zhu et al., 2003; Defossez and Stancheva, 2011). A
differential methylation status of CpG sites in the promoter and/or at
its surroundings between the different alleles of a gene may lead to

differential allelic expression (Kerkel et al., 2008; Sehrish et al.,
2014). However, the three target genes focused on in the present
study (rpl8, gapdh and actb) are housekeeping (HK) genes. HK
genes are expressed in virtually all tissues and across developmental
stages and are, in general, exempted from complex transcriptional
programs as, for example, the transcriptional programs governing
genes involved in responses to external stimuli or in cell
differentiation (Farré et al., 2007). In principle, HK genes are
activated by default; therefore, the CpG sites around or on the
proximal promoter should be unmethylated. Also, contrary to what
has been widely reported in other vertebrate organisms, it was found
that in zebrafish, methylation and expression were most strongly
correlated with regions 10,000 bp upstream and downstream from
genes (McGaughey et al., 2014) and not at the proximal promoter
sites. So, in the present case, for the specific gene targets on hand, a
locus-specific approach did not offer much promise and it was not
pursued.

Mechanisms other than DNA methylation may intervene or
be responsible for allele expression bias
In any case, mechanisms other than DNA methylation may
intervene or be responsible for allele expression bias and AS. For
example, an miRNA-linked mechanism has been already identified
as a good candidate in the S. alburnoides complex (Inácio et al.,
2012) and should be similarly investigated for the P. formosa
complex.

From another angle, in the analysis of the putative promoter
regions of rpl8, gapdh and actb of Poecilia parental genomotypes,
we found a high percentage of positive identity between the
sequences. This is an expected result for comparisons within species
and/or strains. However, as there is no perfect homology (less than
100% identity), it is conceivable that in the cells of the TGH
individuals three different sequences are working simultaneously as
promoter of each gene. Conversely, each of these different
sequences can work more or less effectively as the docking site
for polymerases and transcription factors originated from
homoeolog genes. So, another mechanism that may intervene or
be responsible for allele expression bias and AS is the strength of the
promoter. A promoter can be classified from strong to weak
according to its affinity for RNA polymerase and TFs (Li and
Zhang, 2014). Thus, the strength of the promoter depends from how
closely the promoter sequence resembles the ideal consensus
sequences for the docking of polymerase and TFs (Li and Zhang,
2014). For example, in Escherichia coli it was observed that several
non-consensus bases could have a positive effect on the promoter
strength while certain consensus bases have a minimal effect (Kiryu
et al., 2005). Also, it was demonstrated in yeasts that variations in
the binding sites of TFs between three different strains were
responsible for up to 50% of the observed differences in expression
(Tirosh et al., 2008). Additionally, a more recent study showed that
nucleotides in different regions of promoter sequence have different
effects on promoter strength (Li and Zhang, 2014). So, we
hypothesize that the conspicuous AS that we encountered in the
P. formosa TGH may be due to different promoter strengths
resulting from the different nucleotidic sequences detected. To
support this assumption, a similar analysis for the S. alburnoides
complex should be performed, and results should show higher
levels of identity between the promoter sequences of the parental
genomotypes. However, while large-scale annotated genomic data
are available for the P. formosa complex, no reference genome has
yet been produced for the S. alburnoides complex, so we could not
perform the same analysis.
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‘Old’ versus ‘de novo’ allopolyploids and the effects of long-
term evolutionary processes
The analyzed laboratory-bred triploid P. formosa individuals with
the mml genomotype were derived by gynogenesis from natural
triploids. In these individuals, the original hybridization (m×l ) and
polyploidization (ml+m) events occurred a long time ago, and are
merely clonally propagated at each generation (Lampert and Schartl,
2008). Therefore, we consider them as naturally occurring ‘old
triploids’. We also analyzed TGH P. formosa triploids of mlb and
mls genomic composition that were experimentally produced
through specific crosses between Poecilia strains and species
(Lampert et al., 2007; Lamatsch et al., 2010). We can consider these
individuals as ‘de novo’ allotriploids, as increases in both ploidy and
hybridity happen at the moment of production of each of these TGH
individuals.
Inversely to what was observed in the ‘old’ P. formosa

triploids, in the ‘de novo’ triploids AS was quite frequent and
evident. We hypothesize that AS may be an immediate
mechanism to cope with the genomic shock. In fact, whenever
AS has been detected in vertebrates, it was in individuals that
could be considered ‘de novo’ triploids. In S. alburnoides the
reproductive complex is maintained through an intricate network
of genetic exchanges and continuous de novo hybridizations.
Hence, allopolyploidy is established ‘de novo’ at the moment of
each individual conception. Another example is the laboratory-
produced TGH allotriploid medakas (Oryzias latipes), where it
was found that allele suppression, despite not being abundant,
consistently occurred (Garcia et al., 2014).
These examples support the hypothesis that AS may be an

immediate mechanism to cope with genomic shock. Consecutively,
refined mechanisms operate leading to a stable regulation of the
three haplomes. However, we have not found AS in TGH
S. alburnoides, which are also ‘de novo’ allotriploids. This may
indicate that AS is not a ubiquitous mechanism to cope with an
abrupt increase of ploidy and heterozygosity in fish.
Several studies on allopolyploid plants have also revealed

differences between ‘old’ and ‘young’ polyploids. The degree of
non-additive expression was lower in recent allopolyploids
compared with ‘older’ allopolyploid cotton and coffee genotypes
(Flagel and Wendel, 2010). These results suggested that non-
additive expression, that is due or related to AS, may increase over
time, via selection and modulation of regulatory networks. In
another study, results showed that in F1 hybrids and early
allopolyploid Tragopogon miscellus plants there was activation of
allele/homeolog expression in all tissues, eliminating the tissue-
specific expression patterns observed in the parental diploids
(Buggs et al., 2011). Tissue-specific expression patterns were then
reestablished as generations succeeded (Buggs et al., 2011).
In this context, the differences in DNAmethylation levels that we

observed can also be interpreted. Comparing allotriploids of
different evolutionary age, we observed a tendency towards
higher DNA methylation levels than expected from additivity in
the ‘old’ hybrids, whereas the opposite tendency was observed in
the genomotypes of ‘de novo’ hybrids.
In the S. alburnoides complex, we found other evidence that

long-term evolutionary processes may influence DNA methylation
levels. We observed that the percentage of methylated DNA is much
higher in the aa genomotype than for the other two parental
genomotypes ( pp and qq). This may indicate that in individuals of
the aa genomotype, more genes or alleles are downregulated or
inactivated. These increased DNAmethylation levels may be related
to the fact that both pp and qq genomotypes exist as independent

species (S. pyrenaicus and S aradensis, respectively), having their
own separate evolutionary paths, while an independent species with
the aa genomotype does not exist. Individuals with the aa
genomotype, called ‘diploid nuclear non-hybrid males of the
S. alburnoides complex’ (Alves et al., 2001), perpetuate only inside
the complex by mating with triploid hybrid females ( paa or qaa)
(Fig. S1). In each aa individual that arises, the nuclear hybrid status
is lost and epigenetic changes are likely to occur.

In summary, our results imply that DNA methylation may play
some role in the evolution of these vertebrate allopolyploids,
probably somehow providing genome stability and reducing the
degree of incompatibility that arises from multiple incongruous
genomes within the same nucleus. Nevertheless, as in plants, the
mechanisms by which all this happens at the whole genomic level
(and also at specific sites) seem to be diverse and are still obscure.

Conclusions
With this work, we showed that in vertebrates, AS also occurs in
allopolyploid situations besides the previously studied naturally
occurring triploid S. alburnoides. In P. formosa AS was observed
quite frequently in two distinct TGH genomic configurations.

We assume that AS is the result of genomic stress, induced by the
presence of distinct genomes in the same nucleus. Of note, we found
several disparities within and between the two complexes concerning
the pattern of allele-specific expression and DNAmethylation levels.
These differences might be due to the intrinsic characteristics of each
genome involved in the hybridization process. Expression silencing
or downregulation can result from the interaction between divergent
regulatory hierarchies (Riddle and Birchler, 2003) and differential
capacity of interaction between proteins or complexes (Comai, 2000;
Adams and Wendel, 2004). However, our results also point out that
AS is not a ubiquitous mechanism to handle an abrupt increase in
ploidy and heterozygosity in fish.

In addition, our findings support the notion that long-term
evolutionary processes have an effect on the allele expression
patterns and possibly also on DNA methylation levels. Our study
highlights the complexity of allopolyploidy at the gene expression
regulation level, and that attempts to find a common global
mechanism or explanation that fits all allotriploid conditions might
fail, as it might not exist.
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of the Rıó Purificación river system. Front. Zool. 4, 13.

Sehrish, T., Symonds, V. V., Soltis, D. E., Soltis, P. S. and Tate, J. A. (2014).
Gene silencing via DNA methylation in naturally occurring Tragopogon miscellus
(Asteraceae) allopolyploids. BMC Genomics 15, 701.

Shen, H., He, H., Li, J., Chen, W., Wang, X., Guo, L., Peng, Z., He, G., Zhong, S.,
Qi, Y. et al. (2012a). Genome-wide analysis of DNA methylation and gene
expression changes in two Arabidopsis ecotypes and their reciprocal hybrids.
Plant Cell 24, 875-892.

Shen, Y., Catchen, J., Garcia, T., Amores, A., Beldorth, I., Wagner, J., Zhang, Z.,
Postlethwait, J., Warren, W., Schartl, M. et al. (2012b). Identification of
transcriptome SNPs between Xiphophorus lines and species for assessing allele
specific gene expression within F1 interspecies hybrids.Comp. Biochem. Physiol.
C Toxicol. Pharmacol. 155, 102-108.

Shen, Y., Garcia, T., Pabuwal, V., Boswell, M., Pasquali, A., Beldorth, I., Warren,
W., Schartl, M., Cresko,W. A. andWalter, R. B. (2013). Alternative strategies for
development of a reference transcriptome for quantification of allele specific
expression in organisms having sparse genomic resources. Comp. Biochem.
Physiol. D Genomics Proteomics 8, 11-16.

Sousa-Santos, C., Robalo, J. I., Collares-Pereira, M.-J. and Almada, V. C.
(2005). Heterozygous indels as useful tools in the reconstruction of DNA
sequences and in the assessment of ploidy level and genomic constitution of
hybrid organisms. DNA Seq. 16, 462-467.

Sousa-Santos, C., Collares-Pereira, M. J. and Almada, V. C. (2006). Evidence of
extensive mitochondrial introgression with nearly complete substitution of the
typical Squalius pyrenaicus-like mtDNA of the Squalius alburnoides complex
(Cyprinidae) in an independent Iberian drainage. J. Fish Biol. 68, 292-301.

Sousa-Santos, C., Collares-Pereira, M. J. and Almada, V. (2007). Reading the
history of a hybrid fish complex from its molecular record. Mol. Phylogenet. Evol.
45, 981-996.
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Fig. S1: Simplified overview of the S. alburnoides reproductive complex. A) Initial 

hybridization at the origin of the complex. B) Anaecypris-like nuclear genomotype 

reconstitution within the complex. C) Main crosses leading to diploid hybrid S. 

alburnoides. D) Cross leading to the artificial production of THG S. alburnoides. E) 

Independent maintenance of S. pyrenaicus species. F) Main crosses leading to triploid 

hybrid S. alburnoides.  C and F exemplify the shift between ploidy levels and genomic 

compositions in each generation, and how the same genomotype can result from 

distinct crosses. Asterisk represents mitochondrial genotype: blue from S. pyrenaicus, 

red from A. hispanica-like and green from S. aradensis. This figure covers only the 

genomotypes involved in this study.  
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Fig. S2: Simplified overview of the Poecilia formosa complex. A) Initial hybridization in 

the origin of the complex. B) Gynogenetic diploid hybrid reproduction and paternal 

introgression leading to the occurrence of triploid hybrids. C) Crosses leading to the 

artificial production of THG P. formosa. Pink fish are females, blue fish are males. Asterisk 

represents sterility. This figure covers only the genomotypes involved in this study. 
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Table S1. List of specific Poecilia strains used in this work.  

