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de hilo caliente. De igual forma a los demás compañeros del CTTC con los que
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Abstract
The main motivation of this thesis is the analysis of turbulent flows. Turbulence

plays an important role in engineering applications due to the fact that most flows
in industrial equipment and surroundings are in turbulent regime. The thesis has
a double purpose and is divided in two main parts. The first one is focussed on
the basic and fundamental analysis of turbulence models. In the second part the
know-how acquired in the first part is applied to the study of air curtains.

Regarding to the first part, the principal difficulty of computing and modelling
turbulent flows resides in the dominance of nonlinear effects and the continuous and
wide spectrum of time and length scales. Therefore, the use of turbulence modelling
employing statistical techniques for high Reynolds numbers or complex geometries is
still necessary. In general, this modelization is based on time averaging of the Navier-
Stokes equations (this approach is known as Reynolds-Averaged Navier-Stokes Sim-
ulations, RANS). As consequence of the average new unknowns, so-called Reynolds
stresses, arise. Different approaches to evaluate them are: i) Differentially Reynolds
Stress Models (DRSM), ii) Explicit Algebraic Reynolds Stress Models (EARSM), and
iii) Eddy Viscosity Models (EVM).

Although EVM models assuming a linear relation between the turbulent stresses
and the mean rate of strain tensor are extensively used, they present various limi-
tations. In the last few years, with the even-increasing computational capacity, new
proposals to overcome many of these deficiencies have started to find their way. Thus,
algebraic or non-linear relations are used to determinate the Reynolds stress tensor
without introducing any additional differential equation.

Therefore, the first part of this thesis is devoted to the study of several EARSM
and EVM models involving linear and higher order terms in the constitutive relation
to evaluate turbulent stresses. Accuracy and numerical performance of these models
is tested in different flow configurations such as plane channel, backward facing step,
and both plane and round impinging jets. Special attention is paid to the verification
of the code and numerical solutions, and the validation of the mathematical models
used. In the impinging plane configuration, improvements of models using higher
order terms in the constitutive relation are limited. Whereas, in the rest of studied
cases these non-linear models show a reasonably good behavior.

Moreover, taken into account models convergence, robustness and predictive re-
alism observed in the analysis of these benchmark flows, some of them are selected
for the study of air curtains and their interaction with the environment where they
are placed. Air curtains are generally one or a set of vertical or horizontal plane jets
used as ambient separator of adjacent areas presenting different conditions. The jet
acts as a screen against energy losses/gains, moisture or mass exchanges between the
areas.
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Abstract

As was indicated before, the main purpose of the second part of this thesis is
to characterize in detail actual air curtains using both experimental and different
numerical approaches. Semi-empirical models to design air curtains are presented.
Then, an experimental set-up used to study air curtain discharge and jet downstream
is explained. Experimental measurements of velocity and temperature are shown. As
a result of the experiments carried out, an improved air curtain with a new design of
the discharge nozzle is obtained. Furthermore, air curtain experiments are numerically
reproduced and predictions validated against the experimental data acquired. Good
agreement between numerical and experimental results is observed.

Finally, systematic parametric studies of air curtains in heating and refrigeration
applications are done. Global energetic balances are specially considered together
with global parameters selected in order to evaluate air curtain performance. It is
found that discharge velocity, discharge angle and turbulence intensity of the jet are
the most sensitive parameters. Inadequate values for these variables can produce
undesirable effects and contribute to increase energy gains/losses.
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Chapter 1

Introduction

1.1 Prologue

Turbulence plays an important role in engineering applications due to the fact that
most flows in industrial equipment and surroundings are in turbulent regime. In
nature there are many situations where turbulent flows are present: smoke from
chimneys, rivers, waterfalls or buffeting of strong wind. In engineering applications
turbulent flows are prevailing. For example, they are found in impelling of liquids
or gases with pumps, compressors, pipe lines, etc. Flows around vehicles such as,
airplanes, automobiles, and ships are also turbulent. Moreover, the mixing of fuel and
air in engines and the mixing of the reactants in chemical reactors are in turbulent
regime [1].

Therefore, the motivation to study turbulent flows is the combination of three
factors: most of the flows are turbulent; mixing and transport of mass, momentum
and heat are important and desirable in many situations; and finally, turbulence
accelerates these processes.

Turbulent flows are transitory, highly diffusive, three-dimensional, irregular, seem-
ingly random and chaotic. Turbulence is a nonlinear phenomenon with a wide range
of spatial and temporal scales. Thus, the principal difficulty of computing and mod-
elling turbulent flows resides in the dominance of nonlinear effects and the continuous
and extensive spectrum of observed scales. The largest scales are generally deter-
mined by the geometry of the case studied, whereas the smallest scales are set by the
flow itself. Therefore, Direct Numerical Simulation (DNS) of these flows using full
three dimensional and time dependent integration of Navier-Stokes (NS) equations is
generally restricted to simple geometries and low Reynolds numbers due to the large
computational resources required to resolve all the scales. From simple dimensional
reasoning is possible to have an idea about the size of the smallest scales. If is assumed
that the Kolmogorov microscale (η) only depends on the fluid viscosity (ν) and the
rate of dissipation of energy (ǫ), it can be defined as:
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Chapter 1. Introduction

η =

(
ν3

ǫ

)1/4

(1.1)

A connection with flow Reynolds number can be made if some further assumptions are
made. Production can be taken equal to dissipation of energy for a flow in equilibrium.
The production can be assumed to scale as u3/L, where u is a reference bulk velocity
and L a length scale of the problem under consideration, normally associated to
the geometry studied. Both u and L are characteristic of the largest scales of the
turbulence. Thus:

η

L
≈ Re−3/4 (1.2)

where Re = uL/ν. Then, the number of grid points that is required in each direction
for a given simulation is proportional to L/η ≈ Re3/4 (cost ∝ Re3). Furthermore, a
corresponding Kolmogorov micro-timescale for the smallest eddies (τ) is given by:

τ =
(ν

ǫ

)1/2

(1.3)

Therefore, the time step has to be selected in such a way that the smallest timescales
of turbulence are accurately computed [2]. Nevertheless, DNS of the NS-equations
suplies with data to study turbulence, including quantities that can not be accurately
measured experimentally. Thus, in the last decades Direct Numerical Simulation
of the Navier-Stokes equations has been made possible by the development of fast
computers, and the improvement of parallelization techniques. Consequently, DNS
has provided data that have been used for the development, calibration and validation
of turbulence models.

However, for high Reynolds numbers and/or complex geometries is necessary the
use of turbulence modelling using statistical techniques. This modelization can be
based on volume filtering (Large Eddy Simulation, LES) or time averaging (Reynolds-
Averaged Navier-Stokes Equations, RANS) of the NS-equations. Which is sufficient
and practical to describe most of the main characteristics of the fluid motions [1].
LES models are still too expensive for routine calculation because, even though the
smallest eddies are modelled, the large ones have to be solved in detail (3D and
unsteady). In LES only the energy-containing eddies are resolved, and the effects of
the unresolved modes are modelled.

To understand the basic idea of LES, suppose somebody wants to perform a DNS
but the grid that would be required exceeds the capacity of the available computer;
thus, a coarser grid is used. However, there is an interaction between the motions
on all scales, resolved and not resolved, so that the result for the large scales would
be wrong without taking into account the influence of the fine scales on the large
ones. This requires a so-called subgrid-scale model. Despite widespread academic use
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1.1. Prologue

of LES, there are still few industrial LES calculations. After more than a decade in
which LES has been viewed as the route for by-passing turbulence model limitations,
it is still necessary to shown that industry is ready to invest its own resources, man-
power and computing to resolve, using LES, a relevant engineering problem. It due
to industry has taken advantage of increased computer power to model more realistic
geometries and complex physical processes rather than resorting to advanced turbu-
lence modelling. Therefore, the increases in computer power that make the LES of
simple industrial problems possible today, are used instead to analyze more and more
complex flows and geometries with RANS models [2].

RANS models solve the governing equations by modelling both large and small
eddies, taking a time-averaged of variables. Although this process eliminates the need
to completely resolve all scales of motion, its drawback is that unknown single-point,
higher correlations appear in both mean and turbulent equations. The need to model
these correlations is the well known “closure problem”. However, RANS technique is
a robust, friendly and relatively cost effective way to compute both mean flow and
turbulent stresses. In RANS exists three different levels to evaluate the Reynolds
stresses generated as consequence of the average process: i) Differentially Reynolds
Stress Models (DRSM), ii) Algebraic Reynolds Stress Models (ARSM) and iii) Eddy
Viscosity Models (EVM) [1].

DRSM provide the unknown second moments (turbulent stresses) by solving model
transport equations for these quantities. Hence, DRSMs have a reasoned physical
basis and treat some important turbulence interactions, primarily the stress genera-
tion, exactly. This allows capturing of evolution of the turbulent stress field and its
anisotropy. The potential of the DRSM, although long recognized, has so far neither
been fully explored nor exploited, mainly due to the persisting numerical difficulties,
and uncertainties in modelling some of the processes, such as pressure-redistribution.
Also, DRSMs do not always show superiority over EVM models. One reason for this
is that more terms need to be modelled. While, this offers an opportunity to capture
the physics of several turbulence interactions, the advantage may be lost if some of
the terms are modelled wrongly [2].

Algebraic stress models convert the differential equations used in DRSM models
into algebraic ones by assuming a weak equilibrium assumption. Finally, EVM models
couple turbulent stresses with RANS equations through a turbulent eddy viscosity
(velocity × length scale). In this last type of models, a hierarchy of closure schemes
exists, ranging from zero-equations to two equations models. In zero-equation models,
time and length turbulence scales are set by means of algebraic relations whereas, two-
equation EVMs calculate eddy viscosity by means of two more differential transport
equations: turbulent kinetic energy and some length scale determining equation.

In the context of two-equation models, both linear and non-linear eddy viscos-
ity models appear. The word forms “linear” and “non-linear” refer to the tensor
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Chapter 1. Introduction

representation used for the model. The linear models assume a Boussinesq relation
between turbulent stresses (second moments) and mean rate strain tensor by means of
an isotropic eddy viscosity. Non-linear models assume a higher-order tensor represen-
tation involving either powers of the mean velocity gradient tensor or combinations
of the mean strain rate and vorticity tensors [2].

Even though Two-Equation models using a linear relation are extensively used,
they present various limitations [3]. Instead, to overcome some of these deficiencies,
non-linear or algebraic stress models are used without introducing any additional
differential equation. This kind of models are capable of resolving Reynolds-stress
anisotropy, secondary motions, swirling, strong strain and curvature of stream-traces.
Also, they are thought to preserve computational economy and numerical robustness
of linear models [4]. Thus, the study of NLEVMs and EARSMs is interesting due to
they offer a solution between LEVMs and DRSMs, keeping some key aspects from both
formulations. The first ones with several limitations but with reduced computational
time. The last ones, more complex and with an increased computational cost.

For the reasons mentioned before, this thesis is mainly focussed in the numerical
modelling of turbulent flows based on RANS models. It is carried out by means of
a comparison of the different modelization levels, taking into account precision, level
of description, application range (generality) and computational cost. Specifically,
two-equation models (k − ǫ and k − ω) using a linear (linear Eddy Viscosity Model,
LEVM ), non-linear (Nonlinear Eddy Viscosity Model, NLEVM ) and algebraic (Ex-
plicit Algebraic Reynolds Stress Model, EARSM ) relation for the calculation of the
turbulent stresses, are broadly studied.

To allow the integration of the equations near solid walls the approximation known
as low Reynolds number (LRN) is selected. This technique use damping functions to
permit the models to be used within the viscous near-wall region [1].

Once the models have been analyzed and their advantages and shortcomings de-
termined in benchmark flows, a selection of the models is carried out in order to apply
them in the study of air curtains and its interaction with the environment where they
are placed.

Air curtains are generally one or a set of vertical or horizontal plane jets used
as ambient separator of adjacent areas presenting different conditions. The jets act
as a screen against energy losses/gains, moisture or mass exchanges (smoke, dust,
insects,...) between the areas. Air curtains are specially appropriate for configurations
where solid barriers become unacceptable for practical, technical or safety reasons [5].
For instance, they are used in doorways or displays cabinets to reduce the penetration
of heat or contaminants through the opening, while permitting the passage of people
or vehicles.

Air curtains have been mainly studied by means of experimentation or designed
with simple mathematical models and only some numerical works have been carried
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out. Therefore, the present thesis takes a more comprehensive step toward under-
standing and quantification of all major parameters that affect the air curtain per-
formance, by the utilization of modern computational and experimental techniques
adopting a systematic approach [6].

1.2 Literature survey

In this section a brief summary of the state of the art in both RANS modelling and
air curtains is presented.

1.2.1 Low Reynolds number RANS models

The development of LRN models started at the beginning of 70s. Jones and Launder
[7] in 1972 proposed a k − ǫ model based on the calculation of the eddy viscosity
through the numerical solution of transport equations for the turbulent kinetic energy
(k) and the turbulent kinetic energy dissipation (ǫ). Their main contribution was to
make a modification to the model to allow its use in regions of low turbulent Reynolds
number. They stated that, to do a correct prediction of the flow within the viscosity
sublayer, the model should consider, viscous diffusion in the equations of k and ǫ,
empirical functions have to be dependent of the turbulent Reynolds number, and that
it is necessary to include additional terms to take into account wall-near processes.
Many versions followed this original work, which have been specially focussed in the
improvement of the model performance in regions of low turbulent Reynolds number.

In 1985 Patel et al. [8] made a comprehensive revision of LRN models. They
included seven variations of the basic k − ǫ model and the model by Wilcox and
Rubesin [3], in which instead of solving an equation for ǫ, it is solved one for the
pseudo-vorticity or specific dissipation ω. Patel et al. suggested the necessity of
improving damping function associated with the eddy viscosity, due to no one of the
models studied could reproduce adequately experimental results near solids walls.

Launder in 1988 [9], published a summary of the different methods used to cal-
culate heat transfer coefficients in the numerical simulation of turbulent flows. He
demonstrated that accuracy and applicability range of LRN models when a fine
enough grid is used near a solid wall were better than those obtained using wall
functions. He concluded that the research and advances in turbulence modelling goes
hand by hand with process velocity of computers.

Turbulence models using ω as the length scale determining variable have been
gaining importance since 90s, because of their robustness and numerical stability.
In 1994, Wilcox [10] presented a model including transition terms, which improved
the performance of the model published in 80s near solid walls. After that, Menter
[11] proposed a zonal model that use a mix of Wilcox model and Jones and Launder
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model. This model solves ω equation near solid walls and ǫ equation far from them.
Good results were obtained with this model and it is still used in routine calculations.

Since DNS results were first obtained, a detailed knowledge of the viscous sublayer
has been possible. Therefore, a lot of attention has gone to the correct asymptotic
behavior of the turbulent variables in the regions near solid walls. In order to obtain
a reasonable distribution of turbulent variables in confined flows, an effort to avoid
dimensionless wall distance (y+), expressed in terms of friction velocity (uτ ), has been
done. Instead, Abe et al. [12] replaced this friction velocity with Kolmogorov velocity
scale, to improve results in flows with recirculation. Subsequents attempts with the
purpose of getting a correct near-wall ǫ distribution have been done among others by
Golberg et al. [13] and Abe et al. [14]. However, it has not been possible to achieve
a model with a wide application range. Moreover, after different efforts to improve
LEVM performance, such as to model the pressure diffusion term for the k transport
equation carried out by Nagano and Shimida [15]; or introducing a modelled gradient
production term and the effect of production to dissipation into the sink term made
by Rodi and Mansour [16]; several well known anomalies still remain and these factors
limit the applicability of LEVMs in complex flows. Thus, the study of this kind of
models continues valid at the present time.

Then, to extend the applicability of EVMs the early work of Rivlin [17] and Lumley
[18] on a nonlinear relation appealed the similarities between the laminar flow of a non-
Newtonian fluid and the mean turbulent flow of a Newtonian fluid. They expressed
turbulent stresses as nonlinear polynomial functions of the mean velocity gradient
tensors [19]. However, it was until 1987 when Speziale [20] presented a quadratic
nonlinear model showing advantages of this kind of formulation. After, Thangham
and Speaziale [21] tested this model in a backward facing step configuration achieving
good results. Also, in 1987 Nisizima and Yoshizawa [22] obtained a quadratic non-
linear relation based on the Yoshizawa’s [23] direct interaction approximation model.
Furthermore, Myong and Kasagi [24] and Shi et al. [25] have also proposed quadratic
nonlinear k − ǫ models. Even though these models use similar expressions in the
stress-strain relation, the coefficients of their nonlinear terms are very different from
one to another due to each model has been optimized for different flow configurations.
Craft et al. [26] also presented a nonlinear model including terms up to third order.
Recently, Abe et al. [27] and Merci et al. [28] have proposed quadratic nonlinear
models with additional terms which depend on wall-direction indicators, and that
procure the correct behavior due to strong anisotropy in the near-wall region of the
Reynolds stresses. So then, this kind of models are not consolidated yet and their
benefits in different flow configurations are still under consideration [4].

As it was previously mentioned, there is another approach to build a NLEVM
based on the ARSM approach to find the coefficients of the nonlinear relation. The
first implicit ARSM model was developed by Rodi [29], who reduced the Reynolds
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stress transport equation to a simple algebraic equation, which describes turbulent
stresses as non-linear functions of the mean velocity gradients. Later, Pope [30] used
Cayley-Hamilton theorem in order to obtain an explicit expression for the turbulent
stresses. However, he was not able to provide the coefficients for three-dimensional
flows because of the complexity of the algebra involved. This approach is generally
known as explicit algebraic Reynolds stress model, EARSM, rather than NLEVM.
It was not until 90s, when Taulbee [31] and Gatski and Speziale [32] presented de-
tailed coefficients for the three dimensional relation form of Pope. However, these
authors considered an equilibrium between production and dissipation, and flow near
equilibrium condition, in their work. They also calibrated their models only for ho-
mogeneous or high Reynolds number flows. Later, in 2000 Wallin and Johansson [33]
developed a model for both compressible and incompressible three-dimensional flows,
where the production to dissipation ratio is obtained as a solution of a nonlinear
algebraic equation.

This literature survey suggests that there is still a necessity of testing LEVM,
NLEVM and EARSM models in a variety of different configurations in order to assess
their real capacities and shortcomings.

1.2.2 Air curtains

The study of air curtains has been present in the scientific literature since 60s. Thus,
the past research mostly relies on experimental work and simplified semi-analytical
solutions for jets. Although this research used simplistic formulations for air curtains,
its importance lies in identifying most parameters that affect air curtain performance,
e.g. turbulence intensity at the jet discharge as a boundary condition is a measure
of mixing enhancement; the more distance the air curtain travels provides more op-
portunities for the air curtain to widen; the width of air curtains provides the initial
length for the flow to move laterally, which also can enhance widening of the jet; the
velocity at the jet discharge specifies how much kinetic energy is available. These
parameters are crucial to understand air curtains performance.

One of the first works found is that by Hetsroni and Hall [34], who studied exper-
imentally air entrainment-spill mechanism across air curtains, and presented results
in terms of dimensionless ratios. They introduced analytical expressions to quantify
the heat transfer through the air curtain. Hayes and Stoecker [35, 36] presented a
comprehensive explanation of the different kind of pressure differences, which must
be taken into account in air curtains design. They considered in all their studies that
the building was sealed except for the opening doorway where the air curtain was
located, then presented analytical expressions and one example for the design of air
curtains.

Studies by Howell and Shiabata [37] revealed that the ratio of the opening height
(H) to the discharge width (w) and the jet velocity (V) affect the ”performance” of
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air curtains. They stated that there is a direct proportionality of heat transfer across
an air curtain to the discharge air velocity. Howell and Shiabata [37] also showed
that a higher turbulence intensity at the discharge accelerates the widening of the
jet, causing a higher heat transfer across the air curtain. They found that 75% of
the refrigeration load in an open vertical display case is a result of the warm air
entrainment across the air curtain.

Partyka [38] carried out an analytical study of flow impact region of two jets
to develop a mathematical model that yields data for the air curtain performance.
The theory permitted him to establish the quantitative influence of the jet prop-
erties and duct geometry on the pressure difference and to predict flow conditions.
He programmed resulting equations and presented some computed and experimental
results.

Faramarzi and Kemp [39] experimentally studied display cabinets. Their object
was to evaluate the performance of two models with respect to energy efficiency
and product temperature maintenance. They achieved the conclusion that the most
important loss is due to infiltration. Therefore, it is very important the correct design
of the air curtain to prevent it in display cases. In the same year, Faramarzi [40]
presented a discussion about the cooling load composition in an open display cabinet.

In the paper of Stribling et al. [41] is presented a two-dimensional computational
study with a commercial code of a vertical display. They found that this model could
be used in the design and optimization of such equipment but it needs further valida-
tion to be accepted as quantitatively accurate. Further application of computational
fluid dynamics (CFD) codes to air curtains has been inconclusive. They stated that
one should realize that CFD provides a numerical solution of the Navier-Stokes (NS)
equations. That it is mathematically known that there is not an unique solution for
these equations. So it is quite possible that a careless implementation of a boundary
condition (from a user or programmer) could propagate and yield inconsistent results.

Solliec et al. [42] studied the possibility of using air curtains to reduce transport
of contaminants and to explain how the mass transfer happens, thus showing the
interest to use such systems of containment to fight against olfactive harmful effects.
Pavageau et al. [5] experimented with different configurations of air curtains: air jet
tightness and double flux. Flow visualization and particle image velocimetry (PIV)
measurements were carried out. The main results were reported and recommendations
were drawn.

By the year 2001, Ge and Tassou [43] studied numerically an air curtain in a display
cabinet by means of finite differences technique, based on their results developed
correlations for the heat transfer across air curtains in refrigerated display cabinets.
He validated both models against experimental results. Also, in this year Kim et
al. [44] carried out a CFD 3D simulation, using the standard k − ǫ model, with
the purpose of analyzing indoor cooling/heating. The CFD study is coupled with
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a radiative analysis. Heating, ventilating and air-conditioning (HVAC) controlling
system in a room is also coupled to the CFD simulation. The loop feed backs the
outputs of the HVAC system control to the input boundary conditions of the CFD.
Furthermore, this method included a human model to evaluate the thermal comfort
environment.

Navaz et al. [45, 46] demonstrated that a marriage between the digital PIV exper-
imental technique and CFD simulation can be quite effective to study the flow field
characteristics and performance of the air curtain of an open vertical display case. The
PIV can calibrate the numerical technique after which the CFD code can be used for
parametric studies. They demonstrated that the validation of a CFD model with reli-
able and comprehensive experimental data is a pre-requisite for generating reasonable
results. Other example of the combination of CFD and experimental techniques was
presented by Foster et al. [47]. They used a CFD model of air movement through a
doorway, which was verified against laser Doppler anemometry (LDA) measurements.

One of the last analytical models found in the literature for the design of air cur-
tains was developed by Sirén [48, 49], who provided valuable information for the design
of vertically upwards-blowing air curtains. He presented a technical dimensioning of
an air curtain considering effects of building envelope and ventilation system, then
presented practical mathematical formulations for the dimensioning of air curtains.
The method was based on the momentum-of-momentum principle, which enables the
considerations of the jet impact point.

The effect of the Richardson and Reynolds numbers on the shape of the streamlines
representing the entrained air at the discharge grill of display cabinets has been studied
by Chen and Yuan [50] by means of CFD simulations. This work is valuable because
it quantified the effects of the Richardson number, Ri = Gr

Re2 (ratio of Grashof to the
square of Reynolds number), on the entrainment of ambient air into the cold air jet.

In 2006 Navaz et al. [51] presented a work to address the effects of velocity profile
at the discharge air grill on the amount of entrained air into an open refrigerated
display case. The study was carried out using experimental (PIV and LDA) and
numerically by means of CFD simulations. They found that a skewed parabolic
profile with the peak shifted towards the inner section of the case generates the
minimum entrainment, and demonstrates that with simple changes to the geometry of
the discharge grill, a significant reduction in the entrainment rate could be achieved.

