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Abstract

This PhD thesis aims to build a numerical simulator of the inferior abdominal wall, in order

to determine the genesis and causes of the inguinal hernia. Thus, a model with real data on

the region of human body (properly discretized) has been built that reproduces the dynamic

properties of the various elements of the region allowing the simulation of the moment at which

the hernia occurs.

Muscular simulation in general, has became a secondary subjec regarding numerical simu-

lation, because on many occasions the interest has been concentrated in the general properties

of the muscle (so that the muscle is considered a single element) and not in a detailed study of

each of the parts of the muscle. The field where simulation has possibly been more productive is

the cardiac simulation because of the constant interest in creating models of the cardiac muscle

and it is for this reason that the only detailed models that exist are those related to the cardiac

muscle.

The muscular fibre contraction was simulated using the Hill-Maxwell rehologic model pre-

sented by J. Bestel [10] which it regulates the contraction and recovery by means of potential

activation function u(t). This model is the first dynamic model in dimension one of a microscopic

muscle level.

Currently, there is much varying conjecture regarding the causes of hernias, despite this

however, a detailed study of their genesis, has not been possible. This is because on the one

hand, it is impossible to catch the moment in which a hernia is generated, and, on the other,

there is a lack of sufficiently detailed models of the muscles involved.

We present a dynamic model of the inferior abdominal wall with the active elements (the

muscles) and the passive elements (fascias, ligaments and other tissues), so that a study can be

made of the various physical and chemical aspects that generate hernias. The model reproduces

the real dynamic of the area, as A. Keith and W.J. Lytle conjectured at the beginning of the

past century and commonly accepted by surgery community.

This is the first model which reproduces the real dynamic in the inguinal area, so that we can

xi



xii Abstract

prove the existence of the two defence mechanisms (the shutter mechanism and the sphincter

mechanism in the inguinal ring). With this muscular contraction model we can study several

parameters that have an important role in the inguinal hernia genesis and we can do an accurate

study about risk elements in the hernia inguinal. This parameters (Young’s modulus, Poison’s

coefficient or intraabdominal pressure, for instance) have an hypothetical and no proved effect

in the genesis of inguinal hernias. This work, evaluate the real effect of several parameters in

the lineal model and propose a non linear model for the muscular simulation.
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Chapter 1

Introduction

The etiology of adult inguinal hernias seems to be based on the loss of structural integrity and

the mechanical function of the tissue elements of the inguinal region [23]. This can be justified

at a molecular and cellular level (abnormal metabolism of the collagenous [63], it changes in

the function of the tissue fibroblasts within weaves submissive tensional forces [75]) and at

macroscopic level with a malfunction of the anatomical inguinal protection against hernia [2].

The anatomical region where inguinal hernias occur (figure 1.7) is the miopectineous orifice

[24], which is divided by the inguinal ligament into an upper area and a lower area. In the

upper area or suprainguinal space, the shutter mechanism [40] and the sphincter of the internal

inguinal ring [45], are principal anatomical protection mechanisms against hernia. Different

anatomical variations in the structures responsible for these mechanisms have been documented

(mainly of the shutter mechanism), and these variations, can facilitate the appearance of an

hernia. The origin of the internal oblique muscle in the inguinal ligament away from the pubic

tubercle and the lack of cover of the internal inguinal ring by the inferior fibres of this inguinal

muscle have been suggested as being involved in the genesis of hernias [4]. Different degrees of

atrophy of the internal oblique muscle in the inguinal region and its relation to direct inguinal

hernias [88] and other factors that include a low pubic arc [43] and an increase in the size of

the Hessert’s triangle (suprainguinal space) [1]. Although the defence mechanisms are based

on the operation of anatomical structures (basically the internal oblique muscle) little is known

about the way they really work since all the conclusions on their movement and function have

been extracted from static studies. At the moment there are some mathematical models that

explain the dynamic behaviour of the muscle with applications in biomechanics, biomedicine

or simulation of the movement in general. They are, on the one hand, models that explain

the movement of the muscle as a whole and in general without considering the influence of the

microscopic level on their contraction and dynamics([85], [77] and [52]), and on the other hand,

3



4 CHAPTER 1. INTRODUCTION

models that study the muscular movement at cellular level, such as Hill-Maxwell proposed by

J. Bestel [10].

1.1 Motivation

The collaboration between Dr. Antonio Suśın, from the Department Applied Mathematics I at

Polytecnic University of Catalonia (UPC) and Dr. Manuel Lopez Cano from the Abdominal Wall

Unit of the General Surgery Service at the Vall d’Hebron University Hospital of the Autonomous

University of Barcelona (UAB) , starts in 2003 with the objective of building a dynamic model of

inguinal hernias. Initially this collaboration had docent aspects, as a learning tool for anatomy

and surgery training. Initially this collaboration was two fold, a teaching tool for new surgeons

for learning anatomy and surgery training, and a research tool for simulation of the dynamic

behavior of this region. An initial part of this project was carried out by Carlos Encinas,

Javier Rodriguez, Antonio Suśın and Manuel Lopez Cano [44] and it led to a dynamic model

of the region using a mass-spring method and real anatomic data of the region. The dynamic

simulation of the inguinal region to explain the genesis of human hernias, is the main goal of

my research and I present in this document the results obtained in this direction.

The inguinal hernia pathology is essentially masculine (dominant in men, 19:1). It is very

common at level I hospitals (local hospital) , it represent 46% of interventions, at level II hospital

(regional hospital) of 40% and at level III hospital (state hospital) 32% of the interventions. As

an example the Vall d’Hebron University Hospital makes 700 to 800 operations a year and around

the world some 20 million 1 interventions are made annually. The inguinal hernias increase in

prevalence according to age: up to 25 years 24%, up to 65 years 40% and up to 70 47%.

1.2 Objectives

The main objective of this research project is to simulate numerically the human lower abdominal

wall, taking into account the different role played by the various active and passive parts. The

model should be quite accurate for both to reproduce the natural movement of the various parts

of the region, so as to obtain specific answers regarding which physical or chemical may be

involved in the genesis of inguinal hernias. Thus the model should reproduce in sufficient detail

the various elements in the region, their properties must be dynamic and responsive to changing

conditions.

1Kingsnorth A., J. World Surg 2005
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This model must be able to replicate to the maximum extent the dynamic properties of the

active parts (the muscles), because of that, why we will need to generate reticular structures

with a distinctive direction that will actually correspond to the direction of the muscle fibre.

Being the other directions just a passive deformation elements, it seems natural to simulate first

only the the one dimensional direction associated to the muscle fiber. The dynamics of the 3D

elements must be controlled for this main direction.

Likewise, the precision in the simulation of the muscular behavior must be related with two

factors: the geometrical and the dynamic ones. Therefore, spatial discretization and numerical

algorithms must play a central role in this project.

For building a coherent geometrical model, real data from the region is needed. On the one

hand, we will have data from measurements of the elements of the abdominal wall, from which

we can set our initial conditions, on the other hand have actual hernia data that we will use for

validation of our results ([54], [82], [16], [59]).

One of the main objectives that we can afford with an accurate model is to confirm or reject

hypotheses about the current dynamic phenomena taking place in this area such as the shutter

mechanism (see subsection 1.5.4) which are still the subject of conjecture. Our results are the

first simulation results that confirms the importance of the shutter mechanism and we are able

to relate biochemical and mechanical factors that are accepted as the main factors involved in

the genesis of inguinal hernias.

1.3 Principles for Simulation

In this section we present the first fixed image of the area whose dynamics we aim to study. This

is intended to provide information rather than be a rigorous exposition of the topic. However,

first, we must briefly outline the problem at hand, describe the complexity of its formulation

and discuss what repercussions there may be from studying it.

The section is divided into three sections. These reflect the topics that need to be covered

in greater detail when we begin our study of the simulated region:

• The muscle

• The inferior abdominal wall

• Inguinal hernias

For a detailed and precise understanding of the muscles of the human body (their structure,
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their composition, and how they function at both the cellular level and at their natural size),

and specifically the muscles of the inferior abdominal wall, the reader is referred to the the

bibliography [8], [9], [21], [27] and [42]. For a full and accurate study of hernias in general and

inguinal hernias in particular, also see the bibliography [1], [2], [4], [23], [24], [40], [43], [45], [54],

[63], [82] and [88].

1.3.1 The Muscles

The word “muscle” derives from the Latin diminutive term musculus—mus (mouse) and culus

(small)—because the Romans thought that the shape of the muscle when contracted resembled

a small mouse. Muscles, which are the set of contractile organs in humans and other animals,

are made up of muscular tissue.

Muscles can be divided into three types:

• The skeletal muscle, also called voluntary muscles, are striated and controlled volun-

tarily. They are in direct contact with some part of the skeleton by means of tendons.

• The smooth muscle are not striated and are controlled involuntarily. Examples of these

muscles are those of the walls of the digestive system and those of the urinary system,

blood vessels and uterus (for instance).

• The cardiac muscle are striated and are not controlled voluntarily.

Since the inguinal region is made up of only skeletal muscles, in this study we will focus on

this type of muscle.

Skeletal muscles are in contact with other tissues which, though dynamically passive, deserve

a mention. On one hand, they are linked to bones via highly rigid tendons. On the other hand,

they are surrounded by fascia—tissues that are only slightly rigid (or not rigid at all) located

between the muscles or between the muscles and other organs of the body (figure 1.1).

The functional and structural unit of the muscle is generally the muscular fibre (figure 1.2),

which is grouped in fascicles and forms the muscular mass. In this context, provided that the

muscles studied here are skeletal muscles, they are made up of a large number of muscular

fibres (270,000 in the case of the femoral biceps). The muscular fiber is grouped in fascicles (or

fasciculus) that constituted all the muscular mass.

The muscle is a tissue made up of fusiform cells surrounded by the sarcolema, which is the

cellular membrane (figure 1.3 (a)) and by the sarcoplasma that it contains the cell nucleus. The
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Figure 1.1: The muscular system

Figure 1.2: Picture of the skeletal muscle

sarcolema also receives the nerve ends, which send out the order to activate the muscle. The

sarcoplasma is made up of myofibres. Myofibres comprise sarcomeras, which are the action

units for skeletal muscles. Being grouped together, the sarcomeres clearly delimit a series of

easily identifiable bands or lines (figure 1.3 (b)). The Z line is the contact region between two

series of sarcomeres (figure 1.3 (b)). The A band comprises the set of proteins responsible for

contraction. The M line and the H band are the border between the two regions of the sarcomere

in which the proteins responsible for contraction are located. These bands are responsible for

the striated appearance of the muscles.
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(a) Muscular fiber (b) Sarcomera distribution

Figure 1.3: Muscular structure

The main property of the complex protein framework of fibres called actin and myosin is their

contractibility, i.e. their ability to shorten when subjected to a chemical or electrical stimulus.

These proteins (figure 1.4(a)) are helicoidal and, when activated, they bind and rotate, thus

shortening the fibre. Just one movement produces several processes of binding and unbinding

of the actin-myosin fibres. Such processes are generically called activation potential.

(a) Picture of actin and myosin (b) Sarcomeras with a cellular nucleus

Figure 1.4: Muscular composition

1.3.2 Muscular Activity: Activation Potential

Activation potential refers to the intracellular changes that lead to variation in the concentration

of calcium ions. Muscular movement is produced at the intracellular level when the sarcoplas-

mic reticulum causes a change in the concentration of calcium inside the sarcomeres. Relaxation

occurs when this concentration is reduced, mainly because the sarcoplasma re-absorbs the cal-

cium and then eliminates it by diffusion. This process is called the sliding filaments mechanism

(figure 1.5). The following stages have been reported for the sliding filaments:

• Initial position. At the beginning of the cycle a layer of myosin binds firmly to an actin
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filament in a rigour configuration (so called because it is responsible for rigor mortis) and

the muscle quickly contracts until a molecule of ATP is attached.

• Projection. A molecule of ATP links to the notch behind the layer (i.e. on the furthest

side from the actin filament) and immediately causes a slight change in the configuration

of the domains that comprise the actin binding site. This reduces the affinity of the layer

for the actin and allows the actin to move along the filament.

• Power-stroke. The notch closes tightly around the adenosinetriphosphate (ATP) molecule.

This leads to a considerable change in the layer, which displaces roughly five nanometres

along the filament. The ATP is hydrolysed only with the adenosinediphosphate (ADP)

and the inorganic phosphate.

• Force-generation. A slight attachment of the myosin layer launches the actin of the

inorganic phosphate produced by hydrolysis of the ATP to another site of the filament

and the layer attaches to the actin. This launch causes the force-generation of the energy,

during which the layer recovers its original conformation. During the launch, movement

is activated, the layer loses its ADP and a new cycle is begun.

• Union. At the end of the cycle the myosin layer again binds firmly to the actin filament

in a rigour configuration. Note that the layer moves to a new position with respect to the

actin filament.

Figure 1.5: Cycle of sliding filaments by muscular fibre
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The change in the ATP concentration of a muscle cell, and therefore the contraction of the

muscle, leads spontaneously to the contraction of adjacent cells. This means that not all muscle

cells need to be connected by nerves.

This sliding filament mechanism is common to all three muscle types (skeletal, smooth and

cardiac) since it corresponds to the contractible unit, i.e. the sarcomere. The difference between

the activities of the various types of muscle depends on the distribution of the sarcomeres and

the intensity of the activation potential.

1.3.3 Physical Properties of Muscles

Here we focus on the physical properties that are common to all types of muscles or that are

specific to skeletal muscles. We should bear in mind that while some physical properties are

macroscopic and others are microscopic, all are explained on a microscopic level.

Contractibility

Three types of muscular contractions are reported:

Isometric. The muscle develops strength but does not undergo changes in length.

Isotopic. The muscle develops constant strength over time.

Auxotonic. The muscle develops variable strength and this one changes simultaneously with

his length.

Keeping the contraction active always requires changes in the concentration of calcium ATP.

This concentration increases the intensity of the contraction.

In the case of skeletal muscles in general and those of the inguinal region in particular, it is

generally agreed that contraction is auxotonic.

Isovolumetry

It is widely agreed that, despite experiencing changes in shape and position, muscles retain their

overall volume throughout contraction.
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Viscoelasticity

During the relaxation process after contraction, muscles can autonomously recover their initial

position. This property, called viscoelasticity, is different both from elasticity, in which a strained

material does not recover its initial position autonomously, and from viscosity, which is the

measure of a strained material’s resistance to flow.

Unlike purely elastic substances, a viscoelastic substance has an elastic component and a

viscous component. The viscosity of a viscoelastic substance gives the substance a strain rate

dependent on time. Purely elastic materials do not dissipate energy (heat) when a load is

applied, then removed. However, a viscoelastic substance loses energy when a load is applied,

then removed. Hysteresis is observed in the stress-strain curve, with the area of the loop being

equal to the energy lost during the loading cycle. A system with hysteresis can be summarised

as a system that may be in any number of states, independent of the inputs to the system.

Since viscosity is the resistance to thermally activated plastic deformation, a viscous material

will lose energy through a loading cycle. Plastic deformation results in lost energy, which is

uncharacteristic of a purely elastic material’s reaction to a loading cycle

Force vs Length

Starling’s Law states that, electrical stimulation being equal, greater stretching of the muscular

fibre produces a greater response by the strength developed. As is expected, however, stretching

of the muscular fibre is limited, i.e. though a muscle receives an electrical impulse, its tension

may not increase. This phenomenon can be explained through the microscope: while the force

developed by a muscle depends on the number of actin-myosin bridges in the sarcomere, an

over-stretched sarcomere does not have an effective response. The figure 1.6, shows the function

determined experimentally and plots the length of the sarcomere against the percentage of

tension compared to its maximum. Here we can see the role played by the force developed at

the moment of activation.

Anisotropy

Anisotropy is the opposite of isotropy and means that a material’s physical behaviour depends

on the direction studied. Sarcomeres, and therefore muscle fibres, have two essentially different

behaviours. One is in the direction in which the sarcomeres are arranged along the microfibres,

which exert the contraction. On the other hand, the direction that is orthogonal to the fibres is
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Figure 1.6: Stress versus length. In the horizontal axis, we have values of sarcomera’s lenght in µm. In

vertical axis, we have the percentage over maximal stress.

usually considered connective tissue and, therefore, passive to dynamic effects. For this reason

muscles are considered anisotropic.

1.4 The Lower Abdominal Wall

The abdomen is located between the thorax and the pelvis. In mammals the abdomen contains

the abdominal cavity, which is separated from the thorax by the diaphragm. Almost all the

viscera in the cavity belong to the digestive system, though there are also other organs such as

the kidneys and the suprarenal glands. Two thirds of the pressure exerted by these organs is

supported by the front of the abdomen. The other third is supported by the back of the abdomen,

which is made up of the lumbar vertebrae, the sacrum, the iliac bones and the back muscles.

The abdominal cavity is lined with a dynamically passive membrane called the peritoneum that

separates the organs.

Figure 1.7: Picture of abdominal area

The ventral abdominal muscles lead to the lateral and medial walls of the abdominal cavity
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and contain the last intercostal nerves and first lumbar nerves (ventral branches). These muscles

are important because they reach until the abdominal cavity. There are four muscles in this re-

gion: the external oblique muscle, the internal oblique muscle, the transverse abdominal muscle,

and the straight abdominal muscle. Each of these muscles is superimposed on the other. They

originate in the dorsal region and are inserted ventrally via aponeurosis. The oblique muscles

and the transverse muscle finish at the alba line, the fibrous tissue that runs from the sternum

to the pubis and that reaches the abdominal cavity.

• The rectus abdominal muscle is surrounded by aponeurosis of the other three muscles

(the oblique muscles and the transverse muscle). It originates in the lateral faces of the

first few ribs and is inserted into the pubis. It is surrounded by aponeurosis of the cabal

muscles. The fibres of the muscle run in the cranial-caudal direction.

• The external oblique muscle originates in the lateral faces of the ribs and is inserted

into the linea alba. Its fibres run in the caudal-ventral direction.

• The internal oblique muscle originates at the thoracolumbar fascia, in the coxal

tuberosity of the ilium and the transverse apophysis of the lumbar vertebrae. It is in-

serted into the linea alba. Its fibres run in the cranial-caudal direction.

• The transverse abdominal muscle, originates at the thoracolumbar fascia and the

transverse apophysis of the lumbar vertebrae and is inserted into the alba line. Its fibres

run in the dorsal-ventral direction.

The main dynamic functions of the abdominal muscles involve:

- Support for the abdominal viscera

- Miction.

- Defecation.

1.5 The Inguinal Hernias

Generally we can say that a hernia is a protrusion of an organ or tissue outside its usual body

cavity. Hernias usually develop in the abdomen when a weakness in the abdominal wall creates

an opening (normally in the myopectineal orifice) through which the protrusion appears. The

inguinal region is the lower ventral part of the abdomen, where the abdomen is in contact with

the pelvis. The groin is a naturally weak area of the abdominal wall and the most common
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location for a hernia. Inguinal hernias affect both sexes and all ages but they are more likely

to affect men (prevalence of 19:1). Estimated frequency is 3%, which means that they are an

economic problem as well as a medical one.

Figure 1.8: Image of an inguinal direct hernia

1.5.1 Anatomy of the Myopectineal Orifice

The myopectineal orifice is approximately 3.75 cm long (figure 1.9). It is an oblique opening

in the abdominal wall between the internal and external inguinal rings and is slightly higher

and parallel to the femoral arch. The anterior part is made up of aponeurosis of the external

oblique muscle and is reinforced towards the outside in front of the internal ring by insertion

of the internal oblique muscle. Its roof comprises the arched fibres of the internal oblique and

transverse muscles. Entering the canal between these two muscles is the small abdominogenital

nerve. The conjoined tendon makes up the main part of the posterior wall of the canal behind the

external inguinal ring. In front of the tendon is the portion reflects of the crural arch and behind

it is the fascia transversalis, which makes up the rest of the posterior wall. The fascia transversalis

provides the lower limit of the orifice by joining the femoral arch but some of the internal portion

of the lower part is made up of the pectineal portion of the femoral arch, or inguinal ligament.

Passing through the canal are: the spermatic cord or round uterus ligament, which tangle

around themselves and run from the abdominal wall; the internal spermatic fascia or fibrous

tunic, which originate in the internal ring of the fascia transversalis; the fascia cremasterica or

muscular tunic, which derives from the conjoined tendon, and the external spermatic fascia,

or cellulose tunic, which originates from the aponeurosis of the external oblique muscle at the

external ring. In the fascia cremasterica, on the spermatic cord between the internal oblique

and the spine of the pubis, are the fascicles of the cremaster. These receive their innervation

from the genital branch of the genitocrural nerve.
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Figure 1.9: Miopectineus orifice and Hessert’s triangle (in orange)

1.5.2 The Herniation

An inguinal hernia carries parietal peritoneum to the inguinal canal and protrudes through

the external inguinal ring. The superficial tumefaction is therefore invariably covered in skin,

both layers of the superficial aponeurosis, and the spermatic fascia. The tumefaction can reach

until the scrotum. Inguinal hernias are defined according to the site of protrusion from the

abdominal cavity. An oblique inguinal hernia enters the internal inguinal ring in the external

inguinal fascia outside the epigastric artery and follows the length of the inguinal canal in front

of the spermatic cord, with which it shares aponeurosis. A direct inguinal hernia enters the

canal behind the spermatic cord and enters the epigastric artery through the medial or internal

inguinal fossa, i.e. from outside or inside the fibrous cord of the obliterated umbilical artery.

Oblique hernias are lined with aponeurosis from the fascia transversalis and are independent of

the internal spermatic fascia that surrounds the cord. Being outside the conjoined tendon, the

envelopes, which are tightly bound to the external spermatic fascia, are independent of those of

the spermatic cord.