Species  Genomotype Strain 

Poecilia mexicana limantouri mm WLC1353 

Poecilia latipinna ll WLC1368 

Black molly bb WLC1351 

Poecilia salvatoris ss WLC1330 

Poecilia formosa 2n ml IV5 

 

Poecilia formosa 3n 

 

mml 

 

WLC1055 

 

Poecilia formosa 3n (TGH 

with b) 

 

mlb 

 

1588 

3331 

3830 

4069 

4335 

4664 

4665 

 

Poecilia formosa 3n (TGH 

with s) 

 

mls 

 

1588 

1612 

3331 

4663 

4664 

All strains are stocks in the aquarium of the Biocenter at 

the University of Würzburg, Germany. 
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Table S2. Primer sequences and references* for each target gene for both Squalius and 

Poecilia. 

 Gene Primer Sequence Reference 

Sq
u

al
iu

s 

actb* 
ß-ACTIN-F1 5’-CAACGGCTCCGGCATGTG-3’ Pala et al., 2008 

ß-ACTIN-R1 5’-TGCCAGGGTACATGGTGG-3’ Pala et al., 2008 

rpl8* 

Rpl8 

forward 
5’-CTCCGTCTTCAAAGCCCATGT-3’ Pala et al., 2008 

Rpl8 reverse 5’-TGTTCCTCGCAGTCTGCCAG-3’ Pala et al., 2008 

Gapdh* 
GAPDH-F1 5’-ATCAGGCATAATGGTTAAAGTTGG-3’ Pala et al., 2008 

GAPDH-Ri 5’-GGCTGGGATAATGTTCTGAC-3’ Matos et. al., 2010 

P
o

e
ci

lia
 

actb** 

ß-ACTIN-F1 5’-CAACGGCTCCGGCATGTG-3’ Pala et al., 2008 

ß-ACTIN-R1 5’-TGCCAGGGTACATGGTGG-3’ Pala et al., 2008 

Actin F pro 5’-CCTTAAAGCCCTGCCTACCT-3’ _ 

Actin R pro 5’-AAGGGAAGGGATTGCTATGG-3’ _ 

rpl8** 
mRPL8F1 5´-ACGGAGTTTAGTGCACGAT-3’ _ 

mRPL8R1 5’-CTTCTCCTGGACGGTCTTTG-3’ _ 

rpl8*** 
Rpl8 F pro 5’-CTGTTTCCAYCCCCAGAAGT-3’ _ 

Rpl8 R pro 5’-ACGATGCCCTTGATGTAGCC-3’ _ 

Gapdh** 
3gapdhF 5’-GTGACCCGWGCTGCTTTC-3’ _ 

3gapdhR 5’-AGGTCACABACACGGTTGCT-3’ _ 

 
Gapdh*** 

Gapdh F pro 5’-CATTTTGCRTTTTGTGGTTG-3’ _ 

 Gapdh R pro 5’-CCTCACATCKTGGTCTGAAA-3’ _ 

*PCR conditions as described in reference. **PCR conditions: pre-heating at 95°C for 3 min, 30 

cycles at 95°C for 30 s, 60°C (gapdh)/58°C (rpl8 and ß-actin)for 30 s and 72°C for 1 min and a 

final extension at 72°C for 10 min. ***PCR conditions: pre-heating at 95°C for 3 min, 30 cycles 

at 95°C for 30 s, 60°C (gapdh)/62°C (rpl8 and ß-actin)for 30 s and 72°C for 1,30 min and a final 

extension at 72°C for 13 min. 
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Table S3. Relative comparison (ratio) between the mean observed methylation value 

and an expected methylation level in case of additivity (obs/ exp) for a hybrid 

situation. 

  Liver Muscle 

  

Obs* 5mC 
(ng) 

Exp**5mC 
(ng) obs/exp      

Obs* 5mC 
(ng) 

Exp**5mC 
(ng) obs/exp  

S.
 a

lb
u

rn
o

id
es

 aa  2,91 - - 4,78 - - 

pp  1,78 - - 3,13 - - 

qq  1,71 - - 3,62 - - 

pa  1,97 2,34 0,84 3,36 3,95 0,85 

paa  2,88 3,80 0,76 4,29 6,34 0,68 

pqa  3,17 3,20 0,99 4,69 5,76 0,81 

P
. f

o
rm

o
sa

 

mm  1,07 - - 0,61 - - 

ll  1,18 - - 0,77 - - 

bb  1,16 - - 0,77 - - 

ss  1,01 - - 0,69 - - 

ml  1,65 1,13 1,46 1,17 0,69 1,69 

mml  1,95 1,66 1,17 1,32 1,00 1,33 

mlb 0,98 1,71 0,58 0,81 1,08 0,76 

mls 1,03 1,63 0,63 0,78 1,04 0,75 

 

 

* mean observed methylation value ** expected methylation calculated from 
the mean methylation level obtained for each parental diploid genomotype 
(pp, aa and qq) considering that p, a and q genomic contributions in the 
hybrids are methylated at the same level as in the non-hybrid situation. 
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Table S4. Identity matrix between all the parental genomes of P. formosa for each 

target gene from Bioedit. 
a

ct
b

 

Seq actb-> mm ll bb ss 

mm  0.983 0.991 0.976 

ll 0.983  0.978 0.977 

bb 0.991 0.978  0.974 

ss 0.976 0.977 0.974  
  

g
a

p
d

h
 

Seq gapdh-> mm ll bb ss 

mm  0.988 0.961 0.958 

ll 0.988  0.958 0.956 

bb 0.961 0.958  0.927 

ss 0.958 0.956 0.927  
  

rp
l8

 

Seq rpl8-> mm ll bb ss 

mm  0.97 0.987 0.98 

ll 0.97  0.967 0.966 

bb 0.987 0.967  0.972 

ss 0.98 0.966 0.972  
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Table S5. Number of CpG sites per 1Kb within the mm, ll, bb and ss sequences, ob-

tained with the Sequence Manipulation Suite. 

   
 

mm ll bb ss 

# 
C

p
G

 s
it

e
s 

p
er

 
1

K
b

 

 rpl8 
 

27 27 29 29 

 gapdh 
 

25 25 23 19 

 actb 
 

19 19 19 18 
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Abstract  

Allopolyploid plants are long known to be subject to a homoeolog expression bias of varying 

degree. The same phenomenon was only much later suspected to occur also in animals based on 

studies of single selected genes in an allopolyploid vertebrate, the Iberian fish Squalius alburnoides. 

Consequently, this species became a good model for understanding the evolution of gene expression 

regulation in polyploid vertebrates. Here, we analyzed for the first-time genome-wide allele-specific 

expression data from diploid and triploid hybrids of S. alburnoides and compared homoeolog 

expression profiles of adult livers and of juveniles. Co-expression of alleles from both parental genomic 

types was observed for the majority of genes, but with marked homoeolog expression bias, suggesting 

homoeolog specific reshaping of expression level patterns in hybrids. Complete silencing of one allele 

was also observed irrespective of ploidy level, but not transcriptome wide as previously speculated. 

Instead, it was found only in a restricted number of genes, particularly ones with functions related to 

mitochondria and ribosomes. This leads us to hypothesize that allelic silencing may be a way to 

overcome intergenomic gene expression interaction conflicts, and that homoeolog expression bias 

may be an important mechanism in the achievement of sustainable genomic interactions, mandatory 

to the success of allopolyploid systems, as in S. alburnoides.  

 

Introduction 

 By the classical Mendelian rules of inheritance for traits with intermediate phenotypes an equal 

contribution from the maternally and paternally inherited alleles to the overall expression was the 

intuitive solution. Doubts about this equal parental contribution to intermediate phenotypes have 
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been raised, especially in respect to hybrids and polyploids 1,2,3. However, still to date, information’s 

on allele-specific expression (ASE) are scarce and come just from a handful of organisms. To 

understand the biological meaning of ASE under physiological conditions and in organisms with special 

genomic situations like hybrids and polyploids, the high-throughput sequencing technologies allow to 

generate transcriptome-wide data from experimental model systems and non-model organisms. 

 In allopolyploid organisms, two or more sets of diverged genomes are joined through 

hybridization. Consequently, the gene copies that originated from each parent (homoeologs) may be 

quite different 4, 5. The differences may be at the level of DNA sequence either in the promoter and/or 

within the transcribed region of a gene 4, 5. Also, differences can be due to varied chromatin 

modifications and imprinting 6. In any case, such differences between homoeologs may result in 

differential transcription rates and/or differential transcript decay between transcripts derived from 

each homoeolog, a phenomenon called homoeolog expression bias (HEB) 7, 8. Studies on allopolyploids 

that have analyzed HEB are numerous for plants and go back several years 9,10, 11, 12, 13, 14, 15. However, 

the same phenomenon was only much later described in a vertebrate organism 16, 17, the allopolyploid 

teleost fish S. alburnoides complex. Previously, based on the analysis of a set of 7 genes, it was shown 

that a gene-regulatory mechanism involving allelic silencing (AS), which is the most extreme case of 

HEB, contributes to the regulation of gene expression in allotriploid S. alburnoides individuals. The 

expression patterns were shown to vary according to the gene and organ analyzed, suggesting a 

considerable plasticity in the process and rejecting the hypothesis of whole haplome silencing 16, 17.

 In addition to the phenomenon of AS, also gene expression dosage compensation was described 

to occur in S. alburnoides, reducing the allotriploid expression levels to the same levels of the hybrid 

diploid counterparts 16, 17, 18. It was hypothesized that a link exists between AS and the observed dosage 

compensation 16. It was also suggested that a consistent silencing of one of the three alleles 

(irrespective which one) across the allotriploid S. alburnoides genome could be a reason for the 

observed similar expression levels between diploid and triploid S. alburnoides specimens. To explore 

that hypotheses, a more detailed knowledge on how expression regulation occurs at the whole 

genome level in this allopolyploid species was necessary. 

 Following the initial discoveries of 15, 16, that were based just on a handful of genes, we applied 

for the first time in a naturally occurring allopolyploid vertebrate a whole transcriptome sequencing 

approach to the study of homoeolog specific expression (HSE) to help to clarify the role and 

implications of HEB, and AS, in the complex problem of odd genome regulation and allopolyploid 

perpetuation. We hoped to clarify if HEB and AS (balanced or unbalanced) are genome wide 
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transcriptomic phenomena or are restricted to subset of genes. Also important is to see if there is a 

preference towards one of the homoeologs to be down regulated or silenced and if there is a 

predisposition of certain genes to be affected by HEB. We hope also to clarify if and how does ploidy 

level increase affect HEB and AS. 

 In the present work we showed that HEB is quite extensive, but the full silencing of one of the 

alleles, which is the most extreme HEB scenario, is seen only for a minority of genes. Moreover, AS is 

not a genomewide transcriptomic phenomenon that systematically silences one of the alleles in S. 

alburnoides triploids, as previously thought.  

 

Results 

Genome specific expression patterns in livers of diploid and triploid hybrids. 

 We first considered SNVs for HSE quantification in liver tissue and used 2807 SNPs in liv-PA, 

distributed over 1121 transcripts, and 2305 SNPs in liv-PAA distributed over 937 transcripts. Plotting 

the distribution of transcripts according to the fraction of A genome contribution (Fig. 1) reveals the 

pattern of genome specific expression in diploid hybrids. Transcripts that exhibit a fraction larger than 

0,5 are those that mapped more A than P reads in the hybrids. Those with ratios of less than 0,5 are 

transcripts from genes where the P alleles were expressed at a higher level than the A alleles. 

Following the criteria of 19, we assume as balanced allelic expression profile for diploids genes with 

less than 70% of expression preference of one the alleles (Fig. 1a). We found for liv-PA 764 of 1121 

transcripts (68%) with balanced homoeolog expression and 357 transcripts (32%) showing strong 

homoeolog expression bias (Table 1). Additionally, we observed a significant unbalanced homoeolog 

expression bias (χ2, p<0,05) towards P-genome alleles, meaning that for a significant number of genes 

displaying homoeolog expression bias, the P allele is preferentially expressed. 