Finally, a couple of works dealing with air curtains placed in door openings to
separate two different ambient have been published. Foster et al. [52, 53] studied
the effectiveness of a commercially available air curtain at different jet velocities and
found the optimum jet velocity to give the maximum effectiveness. Then, compared
the experimental results with predictions from an analytical model and CFD simu-
lations. Moreover, Costa et al. [54] have studied numerically the influence of the
different dynamic and geometrical parameters on the sealing efficiency of a down

27



Chapter 1. Introduction

ward-blowing air curtain device, which is installed between two contiguous room with
distinct ambient temperatures. Therefore, only stack effect was considered.

As it can be observed only few publications where air curtains are studied on a
door acting as ambient separator in a building have been found. Furthermore, no
one takes into account wind velocity. On the other hand, the rest of them restrict
their studies to display cabinets, where external air velocity is not an important
factor and the environment conditions can be easily determined, therefore, used in
numerical simulations and physical domain can be simplified to a 2D computational
domain. Also, it was only possible to find one paper that study the air curtain with
the environment influence together by means of fully 3D simulations. Furthermore, it
seems that the influence of important variables such as the turbulence model and the
grid used in the computations have not been studied in detail. Then, future works
should include these parameters and the combination of CFD 3D simulations with
advanced experimental techniques (PIV, LDA, hot-wire anemometry, etc.) to validate
the numerical results. These aspects are taken into account in this thesis.

1.3 Background

This thesis has been elaborated at the Heat and Mass Transfer Technological Center
(CTTC) of the Technical University of Catalonia (UPC). The research at the CTTC
is focussed on two main lines: i) mathematical formulation, numerical resolution
and experimental validation of heat and mass transfer phenomena. ii) application of
the acquired know-how from the basic studies mentioned to the thermal and fluid dy-
namic optimization of thermal system and equipment. Thus, a general flow modelling
software, known as DPC, has been developed [55].

In the first research line, CTTC has given special attention to the study of turbu-
lent flows. Two different research areas in this field have been specially considered,
LEVM RANS models and DNS. Then, this thesis constitutes an effort to widen the
spectra of turbulence RANS models available in the DPC code, by the inclusion and
testing of new NLEVM and EARSM RANS models. LEVM RANS models used in this
thesis to perform comparative studies, which have been previously implemented by an-
other CTTC researchers, can be found in different publications [56, 57, 58, 59, 60, 61]
and two PhD thesis [62, 63].

Furthermore, in the framework of applied research at CTTC, the second part of
this thesis is focussed on the study and analysis of air curtains. Thus, chapters 5 and
6 have been developed within two research European CRAFT projects [64, 65], and
one collaborative agreement between an air curtain manufacturer and CTTC.

Verification of numerical solutions using CFD has been considered as an relevant
aspect in order to produce reliable results. In order to determine numerical results
quality, a post-processing procedure has been implemented at the CTTC [66]. Thus,
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whenever is possible, solutions obtained are submitted to this process to estimate the
order of accuracy and the error band where the grid independent solution is expected
to be contained.

In order to reduce computational resources and to allow complex geometries to
be studied, a parallel multiblock algorithm using loosely coupled computers is used
[67, 68]. CTTC facilities includes a Beowulf cluster called Joan Francesc Fernandez
(JFF). Nowadays, it is formed by 125 CPUs with 100Gbytes of RAM and 7.25Tbytes
of disk space. Main contributions on parallel computing and multiblock techniques
are gathered in the PhD thesis of M. Soria [69] and J. Mora [70].

1.4 Thesis outline

This thesis has a double purpose. It is intended to test LEVM, NLEVM and EARSM
models in a variety of different configurations in order to assess their real capacities
and shortcomings. Then, accordingly to the results obtained, some models are selected
to be applied in the study of air curtain devices. Thus, in Chapter 2 is carried
out an introduction to the mathematical formulation used throughout this thesis.
Special attention is devoted to the turbulence modelling selected to simulate flows
in turbulence regime. Within this topic, the different possibilities to study turbulent
flows are briefly summarized. Since, RANS modelling is selected in this thesis the
explanation is centered on it. Furthermore, discretization of the governing equations,
computational methodology details, verification tools and solvers used in this thesis
are also introduced in Chapter 2.

The aim of Chapter 3 is to study the adequacy of different RANS models in terms
of accuracy and numerical performance in the description of three different turbulent
internal forced convection flows, i.e. plane channel, backward facing step, and confined
impinging slot jet. Within RANS modelization, linear and non-linear eddy-viscosity
models and explicit algebraic models are explored. A comparison of the suitability of
different two-equation platforms such as k − ǫ and k − ω is also carried out.

In Chapter 4 this work is extended to studying numerical performance and ac-
curacy of models when they are used in the simulation of both, plane and round
impinging jets. With this purpose, results from numerical simulations using differ-
ent models, are compared among them and with experimental data available in the
literature.

Once capabilities of the models are assessed. The work is centred in the use of
them to study air curtains. Therefore, the main purpose of Chapter 5 is to present an
introduction to air curtains. Different approaches are explained. At the beginning,
semi-empirical models developed to design air curtains are shown. After, an experi-
mental setup used in the study of air curtain discharge and downstream jet produced
is explained. Thus, measurements of different air curtian prototypes are presented
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in order to characterize the air-curtain fluid-dynamic and thermal fields. Finally, air
curtains are simulated using CFD and the code is validated using experimental data
acquired.

After code validation and air curtains physics understanding is accomplished, in
Chapter 6 a set of numerical studies to test air-curtains is carried out. Thus, system-
atic parametric studies are performed, providing conclusions about the influence on
the air-curtain behavior of the air curtain location, discharge velocity, discharge angle,
and discharge temperature. Applications to both, air conditioning and refrigeration
are numerically studied.

Finally, a chapter with conclusions is included to present the main achievements
and limitations of the work carried out in this thesis. Future actions in both areas
turbulence modelling and air curtain research are also suggested. Moreover, a list
of the main publications carried out in the context of this thesis can be found in
Appendix B.

References

[1] S.B. Pope. Turbulent Flows. Cambridge University Press, 2000.

[2] B. E. Launder and N. D. Sandham. Closure Strategies for Turbulent and Tran-
sitional Flows. Cambridge University Press, 2002.

[3] D.C. Wilcox. Turbulence modeling for CFD. DCW Industries, Inc. CA, 1998.

[4] Y. J. Jang, M. A. Leschziner, K. Abe, and L. Temmerman. Investigation of
Anisotropy-Resolving Turbulence Models by Reference to Highly-Resolved LES
data for Separated flow. Flow, Turbulence and Combustion, 69(2):161–203, 2002.

[5] M. Pavageau, E. M. Nieto, and C. Rey. Odor and VOC confining in Large
Enclosure. Water, Science and Technology, 4(9):165–171, 2001.

[6] H. K. Navaz, D. Dabiri, M. Amin, and R. Faramarzi. Past, Present, and Future
Research Toward Air Curtain Performance Optimization. ASHRAE Transac-
tions, 111:1083–1088, 2005.

[7] W.P. Jones and B.E. Launder. The prediction of laminarization with a two-
equation model of turbulence. International Journal of Heat and Mass Transfer,
15:301–314, 1972.

[8] V. C. Patel, W. Rodi, and G. Scheuerer. Turbulence models for near-wall and
low Reynolds number flows - A review. AIAA Journal, 23:1308–1319, 1985.

30



References

[9] B. E. Launder. On the Computation of Convective Heat Transfer in Complex
Turbulent Flows. ASME J. Heat Transfer, 110:1112–1128, 1988.

[10] D. C. Wilcox. Simulation of Transition with a Two-Equation Turbulence Model.
AIAA Journal, 32:247–255, 1994.

[11] F.R. Menter. Two-Equation Eddy-Viscosity Turbulence Models for Engineering
Applications. AIAA Journal, 32(8):1598–2005, 1994.

[12] K. Abe, T. Kondo, and Y. Nagano. A New Turbulence Model for predicting
Fluid, Flow and Heat Transfer in Separating and Reattaching Flows-I. Flow field
calculations. International Journal of Heat and Mass Transfer, 37(1):139–151,
1994.

[13] U. Goldberg, O. Peroomian, and S. Chakravarthy. A Wall-Distance-Free k-ǫ
Model with Enhanced Near-Wall Treatment. Journal of Fluids Engineering,
120(3):457–462, 1998.

[14] K. Abe, T. Kondoh, and Y. Nagano. On Reynolds-Stress expresions and near-
wall scaling parameters for predicting wall and homogeneous turbulent shear
flows. International Journal of Heat and Fluid Flow, 18:266–282, 1997.

[15] Y. Nagano and M. Shimida. Modelling the dissipation rate equation for two
equation turbulence model. In Proceedings of the 9th Symp. Turbulent Shear
Flows, pages 2–23, 1993.

[16] W. Rodi and N. Mansour. Low Reynolds number k − ǫ modelling with the aid
of direct simulation data. Journal of Fluid Mechanics, 250:509–529, 1993.

[17] R. S. Rivlin. The relation between the flow of non-Newtonian fluids and tubulent
Newtonian fluids. Quarterly Applied Mathematics, 15:212–215, 1957.

[18] J. L. Lumley. Toward a turbulent constitutive relation. Journal of Fluid Me-
chanics, 41(2):413–434, 1970.

[19] K. Suga. Development and Application of a Non-linear Eddy Viscosity Model
Sensitized to Stress and Strain Invariants. PhD thesis, University of Manchester,
1995.

[20] C. G. Speziale. On Nonlinear K-l and k−ǫ Models of Turbulence. Two-Equation
Models. Journal of Fluid Mechanics, 178:459–475, 1987.

[21] S. Thangam and C. G. Speziale. Turbulent Flow Past a Backward-Facing Step:
A Critical Evaluation of Two-Equation Models. AIAA Journal, 30:1314–1320,
1992.

31



References

[22] S. Nisizima and A. Yoshizawa. Turbulent channel and Couette flows using an
anisotropic k − ǫ model. AIAA Journal, 25(3):414–420, 1987.

[23] A. Yoshizawa. Statistical analysis of the deviation of the Reynolds stress from
its eddy viscosity representation. Physics of Fluids, 27:1377–1387, 1984.

[24] H. K. Myong and N. Kasagi. Prediction of anisotropy of the near wall turbulence
with an anisotropic low-Reynolds number k − ǫ turbulence model. Journal of
Fluids Engineering, 112:521–524, 1990.

[25] T. H. Shi, J. Zhu, and J. L. Lumley. A new Reynolds stress algebraic equation
model. Computer Methods in Applied Mechanics and Engineering, 125(1):287–
302, 1995.

[26] T.J. Craft, B.E. Launder, and K. Suga. Development and Application of Cubic
Eddy-Viscosity Model of Turbulence. International Journal of Heat and Fluid
Flow, 17(1):108–115, 1996.

[27] K. Abe, Y. J. Jang, and M. A. Leschziner. An Investigation of Wall-Anisotropy
Expressions and Length-Scale Equations for Non-Linear Eddy-Viscosity Models.
International Journal of Heat and Fluid Flow, 24(2):181–198, 2003.

[28] B. Merci, V. M. Karin, and E. Dick. Impingement heat transfer with a nonlinear
first-order k− ǫ model. Journal of Thermophysics and Heat Transfer, 20(1):144–
148, 2006.

[29] W. Rodi. The prediction of free turbulent boundary layers by use of a two-equation
model of turbulence. PhD thesis, University of London, 1972.

[30] S. B. Pope. A more effective-viscosity hypothesis. Journal of Fluid Mechanics,
72:331–340, 1975.

[31] D. B. Taulbee. An improved algebraic Reynolds stress model and corresponding
nonlinear stress model. Physics of Fluids, 4(11):2555–2561, 1992.

[32] T.B. Gatski and C.G. Speziale. On Explicit Algebraic Stress Models for Complex
Turbulent Flows. Journal of Fluid Mechanics, 254(1):59–78, 1993.

[33] S. Wallin and A. V. Johansson. An Explicit Algebraic Reynolds Stress Model for
Incompressible and Compressible Turbulent Flows. Journal of Fluid Mechanics,
403:89–132, 2000.

[34] G. Hetsroni, C. W. Hall, and A. M. Dhanak. Heat Transfer Properties of an Air
Curtain. ASAE Transactions, 1:328–334, 1963.

32



References

[35] F. C. Hayes and W. F. Stoecker. Design Data for Air Curtains. ASHRAE
Transactions, 2121:168–179, 1969.

[36] F. C. Hayes and W. F. Stoecker. Heat Transfer Characteristics of the Air Curtain.
ASHRAE Transactions, 2120:153–167, 1969.

[37] R. H. Howell and M. Shiabata. Optimum Heat Transfer Through Turbulent
Recirculated Plane Air Curtains. ASHRAE Transactions, 86(1):188–200, 1980.

[38] T. S. Park and H.J. Sung. A Nonlinear low-Reynolds-number k − ǫ model for
Turbulent Separated and Reattaching FLows–I. Flow Field Computations. In-
ternational Journal of Heat and Mass Transfer, 38:2657–2666, 1995.

[39] R. Faramarzi and K. Kemp. Comparing Older and Newer Refrigerated Display
Cases. ASHRAE Journal, Aug.:45–49, 1999.

[40] R. Faramarzi. Efficient Display Case Refrigeration. ASHRAE Journal, Nov.:46–
54, 1999.

[41] D. Stribling, S.A. Tassou, and D. Marriott. A Two Dimensional CFD Model of
a Refrigerated Display Case. ASHRAE Transactions, 103(1):88–94, 1999.

[42] C. Solliec, S. Maurel, M. Pavageau, and P. Le Cloirec. Isolation of contami-
nated areas and control of fugitive emissions using air curtains. Pollution Atmo-
sphérique, 169:127–137, 2001.

[43] Y.T. Ge and S.A. Tassou. Simulation of the Performance of Single Jet Air Cur-
tains for Vertical Refrigerated Display Cabinets. Applied Thermal Engineering,
21:201–219, 2001.

[44] T. Kim, S. Kato, and S. Murakami. Indoor cooling/heating load analysis based
on coupled simulation of convection, radiation and HVAC control. Building and
Environment, 36:901–908, 2001.

[45] H.K. Navaz, R. Faramarzi, M. Gharib, D. Dabiri, and D. Modarress. The Appli-
cation of Advanced Methods in Analyzing the Performance ot the Air Curtain
in a Refrigerated Display Case. Journal of Fluids Engineering, 124(1):756–764,
2002.

[46] H. K. Navaz, B. S. Henderson, R. Faramarzi, A. Pourmovahed, and F. Taug-
walder. Jet entrainment rate in air curtain of open refrigerated display cases.
International Journal of Refrigeration, 28:267–275, 2005.

[47] A. M. Foster, R. Barrett, S. J. James, and M. J. Swain. Measurement and
prediction of air movement through doorways in refrigerated rooms. International
Journal of Refrigeration, 25(8):1102–1109, 2002.

33



References

[48] K. Sirén. Technical Dimensioning of a Vertically Upwards Blowing Air Curtain.
Part I. Energy and Buildings, 35:681–695, 2003.

[49] K. Sirén. Thechnical Dimensioning of a Vertically Upwards Blowing Air Curtain-
part II. Energy and Buildings, 35:697–705, 2003.

[50] Y. G. Chen and X. L. Yuan. Simulation of a cavity insulated by a vertical single
band cold air curtain. Energy Conversion Management, 46:1745–1756, 2005.

[51] H. K. Navaz, M. Amin, S. C. Rasipuram, and R. Faramarzi. Jet entrainment
minimization in an air curtain of open refrigerated display case. International
Journal for Numerical Methods for Heat and Fluid Flow, 16(4):417–430, 2006.

[52] A. M. Foster, M. J. Swain, R. Barrett, P. D’Agaro, and S. J. James. Effectiveness
and optimum jet velocity for a plane jet air curtain used to restrict cold room
infiltration. International Journal of Refrigeration, 29(5):692–699, 2006.

[53] A. M. Foster, M. J. Swain, R. Barrett, P. DAgaro, L. Ketteringham, and S. J.
James. Three-Dimensional Effects of an Air Curtain Used to Restrict Cold Room
Infiltration. Applied Mathematical Modelling, 31(6):1109–1123, 2007.

[54] J. J. Costa, L. A. Oliveira, and M. C. G. Silva. Energy savings by aerodynamic
sealing with a downward-blowing plane air curtain-A numerical approach. Energy
and Buildings, 38:1182–1193, 2006.

[55] CTTC-UPC. DPC: library for the development of programs focussed on the
resolution of combined heat and mass transfer problems, 2004.
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Chapter 2

Mathematical formulation
and numerical methodology.

Abstract. The objective of this chapter is to carry out an introduction to the mathemat-

ical formulation used troughout this thesis. Special attention is devoted to the turbulence

modelling selected to simulate flows in turbulence regime. Since, RANS modelling is used

in this thesis the explanation is centered on it. Thus, a detailed explanation of the process

followed to obtain averaged equations is shown. Derivation of the equations used to solve the

turbulent quantities is also presented. Furthermore, a brief description of the discretization

of the governing equations, computational methodology, verification tools and solvers used

in this thesis is included.
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Chapter 2. Mathematical formulation and numerical methodology.

2.1 Introduction

As it was explained in the previous Chapter, turbulence is that state of fluid motion
which is characterized by apparently random and chaotic three-dimensional vorticity.
When turbulence is present, it usually dominates all other flow phenomena and re-
sults in increased energy dissipation, mixing, heat transfer, and drag. Just like the
solutions of non-linear dynamic systems, turbulent solutions are thought to be de-
termined by their boundary and initial conditions. As non-linear dynamic systems,
these deterministic solutions of the non-linear fluid mechanics equations exhibit be-
havior that appears for all intents and purposes to be random. Such solutions are
called turbulent, and the phenomenon turbulence. Because of this random behavior
of turbulence, statistical techniques are needed for most of the study of turbulence.
All fluid motions, whether turbulent or not, are governed by the Navier-Stokes equa-
tions. Although laminar solutions to the equations often exist that are consistent
with the boundary conditions, perturbations to these solutions can cause them to
become turbulent. To see how this can happen, it is convenient to analyze the flow
in two components, a mean (or average) part and a fluctuating part. This technique
for decomposing the instantaneous motion is referred to as the Reynolds decompo-
sition. Applying this method to the instantaneous equations, a set of new averaged
equations is obtained. Moreover, as a result of this decomposition new unknowns
arise (Reynolds stresses and turbulent heat flux), leaving the mathematical formula-
tion based on averaged equations not closed (turbulence closure problem). Therefore,
relations had to be introduced to relate the stresses to the mean flow itself (mean rate
of strain). In this Chapter closure attempts for these relations and the mathematical
models involved are explained.

Researchers dedicate their attention to two fundamental aspects in CFD: physical
modeling and numerics. In physical modeling, we seek a set of equations or mathe-
matical relations that allow us to close the governing equations. Moreover, the focus
in numerics is to devise efficient, robust, and trustworthy algorithms for the solution
of the partial differential equations (PDEs). PDEs are a combination of differential
terms (rates of change) that describe a conservation principle. CFD process requires
the discretization of the governing PDEs, i.e. the derivation of equivalent algebraic re-
lations that should reliably represent the original PDEs. This is done by transforming
each differential term into an approximate algebraic relation. Thus, three key aspects
arise, i.e. discretization methodology, algorithm of resolution, and verification and
validation of the obtained results.
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2.2. Mathematical turbulence modelling

2.2 Mathematical turbulence modelling

2.2.1 The Navier-Stokes equations

The equations expressing conservation of mass, momentum and energy, govern fluid
dynamics and heat transfer for both laminar and turbulent flows, these are known as
Navier-Stokes equations, which for incompressible Newtonian fluids assuming negli-
gible heat friction, and radiative effects, may be written as follows:

∂ui

∂xi
= 0 (2.1)

∂(ρui)

∂t
+

∂(ρujui)

∂xj
= − ∂p

∂xi
+

∂

∂xj
(2µSij) + ρgi (2.2)

∂(ρT )

∂t
+

∂(ρuiT )

∂xi
=

∂

∂xi

(
λ

cp

∂T

∂xi

)

(2.3)

where T is the temperature; t time; ui the velocity; ρ, µ, λ and cp are respectively:

density, viscosity, conductivity and specific heat; and Sij = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)

is the

strain-rate tensor.

2.2.2 Statistical approach of turbulence: RANS modelling

As it was mentioned in the introduction, in the time averaged Navier-Stokes technique
(RANS), introduced by Reynolds [1], the equations are averaged statistically before
being solved. Thus, for stationary turbulence (statistically steady), the instantaneous
variable under consideration (e.g. φ(x, t)) can be expressed as the sum of a mean part
(φ̄(x, t)) and a fluctuating part (φ′(x, t)):

φ(x, t) = φ̄(x, t) + φ′(x, t) (2.4)

where the variable φ̄(x, t) is time-averaged and defined as

φ̄(x, t) =
1

∆T

∫ t+∆T

t

φ(x, t)dt (2.5)

and the time-average of the fluctuating part is zero φ′(x, t) = 0.
To carry out the time-average, special care must be taken with the averaging time
(∆T ), because this has to be large enough compared with turbulent time-scales, but
also sufficiently short compared with the characteristic time-scales of the mean flow,
i.e. it should filter small fluctuations due to turbulence effects, but not the main time
variations of the flow.
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2.2.3 Reynolds-averaged Navier-Stokes equations

If the procedure explained above is applied to velocity, pressure and temperature
fields, and their instantaneous values are replaced by the sum of their mean and
fluctuating parts in equations 2.1, 2.2 and 2.3, time-averaged governing equations are
obtained. These equations express the transport of mean quantities as follows

∂ūi

∂xi
= 0 (2.6)

∂(ρūi)

∂t
+

∂(ρūjūi)

∂xj
= − ∂p̄

∂xi
+

∂

∂xj

(

2µS̄ij − ρu′
iu

′
j

)

+ ρgi (2.7)

∂(ρT̄ )

∂t
+

∂(ρūiT̄ )

∂xi
=

∂

∂xi

(
λ

cp

∂T̄

∂xi
− ρu′

iT
′

)

(2.8)

As equations 2.7 and 2.8 show, a model for the Reynolds (turbulent) stress −ρu′
iu

′
j

and turbulent heat flux −ρu′
iT

′ is needed (closure problem). These additional terms
appears as consequence of the non-linearity characteristics of the convective terms.

As it was previously mentioned, there are different approaches to calculate these
terms depending on the degree of empiricism involved and hypothesis assumed (see
[1] or [2]). In this thesis three types of RANS models are used in order to calculate
Reynolds stresses: explicit algebraic Reynolds stress models (EARSM), non-linear
eddy-viscosity models (NLEVM), and linear eddy-viscosity models (LEVM). There-
fore, attention is now focussed in these kind of models.