1.5.3 Anatomy of the Inguinal Hernia

The sac of an indirect hernia is actually a dilated persistent vaginal process. It passes through

the deep ring and is located inside the spermatic cord, continuing along the indirect path of the

cord as far as the scrotum. In the deep ring the sac occupies the antero-external side of the

cord. It is often accompanied by preperitoneal fat and is known as lipoma of the cord, though

the fat is not a tumor. Lipomas of the spermatic cord can look like the actual cord.
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Figure 1.10: Elements more distinguished from the inguinal region

The sac of an indirect hernia is filled if it descends as far as the testicles and fills the side

of the scrotum and is unfilled otherwise. If the vaginal process remains completely open, the

testicle is located within the sac. Such cases, known as congenital hernias or communicating

hydroceles, are common in infants but rare in adults.

Retroperitoneal organs such as the sigmoid colon, the caecum and the urethras can slide

inside an indirect sac and become part of its wall. These organs are prone to damage during a

hernioplasty. Hernias caused by sliding are often large but partially irreducible.

The sacs of a direct inguinal hernia originate from the inferior part of the inguinal canal, i.e.

the Hessert triangle. They protrude directly and are repressed by aponeurosis of the external

oblique muscle. They rarely grow large enough to force a path through the superficial ring and

descend to the scrotum. Direct hernias are usually diffuse and cover the whole of the inferior

part of the inguinal canal. Discrete hernias, which are less frequent, have small orifices and

diverticular sacs. Direct inguinal hernias also originate laterally to the lower epigastric arteries

and appear either through the deep ring or interstitially by sliding in zones of musculoadipose

atrophy of the muscles that seal the deep ring. This type of direct inguinal hernia is rare

and such hernias are generally wrongly classified as indirect extrafunicular hernias or indirect

interstitial hernias. They do not follow the spermatic cord and grow interparietally. The lower

gastric arteries are not an anatomical limit but they always represent the difference between

a direct and an indirect hernia. The bladder is often a component because of the sliding of a

direct hernia sac.

Inguinal hernias may be congenital or they may be acquired. In either case there is usually

a familial antecedent. Most of these hernias, therefore, are transmitted genetically. All indirect

inguinal hernias are congenital and result from the persistence of the vaginal process at birth.
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80% of newborns and 50% of one-year-old infants suffer from a persistent vaginal process. Closure

continues until the child is two years old. In adults the frequency of this condition is 20%.

The fact that a hernia is possible, however, does not mean that it will necessarily occur.

There must be other factors causing incapacity of the transversal fascia to retain the visceral sac

in the myopectineal orifice. An erection can lead to herniation through stretching and exposure

of the groin. When a hernia occurs, gravity may cause the intestines to fall onto the hernial sac.

Muscular deficiency also contributes to herniation. Congenital or acquired insufficiency of the

internal oblique abdominal muscles in the groin exposes the deep ring and the lower part of the

inguinal canal to problems due to intraabdominal pressure. Destruction of the conjunctive tissue

caused by the physical force of such pressure, smoking, age, disorders of the conjunctive tissue

as well as systemic problems reduce the strength of aponeurosis and the fascia transversalis.

Fractured elastic fibres and alterations in the structure, quantity and metabolism of collagen

have also been demonstrated in the structures of conjunctive tissue in hernia patients.

Several factors are sometimes important. Abdominal distension and a constant increase in

intraabdominal pressure due to ascitis and peritoneal dialysis can damage the myopectineal

orifice and lead to dilatation of a persistent vaginal process. Inguinal hernias of all types occur

equally in sedentary and physically active males. Energetic physical activity is not the cause of

inguinal hernias, though an intense effort can be a predisposing and precipitating factor.

1.5.4 Dynamic Mechanisms of the Inguinal Area

Two dynamic mechanisms of the inguinal region are generally accepted as influencing the onset

of inguinal hernias: the shutter mechanism and the sphincter mechanism of the deep inguinal

ring.

The shutter mechanism was first reported by A. Keith in 1923 [40] and described in further

detail by W.J. Lytle [45] in 1945. It is based on the fact that the contraction of the internal

oblique and transverse abdominal muscles enables their edges to approach the inguinal ligament

and iliopubic tract(Keith and Skandalakis [71] in 1989; Nyhus et al.[55] in 1991; Abdallal and

Mittelstaedt [1] in 2001), thus reinforcing the posterior wall of the inguinal canal. Abdallal and

Mittelstaedt [71] observed that the high insertion of the internal oblique and transverse abdom-

inal muscles in the sheath of the straight abdominal muscles leads to a broad inguinal triangle

(top areas to 8,97 cm2) in patients with inguinal hernias. They supported this observation by

considering that in the case of broad triangles, the approximation of the lower fibres of the

internal oblique and transverse abdominal muscles to the inguinal ligament, i.e. Keith’s shutter

mechanism, would not be sufficient to completely close the triangle, and inguinal hernias would

therefore be more easily generated.
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The sphincter mechanism of the deep inguinal ring is based on the fact that the crura of

the deep inguinal ring are attached to the transverse abdominal muscle (Lytle [45] in 1945;

Skandalakis [71] et al. in 1989; Nyhus et al. [55] in 1992; Menck and Lierse [50] in 1991; Pans

et al. [59] in 1997). Contraction of this muscle therefore generates two actions: firstly, the crura

get closer together, thus reducing the diameter of the deep inguinal ring; secondly, sliding occurs

upwards and outwards from the orifice. MacGregor (1929) reported that this mechanism fails

when preperitoneal cellulose-adipose tissue is introduced into the deep inguinal ring.

Other structures said to be involved in protection mechanisms for the inguinal region are

the internal crus of the deep inguinal ring, which partly delimits the Hessert triangle, and the

spermatic cord (or round ligament in women), which has a covering effect on the deep inguinal

ring.

While the dynamic mechanisms have been documented and are generally accepted, they

have not yet been confirmed. One aim of such studies should therefore be to confirm these

mechanisms.

1.6 Conclusions

So far we have discussed the main physical properties of muscles, which are mainly responsible for

the dynamics of the human body. Determining their properties and dynamics at the intracellular

level should help to establish a model that reflects reality.

In this Chapter we have also described the nature, components and functions of the region

we intend to simulate. Many elements play different active and passive roles in the origin of

hernias. Each of these elements should be treated according to its particular properties and

characteristics.



Chapter 2

Muscular Simulation

In this Chapter we present the bases for the numerical modelling of skeletal muscle, including

Huxley’s sliding filament model, the actin-myosin mechanism of muscular contraction modelled

by Hill, and Zahalak’s method of moments. We will also present several characteristics of J.

Bestel’s dynamic model of contractile elements.

2.1 Muscular Activity Models

Several studies of muscular simulation have been conducted. However, most of these have not

been specific enough to meet their objectives. One of the most relevant approaches is the widely

used Zajac’s model [85] which treats the muscle as a single unit (figure 2.1 (a)). Another is Van

de Linde’s model [79] which uses a coarse discretization of the muscle. Another very common

model is the mass-spring model, though this does not reproduce many of the muscle’s physical

properties. The most accurate model of muscular activity is surely Huxley’s sliding filaments

theory, which has been further developed and is now widely accepted for muscular simulations.

2.1.1 Huxley’s Sliding Filaments Theory

A. F. Huxley’s sliding filament theory was originally presented in [39]. Huxley considered a mid-

sarcomere and named A as the binding site of actin and M as the head of myosin (figure 2.2), due

to temperature, M oscillates from one band to another from the equilibrium position O, due to

temperature. We denote by x̃ the distance from O to the closer position A. Huxley assumes that

x̃ is strictly positive and lower to the maxim elongation h, therefore x̃ ∈ [0, h]. Huxley proposed

two functions of x̃, the f function that indicates the number of actin-myosin bridges that are

19
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(a) Zajac’s model (b) Chen’s model (c) Van del Linde’s model

Figure 2.1: Different muscle-tendon models

created per second and the g function that indicates the number of actin-myosin bridges that

are destroyed per second (in figure 2.3 we can see an outline plot of these functions). We assume

that the OM unions are elastic, so when a AM bridge is created the OM’s force is produced

in A. He also denotes by s the length of the sarcomere and v =
·

s is the sliding velocity for

the filaments. Huxley obtains a mathematical formula for the number of activated actin-myosin

bridges as a function of n, to give the number of AM bridges that are activated, where now x,

is the average of all x̃ what have been defined:

dn(x, t)

dt
=

∂n

∂t
+

∂n

∂x

∂x

∂t
= f(x) · [N − n(x, t)] − g(x) · n(x, t)

where
∂x

∂t
= v = ṡ is the sliding velocity and n is the number of bridges between 0 and the

maximum number of possible of bridges N .

Figure 2.2: Scheme of sliding Huxley filaments

The functions f and g reflect the changes in the number of points. In fact, bridges are

created and destroyed as the length increases. We can therefore assume that, as the bridges are

renewed, the muscle will not achieve a state of rigor.

We can normalise the previous expression with ξ = x
h

and η = s0

h
, by considering s0 to
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Figure 2.3: Functions f and g, it drives the number of bridges created and destroyed

be the length of the sarcomere of any reference state. Moreover, if we consider the strain of

sarcomere εc we get s = s0 (1 + εc). Therefore, at time t + δt the velocity will be s0
·

εc and we

assume that there is a supplementary strain δx (if the filaments are rigid) which, in the second

order, is approximated by s0
·

εcδt. After normalising by h, interval [ξ, ξ + δξ] therefore becomes
[

ξ + η
·

εcδt, ξ + δξ + η
·

εcδt
]

. Now, we are going to consider n as the proportion of bridges, a value

between 0 and 1, so we can rewrite:

·

n = lim
δt→0

1

δt

(

n
(

ξ + η
·

εcδt, t + δt
)

− n (ξ, t)
)

=
∂n

∂t
+ η

·

εc
∂n

∂ξ

and thus we can formulate the following Cauchy’s problem:







∂n

∂t
+ η

·

εc
∂n

∂ξ
= f(ξ, t) [1 − n(ξ, t)] − g(ξ, t)n(ξ, t)

n(ξ, 0) = n0(ξ) for all ξ

where
·

εc is a function of time and f and g are functions of two variables.

This is a first-order linear hyperbolic equation which, in a particular domain, provides the

solution:

∀t ≥ 0 y(ξ, t) = ξ +

∫ t

0
η
·

εc(τ)dτ = ξ + η (εc(t) − εc(0))

Now we can rewrite N(ξ, t) = n(y(ξ, t), t) and we we obtain the following partial differential

equation:
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{

·

N(ξ, t) + [f(y(ξ, t), t) + g(y(ξ, t), t)]N(ξ, t) = f(y(ξ, t), t)

N(ξ, 0) = n0(ξ) for all ξ

2.2 Muscular Rehologic Model

For the full muscular model, we consider the binding of sarcomeres in a contractile element (EC)

as in [12] since we assumed that the sarcomeres are arranged in series along the muscular fibre.

To obtain isometric strains we put another serial element (ES) mounted in series with EC

(Hill model with two elements, figure 2.4): ES models a degree of internal freedom due to the

strain of the fibre, which stretches when the EC contracts so the fibre remains at constant length.

We can also introduce a third element parallel to the EC (Voigt model) in parallel to the

EC-ES (Maxwell model) which we shall call parallel element (EP) to this new resort. This new

spring provides a force after a certain muscle length but does not respond to an external stimulus

(figure 2.4). The latter two models are derived from of the Hill model.

Figure 2.4: Muscular simulation models

Let us denote by lc, ls and l the lengths of the contractile element, series element and the

complete fiber respectively, and consider lc0 , ls0
and l0 the respective lengths for a rest reference

state for the element contractile EC. We are going to define by εc, εs and ε the associated strains,

therefore we have lc = lc0(1 + εc), ls = ls0
(1 + εs) and l = l0(1 + ε). In an analogous way let σc,

σs, σp and σ be the stresses, the series element and the entire fiber respectively and let also be
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kc, ks, kp and k the rigidity for the same elements: contractible, the two series and the entire

fiber respectively. I.Mirsky and W.W.Parmley in [51] studied and modeled the passive elements

of the muscle. These premises were studied and accepted in [12].

Experimentally they found that the tension-strain properties of the passive elements were

not linear and that the proposed models were of the type:

dσ

dε
= K1σ + K2

where K1 and K2 are two constants.

Besides the strain of EC, it is necessary to know the value of the chemical activation intensity

and the rate of strain. As a consequence of the parallel assembly, the Hill-Maxwell model must

satisfy the condition for the stress of the elements EC and EO, σs = σc and the condition for

the whole model σ = σc + σp.

Since the Hill-Voigt model requires the initial condition σc = 0, the flexibility of the model is

limited. It is largely accepted [39] that the Hill-Maxwell model is simpler and more flexible since

the isometry of the model means that we can use only the EP elements. In other fields (such as

material mechanics) the Hill-Maxwell model is used because of its viscoelastic properties. We

have also chosen the Hill-Maxwell model, since viscoelasticity is also a property we require for

our model.

2.2.1 Mechanic Behavior for Actin-Miosin Bridges

Actin-myosin bridges play a leading role in the possible configurations of the sarcomeres (figure

2.5) and it is widely accepted that, as proposed in [39], their rigidity is linear.

With this premise, as well as a macroscopic view of the sarcomere and a statistic interpre-

tation of Huxley’s model, in [83] and [84], Zahalak calculated rigidity, strength and energy with

moments of order 0, 1 and 2 for a sarcomere with:

Mp(t) =

∫ +∞

−∞

ξpn(ξ, t)dξ where p = 0, 1, 2.

In the same study, Zahalak proposed the system of differential equations to verify the mo-

ments:
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Figure 2.5: Scheme with the three positions that we are considering in the sarcomeres.























dM0

dt
= b0 − F0

dM1

dt
= b1 − F1 − v(t)M0

dM2

dt
= b2 − F2 − 2v(t)M1

(2.1)

where we have p ∈ {0, 1, 2}, bp = hp+1
∫ +∞

−∞
ξpf(ξ)dξ i Fp = hp+1

∫ +∞

−∞
ξp [f(ξ) + g(ξ)]n(ξ, t)dξ.

This author proposed a Gaussian density in ξ and the Fp are therefore written as explicit func-

tions in Mp. Therefore, given the initial conditions for Mp, rigidity, strength and energy for a

distribution of bridges can be written as:

n(ξ, t) =
M0(t)

σ(t)
√

2π
exp

(

− [ξ − µn(t)]2

2σ2
n(t)

)

on µn = M1(t)
M0(t) i σn(t) =

√

M2(t)
M0(t) −

(

M1(t)
M0(t)

)2
.

Zahalak noted that the approximation to a Gaussian density is rather coarse compared with

the n exact solution of Huxley’s model. However, this approximation can provide the evolution

of force over time, a constant velocity of strain, and the relation between force and velocity.
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2.3 The Bestel’s Model

In [10] Bestel proposed a microscopic model for the muscular fibre of skeletal muscle. This devel-

opment of Huxley’s model, which incorporates Zahalak’s contribution, defined the activation

potential function, which relates the concentration of calcium with the number of bridges. As

this model can be interpreted macroscopically, it can be used to perform numerical simulations.

2.3.1 Activation Potential

Bestel proposed two functions, f and g which were positive and dependent on strain ξ, —like

in Huxley’s model—but which had the properties proposed by Zahalak. So, from equation:

dn

dt
= f(1 − n) − gn

she proposed two new functions (f for binding and g for unbinding) which depend on t and

ξ. Those new functions are defined from the constants kATP and kRS .

The kATP constant is given by the adenosin trifosfat, that constant ride the muscular stress.

The kRS constant determinate the absorbtion capacity of calcium by the reticulum sarcoplasmic,

it have an important role in the muscular viscoelastic properties.

• Union frequency: like Huxley’s model f = 0 if ξ /∈ [0, 1] and f = kATP if ξ ∈ [0, 1] a

constant which depends of ATP level.

• Disunion frequency: by the g function, where is g =
∣

∣

∣

·

εc(t)
∣

∣

∣ if ξ ∈ [0, 1] and g =
∣

∣

∣

·

εc(t)
∣

∣

∣ +

kATP if ξ /∈ [0, 1]

However, the number of bridges depends on the concentration of calcium Ca(t) in each cell.

As the change in the activity of the cell takes place when the concentration surpasses a certain

concentration C, Bestel suggested that the definitions of functions f and g may depend on the

concentration of calciom:

• If Ca(t) ≥ C > 0

If ξ ∈ [0, 1]

{

f(ξ, t) = kATP

g(ξ, t) =
∣

∣

∣

·

εc(t)
∣

∣

∣
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If ξ /∈ [0, 1]

{

f(ξ, t) = 0

g(ξ, t) = kATP +
∣

∣

∣

·

εc(t)
∣

∣

∣

• On the other hand, if C > Ca(t) > 0

∀ξ

{

f(ξ, t) = 0

g(ξ, t) = kRS +
∣

∣

∣

·

εc(t)
∣

∣

∣

Figure 2.6: Functions f and g proposed by J.Bestel

She also assumed that if the cell is not stimulated, the concentration of calcium is null and,

therefore, that functions f and g are also null. Into this environment we introduced a function

u(t) , which we call activation potential and which combines the information from functions (eq.

2.2) and we can group in a unique expression the information f and g.

u(t) = |u(t)|+ − |u(t)|
−

on







|u(t)|+ = kATP · χ{Ca(t)>C}
|u(t)|

−
= kRS · χ{C>Ca(t)>0}

(2.2)

Figure 2.7 shows the correspondence between the concentration of calcium and function u(t).

Functions f and g can now be rewritten in function of the activation potential u(t) with:

f(ξ, t) =

{

|u(t)|+ ξ ∈ [0, 1]

0 ξ /∈ [0, 1]

g(ξ, t) = |u(t)| +
∣

∣

∣

·

εc(t)
∣

∣

∣
− f(ξ, t)
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Figure 2.7: Relation between the calcium concentration and activation function.

2.3.2 Macroscopic Bestel’s Model

Using these definitions of functions f , g and u, and reproducing the calculations of Zahalak, we

can obtain the rigidity and tension by calculating the moments.

• The resulting rigidity (moment of order 0) is calculated from all the elemental rigidities

assembled in parallel and with constant k, which is the maximum rigidity in a sarcomere:

K(t) = k

∫ +∞

−∞

n(ξ, t)dξ = kM0(t)

• The stress (momentum of order one) can be calculated it the same way, with the maximum

stress σ:

σc(t) = σ

∫ +∞

−∞

ξn(ξ, t)dξ = σM1(t)

Now, if we reproduce Zahalak’s calculations we saw in 2.1 for finding the differential equations

that verify the moments, with the new functions f and g we can rewrite the differential equation

to verify rigidity and tension as:

·

K = −
(

|u| +
∣

∣

∣

·

εc

∣

∣

∣

)

K + k |u|+
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·

σc = −
(

|u| +
∣

∣

∣

·

εc

∣

∣

∣

)

σc +
·

εcKη +
1

2
σ |u|+

Now we assume that the groups of sarcomeres are made up of identical sarcomeres separated

by Z lines. The macroscopic contractile element is then the result of grouping N sarcomeres of

length s, lc = Ns where lc is the length of the macroscopic contractile element.

Figure 2.8: Distribution of sarcomeres along the muscle.

If we consider that the strain of this macroscopic element εc, which we assume to be uniform,

is defined by lc = lc0 (1 + εc), we then get εc =
lc−lc0

lc0
= s−s0

s0
. Using these definitions and

normalising, we can rewrite the differential equation that follows the contractile element:

·

kc = −
(

|u| +
∣

∣

∣

·

εc

∣

∣

∣

)

kc + k0 |u|+

·

σc = −
(

|u| +
∣

∣

∣

·

εc

∣

∣

∣

)

σc +
·

εckc + σ0 |u|+
and where σ0 and k0 are maximum values of stress and rigidity for the macroscopic element.

2.3.3 Complete Model of Muscular Fibre

After producing the model of the contractile element EC, CE, Bestel completed the Hill-Maxwell

rheological model by modelling the passive elements ES and EP.
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Figure 2.9: Rehological Hill-Maxwell’s model.

As we have seen, it has been experimentally determined that the stress-strain ratio of a

passive element satisfies equation dσ
dε

= kσ + c, however c is often rejected (see [19]). We will

therefore assume that ES is a lineal resort with strain εs:

σs = ksεs

Assembly in series imposes the relation between strains:

εs =
l0
ls0

ε − lc0
ls0

εc

and the relation between the rigidities of EC and ES:

σc = σs = ks
l0
ls0

ε − ks
lc0
ls0

εc

The passive element EP will follow the same exponential model for the strain-stress relation-

ship as that for ES:

dσp

dε
= kp1

σp + kp2

provided the stress is null when the strain is null:
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σp =
kp1

kp2

(

ekp1
εp − 1

)

To simplify the calculations, however, a linearised expression is usually used (see [11]):

σp = kpεp

Finally, to complete the one-dimensional model, we need only consider the Lagrange equa-

tion in partial derivatives, which determines the displacements of each node in cases of non-

conservative force. We would need to assume that the longitudinal displacement y(x, t) is a

function of time t in a material point x, where 0 < x < 1. This variation is related to the strain

through ε(x, t) = ∂y(x,t)
∂x

, approaching v by y to time unit, using the Lagrange equation:

ρ
··

y + c
·

y − d

dx
(kpε + σc) = 0

where ρ is the density and c is the damping parameter.

Therefore we can now begin to simulate the one-dimensional model of muscular contraction.

Let us assume that the elements in series are linear and that the initial strain is null. This leaves

the system:



























·

kc = −
(

|u| +
∣

∣

∣

·

εc

∣

∣

∣

)

kc + kcmax
|u|+

·

σc = −
(

|u| +
∣

∣

∣

·

εc

∣

∣

∣

)

σc + kc
·

εc + σcmax
|u|+

ρ
··

y + c
·

y − d
dx

(kpε + σc) = 0

σc = ks (ε − εc)

(2.3)

where kp and ks are positive constants determined experimentally.