 We then extrapolated the criteria used in 19 to triploids, and considered that for a ratio of two 

A alleles to one P allele, balanced expression between both genomotype alleles would result in an A 

genome expression fraction between 0,5 and 0,9 (Fig. 1b). For liv-PAA we found 649 of 938 transcripts 

(69%) with balanced homoeolog expression and 289 transcripts (31%) showing strong homoeolog 

expression bias (Table 1). Focusing on the transcripts presenting strong homoeolog expression bias, it 

was observed that as for the diploid form, the homoeolog expression bias is shifted significantly (χ2, 

P<0,05) towards higher expression of the P alleles (Table 1). 

 From the transcripts that present strong allelic bias, we considered under allelic silencing the 

ones exhibiting a fraction of allelic contribution lower than 0,1. From the total analyzed genes 15% in 
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Liv-PA and 13% in Liv-PAA follow under this category (Table 1). Interestingly, we found that the 

number of transcripts presenting HEB is not significantly affected (χ2- test, P>0,05) by ploidy level, with 

both diploid and triploid showing similar number of genes with HEB, but also AS.  

 

Genome specific contribution in hybrid diploid and triploid juveniles. 

 The effective number of SNVs considered for the HSE quantification was 5424 SNPs in juv-PA, 

distributed over 2039 transcripts and 5840 SNPs in juv-PAA distributed through 2169 transcripts. 

Again, we plotted the distribution of transcripts according to the fraction of A genome contribution, 

revealing the pattern of genome specific expression in triploid hybrids (Fig. 2). Using the same criteria 

as for the liver expressions, we found for juv-PA 1386 out of 2039 transcripts (68%) presenting 

balanced homoeolog expression and 653 transcripts (32%) showing strong homoeolog expression bias 

(Table 2). A significant unbalanced homoeolog expression bias (χ2-test, p<0,05) was also observed but 

different from liver. In Juv-PA the bias was towards A, meaning that from the pool of transcripts 

displaying HEB, for a significant majority, A alleles were higher expressed. 

 In juv-PAA we found 1064 SNPs in 2169 transcripts (49%) presenting balanced allelic expression 

and 1105 genes (51%) showing strong allele expression bias (Table 2). Significant unbalanced 

homoeolog expression bias (χ2-test; p<0,05) was observed towards P (Table 2). From the total analyzed 

genes, 8% in Juv-PA and 9% in Juv-PAA present (either A or P) monogenomic expression (Table 2). 

 In the case of the juvenile dataset, we found that, unlike in adult liver, the number of transcripts 

presenting HEB is significantly affected (χ2- test, P<0,05) by ploidy level. 

 

Functional enrichment analysis. 

 We performed a GO and a KEGG pathway enrichment analysis in each of the defined 

monogenomic expression (MGE) groups of transcripts. We found significant functional enrichment of 

several terms (Tables 3 and 4). In essence, genes that underwent preferential silencing of the A alleles 

were enriched in ribosomal-linked terms (in juvenile samples, but also in both ploidy levels irrespective 

of the tissue type) while genes preferentially silenced for the P allele showed an enrichment of 

mitochondrial function related terms (in liver samples and both ploidy levels). 

 We further analised the genes affected by MGE and identified transcripts with consistent P or 

A monogenomic transcriptional contribution in all four libraries (Table 5). Within our criteria of 

significance, no functional enrichment was detected in either of these two groups. However, if 

considering the gene function of each of these above mentioned MGE genes, the link of allelic silencing 
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to mitochondria and to ribosomes is also seen. 

 

Discussion: 

 

 In this work we describe homoeolog expression in the S. alburnoides complex, comparing the 

profiles of natural occurring diploids with triploids individuals to better understand the mechanisms 

of odd genome regulation and perpetuation in a successful allopolyploid vertebrate. It is the first 

transcriptomic attempt to quantify ASE in a natural allopolyploid fish. 

 Despite the PCR based approaches undertaken previously 16, 17 proved to be sensitive and 

valuable assays for an initial assessment of the gene expression profile in the S. alburnoides complex, 

technically they were constraint to the analysis of a few genes with a known sequence. Next-

generation sequencing technologies brings together the advantages of high-throughput and high-

sensitivity to the study of gene expression. The RNA-Seq approach allowed to look at the gene 

expression in the S. alburnoides complex at a much broader and integrative range. It allowed us to 

distinguish the different genome-specific gene copies and how they contribute to the overall 

expression of each gene for a much higher number of genes, and to draft a comparative profile of 

allele specific expression between diploid and triploid S. alburnoides fish. 

 When analyzing the genome-specific expression contribution per gene in the S. alburnoides 

complex, we found biased contribution of homoeologs that ranged from subtle differences to 

complete silencing of alleles, irrespective of the ploidy level or sample type. However, when 

comparing the results obtained for liver and for juveniles, results concordance is scarcer. We 

hypothesize that the lack of concordance between the liver and juveniles’ datasets is mostly due to 

the intrinsic difference between a single organ and a whole animal. The impact of such differences on 

the output of gene expression profiling is well-documented 8, 20, 21, 22, 23, 24. Thus, comparing homoeolog 

expression for such different sample types as liver and juvenile full body samples seems to be not very 

informative.  

 When analyzing the genome-specific expression contribution per gene in S. alburnoides, we 

found extreme biased contribution of homoeologs (as defined by 19) in more than 30% of the 

considered transcripts, irrespective of the ploidy level or sample type. Hence, a considerably fraction 

of the genome is strongly affected by HEB. This result may even be an underestimation. As discussed 

by 25, the study of allele specific expression in full body samples and even in single tissue or organ 

samples can give skewed and/or diluted signals. The results we obtained imply that equally balanced 
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allelic expression is not a necessary regulatory condition to achieve appropriate amounts of gene 

product in fish of the S. alburnoides complex, neither as relevant factor to explain the success of 

allopolyploid S. alburnoides nor as distinctive mechanism between diploid and triploid S. alburnoides 

biotypes. 

 Gene expression is governed at the level of transcription by interactions between cis- and trans-

acting regulatory elements 26, 27. When in hybrids unequal expression of parental alleles has been 

observed, it has been considered as a signature of cis-regulatory divergence 26. This may also apply for 

the significant degree of HEB which was found in the intergeneric hybrids of S. alburnoides. Evidence 

is accumulating that also in non-hybrid genomes, the variation found in regulatory regions between 

alleles is sufficient to affect the level of expression of the two variants 4, 23. For example, significant cis 

regulatory variation in 80% of mouse genes have been found 28 and allelic imbalance was estimated 

to affect greater than 89% of genes of mouse, cow and humans, in at least one tissue 23. 

 A different picture emerges from a study of another hybrid fish, the Amazon molly (P. formosa). 

Here, allele specific gene expression analysis from different organs, including liver, brain and ovary 

revealed only a very small percentage of genes (between 1.2 and 4.1%) presenting HEB 29. However, 

P. formosa is a clonal hybrid organism, resultant from a single time successful hybridization event at 

least 100.000 years old 29, 30. This makes P. formosa much different from the reproductive complex of 

S. alburnoides, which results from a continuum of intricated networks of genetic exchanges, de novo 

hybridizations and ploidy levels shifts 31. The old “frozen” hybrid genomic context of P. formosa may 

have evolved mechanism that counteract HEB. 

 An important feature of the homoeolog expression profile is whether this expression is 

balanced or unbalanced 7. Balanced homoeolog expression means that expression does not favor one 

component genome, while in unbalanced homoeolog expression one of the intervenient genomes is 

favored 8. We found a significant unbalanced homoeolog expression in all S. alburnoides libraries. In 

all liver samples there was consistency in terms of magnitude and bias direction towards the P 

genome. Conversely, in the whole-body juvenile samples, the ploidy state appears to influence the 

direction of the bias. HEB was skewed towards A in Juv-PA sample while it is displaced towards P in 

juv-PAA. In liver, ploidy level did not significantly affect neither the extent of HEB nor the tendency 

towards preferential expression of the P alleles. Those results imply that balanced allelic expression is 

not a regulatory necessity to cope with elevated ploidy in S. alburnoides. Our data also supports the 

notion that homoeolog specific expression in diploid and triploid S. alburnoides liver is not a simple 

additive phenomenon. It was previously shown 18 that the quantitative expression profiles of livers 
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from the S. alburnoides parental genomotypes (AA and PP) are significantly different. Most transcripts 

were found at much higher levels in AA than in PP livers 18. Taken this into consideration, a simplistic 

model of additive homoeolog expression in allopolyploid S. alburnoides could be only put forward if 

we had found homoeolog expression bias towards A homoeologs, but not towards P, as it was the 

case. As many interactions between divergent regulatory machineries occur, new patterns of gene 

expression and homoeolog regulation may be more complex and difficult to predict. In plants, 

reshaping of homoeolog expression has been commonly found 5, 26, 32. It was also noted in this context 

that alterations in to the original expression pattern of the originally non-dominant genome occurred 

32. 

Our results from S. alburnoides, are in line with studies from other systems, where unbalanced 

expression has been commonly observed in plant hybrids of different ploidies 11, 12, 33, 34, 35, 36, 37. 

Notably, in cotton, significant differences between studies, in terms of the magnitude of the 

expression bias and bias direction, have been found 32, 38, 39. 

  While we observed for liver samples that the extent of HEB was not significantly affected 

by ploidy level (2n vs 3n), in juveniles there was a significantly higher number of transcripts in 3n than 

in the 2n juveniles presenting HEB. 

 Unequal expression of parental alleles has been pointed out in diploid hybrid plants as a 

signature of cis-regulatory divergence, because both parental alleles should be proportionally exposed 

to the same set of trans-acting regulators 26. However, for an unorthoploid (increased and uneven 

ploidy level hybrid) this assumption is not straightforward since the network of interactions between 

cis and trans regulators is unpredictably influenced by the unbalanced contribution of parental 

genomes and increased number of non-additive interactions between the parental genomes 5. 

 The extent of HEB ranged in our analysis from only subtle allelic differences to complete 

silencing of one (or more) alleles. Thus, we considered another phenomenon, allele-specific silencing 

or monogenomic gene expression, where expression is derived from only one of the parental genomes 

In diploid hybrids, when transcription from only one allele was detected it is undoubtful to infer that 

the other allele is silenced. In the case of allotriploid S. alburnoides of PAA genomic composition, when 

only P genome derived expression was detected at any locus this has to result from silencing of both 

A homoeologs at that locus. However, in the case of expression only from the A genome we cannot 

conclude if A transcripts are coming from one or from both A alleles. Thus, exclusive expression of A 

can mean either biallelic or monoallelic expression. 

 In diploid S. alburnoides (PA), even though most transcripts analyzed presented biallelic 
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expression, we detected for the first time in this fish model the occurrence of MGE, either from the A 

or P homoeologs. This is in accordance with several studies on other diploid organisms, where 

transcription from only one allele has been found not only due to sex-chromosome inactivation and 

genomic imprinting but also stochastic silencing in autosomal genes (reviewed in 25). 

 In triploid S. alburnoides (liv-PAA and juv-PAA) we found, besides the biallelic expression, 

monoallelic expression of P but also P allelic silencing. P homoeolog silencing in triploid S. alburnoides 

has already been reported previously 16, 17, 18, 31, but monoallelic P expression has not been observed 

so far in Squalius genus. This new finding of expression from only one allele in the context of 

allotriploidy in this fish, agrees with a previous report of the same pattern in another successful 

allopolyploid complex, the allopolyploid Poecilia formosa 31. 

 To explain the first observations of P allele specific silencing in triploid S. alburnoides, based on 

the analysis of a limited number of genes 16, a parsimonious hypothesis was suggested postulating 

that one of the three alleles, irrespective which one, could be systematically silenced across the entire 

S. alburnoides genome. This was proposed as explanation why triploids presented similar expression 

levels to their diploid counterparts for the set of analyzed genes. However, our genome wide analyses 

show that allelic silencing does not happen genome-wide in triploid S. alburnoides, and additionally 

shows that AS can also be found in diploid S. alburnoides, and at the same extension than in the 

triploids.   

 Despite heterosis and hybrid vigor are well known phenomena associated with hybrids 40, not 

all crosses result in heterosis and some hybrids do not even survive and/or reproduce 41, 42. Traits 

derived from different genetic backgrounds merged in the hybrids may not be fully compatible, and 

fitness can be reduced. A possible explanation for the success of some hybrids like S. alburnoides may 

come from gene expression plasticity 18, where ASE regulation at each locus may have a significant 

role. 