2.2.4 Reynolds-stress transport equation

Even though differential Reynolds stress models (DRSM) are not considered in this
thesis, it is worth to explained the transport equation for the turbulent stresses be-
cause it is used to obtain the equation for the turbulent kinetic energy. Therefore, in
order to obtain transport equations for the turbulent stresses, equation 2.7 is multi-
plied by a fluctuating quantity and then time-averaged the product. If mass equation
is written as Ma(ρ) = 0 and the momentum equation as Mo(ui) = 0, then by doing
u′

iMo(ui) + u′
jMo(ui) + u′

iu
′
jMa(ρ) = 0 the Reynolds-stress equation can be obtained
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[1]:

∂u′
iu

′
j

∂t
︸ ︷︷ ︸

ζij

+ ūk

∂u′
iu

′
j

∂xk
︸ ︷︷ ︸

Cij

= −u′
iu

′
k

∂ūj

∂xk
− u′

ju
′
k

∂ūi

∂xk
︸ ︷︷ ︸

Pij

− 2ν
∂u′

i

∂xk

∂u′
j

∂xk
︸ ︷︷ ︸

ǫij

+
p′

ρ

(
∂u′

i

∂xj
+

∂u′
j

∂xi

)

︸ ︷︷ ︸

Πij

+
∂

∂xk









ν
∂u′

iu
′
j

∂xk
︸ ︷︷ ︸

Dv
ij

− u′
iu

′
ju

′
k

︸ ︷︷ ︸

Dt
ij

− p′u′
i

ρ
δjk −

p′u′
j

ρ
δik

︸ ︷︷ ︸

Dp
ij









︸ ︷︷ ︸

Dij

(2.9)

where ζij represents the local change in time; Cij the convective transport; Pij the
production by mean-flow deformation; ǫij the viscous destruction through the smaller
eddies; Πij the stress redistribution due to fluctuating pressure, i.e. the tendency to
return to isotropicity by the redistribution of Reynolds stresses; and Dij the diffusive
transport. The las term consists of three parts, the first term (Dv

ij) is the molecular
diffusion term, the second (Dt

ij) is the turbulent diffusion term (transport through
velocity fluctuations), and the remaining term (Dp

ij) correspond to the pressure trans-
port.
Terms Πij , ǫij and the last two parts of Dij (Dt

ij and Dp
ij) must be modelled. This

means that the exact equation (eq. 2.9) is not used any more, but a model which
approximates this equation need to be introduced.

2.2.5 Turbulent kinetic energy equation

An important measure of any turbulent flow is how intense the turbulent fluctuations
are. This can be quantified in terms of each one of the normal turbulent stress
components, u′2, v′2 and w′2. These stresses may also be understood as the kinetic
energy per mass unit of the fluctuating velocity field in each direction, which are
different because of anisotropy properties of the turbulent flows. Then, if the sum of
these stresses is divided by two the variable known as turbulence kinetic energy (k)
is obtained:

k ≡ 1

2
(u′2 + v′2 + w′2) =

1

2
u′

iu
′
i (2.10)

This quantity is helpful to model and predict turbulent flow in the different approaches
studied in this thesis. However, due to transport equations for the Reynolds stresses
are not solved in any of the approaches under consideration, it is necessary to find a
new transport equation for the turbulent kinetic energy. Thus, using the Reynolds-
stress equation (eq. 2.9) is possible to obtain the k-equation by applying eq. 2.10,
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and noting that the trace of the tensor Πij disappears for incompressible flows. So
then, the next scalar transport equation for the turbulent kinetic energy is obtained

∂(ρk)

∂t
︸ ︷︷ ︸

(Υ)

+
∂(ρūkk)

∂xk
︸ ︷︷ ︸

(C)

= −ρu′
iu

′
k

∂ūi

∂xk
︸ ︷︷ ︸

(Pk)

− ρǫ
︸︷︷︸

(E)

+
∂

∂xk

[

µ
∂k

∂xk
− ρ

2
u′

iu
′
iu

′
k − p′u′

k

]

︸ ︷︷ ︸

(D)

(2.11)

where

ρǫ = ν
∂u′

i

∂xk

∂u′
i

∂xk
(2.12)

The terms in eq. 2.11 represent: (Υ) unsteady term; (C) convective transport;
(Pk) production (transfer of energy from the mean flow to the turbulent fluctuations);
(E) dissipation due to viscous effects (rate at which k is converted into thermal
energy); (D) is composed of three parts: molecular diffusion, turbulent transport and
pressure diffusion.

As equation for Reynolds stresses (eq. 2.9), k-equation (eq. 2.11) also requires
modelling, in this case of turbulent transport and pressure diffusion terms, dissipation
(ǫ) and Reynolds stresses. In the context of two-equation models an additional trans-
port equation is used for ǫ or a similar quantity in order to calculate the turbulent
length scale. This point will be studied in detail later due to it is one of the most
difficult items related to turbulence modelling.

The standard approximation used to evaluate turbulent transport of scalar vari-
ables in a turbulent flow is to make an analogy with the molecular transport process,
which is known as simple gradient-diffusion hypothesis. Furthermore, pressure dif-
fusion is generally grouped with turbulent transport term [1]. Thus, they may be
written as follows

ρ

2
u′

iu
′
iu

′
k + p′u′

k ≈ −µt

σk

∂k

∂xk
(2.13)

with σk being a turbulence model constant. After these considerations the exact
equation for the turbulent kinetic energy (eq. 2.11) becomes eq. 2.14, which is also
the usual form adopted in two-equation turbulence models:

∂(ρk)

∂t
+

∂(ρūkk)

∂xk
= −ρu′

iu
′
k

∂ūi

∂xk
− ρǫ +

∂

∂xk

[(

µ +
µt

σk

)
∂k

∂xk

]

(2.14)

At this point, it can be seen that in order to obtain a closed formulation, the Reynolds
stresses remain to be modelled. In the next sections the different approaches used in
this thesis will be explained in detail.
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2.2.6 Explicit algebraic Reynolds stress models (EARSM)

A considerable simplification respect to DRSM can be obtained if instead of writing
six transport equations for the turbulent stresses, they are converted into algebraic
ones. The algebraic stress modelling (ASM) consists in removing the Reynolds-stress
advection and diffusion terms in the Reynolds-stress equation [3]. This step can
be done by taking as starting point the modeled equation for the Reynolds stress
anisotropy tensor (bij) [4] given by:

Dbij

Dt
=

1

2k

(
Dτij

Dt
− τij

k

Dk

Dt

)

= −bij

(
Pk

k
− ǫ

)

− 2

3
S̄ij −

(

bikS̄kj + S̄ikbkj −
2

3
bmnS̄mnδij

)

+(bikW̄ij − W̄ikbkj) +
Πij

2k
+

1

2k

(

Dij −
τij

k
D
)

(2.15)

where bij =
u′

iu
′

j

2k − 1
3δij ; τij = u′

iu
′
j; Πij is the pressure-strain rate correlation; and

Dij is the combined effect of turbulent transport and viscous diffusion (D = Dii/2).
Furthermore, it is necessary for the development of the algebraic stress model to define
a form for the pressure-strain rate model. In this thesis the SSG (Speziale, Sarkar
and Gatski [5]) model will be used, which can be written in the form

Πij = −
(

C0
1 + C1

1

Pk

ǫ

)

ǫbij + C2kS̄ij

+ C3k

(

bikS̄jk + bjkS̄ik − 2

3
bmnS̄mnδij

)

− C4k(bikW̄kj − W̄ikbkj)

(2.16)

where the closure coefficients (Cs) are generally functions of the invariants of the
stress anisotropy. It should be noted that the form given in eq. 2.16 is representative
of any pressure-strain rate model which could be used as well, e.g. Launder, Reece
and Rodi model [6]. It is also possible to use a non-linear relation for this term such
as that presented by Wallin and Johansson [7]. Replacing eq. 2.16 into eq. 2.15 next
form is obtained

Dbij

Dt
− 1

2k

(

Dij −
τij

k
D
)

= −
[bij

a4
+ a3

(

bikS̄kj + S̄ikbkj −
2

3
bmnS̄mnδij

)

− a2(bikW̄kj − W̄ikbkj) + a1S̄ij

] (2.17)

The coefficients ai are related to the pressure-strain correlation model by

a1 =
1

2

(4

3
− C2

)

, a2 =
1

2
(2 − C4)

a3 =
1

2
(2 − C3), a4 = gτ

(2.18)
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whit

g =

[(
C1

1

2
+ 1

)
Pk

ǫ
+

C0
1

2
− 1

]−1

=

[

γ0
Pk

ǫ
+ γ1

]−1

(2.19)

and τ is the turbulent time scale (k/ǫ, 1/ω); C0
1 = 3.4, C1

1 = 1.8, C2 = 0.36, C3 =
1.25, and C4 = 0.4. An implicit algebraic stress relation is obtained from the modelled
transport equation for the Reynolds stress anisotropy equation (eq. 2.15) when the
next hypothesis [8] are made:

Dbij

Dt
= 0, or

Dτij

Dt
=

τij

k

Dk

Dt
(2.20)

and

Dij =
τij

k
D (2.21)

Eq. 2.20 means that the turbulence has reached and equilibrium state (convective
and transport terms can be neglected), and eq. 2.21 take into account the assumption
that any anisotropy of the turbulent transport and viscous diffusion is proportional
to the anisotropy of the Reynolds stresses [8]. As shown, both hypothesis impose
limitations on the range of applicability of the algebraic stress model.

With these assumptions, the left hand side of eq. 2.17 disappears and the equation
becomes algebraic:

0 =
bij

a4
+ a3

(

bikS̄kj + S̄ikbkj −
2

3
bmnS̄mnδij

)

− a2(bikW̄kj − W̄ikbkj) + a1S̄ij

(2.22)

which also can be written using matrix notation as

− 1

a4
b− a3

(

bS + Sb − 2

3
{bS}I

)

+ a2(bW − Wb) = R (2.23)

If a linear pressure-strain rate model is used and an isotropic dissipation rate is
assumed, it follows that R = a1S. However, R can contain any known symmetric,
traceless tensor [7]. This equation (eq. 2.23) is clearly implicit and has to be solved for
b. Such equation can be solved numerically in an iterative form. However, one feature
of implicit algebraic relations is the lack of damping or diffusion, what for general
complex situations often can be numerically stiff [8]. Therefore, the computational
effort sometimes becomes even larger than that for a full DRSM. Thus, it is desirable
to obtain an explicit solution to this equation which still retains its algebraic character.

The first attempt in order to generate an explicit algebraic Reynolds stress model
(EARSM) from an implicit ASM begins from the observation that the solution of the
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implicit equation (eq. 2.23) is of the general form [4, 9]

b =

N∑

n=1

αnT(n) (2.24)

where T(n) is the integrity basis for functions of a symmetric and antisymmetric
tensor, and αn are scalar functions of the irreducible invariants of these tensors.
Moreover, N = 3 for two-dimensional flows or N = 10 for general three-dimensional
flows, then the discussion here is limited to N = 3 following methodology found
in [8]. For the case under consideration, the integrity basis consists of terms as

T(1) = S, T(2) = SW − WS, and T(3) = S2 − 1
3 [S2], while α1 = [S2] is an example

of an invariant (see Pope [9]).
The implicit equation, eq. 2.23, can be solved by projecting this algebraic relation

onto the tensor basis T(m) itself. For this solution, the scalar product of eq. 2.23 is
formed with each of the tensors T(m), (m = 1, 2, ..., N). This procedure leads to the
following system of equations:

N∑

n=1

αn

[

− 1

a4
(T(n),T(m)) − 2a3(T

(n)S,T(m)) + 2a2(T
(n)W,T(m))

]

= (R,T(m))

(2.25)

where the scalar product is defined as (Tn,Tm) = [T(n)T(m)] and [M] means trace
of matrix M. Or in a more compact form,

N∑

n=1

αnAnm = (R,T(m)) (2.26)

where matrix A is:

Anm ≡ − 1

a4
(T(n),T(m)) − 2a3(T

(n)S,T(m)) + 2a2(T
(n)W,T(m)) (2.27)

For a two dimensional mean flow field, the matrix A can be written as (see [10]):

Anm =









− 1
a4

η2 −2a2η
4R2 − 1

3a3η
4

2aaη
4R2 − 2

a4
η4R2 0

− 1
3a3η

4 0 − 1
6a4

η4









(2.28)

where η =
√

SikSki is a scalar invariant and R2 = −[W2]/[S2] is a flow parameter,
which is useful for characterizing the flow [10]; for example, R2 = 0 for a plain strain
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flow, while R2 = 1 for a pure shear flow. This matrix, when inverted, results in the
next expressions for the representation coefficients

α1 = − a4

α0η2

(
[RS] + 2a2a4[RWS] − 2a3a4[RS2]

)
(2.29)

α2 = a4

[

a2α1 +
[RWS]

η4R2

]

(2.30)

α3 = −a4

[

2a3α1 +
6[RS2]

η4

]

(2.31)

whit α0 =
(
1 − 2

3a2
3a

2
4η

2 + 2a2
2a

2
4η

2R2
)
. This group of equations is the general solution

valid for two-dimensional mean flow and for any arbitrary (symmetric traceless) tensor
R [8]. If R = a1S, the right-hand side of eq. 2.26 will be

(R,T(m)) =





[RS]
−2[RWS]
[
RS2

]



 =





a1η
2

0
0



 (2.32)

Replacing eq. 2.32 in eq. 2.29-2.31 and substituting into eq. 2.24 leads to the general
explicit relation for the Reynolds stress tensor (τij)

τij =
2

3
kI + 2kαa

[

S + a2a4(SW− WS) − 2a3a4

(

S2 − 1

3
[S2]I

)]

(2.33)

As shown, in the “explicit” equation (eq. 2.33) a4 is a function of Pk/ǫ, what actually
makes eq. 2.33 implicit. Gatski and Speziale [4] simplified this expression by assuming
the coefficient g in eq. 2.19 to be constant, that is, g ≡ a4

τ = 0.233 based on the
equilibrium value of the ratio Pk/ǫ = 1.88 for homogeneous flows. However, there is
another possibility, which accounts for the variation of the production-to-dissipation
ratio in the formulation [7, 10, 11]. Thus, it can be shown that the production-to-
dissipation ratio is given by:

Pk

ǫ
= −2[bS]τ (2.34)

and that the invariant [bS] is directly related to the coefficient α1 through [bS] = α1η
2

[10]. Then, from eq. 2.18 and eq. 2.19, it is possible to write the coefficient a4 as:

a4 =
[
γ1 − 2γ0α1η

2τ
]−1

τ (2.35)

Therefore, it is possible to have a cubic equation for α1 and therefore find a correct
value for a4, which can be written as:

γ2
0α3

1 −
γ0γ1

η2τ
α2

1

1

4η4τ2

[

γ2
1 − 2τ2γ0[RS] − 2η2τ2

(
a2
3

3
− R2a2

2

)]

α1

+
1

aη6τ

[
γ1[RS] + 2τ

(
a2[RWS] − a3[RS2]

)]
= 0

(2.36)
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The expansion coefficients of the non-linear terms, α2 and α3, retain the same func-
tional dependency on α1 as before. Furthermore, if eq. 2.36 is solved together with
R = a1S produce equivalent results to the previous ones. The correct choice of the
root of eq. 2.36 has been proposed by different authors [7, 10, 11].

Within this kind of formulation several models are implemented in this thesis. A
summary of the models with the corresponding equations used, closure coefficients
and damping functions is presented at the end of this section. Moreover, their abilities
to correctly predict different flows are tested in Chapters 3 and 4.

2.2.7 Non-linear eddy-viscosity models (NLEVM)

When a non-linear eddy-viscosity model is being developed, a relation of the same
form of eq. 2.24 is used, but instead of introducing this relation into an ASM, as in
the EARSM approach, efforts are made to use a form for the scalar coefficients αn

which allow good Reynolds stresses predictions in different flow configurations.
The complexity of the non-linear terms depends on both the number and form of

the terms chosen for the tensor representation. The selection of the adequate ten-
sor basis is based on the functional dependencies associated with the Reynolds stress
(τij) or anisotropy tensor (bij). As observed from eq. 2.9, the only dependency of
the Reynolds stresses on the mean flow is through the mean velocity gradient. There-
fore, it is assumed in developing non-linear models for the Reynolds stresses, that in
addition to the functional dependency, due to dimensional grounds, on the turbulent
velocity and length scales, also the dependence on the mean velocity gradient has to
be included [8]. The turbulent velocity scale is usually based on the turbulent kinetic
energy (k) and the turbulent length scale on the variable used in the corresponding
transport equation, which for the purposes of this section will be the isotropic turbu-
lent dissipation rate ǫ. Then, by applying dimensional analysis, imposing invariance
under co-ordinate transformations and exploiting the tensor properties of ∂ui

∂xj
and

u′
iu

′
j, the form of the general stress-strain relation can be deduced.
The number of independent invariants considered is based on the number of in-

dependent tensors which can be formed. Shih and Lumley [12] showed a procedure
in order to determine the seventeen independent second rank tensors which can be
formed using Caley-Hamilton theorem. Thus, assuming the Reynolds stresses to be
a function of mean velocity gradient, k and ǫ:

u′
iu

′
j = Fij

(
∂ui

∂xj
, k, ǫ

)

(2.37)

Non-dimensionalization results in regrouping arguments as Aij = τ ∂ui

∂xj
and

u′

iu
′

j

2k =

Fij(Aij). Since A is a general tensor, its transpose B 6= A ⇒ Bij = AT
ij = τ

∂uj

∂xi
. In
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order to obtain a general relationship, a tensorial form of Fij(Aij , Bij) is first sought.
After, Bij is replaced by AT

ij . Shih and Lumley [12] have shown that the independent
tensors formed by A and B are the following seventeen tensors:

A,A2,B,B2,AB,BA,AB2,A2B,BA2,B2A,A2B2,B2A2,

ABA2,B2AB,AB2A2,B2A2B,ABA2B2

To find the form of the tensor function Fij , an invariant basis is first formed using
two arbitrary non-dimensional vectors αi and βi as follows:

δijαiβj , Aijαiβj, ..., B
2
ijαiβj , ..., (AB)ijαiβj , ..., (AB2)ijαiβj , ...,

(A2B2)ijαiβj , ..., (ABA2)ijαiβj , ..., (AB2A2)ijαiβj , ..., (ABA2B2)ijαiβj

Therefore
u′

iu
′

jαiβj

2k is required to be a linear function of the above invariants. This is

due to αi and βj are arbitrary vectors, and
u′

iu
′

jαiβj

2k is bilinear in αiβj , thus, the form
of the function should also be bilinear in αi and βj [13]. Thus, the next expression is
obtained:

u′
iu

′
j

2k
=a1δij + a2A + a3B + a4A

2 + a5B
2 + a6AB + a7BA

+a8AB2 + a9A
2B + a10BA2 + a11B

2A + a12A
2B2

+a13B
2A2 + a14ABA2 + a15B

2AB + a16AB2A2

+a17B
2A2B + a18(ABA2B2 + A2B2AB)

where, a1 − a18 associated with this representation can, in general, be functions of
the invariants of the flow. Furthermore, making use of conditions: u′

iu
′
j = u′

ju
′
i,

u′
iu

′
i = 2k and Bij = AT

ij = Aji; the next relations between the coefficients can be
obtained: a2 = a3, a4 = a5, a8 = a9, a10 = a11, a14 = a15, a16 = a17, and

a1 =
1

3

[

1 − 2a2Aii − 2a4AikAki − (a6 + a7)AikBki − 2(a8 + a10)AikB2
ki

− (a12 + a13)A2
ikB2

ki − 2a14AikBklA
2
li − 2a16AikB2

klA
2
li

− 2a18AikBklA
2
lmB2

mi

]

(2.38)

48



2.2. Mathematical turbulence modelling

where A2
ij = AikAkj or u2

i,j = ui,kuk,j , being ui,j = ∂ui

∂xj
. Therefore it is obtained:

u′
iu

′
j

k
=

2

3
δij + 2a2τ(ui,j + uj,i −

2

3
uk,kδij)

+ 2a4τ
2(u2

i,j + u2
j,i −

2

3
Π1δij) + 2a6τ

2(ui,kuj,k − 1

3
Π2δij)

+ 2a7τ
2(uk,iuk,j −

1

3
Π2δij) + 2a8τ

3(ui,ku2
j,k + u2

i,kuj,k − 2

3
Π3δij)

+ 2a10τ
3(uk,iu

2
k,j + uk,ju

2
k,i −

2

3
Π3δij)

+ 2a12τ
4(u2

i,ku2
j,k − 1

3
Π4δij) + 2a13τ

4(u2
k,iu

2
k,j −

1

3
Π4δij)

+ 2a14τ
4(ui,kul,ku2

l,j + uj,kul,ku2
l,i −

2

3
Π5δij)

+ 2a16τ
5(ui,ku2

l,ku2
l,j + uj,ku2

l,ku2
l,i −

2

3
Π6δij)

+ 2a18τ
6(ui,kul,ku2

l,mu2
j,m + uj,kul,ku2

l,mu2
i,m − 2

3
Π7δij)

(2.39)

where,

Π1 = ui,kuk,i, Π2 = ui,kui,k, Π3 = ui,ku2
i,k, Π4 = u2

i,ku2
i,k

Π5 = ui,kul,ku2
l,i, Π6 = ui,ku2

l,ku2
l,i, Π7 = ui,kul,ku2

l,mu2
i,m

(2.40)

As it can be observed eq. 2.39 is the most general model for obtaining Reynolds
stresses under non-linear formulation. It contains eleven undetermined coefficients
which must be found by other model constraints such as, rapid distortion theory,
experimental data or data from DNS, and realizability constrains:

τββ ≥ 0, subscript no sum (2.41)

τ2
βγ ≤ τββτγγ , Schwarz inequaltity (2.42)

However, in this thesis the non-linear models analysed only include up to third order
terms from the twelve terms that eq. 2.39 contains, which can be written using shear
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and rotational tensors instead of strains:

2bij =
u′

iu
′
j

k
− 2

3
δij

= − 2Cµ(Sij −
1

3
Sllδij)

+ c1(SikSkj −
1

3
SlkSklδij) + c2(WikSkj − SikWkj)

+ c3(WikWkj −
1

3
WlkWklδij) + c4(WikSklSlj − SikSklWlj)

+ c5(WikWklSlj + SikWklWlj − WlkWklSij −
2

3
WklSlmWmkδij)

+ c6(SlkSklSij) + c7(WlkWklSij)

(2.43)

Finally, is possible to write last equation in matrix notation differencing between
coefficients of second (βi) and third (γi) order terms as:

u′
iu

′
j

k
=

2

3
δij − 2C∗

µf∗
µS + β1(S

2 − 1

3
[S2]I) + β2(WS − SW)

+β3(W
2 − 1

3
[W2]I) − γ1[S

2]S − γ2[W
2]S

−γ3(W
2S + SW2 − [W2]S − 2

3
[WSW]I) − γ4(WS2 − S2W) (2.44)

where, W̄ij = 1
2

(
∂ūi

∂xj
− ∂ūj

∂xi

)

; W = τ(W̄ij); τ is k/ǫ or 1/ω; I = δij and [M] represents

the trace of matrix M.
Details of implemented models used in this thesis under this category are given at

the end of this section, and in Appendix A.

2.2.8 Linear eddy viscosity models (LEVM)

In this type of models, a turbulent or apparent viscosity depending of flow features,
relates Reynolds stresses to the mean strain rate tensor in the same way as the molec-
ular viscosity, which is a property of the fluid. The turbulent eddy viscosity (µt) can
be viewed as a diffusivity determined by the macroscopic velocity and length scales
of the large energy containing eddies. On the other hand, the molecular viscosity is
determined by the smallest scales on the molecular level. Thus, for LEVMs eq. 2.7
is closed by assuming Boussinesq hypothesis [2], where the Reynolds stress tensor is
linearly related to the mean rate of strain as follows:

ρu′
iu

′
j =

2

3
ρkδij − 2µtS̄ij (2.45)
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A closer look at this relation shows that it is of the same form as the first term in the
non-linear relation (eq. 2.44). In terms of the Reynolds stress anisotropy tensor, the
following relation is obtained:

bij = −ρ
µt

k
Sij (2.46)

Which shows that at this level of closure an anisotropy of the Reynolds stresses can
only be supported by a mean strain because of the insensitivity of the relation to
the vorticity tensor. The exclusive dependence on the strain rate tensor, together
with the form of the turbulent kinetic energy equation (eq. 2.14) shows that this
level of closure is frame indifferent. However, such behavior is opposite to DNS
results for even the simplest turbulent flows, e.g. decaying isotropic turbulence. DNS
simulations have shown that turbulence decay depends on the frame rotation which
is prevented using equation 2.45. Moreover, two of the more relevant deficiencies are,
the above mentioned, material-frame indifference of the models and the isotropy of the
eddy viscosity. These deficiencies prevent, for example, the prediction of turbulent
secondary motions in ducts and the insensitivity of the turbulence to noninertial
effects such as imposed rotation, as well as those mentioned in the introduction of
this thesis. Nevertheless, LEVMs have proven to be a valuable tool in turbulent flow-
field predictions, since the turbulent viscosity is larger than the molecular viscosity,
this approach is numerically robust, specially compared to DRSMs [10]. Therefore,
this kind of models remains as an engineering tool in routine calculations.