2.4 Geometric Model in 3D

Until now, we have been presented a one-dimensional geometric model (the rehological Hill-

Maxwell’s model)and now we want to built a three dimensional model for reproduce the move-

ment of a muscle into the space. Assuming that the muscle have a main direction (the fibre

direction) which produce the muscular force in our muscle. With the physic properties of a

muscle, we assume that the the other two directions, orthogonal to the fibre, can’t do stress
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variations to the muscle. In this way, we are going to consider the orthogonal direction as a

connective tissue, like a simple spring.

In this way, we propose an isoparametric unitary model in dimension 3 as an hexahedron

(figure 2.10) having a special direction that behaves as the Bestel model (it’s the vertical direc-

tion) and a plane that it have a behavior as connective tissue (the horizontal plane). This model

can be used for the dynamic muscular simulation, so that we are going to meshing the muscle,

in approximately orthogonal form (figure 2.11), where we are going to have an special direction,

that it will be the direction of muscular fibre.

Figure 2.10: Unitary model for the 3D element

For the generation of these meshes, we are going to consider hexahedric elements adapted

to the geometry of the anatomic data. Moreover, we must take care of the deformation in each

mesh element in order to not affect the numerical solution for the system (equation 2.3).

Figure 2.11: Muscular approximation by an orthogonal mesh

This model will verify the physic properties that we want to fulfill for the muscle behavior.

One of the most important property required for the model the model is the incomprehensibility,

i.e. that the volume is constant along the time, although the fiber direction can be shorter (figure

2.12). So that, we are going to impose the volume conservation of each hexahedron in our model,

thus this does not generate unwanted strains.

To maintain the conservation of volume we have to emphasize two points, which have the

repercussion to our solution method (see appendix A for details):

• Stress tensor. For each knot of the mesh we are going to apply the Hooke’s law for the

volume conservation, so that we are going to use the stress tensor. In the case of small
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Figure 2.12: Incompressible model

deformations that tensor is the same of Piola-Kirchhof tensor, with the Poisson coefficient

usual for the incomprehensibility of the materials ν ≃ 0, 5 :

σ =







ε 0 0

0 −νε 0

0 0 −νε







where ε is the strain that it has been calculated in each knot.

• Coordinates changes. It is necessary for the simulation of the fibre direction has an

appropriate orientation in the three dimensional space. So that, we need two coordinate

systems, a local one for each one-dimensional element and another one, for the global

coordinates.

Figure 2.13: Local and global coordinate systems needed for orientation of the fibre.

2.5 Simulation of the Muscular Unit

After fixing the macroscopic muscular unit in the space, now following [11], we are going to

describe the muscular movement using the formula for the dynamic of a continuous medium in



2.5. SIMULATION OF THE MUSCULAR UNIT 33

equilibrium. We apply the equations in three dimensions where ε is the strain tensor, that have

the same expression that the Green-Lagrange tensor, we obtain the strain tensor:

ε =







ε
11

ε
12

ε
13

ε
21

ε
22

ε
23

ε
31

ε
32

ε
33






(2.4)

εij =
1

2

(

∂yi

∂xj
+

∂yj

∂xi
+

∑

k

∂yk

∂xi

∂yk

∂xj

)

(2.5)

Then we must use the second strain tensor of Green-Lagrange denoted by σ. Because we

want to use the rehologic Hill-Maxwell model, the total stress is the sum of stress in the two

sides. In the side of the contractible element, the stress is just in the direction fibre, activated

into the direction of tangent vector n. So, we have:

σ = σ
p
+ σ1D · n ⊗ n (2.6)

where σ1D is the number indicating the stress in the side in series of the contractible element

and ⊗ is the tensorial product over one dimensional tensor n. The kinematic of the sarcomeras

distribution in dimension one of the contraction implies the corresponding stress of Green-

Lagrange tensor:

τ1D =
∑

i,j

τijninj

and verify:

1 + τ1D = (1 + τc)(1 + τs)

where τc is the stress for the contractible element and τs is the stress for the series element.

On the other hand, as a result of the second stress tensor of Piola-Kirchhof (σ) we have:

σ1D =
σs

(1 + τc)
=

σc

(1 + τs)

A consequence of the parallel distribution is the stress relation: τ = τ
p

We can use the last equations and the properties for the elastic elements to rewrite σs and

σ
p

as functions of τs and τ
p
, (σs = σs(τs), σ

p
= σ

p
(τ

p
))
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Now, with the equations of stress and strain for the Bestel model, the behavior in the three

dimensions is defined and we can write the dynamic equation for the model:

div(F · σ) − ρ
··

y = 0

where y is the displacement vector, F is the strain gradient and ρ is the material density.

In this way, we can start the simulation in the space from the 1D model for the muscular

contraction and use it to simulate the 3-dimesional case. With the corresponding modification

for the equation 2.3 we rewrite it as:



























·

kc = −
(

|u| +
∣

∣

∣

·

εc

∣

∣

∣

)

kc + kcmax
|u|+

·

σc = −
(

|u| +
∣

∣

∣

·

εc

∣

∣

∣

)

σc + kc
·

εc + σcmax
|u|+

ρ
··

y + c
·

y − div(F · σ) = 0

σc = ks (ε − εc)

(2.7)

which is the system that we need to solve for the muscular simulation, and for each muscle

that we want to simulate. Now, y,
·

y,
··

y, σc,
·

σc, kc,
·

kc, ε, εc and
·

εc are vectorial variables.

2.6 Data and Meshes

The data for building the geometrical model have been obtained from the work of M. Lopez-

Cano et al.[44] where they extract the original data from The National Library of Medicine’s

(Visual Human Project1). They work with snake algorithms to get the data of all important

elements of the inguinal region. They captured the data from the images (figure 2.14) and they

generate some files where there are the limits of the elements of the abdominal wall (figure

2.6). We started to work with a single muscle, choosing the internal oblique muscle because it

have the most important role in the dynamics of the area and it is proved for his active role

in the genesis of inguinal hernia (figure 2.6). Now, we have a set of points in the boundary of

the internal oblique muscle and we want to obtain a mesh for all the muscle with a reticular

structure in hexahedric units. The mesh needs to fulfill some properties so that the procedure

to do the mesh must be very regular and smooth at the same time to approximate the original

data. On the other hand we want to use a flexible procedure to work with different meshes, with

several densities to try to simulate different alive tissues. In this way, our model is a real model

1Human-Computer Interaction Lab. Univ. of Maryland at College Park.
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because our data have a real origin and so that our results will be near of the real phenomenon

in the human body.

(a) Cross slice (b) Slice origin

Figure 2.14: Visual Human Project pictures

(a) Our real model (b) Oblique internal muscle

Figure 2.15: Our data extracted from Visual Human Project

The muscle have an elliptical section, so that we approximate the muscle boundary with two

surfaces, then we generate a grid in each surface and finally we make the mesh with the union

of the opposite knots (figure 2.17).

From the literature ([30],[65] and [22]) we have 4 options to generate these surfaces on the

muscles boundary:

• Coons surfaces: This kind of surfaces have been used in many lighting questions, because

has a big capacity of adaptation to many figures. The surface can be approximated by a

collection of small surfaces, each one of these surfaces are quadrilateral which generate a
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Figure 2.16: The fibre model along the muscle

partition of the original surface. The edges of these quadrilateral are select by cubic splines

normalized. The result surface of class C1 although it is very clumsy to do calculations,

because although we have several techniques for the calculation, the generated surfaces

are inflexible and we need a big number of data for their calculation.

• Bézier surfaces: In this case we have some control points or checkpoints where we can

easily direct the surface, we have much more flexibility and much more softness because

we can generate surfaces of class Cn in a mesh of (n+1)× (n+1) knots. Although, as the

degree of these surfaces depend directly of the number of control dots this fact put several

complications in the use of these surfaces, they are very unstable to small modifications of

the control points, so that their parameterizations have few control, they are difficult to

control and uniform meshes difficult to create.

• B-Spline surfaces: The surfaces Basis Spline resolved the majority of the limitations that

we have in the previous cases. Now we can generate surfaces of class Cn−1 for meshes with

(n + 1) × (n + 1) nodes. The final surfaces can interpolate the collection of initial points,

the surfaces are robust by changes of control points and we can do uniform equipartitions

in to the surfaces. Also, with the Cox-De Boor formulation, we can parameterize the

surface so easy as we will need, and we can evaluate this expression easily.

• Non uniform rational B-Spline surfaces, NURBS: The NURBS have the same

properties of the B-Spline surfaces and they solve the unique limitation of these surfaces,

the representation of planes and quadrics. On the other hand, we have an handicap when

we have the same number of control (De Boor points ) and the number of dots of the

original mesh, then we have the Runge phenomena, in the unwanted undulation of the

surface.
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(a) Original element (b) Grid for the surfaces (c) Mesh for the element

Figure 2.17: Mesh generation

2.6.1 The Mesh Computation

Finally we generate a mesh from two NURBS surfaces, for each one of the muscles that we want

to simulate. We will have a set of r × s nodes ordered in a rectangular sense and we are going

to interpolate with a surface x(u, v). We will determine a set of control points {B}(n+1,m+1)
(i,j)=(1,1)

, with (n + 1) × (m + 1) nodes where n + 1 ≤ r and m + 1 ≤ s. These control points are

chosen in the same way as the surfaces are realized with B-Splines and we will use the distances

between neighbor points to obtain a parametrization that allows us a uniform partition of the

nodes from the parameter uniform distribution. In addition, we have 2 integer numbers, k and

l, that they satisfy 2 ≤ k ≤ n + 1 and 2 ≤ l ≤ m + 1, and two vectors X = (x1, ...xn+k+1)

and Y = (y1, ...ym+l+1) known as vectors of knots, where xi ≤ xi+1 and yi ≤ yi+1 with

parameters (u, v) ∈ [xk, xn+2]×[yl, ym+1]. The vectors X and Y are in charge of the interpolation

of the points of the initial data. In addition we have the set of weights H = {hi,j}(n+1,m+1)
(i,j)=(1,1)

with hi,j ≥ 0 that we are going to determinate later. With the usual formulas to generate the

B-Spline functions of order g and h, we can parameterize our surface as:

x(u, v) =
n+1
∑

i=1

m+1
∑

j=1

Bi,jSi,j(u, v) (2.8)

where,

Si,j(u, v) =
hi,jNi,k(u)Mj,l(v)

n+1
∑

a=1

m+1
∑

b=1

ha,bNa,k(u)Mb,l(v)

And the Cox-De Boor formulas for the B-Spline functions with the assumption 0/0 = 0.
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Ni,1(u) =

{

1 if xi ≤ u < xi+1

0 in other case

Ni,g(u) =
(u − xi)Ni,g−1(u)

xi+g−1 − xi
+

(xi+g − u)Ni+1,g−1(u)

xi+g − xi+1
with k ≥ g > 1

Mj,1(v) =

{

1 if yj ≤ v < yj+1

0 in other case

Mj,h(v) =
(v − yj) Mj,h−1(v)

yj+h−1 − yj
+

(yj+h − v)Mj+1,h−1(v)

yj+h − yj+1
with l ≥ h > 1

With the previous work in 2.8 we have already parameterized each of the surfaces that

interpolate our point set that determines the exterior face of our muscles. Now only it is

necessary to do a distribution of the surface to build a mesh on top. Once the distribution

has been done in both surfaces, we will join the points using linear interpolation and, if it is

necessary, will do another distribution

The thickness of the mesh will be decided from the physical properties of the muscles, so that

we are going to choose the thickness that has an ideal behavior and the possibility to reproduce

the properties expected for the muscles.

2.7 Conclusions

Most muscular simulations are still conducted by considering the muscle as a single macroscopic

unit and their geometry and the various directions of the muscular fibre are omitted. Huxley’s

sliding filament model is the first one to provide a mathematical expression to muscular dynamics

at the microscopic level. Now, thanks to the contributions by Zahalak and Bestel, a more detailed

model of muscular dynamics can be constructed that will enable a detailed study of certain zones,

such as the inguinal region, to be conducted.

Several authors have attempted to determine the activation function and we now have several

models to choose from. However, the role of this function does not appear to depend on which

model is chosen. All of the models are governed by the concentration of calcium and each of

them provides a different response at each level.



Chapter 3

One Dimensional Simulation

3.1 One-dimensional Integration

In this chapter we consider the simulation of a muscle fiber, despite that it is a one-dimensional

object, the simulation will be performed in the space, using the Bestel’s model, following the

system of equations 2.7 with the computational algorithm explained in Appendix A. Once the

mesh has been built in the space, we fix a main direction, the fiber direction. The fiber direction

has been determined by a succession of one dimensional contractile elements, built in the space.

We grouped them suitably in the mesh and they form one longitudinal fiber that goes from the

upper bound to the low end of the mesh. Hereby the integration of the PDE in 2.7 has been

realized separately for each of the longitudinal fibers, as one-dimensional elements and carrying

out the posterior coordinate change in the space. The motivation for this strategy is to reduce

the size of the equation systems involved, avoiding the technical problems that appear if your

systems are huge.

3.1.1 Methodology

We consider every longitudinal one-dimensional fiber in the space, so that we have a collection of

consecutive segments and it is a procedure to perform the desired simulation. The methodology

for the simulation has been explained previously in section 2.5, but there we do not introduce

two fundamental steps for building our model. In Appendix A, there has a description of the

numerical integration of an one-dimensional element of an isolated one-dimensional element is

described in detail, here we consider the assembly of several contiguous elements. On the other

hand, these one-dimensional elements are placed in the space so that it is needed to establish

39
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the coordinates change for every node.

The Assembling

To reach the assembling of a structure with several nodes, we need to describe in an unique

system the relative influence of the different components. The same procedure will be applied

to the matrices
[

Kk
]

,
[

Mk
]

and
[

Ck
]

that we have to use to integrate the PDE. In Appendix

A, we have defined the stiffness matrix for an one-dimensional element:

[

Kk
]

=

(

kk
11 kk

12

kk
21 kk

22

)

Thus, as an example, if we have three aligned elements in dimension one (figure 3.1):

Figure 3.1: Succession of elements in dimension one

we can assemble them imposing the forces equilibrium equation in every in every node i:

∑

k

F k
i = F ext

We can write the following equations for every node:

k1
11u1 + k1

12u2 = −F

k1
21u1 +

(

k1
22 + k2

11

)

u2 + k2
12u3 = 0

k2
21u2 +

(

k2
22 + k3

11

)

u3 + k3
12u4 = 0

k3
21u3 + k3

22u4 = F

where u1, u2, u3 and u4 are the nodal displacements and and the system matrix (the stiffness

matrix) can be written as
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









k1
11 k1

12 0 0

k1
21 k1

22 + k2
11 k2

12 0

0 k2
21 k2

22 + k3
11 k3

12

0 0 k3
21 k3

22











When more elements are considered, an analogous procedure is used to build the associated

tridiagonal system and solve the problem.

3.1.2 The Coordinate Changes

Since our PDE is solved in dimension one, it is necessary to determine an univocal coordinate

change from dimension three to dimension one. This change is completely determined for every

one-dimensional element due to the position of every element and both angles delimited with

the origin of coordinates, which locally determines an orthogonal base with the direction of the

element, the normal direction to the element contained in the plane determined by the element

and the origin, and the normal vector to this plane.

We want to emphasize that the nodes placed in the end of the longitudinal fiber, will have

an unique change of coordinates (figure 3.2 (a)), whereas the ones placed between two elements

of dimension one they can have two different changes (figure 3.2 (b)).

(a) Coordinates of an extreme node (b) Coordinates of an intermediate node

Figure 3.2: Possible coordinate changes

In every instant of time it is necessary to make these coordinate changes to calculate the

new position of every node.
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3.1.3 Integration Test

A validation test has been carrying out for our code to state its correctness. Thus, a cubic mesh

has been generated with 64 three dimensional elements and the contractile fibers are arranged in

the longitudinal direction. Every longitudinal fiber is composed by 4 one-dimensional elements

projected in the space, we use the Finite Element Method (FEM as in the Appendix A) for

one-dimensional problems. In each element, the matrices that we use are constant, so that we

don’t have to do a dynamical integration for every element.

0 0.2 0.4 0.6 0.8 1.0
0

0.04

0.08

0.12

0.16

(a) Stress

0 0.2 0.4 0.6 0.8 1.0

−0.06

−0.04

−0.02

0

(b) Strain

Figure 3.3: Graph of stress and strain in our test

(a) Stress (b) Strain

Figure 3.4: Graph of stress and strain in Bestel work

The muscular contraction has been applied in the longitudinal fibers and there have been

obtained the values of stress and strain similar to the obtained ones previously and coherent

with those of the model in dimension three, considering that now we have interaction between

the elements. It is possible to observe that there have been obtained values of stress and strain

equivalent to the test realized with only one element (figure 3.3 and 3.4).
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(a) t=0.00 sec. (b) t=0.06 sec. (c) t=0.12 sec.

(d) t=0.18 sec. (e) t=0.24 sec. (f) t=0.30 sec.

(g) t=0.36 sec. (h) t=0.42 sec. (i) t=0.48 sec.

(j) t=0.54 sec. (k) t=0.60 sec. (l) t=0.66 sec.

Figure 3.5: Sequence of significant images throughout 0.7 seconds in the integration test for the muscular

contraction

The sequence of images of 3.5 illustrates the movement of the cubic mesh in 0.7 seconds. It

is possible to observe (in figure 3.5 (d)) the effect of the stress and the maximum strain on the
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configuration of the mesh.

3.2 Muscle Simulation: the Intern Oblique

After doing the first tests and confirming the validity of the results, we begin to simulate the

movement of the oblique internal muscle. This muscle, together with the the inguinal ligament,

it has a very significant role in the determination of the Hessert’s triangle (this can be seen in

[54]) and a variation of his parameters can give us a measure of the risk of suffering a hernia.

In this way, the mesh has been generated following the instructions of the paragraph 2.6. The

generated mesh has altogether 756 nodes and 480 three dimensional elements. The mesh has

been subjected to the muscular contraction for a second and the results have been evaluated.

It is necessary to emphasize that the connective tissue has been assumed dynamically passive,

therefore the position of the nodes only depends of the contraction of the longitudinal fiber and

of the conservation of the volume.

3.2.1 Initial Values

The values of the different parameters involved have been extracted from the works of Semersant

[68] and Bestel [10]. Using equivalents parameters we hope to obtain equivalents results or

qualitatively equivalents.

Values for the Model and Material

ρ Material density: 1.05e−5 MPa/mm2.

m Young modulus: 0.076 MPa.

ν Poisson’s coefficient: 0.5

t Time for the simulation: 1 seg.
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Values for the Activation Potential Function: u(t)

T 0.4 seg. Time where the function u(t) is activated (non zero)

ϕ+ 0.15 seg. Time where the function u(t) is positive

ϕ
−

0.25 seg. Time where the function u(t) is negative

KATP 10 seg−1 Constant for adenosinetriphosphate increment

KRS −10 seg−1 Constant for calcium reduction

Values for the Partial Differential Equation

c Damping parameter for the PDE 7.10−5.

u0 Initial value for displacement in each node: 0.
·

u
0

Initial value for the displacement velocity in each node: 0.

Values for the Differential Equation

kcmax
Maximum stiffness for the contractible element: 1.0 MPa.

kp Stiffness for the passive element: 2. MPa.

ks Stiffness for the series element: 100. MPa.

σcmax
Maximum stress for the contractible element: 0.18 MPa.

·

εc(0) Initial velocity of strain: 0. MPa.

σc(0) Initial stress: 0. MPa.

kc(0) Initial stiffness: 0. MPa.

3.2.2 Effects of the variation in parameters

With these values, the simulation has been done and the obtained values of stress and strain

are shown in figure 3.6. We can see that our results are very similar to the ones obtained by

Sermersant and Bestel, their behavior is essentially the same as their models.

We have measured the whole volume of the muscle throughout the time, for each of the three

dimensional elements, and it has been verified that the variation of volume is always lower than

3 per cent of the initial volume (3.7).

There is also verified, that the angle determined by the aponeurotic tissue and the muscular

tissue maximizes in the moment that produces the maximum strain (and also the maximum

stress), so that also increase the probability to have an hernia.
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(a) Stress in MPa.
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(b) Strain

Figure 3.6: Plots of stress and strain over time

Figure 3.7: Percentage of volume variation for a second

3.2.3 Effects of the Variation of the Damping Parameter

The determination of the damping parameter is a very complex problem to solve in the integra-

tion of PDE equation, in many occasions an experimental procedure is needed for determined

it. Here we use the initial value for the damping parameter proposed by Sermesant in his work.

A series of viable values for the model have been crossed and their effect on the maxim variation

of the angle have been verified. It is necessary to emphasize that concerning the initial proposed

values, no significant significant differences between the values of stress and strain have been

observed. Although, it has been observed an inverse dependence between the increase of the

parameter and the maximum variation of the studied angle, as can be observed in figure 3.8.

3.2.4 Effects of Calcium Variation

The variation of calcium concentration have different effects. First, we observe a qualitatively

equivalent behavior for the values of stress and strain. We have used different values for the

velocity variation of calcium concentration KATP = 5, KATP = 10, KATP = 15 and KATP = 20

, we can see the result of the test is in figure 3.9.
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Figure 3.8: In vertical axis maximum angular variation in radians, in the other one we have

values for the damping parameter.

With these values, one can state that the maximum variation of the angle increases with the

highest calcium values, hereby we can establish that an increase of the concentration of calcium

generates a bigger overture of the angle of Hessert’s Triangle. We can look the results in the

following table.

Due to the fact that an increase of the concentration of calcium represents a muscular increase

of the stress and strain, we can establish that the concentration of calcium has a direct influence

in the genesis of the inguinal hernias.

KATP Maximum angular variation

5 0.01166 rad.

10 0.01826 rad.

15 0.02025 rad.