  We investigated also the biological context of the AS occurrence in S. alburnoides. As 

mentioned, upon hybridization (and ploidy increase) disruption of well-established interlocus 

interactions may reveal incompatibilities 41, 42, so many hybrids and allopolyploids may either be non-

viable or suffer from reduced fitness. Mito-nuclear incompatibilities have been found to influence 

hybrid inviability 43, 44. More specifically, there is evidence of hybrid incompatibilities between nuclear-

and mitochondrial DNA (mtDNA)-encoded elements 45, for example the interaction between nuclear- 

and mtDNA-encoded subunits of the OXPHOS proteins 46, 47. 

 In the S. alburnoides complex, apart from a few exceptions 48, 49, there is almost exclusive 
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presence of S. pyrenaicus (P) mtDNA 50. In that sense, it is interesting to note that P monogenomic 

expression was associated to mitochondria related GO terms, irrespective of ploidy level and sample 

type. We thus hypothesise that expression of only the P alleles of mitochondria related loci in S. 

alburnoides specimens might be an effective way to cope with incompatibilities of the hybrid genome 

and the P derive mitochondria 45. For instance, by facilitating or optimizing mitochondrial-nuclear 

interactions through reducing post-transcriptional and translational incompatibilities between the 

PA(A) nuclear DNA and the maternally inherited P-only mtDNA. This is in accordance with the 

mitonuclear coadaptation theory 51, which postulates that nuclear genes that interact with 

mitochondria are expected to be maternally biased. Also, we found a tendency towards monogenomic 

A transcriptional activity of genes related to ribosomes. Assembly of ribosomes involves more than 

300 proteins and RNAs 52. The genes that code for RNA molecules constitute the ribosomal sub-units 

and are organized in tandem repeats at chromosomal regions called Nucleolar Organizing Regions 

(NORs) 53. But, not all NORs are transcriptionally active. It was previously found that S. pyrenaicus 

presented only one pair of chromosomes with active NORs, while all forms of S. alburnoides presented 

mostly multichromosomal active NORs. Hence, the observed increased NOR numbers in the S. 

alburnoides complex specimens would be A genome derived 54. Accordingly, it can be assumed that at 

a given time, there is a high probability to find more A-genome derived than P-genome derived 

ribosomal RNA molecules, as both PA and PAA genomotype individuals would have only one P-derived 

competent NOR per cell while having multiple A-derived NORs. Also, in accordance with the gene 

balance hypothesis 55,56 which posits that in multi-subunit complexes, changes in the stoichiometry of 

the components of those complexes is deleterious, an intergenomic ribosomal gene conflict can be 

speculated to support the tendency we found towards monogenomic A transcriptional activity of 

ribosomal related genes. Functional studies are required to substantiate these considerations. 

 

 In conclusion, our results imply that balanced allelic expression is not a necessary regulatory 

condition to achieve appropriate amounts of gene products in the S. alburnoides complex and support 

that homoeolog specific expression in diploid and triploid S. alburnoides is not a simple additive 

phenomenon. 

 Despite HEB is quite extensive, the full silencing of one of the alleles as the extreme, was seen 

only in a minority of genes. However, AS was found mostly in genes related to mitochondria and 

ribosomes, what lead us to hypothesize that AS may be a way to overcome intergenomic gene 

expression interaction conflicts.  In that sense, HEB and AS may be key players into the achievement 
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of sustainable genomic interactions, mandatory to the success of allopolyploid systems, as the S. 

alburnoides complex. 

 

Materials and methods 

 Model system  

 We used the allopolyploid hybridogenetic complex S. alburnoides as experimental model to 

study specific allelic contribution to the transcript pool. “Hybridogenetic” refers to an alternative 

mode of reproduction and “complex” is the terminus denoting a natural system composed of parental 

species and their hybrids of different ploidies, with altered modes of reproduction and reproductive 

interdependence. The S. alburnoides complex resulted from a cross of a Squalius pyrenaicus female 

(contributing with the P genome) and an Anaecypris-like male (contributing with the A genome) (see 

50 and 57 for extensive review).  

 

  Libraries 

 Previously constructed and sequenced RNA-Seq libraries, enriched for mRNA by hybridization 

with Oligo-dT beeds, have been used in this study (Supplementary Table S1 – all additional files at 

https://figshare.com/s/c03974866dbd92b5a24d). 

In summary:  

- From juvenile samples: Three barcoded RNA libraries had been previously constructed and 

paired-end sequenced using Illumina HiSeq 2000, producing 12 Gb clean data in 3 data sets 

(juv-AA; juv-PA; and juv-PAA, ~4Gb per library) of paired-end sequence reads (around 91 bp) 

18. 

- From adult liver samples: Four barcoded RNA libraries had been previously constructed, one for 

S. pyrenaicus (liver- PP) and three for S. alburnoides (liver- AA, liver-PA and liver-PAA) 18. The 

four libraries were paired-end sequenced using Illumina HiSeq 2000, producing 4Gb of clean 

data in 4 data sets (Liv-AA; Liv-PA; Liv-PP and Liv-PAA, ~1Gb per library) of short paired-end 

sequence reads (around 50 bp) 18. 

- From adult brain and gonad samples: Six barcoded RNA libraries were constructed, two for S. 

pyrenaicus brain and two for gonads 58, one for S. alburnoides nuclear non-hybrid AA male 

brain and one for its gonad (this study). For the construction of the six libraries, total RNA was 

purified from individual gonads and brains of two S. pyrenaicus (PP) individuals, and from a 
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pool of brains and gonads (separated by tissue type) of a AA S. alburnoides and a rare occur-

ring AAA S. alburnoides. All libraries were paired-end sequenced using Illumina HiSeq 2000, 

producing in total 12 Gb of clean data in six data sets (brainF-PP, brainM-PP, gonF-PP, gonM-

PP; brain-AA and gon-AA, ~2 Gb per library) of paired-end sequence reads (around 91 bp). 

 The RNA-Seq fastq files are available through public repositories (Supplementary Table S1 - 

Additional Files at https://figshare.com/s/c03974866dbd92b5a24d). 

 

S. alburnoides “de novo” transcriptome assembly 

 We used SOAPdenovo to produce a transcriptome de novo assembly using all available libraries 

from individuals participating in the S. alburnoides complex (juv-AA, juv-PA, juv-PAA, liv-PP, liv-AA, liv-

PA, liv-PAA, brainF-PP, brainM-PP, gonF-PP, gonM-PP, brain-AA and gon-AA) to produce a more 

comprehensive “S. alburnoides breeding complex” reference transcriptome than the one previously 

available at 18. Statistics of assembly quality for S. alburnoides complex transcriptome provided as 

Supplementary Table S2 (all additional files at https://figshare.com/s/c03974866dbd92b5a24d). 

Assemblies were taken into further processes of sequence splicing and redundancy removing with the 

sequence clustering software TGICL 59. After clustering, contigs were annotated with blastx and blastn 

against the NCBI non-redundant protein database (NR) (e-value<0.00001), retrieving proteins with the 

highest sequence similarity to the given contigs.  We used Blast2GO program 60 to get functional 

annotations. Assembly and gene ontology (GO) annotations are available as Datasets in Additional 

Files at https://figshare.com/s/c03974866dbd92b5a24d. 

 Using the de novo assembled S. alburnoides complex transcriptome as reference, we detected 

and quantified single nucleotide variants (SNVs) between all different samples with SOAPsnp 61. SNV 

calling criteria was as following: consensus quality ≥ 20; depth of coverage of the site and the flanking 

sequences ≥ 3; distance from the last candidate SNV ≥ 5bp; distance from the borders > 5bp. SNP 

calling, and alleles quantification are provided as Supplementary Information. 

 

Comparative genome specific expression quantification 

 Several polymorphic sites were detected within each nuclear non-hybrid sample (both S. 

pyrenaicus and S. alburnoides AA samples) and binned for separation from the non-polymorphic sites. 

After excluding the intragenomic polymorphisms, P and A genome specific variants were identified. 

Only when a single nucleotide variant was detected within all 4 AA genome libraries, and it was 

different from the single variant found in all 5 PP genome libraries, such site was considered for the 
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allele specific expression quantification in the hybrid S. alburnoides individuals. In our reference 

transcriptome sequences, which represents a hybrid species, the polymorphic positions are 

represented by the most frequent or more represented nucleotide base from the pool of all reads 

covering that site. Thus, as observed by 19, reads of the same SNV as reference, map with higher 

efficiency than others, an effect known as reference bias. When inspecting our data, it was obvious 

that there was a clear tendency towards higher read counts of the reference variant. To validate and 

calculate this read count bias, we used the intra-genomic polymorphisms. To do so, we started with 

the assumption of a 1:1 allelic contribution in the complex nuclear non-hybrid forms (S. pyrenaicus 

and S. alburnoides AA samples) and calculated the deviation from the expectation (allele1 reads / 

allele2 reads = 1) at each position. Mean deviation was calculated for each nuclear non-hybrid sample, 

and a mean value of these means was used as correction factor of read counts of each transcript of 

the hybrid libraries. brain-AA and gon-AA were excluded from this analysis because of the inclusion of 

triploid AAA in the AA sample pools. 

 In the hybrid samples, only nucleotide positions showing 20 or more SNV supporting reads were 

considered for quantification, increasing the confidence of the quantitative allele/genome-specific 

expression analysis, but obviously reducing the number of SNV positions to analyze. For the majority 

of transcripts identified as having SNVs between P and A genomes, more than one site per transcript 

was identified. In these cases, for each hybrid dataset a mean number of reads per allele/genome and 

per transcript was calculated. 

 The number of reads for each variant of the polymorphic site per transcript in the hybrid 

libraries (PA and PAA) was used to quantify the genome specific and/or allele specific contribution for 

the overall expression. 

 

Functional term enrichment analysis  

 To infer a possible biological context of genes exhibiting preferential AS in S. alburnoides, 

transcripts in which expression was determined to be coming only from one genome type (P or A) 

were organized in groups according to genome-specific silencing within tissue/sample type (liver or 

juveniles) and also according to ploidy level (2n-PA and 3n-PAA). 8 groups of monogenomic derived 

transcripts were assembled as follows: within liver libraries (independently of ploidy level), group i) of 

transcripts presenting P monogenomic expression and group ii) presenting A monogenomic 

expression; within juveniles libraries (independently of ploidy level), group iii) of transcripts presenting 

P monogenomic expression and group iv) presenting A monogenomic expression; within the PA 
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libraries (independently of sample type), group v) of transcripts presenting P monogenomic 

expression and group vi) presenting A monogenomic expression; within the PAA libraries 

(independently of sample type), group vii) of transcripts presenting P monogenomic expression and 

the group viii) presenting A monogenomic expression. The list of transcripts organized according to 

genome-specific silencing (from i to viii) is available as Supporting Information in Additional Files 

(https://figshare.com/s/c03974866dbd92b5a24d). 

 To perform functional enrichment analysis in each of these groups, we used DAVID 

Bioinformatics Resource v6.7 (http://david.abcc.ncifcrf.gov/), with default parameters. The top blastx 

hits in nr database corresponding to each S. alburnoides contigs were used as customized reference 

background and compared to the above-mentioned input lists of monogenomic transcribed genes. 

 Enriched terms were ranked in the ontology categories Biological Process (BP), Cellular 

Component (CC) and Molecular Function (MF) and KEGG pathways. 

 Significant enrichment was only considered when Benjamini corrected p-value was ≤ 0.05. 