From dimensional analysis can be seen that the eddy viscosity is given by the
product of a turbulent velocity scale and a turbulent length scale. As noted early, the
velocity scale used in practically all existing RANS models is the square root of the
turbulent kinetic energy (k1/2). Thus, the eddy viscosity can be expressed as:

µt = ρCµk1/2l = ρCµknZm (2.47)

where l is a characteristic measure of the length scale of the energetic eddies. Or
as an alternative to it, some other related variable Z can be used as a measure of
a characteristic “scale” of the turbulence. So then, exponents m and n are chosen
to guarantee correct dimensionality of the eddy viscosity. Usual choices of Z are the
dissipation rate (ǫ ∼ k3/2/l)[m2/s3], previously introduced as the isotropic turbulent
dissipation rate; a specific dissipation rate (ω ∼ ǫ/k ∼ k1/2/l)[1/s]; or a turbulent
time scale (τ ∼ k/ǫ ∼ l/k1/2)[s] [1].

In this thesis two scalar transport equations are included in the model for both the
turbulent velocity and length scales, thus two-equation eddy viscosity models
are the framework where all models studied (EARSMs, NLEVMs and LEVMs) are
supported. Furthermore, due to the length scale equation is the most difficult and
controversial piece of the formulation presented it is studied in detail in the next
section.
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2.2.9 Turbulent length scale determining equation

In this thesis two-equation platforms, i.e. k − ǫ and k − ω, are analyzed. Therefore,
here a deeper study of the dissipation rate (ǫ) equation and the specific dissipation
(ω) equation is carried out. The length scale, characterizing the size of the large
energy containing eddies, is subject to transport processes in a similar way to the
turbulent kinetic energy. Therefore, this length scale is determined by introducing
an additional differential transport equation. The Z-equation (ǫ or ω) can be result
of two possible approaches. The first one consists of constructing a Z-equation in an
ad-hoc manner, trying to simulate some of the physics believed to be essential. The
second approach tries to derive the exact transport equation for Z, and after an effort
is done in order to model the specific unknown terms. Both approaches usually leads
to similar results.

The k − ǫ model

The selection of Z = ǫ has been the most common choice for the length scale deter-
mining variable in last decades. However, the exact equation is not of much help as
a basis for modelling, except to give some indication of the meaning and importance
of some terms. Nevertheless, it is instructive to look at the exact transport equation
for ǫ, which following the second approach before mentioned, is obtained by taking
the next moment of the Navier-Stokes equations (eq. 2.7),

2ν
∂u′

i

∂xj

∂

∂xj
[Mo(ui)] = 0 (2.48)

which after algebra application, leads to the form:

∂ǫ

∂t
+ ūi

∂ǫ

∂xk
= Pǫ1 + Pǫ2 + Pǫ3 + Pǫ4 + Y + Dv

ǫ + Dt
ǫ + Dp

ǫ (2.49)

being,

Pǫ1 + Pǫ2 = −2ν

(

∂u′

i

∂xl

∂u′

k

∂xl
+

∂u′

l

∂xi

∂u′

l

∂xk

)

∂ūi

∂xk

Pǫ3 = −2νu′
k

∂u′

i

∂xl

∂2ūi

∂xk∂xl
, Pǫ4 = −2ν

∂u′

i

∂xk

∂u′

i

∂xl

∂u′

k

∂xl

Y = −2
(

ν
∂2u′

i

∂xk∂xl

)2

, Dv
ǫ = ν ∂2ǫ

∂xk∂xk

Dt
ǫ = − ∂

∂xk
(u′

kǫ), Dp
ǫ = − 2ν

ρ
∂p
∂xi

∂uk

∂xi

As can be seen this equation is much more complicated than eq. 2.11 and involves
various unknown double and triple correlations of fluctuating velocity, pressure and
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velocity gradients, which need closure approximations. Pǫ1 + Pǫ2 are the mixed and
mean production respectively; Pǫ3 is the gradient production; Pǫ4 is the turbulent
production; Dv

ǫ is the viscous diffusion; Dt
ǫ is the turbulent diffusion; Dp

ǫ is the pres-
sure diffusion; and Y is the destruction of dissipation. Therefore, it is necessary
further simplifications, which try to build a dimensionally correct approach. Thus,
the following assumptions are required:

• At high Reynolds numbers the source terms, Pǫ4 and Y are dominant, whereas
Pǫ3 can be neglected as smaller [14]. Thus, Pǫ4 and Y are modeled together as:

−2ν
∂u′

i

∂xk

∂u′
i

∂xl

∂u′
k

∂xl
− 2

(

ν
∂2u′

i

∂xk∂xl

)2

= −Cǫ2
ǫ2

k
(2.50)

on the basis of the reasoning that at high turbulent Reynolds number, these two
terms may be taken as being controlled by the dynamics of the energy cascade
process transporting energy from the lower to the higher wave numbers [14].

Furthermore, Pǫ1 + Pǫ2 are modeled by contracting the indices as:

−2ν

(

∂u′
i

∂xl

∂u′
k

∂xl
+

∂u′
l

∂xi

∂u′
l

∂xk

)

∂ūi

∂xk
=

(

Cǫ1
ǫ

k
u′

iu
′
j + C′

ǫ1δijǫ
) ∂ūi

∂xk

= Cǫ1
ǫ

k
u′

iu
′
j

∂ūi

∂xk
(2.51)

For incompressible flows, the term containing C′
ǫ1 vanishes when it is multiplied

by ∂ūi/∂xk.

• The simple gradient diffusion hypothesis is used to model turbulent diffusion,
in a similar way that it was done in eq. 2.13.

Hence, the following modelled form of the ǫ equation can be derived:

∂(ρǫ)

∂t
+

∂(ρūiǫ)

∂xi
=

∂

∂xi

[(

µ +
µt

σǫ

)
∂ǫ

∂xi

]

+ Cǫ1
ǫ

k
Pk − Cǫ2ρ

ǫ2

k
(2.52)

where, Pk = −ρu′
iu

′
j(∂ūi/∂xj) ; Cǫ1, Cǫ2 and σǫ are model constants.

If the first possible approach, above mentioned, is followed a similar equation is
obtained.
Then, in the k − ǫ model, Reynolds averaged Navier-Stokes equations are solved
together with eq. 2.14 and eq. 2.52. Moreover, at this point it should be put
forward that this model is a high Reynolds model: near-wall treatment (low Reynolds
formulation), origin of model constants and damping functions will be discussed later.
Moreover, specific functions and models constants will be defined in section 2.2.11 and
appendix A.

53



Chapter 2. Mathematical formulation and numerical methodology.

Origin of the constants in k − ǫ equations

In what follows a brief summary of a way to obtain model constants in a high-Reynolds
k − ǫ model is carried out. The constant Cǫ2 is determined by taking into account
decaying homogeneous turbulence, where the k − ǫ equations reduce to:

Dk

Dt
= −ǫ (2.53)

Dǫ

Dt
= −Cǫ2

ǫ2

k
(2.54)

which leads to:
D2k

Dt2
− Cǫ2

k

(
Dk

Dt

)2

(2.55)

When last equation is solved, it defines a decay law for the turbulent kinetic energy
given by k ≈ t−n with n = 1/(Cǫ2 − 1). In the standard k − ǫ model, n = 1.09
produces Cǫ2 = 1.92.

For the determination of Cǫ1 homogeneous shear flows are used. They seem to
reach an equilibrium state when k and ǫ grown in such a way that the turbulent time
scale (τ = k/ǫ) is approximately constant. Transport equations (eq. 2.14 and 2.52)
can be written for these flows as:

Dk

Dt
= Pk − ǫ (2.56)

Dǫ

Dt
=

Cǫ1Pk − Cǫ2ǫ
k
ǫ

(2.57)

what combined with the before assumption yields:

D(k/ǫ)

Dt
=

Dk

Dt

1

ǫ
+ k(− 1

ǫ2
)
Dǫ

Dt

=
Pk

ǫ
− 1 − k

ǫ2

(
Cǫ1Pkǫ

k
− Cǫ2ǫ

2

k

)

(2.58)

= Cǫ2 − 1 − (Cǫ1 − 1)
Pk

ǫ
= 0

Which leads to

Cǫ1 =
Cǫ2 − 1

Pk/ǫ
+ 1 (2.59)

If a value of Cǫ2 = 1.83 is used in a shear flow, where Pk/ǫ ≈ 1.8 and τ ≈ cte, a
value of Cǫ1 = 1.46 results. However, the common value given to Cǫ1 is 1.44.
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The value for σǫ is sometimes chosen from computer optimization. Otherwise, a
value for Cǫ1 is imposed and subsequently σǫ is determined, which is done by means
of the use of a relation expressing the compatibility of the k−ǫ model with the inertial
sublayer near a wall [13] as:

σǫ =
κ2

(Cǫ2 − Cǫ1)
√

Cµ

(2.60)

where Cµ can be a constant or a function of strain tensor, κ =
u2

τ√
Cµ

and uτ is friction

velocity.

Improvements to ǫ equation

Even though different terms have been used in order to improve accuracy and gen-
erality of k − ǫ models, the most commonly accepted are: E and Y AP . E term
was included by Jones and Launder [15] to increase the destruction of dissipation in
viscous and transitional regions. Thus, to produce a correct profile of k with distance
from solid walls. Despite, they can not provide a physical argument for its adoption,
its inclusion is due to the fact that without E-term the maximum of k at y+ ≈ 20
did not match experiments [15].

The Y AP correction was proposed by Yap [16] in order to increase ǫ therefore,
reducing k in non-equilibrium flows, e.g. flows with separating, reattaching and stag-
nation regions. It was designed by Yap after study heat transfer rates downstream
from an abrupt pipe expansion. He found heat transfer rates as high as five times
experimental results in the vecinity of the reattachment point. Therefore, Yap added
a source term (Y AP ) to the right side of the ǫ transport equation:

Y AP = 0.83
(k3/2

ǫcly
− 1
)(k3/2

ǫcly

)2 ǫ2

k
(2.61)

where, y is the distance from the wall and cl = 2.5 is the slope of the turbulent length
scale (k3/2/ǫ) in the near wall region of a constant shear stress flow. Therefore, the
term is zero in a wall flow in local equilibrium and is uninfluential at the outer region.
In a near wall separated or recirculated region, Y AP term drives the length scale
level toward its local equilibrium value [17].

This term has been transformed for different authors in the last years due to
numerical problems occasioned by the inclusion of the distance to the wall in complex
geometries. Thus, Iacovides and Raise [18] proposed a form independent of the wall
distance, making use of the length-scale gradient:

Y AP = cw
ǫ2

k
max[F (F + 1)2, 0] (2.62)

55



Chapter 2. Mathematical formulation and numerical methodology.

where F = [((∂l/∂xj)(∂l/∂xj))
1/2 − dledy]/cl represents the difference between the

predicted length-scale gradient, with l = k3/2/ǫ, and the “equilibrium length-scale
gradient”, dledy, defined by dledy = cl[1 − exp(−BǫRt)] + BǫclRtexp(−BǫRt). This
is obtained by differentiating the length-scale employed in a one-equation model [19].
The coefficients (cl, Bǫ, cw) are given in section 2.2.11. Also, details of model con-
taining both functions E and Y AP , will be specified in section 2.2.11 and appendix
A.

The k − ω model

The choice of Z = ω is mainly due to the work done by Wilcox and coworkers [1].
They state that the main advantage of this formulation compared to the k − ǫ one,
lies in a more natural treatment of the near wall region. The quantity ω can be seen
as an inverse time-scale of the large eddies or as the rate of dissipation of energy
in unit volume and time. Furthermore, contrary to the dissipation rate (ǫ), there
exists no exact equation for ω. Thus, in order to obtain this variable, the transport
equation need to be constructed. This can be done by means of a multiplication of
the k equation by ω/k to yield a new secondary transport equation.
Hence, starting with eq. 2.14, reemplacing dissipation (ǫ ≡ β∗ωk) and rearranging
terms, lead to the next equation:

∂(ρω)

∂t
+

∂(ρūiω)

∂xi
=

∂

∂xi

[(

µ +
µt

σω

)
∂ω

∂xi

]

+ α
ω

k
Pk − βρω2 (2.63)

where, α, β and σω are specific model constants, which will be studied in detailed in
section 2.2.11 and that can be obtained in a similar way to that of k − ǫ models.
In these kind of models, RANS equations are solved jointly with the k equation and
ω equation. The turbulent viscosity is also redefined as µt = α∗ ρk

ω .

Improvements to ω equation

A different way to construct ω equation consists in transform the modelled k and ǫ
equations, by substitutin ω with ǫ/k. Following this choice a number of new terms
appear in the equation thus obtained. Using, this tecnique the constructed model will
be identical to the original k−ǫ model, however expressed in a new secondary variable
with a different, and improved, near-wall behaviour. Depending on the complexity of
the equations for k and ǫ used as starting point, there will be different versions of the
resulting ω-equation. So then, using the standard k − ǫ model as a basis (eqs. 2.14
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and 2.52), the resulting transport equation for ω can be written as:

∂(ρω)

∂t
+

∂(ρūiω)

∂xi
=

∂

∂xi

[(

µ +
µt

σǫ

)
∂ω

∂xi

]

+ (Cǫ1 − 1)
ω

k
Pk − (Cǫ2 − 1)ρω2

+
2ρ

k

(

µ +
µt

σǫ

) ∂k

∂xi

∂ω

∂xi
+

ρω

k

(µt

σǫ
− µt

σk

)∂2k

∂x2
i

(2.64)

As it can be seen, this equation contains two new terms in relation to the previously
ω equation presented. These are shown in the second line of eq. 2.64. The last term
(including second derivative of k) can be neglected because of the similar values of σk

and σǫ. However, the first term in the second line of eq. 2.64, known as cross diffusion
(Ew), has been retained in k − ω models that have appeared in the last years, in an
effort to improve model performance in flows with a freestream boundary. Thus,
in free shear flows the cross diffusion term increases the production of ω, thereby,
enhances dissipation of k [1]. Although this term reduces problems of k − ω models
in the kind of flows above mentioned, the efficiency of this term is not proved yet,
therefore, model details as well as a study about the suitability of this term in different
flow configurations will be addressed later in this thesis.

Near-wall treatment: low Reynolds modelling

The models above presented have been developed for regions with sufficiently high
Reynolds number. However, most of the flows in engineering applications are confined
or related to walls and complex geometries, what imply the presence of different
turbulent regimes, low and high Reynolds numbers. Therefore, the high Reynolds
form of the equations is not valid in the vicinity of a wall, where viscous effects
become important, e.g. turbulent boundary layer flows at low Reynolds numbers,
unsteady flows and flows with separation and recirculation regions. Although, in the
case of the k − ω model, which is capable of providing acceptable results for wall
bounded flows, a deeper study of low-Reynolds-number (LRN) effects is needed in
order to improve industrial and engineering usefulness of the turbulence models.

The LRN approach consists of changing the equations in such a way that they are
valid up to the wall. This can be done by taking into account the limiting behavior
of the variables under consideration approaching a solid boundary i.e., asymptotic
consistency. In order to achieve this, damping functions and another modifications
are introduced in the k, ǫ or ω equations to model viscous interaction. In the case of
k − ǫ models Jones and Launder work [15] can be taken as example. They modified
the standard high Reynolds number model by including three damping functions.
Making in this way model constants (Cǫ1, Cǫ2 and Cµ), appearing in eqs. 2.14 and
2.52, dependent upon the turbulence Reynolds number (Rt = ρk2/µǫ). Moreover,
they added further terms to account for the fact that the dissipation processes are
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not isotropic and to facilitate computational calculations by letting ǫ go to zero at the
wall. Thus, they solved ǫ̃-equation, which may be interpreted as the isotropic part of
the energy dissipation. Therefore, now ǫ = ǫ̃ + D, where D is the value of dissipation
at wall and is specific for each model (see appendix A).

A similar procedure is also used in k − ω models. Wilcox [1] uses perturbation
methods to analyze the viscous sublayer. It is done to determine a set of functional
forms dependent upon the turbulence Reynolds number (Ret = ρk/µω), in order to
achieve the desired asymptotic behavior near solid walls. Furthermore, to make k−ω
model capable of predicting transition in boundary layers. Therefore, coefficients
appearing in eqs. 2.14 and 2.63 are modified. Details of these coefficients are given
in appendix A.

There is a second possibility that allows the use of high Reynolds number equa-
tions. They are used only in fully developed turbulent regions, while using empirical
wall functions to bridge the distance to the wall. However, these called wall-functions
have been designed based on the law of the wall and they are, in general, not suitable
for flows with separation, recirculation and adverse pressure regions. Considering that
this work is focussed in flows exhibiting all these characteristics, this option is not
contemplate in this thesis.

2.2.10 Turbulent heat flux

As result of the Reynolds averaging process carried out on the energy equation (eq.
2.3), a new unknown appears in the energy averaged equation (eq. 2.8) (see section
2.2.3 for details). This new term is known as turbulent heat flux (−ρu′

iT
′), which

can be modelled similarly to the Reynolds stress. Thus, a new differential transport
equation can be derived. Furthermore, it can be simplified to obtain an algebraic
relation in order to evaluate turbulent heat flux or, at the end, a more simplified
linear approach based on the eddy viscosity can be used to calculate it.

Although the use of a differential transport equation to obtain the turbulent heat
flux improves heat transfer predictions, its numerical complexity is higher and the
numerical robustness is limited. Therefore, in this work the last option based on the
use of an eddy or turbulent viscosity is applied. Thus, the simple gradient diffusion
hypothesis is assumed. In this, the turbulent scalar flux is expected to be aligned with
the mean scalar gradient. The turbulent diffusion coefficient is usually considered
proportional to the eddy viscosity by means of a turbulent Prandtl number, which is
a specific constant of the turbulence model. This approach is due to Reynolds, who
based on the similarities between the momentum and energy transfer, proposed this
analogy: as Boussinesq hypothesis associates turbulent stresses with mean strains,
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turbulent heat flux is proportional to mean temperature gradient. So that,

−ρu′
iT

′ = − µt

σT

∂T̄

∂xi
(2.65)

where σT is the turbulent Prandtl number. A constant value for this quantity is
often used and this is usually satisfactory, provided the heat transfer rate is not too
high. The most common values assumed for σT are 0.89 or 0.90, in the case of a
boundary layer. Heat transfer predictions could be improved somewhat by letting σT

vary through the boundary layer [1].

2.2.11 Summary of implemented two-equation turbulence mod-
els

Two-equation turbulence models used in this thesis consist of: the time-averaged
governing equations (RANS), some relation for the Reynolds stress tensor and tur-
bulent heat flux and extra transport equations for the determination of turbulence
time and lenght scales, e.g. turbulent kinetic energy (k) and dissipation (ǫ) or specific
dissipation (ω).

The time-averaged governing equations with the assumptions already noted are:

∂ūi

∂xi
= 0 (2.66)

∂(ρūi)

∂t
+

∂(ρūjūi)

∂xj
= − ∂p̄

∂xi
+

∂

∂xj

(

2µS̄ij − ρu′
iu

′
j

)

+ ρgi (2.67)

∂(ρT̄ )

∂t
+

∂(ρūiT̄ )

∂xi
=

∂

∂xi

(
λ
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∂T̄

∂xi
− ρu′

iT
′

)

(2.68)

Moreover, as mentioned before, two transport differential equations are added in two-
equation models, one for k and another for ǫ or ω; which in their low Reynolds version
can be written as follows:

∂(ρk)

∂t
+

∂(ρūik)

∂xi
=

∂

∂xi

[(

µ +
µt

σk

)
∂k

∂xi

]

+ Pk − ρDis (2.69)

∂(ρǫ̃)

∂t
+

∂(ρūiǫ̃)

∂xi
=

∂

∂xi

[(

µ +
µt

σǫ

)
∂ǫ̃

∂xi

]

+ f1Cǫ1
ǫ̃

k
Pk − f2Cǫ2ρ

ǫ̃2

k
+ E + Yc (2.70)

∂(ρω)

∂t
+

∂(ρūiω)

∂xi
=

∂

∂xi
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µ +
µt

σω

)
∂ω

∂xi

]

+ α
ω

k
Pk − βρω2 + Eω (2.71)

µt = Cµfµ
ρk2

ǫ
= α∗ ρk

ω
(2.72)
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where, Pk = −ρu′
iu

′
j(∂ūi/∂xj) ; Dis = ǫ for k − ǫ models; Dis = β∗ωk for k − ω

models; and ǫ̃ = ǫ − D/ρ; σk, σǫ, σω, Cǫ1, Cǫ2, β, β∗ are model constants; D, E, Ew

and Yc are extra terms and f1, f2 , Cµ, fµ and α∗ are damping functions depending
on the specific model used.
For details about damping functions and closure coefficients of each model see ap-
pendix A.

The general expression used in this thesis in order to evaluate turbulent stresses
is:

u′
iu

′
j

k
=

2

3
δij − 2C∗

µf∗
µS + β1(S

2 − 1

3
[S2]I) + β2(WS − SW) + β3(W

2 − 1

3
[W2]I)

−γ1[S
2]S− γ2[W

2]S − γ3(W
2S + SW2 − [W2]S − 2

3
[WSW]I) − γ4(WS2 − S2W)

(2.73)

This expression has the advantage that terms associated with coefficients γ3 and
γ4 dissapear in 2D incompressible flows. It is also evident that setting β’s and γ’s
coefficients to zero in eq. 2.73 the linear relation (eq. 2.45) is obtained.

The coefficients of the general expression (eq. 2.73) can be found in appendix A.
Finally, for the calculation of the turbulent heat flux the next relation:

−ρu′
iT

′ = − µt

σT

∂T̄

∂xi
(2.74)

which is applied for all models in this work assuming a constant Prandtl number
(σT = 0.9).

Models considered in this work, based on k − ǫ platform:

• Ince and Launder model (IL kǫ-LEVM) [17]: low-Reynolds linear model
including Yap correction [16]. It also includes additional source terms in the
dissipation equation to improve its behaviour near solid walls.

• Goldberg, Peroomian and Chakravarthy model (GPC kǫ-LEVM) [20]:
wall-distance-free low-Reynolds linear model. It includes an extra source term
in the dissipation equation to increase the dissipation level in nonequilibrium
regions.

• Abid, Morrison, Gatski and Speziale model (AMGS kǫ-EARSM) [21]:
high-Reynolds model derived under weak-equilibrium condition and converted
into an explicit algebraic model by assuming that the ratio Pk/ǫ is constant and
known.
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• Craft, Launder and Suga model (CLS kǫ-NLEVM) [22]: low-Reynolds
cubic non-linear model. It was calibrated by reference to direct numerical sim-
ulation data for homogeneously strained flow. Furthermore, it was proposed
paying attention to the representation of viscous near-wall processes. Also, it
includes Yap correction [16].
In this work, the original Cµ function proposed in [22] is replaced by that rec-
ommended later by Craft et al. [19].

Those models studied which use ω as turbulent dissipation variable are:

• Wilcox standard model (WX kω-LEVM) [23]: standard k−ω linear model
proposed to account the effects of streamwise pressure gradients, and to over-
come deficiencies of ǫ-based models in the regions near solid walls.

• Wilcox transition model (WXT kω-LEVM) [24]: similar to standard linear
model, but coefficients are now based on turbulence Reynolds number to achieve
asymptotic consistency with the exact behaviour of the turbulent variables when
approaching a solid boundary, i.e. transition zones.

• Wilcox cross-diffusion model (WXCD kω-LEVM) [1]: linear model that
includes cross-difussion term in order to improve predictive accuracy for free
shear flows. Coefficients are calibrated to provide correct spreading rates in
plane, round and axial jets.