20 0.02114 rad.
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(a) Stress in MPa.
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−0.04

−0.02

0

(b) Strain

Figure 3.9: Strain and Stress plots for several values of KATP : KATP = 5 in line-dot line, KATP = 10

in dotted line, KATP = 15 in continue line and KATP = 20 in dashed line. The bigger the calcium

concentration, the bigger the obtained stress and strain.
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3.2.5 Effects of Intra-abdominal Pressure Variation

The differences of intra-abdominal pressure are added to our model as external forces acting on

the muscle. In order to imitate the anatomy of the inguinal region, we are going to apply more

pressure in the central part of the muscle has been considered. Therefore, an internal point of

the abdomen has been considered, from which the force will be apply, and the following function

will be applied to every node considering a constant force F and the coordinates centered at this

point:

f(x, y, z) =
F

x2 + y2 + z2 + 1
.

During the simulation we have submitted the oblique internal muscle to a constant intra-

abdominal pressure. An increase of the maximum variation of the studied angle can be observed,

which recover the initial position. So that, we can establish the pressure as a factor which

increases the risk in the genesis of inguinal hernias. In the following table we can see the

maximum variation of the angle subject to different values of the parameter F in the formula.

F Maximum angular variation

0.1 0.01903 rad.

0.01 0.01828 rad.

0.001 0.01826 rad.

0.0 0.01826 rad.

3.2.6 Effects of Angular Variation

There have chosen three nodes that delimit the ends of Hessert’s triangle and the variation of

the major angle of Hessert’s triangle has been measured (figure 4.1). Thus, we can observe a

direct dependence between the increase of the area and the increase on the angle. So that, we

can explain the enclosure of Hessert’s triangle with the angular variation.

3.2.7 Effects of Repeated Effort

To study the repetition of the muscular effort, 10 contractions have been applied during a period

of 10 seconds (figure 3.11). At every time instant, the variation of the angle has been measured

up and we can establish that the minimum variation of the angle increases with the number of
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Figure 3.10: Angular variation measured in radians

impulses. This is due to that recovering time, or the time in which the activation function is

null, is not sufficient in order that the muscle recovers its initial position in every impulse. In

figure 3.11, we can see a certain number of impulses, the angle have an important increase in the

variation of the rise in this angle. Therefore, we can conclude that a continued effort increases

the risk of herniation, because of the rise in this angle. With this result we can establish a

possible relationship between the repetition effort and the genesis of hernias.

Figure 3.11: In vertical axis maximum angular variation in radians, in the horizontal one we

have the contractions number.

3.3 Conclusions

The behabior of the inguinal region is mainly determined by the muscular dynamics, so that

we need to have a good three dimensional model for the muscular simulation. In this way we

propose a hexahedron as action unit in dimension three, to preserve the anisotropic property for

the muscle. On the other hand, the hexahedron have some specific property, it can be stackable

in a very easy way. This fact are going to facilitate the mesh generation in the space and we are

going to identify the real muscular fibres as the sequence of contractible elements that we are

using.
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In this chapter, we have introduced the particular tools that we need to build a model for a

muscle in the space. We use tools coming from different areas like surface modeling, numerical

methods for PDE, mechanics of materials, etc., this is inherent to the applications of simulation

to medicine or real live in general. We want to emphasize that we use original data, so that our

model have an extra value because we have an approximate model of the reality.



Chapter 4

Three-dimensional Integration

In this Chapter, we are going to do the three-dimensional volumetric muscular simulation, using

the Bestel’s model and the equations system 2.7 the calculation algorithm (Appendix A) that

we previously described. As in the previous chapter, we are going to consider the direction fibre

as a special direction, that we can determinate by union of several contractible elements the

longitudinal fibre along the muscle. In the previous chapter we integrate the longitudinal

fibre contraction and translate this values to the mesh and we impose volume conservation

for each element. Now, the integration is made using the whole mesh with the 3-dimensional

elements.

The reader can see the importance of this change because the number of equations that we

need to solve in each steep now is 3n where n is the number of nodes in our model, while in the

previous chapter we need to solve n equations, and translate the values to the particular mesh.

In the biological tissue simulations, it is commonly used the constitutive equations for hy-

perelastic materials the Helmholtz free-energy function [32]. We can look several examples of

constitutive equations in [33]. In the Chapter 5 we present the hyperelasticity with several

details.

4.1 Introduction

The connective tissue is the responsible for the passive part of the muscle, in our case we assume

it surrounds the contractible fibre. Here we are going to formulate it in the three dimensional

space, with the finite element method (FEM) using an isoparametric eight-node continuum as

finite element.

51
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The nonlinear viscoelastic and poroelastic nature of muscular tissue have been introduced in

other models using FEM or similar procedures, here, in order of getting a first approximation,

we have omitted these properties. We treat the connective tissue of the muscle as volumetric,

quasi-incompressible and elastic material, governed by a lineal stress-strain relationship in the

constitutive equations.

Figure 4.1: A muscular cell with fibres (myofibrils)

4.1.1 Linear Elasticity

The elastic materials can be considered that they have an initial shape to which they will return

if the applied forces disappear. Since the changes of shape are very small, there is no difference

between the reference configuration and current configuration. The linear elasticity theory gives

an excellent model for the behavior of this sort of materials. We can obtain the stress with the

partial derivatives Helmholtz free-energy function.

σij =
∂W

∂εij
= Dijklεkl (4.1)

Where Dijkl = Dklij = Djikl = Dijlk is the elasticity tensor that relates the strains (εkl) and

the stresses (σij), considering small strains.

4.1.2 Elastic and Linear Approach

We can observe (figure 4.2) schematically a summary for the typical stress-stretch behavior of

any muscle, when it is stretched along the fibre axis and across-fibre axis. In this case, the

Omens work [56] is for the properties of the miocardium (in rat case), but it is well known
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that properties of the miocardium are very similar, in a qualitative way, for all mammals and

for all muscles. It has been observed the anysotropy and the non-linear properties, with the

different values obtained for the same stretches, the non-linear behavior is more important for

large strains than for small strains.

(a) In fibre direction (b) In cross-fibre direction

Figure 4.2: Stress-extension relationship computed for equibiaxial loading. Triangles and boxes com-

puted using two different methods, circles experimental values.

In figure 4.3, we can see the equibiaxial stretch data exercised in a thin rectangular slab of

non-contracting muscle. It can be observed, the non-linear stress-stretch response over finite

strains. Certain hysteresis in the behavior of the fiber direction and the cross-fibre direction.

(a) Equibiaxial stretching data (b) Equibiaxial strain data

Figure 4.3: Relationship computed for equibiaxial loading

In the work presented in this thesis, the fibre properties are modeled as a one-dimensional

element and, in this chapter, we determine the properties of the passive part of the muscle to

model it as a volumetric three dimensional finite element. In the figure 4.3(b) we can see that

the fibre strain-stress curve which is due to the active part of the muscle and the Cross fibre

stress-strain curve due to the passive part of the muscle.

If the connective tissue that surrounds the fibre is well joined to the fibres, we can make the

hypothesis that the strains of the fibres are similar in order of magnitude than the strains of the
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connective tissue in the same direction. Consequently and taking into account the information

of the previous chapter, in which the values of the fibre strain εf < 0.01, we can consider that

is a good first approximation. Some hysteresis in the stress-strain relationship are not been

either taken into account. In chapter five, we are going to considerer the most realistic model

(as a hyperelastic material) to describe the behavior of the passive part of the muscle due to the

connective tissue.

Figure 4.4: Considering linear elasticity for εf < 0.1

The numeric resolution in this case is very similar to the previous chapter. The main dif-

ference in this methodology is the calculus of the rigidity matrix [Kk], the mass matrix [Mk]

and the force vector [F k]. With this change of strategy, the results in each steep of the partial

differential equation are the nodal displacements in every one direction of the space. In the

Appendix B we can see the details this formulation based on the finite element method using

isoparametric hexahedrical elements.

4.2 Linear Elastic Simulation

Once we have build our model, we can simulate the dynamics of the Inguinal region. First we

do not consider any pathology in order to obtain a normalized dynamic behavior. After that,

we will study the influence of the different parameters involved in the simulation. These results

will provide a better understanding of the hernia genesis.

4.2.1 Initial Values

We have make the simulation for the normal behavior with the values obtained of the previous

works of J.Bestel and of M.Sermesant. Moreover, we have incorporated the values of reference

more usual for the magnitudes not included in these works.
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Values for the Model and Material

ρ Density of the material: 1.05e−5 MPa/mm2.

m1 Young modulus for muscular tissue: 0.076 MPa.

m2 Young modulus for tendinous tissue: 50 MPa.

ν Poisson’s coefficient: 0.49

t Time for the simulation: 1 seg.

Values for the Activation Potential Function: u(t)

T Time where the function u(t) is activated (non zero): 0.45 seg.

ϕ+ Time where the function u(t) is positive: 0.2 seg.

ϕ
−

Time where the function u(t) is negative: 0.25 seg.

KATP Constant for adenosinetriphosphate increment: 10 seg−1

KRS Constant for calcium reduction: −10 seg−1

Values for the Partial Differential Equation

u0 Initial value for displacement in each node: 0 mm.
·

u
0

Initial value for the displacement velocity in each node: 0 mm.

Values for the Differential Equation

kcmax
Maximum stiffness for the contractible element: 1 MPa.

kp Stiffness for the passive element: 2 MPa.

ks Stiffness for the series element: 100 MPa.

σcmax
Maximum stress for the contractible element: 0.18 MPa.

·

εc(0) Initial velocity of strain: 0 MPa.

σc(0) Initial stress: 0 MPa.

kc(0) Initial stiffness: 0 MPa.

4.3 Dynamic Mechanisms Description

We can state that the obtained results are qualitative and quantitatively equivalent to the works

realized by M. Sermesant and J. Bestel in what it recounts to tension deformation and nodal
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displacement. In spite of it, we can observe that now it exists a minor variation of volume of the

muscle along the contraction (less than 1.e-4 per cent), so that here is assumed that the model

reproduces with major reliability the real model.

In the next section, we will emphasize that the dynamic mechanisms proposed by A.Keith

happen in the same form that he postulated, both the shutter mechanism and the closing

of the inguinal deep ring. In any case, we can affirm that it exist a defence mechanism for

healthy individuals, considering that we have also observed pathological cases in which the

shutter mechanism not only is not a defence mechanism, but in addition it could facilitate the

appearance of hernias.

Finally, we show how is the dynamic in the internal oblique muscle with the image sequences

(figure 4.10). We can appreciate the special behavior in the area of the Hessert’s triangle.

4.3.1 The Shutter Mechanism

The first dynamic mechanism for the inguinal region is the one described by A.Keith: the shutter

mechanism. This mechanism was presented in 1923 and was described as a defence mechanisms,

and also it have to support the intra-abdominal pressures in the inguinal orifice. There has been

stated how it works the closing mechanism for Hessert’s triangle. We can see a scheme of the

close up of the triangle in the figure 4.5. The area of the above mentioned triangle has been

measured in every instant of time and there has been stated that from an initial value of 8,97

cm (according to [54]) his area has got down until 8,2 in the moment of maximum contraction,

and to recover finally his original area.

Figure 4.5: Scheme of the variation of Hessert’s triangle in a contraction, the distance between the

points a and b increases when the angle increases

In turn we have also measured the angular variation of the angle included between the oblique

internal muscle and the aponeurotic tissue of the transverse muscle of the abdomen. We have

verified that this angle opens up during the contraction of the muscle and closes up again during

the relaxation and recovers his initial position (figure 4.6).
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Figure 4.6: Graph of values in radians the variation of the angle of Hessert’s triangle

4.3.2 Enclosure of the Internal Ring

The second dynamic mechanism described by A.Keith is the closing of the inguinal deep ring.

This mechanism was presented in 1923 and was described as a defense mechanism, that supports

the intra-abdominal pressures on the inguinal orifice. The closing of the inguinal deep ring

consists on the fact that the props of the inguinal ring (composed by tendinous tissue) approach

the muscular tissue of the oblique internal muscle. In the figure 4.7 one can see a scheme of the

closing of the inguinal deep ring, which takes place during the phase of muscular contraction.

To simulate the inguinal deep ring we have used the fact that this one is composed of tendinous

tissue, the composition of the tendinous tissue is sufficiently documented ( [33], [70], [20]). To

determine his position and form, we have used photographic documentation, and the help of Dr.

Manuel Lopez Cano, who has guided us all the time.

Figure 4.7: The inguinal deep ring (in red) is closed when the muscular contraction takes place

In this case, at each instant we have taken the measure of the area included between the

props of the inguinal ring and the muscular tissue of the oblique internal muscle. We have stated

that the area included by the inguinal ring decreases up to the moment of maximum contraction

to recover finally its initial position (figure 4.8).

As a consequence of the obtained results in our simulations, we can conclude that the de-
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Figure 4.8: Variation of the area included by the internal ring, in the vertical axis we have the measure

of the area in cm2 and in the horizontal one we have the time in seconds.

scription of the defense mechanisms introduced by A. Keith behave as he predicts.

4.3.3 Stress on the Fascia

Finally, we are going to observe the results obtained during the simulation of the weakest ele-

ment of the inguinal region, the fascia. This membrane represents the only structural element

preventing the internal organs from crossing the inguinal orifice. It is necessary to emphasize,

that this membrane in spite of having high breaking resistance, is the weakest element of the

region, so that it seems natural that this is the one yields when an extreme effort takes place.

It is also important to emphasize the weakness of the facia because it has no more than 0.3 mm

of thickness.

Figure 4.9: Range of values of the force supported by a segment ab of Hessert’ triangle in parallel to the

inguinal ligament, with his median in the horizontal line, in the horizontal axis KATP ’s different values

and in the vertical axis the force obtained in N.
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(a) t=0.00 sec. (b) t=0.03 sec. (c) t=0.06 sec. (d) t=0.09 sec.

(e) t=0.12 sec. (f) t=0.15 sec. (g) t=0.18 sec. (h) t=0.21 sec.

(i) t=0.24 sec. (j) t=0.27 sec. (k) t=0.30 sec. (l) t=0.33 sec.

(m) t=0.36 sec. (n) t=0.39 sec. (o) t=0.42 sec. (p) t=0.45 sec.

(q) t=0.48 sec. (r) t=0.51 sec. (s) t=0.54 sec. (t) t=0.57 sec.

(u) t=0.60 sec. (v) t=0.63 sec. (w) t=0.66 sec. (x) t=0.7 sec.

Figure 4.10: Sequence of stress variation in the internal oblique muscle in 0.7 sec. We can observe the

maximum stress in red at instant 0.15 in the area of Hessert’s triangle.
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4.4 Study of the System Under the Variation of Parameters

In the next sections we will study the influence on the inguinal region dynamics when we change

the different parameters involved in the simulation. Moreover, the natural variability of these

parameters forces us to study how the system behaves under their slight variations. Variations

in these parameters are associated with several pathologies in the region [64] that eventually

lead to failure of the natural hernia-protection mechanisms.

Figure 4.11: Diagram of strains of the fascia placed in Hessert’s triangle in the moment of contraction.

The zone in red fits with the region of the fascia in touch with the muscular tissue.

More specifically, we focus on the effects on the fascia transversalis since it is widely accepted

that this tissue plays an important role in the origin of inguinal hernias. Figure 4.11 shows the

strain on the fascia transversalis. Assuming that the tissue is uniform, these areas in red are the

ones with the highest risk of fracturing due to the strain exerted. These maximum strain values

will be the main focus of our attention. Since for the reference simulation, maximum strain

in the fascia is 0.00023 any values above this figure will indicate greater strain and therefore a

greater risk of fracture. Values below this figure will indicate lesser strain and therefore a lower

risk of fracture.

We have also observed the variation in dynamics of the internal oblique muscle (see figure

4.12). Strain and stress were measured for the whole period of simulation. However, unlike

what happened with the fascia, we did not observe any significant values that would explain the

muscle disfunction. This does not happened when a hernia occurs.

Since there are only few real measurements of the properties of the fascia, we can use numer-

ical simulation to achieve a first approximation to the real situation. Variation in the physical

parameters, using measurements of the region from previous studies [59], [66] and [54], is used

to represent the variability we would find in a random sample of individuals.



4.5. STUDY OF CHEMICAL PARAMETERS 61

Figure 4.12: Graph of nodal displacements of the internal oblique muscle in the moment of maximum

contraction.

For the simulations performed in the next Sections, we only modify the physical and chemical

properties of the internal oblique muscle or of activation mechanisms that are not involved in

the muscle’s macroscopic behaviour. For the properties of the fascia we took normal values of

healthy individuals (non-pathological cases) in order to determine how these parameters affect

a normal model and explain actual movement.

Our study is based on parameters that are relevant to the origin of hernias, though their

real effect has not yet been proof. Our aim is to evaluate the real effect of these parameters

on the properties of the fascia and, more specifically, on the strain supported by this tissue.

The relationship between strain and these parameters will indicate possible elements of risk or

protection in the origin of hernias. At the same time, we hope to confirm or reject several current

theories.

4.5 Study of Chemical Parameters

In this section we will study the effect of the velocity calcium variation (KATP ), the inflexibility

elements in Hill-Maxwell model ( Ks and Kcmax in figure 2.9) and the variation on period of

contraction affects in the maximum strain values on the fascia transversalis.

4.5.1 Effect of Variation in KATP

The constant KATP regulates the velocity with which calcium crosses the walls of the sarcomeres.

It is therefore largely responsible both for the amount of calcium in the sarcomere and the strain

generated by the sarcomere, since this is regulated by the calcium concentration. Figure 2.7
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shows the relationship between calcium concentration and KATP , the constant of the model

used.

As we have seen in our study of muscular contraction, muscular tissue activity is a con-

sequence of the activity of the sarcomeres. The actin-myosin bridges must be created, so the

calcium concentration must change if muscular activity is to be registered. The velocity with

which the calcium enters the sarcomeres is related to the muscular contraction since the activa-

tion of the muscle and the force exerted by it are direct consequences of this value KATP . It is

natural to suppose that the change in these increases in concentration must alter the muscular

force developed and the results of our simulation confirm this supposition. Using similar values

to those of J.Bestel [10] we observed (figure 4.13) a direct dependence between the increase in

this parameter (KATP ) and the stress developed by the muscle.

Figure 4.13: Graph of the maximum strain in the fascia in vertical axis. In the horizontal axis, we have

various values for KATP , in sec−1.

4.5.2 Variation in Ks and Kcmax

We performed several simulations with variations in parameters Ks and Kcmax. Parameter Ks

is associated with the maximum inflexibility of the element in series (figure 2.9) of the Maxwell

model. Parameter Kcmax is the maximum inflexibility of the contractile element of that model.

For parameter Ks, we started from the reference value of 100 MPa and the values taken

for the various simulations ranged from 75 MPa to 125 MPa. After the contraction and

recuperation processes had been completed, several differences were observed until the initial

position was regained. However, these differences were not significant during the contraction

process either in the fascia or in the internal oblique muscle, so we rejected the possibility of

any link to the cause of hernias.

For parameter Kcmax we started from the reference value of 0.18MPa and the values taken

for the various simulations ranged from 0.12MPa to 0.25MPa. After contraction, no significant

differences in the simulations were observed either in the contraction process or in the process
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to regain initial position. However, we cannot disregard the importance of this parameter

for our simulation because in cases with extreme values we did observe important differences

in behaviour, though we were unable to find any correspondence between them and the real

situation.

4.5.3 Variation in the Period of Contraction

We studied how the period of contraction affects the Hessert triangle by varying the time during

which the muscle is in the contraction phase, i.e. the time during which the sarcomere contracts.

As we have seen, this parameter is directly related to the curve of the calcium used in our model

and to the calcium concentration.

The time during which the contraction process is active is expected to have a direct effect

on movement in the region. We therefore varied the time during which the sarcomere is in

contraction with increments of 0.01 seconds from the initial reference value of 0.15 seconds. As

expected, we found that strain increases as the period of contraction increases (see figure 4.14).

Figure 4.14: Graph of the maximum strain in the fascia in vertical axis. In the horizontal axis, we have

various values for that last phase of contraction in s.

4.6 Study of Physical Parameters

In this section we will study the effect of the muscular stress, Young’s modulus in the muscu-

lar tissue and tendinous tissue, the density variation, Poisson’s ratio, intraabdominal pressure

and gravity affects in the maximum strain values on the fascia transversalis on the muscular

contraction.
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4.6.1 Variation in Muscular Stress

As J.Bestel and other authors have shown, the maximum stress observed in healthy muscular

tissue is approximately 0.18Mpa at the time of maximum contraction. For several reasons,

however, changes to this value are common and observed values range between 0.10Mpa and

0.20Mpa. Figure 4.15 shows the results of our simulations for several values of muscular strain.

When we measured maximum strain in the fascia transversalis (figure 4.11), we observed

that the strain at the time of maximum contraction increases as muscular stress increases (figure

4.15). The stress borne by the fascia therefore also increases as the muscular stress increases.

Figure 4.15: Graph of the maximum strain in the fascia in vertical axis. In the horizontal axis, we have

various values of the muscular maximum stress in MPa.

4.6.2 Variation in Young’s Modulus

Young’s modulus, or the elasticity modulus, characterises the elastic behaviour of a material

according to the direction in which a force is applied to it. For a linear isotropic material, Young’s

modulus has the same values for traction and compression since this constant is independent of

the effort exerted on the material provided this does not exceed the maximum (called the elastic

limit). These values are always greater than zero: if, for example, we exert traction on a rod

of a certain material, the increase in length never decreases. This behaviour was first observed

and analysed by English scientist Thomas Young in the nineteenth century.

Both Young’s modulus and the elastic limit depend on the material. The elasticity modulus

is an elastic constant and, like the elastic limit, it can be calculated empirically for a sample of

material by subjecting it to traction.

The elastic limit is not important for our simulations of muscular contraction. In accordance

with [82], the values of stress are much lower than the elastic limits of the materials (the muscular

and tendinous tissues)
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Effect of Variation in Young’s Modulus on Muscular Tissue

We have subjected our model of muscular contraction to several simulations using the state of

reference and several values of Young’s modulus for muscular tissue obtained previously in T.