 

References: 

1. Gimelbrant, A., Hutchinson, J. N., Thompson, B. R. & Chess, A. Widespread monoallelic expression 

on human autosomes. Science 318, 1136-40 (2007). 10.1126/science.1148910 

2. Prestel, M., Feller, C. & Becker, P. B. Dosage compensation and the global re-balancing of 

aneuploid genomes. Genome Biology 11, 216 (2010). http://doi.org/10.1186/gb-2010-11-8-216 

3. Hegarty, M. Hybridization: expressing yourself in a crowd. Current Biology 21, R254-5 (2011). 

https://doi.org/10.1016/j.cub.2011.02.035 

4. McManus, C. J. et al. Regulatory divergence in Drosophila revealed by mRNA-seq. Genome 

Research 20, 816–825 (2010). http://doi.org/10.1101/gr.102491.109 

5. Combes, M.-C. et al. Regulatory Divergence between Parental Alleles Determines Gene Expression 

Patterns in Hybrids. Genome Biology and Evolution 7, 1110–1121 (2015). 

http://doi.org/10.1093/gbe/evv057 

6. Knight, J. C. Allele-specific gene expression uncovered. Trends in Genetics 20, 113-116 (2004). 

https://doi.org/10.1016/j.tig.2004.01.001 

7. Chen, Z. J. Genetic and Epigenetic Mechanisms for Gene Expression and Phenotypic Variation in 

Plant Polyploids. Annual Review of Plant Biology 58, 377-406 (2007). 

http://doi.org/10.1146/annurev.arplant.58.032806.103835  

8. Grover, C. E. et al. Homoeolog expression bias and expression level dominance in allopolyploids. 

New Phytologist 196, 966-971 (2012). https://doi.org/10.1111/j.1469-8137.2012.04365.x 

149

https://figshare.com/s/c03974866dbd92b5a24d
http://david.abcc.ncifcrf.gov/
http://doi.org/10.1186/gb-2010-11-8-216
http://doi.org/10.1101/gr.102491.109
http://doi.org/10.1093/gbe/evv057


 

 

9. Guo, M., Davis, D. & Birchler, J. A. Dosage Effects on Gene Expression in a Maize Ploidy 

Series. Genetics 142, 1349–1355 (1996).  

10. Auger, D.L. et al. Nonadditive gene expression in diploid and triploid hybrids of maize. Genetics 

169, 389-97 (2005). https://doi.org/10.1534/genetics.104.032987 

11. Flagel, L., Udall, J., Nettleton, D. & Wendel, J. Duplicate gene expression in 

allopolyploid Gossypium reveals two temporally distinct phases of expression evolution. BMC 

Biology 6, 16 (2008). http://doi.org/10.1186/1741-7007-6-16 

12. Chaudhary, B. et al. Reciprocal Silencing, Transcriptional Bias and Functional Divergence of 

Homeologs in Polyploid Cotton (Gossypium). Genetics 182, 503–517 (2009). 

http://doi.org/10.1534/genetics.109.102608 

13. Buggs, R. J. et al. Transcriptomic shock generates evolutionary novelty in a newly formed, natural 

allopolyploid plant. Current Biology 21, 551-556 (2011). https://doi.org/10.1016/j.cub.2011.02.016 

14. Dong, S. & Adams, K. L. Differential contributions to the transcriptome of duplicated genes in 

response to abiotic stresses in natural and synthetic polyploids. New Phytologist 190, 1045-1057 

(2011). https://doi.org/10.1111/j.1469-8137.2011.03650.x 

15. Combes, M. C., Cenci, A., Baraille, H., Bertrand, B. & Lashermes, P. Homeologous gene expression 

in response to growing temperature in a recent allopolyploid (Coffea arabica L.). Journal of Heredity 

103, 36–46 (2012). https://doi.org/10.1093/jhered/esr120 

16. Pala, I., Coelho, M. M. & Schartl, M. Dosage compensation by gene-copy silencing in a triploid 

hybrid fish. Current Biology 18, 1344-1348 (2008). https://doi.org/10.1016/j.cub.2008.07.096 

17. Pala, I., Schartl, M., Brito, M., Vacas, J. M. & Coelho, M. M. Gene expression regulation and 

lineage evolution: the North and South tale of the hybrid polyploid Squalius 

alburnoides complex. Proceedings of the Royal Society B: Biological Sciences 277, 3519–3525 (2010). 

http://doi.org/10.1098/rspb.2010.1071 

18. Matos, I., Machado, M. P., Schartl, M. & Coelho, M. M. GeneExpression Dosage Regulation in an 

Allopolyploid Fish. PLoS ONE 10, e0116309 (2015). http://doi.org/10.1371/journal.pone.0116309  

19. Shen, Y. et al. Identification of transcriptome SNPs between Xiphophorus lines and species for 

assessing allele specific gene expression within F1 interspecies hybrids. Comparative Biochemistry 

and Physiology. Toxicology & Pharmacology CBP 155, 102–108 (2012). 

http://doi.org/10.1016/j.cbpc.2011.03.012 

20. Adams, K. L., Cronn, R., Percifield, R. & Wendel, J. F. Genes duplicated by polyploidy show 

unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proceedings of 

the National Academy of Sciences of the United States of America 100, 4649–4654 (2003). 

http://doi.org/10.1073/pnas.0630618100  

150

http://doi.org/10.1098/rspb.2010.1071


 

 

21. Adams, K. L., Percifield, R. & Wendel, J. F. Organ-Specific Silencing of Duplicated Genes in a Newly 

Synthesized Cotton Allotetraploid. Genetics 168, 2217–2226 (2004). 

http://doi.org/10.1534/genetics.104.033522 

22. Whitehead, A. & Crawford, D. L. Variation in tissue-specific gene expression among natural 

populations. Genome Biology 6, R13 (2005). http://doi.org/10.1186/gb-2005-6-2-r13 

23. Chamberlain, A. J. et al. Extensive variation between tissues in allele specific expression in an 

outbred mammal. BMC Genomics 16, 993 (2015). http://doi.org/10.1186/s12864-015-2174-0  

24. Pinter, S. F. et al. Allelic Imbalance Is a Prevalent and Tissue-Specific Feature of the Mouse 

Transcriptome. Genetics 200, 537-549 (2015). http://doi.org/10.1534/genetics.115.176263  

25. Eckersley-Maslin, M. A. & Spector, D. L. Random Monoallelic Expression: Regulating gene 

expression one allele at a time. Trends in Genetics: TIG 30, 237-244 (2014). 

http://doi.org/10.1016/j.tig.2014.03.003 

26. Bell, G. D. M., Kane, N. C., Rieseberg, L. H. & Adams, K. L. RNA-Seq Analysis of Allele-Specific 

Expression, Hybrid Effects, and Regulatory Divergence in Hybrids Compared with Their Parents from 

Natural Populations. Genome Biology and Evolution 5, 1309–1323 (2013). 

http://doi.org/10.1093/gbe/evt072  

27. Xu, C., et al. Genome-Wide Disruption of Gene Expression in Allopolyploids but Not Hybrids of 

Rice Subspecies. Molecular Biology and Evolution, 31, 1066–1076 (2014). 

http://doi.org/10.1093/molbev/msu085 

28. Crowley, J. J., et al. Analyses of Allele-Specific Gene Expression in Highly Divergent Mouse Crosses 

Identifies Pervasive Allelic Imbalance. Nature Genetics 47, 353–360 (2015). 

http://doi.org/10.1038/ng.3222 

29. Warren, W. C. et al. Clonal polymorphism and high heterozygosity in the celibate genome of the 

Amazon molly. Nature Ecology & Evolution 2, 669-679 (2018). 10.1038/s41559-018-0473-y 

30. Stöck, M., Lampert, K.P., Möller, D., Schlupp, I. & Schartl, M. Monophyletic origin of multiple 

clonal lineages in an asexual fish (Poecilia formosa). Molecular Ecology 19, 5204-15 (2010). 

https://doi.org/10.1111/j.1365-294X.2010.04869.x 

31. Matos, I.M., Coelho, M. M. & Schartl, M. Gene copy silencing and DNA methylation in natural and 

artificially produced allopolyploid fish. Journal of Experimental Biology 219, 3072-3081 (2016). 

10.1242/jeb.140418 

32. Yoo, M.-J., Szadkowski, E. & Wendel, J. F. Homoeolog expression bias and expression level 

dominance in allopolyploid cotton. Heredity 110, 171–180 (2013). 

http://doi.org/10.1038/hdy.2012.94 

151

http://doi.org/10.1038/hdy.2012.94


 

 

33. Chen, Z. J. & Pikaard, C. S. Transcriptional analysis of nucleolar dominance in polyploid plants: 

Biased expression/silencing of progenitor rRNA genes is developmentally regulated 

in Brassica. Proceedings of the National Academy of Sciences of the United States of America 94, 

3442–3447 (1997). 

34. Wang, J. et al. Genomewide Nonadditive Gene Regulation in Arabidopsis 

Allotetraploids. Genetics 172, 507–517 (2006). http://doi.org/10.1534/genetics.105.047894 

35. Akhunova, A. R., Matniyazov, R. T., Liang, H. & Akhunov, E. D. Homoeolog-specific transcriptional 

bias in allopolyploid wheat. BMC Genomics 11, 505 (2010). http://doi.org/10.1186/1471-2164-11-505 

36. Buggs, R. J. et al. Tissue-specific silencing of homoeologs in natural populations of the recent 

allopolyploid Tragopogon mirus. New Phytologist Trust 186, 175-83 (2010). 

https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.2010.03205.x 

37. Schnable, J. C. & Freeling, M. Genes Identified by Visible Mutant Phenotypes Show Increased Bias 

toward One of Two Subgenomes of Maize. PLoS ONE 6, e17855 (2011). 

http://doi.org/10.1371/journal.pone.0017855 

38. Rapp, R. A., Udall, J. A. & Wendel, J. F. Genomic expression dominance in allopolyploids. BMC 

Biology 7, 18 (2009). http://doi.org/10.1186/1741-7007-7-18 

39. Flagel, L. E. & Wendel, J. F. Evolutionary rate variation, genomic dominance and duplicate gene 

expression evolution during allotetraploid cotton speciation. New Phytologist 186, 184–193 (2010). 

https://doi.org/10.1111/j.1469-8137.2009.03107.x 

40. Baranwal, V. K., Mikkilineni, V., Zehr, U. B., Tyagi, A. K., & Kapoor, S. Heterosis: emerging ideas 

about hybrid vigor. Journal of Experimental Botany 63, 6309-14 (2012). 

https://doi.org/10.1093/jxb/ers291 

41. Walia, H., Wilson, C., Ismail, A. M., Close, T. J. & Cui, X. Comparing genomic expression patterns 

across plant species reveals highly diverged transcriptional dynamics in response to salt stress. BMC 

Genomics 10, 398 (2009). http://doi.org/10.1186/1471-2164-10-398 

42. Malone, C. D. & Hannon, G. J. Small RNAs as Guardians of the Genome. Cell 136, 656–668 (2009). 

http://doi.org/10.1016/j.cell.2009.01.045 

43. Trier, C. N., Hermansen, J. S., Sætre, G.-P. & Bailey, R. I. Evidence for Mito-Nuclear and Sex-Linked 

Reproductive Barriers between the Hybrid Italian Sparrow and Its Parent Species. PLoS Genetics 10, 

e1004075 (2014). http://doi.org/10.1371/journal.pgen.1004075 

44. Bundus, J. D., Wang, D. & Cutter, A. D. Genetic basis to hybrid inviability is more complex than 

hybrid male sterility in Caenorhabditis nematodes. Heredity 121, 169-182 (2018). doi: 

10.1038/s41437-018-0069-y.  

152



 

 

45. Lane, N. Mitonuclear match: optimizing fitness and fertility over generations drives ageing within 

generations. Bioessays 33, 860-869 (2011). https://doi.org/10.1002/bies.201100051 

46. Burton, R. S., Ellison, C. K. & Harrison, J. S. The sorry state of F2 hybrids: consequences of rapid 

mitochondrial DNA evolution in allopatric populations. The American Naturalist 168, S14-S24 (2006). 

https://www.journals.uchicago.edu/doi/10.1086/509046 

47. Ellison, C. K. & Burton, R. S. Disruption of mitochondrial function in interpopulation hybrids of 

Tigriopus californicus. Evolution 60, 1382-1391 (2006).  

48. Alves, M.J., Coelho, M.M., Collares-Pereira, M.J. & Dowling, T.E. Maternal ancestry of the Rutilus 

alburnoides comples (Teleostei, Cyprinidae) as determined by analysis of cytochrome b sequenbces. 