• Larsson model (LAR kω-NLEVM) [25]: non-linear quadratic model based
on the standard WX (kω-LEVM) model, and derived using dimensional analysis,
rapid distortion theory and realisability constraints.

• Wallin and Johansson model (WJO kω-EARSM) [7]: quadratic model
derived formally from an algebraic form of a DRSM, subject to the weak-
equilibrium assumption. It is complemented by a non-linear scalar equation
for Pk/ǫ.

• Abid, Rumsey and Gatski model (ARG kω-EARSM) [26]: k−ω version
of the AMGS (kǫ-EARSM) model.

• Abe, Jang and Leschziner model (AJL kω-NLEVM) [27]: quadratic low-
Reynolds model. This model introduces two new terms in the basic constitutive
relation (Eq. 2.44), to account for high normal straining and strong near-wall
anisotropy.

Table 2.1 indicates which terms of eq. 2.73 are taken into account in the models
used in this work.
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Model β1 β2 β3 γ1 γ2

LEVM N N N N N

AMGS-EARSM [21] Y Y N N N

CLS-NLEVM [22] Y Y Y Y Y

LAR-LEVM [25] N Y N N N

ARG-EARSM [26] Y Y N N N

WJO-EARSM [7] Y Y N N N

AJL-NLEVM [27] Y Y N N N

Table 2.1: Terms appearing in the general stress-strain relationship (Y = yes, N = no).

2.3 Numerical methodolgy

2.3.1 Introduction

By definition, Computational fluid dynamics (CFD) is one of the branches of fluid
mechanics that uses numerical methods and algorithms to solve and analyze problems
that involve fluid flows. Computers are used to perform calculations required to simu-
late the interaction of fluids with the complex surfaces used in engineering. However,
even with simplified equations and fast computers, only approximate solutions can be
obtained in many situations.

Historically, this method was first developed to solve the Linearized Potential
equations. Two-dimensional methods, using conformal transformations of the flow
about a cylinder to the flow about an airfoil were developed in the 1930s. But, it was
until 1960s that the first paper on a practical three-dimensional method to solve the
linearized potential equations was presented.

The most fundamental consideration in CFD is how a continuous fluid is simulated
in a discretized manner on a computer. In this thesis, the standard approach known
as finite volume method (FVM) is used. The first step in the FVM is to divide the
domain into a number of control volumes, where the variable of interest is located
at the centroid of the control volume. The next step is to integrate the differential
form of the governing equations over each control volume. Interpolation profiles are
then assumed in order to describe the variation of the concerned variable between
cell centroids. The resulting equation is called the discretized equation. This integral
approach yields a method that is inherently conservative. This is satisfied for any
control volume as well as for the whole computational domain and for any number of
control volumes.

Once FVM is applied to all control volumes in a given mesh, we obtain a full linear
system of equations that needs to be solved. The basic solution of the system of equa-
tions arising after discretization is accomplished by many of the familiar algorithms of
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numerical linear algebra. Any stationary iterative method such as, symmetric Gauss-
Seidel, successive overrelaxation (SOR), or a Krylov subspace method, can be used
to solve this linear system [28].

2.3.2 Discretization of general transport equations

RANS equations (eqs. 2.66, 2.67 and 2.68) and turbulence transport equations (eqs.
2.69 and 2.70 or 2.71) all can be written in a general convection-diffusion form:

∂(ρφ)

∂t
︸ ︷︷ ︸

transient

+∇ · (ρuφ)
︸ ︷︷ ︸

convection

−∇ · (Γ∇φ)
︸ ︷︷ ︸

diffusion

= Sφ
︸︷︷︸

source

(2.75)

where φ is the dependent variable and the source term varies for each equation to be
solved and Γ represents the diffusion coefficient for scalar variables and the effective
viscosity for vector variables. For the discretization of eq. 2.75 the finite volume
method is applied using a structured and staggered grid. The explanation in this
section is restricted to two dimensions, although the extrapolation to three dimensions
is straightforward.

As can be observed in Figure 2.1, three different control volumes (CVs) are defined,
in all of them nodal points are located in the center of the corresponding CV. The first
one (dashed) is centered for the evaluation of scalar quantities (pressure, temperature,
k and ǫ or ω). The grid staggered half control volume to the right is used to evaluate
x-direction velocity (dashed line in Fig. 2.1) and the one staggered to the top is
defined to calculate y-direction velocity (dotted line in Fig. 2.1).
If in eq. 2.75 a new total flux (J) is used to group convective flux (ρuφ) and diffusive

flux (Γ∇φ) as, J = ρuφ − Γ∇φ. It is possible to write eq. 2.75 in a more compact
form,

∂(ρφ)

∂t
+ ∇ · J = Sφ (2.76)

which can be integrated over a given CV. An integral form of eq. 2.76 can be written
using the divergence theorem to convert the divergence term to a surface integral in
the following form:

∫

Ω

∂(ρφ)

∂t
dΩ +

∮

∂Ω

J· →n dS = SφΩ (2.77)

where, Ω is the volume of the CV and dΩ its exterior surface.
Now each term of this equation is studied separately. First, to proceed with the
integration of the second term of the previous equation the total flux (J) is again
splitted into the diffusive flux (JD) and convective flux (JC). Thus, taking only the
e-face (see Fig. 2.1) as example, the integration of the diffusive flux over that face
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Figure 2.1: General control volumes distribution and nodal points location. Stag-

gered dashed CV used to evaluate x-direction velocity and dotted CV to calculate

y-direction velocity.

yields:

JD
e =

∫

e

−Γ∇φ · dS =

∫

e

−Γ
∂φ

∂x
dS

≈ −Γe

(
∂φ

∂x

)

e

∆y ≈ −Γe

(
φE − φP

δe

)

∆y = −De(φE − φP )

(2.78)

where, a second order central difference scheme has been applied to evaluate derivative
and Γe is assumed to be a suitable face average between nodes E and P (see Fig.
2.1), and it is considered constant in the whole face.

The integration of the convective flux in the same face of the CV is as follows:

JC
e =

∫

e

ρuφ · →
n dS =

∫

e

ρueφdS ≈ ρueφe∆y = Feφe (2.79)

A key aspect in this integration is the approximation applied to obtain the dependent
variable at the face of the CV (φe). Different numerical schemes to evaluate it have
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been published in the last decades, which are generally classified according to the
number of nodes taking into account in the approximation of the variable at the face.
The numerical schemes used in this thesis are: upwind, power law [29], second order
accurate upwind [30] and SMART [31] schemes. The deferred correction approach has
been utilized for the application of high order schemes in the evaluation of convective
terms, so then:

Feφe = FeφU
e − Fe(φU

e − φH
e ) (2.80)

where, φU
e is the value of the variable evaluated using upwind scheme and φH

e calcu-
lated with a high order scheme. The second right hand side term is now introduced
in the source term as bde (for details see [31]).

The temporal discretization is slightly easier to deal with than that for the spatial
effects. Since the general transport equation is hyperbolic/parabolic in time, the
solution at time t depends upon its history and not on its future. Applying fully
implicit integration, the transient term is evaluated as,

∫

Ω

∫ t

t−∆

∂(ρφ)

∂t
dΩ ≈ (ρφP )t − (ρφP )t−∆t

∆t
ΩP (2.81)

so then an iterative solution method has to be applied.

Source term deserves a special attention in the case of turbulent flows computa-
tions because of the linearization required. In the k and ǫ or ω equations the source
term is linearized as follows, Sφ = Sc+Spφp, in order to prevent numerical instabilities
and avoid negative values of turbulence quantities. For instance, in the k-equation
(eq. 2.69) the source terms have been included in the form: Sc = max(Pk + Gk, 0)
(giving a positive value) and Sp = −[ρǫ̃ + D − min(Pk + Gk, 0)]/k (giving a nega-
tive value). Thus production terms have been included in the Sc term and all the
destruction terms in the Sp term [32]. This procedure is relevant to improve numer-
ical convergence. Moreover, the use of NLEVM or EARSM has further implications
in convergence. Therefore, in later sections some tricks that have been applied to
increase stability in the calculation process are explained.

Finally, an algebraic equation relating nodal value (φP ) with their neighbours
(φW , φE , φS , φN ) can be written in the following manner:

aP φP =
∑

nb

anbφnb + b (2.82)

with the subscript nb indicating neighbours nodes.
Because of the non-linearity of the transport equations, an iterative method to

solve the discretized equations to obtain a converged solution is applied in this thesis.
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At this point it is worth to note that there is no equation for pressure, but its gradient
appear in the momentum equation. Thus, it is possible to take advantage of this link
to construct an iterative solution (segregated).

2.3.3 SIMPLEC (Semi-Implicit Method for Pressure-Linked
Equations Consistent)

If the discretized form of the Navier-Stokes system is considered, the form of the
equations shows linear dependence of velocity on pressure and vice-versa. This inter-
equation coupling is called velocity pressure coupling. In this thesis a pressure based
method of the SIMPLE family, specifically SIMPLEC, is applied to provide an useful
means to couple pressure and velocity fields for segregated solvers [29].

The SIMPLEC algorithm may be summarized as follows:

• An approximation of the velocity field is obtained by solving the momentum
equation. The pressure gradient term is calculated using the pressure distribu-
tion from the previous iteration or an initial guess.

• The pressure-correction equation is formulated, taking as starting point conit-
nuity equation, and solved in order to obtain the new pressure distribution.

• Velocities are corrected and a new set of conservative fluxes is calculated.

Further details are not explained here for briefness, an interested reader is remitted
to [29].

2.3.4 General algorithm for the solution of a general two-
equation turbulence model

Once the set of algebraic equations is obtained, a key element in the calculation of
turbulent flows is constituted by the general algorithm used in the global solution of
the system, in order to achieve numerical convergence. It due to the strong couplings
present in RANS models, e.g. pressure-velocity, energy-momentum and turbulent
stresses-mean strains.

In this thesis the next steps are followed during the solution of a given problem:

• During preprocessing

– The geometry (physical domain) of the problem is defined.

– The volume to be studied is divided into discrete cells, i.e., control volumes
of the mesh.
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– The physical model is defined, e.g., the equations of motions + energy +
turbulence quantities.

– Boundary conditions are specified. This involves the definition of the fluid
behavior and properties at the boundaries of the problem. In transient
computations, initial conditions are also defined.

• The simulation is started and the equations are solved iteratively:

1. Apply a SIMPLE-like method to solve pressure-velocity coupling.

2. Calculate mean strains, mass fluxes, turbulent heat fluxes and source terms
(e.g. Pk, D, E, Y AP, Ew).

3. Solve the discretization equations for scalar variables (T, k, ǫ or ω).

4. Evaluate turbulent viscosity and turbulent stresses.

5. Repeat the process until a converged solution is obtained.

• Numerical results are adequately verified.

• Finally a post-process is used for the analysis of the numerical solution obtained.

In step 4 verification is mentioned. Thus, verification and validation aspects are
considered later due to the crucial role they exert in the credibility of the final results.

2.3.5 Some ideas about Multigrid methods

In this thesis this methodology is applied in order to accelerate the convergence rate in
the solution of the algebraic system of equations. The convergence rate of standard
iterative solvers (Gauss-Seidel, Jacobi, SOR) has a tendency to fail in effectively
reducing errors after a few number of iterations. The problem is more prominent
when the meshes are refined. In fact, standard solver behave much better on coarse
grids. A close inspection of this behavior reveals that the convergence rate is a function
of the error field frequency, i.e. the gradient of the error from node to node. If the
error is distributed in a high frequency mode, the convergence rate is fast. However,
after the first few iterations, the error field is smoothed out and the convergence rate
deteriorates.

For many iterative methods, the number of iterations required to reach a converged
solution is linearly proportional to number of nodes in one direction. This behavior
could be rooted out to the fact that during the iteration process, the information
travels only one grid size per iteration. While for proper convergence, the information
has to travel back and forth several times [8].

To take advantage of this fact, Multigrid methods are based on the idea of defining
coarser grids on which a low frequency error will be seen as a high frequency one.
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Multigrid methods effectively reduce the distribution of low frequency errors which
makes them a good choice to be used with standard solvers. In recent years, Multigrid
algorithms have become very popular, because of their efficiency for larger systems
of equations. However, it has to be noted that multigrid method is NOT a solver, it
is a technique used in conjunction with a linear solver to yield a better convergence
rate (for more details about Multigrid technique see [28]).

2.4 Verification and validation

The verification and validation process is required to obtain confidence that a science
and engineering simulation code is producing accurate numerical results. Verification
refers to the process of determining that a model implementation accurately represents
the developer’s conceptual description of the model and the solution to the model.
Validation is the process of determining the degree to which a model is an accurate
representation of the real world from the perspective of the intended uses of the model.
These processes are applied throughout this thesis to ensure that credible results are
obtained.

When a study about errors present in a numerical simulation is carried out, it is
necessary to follow three types of analysis:

• Code verification. This step is intended to detect possible bugs incurred in the
coding stage. It is concerned with establishing that a code is accurately solving
the governing equations that are being used to simulate a physical problem, and
therefore the coding has been performed correctly. The objective is to guarantee
that results obtained correspond to the solution of the posed equations. This
study can be done by means of global or local balances verification, comparison
with analytical solution, if they exist, or the application of the Manufactured
Solutions (MMS) method [33].

• Verification of the numerical results. It is used to determine the dis-
cretization error or solution accuracy, obtained with a verified code, to ensure
that the solution has the desired exactitude. The discretization is the main
source of error in the generation of a numerical solution using CFD. Thus, if
double precision variables are being used and the convergence criterion is strict
enough, the solution error depends mainly on the numerical schemes applied
and the grid used. In order to verify the solutions exist two possibilities. The
basic and simplest one consist of running different grids increasing the number
of control volumes used and observe that some characteristic global parameter
(e.g. Nusselt number, re-attachment point or skin-friction coefficient) tends to
an asymptotic value when the grid is refined. The solution is considered grid
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independent when the differences between two consecutive meshes are less than
a prescribed value.

Another procedure applied in this thesis involves a process more reliable, de-
tailed and that provides much more information about uncertainties. This
post-processing procedure, implemented by Cadafalch et al.[34], is based on the
generalized Richardson extrapolation for h-refinement studies and on the Grid
Convergence Index (GCI) proposed by Roache [35]. It has been used in order to
establish a criteria about the sensitivity of the simulation to the computational
model parameters that account for the discretization: the mesh spacing and the
order of accuracy of the numerical schemes used (observed order of accuracy
p) and the error band where the independent grid solution is expected to be
contained (uncertainty due to discretization GCI), thus giving criteria about
the credibility of these estimations (see [34] for more details).

The procedure uses a group of numerical results (φ1(x), φ2(x) and φ3(x)) cor-
responding to three consecutive meshes: h1 = fine, h2 = middle and h3 =
coarse, of the h-refinement study, which are interpolated to the coarsest grid
(post-processing grid). The nodes where a monotonic solution is observed, i.e.
[(φ2(x)−φ3(x))/(φ1(x)−φ2(x))] > 0, and therefore this post-processing proce-
dure can be applied, are known as Richardson nodes (Rn). In these nodes local
estimators of the GCI and p are calculated as follows:

p(x) = ln[(φ2(x)−φ3(x))/(φ1(x)−φ2(x))]
ln(r) (2.83)

GCI1(x) = Fs|φ1(x)−φ2(x)

1−rp(x) | (2.84)

where, r is the refinement ratio and Fs is a safety factor, here considered as 1.25
according to Cadafalch et al. [34]. These estimations are obtained for each of the
dependent variables solved in the problem. Furthermore, a volumetric averaged
global value of p as well as a global GCI are evaluated at all the Richardson
nodes.

It is considered that the GCI is credible, when the global observed order of
accuracy p approaches the theoretical value, and when the number of Richardson
nodes is high enough. See [34] for details. This method has been applied with
success in several works. For instance, it can be found in publications by Cònsul
et al. [36], Celik et al. [37] and Claramunt et al. [38]. However, as it will be
illustrated later, it is not always possible to apply this procedure. Therefore,
the first procedure is used.

• Validation of the mathematical formulation. It is needed to demonstrate
that a well-posed mathematical problem has been formulated, and a unique
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solution exists. Moreover, this is required to establish the accuracy of the model
used to simulate the physical problem being investigated. Verified solutions from
a verified code are required for the evaluation of the models used in the code.
So then, verification must precede validation. The validation issue is done by
means of: comparison with experimental, DNS or other numerical simulation
results, which can be considered reliable by the scientific community.

2.5 Conclusions

An introduction to the mathematical formulation used troughout this thesis has been
presented. Since, RANS modelling is used in this research the explanation has been
centered on it. Thus, a detailed explanation of the process followed to obtain averaged
equations has been shown. Derivation of the equations used to solve the turbulent
quantities has also been presented. Moreover, the models used in this thesis to relate
turbulent stresses with the mean rate of strain are explained. Furthermore, a brief de-
scription of the discretization of the governing equations, computational methodology
and verification tools used in this thesis has been included.
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Chapter 3

Verification, validation and
numerical studies on three
benchmark flow
configurations.

Abstract. The aim of this work is to study the adequacy of different RANS models in

terms of accuracy and numerical performance in the description of turbulent internal forced

convection flows. Within RANS modelizations, linear and non-linear eddy-viscosity mod-

els and explicit algebraic models are explored. A comparison of the suitability of different

two-equation platforms such as k − ǫ and k − ω is also carried out. Three different internal

forced convection flows are studied: turbulent plane channel, backward facing step, and con-

fined impinging slot jet. The results are compared with DNS or experimental data available

in the literature, reviewing mean and fluctuating velocities, turbulent stresses and global

parameters like Nusselt number, skin friction coefficient or reattachment point. Governing

partial differential equations are transformed to algebraic ones by a general fully implicit

finite-volume method over structured and staggered grids. A segregated SIMPLE-like algo-

rithm is used to solve pressure-velocity fields coupling. A verification procedure based on

the generalized Richardson extrapolation is applied to ensure the credibility of the numerical

solutions.
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Chapter 3. Verification, validation and numerical studies on three benchmark flow
configurations.

3.1 Introduction

Turbulence plays an important role in engineering applications since most flows in
industrial equipment and surroundings are in turbulent regime. Direct Numerical
Simulation (DNS) of these flows using full 3D and time dependent Navier-Stokes (NS)
equations is generally restricted to simple geometries and low Reynolds number flows
due to the large, if not prohibitive, computational resources required to resolve all
the scales of motion. Therefore, the use of turbulence modelling employing statistical
techniques for high Reynolds numbers or complex geometries is still necessary. In
general, this modelization can be based on volume filtering (Large Eddy Simulation,
LES) or time averaging (Reynolds-Averaged Navier-Stokes Simulations, RANS) of
the NS-equations. LES models are still too expensive for routine calculation because,
even though the smallest eddies are modelled, the larger ones have to be solved in
detail (3D and unsteady). Otherwise, RANS models can be appropriate to describe
most of the main characteristics of the fluid motions [1].

In the past decades RANS-technique has received great interest because of its
wide range of applicability and reasonable computational cost. This technique solves
the governing equations by modelling both the large and the small eddies, taking a
time-average of variables. As consequence of the average new unknowns, so-called
Reynolds stresses arise. Different approaches to evaluate them are: i) Differentially
Reynolds Stress Models (DRSM), ii) Algebraic Reynolds Stress Models (ARSM), and
iii) Eddy Viscosity Models (EVM) [1].

Although EVM models assuming a linear relation between the turbulent stresses
and the mean rate of strain tensor (S) are extensively used, they present limitations
such as isotropy, no-prediction of secondary motions in non-circular ducts, boundary-
layer separation, erroneous predictions of the production of turbulence in strong strain
fields, etc. In the last few years, with the even-increasing computational capacity, new
proposals to overcome many of these deficiencies have started to find their way. Thus,
algebraic or non-linear relations can be used to determinate the Reynolds (turbulent)
stress tensor without introducing any additional differential equation. Most of these
models are or will be incorporated into computational tools and there is no suffi-
cient clarity about which model behaves better even in basic situations with different
flow structure. Therefore, systematic studies to establish their properties, numerical
performance and spatial requirement in basics and widely studied flows are required.

The main goal of this work is to contribute in an effort to provide conclusions
about accuracy, convergence, predictive realism, advantages and shortcomings in the
use of explicit algebraic Reynolds stress and linear/non-linear eddy-viscosity models.
Furthermore, the effect of using ǫ or ω as length scale variable in the simulated
configurations is also studied.

Three basic and intensively investigated configurations, which present different
flow structure, are numerically studied. The first case tested is one of the best studied
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3.2. Mathematical formulation

situations: a fully developed turbulent flow in a plane channel [2]. The second case
is the flow in a backward facing step, that has a more complex flow structure due to
separation and recirculation phenomena [3]. The third case is the flow in an impinging
slot jet, which presents a very complex structure despite its relatively simple geometry,
involving stagnation, recirculation and adverse pressure zones [4]. The first case serves
as a baseline test, and the second and third cases are representative of situations
where non-linear and explicit algebraic relations should improve results of LEVM due
to their characteristics.

Conclusions are extracted after the application of two processes to the studied
flows. Firstly, a verification procedure based both on the generalized Richardson
extrapolation and the Grid Convergence Index (GCI) is applied to the numerical
solutions obtained[5]. Once credibility of the numerical results is assured, the math-
ematical models are validated by comparison with experimental data and/or DNS
results from the literature.

3.2 Mathematical formulation

The turbulent flows studied in this chapter are considered to be described by the time-
averaged governing equations (continuity, momentum and energy) for incompressible
Newtonian fluids, assuming negligible body forces, heat friction, and radiative effects
(equations explained in section 2.2).

Three types of RANS models are used in this study in order to calculate Reynolds
stresses: explicit algebraic Reynolds stress models (EARSM), non-linear eddy-viscosity
models (NLEVM), and linear eddy-viscosity models (LEVM). In the context of two-
equation turbulence models, the solution of a set of equations to account for the
transport of some turbulent quantities, specifically the turbulent kinetic energy rate
per unit mass (k) (eq. 2.69), and some length-scale determining equation, such as the
dissipation rate (ǫ) (eq. 2.70) or the specific dissipation rate (ω)(eq. 2.71), amongst
others [6], is required.

In the present Chapter five linear models are taken into account: IL(Ince-Launder
[7]), GPC(Goldberg-Peroomian-Chakravarthy [8]), WX (Wilcox [9]), WXT (Wilcox
[10]) and WXCD (Wilcox [6]). The IL and GPC models use ǫ as dissipation variable,
while WX, WXT and WXCD models use ω.

In Non-linear and explicit algebraic models, the Reynolds stress tensor is cal-
culated using algebraic expressions based on the weak-equilibrium assumption and
including terms up to third order in the constitutive relation in function of mean
velocity gradients [11].
While both the EARSM and the NLEVM models have similar functional forms, their
development follow different paths. In NLEVM the coefficients in the relation of
Reynolds stresses are calibrated for some representative flows and they are based on
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configurations.

some physical constraints [11]. On the other hand, in EARSM the coefficients ap-
pearing in the tensorial expansion are consistent with the differential Reynolds stress
model (DRSM) which it is derived [12]. The aim of these models is to calculate the
Reynolds Stress tensor with one approximation different from the Boussinesq approx-
imation. They use algebraic expressions based on the weak-equilibrium assumption
and include terms up to third order in the u′

iu
′
j equation [11] (see section 2.2 for

details).
The general expression for u′

iu
′
j in both EARSM and NLEVM can be found in

section 2.2. The coefficients in this relation (eq. 2.73) can be found in appendix A.
In this type of formulation, six representative models are implemented: CLS-

NLEVM (Craft et al. [11]), AMGS-EARSM (Abid et al. [13]), LAR-NLEVM (Larsson
[14]), AJL-NLEVM (Abe et al. [15]), ARG-EARSM (Abid et al. [16]) and WJO-
EARSM (Wallin-Johansson [17]). CLS and AMGS models use k − ǫ, whereas LAR,
AJL, WJO and ARG models use k − ω platform.

For details about damping functions and closure coefficients of each model see
appendix A.