Wolloscheck et al. [82].

It is generally agreed that the average value of Young’s modulus for healthy muscular tissue

is determined in [67]. Variations in this value depend on the individuals in the sample.

When we measured maximum strain on the fascia transversalis (figure 4.11), we observed

that the strain to which the fascia is subjected at the time of maximum contraction diminshes as

Young’s modulus increases (figure 4.16). The stress borne of the fascia therefore also dimninishes

as Young’s modulus increases. This observation coincides with that of M.L. Ajmani and K.

Figure 4.16: Graph of the maximum strain in the fascia in vertical axis. In the horizontal axis, we have

values of Young’s module in MPa. The maxim strain value for the reference simulation is 0.00023

Ajmani [4], who established a direct relationship between the origin of the muscular tissue and

the appearance of hernias such that the higher Young’s modulus in muscular tissue, the lower

the risk of suffering a hernia.

Degradation of Tendinous Tissue

We subjected our model of muscular contraction to several simulations using the state of ref-

erence and several values of Young’s modulus for tendinous tissue obtained previously by T.

Wolloscheck et al.[82]. It is generally agreed that the average value of Young’s modulus for

healthy tendinous tissue can be found in [67] and fixed in 1.05 MPa/mm2. However, values for

tendinous tissue can depend both on the area from which the sample is extracted and on the

concerned individual.

When we measured maximum strain in the fascia transversalis (figure 4.11), we observed

that the strain to which the fascia is subjected at the time of maximum contraction increases as
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Young’s modulus increases (figure 4.17). The stress borne of the fascia therefore also increases

as Young’s modulus increases.

Figure 4.17: Graph of the maximum strain in the fascia in vertical axis. In the horizontal axis, we have

values of Young’s module in MPa/mm2.

This observation coincides with that of Ajabnoor et al. [3] and by Condon [16], who es-

tablished a predisposition for the development of hernias in individuals with flexible tendinous

tissue that has lost some of its natural properties.

4.6.3 Effect of Variation in Density

Density is associated with the quality of muscular tissue. Above-normal density is associated

with muscle rigidity, muscle ageing and hypertrophy, while below-normal density is associated

with an abnormal increase in connective tissue probably due to an increase in the concentration

of fatty tissue in the interior of the muscle. It is often caused by a sedentary lifestyle.

We subjected our model of muscular contraction to several simulations using the state of

reference and several values of muscle tissue density obtained previously in [82].

It is generally agreed that the average density of live tissue is near of 1.05e−5MPa/mm[2

[67]. When we measured maximum strain in the fascia transversalis, we observed that the strain

to which the fascia (figure 4.11) is subjected at the time of maximum contraction decreases as

density increases. The stress borne of the fascia therefore also decreases as density increases.

4.6.4 Variation in the Coefficient of Incompressibility

The Poisson ratio ν is an elastic constant that measures the narrowing of a section of a prism of

a linear isotropic elastic material when this stretches longitudinally and contracts in directions

perpendicular to the stretching.
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Figure 4.18: Graph of the maximum strain in the fascia in vertical axis. In the horizontal axis, we have

values of the module of density in gr/mm3.

It is generally agreed that muscular tissue is incompressible so, as several studies have shown,

the Poisson ratio should be around 0.5. Specifically, as [68] indicates, the reference values are

roughly these [10] for healthy muscular tissue. For several reasons, however, variations in this

value are common and, in agreement with the bibliography, we used values between 0.42 and

0.49. Figure 4.19 shows the results of our simulations.

When we measured maximum strain in the fascia transversalis (figure 4.11), we observed that

the strain at the time of maximum contraction increases as the Poisson ratio decreases (4.19).

The maximum stress borne of the fascia therefore decreases as the Poisson ratio increases.

Figure 4.19: Graph of the maximum strain in the fascia in vertical axis. In the horizontal axis, we have

various values for Poisson’s coefficient.

4.6.5 Variation in Intraabdominal pressure

In normal conditions the pressure in the abdominal cavity (PIA) is equal to atmospheric pressure

(i.e. 0) and may be even lower in newborns diagnosed with congenital diaphragmatic hernias,

though transitory increases may occur physiologically due to respiratory movements, coughing,

sneezing, defecation, etc. or progressively due to pregnancy, peritoneal dialysis treatment or the

presence of ascitis. Intraabdominal hypertension is defined as an increase in pressure above 10
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mmHg (approx. 0.00133 Mpa) inside the abdominal cavity in a state of rest.

Using the reference values obtained in [66], [31], [59] and the previously described pressure

model, we conducted several simulations at several values of intraabdominal pressure. Pressure

was highest in the centre of the muscle and tended to diminish towards the sides. Our results are

Figure 4.20: Graph of the maximum strain in the fascia in vertical axis. In the horizontal axis (in MPa.

), we have various values for the intraabdominal pressure.

agree with those of [7] and [55], which established a direct relationship between intraabdominal

pressure and the origin of hernias, since an increase in the strain borne by the fascia transversalis

makes it more likely that the fascia will tear.

4.6.6 Effects of Gravity

So far in this study, we have conducted simulations of free objects in space without considering

the effects of gravity. In this Section we have added the effects of the force of gravity described

in subsection 3.2.5 to the reference simulation of the previous chapter.

We observed no qualitatively significant differences due to the effect of gravity. The maximum

strain borne by the fascia 0, 0002526 is higher than when its weight is not considered 0, 0002355

but not by so much.

As including gravity does not lead to any major change, we will use the former result to

continue our qualitative (not quantitative) study of the stresses and strains borne by the tissue

in this region since it will enable us to compare with the previous results more easily.
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(a) Scheme of fascia trasversalis without gravity (b) Scheme of fascia trasversalis with gravity

Figure 4.21: Plot of the strains for the fascia with gravity and without gravity

4.7 Study of Geometrical Parameters

In this section we will study the variation effect of the muscular position in the maximum strain

values on the fascia transversalis.

4.7.1 Variation in Muscular Mass

It is generally agreed that a relationship exists between muscular mass and the force developed

by this mass in the longitudinal direction in which the muscle fibres are arranged. We can say,

therefore (though this is not an aim of the study), that in the model used the increase in mass

leads to an increase in the force developed at the ends.

Figure 4.22: Scheme of variation in muscular mass for the internal oblique muscle.

In our study, however, we have varied the muscular mass in the direction orthogonal to the

fibre (in figure 4.22). In this way we have varied the volume but not the length. After subjecting
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the resulting models to muscular contraction, we measured the maximum strain on the fascia

transversalis at the time of maximum contraction. Figure 4.23 shows that strain is maximal

when the muscular mass is lowest.

Figure 4.23: Graph of the strain of the fascia. In the horizontal axis they find diverse values of the

muscular mass in %, in the vertical one we have the values of strain.

This observation coincides with those of A. Keith [41] and C. Ogilvie [57], who demonstrated

that individuals whose abdominal fibromuscular wall in the inguinal region is weaker have a

greater propensity to develop inguinal hernias.

4.7.2 Variation in the Extension of the Muscular Tissue

Each muscle contains one part with muscle tissue (dynamically active) and one part with tendi-

nous tissue (dynamically passive). How these parts are distributed depends on both the muscle

and the individual in question. In this section we study how different proportions of tendinous

tissue affect the internal oblique muscle and the area of the Hessert triangle covered by the fascia

transversalis.

Figure 4.24: Scheme of the insertion of muscular tissue in the tendinous tissue. Usually, we find this

insertion around 60 mm. from the muscle origin. The Hessert’s triangle in red.
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The study by Munhequete [54] showed that the average length of the origin of the lower

fibres of the internal oblique muscle from the pubic tubercle is about 60 mm. In some cases the

tendon can reach 90 mm and cover the whole triangle. In other cases it can be just 10 mm long.

Figure 4.25: Graph of the maximum strain in the fascia in vertical axis. In the horizontal axis (in mm.

), we have various values for the length of the tendinous tissue.

Experimental data in this area are inconclusive but it seems to be a direct relationship be-

tween the extension of the tendinous tissue and the origin of hernias. The study by Munhequete

suggested a possible relationship between the length of tendinous tissue and the propensity to

suffer hernias. The study by M.L. Ajmani and K. Ajmani [4] established a direct relationship

between the origin of hernias and the distance from the origin of muscle fibres in the internal

oblique muscle. Our results therefore coincide with the results of these studies.

4.7.3 Variation in the Area of the Hessert Triangle

The area of the Hessert triangle has been studied in detail in [54], which showed that the size

of the triangle depends on each individual.

Several studies ([1], [29]) have directly related the size of the Hessert triangle with the risk

of suffering a hernia. [29], for example, showed that there is a great risk of hernia when the

triangle is over 150 mm long.

In our model, however, we found no significant differences due solely to variations in the size

of this area. We did find significant differences that can be attributed to conditions related to

movement in the Hessert triangle (e.g. changes in the length of tendinous and muscle tissues),

but we cannot state that these are due exclusively to the size of the triangle.
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4.7.4 Variation in the Position of the Muscle in Space

Given such diversity in individuals, we now consider variation in the relative positions of the

elements of the lower abdomen by performing two different movements in the internal oblique

muscle. In accordance with human anatomy, we consider that the interior of this muscle is fixed

because this is where the pubic tubercle is located. We then perform two turns with their centres

located in the pubic tubercle 4.26. The first of these turns is from the front to the back and the

second is from left to right.

(a) Turn in longitudinal angle (b) Turn in transversal angle

Figure 4.26: Two angular variations for the muscular position.

To analyse these variations we will consider the same model as in the previous cases except

that now we will also consider gravity.

Variation in the Longitudinal Angle

With the centre in the pubic tubercle and with the turning axis parallel to the Y axis, we

performed several simulations with turning angles ranging from −10 to +10 degrees. At the

time of maximum contraction, we measured the greatest strain in the fascia transversalis.

The negative angle indicates a more vertical position of the muscle, while the positive angle

indicates a more horizontal position. We observed that the most horizontal position produced

the greatest strain on the fascia.
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Figure 4.27: Graph of the maximum strain in the fascia in vertical axis. In the horizontal axis (in mm.

), we have various values for the length of the tendinous tissue.

Variation in the Transversal Angle

With the centre in the pubic tubercle and with the turning axis parallel to the X axis, we

performed several simulations with turning angles ranging from −10 to +10 degrees. At the

time of maximum contraction, we measured the greatest strain in the fascia transversalis.

Figure 4.28: Graph of the maximum strain in the fascia in vertical axis. In the horizontal axis (in mm.

), we have various values for the length of the tendinous tissue.

The negative angle indicates a turn to the left (see figure 4.26), while the positive angle

indicates a turn to the right. We observed that in this case changing the angle produced no

significant differences in the values of maximum strain borne of the fascia.

4.7.5 Variation in the Angle of Insertion

The convergence in the pubic tubercle of the medial insertion of the lower fibres of the internal

oblique muscle and the inguinal ligament forms an angle usually of around 22 degrees. This angle

is called the angle of insertion between the internal oblique muscle and the inguinal ligament. It
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reflects a greater or lesser extension of the area of inguinal space for the same length of inguinal

ligament.

Figure 4.29: Plot of alpha angle (in red) between the internal muscle and the inguinal ligament.

In agreement with [54], though variations in this angle do not produce statistically significant

differences between races or sexes, we found this angle to be greater in individuals with hernias.

Figure 4.30: Graph of the maximum strain in the fascia in vertical axis. In the horizontal axis, we have

various values for the angle.

We also found that this angle had a direct effect on the risk of hernias since the greatest

values of strain on the fascia transversalis were recorded in simulations with the largest angle.

4.8 Conclusions

In this chapter, it has been studied the mechanical behavior of the inguinal region. The first aim

has been proof of the certainty of the dynamic elements described by A.Keith. For the usual

conditions for the simulation of the muscular contraction, we can corroborate the certainty of

the shutter mechanism and of the closing of the inguinal deep ring. These two mechanisms have

been accepted commonly by the medical community, as mechanisms of defense for the genesis
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of inguinal hernias. In spite of this, the obtained results seem to show that these mechanisms

are of defense in case of healthy tissue, but it not clear for the case that some pathologies that

could appear.

In this Chapter, we have also studied the various parameters that plays a role physically or

chemically in our model in order to better understand the dynamic behaviour of the region and,

more specifically, that of the fascia transversalis.

We observed that several parameters, such as density and Young’s modulus, have an impor-

tant role in the dynamics of the region. We also verified that the period of muscular contraction

has a direct effect on the strain borne by the fascia transversalis. This result has been confirmed

empirically in cases of individuals with hernias.

We found that our model was consistent with these studies and we confirmed our hypotheses,

thus validating our model as a tool for indirectly measuring the real dynamics of the region,

especially regarding intraabdominal pressure and the distribution of tendinous tissue in the

internal oblique muscle. For a more specific study of the region’s mechanical characteristics,

however, greater knowledge of the properties of the materials in the region and a more concrete

model are needed.

Unfortunately few studies have analysed sufficient physical and chemical properties with real

patients. Although a certain risk has been detected in the origin of hernias, with real increases

in stress and strain in the weakest element of the region, we are unable to conduct a more

detailed study. Despite the lack of data both on healthy individuals and on the physicochemical

properties of individuals who develop hernias, however, we have established a direct relationship

between our results and reality. This enables us to suggest possible risk factors in the origin of

hernias.



Chapter 5

Non Linear Problem

All the previous considerations are in the range of small deformations, in this case we can assume

lineal relations for all deformations in the body. In this chapter we are going to assume big

deformations in the process. We need to distinguish between the reference configuration, where

we fixe the initial position for the body and the deformed configuration, the configuration for

each instant. Therefore, to study the relation describing the behavior for the solid deformations,

we are going to use the reference configuration and also the deformed configuration.

Now, these stresses result from the deformation of the material, and it is necessary to express

them in terms of some measure of this deformation such us, for instance the strain. These

relationships, known as constitutive equations, obviously depend on the type of material under

consideration and may be dependent or independent of time.

In this chapter the constitutive equations will be established in the context of a hyperelastic

material, whereby stresses are derived from a stored elastic energy function. Although there

are number of alternative material descriptions that could be introduced , hyperelasticity is a

particularly convenient constitutive equation. In the Appendix C, we can see the usual notation

for the non linear problem in biological tissues following the indications of [32]

5.1 Hyperelasticity

Materials for which the constitutive behavior is only a function of the current state of deformation

are generally known as elastic. Here, X ∈ R
3 designates the position of a particle in the reference

configuration Ω. All tensor quantities are written in Cartesian systems throughout this chapter.

Whenever indicial notation is employed, lower-case letters refer to the deformed configuration

77
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and upper case to the reference configuration. The deformed and reference configurations are

related by:

ϕ(X) = X + u(X)

Under such conditions, any stress measure at a particle X is a function of the current

deformation gradient F associated with a particle and u is the displacement.

F :=
∂ϕ

∂X

Further, let

J := detF =
ρ0

ρ

be the jacobian of the deformation, ρ0 is the density in the reference state and ρ is the density

in the actuality. For a volume-preserving deformation, J = 1. The right and left Cauchy-Green

deformation tensors are, respectively,

C := F
T
F and B := FF

T

The deformation gradient F , together with the conjugate first Piola-Kirchhoff stress measure

tensor P, will be retained in order to define the basic material relationships. Consequently,

elasticity can be expressed as,

P = P(F(X),X)

where the direct dependency upon X allows for the possible inhomogeneity of the material.

In the special case when the work done by the stresses during a deformation process only on

the initial state at time t0 and the final configuration at time t, the behavior of the material is said

to be path-independent and the material is termed hyperelastic. As a consequence of the path-

independent behavior and recalling from (Principle of virtual work) that P is work conjugate

with the rate deformation gradient Ḟ, a stored strain energy function or elastic potential Ψ per

unit undeformed volume can be established as the work done by the stresses from the initial to

the current position as,
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Ψ(F(X),X) =

∫ t

t0

P(F(X),X) : Ḟdt; Ψ̇ = P : Ḟ (5.1)

Presuming that from physical experiments it is possible to construct the function Ψ(F,X),

which defines a given material, then the rate of change of the potential can be alternatively

expressed as,

Ψ̇ =
3

∑

i,j=1

∂Ψ

∂Fi,j
Ḟij

Comparing this with equation 5.1 reveals that the components of the two-point tensor P

are,

Pi,j =
∂Ψ

∂Fi,j

For notational convenience this expression is rewritten in a more compact form as,

P(F(X),X) =
∂Ψ(F(X),X)

∂F
(5.2)

Equation 5.2 followed by equation 5.1 is often used as a definition of a hyperelastic material

([32],[81] and [74]). The general constitutive equation 5.2 can be further developed by recalling

the restrictions imposed by objectivity as discussed in [32].

To this end,Ψ a must remain invariant when the current configuration undergoes a rigid

body rotation. This implies that Ψ a depends on F only via the stretch component U and is

independent of the rotation component R. For convenience, however,Ψ a is often expressed as

a function of C = U
2 = F

T
F as,

Ψ(F(X),X) = Ψ(C(X),X)

Observing that 1
2
Ċ = Ė is work conjugate to the second Piola.Kirchhoff stress S, enables a

totally Lagrangian constitutive equation to be constructed in the same manner as equation 5.2

to give,

Ψ̇ =
∂Ψ

∂C
: Ċ =

1

2
S : Ċ; S(C(X),X) = 2

∂Ψ

∂C
=

∂Ψ

∂E
(5.3)
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5.1.1 The Lagrangian Elasticity Tensor

The relationship between S and C or E = 1
2
(C − I), given by equation 5.3 will invariably

be nonlinear. Within the framework of a solution process, this relationship will need to be

linearized with respect to an increment u in the current configuration. Using the chain rule, a

linear relationship between the directional derivative of S and the linearized strain DE[u] can

be obtained, initially in a component form as,

DSIJ [u] =
d

dǫ
|ǫ=0SIJ(EKL[φ + ǫu]) =

=
3

∑

K,L=1

∂SIJ

∂EKL

d

dǫ
|ǫ=0EKL[φ + ǫu]

3
∑

K,L=1

∂SIJ

∂EKL
DEKL[u]

This relationship between the directional derivatives of S and E is more concisely expressed

as,

DS[u] = C : DE[u] (5.4)

where the symmetric fourth-order tensor C, known as the Lagrangian or material elasticity

tensor, is defined by the partial derivatives as,

C =

3
∑

I,J,K,L=1

CIJKLEI ⊗ EJ ⊗ EK ⊗ EL

CIJKL =
∂SIJ

∂EKL
=

4∂2Ψ

∂CIJ∂CKL
= CKLIJ

For convenience these expressions are often abbreviated as,

C =
∂S

∂E
= 2

∂S

∂C
=

4∂Ψ

∂C∂C
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5.1.2 The Eulerian Elasticity Tensor

It would now be pertinent to attempt to find a spatial equivalent to equation 5.4, and it would be

tempting to suppose that this would involve a relationship between the linearized Cauchy stress

and the linearized Almansi strain. Although, in principle, this can be achieved, the resulting

expression is intractable. An easier route is to interpret equation 5.4 in a rate form and apply

the push forward operation to the resulting equation. This is achieved by linearizing S and E

in the direction of v, rather than u.

Recalling that DS[v] = Ṡ and DE[v] = Ė gives,

Ṡ = C : Ė (5.5)

Because the push forward of Ṡ as well known to be the Truesdell rate of the Kirchhoff stress

τ0 = Jσ0 and the push forward of Ė is d, namely, it is now possible to obtain the spatial

equivalent of the material linearized constitutive equation 5.5 as,

σ0 = c : d (5.6)

where c,the Eulerian or spatial elasticity tensor, is defined as the Piola push forward of C
and after some careful indicial manipulations can be obtained as,

c = J−1φ∗[C]; c =
3

∑

i,j,k,l=1;I,J,K,L=1

J−1FiIFjJFkKFlLCIJKLei ⊗ ej ⊗ ek ⊗ el

Often, equation 5.6 is used, together with convenient coefficients in c , as the fundamental

constitutive equation that defines the material behavior. Use of such an approach will, in general,

not guarantee hyperelastic behavior, and therefore the stresses cannot be obtained directly from

an elastic potential. In such cases, the rate equation has to be integrated in time, and this can

cause substantial difficulties in a finite element analysis because of problems associated with

objectivity over a finite time increment.

5.2 Transverse Isotropy

There are two approaches to introducing the directional dependence on the deformation into the

strain energy: restrict the way in which the strain energy can depend on the deformation, or
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introduce a vector representing the material preferred direction explicitly into the strain energy.

In the former approach, the strain energy can be expressed as a function of the Lagrange strain

components in a coordinate system aligned with the fiber direction. Thus, all computations

must be performed in this local coordinate system. In the presentation that follows, we choose

the second approach.

We introduce a unit vector field a
0 in the undeformed configuration that describes the local

fiber direction, and require that the strain energy depend on this vector. In this case, the strain

energy can be expressed as a function of the right Cauchy-Green deformation tensor and the

vector field defining the preferred direction. Further, the strain energy now becomes an isotropic

function in both arguments. Smith and Rivlin [72] developed a representation theorem for this

case and Spencer [73] has presented relations for the strain energy at a material point in terms

of five scalar quantities (invariants) derived from the tensor and vector fields. In the field of

biomechanics, this type of representation has been used to model the material behavior with a

fiber direction.

When the material undergoes deformation, the vector field a0(X) will deform with the body.

After deformation the fibre direction may be described by a unit vector field a(ϕ(X)). In general

the fibers will also undergo length change. The fiber stretch, λ, can be determined in terms of

the deformation gradient, F and the fiber direction in the undeformed direction,

λa = Fa
0

Also, since a is a unit vector,

λ2
aa = a

0
F

0
Fa

0 = a
0
Ca

0

This determines the fiber stretch in terms of the deformation gradient and the fiber direction

in the undeformed configuration. A material with the above symmetry is called transversely

isotropic. If it is hyperelastic as well, the form of Ψ̃ must be such that at a point X a function

in terms of X, C and a
0.