Evolution 51, 1584-1592 (1997). https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1558-

5646.1997.tb01481.x 

49. Sousa-Santos, C., Collares-Pereira, M. J. & Almada, V. C. Evidence of extensive mitochondrial 

introgression with nearly complete substitution of the typical Squalius pyrenaicus-like mtDNA of the 

Squalius alburnoides complex (Cyprinidae) in an independent Iberian drainage. Journal of fish biology 

68, 292-301 (2006). https://doi.org/10.1111/j.0022-1112.2006.01081.x 

50. Alves, M.J., Coelho, M.M. & Collares-Pereira, M. J. Evolution in action through hybridisation and 

polyploidy in an Iberian freshwater fish: a genetic review. Genetica 111, 375-85 (2001). 

51. Wolf, J. B. Cytonuclear interactions can favor the evolution of genomic imprinting. Evolution 63, 

1364–1371 (2009). 

52. Staley, J. P. & Woolford, J. L. Assembly of ribosomes and spliceosomes: complex 

ribonucleoprotein machines. Current Opinion in Cell Biology 21, 109–118 (2009). 

http://doi.org/10.1016/j.ceb.2009.01.003 

53. Pontes, O. et al. Natural variation in nucleolar dominance reveals the relationship between 

nucleolus organizer chromatin topology and rRNA gene transcription in Arabidopsis. Proceedings of 

the National Academy of Sciences of the United States of America 100, 11418–11423 (2003). 

http://doi.org/10.1073/pnas.1932522100 

54. Gromicho, M. & Collares-Pereira, M. J. Polymorphism of major ribosomal gene chromosomal sites 

(NOR-phenotypes) in the hybridogenetic fish Squalius alburnoides complex (Cyprinidae) assessed 

through crossing experiments. Genetica 122, 291-302 (2004). 

55. Birchler, J. A. & Veitia, R. A. The Gene Balance Hypothesis: From Classical Genetics to Modern 

Genomics. The Plant Cell 19, 395–402 (2007). http://doi.org/10.1105/tpc.106.049338 

56. Birchler, J. A. & Veitia, R. A. Gene balance hypothesis: Connecting issues of dosage sensitivity 

across biological disciplines. Proceedings of the National Academy of Sciences of the United States of 

America, 109, 14746–14753 (2012). http://doi.org/10.1073/pnas.1207726109 

153

http://doi.org/10.1105/tpc.106.049338
http://doi.org/10.1073/pnas.1207726109


 

 

57. Collares-Pereira, M. J., Matos, I., Morgado-Santos, M. & Coelho M, M. Natural Pathways towards 

Polyploidy in Animals: The Squalius alburnoides Fish Complex as a Model System to Study Genome 

Size and Genome Reorganization in Polyploids. Cytogenet Genome Research. 140, 97-116 (2013). 

58. Machado, M. P., Matos, I., Grosso, A. R., Schartl, M. & Coelho, M. M. Non-canonical expression 

patterns and evolutionary rates of sex-biased genes in a seasonal fish. Molecular Reproduction & 

Development 83, 1102-1115 (2016). https://doi.org/10.1002/mrd.22752 

59. Pertea, G. et al. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering 

of large EST datasets. Bioinformatics 19, 651–652 (2003). PMID: 12651724 

60. Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional 

genomics research. Bioinformatics 21, 3674-3676 (2005). 

https://doi.org/10.1093/bioinformatics/bti610 

61. Li, R. et al. SNP detection for massively parallel whole-genome resequencing. Genome 

Research 19, 1124–1132 (2009). http://doi.org/10.1101/gr.088013.108 

 

Acknowledgements 

 We thank Susanne Kneitz and to Ana Rita Grosso for helping with the bioinformatics data 

treatments and discussions. This work was funded by Project PTDC/BIA-BIC/110277/2009 to MMC 

and by a PhD grant (SFRH/BD/61217/2009) to IM, both from the Portuguese National Science 

Foundation, Fundação para a Ciência e a Tecnologia. 

 

Authors' contributions 

Conception and design by IM, MMC and MS. Fish sampling, experimental crosses and samples 

possessing by IM and MPM. Analysis data by IM and MPM. Data interpretation by IM. Drafting the 

article by IM. Revising the article by MMC, MS and MPM. Final version approved by all authors. 

 

Competing interests 

 The authors declare no competing interests. 

 

Supplementary Information and Data availability: 

 All additional files and datasets supporting this article are available through the figshare 

repository (doi: xxxxxx; https://figshare.com/s/c03974866dbd92b5a24d). 

 Datasets: de novo assembled transcriptome sequences; functional annotation of transcriptome 

sequences; SNP calling for all libraries. 

154

http://doi.org/10.1101/gr.088013.108
https://figshare.com/s/c03974866dbd92b5a24d
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 Supporting Information: Artificial grouping of transcripts organized according to genome-

specific silencing (from i to viii).   

 

Figures:  

 

Figure 1: Distribution of transcripts according to A genome contribution to the overall gene 

specific transcription in liver samples. Distribution in a) liv-PA library and b) liv-PAA library. 

Vertical red lines represent the considered boundaries for balanced allelic expression. 

 

 

Figure 2: Distribution of transcripts according to A genome contribution to the overall gene 

specific transcription in juvenile samples. Distribution in a) juv-PA library and b) juv-PAA 

library. Vertical red lines represent the boundaries considered for balanced allelic expression. 
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Tables: 

Table 1: Genome specific expression fractions in livers of diploid and triploid S. alburnoides 

hybrids. 

 

BHE HEB HEB(P) HEB(A) MGE(P) MGE(A) Total  

Liv-PA 764 (68%) 357 (32%) 255 (23%) 102 (9%) 136 (12%) 32 (3%) 1121 

Liv-PAA 649 (69%) 289 (31%) 240 (26%) 49 (5%) 73 (8%) 49 (5%) 938 

BHE- Balanced homoeolog expression; HEB-Homoeolog expression bias; HEB(P)-Homoeolog expression bias towards P 

genome; HEB(A)-Homoeolog expression bias towards A genomic complement; MG(P)-Monogenomic expression of P 

alleles; MG(A)-Monogenomic expression of A alleles. 

 

Table 2: Genome specific expression fractions in juveniles of diploid and triploid S. 

alburnoides hybrids. 

 

BHE HEB HEB(P) HEB(A) MGE(P) MGE(A) Total  

Juv-PA 1386 (68%) 653 (32%) 184 (9%) 469 (23%) 66 (3%) 94 (5%) 2039 

Juv-PAA 1064 (49%) 1105 (51%) 1038 (48%) 67 (3%) 125 (6%) 67 (3%) 2169 

BHE- Balanced homoeolog expression; HEB-Homoeolog expression bias; HEB(P)-Homoeolog expression bias towards P 

genome; HEB(A)-Homoeolog expression bias towards A genomic complement; MGE(P)-Monogenomic expression of P 

alleles; MGE(A)-Monogenomic expression of A alleles. 

 

Table 3: Functional enrichment in gene ontology (GO) terms and KEGG pathways of A and P 

monogenomic expressing (MGE) gene groups in liver and juveniles’ libraries irrespective of 

ploidy level. 

  MGE Cat. Term # Benj. 

      

Li
ve

r P 

CC Intratracellular part 28 1,10E-02 

CC cytoplasm 21 1,90E-02 

CC intracellular 28 3,10E-02 

A NS 

Ju
v

e
n

il

e
s P NS 
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A 

BP translation 10 8,60E-04 

BP peptide biosynthetic process 10 4,80E-04 

BP organonitrogen compound biosynthetic process 12 5,90E-04 

BP amide biosynthetic process 10 5,00E-04 

BP peptide metabolic process 10 6,50E-04 

BP organonitrogen compound metabolic process 13 1,30E-03 

BP cellular amide metabolic process 10 1,60E-03 

BP cellular protein metabolic process 17 1,50E-02 

BP protein metabolic process 18 2,30E-02 

CC cytosolic part 8 6,40E-06 

CC cytosolic ribosome 6 8,30E-05 

CC ribosome 7 9,40E-05 

CC cytosolic large ribosomal subunit 5 1,30E-04 

CC ribonucleoprotein complex 9 2,10E-04 

CC intracellular ribonucleoprotein complex 9 2,10E-04 

CC ribosomal subunit 6 1,90E-04 

CC 
large ribosomal subunit 5 3,50E-04 

CC intracellular part 30 3,80E-04 

CC cytoplasm 23 7,80E-04 

CC cytoplasmic part 18 8,00E-04 
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CC cytosol 8 2,50E-03 

CC intracellular 30 2,70E-03 

CC intracellular non-membrane-bounded organelle 12 4,50E-03 

CC non-membrane-bounded organelle 12 4,50E-03 

CC macromolecular complex 16 7,10E-03 

CC intracellular organelle 23 2,80E-02 

CC organelle 23 3,20E-02 

MF structural constituent of ribosome 8 3,70E-05 

MF structural molecule activity 9 7,20E-04 

MF rRNA binding 4 4,00E-03 

(BP) Biological process, (MF) molecular function, (CC) cellular component, (NS) no significantly enrichment, (#) number of transcripts, (p) 

Benjamini corrected p-value. GO enrichment analysis was performed considering all levels of classification of terms. 
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Table 4: Functional enrichment in gene ontology (GO) terms and KEGG pathways of A and P 

monogenomic expressing (MGE) gene groups in diploid (PA) and triploid (PAA) libraries irrespective 

of the source tissue type. 

 

  MGE  Term # p 

            

P
A

 

P 
BP ATP biosynthetic process 4 8,00E-02 

CC respiratory chain 4 3,90E-02 

A 

BP peptide biosynthetic process 3 4,50E-02 

BP peptide metabolic process 3 3,80E-02 

BP cellular amide metabolic process 3 4,10E-02 

MF structural molecule activity 4 1,90E-03 

MF structural constituent of ribosome 3 7,40E-03 

P
A

A
 

P BP carbohydrate derivative biosynthetic process 8 4,50E-02 

A 

BP translation 5 1,00E-02 

BP peptide biosynthetic process 5 5,50E-03 

BP amide biosynthetic process 5 5,20E-03 

BP peptide metabolic process 5 4,90E-03 

BP cellular amide metabolic process 5 7,20E-03 

BP organonitrogen compound biosynthetic process 5 1,60E-02 

MF structural constituent of ribosome 4 2,60E-03 

MF structural molecule activity 4 1,80E-02 

KE Ribosome 3 2,80E-02 

(BP) Biological process, (MF) molecular function, (CC) cellular component, (KE) KEGG pathway, (NS) no significant enrichment, (#) number 

of transcripts, (p) Benjamini corrected p-value. GO enrichment analysis was performed considering all levels of classification of terms. 
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Table 5: Transcripts with consistent P and consistent A monogenomic transcriptional 

contribution regardless of sample type and ploidy level. 

 

MGE Unigene ID Ref. Gene ID Ref. Sequence Symbol Definition 

P 

Unigene101062 gi|318054652 NP_001187754.1 NDUFC2 NADH dehydrogenase (ubiquinone) 1 subunit c2 [Ictalurus punctatus] 

Unigene114185 gi|41053742 NP_957180.1 GCDH Glutaryl-CoA dehydrogenase a [Danio rerio]. 

Unigene2212 NaN 

   
Unigene43419 gi|47087309 NP_998647.1 ABCD3 ATP-binding cassette sub-family D member 3 [Danio rerio] 

Unigene45629 gi|41055873  NP_957287.1 

 

Uncharacterized protein LOC393968 [Danio rerio]  

Unigene48654l gi|47550715 NP_999871.1  HNRNPA0 Heterogeneous nuclear ribonucleoprotein A0b [Danio rerio]  

A 

Unigene100595 gi|18859307 NP_571384.1 Ran GTP-binding nuclear protein Ran [Danio rerio]  

Unigene101028 gi|18858719 NP_571660.1 FTH1 Ferritin heavy chain [Danio rerio] 

Unigene114523 gi|47523975 NP_998887.1 SLC25A3 Solute carrier family 25 member 3 [Danio rerio]  

Unigene122169 gi|225715740 gb|ACO13716.1  TIMM8A Mitochondrial import inner membrane translocase subunit Tim8 A [Esox lucius] 

Unigene134826 gi|51010975 NP_001003447.1 RPL15 60S ribosomal protein L15 [Danio rerio] 

Unigene140252 gi|124300811 dbj|BAF45901.1 RPS13 Ribosomal protein S13 [Solea senegalensis] 

Unigene146647 gi|55250139 gb|AAH85596.1 

 

Zgc:153867 protein [Danio rerio] 

Unigene23269 gi|47086529 NP_997925.1 RPL17 60S ribosomal protein L17 [Danio rerio]  

MGE- monogenomic expression; UniGene ID from the de novo transcriptome assembly of S. alburnoides complex; Ref. Gene ID- Gene ID  
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CHAPTER 6 
Supplementary data  

Table S1. Previously constructed and sequenced libraries that have been used in this study. 