In the present study the simple linear eddy diffusivity approach is used for the
computation of the turbulent heat flux (see section 2.2 for details).

3.3 Numerical procedure

The governing partial differential equations are converted into algebraic ones by means
of fully implicit finite volume techniques. They are solved on a structured and stag-
gered grid intensified using a tanh-like function where necessary [18]. The set of
equations is solved in a segregated manner using a pressure based method, of the
SIMPLE family, to couple the velocity and pressure fields [19]. Central differences
are employed for the evaluation of diffusion terms while convective terms are dis-
cretized using upwind, power law [19] or high order SMART [20] schemes. The latter
scheme has not been applied to the turbulence variables (k, ǫ, ω) due to instability
problems. A multi-grid iterative solver is used to solve the algebraic linear system of
equations [21] (for details see section 2.3).

The addition of higher order terms in the constitutive relation for turbulent stresses
has further implications in convergence. Then, an artificial eddy viscosity is used to
introduce as many terms as possible in the diffusive terms of the momentum equations
[22]. Thus, only the remaining terms of the constitutive relation are maintained
explicitly in the source term.

In the k, ǫ or ω equations the source term is linearized in order to avoid negative
values. All production terms are included in the source term (right side), while
dissipation terms are transferred to the left hand side of the discretized equation [18].

In order to verify the numerical solutions obtained, a post-processing procedure
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3.4. Plane channel flow

based on the generalized Richardson extrapolation for h-refinement studies and on the
Grid Convergence Index (GCI), has been used in order to establish a criterion about
the sensitivity of the simulation to the computational model parameters that account
for the discretization: the mesh spacing and the order of accuracy of the numerical
solution. Local estimators of the error band, where the independent grid solution is
expected to be contained (uncertainty due to discretization, GCI), and the observed
order of accuracy (p) are calculated at the grid nodes where their evaluation has been
possible. These grid nodes are named Richardson nodes. Global values of GCI and
p are calculated by means of a volumetric averaging. An estimation is considered to
be credible when the global observed order of accuracy p approaches the theoretical
value, and when the number of Richardson nodes is high enough. See section 2.4 and
[5] for details.

3.4 Plane channel flow

3.4.1 Problem definition

This flow constitutes one of the most basic confined cases due to its simplicity and
parabolic flow structure, where the shear stress is the most important characteris-
tic. Some examples of works found in literature studying channel flow are herewith
summarized. Heyerichs [23] studied several turbulence models in a channel at high
Reynolds and presented results for Nusselt number, skin-friction coefficient and log-
law for dimensionless stream velocity. Craft et al. [11] applied their model to a
channel with two Reynolds numbers, and compared it with results from DNS. Aps-
ley et al. [24] first used the NLEVM model in a channel, and Moser [2] studied the
channel by means of DNS for the same Reynolds numbers considered in this study.

In general, this flow is used as a basic case to check the correct implementation or
to fit the constants of turbulence models. Three different friction Reynolds numbers
based on half channel height and friction velocity (uτ ), are herewith selected: Reτ =
180, Reτ = 395 and Reτ = 590. The fluid is air (Pr = 0.71).

In Figure 3.1(a), the physical domain and boundary conditions are shown. The
Reynolds number (ReDh) based on hydraulic diameter (Dh) and inlet mean velocity
(uin) is calculated using Reτ ≈ 0.09Re0.88

Dh [1]. The specific turbulent kinetic energy
dissipation (ωin) is evaluated from ǫin with the relation ωin = ǫin/β∗kin (where β∗

is a model constant). At the exit, a pressure outflow boundary condition is imposed,
and a null gradient in x-direction of scalar variables (T, k, ǫ or ω) is assumed.

79



Chapter 3. Verification, validation and numerical studies on three benchmark flow
configurations.

Figure 3.1: Channel flow test case. (a) Geometry and boundary conditions. (b)

Computational domain, number of control volumes (n), and mesh distribution in

x and y directions. Solid triangle indicates direction of mesh concentration.

Channel flow

u∗ = u/uin k∗ = k/kin T ∗ = T/Tin

grids Rn p GCI∗ Rn p GCI∗ Rn p GCI∗

n [%] [%] [%] [%] [%] [%]

20/40/80 98 1.5 1.5e-01 96 1.6 3.3e+00 98 1.4 2.2e+00

40/80/160 97 1.7 4.8e-02 96 1.8 9.2e-01 97 1.6 6.0e-01

80/160/320 89 1.7 2.7e-02 93 1.9 2.5e-01 93 1.6 3.1e-01

Table 3.1: Grid refinement study. Reτ = 590 and IL model. Richardson nodes

(Rn), global order of accuracy (p) and global uncertainty (GCI∗). The global

uncertainty is normalized using all of the inlet values.

3.4.2 Verification

Although the h−refinement study has been carried out for all models and Reynolds
numbers, only results for the IL (kǫ-LEVM) model at Reτ = 590 using upwind scheme
for convective terms are presented in Table 3.1. The grid distribution is shown in
Figure 3.1(b). The number of control volumes is represented by the parameter n,
e.g. when n = 40 it expresses the problem is solved on 40x40 control volumes (cv’s).
The mesh is intensified near solid wall, which is indicated in the figure with a solid
triangle. The grids employed for verification correspond to n = 20, 40, 80, 160 and
320. Taking advantage of symmetry, only half of the channel is simulated.
As can be observed in Table 3.1, the Richardson nodes are sufficiently large for the

three estimations shown (more than 88%). The observed order of accuracy p also
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Channel flow.

Reτ = 180 Reτ = 395 Reτ = 590

Model Nu % Nu % Nu %

Correlation 35.00 - 71.40 - 102.97 -

IL 30.54 -12.74 64.55 -9.59 93.48 -10.14

GPC 38.87 11.06 76.19 6.71 107.82 5.18

CLS 30.66 -12.40 66.28 -7.17 96.05 -7.39

AMGS 35.42 1.20 70.42 -1.37 101.06 -2.04

WX 40.42 15.48 72.26 1.20 108.84 5.7

WXT 42.11 20.31 78.23 9.56 108.66 5.52

WXCD 39.27 12.20 75.33 5.50 105.26 2.22

LAR 36.18 3.37 68.90 -3.5 97.16 -5.64

ARG 39.82 13.77 73.42 2.83 106.22 3.15

WJO 42.43 21.22 79.46 11.28 110.06 6.88

AJL 41.47 18.48 81.39 13.99 115.27 11.94

Table 3.2: Validation. Nusselt number and relative discrepancy with empirical

correlation [25].

agrees with its theoretical value, from 1 to 2, considering the upwind scheme and
the almost parallel flow structure. The reduction from mesh to mesh of GCI values
shows a tendency to an asymptotic value (i.e. a grid independent solution). Similar
results are observed for the other models and Reynolds number. Therefore, they are
not presented. The SMART scheme has also been used obtaining a similar accuracy.
According to this study, the fourth grid is used in the comparative study.

3.4.3 Validation and comparative study

For a detailed comparison of both the mean velocity and the turbulent stresses, the
turbulence models tested are validated with DNS results obtained by Moser et al. [2].
The mean Nusselt number Nu is compared versus Dittus-Bolter correlation (Nu =
0.023Re0.8

DhPr0.4) (cited in [25]). Moreover, the skin-friction factor Cf is compared in
the fully developed region and is obtained from: 1 = 2

√
Cf [2log(2ReDh

√
Cf ) − 0.8]

(cited in [25]).

Results for Nu and Cf are presented in Table 3.2 and Table 3.3 respectively. In
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Channel flow.

Reτ = 180 Reτ = 395 Reτ = 590

Model Cf x103 % Cf x103 % Cf x103 %

Correlation 7.484 - 5.994 - 5.390 -

IL 7.210 -3.66 5.774 -3.67 5.283 -1.98

GPC 8.629 15.29 6.820 13.78 6.034 11.94

CLS 7.478 -0.08 5.953 -0.68 5.379 -0.20

AMGS 7.950 6.22 6.331 5.62 5.695 5.65

WX 8.967 19.81 6.867 14.56 6.075 12.71

WXT 9.311 24.41 6.974 16.34 6.126 13.65

WXCD 8.783 17.36 6.771 12.96 5.943 10.26

LAR 8.083 8.00 6.156 2.70 5.434 0.82

ARG 8.839 18.10 6.541 9.12 5.948 10.35

WJO 9.294 24.18 7.056 17.72 6.134 13.80

AJL 8.717 16.47 6.672 11.31 5.892 9.31

Table 3.3: Channel flow. Validation. Skin-friction coefficient and relative dis-

crepancy with empirical correlation [25].

general, LEVM, NLEVM and EARSM exhibit a proper performance compared to the
empirical correlations. Only GPC (kǫ-LEVM), WX (kω-LEVM), WXT (kω-LEVM)
and WJO (kω-EARSM) models show poor solutions for Cf . The best results for Cf

are obtained with CLS (kǫ-NLEVM) model.

The Nusselt number is better predicted by AMGS (kǫ-EARSM) model followed by
LAR (kω-NLEVM) model. Thus, comparing these parameters in this configuration,
NLEVM and EARSM perform better than LEVM. Nevertheless, the model that most
accurately predicts the Cf is not the same as the one which better predicts the Nu.

Dimensionless turbulent kinetic energy (k) and turbulent normal stream-wise
stress maps (u′u′) for Reτ = 395 are plotted in Figure 3.2. Results are compared
to DNS data [2]. The AJL (kω-NLEVM) model gives the most accurate prediction
of k peak. WJO (kǫ-NLEVM) and WXT (kω-LEVM) model also show reasonable
results for this variable, while the rest of models under-predict it. This deficiency
is more evident in the region near the wall (y+ < 70) for all Reynolds numbers, in
the case of WX (kω-LEVM), WXCD (kω-LEVM) ARG (kω-EARSM) and AMGS
(kǫ-EARSM) models.
However, as can be seen in Figures 3.2 and 3.3, proper results for k not always mean
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Figure 3.2: Channel flow. Turbulent kinetic energy and normal Reynolds stress

in x direction Reτ = 395.

an adequate prediction of normal turbulent stresses. This is more notable in the case
of LEVM models. As consequence of the isotropy assumption, they incorrectly pre-
dict similar profiles for all of them. Such situation is clearly illustrated in the WXT
(kω-LEVM) model. It gives an adequate level for the turbulent kinetic energy and
tends to reproduce the u′u′ peak. Nevertheless, it poorly predicts v′v′ and w′w′. A
superior accomplishment of the WXT (kω-LEVM) model for k and u′u′ is darkened
with its poor performance in the estimation of the other normal stresses. On the other
hand, models using a higher order constitutive relation, such as AJL (kω-NLEVM) or
WJO (kω-EARSM), predict correctly these stresses. This, as result of the predicted
anisotropy level. Therefore, taking these results into account, the use of NLEVM and
EARSM is beneficial.

When NLEVM are compared with EARSM, it is important to keep in mind that
the first ones are tuned for this kind of flows. Thus it is expected that they perform
adequately. Nevertheless, neither CLS (kǫ-NLEVM) nor LAR (kω-NLEVM) model
properly reproduce any turbulent normal stress. Therefore, empirical coefficients in
the constitutive relation should be adjusted to predict higher anisotropy levels in these
models.

In addition, it is remarkable that EARSM lead to acceptable results with only
one damping function, whereas the other models require up to four (fµ, f2, E and D)
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Figure 3.3: Channel flow. Normal Reynolds stresses in y and z directions Reτ =
395.

when k − ǫ platform is used.

3.5 Backward facing step flow (BFS)

3.5.1 Problem definition

This configuration is usually used to compare the performance of turbulence models
for recirculating, re-attaching and separated turbulent boundary-layer flows. More-
over, it includes shear-layer mixing process and a region with adverse pressure gradi-
ent.
Several experimental studies have been reported in the last decades. For example,

those carried out by Eaton and Johnston [26], Vogel and Eaton [27], Kim et al. [28]
and Driver and Seegmiller [3]. Most of them have then been numerically simulated.
For example, Heyerichs and Pollard [23] studied the configuration of Vogel and Eaton
[27], and presented results for global parameters i.e. Nusselt and Stanton number for
several LEVM. Park et al. [29] applied a new model to this case and compared mean
velocity, normal turbulent stresses at two positions and skin friction coefficient along
step wall. Thangam et al. [30] used the experimental data by Kim et al. [28] to
evaluate standard k-ǫ and NLEVM models with different approaches near solid walls.
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3.5. Backward facing step flow (BFS)

Figure 3.4: Backward facing step flow (BFS). (a) Geometry and boundary con-

ditions. (b) Computational domain, number of cv’s (n), and mesh distribution in

x and y directions. Solid triangles indicate direction of mesh concentration.

They presented results for mean velocity, shear stress and global variables.

The experimental configuration by Driver and Seegmiller [3], hereafter referred
as BFS1, is studied in this work. The expansion ratio (outlet/inlet height) is 1.125.
The inlet boundary conditions (uin(y), vin(y), kin(y), ǫin(y) or ωin(y)) correspond to
the numerical solution of a channel flow at the section where Reθ = 5000 (where
Reθ is the Reynolds number based on momentum thickness). The turbulence model
used to generate the above mentioned inlet boundary condition was the IL-LEVM
for k − ǫ models and WXT-LEVM for k − ω based models. At the exit a pressure
outflow boundary condition is imposed (see Figure 3.4(a) for details). The free stream
velocity in the channel, uref = 44.2m/s, is used for non-dimensionalization purposes.

In this flow, inlet boundary condition is crucial for the development of the re-
circulation zone and, as a consequence, for a critical evaluation and comparison of
turbulence models. Therefore, in [31] a study has been carried out to compare differ-
ent options to obtain it.

Furthermore, the experimental setup used by Vogel and Eaton [27] is analysed
here for a Reynolds number based on step height of ReH = 28000 (hereafter re-
ferred as BFS2). Geometry and boundary conditions are imposed according to [23].
The inlet boundary condition corresponds to a boundary layer with δ/H = 1.1,
uin = uref(y/δ)1/7.05, vin = 0, kin = C−0.5

µ l2(∂uin/∂y)2, l = min[κy, 0.09δ], ǫin =
Cµk2(l2∂uin/∂y)−1 and Tin = 300K. For values of y > δ, uin = uref = f(ReH), vin =
0, kin = 1.5(Iuref)2, ǫin = Cµk1.5

in /(0.09δ) and Tin = 300K are imposed. With H
being the step height, subscript in inlet value, κ the von Karman’s constant = 0.41,
Non-slip condition and qw = 270W/m2 are used at the bottom wall, and at the top
boundary main stream values are fixed.
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3.5.2 Verification

Results of the h-refinement study for u, v and k are presented in Table 3.4 for BFS1.
Convective terms of eq. 2.7 and 2.8 are discretized with SMART scheme while in eq.
2.69, 2.70 and 2.71 power law scheme is used.

For this case the grid is represented by the parameter n (number of cv’s) in Figure
3.4(b). The mesh has been intensified near the solid walls and the step, as it is
indicated with solid triangles in the figure. Five grids have been used n = 3, 6, 12, 24
and 48 (i.e. meshes of 21x21, 42x42, 88x88, 176x176 and 352x352 cv’s respectively).
For these meshes, the first node nearest to the wall is located at y+ = 12, 6.5, 3.8, 1.2
and 0.6 respectively (with y+ being dimensionless distance to the nearest wall). Also,
for completeness, some models are applied using a sixth mesh of n = 96 (704x704 cv’s).
All models exhibit similar trends and only three of them are herewith presented.

The number of Richardson nodes (Rn) in the last two set of grids is over 80%. The
order of accuracy (p) is also within the expected theoretical range when the mentioned
schemes are used in reattaching flows. However, some exceptions have been found for
the set of grids with n = 6/12/24, and are explained below. Furthermore, the first
set of meshes (n = 3/6/12) has displayed neither an adequate Rn nor a p.

The results from the second set of grids reflect the importance of y+ parameter
(dimensionless distance to the nearest wall) in the correct performance of the models,
specially of LEVM using k − ω platform. Due to the boundary condition used for
these models, y+ corresponding to the first inner node from the wall should be lower
than 2.5 [6]. The grids with n = 3, 6 and 12 are above this limit, while the fourth
mesh (n = 24) presents a y+ below it. Thus, there is an oscillation between results
of these grids and the asymptotic behavior is broken. A similar trend is observed in
k − ǫ models, although their boundary condition for solid walls shows less sensitivity
to this distance.

Summarizing, it is found that the uncertainty due to discretization (GCI) for the
last grid (n = 48) is small enough as to consider its results as credible. Thus, the fifth
mesh is used for comparative purposes.
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3.5. Backward facing step flow (BFS)

Backward facing step flow (BFS1).

CLS model

u*=u/uin v*=v/uin k*=k/kin

grids Rn p GCI∗ Rn p GCI∗ Rn p GCI∗

n [%] [%] [%] [%] [%] [%]

3/6/12 45 0.1 7.2e+00 49 0.6 2.5e-01 74 1.2 2.3e+01

6/12/24 90 0.5 5.2e-01 87 0.6 1.0e-01 87 1.1 1.2e+01

12/24/48 96 1.2 7.7e-02 93 1.2 2.0e-02 94 1.4 3.3e+00

WX model

u*=u/uin v*=v/uin k*=k/kin

grids Rn p GCI∗ Rn p GCI∗ Rn p GCI∗

n [%] [%] [%] [%] [%] [%]

3/6/12 54 0.7 1.8e+00 52 1.0 1.4e-01 88 2.9 1.8e+01

6/12/24 87 0.9 6.1e-01 82 0.6 1.7e-01 90 1.7 1.8e+01

12/24/48 93 1.5 9.9e-02 91 1.3 2.9e-02 93 1.8 4.9e+00

24/48/96 92 2.3 1.1e-02 93 2.3 2.7e-03 92 2.4 4.3e-01

LAR model

u*=u/uin v*=v/uin k*=k/kin

grids Rn p GCI∗ Rn p GCI∗ Rn p GCI∗

n [%] [%] [%] [%] [%] [%]

3/6/12 57 0.4 2.9e+00 56 0.8 3.2e-01 89 3.0 1.0e+01

6/12/24 89 1.5 2.0e-01 84 1.0 7.7e-02 91 1.9 6.9e+00

12/24/48 91 1.8 4.5e-02 92 1.6 1.6e-02 88 1.9 2.1e+00

Table 3.4: Results from grid refinement study. Richardson nodes (Rn), global

order of accuracy (p) and global uncertainty (GCI∗). The global uncertainty is

normalized using inlet values.

For BFS2 a similar grid to that of BFS1 is used, but instead of the mesh con-
centration applied in BFS1 near the top wall, a uniform distribution is occupied in
BFS2. For this case an analogous h− refinement procedure is also applied. Results
of the the study are correct and comparable to those of BFS1. For example, for the
set of meshes with n = 6, 12 and 24 using WXT (kω-LEVM) a number of Rn > 75%
is achieved for all variables. Furthermore, GCI ′s values of 1.5%, 0.48% and 0.84% are
obtained for velocity, temperature and turbulent kinetic energy respectively. There-
fore, extensive results of the h− refinement study for BFS2 are not included in this
work.
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3.5.3 Validation and comparative study

Reattachment point

One of the common quantities used to evaluate the performance of a turbulence
model in the backward-facing step configuration, is the reattachment length of the
flow separation (Xr/H).
For BFS1, Table 3.5 shows that LEVM under-predicts the reattachment point, with

BFS1.

Models Xr/H % Cf min.x103 %

Driver [3] 6.26±0.1 - 1.02 -

IL 5.85 -6.55 1.612 58.04

GPC 6.13 -2.08 1.405 37.74

CLS 6.54 4.47 1.275 25.00

AMGS 6.89 10.06 1.603 57.16

WX 5.87 -6.23 1.244 21.96

WXT 6.28 0.319 1.151 12.84

WXCD 6.19 -1.12 1.248 22.35

LAR 6.46 3.19 0.862 -15.49

ARG 6.32 0.895 1.081 5.98

WJO 6.55 4.63 0.978 -4.12

AJL 6.05 -3.35 0.967 -5.19

Table 3.5: Validation. Reattachment point (Xr/H) and minimum skin-friction

(Cfmin) coefficient. Relative discrepancy (%) with experimental data.

the exception of WXT (kω-LEVM) model. The shortest length is exhibited by the IL
(kǫ-LEVM) model. Otherwise, the Xr/H calculated with NLEVM and EARSM is a
bit longer than experimental data. Due to the under-prediction of turbulence levels
in the separated shear layer, AMGS (kǫ-EARSM) model presents the largest value.
Thus, the generation term in equation 2.70 should be increased for a better behavior
of this model in flows with adverse pressure gradients. This conclusion has also been
found by other authors [22, 24].

For BFS2, results of Xr/H are presented in Table 3.6. Observing this quantity
is seen that higher order models do not improve linear models results. NLEVM
and EARSM predict an excessively long recirculation region [27]. Furthermore, this
overestimation is more evident in k − ǫ based models, giving an idea about the low
level of turbulent mixing predicted by these models in this case.
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3.5. Backward facing step flow (BFS)

BFS2

Models Xr/H % Cf min.x103 %

Vogel [27] 6.67 - 1.14 -

IL 7.42 11.2 1.77 55.3

GPC 7.46 11.8 1.55 36.0

CLS 8.68 30.1 1.38 21.1

AMGS 8.34 25.1 1.67 46.5

WX 6.73 0.90 1.43 25.4

WXT 7.71 15.6 1.25 9.6

WXCD 7.47 12.0 1.37 20.2

LAR 7.87 18.0 0.98 -14.0

ARG 7.31 9.6 1.19 4.38

WJO 8.26 23.8 1.06 -7.0

AJL 7.69 15.3 1.02 -10.5

Table 3.6: Validation. Reattachment point (Xr/H) and minimum skin-friction

(Cfmin) coefficient. Relative discrepancy (%) with experimental data.

Minimum skin-friction coefficient

Reviewing the differences of the minimum skin-friction coefficient (Cfmin) obtained
respect to the experimental data, the superiority and advantages of using higher order
terms in the constitutive relation is clear (see Table 3.5 for BFS1 and Table 3.6 for
BFS2). For example, and considering k − ǫ platform, CLS (kǫ-NLEVM) model gives
better results than IL (kǫ-LEVM) model in both configurations. Moreover, in the
case of k − ω platform, all models using a high order relation predict the minimum
more accurately than WX (kω-LEVM) model, which is their linear counterpart.
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Figure 3.5: BFS1. Skin-friction coef-

ficient for k − ǫ models.

x/H

C
f*

1
03

10 20 30

-2

-1

0

1

2

WX
WXT
LAR
ARG
WXCD
WJO
AJL
Driver

Figure 3.6: BFS1. Skin-friction coef-

ficient for k − ω models.
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Skin friction coefficient at the bottom wall

Figures 3.5 and 3.6 present the comparison of skin-friction coefficient (Cf ) at the
bottom wall with the experimental data [3] for BFS1. Moreover, for BFS2 it is plotted
in Figures 3.7 and 3.8. Cf is usually related with the near-wall characteristics of the
turbulence model used. In general, the influence of using higher order terms are more
notorious in k− ǫ than in k−ω models (see Figures 3.5 and 3.7). Furthermore, k−ω
models have outperformed k−ǫ ones, which is expected due to the better performance
of the ω-based models near solid walls. However, the last ones underestimate Cf

downstream the redeveloping region in BFS2. Good accordance with the results for
the LEVM presented in [23] is shown here for this configuration, i.e. WXT (kω-
LEVM) and IL (kǫ-LEVM) models.
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Figure 3.7: BFS2. Skin-friction coef-

ficient for k − ǫ models.
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Figure 3.8: BFS2. Skin-friction coef-

ficient for k − ω models.