The dependence of the strain energy on a
0 can be introduced explicitly into Ψ̃. This implies

that the relationship between Ψ̃ and C = F T F can’t be independent of the material axes chosen

and, consequently, Ψ̃ is a function of the invariants of C and the fibre direction. Spencer has

show that the following set of invariants can be used to fully define the relations,

Ψ̃(C, X,a0) = Ψ(X, I1(C), I2(C), I3(C), I4(C,a0), I5(C,a0)) (5.7)
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where the invariants of C are defined here as,

I1(C) = trC; I2(C) =
1

2
[(trC)2 − trC2]; I3(C) = detC = J2

I4(C,a0) = a
0
Ca

0; I5(C,a0) = a
0
C

2
a

0

Here, I1, I2 and I3 are the standard invariants of the Cauchy-Green deformation tensor

and the complete set of invariants associated with isotropic material behavior. The invariants I4

and I5 arise directly from the anisotropy introduced by reinforcing fiber family. These invariants

represent contributions to the strain energy from the properties of the fibers and their interaction

with other material constituents; I4, for instance, is the square of the stretch along the fiber

direction.

With the form 5.7 chosen for the strain energy, the satisfaction of material frame indifference

and the material symmetry restrictions for transverse isotropy are assured. This relation is the

starting point for deriving the stress and elasticity tensors and also provides the basis for the

constitutive model.

5.2.1 Approach the Stress Tensor

Our interest is in developing a robust computational representation of transversely isotropic

hyperelastic for an finite element code. The formulation is based upon a linearization about the

current configuration, so we require expressions for both the Cauchy stress and spatial version

of the 2nd elasticity tensor. This section provide explicit expressions for these tensor in a form

suitable for numerical implementation of the corresponding constitutive behavior.

For a hyperelastic material, the 2nd Piola-Kirchhoff stress is derived from the strain energy

as

S = 2
∂Ψ

∂C

Using 5.7, we can express S as

S = 2

(

5
∑

i=1

∂Ψ

∂Ii

∂Ii

∂C

)
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The terms ∂Ii/∂C can be computed as,

∂I1

∂C
= 1;

∂I2

∂C
= I11 − C;

∂I3

∂C
= I21 − I1C + C

2 = I3C
−1

∂I4

∂C
= a

0 ⊗ a
0;

∂I5

∂C
= a

0 ⊗ C · a0 + a
0 · C ⊗ a

0;

where 1 represents the identity tensor.

If the material is incompressible, I3 = J2 = 1, Ψ is a function of only I1, I2, I4 and I5;

however, an unknown pressure p enters the stress as reaction to the kinematic constraint on the

deformation field. In this case, the 2nd Piola-Kirchhoff stress for an incompressible, transversely

isotropic hyperelastic material can be written as

S = 2{(Ψ1 + I1Ψ2)1 − Ψ2C + Ψ4a
0 ⊗ a

0 + Ψ5(a
0 ⊗ C · a0 + a

0 · C ⊗ a
0)} + pJC

−1

The Cauchy stress is the push-forward of S by the deformation ϕ

σ =
1

J
ϕ∗(S) ⇔ σij =

1

J
FiIFjJSIJ

= 2{(Ψ1 + I1Ψ2)B − Ψ2B
2 + I4Ψ4a

0 ⊗ a
0 + I4Ψ5(a

0 ⊗ B · a0 + a
0 · B ⊗ a

0)} + p1

With, the notation Ψa = ∂Ψ/∂Ia. Note that both S and σ are symmetric and the term in p

is the hydrostatic pressure.

5.3 A particular Ψ for Muscular Tissue

Biological soft tissues are anisotropic, viscoelastic, inhomogeneous and undergo large deforma-

tions. However, the constitutive behavior of many tissues is relatively insensitive to strain over

several decades of variation [25]. Also, these tissues reach a preconditioned state after repeated

loadings; the loading and unloading cycles of the material are then repeatable and there is a

minimal amount of hysteresis. There is also a minimal amount of the relaxation-creep and the

peak stress during cyclic loading no longer decreases with time. These pseudoelastic tissues can

then modeled using a hyperelastic approach. Hyperelasticity provides an ideal framework for

numerical modeling of pseudoelastic soft tissue structures because it allows for large deforma-

tions and anisotropy. With a finite element approach, inhomogeneities can be modeled if data



5.3. A PARTICULAR Ψ FOR MUSCULAR TISSUE 85

are available. These models can be easily modified to extend their applicability to viscoelasticity

and damage mechanichs.

Many soft tissues, as the muscles, are composed of fibers that run parallel to predominant

axis of loading in vivo. These tissues also contain elastin, proteoglycans, glycolipids, water

and fobroblasts (cells). All the tissue components together, are referred to as ground substance

matrix. The water comprises between 60 and 70 % of the total weight of tissues such as ligaments

and tendons, but it appears to be tightly bound to the matrix as it is difficult exude any

significant amount compressive pressure. The microstructural organization of the constituents

in these soft tissues yields mechanical characteristics that are crucial to physiological function.

The overall response of the tissue to applied loads ans/or deformation is directly a result of the

mechanical response of and interaction between its constituent materials.

5.3.1 The Energy

For the purposes of this model, the elastic response of the tissue will be assumed to arise from

the resistance of the fiber family, the ground substance matrix, and their interaction. Further, it

is assumed that the fibers are responsible for the transversely isotropic symmetry and that the

ground substance, or matrix, is isotropic. Within the framework of incompressible, transversely

isotropic hyperelasticity, the strain energy can be written as

Ψ = F1(I1, I2) + F2(I4) + F3(I1, I2, I4) (5.8)

where I1, I2 and I4 are the invariants of the right Cauchy-Green deformation tensor. The

function F1 represents the material response of the isotropic ground substance matrix, F2 rep-

resents the contribution from the fiber family, and F3 is the interaction between the fibers and

matrix.

The dependence of Ψ on I4, can easily be replaced by an equivalent dependence on the

stretch along the fiber direction, λ. This makes it somewhat easier to fit experimental data

function. The dependence on I3 has been omitted because of the incompressibility constraint

(J =
√

I3 = 1). The dependence on I5 has been omitted as well, as many of the effects governed

by I5 can be introduced into the function through the derivatives of the strain energy with

respect to I4.

The form 5.8 generalizes many constitutive equations that have been successfully used in the

past to describe biological tissues ([15],[35],[36]). While this relation represents a large simpli-

fication when compared to the general case, it also embodies almost all the material behavior

that one would expect from transversely isotropic, large-deformation matrix-fiber composites.
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The Moonley-Rivlin material [53] offers an example of a form that can be used to describe

the ground substance matrix:

F1 =
C1

2
(I1 − 3) +

C2

2
(I2 − 3)

where the constants C1 and C2 are to be determined from experimental tests. If the constant

C2 is zero, then the resulting model is the neo-Hookean material. For many biological tissues,

an exponential function may be appropriate for F2 [26].

The function F3 controls the interaction between the fiber family and the ground substance

matrix. This can take several forms. Stretch along the fiber direction could cause stress to

develop in the matrix, or vice versa. It is more likely that such an interaction would take

the form of a shear coupling. Because shear testing is required to determine such effects, the

experimental aspects are difficult. The applicability of 5.8 to the modeling of tissue has been

determined by experiment.

A similar form to 5.8 is used to define the deviatoric strain energy, but instead of the strain

energy being a function of the invariants, they are functions of their debiatoric counterparts,

defined in terms of C̃ = J3/2
C:

Ĩ1 = trC̃ = J−2/3trC

Ĩ2 =
1

2
((trC̃)2 − trC̃2) = J−4/3((trC)2 − trC2)

Ĩ4 = a
0 · C̃ · a0 = J−2/3

a
0 · C · a0

Clearly, for an incompressible material, these invariants are equivalent to their counterparts

defined. Now the strain energy is extended to the compressible range and is assumed to take an

uncoupled from as defined by:

Ψ = Ψ̃(C̃) = F̃1(Ĩ1, Ĩ2) + F̃2(Ĩ4) + F̃3(Ĩ1, Ĩ2, Ĩ4)

With assumption, the stress can be written as,

S = 2J−2/3DEV

[

∂Ψ̃

∂C̃

]

The operator DEV [·] is the deviatoric projection operator for stress-like quantities in the

reference configuration:
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DEV [·] = [·] − 1

3
([·] : 1)1

and

∂Ψ̃

∂C̃
= (Ψ̃1 + Ψ̃2Ĩ1)1 − Ψ̃2C̃ + Ψ̃4a

0 ⊗ a
0

Now the 2nd Piola-Kirchhoff stress is given by:

S = 2J2/3{(Ψ̃1 + Ĩ1Ψ̃2)1 − Ψ̃2C̃ + Ψ̃4a
0 ⊗ a

0 − 1

3
(Ψ̃1Ĩ1 + 2Ψ̃2Ĩ2 + Ψ̃4Ĩ4)1}

5.4 The Model

Finally, we are going to purpose a model with a nonlinear behavior. Thus, as the same way used

in [69] we have the following 2nd Piola-Kirchhoff stress tensor:

S = Ss + Sh

where Ss is the part of the strain energy for an hyperelastic material and Sh is the linear

stress of the J.Bestel model. Sh is well known for us, we have presented in the past chapters.

Ss is defined by the strain energy and only have repercussion in non lineal terms. S is included

following the indications in [86].

To define an accurate energy function to obtain Ss, we use the literature that exists in this

sense [5] [32] [34] [60] [61], we need to define some functions F1, F2 and F3 for our purpose.

First, we are going to use a function F1 as is defined for a Moonley-Rivlin material. Second, to

ensure that the stress update and tangent stiffness were properly implemented into the existing

code, numerical tests are performed. Finally, the extension of the Mooney-Rivlin model used

for the our tests:

Ψ̃(Ĩ1, Ĩ2, Ĩ4) = C1(Ĩ1 − 3) + C2(Ĩ2 − 3) + C3(exp(Ĩ4 − 1) − Ĩ4)

This form has exponential behavior in the fiber direction, one of the characteristics seen in

most soft tissues. For our reference simulation, we have taken usual values of parameter for alive

tissue and more explicitly for the muscular tissue in the Mooney-Rivlin model([6], [74]). In this
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sense, in the fiber direction we use the value λ = 1.05, and for the other constants we take the

common values for alive tissue C1 = 1.5, C2 = 0. and C3 = 0.2.

5.5 Results

To do the simulation in our model we have used the same initial values that we have used in

the previous chapters 7 and 8. We want to evaluate the difference between the elastic model

and the hyperelastic model, so that we put the same initial conditions for the model and for the

contour conditions. With this assumption, we will do a muscular contraction in our model and

we have observed the same parameters that in the previous chapters.

The first observation is the same values for the strains and stresses in the elastic model and

hyperelastic model (figure 5.1) for the extreme values. We can see a bit difference with the values

in the recuperation phase, with the different curves of stresses. In any case, we have the same

values for the maximal values, so that we can assume the same effect in the fascia transversalis

in the moment of maximal contraction.

(a) Strain (b) Stress in MPa.

Figure 5.1: Plots of strains and stresses for the elastic model (in black) and hyperelastic model

(in red) for the same fibre.

In figures 5.3 and 5.4 we can observe some sequences of stresses with similar values of the

elastic case, in figure 5.2 we can see the equivalent sequence than in the elastic case.

5.6 Conclusions

The obtained results show that the simulation in the non linear case is very similar to the linear

case. This fact, allows to think that the conclusions (for the studied parameters) in the linear

case will be the same in the non linear case, and for an initial study the linear case is sufficient.
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In any case, the non linear model, allows to do a more accurate qualitative study and a first

approximation to the quantitative study because we are using the most accepted model for alive

tissue. In spite of this, we want to remark the non existence of accurate models for muscular

tissue, so that the parameters used in our model are generic and we can’t establish in absolute

sense the real behavior of the area. In the future, we need to do some work to explore the

parameters to the real values of the tissues in the area.
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(a) t=0.00 sec. (b) t=0.03 sec. (c) t=0.06 sec. (d) t=0.09 sec.

(e) t=0.12 sec. (f) t=0.15 sec. (g) t=0.18 sec. (h) t=0.21 sec.

(i) t=0.24 sec. (j) t=0.27 sec. (k) t=0.30 sec. (l) t=0.33 sec.

(m) t=0.36 sec. (n) t=0.39 sec. (o) t=0.42 sec. (p) t=0.45 sec.

(q) t=0.48 sec. (r) t=0.51 sec. (s) t=0.54 sec. (t) t=0.57 sec.

(u) t=0.60 sec. (v) t=0.63 sec. (w) t=0.66 sec. (x) t=0.7 sec.

Figure 5.2: Sequence of strain variation in the fascia transversalis in 0.7 sec.
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(a) t=0.00 sec. (b) t=0.03 sec. (c) t=0.06 sec. (d) t=0.09 sec.

(e) t=0.12 sec. (f) t=0.15 sec. (g) t=0.18 sec. (h) t=0.21 sec.

(i) t=0.24 sec. (j) t=0.27 sec. (k) t=0.30 sec. (l) t=0.33 sec.

(m) t=0.36 sec. (n) t=0.39 sec. (o) t=0.42 sec. (p) t=0.45 sec.

(q) t=0.48 sec. (r) t=0.51 sec. (s) t=0.54 sec. (t) t=0.57 sec.

(u) t=0.60 sec. (v) t=0.63 sec. (w) t=0.66 sec. (x) t=0.7 sec.

Figure 5.3: Sequence of stress variation in the fascia transversalis in 0.7 sec.
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(a) t=0.00 sec. (b) t=0.03 sec. (c) t=0.06 sec. (d) t=0.09

sec.

(e) t=0.12 sec.

(f) t=0.15 sec. (g) t=0.18 sec. (h) t=0.21 sec. (i) t=0.24 sec. (j) t=0.27 sec.

(k) t=0.30 sec. (l) t=0.33 sec. (m) t=0.36 sec. (n) t=0.39 sec. (o) t=0.42 sec.

(p) t=0.45 sec. (q) t=0.48 sec. (r) t=0.51 sec. (s) t=0.54 sec. (t) t=0.57 sec.

(u) t=0.60 sec (v) t=0.63 sec (w) t=0.66 sec (x) t=0.69 sec (y) t=0.72 sec

Figure 5.4: Sequence of stress variation in the internal oblique muscle in the area of the fascia transver-

salis in 0.7 sec.



Chapter 6

Conclusions and Future Works

6.1 Conclusions

We have analysed the genesis of inguinal hernias and completed a first approach for simulating

the dynamics of the inguinal region. From the ample data recorded in these simulations, we can

draw the following conclusions about the model, the simulations and the results.

6.1.1 Conclusions about the Model

It is important to have a correct and detailed model of the region in order to study its dynamics.

Using our model we were able to reproduce the structure and composition of the region. To

make further progress in this area we need to form a team of researchers that is large enough

to complete this information (the anatomic model, the mechanic properties and the specific

biological composition) and incorporate it into the model. Our results are valid partly thanks

to the precision and conditions of the model. After validating the muscular contraction model,

we need to complete the multitude of tissues that exist in the region. A model that is consistent

with reality is fundamental to giving our results real meaning.

Thanks to the work of Manuel López Cano et al [44], we were able to construct a real and

coherent model. All computational models must be able to reproduce real models in order to

validate their result. The more realistic the model is, the better the results will reflect the real

dynamics. Also essential is experimental knowledge of the region in order to establish the real

properties of the tissues. The work by Munhequete [54] in establishing and defining the physical

properties of the tissues has been fundamental.

93
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6.1.2 Conclusions about the Simulations

The simulations are the fundamental part of our study. On one hand we had to create a three-

dimensional unitary model for the simulations and on the other we had to propose an elastic or

hyperelastic model. We aimed to make the model “natural”, in agreement with existing models

for the theoretical muscular contraction and the properties of the simulated materials. We then

used this knowledge to move our simulations and our real model closer to the real dynamics of

the region.

Conclusions about the Simulation Model

Hill-Maxwell’s rheological model and the contribution by J. Bestel provided a rigorous model of

muscular contraction. Then, by choosing the unitary hexahedric element we easily reproduced

the structure of the muscle. Given the characteristics of the problem, the finite elements method

is the most natural one to use for this problem. Unfortunately, due to the particularities of the

model, i.e. the forces exercised were internal, we were unable to use the usual commercial

software for this method (ABAQUS, ANSYS, etc.) and had to develop our own code in C++

language. To our knowledge, this is the first muscular contraction model that incorporates the

properties of the muscles.

Conclusions about the Model and the Material

Essentially, we have simulated two types of materials (elastic and hyperelastic). In both cases we

used the normal methodology and observed no qualitative differences between the two models.

We did find quantitative differences but, because of their orders of magnitude, we are unable to

confirm that these were substantially different, considering the integration step we used.

We should also stress the importance of correctly adjusting the values of the parameters

in the two models (aided by the literature), since these simulations are highly sensitive to the

conditions imposed.

6.1.3 Conclusions about the Results

Our results with these simulations are qualitatively coherent with those in the literature. The

main physical properties of the region are verified and their dynamics are as we expected. We

can say that this is the first real dynamic model of the human inguinal region.
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Using this model we conducted an itemized study of various physical and chemical aspects,

thus contributing to knowledge on the region and its diverse phenomena.

We constructed the dynamic model with the dynamics of the most correct one-dimensional

model of muscular contraction, presented for heart contraction by J. Bestel and M. Sermesant.

We used this in our study of the musculature of the abdominal wall. Our results are therefore

the first for the actual dynamics of the region and muscular contraction in general.

Our main conclusions are:

• the shutter mechanism occurs as A. Keith stated in 1923 and occurs in the Hessert triangle;

• the sphincter mechanism of the inguinal ring occurs as predicted by W. J. Lytle in 1945;

• these are not just defence mechanisms: they can also cause hernias in individuals with

unhealthy tissues;

• diverse geometric, physical or chemical alterations have several repercussions that have

been predicted but until now have not been quantified.

6.2 Future works

We can say that this study, which is just the first approach towards our initial objective, has

opened up more questions than it has solved. Muscle simulation has been the object of few

scientific contributions, so a correct model of muscular contraction will provide greater knowledge

about medical conditions caused by shortcomings in the muscular tissue or in tissues affected

by the muscles.

There are several aspects in which further effort is needed. These include computation,

modeling, and interaction with other elements.

6.2.1 About the Model

One of our future objectives is to model the whole abdominal wall, including all the active and

passive elements, in order to conduct a combined study of their dynamics. We also intend to

study how the various elements interact and how this affects the region.

Once we have modeled the whole abdominal wall, it will be relatively simple to study the

appearance of hernias and other eventrations in different regions.



96 CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

We also need to complete the current model with all the small structures (tissues, fat accu-

mulations, bowels, etc.). Although these probably do not have a direct effect on the dynamics,

a complete model will enable us to get closer to the real model.

It is also important for future research to incorporate dynamic models of the diffusion of

calcium inside the muscular tissue. Calcium plays a fundamental role in muscular contraction,

so a correct model of its distribution inside the muscle at each moment would enable us to better

reproduce contraction.

We will need to incorporate into the code an automatic grid algorithm to provide structured

grids simply and with good properties for conducting their simulation. We need to study the

future incorporation of non-structured meshes and their generation algorithms (the Delaunay

method or the Advancing Front method) because the irregular geometry of the muscles can lead

to this type of non-structured meshes.

6.2.2 About the Simulations

To obtain an operative code we will need to parallelize the original code in order to substantially

improve calculation time and approach real-time simulations. This would help to incorporate

the code into a future surgical simulator.

We will also consider changing the unitary three-dimensional elements of the hexahedron

with 8 nodes to a hexahedron with 16 nodes because the latter have quadratic precision for

calculating the solution. A rigorous study of the previous code is needed because the calculation

time will be greatly affected.

We also need to consider interacting this code with existing commercial software in order to

obtain greater flexibility when modifying the simulations, especially for the dynamically passive

elements. We will then be able to study the real effect of these elements on the real dynamics,

and their variations, with greater precision.

6.2.3 About the Material

We also intend to develop a hyperelastic model of muscular tissue that reflects the wide range

of pathologies found in individuals. This would enable us to evaluate the risk of a hernia more

correctly since we would have a more correct model for each muscle. However, we need to

establish contact with a laboratory that will allow us to read the various physical parameters

of the muscles. Recording these values and their variability under different conditions would

enable us to obtain the correct parameters for the various realities.
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Also, we need to incorporate recent research on the extracellular matrix in live tissue (par-

ticularly muscular tissue) in order to reproduce microscopic properties of the tissue that are

consistent with the actual properties.

6.2.4 About Future Applications

First we must ask several questions that remain unanswered in the field of biomechanics. We

need to study interaction with passive external elements (e.g. surgical meshes), the behaviour of

these elements and their mechanical requirements. We need to study current surgical techniques

in order to determine how they work and what risk they present for future pathologies.

Nevertheless, we now have a dynamic model of muscular contraction. In the future, we

will be able to evaluate the risk of several pathologies by measuring the properties of a certain

muscular mass and use the model for treating certain patients.

We will be able to conduct biomechanical studies of static elements more accurately and

determine which real elements of protection we need to incorporate (e.g. if we can determine

the real function of the back muscles at moments of strong impact, we can know the protection

mechanisms against fundamental injuries in accidents).