Libraries 
Sequencing 

information Repository Accession 

liv-AA 

Matos et al., 2015 ArrayExpress E-MTAB-3174 

liv-PP 

liv-PA 

liv-PAA 

juv-AA 

Matos et al., 2015 ArrayExpress E-MTAB-3174 juv-PA 

juv-PAA 

gonF-PP 

Machado et al., 2016 ENA PRJEB9465 

gonM-PP 

brainF-PP 

brainM-PP 

brain-AA 

This study ENA PRJEB278332 

gon-AA 

 

Table S2. Statistics of assembly quality for S. alburnoides complex transcriptome. 

Total Lenght (bp) # Contigs Mean Lenght (bp) Longest Contig (bp) Shorter Contig (bp) N50 (bp)

100% between 0%~5%

S. alburnoides 

complex 

transcriptome

333,800,115 263,357 1267 14300 150
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CHAPTER 7 
GENERAL DISCUSSION 

 

7.1. The significance and role of allelic silencing in allopolyploid fish.  

Allelic silencing (AS) found by Pala et al., (2008) in triploid S. alburnoides, 

together with targeted expression level comparisons between diploids and triploids of 

this fish species, lead to the disruption of the theoretical expectation that an increase 

in copy number of all chromosomes would have a proportional dosage effect in the 

expression level of all genes. Despite that AS phenomena have been implicated in the 

achievement of viable gene product amounts in S. alburnoides allopolyploids, the 

extension, importance and consequences of the phenomena in animal allopolyploids 

needed to be further explored.  

 

7.1.1. Mosaicism as an alternative possibility for the allelic silencing quiz. 

Organs are composed of several tissues, and a tissue is composed of cells with 

a common structure and function. Thus, in an organ, different cell types with different 

physiologies and embryonic origins are arranged together. When part or the whole 

organ is used as source of RNA, there are several cell types contributing unevenly to 

the total RNA extracted. In an allopolyploid context this is even more relevant, mostly 

when comparing organ expression between individuals with different ploidy and 

genomic constitutions. As such, the detection of expression differences between 

individuals and/or between organs could be the result of mosaicism between organs 

and within an organ. In fact, ploidy mosaicism has been for many years, established 

and documented to occur in vertebrates (Dawley and Goddard; 1988), and it 

appears often associated with allopolyploidy (Lamatsch et al., 2002; Janko et al., 2007; 

Bickham et al., 2009).  

Very compelling in its simplicity, the hypothesis of ploidy mosaicism in S. 

alburnoides complex, and its possible implications in the allele expression imbalance 
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outcome observed, have been addressed at chapter 2 before more complex, costly 

and time-consuming paths have been taken. 

To that end, flow cytometry and cell sorting protocols were developed for this 

system. Ploidy status evaluation in different organs and sorting of more homogenous 

cellular and transcriptional samples was done. Liver and kidney cell suspensions of 

diploid and triploid S. alburnoides were analysed, and ploidy mosaicism confirmed in 

10% of the cases. Nevertheless, the influence of this phenomenon on the detection of 

variable allelic expression profiles of ubiquitously expressed genes was excluded. For 

several S. alburnoides PAA individuals, for which ploidy status as non-mosaics had 

been assessed, the expression pattern of three genes (rpl8, gapdh and β-actin) was 

determined. In some PAA cell samples, where P allele presence was definitively 

confirmed, there was still no detection of it in the transcription product (for some genes 

and in some organs) as previously observed and discussed by Pala et al. (2008). Also, 

an occurrence frequency of 10%, points towards diploid-triploid mosaicism as a non-

regular component of the genetic system of this complex.  

Interestingly, mosaicism was not detected when the sample source was the 

blood (discussed in chapter 2). Due to known practical reasons, blood was the 

elected tissue to assess the ploidy status of the S. alburnoides individuals in all previous 

studies (Próspero and Collares-Pereira, 2000; Gromicho and Collares-Pereira, 2007). 

This can explain why mosaicism was not earlier reported in this complex. 

 

7.1.2. Expanded observation of gene copy silencing to other allopolyploid fishes. 

 The exclusion of ploidy mosaicism as ubiquitous cause for the variable allele 

specific expression patterns observed for housekeeping genes between tissues of the 

same individual, held together the assumption that a functional and meaningful 

mechanism of gene-regulation involving allelic silencing was operating the in triploid 

S. alburnoides. Nevertheless, if this mechanism was exclusive to this complex was still 

an open question. 

 At chapter 3, a transcriptomic assessment of the allelic expression patterns in 

livers of triploid medaka fish (Oryzias latipes) incorporating haplomes from three 

different medaka strains, have been accomplished. Also, at chapter 5 of this thesis the 
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allelic expression patterns for three target genes, in four somatic tissues, were analyzed 

in different triploid Poecilia formosa genomic contexts. With that, it was showed that 

allelic silencing also occurs in other fish allopolyploid situations besides in the naturally 

occurring triploid S. alburnoides. It occurs quite frequently in two distinct laboratory 

produced tri-genomic hybrid (TGH) configurations of P. formosa individuals and in 

engineered TGH individuals of Oryzias latipes.   

 It is interesting to note that all the situations where AS has been so far detected 

in allopolyploid vertebrates are cases of allopolyploidy being establish de novo at the 

moment of each individual conception. In those organisms the cells may have to 

“adapt immediately” to prevent catastrophic genomic shock, so the occurrence of 

AS can possibly be a fast way to reach a feasible coexistence and viable regulatory 

interactions of distinct haplomes. Nevertheless, it was showed that an abrupt ploidy 

and heterozygosity increase in fish do not mandatorily involves the occurrence of AS, 

as it is implied by the absence of AS in TGH S. alburnoides.  

 

7.1.3. Molecular mechanisms intervenient or responsible for allelic silencing.  

After establishing that AS occurs in other allopolyploid fish, it was important to 

address the molecular mechanisms underlying its occurrence.  

In S. alburnoides, the only previous attempt in that direction was concerning 

the intervention of miRNA-linked mechanisms (Inácio et al., 2012), but other 

mechanisms are equally deserving of consideration. 

For several reasons, discussed at chapter 5, CpG methylation seemed a good 

starting point, and one of the goals of this work was to look for a link between AS 

occurrence and the degree of total DNA methylation, in S. alburnoides and P. 

formosa.  

It was found and presented at chapter 5, that the global methylation levels do 

not correlate to the AS status of each biotype. Also, the levels of DNA methylation 

were non-linearly related to the ploidy level in each tested allopolyploid series and the 

results did not show a linear correspondence between higher levels of heterozygosity 

and higher or lower levels of DNA methylation. Hence, the pattern of global 

methylation found do not fit the linear expectation of higher methylation levels to be 
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found in biotypes with higher AS incidence. Also, nor it clarifies the reasons for the 

different AS patterns found between S. alburnoides and P. formosa allopolyploid 

complexes. The hypothesis of a “functional diploidization” of triploids undertaken by 

massive methylation was not sustained. Nevertheless, it must be considered that 

methylation mechanisms operating at the single-locus scale may be occurring but 

could be undetected at the level of this analysis due to a dilution effect in the global 

methylation levels. 

Other mechanism than DNA methylation that possibly intervene in the 

occurrence of allele expression bias and AS was tackled in this thesis. In view of the 

nucleotidic differences found between Poecilia homoeolog putative promoter 

regions for 3 housekeeping genes (chapter 5), the influence of different promoter 

strengths in the occurrence of homoeolog expression bias (HEB) and/or AS seems 

reasonable. In the cells of TGH P. formosa individuals, at each locus, three different 

sequences are working simultaneously as promoter of expression of each gene. As 

each of the different parental derived sequences can work more or less effectively as 

the docking site for polymerases and transcription factors originated from the other 

two homoeologs, different transcriptional outputs from each allele at each locus are 

easily expected. So, as upon any hybridization, with or without ploidy rise, 

homoeologous genes bring together their accompanying regulatory machinery and 

promoter strengths, the occurrence of any level of HEB is expected to be a common 

scenario, being dependent on the particular genomic context found in each hybrid. 

 

7.1.4. Genomic context driving the patterns of allelic silencing.  

 Genomic context is a factor that must be considered to explain allele expression 

patterns in allopoliploids in general, but that have been already pointed as relevant 

to the occurrence of AS in S. alburnoides complex (Pala et al, 2010), conclusion that 

was also sustained by the results of this thesis (chapters 2 and 5). 

In S. alburnoides complex, consistent differential patterns of gene expression 

have been previously found in triploid individuals with different genomic composition 

(Pala et al., 2010). Namely, it was found that the presence of C or P genomes in S. 

alburnoides biotypes result in substantial difference in genome-specific allele usage 
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and AS detection. However, this phenomenon could not be generally connected to 

the simultaneous presence of P and A genomes, since it could be a population-

specific feature. At the inception of that observation, Pala et al., (2010) collected the 

C-containing specimens from two distinct northern drainages while the P-containing 

individuals were all from the same river -Sorraia River of Tejo basin. Therefore, at 

chapter 2 the study of the allelic expression patterns of P-containing S. alburnoides 

biotypes was expanded to other rivers of Tejo basin, and to other southern basins along 

the range of sympatry with S. pyrenaicus. It was found that the absence of P allele 

expression in some samples is persistent in the rivers where S. pyrenaicus is sympatric 

with S. alburnoides, but much less conspicuous than previously reported (Pala et al., 

2008) for the Sorraia River. Consequently, it was established that the allele specific 

silencing expression patterns previously detected in a narrow geographic range are 

not local restricted, but rather pervasively related to P and A genomic interactions in 

the triploid PAA genomic configuration. Those findings corroborate that in S. 

alburnoides complex, the manifestation of the genomic stress, in the figure of AS, is 

dependent on what genomes, and of each genome intrinsic characteristics, are 

brought together in the same cell nucleus. The absence of detection of AS in any of 

the analysed tissues of TGH individuals with PQA genomic compositions (chapter 5) 

further supports the previous conclusion that different genome combinations lead to 

different mechanisms of how to cope with genomic shock, since the replacement of 

one A haplome for a Q haplome leads to a different outcome concerning AS 

occurrence. Nothing is known regarding the effect of the interaction of Q genome 

with A genome in natural S. alburnoides configurations, neither the effect of P and Q 

over each other without A genome influence. However, since diploid and polyploid 

hybrid configurations of Q genome with A genome occur naturally and the individuals 

are fertile and proliferate (Sousa-Santos et al.,2006), Q genome apparently have as 

good functional “affinity” with the A genome as P and C genomes have. On the other 

hand, if it leads to AS occurrence in QAA individuals, as in happens in PAA biotype 

was not tested and it is not possible to anticipate.  

Also, within the P. formosa allopolyploid complex, concurrent presence and 

absence of AS in triploid individuals with different genomic compositions have been 
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detected. While for two different TGH P. formosa biotypes (mlb and mls) AS 

occurrence was quite frequent, in natural allotriploid (mml) genomic configurations it 

was not detected. 

In summary, it was corroborated that the different expression patterns and the 

heterogeneity of allelic silencing found to occur in allopolyploid fish complexes is 

related to the specific genomic combination of haplomes. 

 

7.1.5. Dosage effects but not by allele copy silencing. 

 The TGH individuals produced in the scope of this thesis proved to be of great 

utility, mostly because they offered the opportunity to distinguish the expression 

contribution of three different alleles in each of the three studied fish systems. All the 

naturally occurring allotriploid S. alburnoides where allelic silencing has been detected 

before (Pala et al., 2008; Pala et al., 2010) were carriers of a duplicated genomic set 

from one parental species and an unpaired genomic set from another parental 

species. In the cases when both parental contributions were detected, that situation 

did not allow to perceive if all the 3 genome copies were contributing to overall 

expression or if one allele (irrespective of each one) was being silenced. As for any of 

the TGH situations analyzed a consistent silencing of one of the 3 alleles was observed, 

the occurrence of a global “functional diploidization” by allele copy silencing was not 

supported. The most illustrative example is the case of the TGH Oryzias latipes, where 

a high throughput semi-quantitative approach was followed, and allele specific 

expression (ASE) was assessed for 4282 transcripts (chapter 3). For the vast majority of 

those, expression from all 3 alleles was detected. Nevertheless, at each locus the 

overall expression of the 3 alleles was similar to the expression levels found for the 

diploid parental state. This case is a clear indication of gene expression regulation with 

a dosage compensation effect, but not attained by allele copy silencing. 