Stanton number bottom wall

Stanton number (St) is chosen to evaluate turbulence models performance for the
estimation of the heat transfer in BFS2. St profiles together with the corresponding
experimental data [27] are presented in Figures 3.9 and 3.10. All k − ω models show
good agreement with measurements. Otherwise, k−ǫ models predict dispersed results,
being GPC (kǫ-LEVM) the only model capable of reproducing the experiment [27].
Thus, based on the view of Figures 3.9 and 3.10, benefits of using NLEVM or EARSM
are rather limited for this case.

Mean velocity BFS1

The predicted mean stream-wise velocity profiles at different cross-sections are shown
in Figure 3.11 along with experimental results [3]. The numerical profiles estimated
by all models seem to be in agreement with the data, except at the bottom wall near
the reattachment point.
The k − ω linear models somewhat depart from experimental data away the wall.
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Figure 3.9: BFS2. Stanton number for

k − ǫ models.
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Figure 3.10: BFS2. Stanton number

for k − ω models.

This departure is larger in the recovery region. Only ARG (kω-EARSM) reproduces
experimental results correctly.
In the redeveloping zone AMGS (kǫ-EARSM) and LAR (kω-NLEVM) models present
some deviations. These differences remain downstream. Therefore, reviewing this
quantity, it can be said there is an inappreciable improvement with the use of higher
order terms.
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Figure 3.11: BFS1. Dimensionless streamwise velocity profiles, left k− ǫ models

- ·· - IL, - · - GPC, —- CLS, - - - AMGS, right k − ω models —- WX,– – – WXT,
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experiments [3].
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experiments [3].

Turbulent stresses BFS1

When normal Reynolds stresses are analyzed, remarkable differences between mod-
els and experimental results are found (see Figures 3.12 and 3.13). LEVM models
erroneously predict a value for v′v′ larger than for u′u′. This trend is corrected by
NLEVM and EARSM models, presenting at least qualitatively correct results due to
the addition of higher order terms. Furthermore, Reynolds stresses predictions show
that the addition of these terms in the constitutive relation tends to increase u′u′, but
have less effect on the shear stress. Thus, analyzing these variables the use of NLEVM
or EARSM is important. Also, it is worth to note that the inclusion of cross-diffusion
term (see Appendix A) in WXCD (kω-LEVM) model improves Reynolds stresses
predictions far from the bottom wall.

3.6 Impinging slot jet flow

3.6.1 Problem definition

In spite of its simple geometry, the impinging slot jet presents a complex flow structure
with stagnation, recirculation and adverse pressure regions. This case has been chosen
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experiments [3].

to investigate the performance of the models in the presence of normal straining (the
flow in the stagnation region is nearly irrotational and a large strain along streamlines
is produced) [11, 24].

Experimental studies for thermal field have been carried out by Gardon and Ak-
firat [32] and Van Heiningen [4], among others, for several Reynolds numbers.
Numerical studies were published by Heyerichs et al. [23] and Wang et al. [33], who

examined an impinging slot jet at a Reynolds number of 10000 based on nozzle width
and bulk velocity. Seyedin et al. [34] performed other work for various Reynolds
numbers and nozzle-to-impingement surface spacing (H/B) ratios. More recently, Shi
et al. [35] studied the effect of inlet conditions over the heat transfer.

In this work a single turbulent confined impinging air slot jet is numerically studied
at ReB = 10200 and H/B = 2.6 (B is the nozzle width and H is the height of jet
discharge above plate)[4]. Inlet vertical velocity (Vin) is obtained from the Reynolds
number value. Turbulent kinetic energy (kin) is calculated with an intensity of I =
0.02, and the characteristic length used to determine the turbulent kinetic energy
dissipation rate (ǫin) at inlet is le = 0.015 ∗ B. No-slip condition is imposed at solid
walls. At the exit, a pressure boundary condition is used (see Figure 3.14(a) for
details). These boundary conditions are the same as the ones used by Heyerichs et
al. [23].
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Figure 3.14: Impinging jet. (a) Geometry and boundary conditions. (b) Compu-

tational domain, number of cv’s (n), and mesh distribution in x and y directions.

Solid triangles indicate direction of mesh concentration.

3.6.2 Verification

Results obtained using the verification procedure based on the Richardson extrapola-
tion are shown in Table 3.7. Details of the number of grid nodes (represented by the
parameter n) and mesh concentration are given in Figure 3.14(b). The verification
study is performed with five levels (grids) of refinement: n = 3, 6, 12, 24, 48 (i.e.
meshes of 33x21, 66x42, 132x84, 264x168 and 528x336 control volumes respectively).
For these meshes, the first node nearest to the wall is located at y+ = 8.5, 3.8, 1.7,
0.85 and 0.42, respectively. Due to symmetry, only half of the flow domain has been
considered. For all variables central difference scheme has been used for diffusive
terms and power law scheme for convective ones. Higher order schemes have not been
used due to convergence difficulties in the finest grids.
For the third set of grids, n = 12/24/48, an asymptotic behavior with a number of

Richardson nodes (Rn) over 70% are obtained for most of the models. The observed
order of accuracy (p) is around the unity, which is expected when a combination of
central difference and power law schemes are applied. However, for the first two sets
(n = 3/6/12 and n = 6/12/24), the p obtained does not fit its theoretical value. Thus,
the results for these two sets can not be considered credible.

It is important to highlight that the h-refinement procedure is applicable as long
as a smoothness and asymptotic behavior is presented, a converged solution has been
reached and the variable studied is not almost zero. Two exceptions of these require-
ments have been found in this study:

• WX (kω-LEVM), WXT (kω-LEVM) and ARG (kω-EARSM) models: The same
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Impinging plane jet flow.

IL model

u v T k

grid Rn p GCI Rn p GCI Rn p GCI Rn p GCI

n [%] [%] [%] [%] [%] [%] [%] [%]

12 75 0.1 3.0e+02 69 -0.3 1.2e+01 68 1.2 6.8e+00 73 0.4 1.1e+01

24 83 -0.8 1.8e+02 85 0.1 2.9e+01 77 0.9 8.7e+00 78 0.1 1.6e+02

48 85 0.7 1.3e+01 84 0.6 2.1e+00 76 1.1 5.4e+00 81 0.7 6.5e+00

AMGS model

u v T k

grid Rn p GCI Rn p GCI Rn p GCI Rn p GCI

n [%] [%] [%] [%] [%] [%] [%] [%]

12 72 1.2 6.5e+00 76 1.0 9.2e-01 72 1.2 7.5e+00 70 1.3 2.0e+00

24 85 1.1 2.4e+00 68 1.2 5.1e-01 64 2.8 4.0e-01 80 1.6 4.2e-01

48 89 1.1 1.0e+00 82 1.1 2.1e-01 76 1.5 5.3e-01 83 1.4 2.4e-01

ARG model

u v T k

grid Rn p GCI Rn p GCI Rn p GCI Rn p GCI

n [%] [%] [%] [%] [%] [%] [%] [%]

12 49 1.6 1.1e+00 43 1.5 3.4e-01 57 1.4 3.9e+00 44 2.6 2.0e-01

24 85 0.4 1.1e+01 83 0.3 3.2e+00 76 0.8 5.0e+00 86 0.4 4.8e+00

48 78 1.2 9.7e-01 74 1.2 2.8e-01 78 1.2 1.5e+00 76 1.2 5.0e-01

Table 3.7: Results from grid refinement study. Richardson nodes (Rn), global

order of accuracy (p) and global uncertainty (GCI).

oscillatory behavior observed in BFS case is presented here in function of the
y+ parameter. However, as it has been pointed out, the last set (n = 12/24/48)
presents an asymptotic behavior, making our numerical results credible and
ensuring that the mathematical model is adequately solved. As the y+ cor-
responding to the nearest grid point to the wall is also lower than 2.5, the
restriction for the boundary condition imposed for ω-based models is fulfilled.

• IL (kǫ-LEVM) and CLS (kǫ-NLEVM) models: Even though fine grids have been
used in the simulation, IL (kǫ-LEVM) and CLS (kǫ-NLEVM) models have not
shown an asymptotic behavior in this case. This is demonstrated in the results
obtained when the verification procedure is applied (see Table 3.7). Moreover,
results for Nusselt number are presented in Figure 3.15. It seems that the results
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for the finest mesh are still far from the grid independent solution. Therefore,
the finest converged grid for each model is used in the comparative study, even
though asymptotic behavior has not been completely reached.

In the case of LAR (kω-NLEVM) and AJL (kω-NLEVM) models, it has not
been possible to achieve a sufficiently converged solution for the finest mesh. Thus,
the obtained results have not been adequately verified. For this reason, the results
presented must be taken with caution for these models.

Apart from the situations explained above, Table 3.7 shows that at least the fourth
mesh is necessary to ensure grid independent solution, and that the first three grids
are not adequate to simulate the current case.
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Figure 3.15: Impinging jet. Verification. Nusselt number impingement plate for

different grids. Left IL model and right CLS model. - - - coarse grid; − · − · −
second grid; · · ·· third grid; − · · − · · − fourth grid, —– finest grid.

3.6.3 Validation and comparative study

In this section numerical results are compared with experimental data from Van
Heiningen [4]. As mentioned previously, the same boundary conditions, as those
applied by Heyerichs et al. [23] and Wang et al. [33], have been used. However, as
was pointed out by Shi et al. [35] inlet conditions are critical in impinging plane jets
evaluation. Thus, a study of the influence of turbulence level and different velocity
profiles at the nozzle exit on Nusselt number is also carried out.

For the studied case, velocity and turbulent stresses are not reported in the ex-
perimental study; thus the analysis is restricted to the thermal field. The parameter
compared is the Nusselt number at the impingement plate. The Nusselt number has

been determined as: Nu =
[∂T/∂y]w

(Tw−Tin)/B , where Tw is the impingement plate tempera-

ture and Tin the inlet jet temperature.
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3.6. Impinging slot jet flow

The calculated Nusselt number is presented together with experimental results in
Figure 3.16(a) for k − ǫ based models and in Figure 3.16(b) for k − ω models.

Stagnation region

Models using ω like dissipation variable perform better than models using ǫ variable
(see Figure 3.16). The model that most correctly predicts local Nusselt at stagnation
point is the WXT (kω-LEVM) model (see Figure 3.16(b)), followed for the CLS (kǫ-
NLEVM) model, which shows better behavior than IL (kǫ-LEVM) model and similar
to GPC (kǫ-LEVM) and AJL (kω-NLEVM) models in this region (see Figures 3.16(a)
and 3.16(b)). LAR (kω-NLEVM) and WJO (kω-EARSM) models come next. They
predict a local Nusselt at the stagnation point closer to experiments than WX (kω-
LEVM) model, which is its linear counterpart (see Figure 3.16(b)). Furthermore,
results of WXCD (kω-LEVM) are nearly identical to WX (kω-LEVM) model in this
zone. The worst result is exhibited by AMGS (kǫ-EARSM) model, because it is a
high-Reynolds model. The same trend has been observed by Abdon [36] for LAR
(kω-NLEVM) and AMGS (kǫ-EARSM) models.
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Figure 3.16: Impinging jet. Validation. Local Nusselt impingement plate. Lines

numerical results and symbols experiments by Van Heiningen. [4].

In the stagnation region, it seems to be more important the use of extra-terms in
the length scale determining equation, such as YAP correction together with adequate
damping functions, rather than the relation used to evaluate the turbulent stress
tensor [24, 36]. For example, Figure 3.17 shows CLS model prediction using linear,
quadratic and the complete set of terms in the constitutive relation. It reveals that
second and third order terms have a small influence in this region. Thus, it is shown
that the results in the stagnation zone mostly depend on the coefficient (Cµ, C∗

µ) used
in the linear term of the constitutive relation.
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Chapter 3. Verification, validation and numerical studies on three benchmark flow
configurations.

Secondary maximum

The secondary maximum is attributed to a transition phenomena [37] due to an
important increment of turbulence [38, 36], three-dimensional effects or impingement
of secondary eddies [37].

In this work it has been found that the second Nu maximum coincides with
a steep positive gradient in the turbulence level near the bottom wall for IL (kǫ-
LEVM), CLS (kǫ-NLEVM) and WXT (kω-LEVM), AJL (kω-NLEVM) and WJO
(kω-EARSM) models. It is also observed that GPC (kǫ-LEVM), WX (kω-LEVM),
WXCD (kω-LEVM), ARG (kω-EARSM) and LAR (kω-NLEVM) models do not ex-
hibit an enhancement of turbulence. Consequently, they do not present a secondary
peak in the local Nusselt profile.
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Figure 3.17: Impinging jet. Nusselt number for different truncation levels of non-

linear constitutive relation for CLS model. - - - linear terms; − · − · − including

quadratic terms; —— complete model.

CLS (kǫ-NLEVM) and AMGS (kǫ-EARSM) models predict with delay the sec-
ondary peak of Nu. On the other hand AJL (kω-NLEVM) shows this peak too early.
Moreover, ARG (kω-EARSM) and LAR (kω-NLEVM) models do not predict it. Only
WJO (kω-EARSM) present a correct location of the peak. So, there is limited benefit
in the use of higher order terms in the constitutive relation for the turbulent stresses
in this zone.

Figure 3.17 shows the influence of second and third order terms in the non-linear
relation using CLS (kǫ-NLEVM) model. The main difference is observed in the step
gradient of the curve. Furthermore, as it is pointed out by Wilcox [9], IL (kǫ-LEVM)
and CLS (kǫ-NLEVM) models employ a damping function, that can prevent, or at
least delay, transition. In fact, it is observed that the critical Reynolds for ǫ may be
smaller than that for k for these models, which is opposed to the desired effect.

Finally, it is important to highlight that the CLS (kǫ-NLEVM) model has been
applied by other authors (and lately in this thesis) [11, 22] to round impinging jets,
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3.6. Impinging slot jet flow

exhibiting better results that the observed in plane jets. This is probably due to
three-dimensional effects, inclusion of some different parameters in Cµ and the use of
an alternative formulation for YAP correction applied by Craft et al. [22]. AMGS
(kǫ-EARSM) and LAR (kω-NLEVM) models have also been applied to round jets by
Abdon et al. [36], and a similar behavior to that observed in slot jets is shown.

Influence of inlet boundary conditions on Nusselt number

For all situations studied in this part the same impinging air jet configuration has
been maintained at ReB = 10200 and H/B = 2.6. All boundary conditions have also
been preserved as in figure 3.14a, but inlet boundary condition is modified in order
to analyze its effect on Nusselt number. Three models are selected to carry out this
study: GPC (kǫ-LEVM), WXT (kω-LEVM) and CLS (kǫ-NLEVM).

Influence of inlet profiles

A previous simulation of a plane channel, long enough to obtain a fully developed
flow, is made. The results of this preliminary calculation are used to investigate the
effect of two different profiles at the jet discharge on the local Nu number. In the first
study, local values of the fully developed region are interpolated to obtain the nozzle
exit profiles. Whereas, in the second test a mean value of all variables in the same
region is calculated. This constant value obtained is used in the current calculation
for the impinging jet.
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Figure 3.18: Impinging jet. Comparison of the Nusselt number predicted by

selected models when mean (constant)(left) and local (right) values from fully de-

veloped flow are imposed at the nozzle exit. Together with experimental data by

Van Heiningen [4].

Although in both situations integral values of momentum and turbulence are main-
tained at the same level at the nozzle exit, it is clear from Figure 3.18 that, when local
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Chapter 3. Verification, validation and numerical studies on three benchmark flow
configurations.

value distributions are taken into account, they change local Nusselt number profile,
specially increasing it near the stagnation region. It may be due to the concentration
of the jet momentum to the symmetry axis.

Influence of length scale at the nozzle exit

Due to the difficulty in measuring the length scale in experiments, two studies of its
effect on local Nusselt number are carried out. First, local values for variables (veloc-
ities, temperature and turbulent kinetic energy) are taken from the fully developed
channel region (in the same way as the previous study), but different local values for
the turbulent dissipation variable are calculated like a function of the local value of
kin, and a given length scale (le), ǫin = Cµk1.5

in /le in k − ǫ models and ωin = k0.5
in /le

in k − ω models. The following values of le = 4.5 · 10−3B, le = 1.35 · 10−2B and
le = 4.05 · 10−2B are considered. Results from this study are presented in Figure
3.19. It is shown that the local Nusselt increases proportionally to the length scale
used to evaluate dissipation variable in the impinging region for the LEVM, and for
values of x/B ≤ 10 for the NLEVM tested.

Moreover, when a constant value for velocity and turbulent quantities is considered
at the nozzle exit, i.e. vin = f(Re) and kin = f(vin, I = 0.04) (see Figure 3.14a), the
effect of varying the length scale on the local Nusselt number has been found to be the
same as the previous one. As le increases, the Nusselt number increases appreciably
near stagnation region and downstream for x/B < 10. Similar results are presented
by Wang et al. [33].

Influence of turbulence intensity

If instead of varying the length scale, it is now maintained constant at le = 1.5·10−2B,
the turbulence intensity is changed from 0.01 to 0.08, and a mean value for inlet
velocities is assumed, vin = f(Re), according to figure 3.14a. All models are sensitive
to this parameter. The effect on the local Nusselt number distribution can be seen in
Figure 3.20. It is observed that NLEVM and LEVM using k − ǫ or k − ω platforms
present a similar behavior. Local Nusselt is increased near stagnation region and
the secondary peak tends to disappear. However, some models are more sensitive
to the inlet condition imposed, for example, CLS (kǫ-NLEVM) model presents a
major variation near the stagnation region. The Nu number in this region (and
downstream) is strongly influenced by the turbulence level near the bottom wall, and
in this work is observed that an important factor in the turbulence level predicted in
the stagnation zone is the y-direction turbulent normal stress. Finally, it must be kept
in mind that unlike the length scale, the turbulent intensity can be easily determined
in experimental measurements.
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Figure 3.19: Impinging jet. Effect of length scale on Nusselt number distribution

with local values of variables in the inlet boundary condition. Left: WXT model.

Right: CLS model.

3.7 Conclusions

Three basic test cases have been studied using linear and non-linear eddy viscosity
models (LEVM, NLEVM) and explicit algebraic Reynolds stress models (EARSM),
based on k − ǫ as well as k − ω platforms.

A verification procedure has been applied in order to ensure the credibility of
numerical results. In general, reasonable values for the uncertainty and the order of
accuracy of the numerical solution have been obtained. Some exceptions found were
analyzed in detail.

Reviewing the plane channel, which is the simplest case studied, non-linear or ex-
plicit algebraic models show reasonably good behavior. These kind of models improve
results of linear models, and they do not demand a major computational effort in this
configuration.
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Figure 3.20: Impinging jet. Effect of turbulence intensity on Nusselt number

distribution, all variables are considered constant at the nozzle exit. Top: GPC

model. Left: WXT model. Right: CLS model.

In the case of backward facing step flow, NLEVM improve the accuracy in the
predictions of skin friction coefficient and reattachment point, while the improvements
in Stanton number, Reynolds stress tensor and mean velocity fields are limited. For
these kind of flows, models such as CLS (kǫ-NLEVM) or ARG (kω-EARSM) should
be used if a good prediction of global parameters, mean variables and qualitative
turbulent stresses is desired.

Terms of higher order in the relation between turbulent stresses and mean strain
rates do not improve considerably results in the impinging jet case for the models
studied. Whereas the use of better tuned dumping functions and/or additional terms,
such as YAP correction, in the length-scale determining equation seems to play a
more important role. However, NLEVM slightly improve the predicted local Nusselt
number compared with LEVM at the stagnation point.

When different turbulence intensities and velocity profiles are imposed at the inlet,
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all models studied exhibit different local Nusselt distribution until a critical value
of X/B is achieved. Moreover, the effect of turbulence length scale at the nozzle
exit produces significant changes in the Nusselt number distribution, but only near
impinging region.

Throughout this work it has been found that the use of ω like length-scale quantity
produces better results near solid walls. These models have presented better conver-
gence and stability properties than k−ǫ models. Moreover, robustness of NLEVM and
EARSM reduces when the complexity of the flow pattern increases (e.g. impinging
jet) and the grid is densified.
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Chapter 4

Further studies of RANS
models in complex flows:
impinging plane and round
jets.

Abstract. In this chapter different impinging jet configurations are studied by means of

time averaged Navier-Stokes simulations. Within this technique, explicit algebraic Reynolds

stress models and both non-linear and linear eddy viscosity models are explored jointly

with k − ǫ and k − ω platforms. The main object of this chapter is to study numerical

performance and accuracy of models when they are used in the simulation of both plane

and round impinging jets. With this purpose, results from numerical simulations, using

different models, are compared among them and with experimental data available in the

literature. Comparisons are performed in terms of mean and fluctuating velocities and global

parameters, i.e. the local Nusselt number. A verification procedure is applied in order to

ensure the credibility of the numerical solutions.
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Nomenclature
B nozzle width
Cǫ1, Cǫ2 turbulent model constant
cp specific heat at constant pressure
D nozzle diameter, turbulent model extra term
E, Eω turbulent model extra terms
f1, f2, Cµ, fµ damping functions
H height of jet discharge above impingement plate
I turbulent intensity
k turbulent kinetic energy
lc characteristic length scale
Nu Nusselt number
Pk production of k due to shear stress
Pr Prandtl number
Re Reynolds number based on pipe diametes
ReB Reynolds number based on nozzle width
S̄ij mean rate of strain tensor
T̄ mean temperature
t time
ūi mean velocity
u′

iu
′
j,u

′u′,v′v′,w′w′,u′v′ Reynolds stresses

u′
iT

′ turbulent heat flux
p̄ mean pressure
v̄in bulk inlet velocity
W̄ij mean vorticity tensor
Yc Yap correction
y+ = ρxnuτ

µt
, uτ =

√

τw/ρ is friction velocity and xn is the distance to the nearest
wall

Greek symbols
α∗, β, β∗, βk, γk turbulent model constants
δij Kronecker delta
ǫ dissipation rate of k
ǫ̃ isotropic dissipation rate of k
λ thermal conductivity
µ dynamic viscosity
µt eddy or turbulent viscosity
ρ density
σk, σǫ, σω turbulent model constant
τ time scale
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ω specific dissipation rate of k
xi Cartesian coordinate in the i-direction

Subscripts
ext exterior
in inlet
out outlet

4.1 Introduction

Because of the highly localised mass, momentum and heat transfer, impinging jets
are used in heating, cooling or drying processes for the production of paper, textiles,
glass, annealing of metal sheets, cooling of turbine blades and electronic components,
air curtains, etc. Thus, a correct prediction of flow structure and heat transfer in this
kind of flows is of great importance in many industrial applications.

Predictive inaccuracies of linear eddy-viscosity models have motivated that a great
deal of effort has gone into the elaboration of constitutive expressions that, assum-
ing a higher-order tensor representation, relate Reynolds-stress tensor non-linearly
to the strain-rate and vorticity tensors. This kind of models are capable of solv-
ing Reynolds-stress anisotropy and streamlines curvature. They are also thought to
preserve computational economy and numerical robustness of linear models [1].

The main goal of this chapter is to study the suitability, in terms of accuracy
and numerical performance, of different RANS models in the description of plane and
round impinging jets. Furthermore, Reynolds number and nozzle-to-impingement sur-
face distance are changed in both configurations to test their influence on turbulence
models behaviour. Thus, this work is not intended to improve the models, but to
present a detailed evaluation of them according to their capability to predict imping-
ing jet flows. The analysis of the models in this complex flow is attractive because of
the presence of strong curvature of streamlines, stagnation, recirculation and adverse
pressure regions. A brief overview of different works found in the literature studying
plane and round impinging jets is presented in section 4.2.

Within RANS technique, two-equation linear eddy-viscosity models (LEVM) [2],
non-linear eddy viscosity models (NLEVM) [3] and explicit algebraic Reynolds stress
models (EARSM) [4], are taken into account in this chapter. Moreover, a comparison
in the use of different dissipation variables, such as ǫ or ω for the turbulence length
scale calculation, is carried out. In summary, four k − ǫ and seven k − ω models are
analysed in order to increase the number of turbulence models tested in both plane
and round impinging jets.