All these questions can be answered by applying the muscular contraction model described in

this study and incorporating real information about the biomechanical properties of the muscles

involved.
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Appendix A

One Dimensional Resolution

At this point, we have already defined the system of the equations that govern the dynamics of every

muscle as one dimensional element, his resolution will give us variation of the position of several elements

with the time. After fixing this system, we must notice that we have a system with two ordinary

differential equations, on partial derivative equation and finally one linear equation. According to this,

we must do some considerations before his resolution:

• About the partial derivative equation. The partial derivative equation is the Lagrange equa-

tion with the non-zero independent term, which corresponds to a no conservative field (usually

used in classical mechanics). This equation computes the displacement that is modeled by the

usual resolution of a hyperbolic partial derivative equation:

[

Kk
]

uk +
[

Ck
]

·

u
k

+
[

Mk
]

··

u
k

= F k (A.1)

Where uk,
·

u
k

and
··

u
k

are the position vectors, velocity and acceleration of the variation in the

initial position for each element k. Thus we have for each instant time t the new position for each

point with the equation P (t) = P (0)+u(t). Moreover we consider the matrix
[

Kk
]

as the stiffness

matrix, the matrix
[

Mk
]

as the mass matrix (mass lumping) and
[

Ck
]

that is the dumping matrix.

These matrices will be considered for each time instant ts although they will not vary over time.

• About the integration of ordinary differential equations. To integrate the system of ordi-

nary differential equations, we are going to use the four order Runge-Kutta classic method.

• Determination of the size steep of integration. To determine the integration size steep

system, we are going to use the Courant criteria, this criteria fix a limit steep more sure for the

integration of the differential equation system, on having considered the material rigidity. For a

material with the muscular rigidity we obtain a integration steep near of ∆t < 10−5.
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A.1 Numeric Resolution for the one dimensional PDE

For the one dimensional elements with a node in each extreme, the linear matrices that we need to

calculate on solving the PDE are 2 × 2 matrices. There are a lot of literature about this theme [58][86],

although we are going to do a brief scheme of this calculation.

A.1.1 Computation the [Kk] Matrix and the [F k] Vector

To built the rigidity matrix for the three dimensional elements we need to use the Virtual Work Principle,

but in the one dimensional case we can built the matrix with a more intuitive idea with the material

resistance principle the strain function in each point of the element is equal to the enlargement of the

element. Then:

ε =
∆lk
lk

=
uk2 − uk1

lk

where uk2 and uk1 are the nodal displacements for the extreme elements for the element k, and lk is

the element. On the other hand, we have the relation between the stress σ and the strain ε with the

Hooke low σ = Eε where E is the Young’s module (material elasticity module). Now, we can integrate

by the section A, we compute the axle effort N which is translate to the adjacent elements. When we

assume that our material is homogeneous and isotropic, we have N = Aσ. Finally, we can establish the

equilibrium between the axil forces that we have at the extremes Rs1 and Rs2 then:

Rk2 = −Rk1 = N =

(

EA

lk

)

(

uk2 − uk1
)

=
k

lk

(

uk2 − uk1
)

thus we can write in matrix form as:

qk =

(

Rk1

Rk2

)

=
k

lk

(

1 −1

−1 1

)(

uk1

uk2

)

= Kkuk

where Kk is the rigidity matrix for an element, uk is the displacement vector and qk is the vector of the

forces in the knots. Now, we need to consider the elasticity and the section as uniform along the time,

so that the matrix can’t have variation over time.

When a force acts also evenly distributed per unit length and intensity, the previous equation trans-

forms acting equally on every node as:

qk =

(

Rk1

Rk2

)

=
k

lk

(

1 −1

−1 1

) (

uk1

uk2

)

− fk(t)lk
2

(

1

1

)

= Kkak − F k

where fk(t) a function time for the force. In our case, the resolution of the governing equations of

the fibre is done using the finite element method. So that, we are going to show how is transformed

the one dimensional differential equation to a lineal system of equations. Starting from the rheological

Hill-Maxwell’s model,

− d

dx

(

kp

dy

dx
+ σc

)

= 0

and the boundary conditions are,

y(0) = 0;

(

kp

dy

dx
+ σc

)

x=L

= q0
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In order to obtain the weak form, we are going to consider the linear element Ωk = [xA, xB ] in dimension

one, the weak form of the ponderable integration is
∫

xA

xB

(

dw

dx

(

kp

dy

dx
+ σc

))

−
[

w

(

kp

dy

dx
+ σc

)]xB

xA

= 0

We assume that all elements are one dimensional linear elements, the primary variables are yA = y(xA)

and yB = y(xB), and the secondary variables are QA and QB such as,

QA = −
(

kp

dy

dx
+ σc

)

x=xA

; QB =

(

kp

dy

dx
+ σc

)

x=xB

In the weak form of the variational form appear the secondary variables but not the boundary conditions

of the primary variables. These will be included in the approximation of the solution u(x) in the element

Ωk by an interpolation in the nodes. Using Lagrange interpolating polynomial Ψk
j (x) j = 1, 2.

Uk(x) =

2
∑

j=1

uk
j Ψk

j (x) = uk
1Ψk

1(x) + uk
2Ψk

2(x)

We are going to use the Rayleigh-Ritz method in which is applied the Galerkin variational method in

the weak form to obtain a system of n equations in the element Ωk. The approximation of the solution

is a lineal combination of the interpolation functions Ψk
j (x),

y(x) ≃ Uk(x) =
2

∑

j=1

uk
j Ψk

j (x)

The function u(x) is substituted by the expression Uk(x) in the weak form to obtain algebraic relations

between the nodal values uk
i and Qk

i of the element Ωk. The weight function w is substituted by each

function Ψ in order to obtain as many equations as nodes has the element.

2
∑

j=1

[

∫ xB

xA

kp

dΨk
i

dx

dΨk
j

dx
dx

]

uk
j +

∫ xB

xA

dΨk
i

dx
σcdx = 0

In a compact form, the equation’s system can be written as
[

Kk
]

uk + σk
c = 0. This is the equation’s

system of the element in which
[

Kk
]

is the stiffness matrix and σk
c the stress vector. Introducing a change

of coordinates to a normalized element ΩR = [−1, 1] where dx = hk

2 dξ and hk = xA −xB is the element’s

length, the interpolation function are written as

ΨR
1 (ξ) =

1

2
(1 − ξ); ΨR

2 (ξ) =
1

2
(1 + ξ)

We are using this variables change,

Kk
ij =

∫ xB

xA

kp

dΨk
i

dx

dΨk
j

dx
dx =

∫ 1

−1

kp

dΨR
i

dξ

2

hk

dΨR
j

dξ

2

hk

hk

2
dξ

σc,i =

∫ 1

−1

kp

dΨR
i

dξ

2

hk

σc

hk

2
dξ

For any normalized element in the normalized coordinate system, the stiffness matrix and the stress

vector can be written as,

[

Kk
]

=
kp

hk

(

1 −1

−1 1

)

; σk
c = σc

(

1

−1

)
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A.1.2 Calculus of the [Mk] Matrix

The mass matrix is defined as the matrix [M ] where their components mi,j are calculated with:

mi,j =

∫

NiρNjdΩ

where Ni is the interpolator Lagrange polynomial in the node i, Ω is the domain where we are writing

the mass matrix and ρ is the material density that we are considering. Thus we have

[

Mk
]

=
ρlk
6

(

2 1

1 2

)

where lk is the length for the element k.

A.2 Calculation Algorithm

We can assume known as all the values until the instant ts−1 then we want to compute the values of f

in ts following this methodology:

1. We evaluate the potential activation function 2.2 at time ts. We obtain |u(ts+1)| (the absolute

value the potential activation function) and |u(ts)|+ the value of kATP if Ca(ts) ≥ C.

2. We integrate to ts−1 until ts with the Runge-Kutta method of fourth order the system with two

differential equations, then we obtain kc(ts) and σc(ts).

3. We integrate the PDE with the Newmark method since ts−1 until ts, then we obtain uk
s ,

·

u
k

s and
··

u
k

s and then we use uk
s to compute the strain ε with:

ε(ts) =
uk

s

lk

where lk is the element’s length.

4. With the strain ε, and using that ES is a passive element and fact the rehologic model has a

montage in parallel, we can compute εc(ts) with:

εc(ts) = ε(ts) −
σc(ts)

ks

where ks is a constant that we have been compute previously.

5. We approximate the first stress derivative
·

εc(ts) with the quotient:

·

εc(ts) =
(εc(ts) − εc(ts−1))

∆ts

and we return to the first steep until we arrive to the final time.
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Problem Statement

We consider the equilibrium problem of a general three-dimensional body. The body is located in the

fixed Cartesian coordinate system {x, y, z}. Considering the body surface area, the body is supported on

the area Su with described displacements u and is subject to the surface traction fS on the surface area

Sf . In addition, the body is submited to externally applied body forces fB and concentrated loads ri in

a point i of the body. In general, the externally applied forces have three components corresponding to

the {x, y, z} coordinate axis. The components of fB and fS vary as a function of {x, y, z} and for fB are

considered the local coordinates of the surface Sf .

fB =







fB
x

fB
y

fB
z






; fS =







fS
x

fS
y

fS
z






; ri =







ri
x

ri
y

ri
z






;

In a three-dimensional solid, the movement of a point in the space is determined with the displacements

of the body in the coordinate system {x, y, z} and denoted by u = u(x, y, z) = (u, v, w)T . Now, according

to the classic theory of elasticity, the strains corresponding vector to u are,

ε = (εxx, εyy, εzz, εxy, εxz, εyz)
T

(B.1)

and
εxx = ∂u

∂x
; εyy = ∂v

∂y
; εzz = ∂w

∂z
;

εxy = ∂u
∂y

+ ∂v
∂x

; εxz = ∂w
∂x

+ ∂u
∂z

; εyz = ∂v
∂z

+ ∂w
∂y

;
(B.2)

where εxx, εyy, εzz are the normal strains and εxy, εxz,εyz are the tangential strains.

On the other hand, the stresses corresponding to ε are:

σ = (σxx, σyy, σzz, σxy, σxz, σyz)
T

where σxx, σyy, σzz are the normal stresses and σxy,σxz,σyz are the tangential stresses.

The relationship between stresses and strains, is governed by a 6 × 6 matrix, symmetric and with

twenty-one independent coefficients. As the muscle is considered as an anisotropic material, that rela-

105
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tionship can be expressed with nine parameters with:

εx = 1
Ex

σx − υyx

Ey
σy − υzx

Ez
σz

εy = 1
Ey

σy − υxy

Ex
σx − υzy

Ez
σz

εz = 1
Ez

σz − υxz

Ex
σy − υyz

Ey
σy

γxy =
τxy

Gxy
; γxz = τxz

Gxz
; γyz =

τyz

Gyz
;

where x, y, z are the isotropy directions, Ex, Ey, Ez are the rigidities in the isotropy directions and

using the Maxwell-Betti theorem, we have the symmetric property so that we have:

Exνyx = Eyνxy; Eyνzy = Ezνyz; Ezνxz = Exνzx;

and the constants Gxy, Gxz, Gyz are determinate with the cross coefficients:

Gxy =
2(1+νxy)

Exy
; Gxz = 2(1+νxz)

Exz
; Gyz =

2(1+νyz)
Eyz

;

Finally, the relationship between stress and strains is defined by the stress-strain material matrix D

which is taking into account the constitutive equation of the material and the initial stresses σ0 and

strains ε0,

σ = D(ε − ε0) + σ0 (B.3)

The constitutive equation in isotropic elasticity can be written in local axis as a symmetric matrix such

as

D =
E (1 − ν)

(1 + ν) (1 − 2ν)





















1 ν
1−ν

ν
1−ν

0 0 0
ν

1−ν
1 ν

1−ν
0 0 0

ν
1−ν

ν
1−ν

1 0 0 0

0 0 0 (1−2ν)
2(1−ν) 0 0

0 0 0 0 (1−2ν)
2(1−ν) 0

0 0 0 0 0 (1−2ν)
2(1−ν)





















where E is elasticity modulus and ν is the Poisson coefficient.

B.1 The Virtual Displacements Principle

The basis of the displacement-based finite element solution is the principle of virtual displacements,

this body state requires that for any small virtual compatible displacements imposed on the body in

its of equilibrium state, the total internal virtual work is equal to the total external virtual work: ”A

structure is in equilibrium state under the action of a force system, if when we put some discretional

displacements structurally possible, the performed work by the forces over the displacements is equal to

the work performed by the stress over the deformations produced by the displacements”

This principle can be expressed analytically as:
∫

V

δεT σdV =

∫

V

δuT fBdV +

∫

Sf

δuT fSdS +
∑

i

δuT
i ri (B.4)

where δu are the virtual displacements, δε are the corresponding virtual strains and V and S are

the volume and the surface of the body where the forces fB , fS and ri are acting. The principle of

virtual displacements is satisfied for all virtual displacement admissible with the stress σ obtained from

a continuous displacement field u that satisfies the displacement boundary conditions on S.
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B.2 Finite Element Equations

For to govern the finite element equations is considered the response of the general three-dimensional

body which is approximated as an assemblage of discrete finite elements interconnected at nodal points

on the element boundaries. The displacements measured in a convenient local coordinate system {x, y, z}
within each element are assumed to be a function of the displacements at the n finite element nodal

points. Therefore, for any element Ω, the discretization of the displacement field inside the element is

u(Ω) = N(Ω)a(Ω) (B.5)

Where N(Ω) is the displacement interpolation matrix in the element Ω and a(Ω) is a vector of the three

global displacements components ui, vi and wi at all nodal points including those at the supports of the

element assemblage

a(Ω) =













a
(Ω)
1

a
(Ω)
2
...

a
(Ω)
n













; a
(Ω)
i =







ui

vi

wi






(B.6)

Where a
(Ω)
i may correspond to a displacement in any direction in the coordinate system {x, y, z} or even

in a direction not aligned with these coordinate axis but aligned with the axis of another local coordinate

system. Since a(Ω) includes the displacements at the supports of the element assemblage and is needed

to impose, at a later time, the known value of a(Ω) prior to solving for the nodal point displacements.

The choice of element and the construction of the corresponding entries in N(Ω), which depend on

the element geometry, the number of element nodes/degree of freedom, and convergence requirements,

constitute the basic steps of a finite element solution and this are discussed in the next section.

With the assumption on the displacements can now evaluate the corresponding element strains:

ε(Ω) = B(Ω)a(Ω) (B.7)

where B(Ω) is the strain-displacements matrix; the rows of B(Ω) are obtained by the derivatives and

combining the expressions of the equation B.2 in which u, v and w are in function of the interpolation

functions. The use of B.5 and B.6 in the principle of virtual displacements will automatically lead to an

effective assemblage process of all element matrices into the governing structure matrices.

The stresses in a finite element are related to the element strains, using the constitutive equation and

the elasticity matrix D(Ω) for the element Ω are σ(Ω) = D(Ω)ε(Ω) = D(Ω)B(Ω)a(Ω) Using the assumption

on the displacements within each finite element, as expressed in B.5, the equilibrium equations that

correspond to the nodal point displacements of the assemblage of finite elements can be derived. The

equation B.4 is rewritten as a sum of integrations over the volume and areas of all finite elements.

∑

Ω

∫

V (Ω)

δεT σdV =
∑

Ω

∫

V (Ω)

δuT fBdV +
∑

Ω

∫

ΣS(Ω)

δuT fSdS +
∑

i

δuT
i ri (B.8)

Where ΣS(Ω) denotes the element surface that are part of the body surface S (the surface where fS are

applied). For elements totally surrounded by other elements no such surfaces exists and is assumed that
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nodal points have been placed at the points where concentrated loads are applied, although a concentrated

load can (of course) also be included in the surface force integrals.

Since the interaction are performed, over the element volumes and surfaces, for efficiency may be

used a different and any convenient coordinate system for each element in the calculations. But, it is

assumed that for each integral we need to have a unique coordinate system for all variables employed; δu

is defined in the same coordinate system as fB .

Knowing that a are the displacements in the nodes and considering of r(Ω) as a vector of concentrated

loads applied to the nodes of the element assemblage, and applying the equations B.5 and B.7

∑

i

δuT
i ri =

[

δa(Ω)
]T

r(Ω); δuT =
[

δa(Ω)
]T

NT ; δεT =
[

δa(Ω)
]T

BT

Substituting,

[

δa(Ω)
]T

[

∑

Ω

∫

V (Ω)

BT σdV

]

=
[

δa(Ω)
]T

[

∑

Ω

∫

V (Ω)

NT f bσdV +
∑

Ω

∫

ΣS(Ω)

NT fSσdS + r(Ω)

]

Choosing an arbitrary virtual displacement
[

δa(Ω)
]T

it can be,

∑

Ω

∫

V (Ω)

BT σdV =
∑

Ω

∫

V (Ω)

NT f bσdV +
∑

Ω

∫

ΣS(Ω)

NT fSσdS + r(Ω)

This equation states the balance between the nodal forces, the strain of the element, the mass forces and

the surface forces. We can change the stress vector,

∑

Ω

∫

V (Ω)

BT σdV =
∑

Ω

∫

V (Ω)

BT DBadV

This equation can be written as a matrix system of equations. Knowing that the sum of different

elements Ω, is the assemblage of the matrix and the vectors, and grouping together all the forces in q

Ka = q (B.9)

The matrix K is the stiffness matrix of the element assemblage

K =
∑

Ω

K(Ω) =
∑

Ω

∫

V (Ω)

BT DBdV

and the vector load q includes the effect of the element body forces fB , the element surface forces fS

and the nodal concentrated loads r

q = qS + qB + r

qS =
∑

Ω

qS(Ω) =
∑

Ω

∫

ΣS(Ω)

NT fSdS; qB =
∑

Ω

qB(Ω) =
∑

Ω

∫

V (Ω)

NT f bdV

In practice, the element stiffness matrix may first be calculated corresponding to local element with

the degrees of freedom, not aligned with the global assemblage degrees of freedom, in which case a

transformation is necessary prior to the assemblage.
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The equation B.9 is a statement of the static equilibrium of the assemblage. In these equilibrium

considerations, the applied forces may vary with time, in which case the displacements also vary with

time and equation B.9 is a statement of equilibrium for any specific point in time. If the loads are

really applied fast enough, measured on the natural frequencies of the system, inertia forces need to be

considered and consequently, a truly dynamic problem needs to be solved. Using d’Alembert’s principle,

we can simply include the element inertia forces as part of the body forces.

Assuming that the element accelerations are approximated in the same way as the element displace-

ments, the contribution from total body forces to the vector load qB is

qB =
∑

Ω

∫

V (Ω)

NT [fB − ρNä]dV

where qB no longer includes inertia forces, ä lists the nodal point accelerations and ρ is the mass density.

The equilibrium equations are, in this case Mä+Ka = q where q and a are time-dependent. The matrix

M is the mass matrix of the structure,

M =
∑

Ω

M(Ω) =
∑

Ω

∫

V (Ω)

ρNT NdV

Actually, for measured dynamic responses of structures it is observed that energy is dissipated during

vibration analysis, therefore it is usual to introduce velocity-dependent damping forces. Introducing the

damping forces as additional contributions to the body forces, we obtain a new term corresponding

qB =
∑

Ω

∫

V (Ω)

NT [fB − ρNä − cNȧ]dV

In this case the vectors qB no longer include inertia and velocity-dependent damping vector forces, ȧ

is a vector of the nodal point velocities and c is the damping parameter of element Ω. The equilibrium

equations are in this case,

Mä + Cȧ + Ka = q (B.10)

where C is the damping matrix of the structure,

C =
∑

Ω

C(Ω) =
∑

Ω

∫

V (Ω)

cNT NdV

B.3 Isoparametric Formulation for the Hexaedrical Elements

The basic procedure in the isoparametric finite element formulation is to express the element coordinates

and the elemental displacements in the form of interpolations, using the natural coordinate system of the

element. For the description of the hexahedric element is adopted a natural coordinate system {ξ, η, ζ}
in which the faces of the element are in the planes ξ = ±1, η = ±1 and ζ = ±1, as it is shown in the

figure B.1.

And to integrate any function f(x, y, z) on the element, the following transformation can be effected

on the natural coordinate system
∫

V (Ω)

f(x, y, z)dV =

∫ +1

−1

∫ +1

−1

∫ +1

−1

f(ξ, ηζ) · abc · dξdηdζ
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Figure B.1: Natural coordinate system for an regular hexahedric element

In this case, the derivatives of the interpolation functions of the straight hexahedric element needed for

the matrix B can be calculated easily

∂Ni

∂x
=

1

a

∂Ni

∂ξ
;

∂Ni

∂y
=

1

b

∂Ni

∂η
;

∂Ni

∂z
=

1

c

∂Ni

∂ζ
;

The interpolation functions must satisfy

Ni(ξj , ηj , ζj) =

{

1 if i = j

0 if i 6= j
; and

n
∑

i=1

Ni(ξ, η, ζ) = 1 for each (ξ, η, ζ)

The element chosen to model the passive part of the muscle, it is a hexahedrical element of eight

nodes. Is the simplest hexahedrical element and is common in the Lagrangian and Serendipity families.

The interpolation functions are obtained using the product of the three functions corresponding to each

direction, and the general expression of the interpolation function for any node i is,

Ni(ξ, η, ζ) =
1

8
(1 + ξiξ)(1 + ηiη)(1 + ζiζ) (B.11)

where ξi, ηi i ζi are ±1 because the polynomial have to take the nodal value, for each one, and we have

x(Ω) =









x
(Ω)
1
...

x
(Ω)
8









; x
(Ω)
i =







xi

yi

zi







the displacements vector in each point.