  

7.2. Transcriptomic insights on vertebrate allopolyploid gene expression 

Differential allele specific expression (ASE) is a far more comprehensive 

phenomenon then allelic silencing (AS), that is only an extreme manifestation of ASE 

regulation (Grover et al., 2012; Yoo et al., 2013). Despite useful and guiding, the AS 
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data discussed so far and mostly based on isolated target genes, is far from sufficient 

to lead to a satisfactory understanding of global mechanisms of allele dosage 

compensation and of the implicated gene interaction networks. 

To better understand the impact of allopolyploidization on a molecular genetic 

level, to study allele specific expression on a genomic wide scale is mandatory. 

 

7.2.1. Novel method for high throughput allele specify expression. 

Tools to assess ASE in diploid biological systems were already available and are 

becoming more reliable by the year (Shen et al, 2012, Shen et al., 2013). However, for 

non-diploid systems, assess allele-specific gene expression on a large scale is still a 

technical challenging problem, with limited bioinformatics resources available. In a 

fruitful partnership with the Molecular Biosciences group, Chemistry and Biochemistry 

department of Texas State University, USA, a method for determining ASE in polyploid 

organisms from RNA-seq data was developed in the scope of this theses and 

presented at chapter 3 (Garcia et al., 2014). 

One of the bioinformatics challenges for ASE analysis in polyploids is to 

determine the origin of homeologs (Mcelroy et al., 2017). This challenge was 

addressed at chapter 3 through identification of diagnostic single nucleotide 

polymorphisms (dSNPs) that differentiate homeolog origin amongst different parental 

genomes. Experimentally produced artificial triploid medaka, composed of three 

different haplomes were specifically produced for that purpose.  

General dSNPs approaches have been successfully employed before for 

diploid organisms (Skelly et al., 2011; Tang et al., 2011 and Zhai et al., 2013), but when 

more than 2 parental genomes are present, the bioinformatics tools available were 

insufficient. So, in the scope of this thesis a software tool set was developed in a way 

to be applicable to organisms of any ploidy level status and it was published (chapter 

3). 

Despite this methodology prove to be effective to determine allele-specific 

expression in polyploid organisms on a large scale, it is important to stress some 

restrictions. Limitations to this SNP-based approach are imposed by the dependence 

on genomic regions harboring dSNPs between parental genomes, which requires both 
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a certain level of genetic divergence as well as extensive genomic resources, which 

are still not available for many species. 

 

7.2.2. Transcriptomic basis for a deeper study of gene expression in S. 

alburnoides. 

Based on the analysis of the behavior of individual genes in the S. alburnoides 

fish complex, the fruitful efforts of Pala et al (2008; 2010) to clarify the impact of 

hybridization and polyploidization processes on genome regulation and expression 

have raised several questions. Those questions came to stress the necessity for wide-

scale analysis of gene behavior throughout allopolyploid genomes. To do so, 

reasonable amount of sequence data must be available, as for medakas and like it is 

starting to be for amazon molly’s. But for the S. alburnoides fish complex, there was no 

high throughput genomic or transcriptomic resources. So, in the scope of this thesis the 

first RNA-seq data on diploid and triploid S. alburnoides specimens and parental forms 

(from whole juvenile fish and from adult livers) was generated and made available in 

ArrayExpress (accession number E-MTAB-3174). (Chapter 4). With clear advantages 

over previous existing approaches, RNA-seq allows for mapping and quantifying 

complex transcriptomes (Wang et al., 2009). In the case of S. alburnoides complex it 

allowed to determine the primary sequence of transcripts (chapter 4; Machado et al., 

2016), identify polymorphisms between several genomotypes involved in the complex 

(chapter 6), and determine relative abundances of each transcript within total RNA 

samples and between samples (chapter 5, chapter 6 and Machado et al., 2016). The 

data generated by Matos et al., (2015) at chapter 4, together with other RNA-Seq 

data sets that have been generated, lead to the production of the first “S. alburnoides 

complex” reference transcriptome (chapter 6). 

 

 7.2.3. Allele specific quantification in the S. alburnoides – extension and context. 

At chapter 6 it was applied in a naturally occurring allopolyploid vertebrate a 

high throughput approach to the study of homoeolog specific expression. A main 

objective was to determine the relative contribution of each genome copy present in 

the S. alburnoides hybrids to the overall expression of each gene. Also, it was important 
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to identify and quantify the occurrence of allelic silencing at the transcriptomic scale, 

accessing if it is happening globally or sporadically throughout the triploid S. 

alburnoides transcriptome, and randomly or preferentially towards any of the allele 

copies. 

 It was observed that in both diploid and triploid S. alburnoides forms, for the vast 

majority of genes, there is co-expression of alleles from both P and A genomes, and 

only a very small percentage of genes presented allelic silencing (AS). So, no major 

and/or systematic silencing of one of the intervenient genomes was identified in 

triploids, as it would be if AS was a prime mechanisms of dosage compensation 

operating in S. alburnoides. Nevertheless, for the genes co-expressing P and A alleles, 

a significant percentage was found to be strongly affected by homoeolog expression 

bias (HEB), and more specifically by unbalanced HEB favoring P allele expression. The 

high incidence of HEB has been in general related to cis-regulatory divergence (Bell 

et al., 2013). Even minor regulatory variation found between homologues in 

conventional non-hybrids, have been found to be sufficient to significantly impact the 

relative expression level of alleles (McManus et al., 2010; Chamberlain et al., 2015). 

Accordingly, in an inter-generic hybrid as S. alburnoides, HEB is more probably the 

direct result of expected and significant variation between regulatory and/or coding 

sequences of P and A homoeologs, than the result of a concerted dosage 

compensation mechanism based on allele specific down regulation. 

 The fact that HEB incidence was found to be not significantly affected by ploidy, 

and that AS was detected not only in triploids but also in diploid S. alburnoides, further 

supported that balanced expression is not a necessity for the triploid S. alburnoides 

viability and its successful perpetuation. Also, highlights that a mechanism of specific 

allele down regulation does not fit as explicative scenario for the success, in terms of 

abundance, of the S. alburnoides triploid biotypes in comparison with the diploid 

counterparts. 

 On the other hand, as discussed in chapter 6, the biological significance for the 

HEB patterns found in S. alburnoides could be linked to the S. alburnoides specific mito-

nuclear context and to the not yet well-defined genomic architecture and 

chromosomal context of P and A-genome NORs.  
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 Nevertheless, it is essential to state that the evidences presented at chapter 6 do 

not support, but either do not refute, the existence of a direct link between AS and 

dosage compensation in S. alburnoides. 

  

7.2.4. Dosage compensation in S. alburnoides – extension and context. 

The mechanism of dosage compensation by allele copy silencing found in the 

S. alburnoides complex (Pala et al., 2008, 2010) was the inception of the attractive 

hypothesis that balanced expression and functional ‘‘diploidization’’ could be a 

necessity or an extremely relevant factor to the success and perpetuation for lower 

polyploid vertebrates. However, before generalizations could be made, a wider and 

deeper look into the occurrence of dosage compensation in S. alburnoides complex 

had to be taken. So, based on high throughput transcriptomic resources produced to 

that end, a first comparative quantitative transcriptomic analysis between diploid and 

triploid S. alburnoides complex individuals was performed. At chapter 5, it was showed 

that, despite many genes (around half) do not present a significant differential 

expression between diploid and triploid hybrids, the PAA gene expression level profiles 

are not identical to the ones of PA (or to any of the parental diploid genomotypes) 

ruling out the hypotheses of a global full “functional diploidization” of triploids. Yet, 

despite the higher gene dosage in triploids, the gene expression level profile of triploid 

vs diploid is not tending according to the ploidy level increase but in the opposite 

direction, offering an unanticipated scenario of gene expression regulation. At 

chapter 5  it was discarded the hypothesis of occurrence of a genome wide regulatory 

mechanism that would bring all genic activity of triploids to the diploid state in a “strict 

functional diploidization” event. Nevertheless, a considerable fraction of all triploid 

transcripts do suffice a strict definition for “fully dosage compensation”. Consequently, 

it was proposed that “diploidization” might not mean that all genes are down 

regulated to the diploid level, but only those that need to be “diploidized” to 

guarantee a correct function. On the other hand, also a small percentage of the 

triploid transcripts are found represented strictly proportionally to gene dosage or even 

higher. So, the results show some transcriptional equivalence between diploids and 

triploids, but not as a strictly regulated and fine-tuned phenomenon. That is probably 
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based on a switch-like way to regulate the mRNA concentrations, with transcription 

turned “on” or “off” regardless of exact concentrations within a cell, but within 

boundaries of similar expression.  

Instead of a tightly regulated phenomenon with stiff boundaries and acting 

without exception throughout the whole genome of the S. alburnoides triploids, it was 

found that genome expression level regulation is a more plastic process.  
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CHAPTER 8 
CONCLUDING REMARKS 

 
 The main achievement of this work was to illustrate for the first time how a 

successful allopolyploid animal, the emblematic allopolyploid Squalius alburnoides, 

globally transcriptionally deals with the genomic stress derived from hybridization and 

polyploidy.  

 It was particularly important to clarify, concerning the S. alburnoides complex 

that an exact functional diploidization of the triploid genome does not take place, 

and instead of having tightly regulated boundaries, there is quantitative expression 

flexibility. Nonetheless, in general, a significant down regulation of gene expression in 

triploids does occur. This gene expression down regulation does not seem to be 

dependent of allele copy silencing, despite extreme homoeolog expression bias was 

observed to affect a significant percentage of genes in triploid S. alburnoides, and 

also in medaka triploids.  

Additionally, the hypothesis of a massive methylation over triploid hybrid 

genomes was not sustained, both in the S. alburnoides complex and P. formosa, and 

a link between methylation and allelic silencing was not found in these two 

allopolyploid systems.  

  On the other hand, it was showed that allelic silencing is not a population’s 

specific occurrence within the S. alburnoides complex nor a S. alburnoides specific 

phenomena. It was showed that allelic silencing in particular, but probably 

homoeolog expression bias in general, is a phenomenon related to the genomic 

context of each individual and dependent on the parental genomes brought 

together by hybridization. Accordingly, it was showed that homoeolog expression bias 

incidence is not significantly affected by ploidy, and allelic silencing was detected 

both in diploids and triploids. So, balanced expression does not seem to be a necessity 

for the triploid S. alburnoides viability. Also, the higher abundance of triploid S. 
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alburnoides in comparison with diploids is not explained by a mechanism of specific 

allele down regulation.  

 Other achievement of this work was the description for the first time, of the 

occurrence of ploidy mosaicism in the S. alburnoides complex, and the exclusion of 

this phenomena as the origin of the allele silencing detected in some tissues of some 

triploid S. alburnoides individuals.  

  Moreover, the RNA-seq data generated lead to the production of the first 

“S. alburnoides complex” reference transcriptome. 

 An additional output of this thesis was the development of a method for 

determining allele specific expression in polyploid organisms from RNA-seq data and 

the implementation of the method in a software tool set freely available.  

  

This work reflects the complexity of allopolyploidy at the gene expression 

regulation level, and the results encountered highlight that finding common global 

rules, mechanisms or explanations that fits all allotriploid conditions might not happen 

as they might not exist.  

 The specific objectives that were put forward in the beginning of this thesis work 

have been essentially achieved. The obtained results, summarized above, add original 

data to the current knowledge on animal allopolyploidy, and clarify some aspects 

that have been put forward by previous investigations. Nevertheless, knowledge on 

any topic and at any field is static, and the questions answered with this work gave 

rise to several new questions and opened new avenues to future research. 
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