B.4 Isoparametric Hexahedric Element

The isoparametric formulation permits to use irregulars hexahedric elements. The definition of the

element is made with the real coordinates and use the isoparametric transformation to refer all the

integrations to the normalized geometry of the element.
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The coordinates x, y and z of any point in the n-nodes element Ω can be written as.

x =







x

y

z






=







N1x1 + N2x2 + . . . + N8x8

N1y1 + N2y2 + . . . + N8y8

N1z1 + N2z2 + . . . + N8z8






=

8
∑

i=1

Nix
(Ω)
i = Nx(Ω) (B.12)

Where Ni is the same function used in the interpolation of displacements field. These equations relate

the cartesian coordinates of a point with the natural coordinates of the same point. This relationship

is a direct automorphism if the Jacobian J(Ω) of the transformation is positive in all the points of the

element (direct transformation). Then we have

J(Ω) =

8
∑

i=1







∂Ni

∂ξ
xi

∂Ni

∂ξ
yi

∂Ni

∂ξ
zi

∂Ni

∂η
xi

∂Ni

∂η
yi

∂Ni

∂η
zi

∂Ni

∂ζ
xi

∂Ni

∂ζ
yi

∂Ni

∂ζ
zi







And the relationship between the derivatives of the interpolation functions as






∂Ni

∂x
∂Ni

∂y
∂Ni

∂z






=

(

J(Ω)
)

−1







∂Ni

∂ξ
∂Ni

∂η
∂Ni

∂ζ







where (xi, yi, zi) are global coordinates and (∂Ni

∂ξ
, ∂Ni

∂η
, ∂Ni

∂ζ
) are evaluated in the nodes of the element

with local coordinates.

B.5 Computing the Strain-displacements Matrix

When we use the equations B.7 and B.12, we obtain the displacement vector for each one of the generic

elements with 8 nodes:

ε =

8
∑

i=1





















∂Ni

∂x
ui

∂Ni

∂y
vi

∂Ni

∂z
wi

∂Ni

∂y
ui + ∂Ni

∂x
vi

∂Ni

∂z
ui + ∂Ni

∂x
wi

∂Ni

∂z
vi + ∂Ni

∂y
wi





















=

8
∑

i=1

Bia
(Ω)
i = Ba(Ω)

where B is the strain-displacements matrix for the element with B = [B1,B2, . . . ,B8] and Bi is the

strain-displacements matrix for the node i, with

Bi =





















∂Ni

∂x
0 0

0 ∂Ni

∂y
0

0 0 ∂Ni

∂z
∂Ni

∂y
∂Ni

∂x
0

∂Ni

∂z
0 ∂Ni

∂x

0 ∂Ni

∂z
∂Ni

∂y





















The vectors (∂Ni

∂x
, ∂Ni

∂y
, ∂Ni

∂z
) can be computed with the previous section indications, using the inverse

Jacobian
(

J(Ω)
)

−1
.
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B.6 Computing the Stiffness Matrix K

To compute the stiffness matrix we are going to use the virtual work principia, but we need to do some

previous considerations. We are to call x(Ω) the nodal displacements for a point in reference each node

for a three dimensional element d’un element, then we have x(Ω) = (x1, y1, z1, x2, . . . , z8) and we can

rewrite these nodal displacements in global coordinates as u = Nx(Ω) In a similar way, we can compute

the displacements in global coordinates using the strain-displacements matrix as ε = Bx(Ω). And we

are going to say virtual displacement vector is the following vector δx(Ω) = (δx1, δy1, δz1, δx2, . . . , δz8)
T

where δxi, δyi, δzi are the nodal virtual displacements for the i element. On the other hand, the vector

of nodal forces can be defined as: q(Ω) = (X1, Y1, Z1, X2, . . . , Z8)
T

where Xi, Yi, Zi are the virtual nodal

forces in equilibrium state corresponding to the i element.

Now, we can establish δuT = δ
(

x(Ω)
)T

NT ; δεT = δ
(

x(Ω)
)T

BT and now, using the Virtual

Displacements Principle B.4, we have:
∫

V

δ
(

x(Ω)
)T

BT σdV =

∫

V

δ
(

x(Ω)
)T

NT fBdV +

∫

ΣS(Ω)

δ
(

x(Ω)
)T

NT fSdS + δ
(

x(Ω)
)T

q(Ω)

and we obtain ∫

V

BT σdV −
∫

V

NT fBdV −
∫

ΣS(Ω)

NT fSdS = q(Ω)

Now, using B.3 we obtain
∫

V

BT
(

DBx(Ω) − Dε0 + σ0
)

dV −
∫

V

NT fBdV −
∫

ΣS(Ω)

NT fSdS = q(Ω)

x(Ω)

∫

V

BT DBdV −
∫

V

BT Dε0dV +

∫

V

BT σ0dV −
∫

V

NT fBdV −
∫

ΣS(Ω)

NT fSdS = q(Ω)

that we can rewrite as

K(Ω)x(Ω) − f (Ω) = q(Ω); where K(Ω) =

∫

V

BT DBdV

the stiffness matrix for Ω. And, we can define:

f (Ω) = f (Ω)
ε + f (Ω)

σ + f
(Ω)
B + f

(Ω)
S (B.13)

as the nodal equivalent force vector for an element, where

f (Ω)
ε =

∫

V

BT Dε0dV ; f (Ω)
σ = −

∫

V

BT σ0dV ; f
(Ω)
B =

∫

V

NT fBdV ; f
(Ω)
S =

∫

ΣS(Ω)

NT fSdS

Now, we want to compute the coefficients for the stiffness matrix. We have defined the stiffness matrix

for each element, and we need to do the effective calculus. According to the previous developments, we

need to compute this matrix for each element, and we can not compute analytically this matrix

K
(Ω)
ij =

∫

V

BT
i DBjdV

To compute that integral, we are going to use Gaussian integration to compute their volume in np×nq×nr

dots, and we have

K
(Ω)
ij =

∫

V (Ω)

BT
i DBjdV =

∫ 1

−1

∫ 1

−1

∫ 1

−1

BT
i DBj

∣

∣

∣J
(Ω)

∣

∣

∣ dξdηdζ =
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=

np
∑

p=1

nq
∑

q=1

nr
∑

r=1

(

BT
i DBj

∣

∣

∣
J(Ω)

∣

∣

∣

)

(ξp, ηq, ζr)WpWqWr

where (ξp, ηq, ζr) are the points where we evaluate the function or integration points and Wp, Wq and

Wr are the weights of integration.

To elaborate the simulation, we are going to use the Gaussian integration with eight nodes, where the

weights have the value Wp = Wq = Wr = 1. and the eight nodes are fixed by the roots of the Legendre

second order polynomial, so that if we took α = 0.5773502692 then the eight nodes are (±α,±α,±α).

B.7 Computing the Mass Matrix M

The calculation of the mass matrix M using an isoparametric formulation and using the same numerical

integration

M
(Ω)
ij =

∫

V (Ω)

ρNT
i NjdV =

∫ 1

−1

∫ 1

−1

∫ 1

−1

ρNT
i Nj

∣

∣

∣
J(Ω)

∣

∣

∣
dξdηdζ =

=

np
∑

p=1

nq
∑

q=1

nr
∑

r=1

(

ρNT
i Nj

∣

∣

∣
J(Ω)

∣

∣

∣

)

(ξp, ηq, ζr)WpWqWr

B.8 Computing the Damping Matrix C

In the direct integration approach of the dynamic equation (B.10) a damping matrix is also required,

but the development of this matrix is not straightforward because there is no physical counterpart for

the assumed viscous damping. While there is no requirement that the damping matrix used in direct

integration, it will be used Rayleigh damping, which is the most accepted method [13].

In Rayleigh damping, it is assumed that the damping matrix is proportional to mass stiffness, as

C = CM +CK = a0M+a1K where the scalar coefficients a0 and a1 have units 1/sec and sec, respectively.

The usual approach with Rayleigh damping is to specify the a0 and a1 values for the entire system, in

which case damping matrix is calculated internally by the source code.

B.9 Model for the Pressure

In the case of forces acting on one of the faces of the element, there is little difference with the previous

explanation. To explain the process, we will consider that an orthogonal force tn is applied on the face

in ζ = +1. For the calculation of the vector of surface forces, we need necessarily to know the term t

dA (see f
(e)
t ), where dA is the differential one of area in this face, and t is the vector of forces in global

coordinates, that it operates on the above mentioned surface. In this way, to project correctly the vector
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force, we need to know nx, ny and nz which are the cosines of the normal one to the surface, in this

way we have that t = tnn. The normal vector n is obtained as vectorial product of the tangent vectors

η = cte and ξ = cte are contained in the surface. In this way,

u =

(

∂x

∂ξ
,
∂y

∂ξ
,
∂z

∂ξ

)

ζ=+1

dξ; v =

(

∂x

∂η
,
∂y

∂η
,
∂z

∂η

)

ζ=+1

dη

Of this is deduced that the components of the vectors u and v we can obtain easily of the Jacobian J(Ω),

and since dA = ‖u ∧ v‖, we have:

n =
1

dA











J12J23 − J22J13

J21J13 − J11J23

J11J32 − J21J12











(Ω)

ζ=+1

dξdζ =
1

dA
j(Ω)dξdζ

where the J
(Ω)
ij are the elements of J(Ω). So that, the final expression of the vector of forces on the

surface is

f
(Ω)
ti

=

∫

A(Ω)

NitnndA =

∫ +1

−1

∫ +1

−1

Nitnj(Ω)dξdζ =

np
∑

p=1

nq
∑

q=1

(

Nitn|J(Ω)|
)

(ξp, ηq, +1)WpWq

where the weight is those that correspond to the formula of Gaussian squaring in dimension two.

B.10 Weight of the Own Element

The forces of the own weight are equivalent to a mass force operating for unit of surface/volume in

direction of the gravity. For simplicity, we are going to suppose that it is vertical, in parallel direction to

the z axis. In this way, the forces of the own weight for different elements are obtained by:

f
(Ω)
i = −

∫

V (Ω)

NT
i ρgcdV = −

np
∑

p=1

nq
∑

q=1

nr
∑

r=1

(

NT
i ρgc|J(Ω)|

)

(ξp, ηq, ζr) WpWqWr

where c = [1, 0, 0]T and the weight is the same, that the one used for the integration of the counterfoil

of inflexibility in equation B.13. In our simulation we will consider the usual values of density and we

presupposes that it will have a scanty repercussion in the local dynamics for small variations.
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Non Linear Formulation

C.1 Equilibrium

In order to derive the differential static equilibrium equations, consider the spatial configuration of a

general deformable body defined by a volume v with boundary area ∂v. We can assume that the body

is under the action of body forces f per unit volume and traction forces t per unit area acting on the

boundary (da).

For simplicity, however, inertia forces will be ignored, and therefore translational equilibrium implies

that the sum of all forces acting on the body vanishes. This gives,

∫

∂v

tda +

∫

v

fdv = 0 (C.1)

Using the Cauchy stress tensor, that relates the relation between the normal vector n to the traction

vector t as,

t(n) =

3
∑

i,j=1

σij(ej · n)ei =





3
∑

i,j=1

σij(ei ⊗ ej)



n = σn (C.2)

for the traction vector enables equation C.1 to be expressed in terms of the Cauchy stresses as,

∫

∂v

σnda +

∫

v

fdv = 0

The first term in this equation can be transformed into a volume integral by using the Gauss theorem

given in
∫

∂V

SndA =

∫

V

÷SdV = 0 where ÷ S = ∇S : I =
3

∑

i,j=1

∂Sij

∂xj

ei

with I is the identity matrix. Now,
∫

v

(÷σ + f)dv = 0

115
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The fact that the above equation can be equally applied to any enclosed region of the body implies

that the integrand function must vanish, that is, ÷σ + f = 0. This equation is known as the local (that

is, pointwise) spatial equilibrium equation for a deformable body. In anticipation of situations during

a solution procedure in which equilibrium is not yet satisfied, the above equation defines the pointwise

out-of-balance or residual force per unit volume r as,

÷σ + f = r (C.3)

C.2 Principle of Virtual Work

Generally, the finite element formulation is established in terms of a weak form of the differential equations

under consideration. In the context of solid mechanics this implies the use of the virtual work equation.

For this purpose, let δv denote an arbitrary virtual velocity from the current position of the body. The

virtual work, δw, per unit volume and time done by the residual force r during this virtual motion is

r · δv, and equilibrium implies δw = r · δv = 0. Note that the above scalar equation is fully equivalent to

the vector equation r = 0. This is due to the fact that v is arbitrary, and hence by choosing δv = [1, 0, 0]T

, followed by δv = [0, 1, 0]T and δv = [0, 0, 1]T , the three components of the equation r = 0 are retrieved.

We can now use equation C.3 for the residual vector and integrate over the volume of the body to give a

weak statement of the static equilibrium of the body as,

δW =

∫

v

(÷σ + f)δvdv = 0 (C.4)

A more common and useful expression can be derived by recalling property

÷(ST v) = S : ∇v + v · ÷S

to give the divergence of the vector σδv as,

÷(σδv) = (÷σ) · δv + σ : ∇δv (C.5)

Using this equation together with the Gauss theorem enables equation C.4 to be rewritten as,
∫

∂v

n · δvda −
∫

v

σ : ∇δvdv +

∫

v

f · δvdv = 0 (C.6)

The gradient of δv is, by definition, the virtual velocity gradient δl. Additionally, we can use equation

C.2 for the traction vector and the symmetry of σ to rewrite n · σδv as δv · t, and consequently equation

C.6 becomes,
∫

v

σ : δldv =

∫

v

fδvdv +

∫

∂v

t · δvda

Finally, expressing the virtual velocity gradient in terms of the symmetric virtual rate of deformation

δd and the antisymmetric virtual spin tensor δw and taking into account again the symmetry of σ gives

the spatial virtual work equation as,

δW =

∫

v

σ : δddv −
∫

v

fδvdv −
∫

∂v

t · δvda = 0 (C.7)

This fundamental scalar equation states the equilibrium of a deformable body and will become the basis

for the finite element discretization.
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C.3 The Kirchhoff Stress Tensors

In equation C.7 the internal virtual work done by the stresses is expressed as,

δWǫ =

∫

v

σ : δddv (C.8)

Pairs such as σ and D in this equation are said to be work conjugate with respect to the current deformed

volume in the sense that their product gives work per unit current volume. Expressing the virtual work

equation in the material coordinate system, alternative work conjugate pairs of stresses and strain rates

will emerge. To achieve this objective, the spatial virtual work equation C.7 is first expressed with respect

to the initial volume and area by transforming the integrals using

dv = dx1 · (dx2 × dx3) =
∂φ

∂X1
·
(

∂φ

∂X2
× ∂φ

∂X3

)

dX1dX2dX3

or

dv = detFdV = JdV

to give,
∫

V

Jσ : δDdV =

∫

V

f0 · δvdV +

∫

∂V

t0 · δvdA (C.9)

where f0 = Jf is the body force per unit undeformed volume and t0 = t(da/dA) is the traction vector

per unit initial area, where the area ratio can be obtained after some algebra from the volume element

dV = dLdA; and dv = dlda

Relating the current and initial volumes in terms of the Jacobian J and recalling that dl = FdL gives,

JdLḋA = (FdL) · da; da = JFT dA

as,

da

dA
=

J√
n · bn

The internal virtual work given by the left-hand side of equation C.9 can be expressed in terms of the

Kirchhoff stress tensor or τ as,

δWǫ =

∫

v

τ : δDdV ; τ = Jσ

This equation reveals that the Kirchhoff stress tensor τ is work conjugate to the rate of deformation

tensor with respect to the initial volume. Note that the work per unit current volume is not equal to the

work per unit initial volume. However, equation C.3 and the relationship ρ = ρ0/J ensure that the work

per unit mass is invariant and can be equally written in the current or initial configuration as:

1

ρ
σ : d =

1

ρ0
τ : d
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C.3.1 The First Piola-Kirchhoff Stress Tensor

The transformation that resulted in the internal virtual work given above is not entirely satisfactory

because it still relies on the spatial quantities τ and d. Velocity expressed as a function of the spatial

coordinates as v(x, t), we obtain the derivative of this expression with respect to the spatial coordinates

defines the velocity gradient tensor l as

l =
∂v(x, t)

∂x
= ∇v

This is clearly a spatial tensor, which, gives the relative velocity of a particle currently at point q with

respect to a particle currently at p as dv = ldx. The tensor l enables the time derivative of the deformation

gradient to be more usefully written as,

Ḟ =
∂v

∂X
=

∂v

∂x

∂φ

∂X
= lF

from which an alternative expression for l emerges as,

l = ḞF−1 (C.10)

To alleviate this lack of consistency, note that the symmetry of σ together with equation C.10 for l in

terms of Ḟ and the properties of the trace give,

δWǫ =

∫

v

Jσ : δldV =

∫

v

Jσ : (δḞF−1)dV

∫

v

tr(JF−1σδḞ)dV =

∫

v

(JσFT ) : δḞ)dV

We observe from this equality that the stress tensor work conjugate to the rate of the deformation

gradient Ḟ is the so-called first Piola-Kirchhoff stress tensor given as,

P = JσFT (C.11)

Note that like F, the first Piola-Kirchhoff tensor is an unsymmetric two-point tensor with components

given as,

P =
3

∑

i,I=1

PiI(ei ⊗ EI); PiI =
3

∑

j=1

Jσij(F
−1)Ij

We can now rewrite the equation for the principle of virtual work in terms of the first Piola-Kirchhoff

tensor as,
∫

V

P : δḞdV =

∫

V

f0 · δvdV +

∫

∂V

t0 · δvdA

Additionally, if the procedure employed to obtain the virtual work equation C.7 from the spatial differ-

ential equilibrium equation C.5 is reversed, an equivalent version of the differential equilibrium equation

is obtained in terms of the first Piola-Kirchhoff stress tensor as r0 = Jr = DIV(P)+f0 = 0 where DIVP

is the divergence of P with respect to the initial coordinate system given as,

DIV(P) = ∇0P : I; ∇0P =
∂P

∂X
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It is instructive to re-examine the physical meaning of the Cauchy stresses and thence the first Pi-

ola–Kirchhoff stress tensor. An element of force dp acting on an element of area da = nda in the spatial

configuration can be written as dp = tda = σda.

Broadly speaking, the Cauchy stresses give the current force per unit deformed area, which is the

familiar description of stress. Consider an element of area in the initial configuration dA = dAN which

after deformation becomes da = dan. For the purpose of obtaining a relationship between these two

vectors, consider an arbitrary material vector dL, which after deformation pushes forward to dl. The

corresponding initial and current volume elements are dV = dL · dA and dv = dl · da. Relating the

current and initial volumes in terms of the Jacobian J and recalling that dl = FdL gives,

JdL · dA = (FdL) · da

The fact that the above expression is valid for any vector dL enables the elements of area to be related

as da = JF−T dA. Using that information for the spatial area vector, dp can be rewritten in terms of the

undeformed area corresponding to da to give an expression involving the first Piola–Kirchhoff stresses as,

dp = JσFT dA = PdA (C.12)

This equation reveals that P, like F, is a two-point tensor that relates an area vector in the initial

configuration to the corresponding force vector in the current configuration. Consequently, the first

Piola–Kirchhoff stresses can be loosely interpreted as the current force per unit of undeformed area.

C.3.2 The Second Piola-Kirchhoff Stress Tensor

The first Piola-Kirchhoff tensor P is an unsymmetric two-point tensor and as such is not completely

related to the material configuration. It is possible to contrive a totally material symmetric stress tensor,

known as the second Piola-Kirchhoff stress S, by pulling back the spatial element of force dp from equation

C.12 to give a material force vector dP as,

dP = φ−1
∗

[dp] = F−1dp (C.13)

Substituting from Equation C.12 for dp gives the transformed force in terms of the second Piola-Kirchhoff

stress tensor S and the material element of area dA as dP = SdA and S = JF−1σFT . It is now necessary

to derive the strain rate work conjugate to the second Piola-Kirchhoff stress in the following manner.

From the rate of deformation tensor d given as d = φ∗[Ė] = F−T ĖF−1, Ė = φ−1
∗

[d]F−T dF it follows that

the material and spatial virtual rates of deformation are related as δd = FT δĖF−1. Substituting this

relationship into the internal virtual work equation C.8 gives,

δWint =

∫

v

σ : δddv =

∫

V

Jσ : (FT δĖF−1)dV

∫

V

tr(F−1JσFT δĖ)dV =

∫

V

S : δĖ)dV

which shows that S is work conjugate to Ė and enables the material virtual work equation to be

alternatively written in terms of the second Piola-Kirchhoff tensor as,
∫

V

S : δĖdV =

∫

V

f0 · δvdV +

∫

∂V

t0 · δvdA
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For completeness the inverse of equations C.11 and C.13 are given as σ = J−1PFT and σ = J−1FSFT .

Applying the pull back and push forward concepts to the Kirchhoff and second Piola–Kirchhoff tensors

yields,

S = F−1τF−T = φ−1
∗

[τ ]; τ = FSFT = φ∗[φ]

from which the second Piola–Kirchhoff and the Cauchy stresses are related as,

S = Jφ−1
∗

[σ]; σ = J−1φ∗[τ ]

In the above equation S and σ are related by the so-called Piola transformation which involves a push

forward or pull back operation combined with the volume scaling J.

A useful interpretation of the second Piola–Kirchhoff stress can be obtained by observing that in the

case of rigid body motion the polar decomposition given as the tensor F is expressed as the product of a

rotation tensor R times a stretch tensor U to define the polar decomposition as F = RU indicates that

F = R and J = 1. Consequently, the second Piola–Kirchhoff stress tensor becomes S = RT σR. This

equation shows that the second Piola–Kirchhoff stress components coincide with the components of the

Cauchy stress tensor expressed in the local set of orthogonal axes that results from rotating the global

Cartesian directions according to R.
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• G. Fortuny and A. Suśın. A mechanical model for the lower abdominal wall. Proceedings of the

2007 Summer Workshop of the European Society of Biomechanics, pp. 199-200. Dublin 2007

Poster presented in the second ESBiomech Summer Workshop, it was hosted by the Trinity Centre
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Computer Methods in Biomechanics and Biomedical Engineering.
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of the inguinal area: The shutter mechanism. Journal of Biomechanics, Volume 41, Supplement 1,

July 2008, pp. S375. Poster presented in the 16th Congress of the European Society of Biomechan-
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pp. S375.
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haviour of the Tranversalis Fascia in Protecting against the Genesis of Inguinal Hernias. Submitted

to Journal of Biomechanics. Submitted since 13-07-2008.
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