The set of equations (continuity, momentum, energy and turbulent quantities)
are transformed to algebraic equations using a general fully implicit finite-volume
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round jets.

technique over structured and staggered grids. The SIMPLEC algorithm [5] is used
for solving, in a segregated manner, the velocity-pressure fields coupling. First and
higher order schemes are used to approximate convective terms.

Results obtained with the models under consideration are carefully verified apply-
ing a post-processing procedure based on the generalised Richardson extrapolation
[6], and validated with experimental data from literature [7, 8]. Furthermore, a de-
tailed analysis of mean velocities, turbulent stresses and global parameters such as
Nusselt number is presented.

4.2 Description of studied cases

Two chosen configurations of single turbulent impinging jets are numerically studied
in this chapter. They involve plane and round nozzle geometries at different Reynolds
numbers and nozzle-to-impingement surface distances (aspect ratios: H/D round jet
or H/B plane jet).

4.2.1 Plane impinging jets

(a) (b)

Figure 4.1: Plane impinging jet. (a) Geometry and boundary conditions. (b)

Grid distribution: number of control volumes (n is a parameter) and size of zones;

solid triangles indicate grid refinement direction.

Turbulent plane impinging jets have received extensive attention in the last decades
considering different geometries, flow and thermal conditions. Experimental studies
for thermal field have been carried out, among others, by Gardon and Akfirat [9]
and Van Heiningen [10] for various Reynolds numbers. For the fluid-dynamic field,
Ashforth-Frost et al. [11] reported measurements of velocity and turbulence charac-
teristics for a slot jet with a Reynolds number of 20000 and two aspect ratios of 4 and
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9.2. Zhe and Modi [7] also examined the velocity field for several Reynolds numbers
and aspect ratios. Numerical studies were published by Heyerichs and Pollard [12],
who examined an impinging slot jet at Reynolds number of 10000. Hosseinalipour and
Mujumdar [13] also realized a similar study at a lower Reynolds number. Seyedein et
al. [14] performed another work for various Reynolds numbers and aspect ratios. More
recently Shi et al. [15] studied the effect of inlet conditions over the heat transfer.

Single turbulent confined impinging air slot jets are studied in this work (see
Figure 4.1). Two Reynolds numbers based on inlet mean velocity and nozzle width
B, of 20000 and 30000, and two aspect ratios of 4 and 9.2 [7, 11] have been tested.

Inlet turbulent kinetic energy (kin) is calculated with an intensity of I = 0.02 and
the characteristic length used to determine the turbulent kinetic energy dissipation
rate (ǫin) is lc = 0.015B. The specific turbulent kinetic energy dissipation rate (ωin)
is evaluated with the relation ω = ǫ

β∗k (where β∗ is a model constant). The walls are
considered isothermal: impingement plate at 310 K and confinement plate at 300 K.
No-slip condition is imposed at solid walls and the value of turbulent quantities depend
on the specific turbulence model used (see section 4.3). At the exit, a pressure outflow
boundary condition is imposed [16], and a null gradient in x-direction of temperature
and turbulence quantities (k, ǫ or ω) is assumed. Due to symmetry, only half domain
is simulated. See Figure 4.1(a) for details.

4.2.2 Round impinging jets

(a) (b)

Figure 4.2: Round impinging jet. (a) Geometry and boundary conditions. (b)

Grid distribution: number of control volumes (n is a parameter) and size of zones;

solid triangles indicate grid refinement direction.

This configuration has been extensively studied as well. Some examples of the
experimental works carried out considering heat transfer are Martin [17], Baughn
and Shimizu [18], Baughn et al. [19], Viskanta [20], and Lytle and Webb [21]. Flow
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measurements have been presented by Cooper et al. [8], Fairweather and Hargrave
[22], and recently by Geers et al. [23]. This configuration has been considered as a test
case by ERCOFTAC. Data of mean velocity, turbulent stresses, and heat transfer at
two Reynolds numbers (Re = 23000 and 70000), and two aspect ratios (H/D = 2 and
6), are reported in this database [8, 18, 19]. These experimental data have been used
by researchers to review turbulence models. For example, Craft et al. [24] studied the
performance of a k− ǫ LEVM and three differential Reynolds stress models (DRSM).
Dianat et al. [25] used a k− ǫ LEVM and a modified DRSM to analyse velocity field.
Behnia et al. [26] compared the V2F model with the standard k − ǫ model for two
aspect ratios and three Reynolds numbers. Abdon and Sunden [27] also studied the
performance of various LEVM and NLEVM in this flow configuration.

In this work, unconfined round impinging jets are studied (see Figure 4.2). For
this configuration two aspect ratios are also considered, H/D = 2 and H/D = 6 [8]. A
Reynolds number based on pipe diameter (D) and inlet bulk velocity (v̄in) of 23000,
similar to that used in the plane impinging jet case, and another higher of 70000
have been selected. The problem can be studied as a two-dimensional axisymmetric
one. At the inlet, fully developed profiles (vin, kin, ǫin) are obtained from a separate
computation in an adiabatic pipe flow with the same inlet diameter and a length of
80D. A constant inlet temperature (Tin) of 298K is imposed. At the upper boundary,
a coflow is prescribed in order to avoid instabilities and ensure a supply of fluid for jet
entrainment. Thus, a exterior velocity (vext) expressed as a fraction of v̄in is imposed.
The temperature (Text) is also set equal to that of the main inlet jet (Tin). This flow
is considered non-turbulent and therefore turbulent kinetic energy is set to zero. At
the outer boundary a pressure outlet condition is defined [16]. At the wall, isothermal
surface at 318K and no-slip boundary conditions are considered. See details in Figure
4.2(a).

4.3 Mathematical model

Turbulence models considered in this work are based on the time-averaged Navier-
Stokes equations. Therefore, some relation for the Reynolds stress (ρu′

iu
′
j) and tur-

bulent heat flux (ρu′
iT

′) must be specified. Furthermore, extra transport equations
for the turbulent kinetic energy (k) and some length-scale determining equation (ǫ or
ω) to close the system are needed [28]. A detailed description is given in section 2.2.

In order to evaluate the Reynolds stresses three approaches are considered: ex-
plicit algebraic Reynolds stress models (EARSM), non-linear eddy-viscosity models
(NLEVM), and linear eddy-viscosity models (LEVM).

Linear eddy viscosity models assume the Boussinesq hypothesis and, by analogy
with Stokes’s law for viscous stresses, it introduces a mixing coefficient to evaluate
Reynolds stresses in turbulent flows. This mixing coefficient is frequently called ap-
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parent, virtual or eddy viscosity (µt) [2]. Therefore, the Reynolds stress is linearly
related to the mean rate of strain.

Non-linear and explicit algebraic models use algebraic expressions based on the
weak-equilibrium assumption and include terms up to third order in the u′

iu
′
j relation

[29]. NLEVM are based on physical constraints and their coefficients are calibrated
for some representative flows [29]. Whereas, EARSM are formally derived from dif-
ferential Reynolds stress models (DRSM) and, therefore, coefficients appearing in the
tensorial expansion are consistent with the DRSM used [4].

A general expression for aij ≡ u′

iu
′

j

k − 2
3δij in the models considered can be written,

identifying Cartesian tensor of rank 2 by bold symbols (e.g. aij → a), and contracted
products as for matrix multiplication (e.g. ab = aikbkj , abc = aikbklclj , etc.), accord-
ing to the relation given in eq. 2.73[30]. Obviously, setting β’s and γ’s coefficients to
zero in Eq. 2.44 the linear relation used in LEVM is obtained (for details see section
2.2).

For the turbulent heat flux (ρu′
iT

′) the models use the simple eddy diffusivity
approach (see section 2.2).

All models studied in this chapter require the solution of two extra transport
equations to close the mathematical formulation. One is for the turbulent kinetic
energy, k, and the other for its dissipation rate, ǫ or ω [2], which are explained in
section 2.2. The models considered in this chapter using ǫ as turbulent dissipation
variable are: IL (kǫ-LEVM) [31], GPC (kǫ-LEVM) [32], CLS (kǫ-NLEVM) [29], and
AMGS (kǫ-EARSM) [4]. Those studied which use ω are: WX (kω-LEVM) [33],
WXT (kω-LEVM) [34], WXCD (kω-LEVM) [28], LAR (kω-NLEVM) [35], ARG (kω-
EARSM) [36], AJL (kω-NLEVM) [30] and WJO (kω-EARSM) [37].

For details about coefficients in the constitutive relation (eq. 2.73), damping
functions and closure coefficients appearing in each model see appendix A.

4.4 Solution procedure

The governing partial differential equations are converted into algebraic ones by means
of the finite volume technique. They are solved, in a segregated manner, using an
orthogonal, structured and staggered grid, applying fully implicit time integration.
SIMPLEC method is applied to couple the velocity and pressure fields [38]. Central
differences are used for the evaluation of diffusive terms, while convective terms are
discretized using power law [38] or higher order (second order upwind or SMART)
schemes [39]. A multigrid iterative solver is used to solve the algebraic linear system
of equations [40].

The grid used is described in Figures 4.1(b) and 4.2(b) for the plane and round
impinging jets respectively. The number of control volumes per zone is represented
by the n-parameter and the concentration direction is indicated by solid triangles.
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Refinement is accomplished by means of a tanh-like function [41]. Thus, concerning
the x or r directions, the number of grids nodes is increased when approaching the
impingement region from the outlet towards the stagnation zone. The grid is also
concentrated near solid walls. The specific meshes used in both cases (plane and
round jets) are fully described in next section.

4.5 Verification of numerical results

ReB = 20000, H/B = 4 , GPC (kǫ-LEVM) model

u v T k

mesh Rn p GCI∗ Rn p GCI∗ Rn p GCI∗ Rn p GCI∗

m [%] [%] [%] [%] [%] [%] [%] [%]

3 94 1.0 1.5e-00 93 0.7 5.7e-01 79 1.2 7.5e-01 92 1.2 5.8e-01

4 92 1.1 8.0e-01 93 0.9 2.8e-01 82 2.1 1.6e-01 93 1.1 3.8e-01

ReB = 30000, H/B = 9.2, WXCD (kω-LEVM) model

u v T k

mesh Rn p GCI∗ Rn p GCI∗ Rn p GCI∗ Rn p GCI∗

m [%] [%] [%] [%] [%] [%] [%] [%]

3 96 1.4 8.0e-00 92 1.5 2.5e-00 92 1.4 4.7e-00 95 1.5 5.1e-00

4 97 1.3 5.4e-00 95 1.3 1.6e-00 91 1.5 2.1e-00 98 1.3 3.8e-00

Table 4.1: Plane jet. Results from mesh refinement study: Richardson nodes

(Rn), global order of accuracy (p) and non-dimensional global uncertainty (GCI∗).

In order to verify the obtained numerical solutions a detailed and reliable process
is applied to determine the numerical uncertainties. The post-processing procedure,
previously explained in section 2.4, is based on the generalised Richardson extrapo-
lation for h-refinement studies and on the Grid Convergence Index (GCI). It is used
in order to establish a criteria about the sensitivity of the simulation to the compu-
tational model parameters that account for the computational domain discretization.
See section 2.4 and [6] for details.

Because of the difficulties found in the previous chapter, when the verification
procedure was applied in coarse grids. Furthermore, due to turbulence models here
used are of the turbulence low-Reynolds number type, care has to be taken to assure
enough grid nodes in the viscous near-wall region [42]. As a criterion, the nearest grid
node to the wall is located at a distance y+ < 2.5. Therefore, a fine enough grid has
to be used as the coarsest mesh in the h-refinement study, what obligates to reduce
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the refinement ratio of two consecutive meshes to 1.5, and the number of grids to be
considered in the refinement process to 4 [6].

Re = 23000, H/D = 2, WX (kω-LEVM) model

u v T k

mesh Rn p GCI∗ Rn p GCI∗ Rn p GCI∗ Rn p GCI∗

m [%] [%] [%] [%] [%] [%] [%] [%]

3 93 1.1 2.7e-01 88 1.4 5.2e-02 48 2.2 5.3e-01 89 0.8 7.2e-02

4 93 1.8 6.0e-02 87 1.2 5.0e-02 40 2.5 2.1e-01 86 1.7 1.1e-02

Re = 70000, H/D = 6, GPC (kǫ-LEVM) model

u v T k

mesh Rn p GCI∗ Rn p GCI∗ Rn p GCI∗ Rn p GCI∗

m [%] [%] [%] [%] [%] [%] [%] [%]

3 96 1.6 4.0e-01 94 1.7 3.3e-01 57 1.3 2.6e-01 92 1.6 1.4e-01

4 94 1.4 1.9e-01 93 1.5 1.6e-01 48 2.4 2.1e-02 93 1.3 1.0e-01

Table 4.2: Round jet. Results from mesh refinement study: Richardson nodes

(Rn), global order of accuracy (p) and non-dimensional global uncertainty (GCI∗).

Control volumes distribution is shown in Figures 4.1(b) and 4.2(b). In the plane
impinging jet case (see Figure 4.1(b)) four meshes are defined according to the pa-
rameter n: 8, 12, 18 and 27 (i.e. m1: 120x80, m2: 180x120, m3: 270x180, and
m4: 405x270 CVs respectively). For the round impinging jet (see Figure 4.2(b)) the
meshes used are obtained with a n = 4, 6, 9 and 14 (i.e. m1: 80x80, m2: 120x120,
m3: 180x180 and m4: 270x270 CVs). Moreover, the concentration near the walls
and towards the jet has been adjusted depending on the aspect ratio and Reynolds
number in each case. Thus, a maximum y+ < 2 for the first inner node from the wall
in the coarsest grid is assured in all the cases.

Tables 4.1 and 4.2 show results of a grid refinement study in plane and round jets
respectively, using three different LEVM turbulence models: GPC (kǫ-LEVM), WX
(kω-LEVM) and WXCD (kω-LEVM), and three meshes for each case (m3/m2/m1
and m4/m3/m2). The Tables show the number of Richardson nodes (Rn) (i.e. the
number of nodes with monotone error convergence), the order of accuracy (p), and
the non-dimensional grid convergence index (GCI∗) (details in [6]). As can be seen,
numerical results have an asymptotic behaviour. The number of Richardson nodes
(Rn) of the numerical solutions are found to be large enough. In general, over 85%
with the exception of Rn for temperature (T ) in the round impinging jet configu-
ration, where certain part of the domain presents a constant value because of the
imposed boundary conditions. The observed order of accuracy (p) for each variable
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also agrees with its theoretical value in impinging flows. Furthermore, the uncertainty
due to discretization (GCI) presents good accuracy for all the variables and dimin-
ishes when the grid is refined. Therefore, results obtained using m3 or m4 meshes can
be considered credible.

Re = 23000, H/D = 2, CLS (kǫ-NLEVM) model

u v T k

mesh Rn p GCI∗ Rn p GCI∗ Rn p GCI∗ Rn p GCI∗

m [%] [%] [%] [%] [%] [%] [%] [%]

3 78 1.1 1.1e-00 75 1.6 6.8e-02 44 3.2 3.2e-00 87 1.3 1.3e-01

Re = 23000, H/D = 2, AJL (kω-NLEVM) model

u v T k

mesh Rn p GCI∗ Rn p GCI∗ Rn p GCI∗ Rn p GCI∗

m [%] [%] [%] [%] [%] [%] [%] [%]

3 91 1.4 7.1e-01 86 1.4 1.2e-01 60 2.7 1.9e-00 91 1.1 2.6e-01

Table 4.3: Round jet. Results from mesh refinement study using NLEVM:

Richardson nodes (Rn), global order of accuracy (p) and non-dimensional global

uncertainty (GCI∗).

Table 4.3 shows results of a grid refinement study in round jets for the first three
meshes (m1, m2, m3) using two of the more complex turbulence models tested in this
work: CLS (kǫ-NLEVM) and AJL (kω-NLEVM). As can be seen, similar results to
those presented in Tables 4.1 and 4.2 are obtained.

Finally, taking into account results presented in Tables 4.1, 4.2 and 4.3, results
from the third mesh can be considered grid independent. Therefore, this mesh is used
for comparative purposes for all the turbulence models tested.

4.6 Results and discusion

In this section, verified numerical results are compared with experimental data. For
both cases under study (plane and round impinging jets), four different aspects are
studied: thermal field, fluid flow field, influence of the aspect ratio, and Reynolds
number. For clarity, the results obtained are grouped depending on the dissipation
variable used (ǫ or ω).
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4.6.1 Thermal field: Nusselt number

One of the most representative parameters of the thermal field found in this configu-
ration is the local Nusselt number along the impingement plate. This is defined as:

Nu =
[

∂T
∂y

]

w
/
[

Tw−T̄in

l

]

, where l = B in plane jets and l = D in round jets (see

Figures 4.1(a) and 4.2(a) respectively), Tw is the impingement plate temperature,
and T̄in the inlet jet temperature.

Plane impinging jet, ReB = 20000 and H/B = 4

Results for the Nusselt number are presented together with experimental data in
Figure 4.3. Despite poor results presented by AMGS (kǫ-EARSM) model, the rest
of the tested models predict acceptable local Nu near stagnation point. In general,
NLEVM models improve predictions of LEVM models in this region, i.e. CLS (kǫ-
NLEVM) vs. IL (kǫ-LEVM), and LAR (kω-NLEVM) and ARG (kω-EARSM) vs.
WX (kω-LEVM). Moreover, only AJL (kω-EARSM) slightly underpredicts Nu at the
stagnation point. The same trend has been observed by Abdon et al. [27] for LAR
(kω-NLEVM) and AMGS (kǫ-EARSM) models. Furthermore, comparing k − ǫ with
k−ω based models, the last ones present less dispersed values in the stagnation zone.
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(a) k − ǫ models.
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(b) k − ω models.

Figure 4.3: Plane jet, ReB = 20000 and H/B = 4. Local Nusselt at the

impingement plate. Lines: numerical results; symbols: experiments by Ashforth-

Frost et al. [11].

Downstream, IL (kǫ-LEVM) reproduces correctly experimental data for the Nus-
selt number [11]. Nevertheless, CLS (kǫ-NLEVM) predicts with delay Nusselt sec-
ondary maximum, whereas WXT (kǫ-LEVM), AJL (kǫ-NLEVM) and WJO (kω-
EARSM) predict the maximum earlier than experimental data. On the other hand,
GPC (kǫ-LEVM), WX (kω-LEVM), WXCD (kω-LEVM), LAR (kω-NLEVM) and
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ARG (kω-EARSM) do not exhibit the secondary Nu peak. Thus, observing this
quantity in redeveloping region, there is not appreciable benefit in using higher or-
der relations. For this configuration, it seems more important the use of extra-terms
and adequate damping functions rather than more elaborate constitutive equations
to evaluate turbulent stresses.
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Figure 4.4: Plane jet, ReB = 20000 and H/B = 4. Non-dimensional Eddy

Viscosity of selected models.

In order to illustrate the connection between the turbulence level and the Nusselt
number secondary peak, Figure 4.4 shows results for the eddy viscosity (µt) normalised
by molecular viscosity (µ). The second Nusselt maximum in Figure 4.3 coincides
with a steep positive gradient in the turbulence level (represented by µt/µ) near the
bottom wall. It is also observed that models which do not exhibit an enhancement of
turbulence downstream stagnation region do not present a secondary peak in Nusselt
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number.

Round impinging jet, Re = 23000 and H/D = 2

Figure 4.5 shows the local Nusselt results along the impingement plate for the round
impinging jet with an aspect ratio of 2. The most accurate prediction for this quantity
is obtained with the CLS (kǫ-NLEVM). For this configuration, it is clear the necessity
of using this model if a correct prediction of the local Nu number is desired (see Figure
4.5). The AJL (kω-NLEVM) model also tends to follow experimental data, but fails
in the prediction of the secondary maximum.
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Figure 4.5: Round jet, Re = 23000 and H/D = 2. Local Nusselt at the

impingement plate. Lines: numerical results; symbols: experiments by Baughn

and Shimizu [18].

In spite of the results shown in the plane jet configuration, k − ω models do not
improve k− ǫ results in the round case. Furthermore, none of the k−ω models, with
exception of AJL (kω-NLEVM), reproduce correctly experimental data near stagna-
tion region, nor the secondary Nu maximum. As it is noted above, the secondary
peak of the local Nusselt number profile is attributed to a turbulence increase away
the stagnation point, which is produced by high shear in the region of streamline
convergence, where the turbulent shear layer is impinging on the plate [26]. Similar
results for this configuration have been presented by other researchers [3, 27].

4.6.2 Fluid-flow field

In this section fluid-flow field predicted by the models is analysed in terms of mean
and fluctuating velocities at different positions for both plane and round impinging
jet configurations under consideration.
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Plane impinging jet, ReB = 20000 and H/B = 4

In two experimental works, carried out by Ashforth-Frost et al. [11] and by Zhe and
Modi [7], the fluid-flow field for this case is studied with similar boundary conditions
and geometric characteristics. Here, both works are taken into account to study model
performance.
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Figure 4.6: Plane jet, ReB = 20000 and H/B = 4. Comparison of calculated

x-direction component of mean velocity with experimental results, at x/B=1 and

x/B=7. Lines: numerical solutions; symbols: experiments by Zhe and Modi [7] and

Ashforth-Frost et al. [11].

Figure 4.6 shows non-dimensional mean velocity distribution in x-direction (u/vin)
at two axial positions. Numerical results are compared with the mentioned experi-
mental data [7, 11]. This Figure illustrates an appropriate behaviour of all models
near the stagnation region at x/B = 1, if they are compared with experiments by Zhe
and Modi [7]. However, LAR (kω-NLEVM) model over-predicts velocity at x/B = 1.

Downstream deceleration of the velocity near the wall (shown in Figure 4.6 at
x/B = 7 location) appears when the jet is dispersed causing the development of a
vortex in the upper part [43]. At that point all k − ǫ models have difficulties to
correctly reproduce experimental results. Nevertheless, WX (kω-LEVM) and LAR
(kω-NLEVM) models produce closer solutions to experiments at this point, whereas
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WXCD (kω-LEVM), ARG (kω-EARSM) and AJL (kω-NLEVM) models overpredict
mean velocity profile (see figure 4.6(b)).
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Figure 4.7: Plane jet, ReB = 20000 and H/B = 4. Comparison of calculated

x-direction component of fluctuating velocity with experimental results at x/B=1

and x/B=8. Lines: numerical solutions; symbols: experiments by Zhe and Modi

[7] and Ashforth-Frost et al. [11].

In order to gain a better understanding of the performance of each model is nec-
essary to compare also the fluctuating part or root mean square value (rms) of the
velocity in x-direction (u′/vin). Comparative results are presented in Figure 4.7,
where most of the models differ from experimental data. At this stage, it is clear
the more accurate behaviour of k−ω models near the impingement plate, reinforcing
results presented for the mean velocity field. The k − ǫ LEVM and NLEVM models
fail in predicting the fluctuating velocity profile near x/B = 7. Furthermore, among
k−ω based models, only AJL (kω-NLEVM) and WJO (kω-EARSM) models tend to
reproduce experimental data near the wall at this position, but this improvement is
not reflected in the mean velocity profile.

Reviewing u′/vin profile, it can be seen that the influence of higher order terms
in the relation for Reynolds stresses is more relevant in models using k − ω platform.
Thus, in the stagnation region, LAR (kω-NLEVM) model over-predicts u′/vin far
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from the bottom wall. For k − ǫ based models, differences between using linear or
non-linear relations are smaller [27, 44], e.g. CLS (kǫ-NLEVM) model only reproduces
appropriately experimental data near the bottom wall at x/B = 1 and under-predicts
experimental profile in the other positions. Moreover, AMGS (kǫ-EARSM) model
over-predicts u′/vin velocity near stagnation region, but it performs in a similar way as
IL (kǫ-LEVM) and GPC (kǫ-LEVM) models in the other regions analysed. Therefore,
in the case of k − ǫ models, the constitutive relation to evaluate turbulent stresses
and the correct behaviour of the turbulent dissipation equation near the impingement
plate also, play an important role.

Round impinging jet, Re = 23000 and H/D = 2
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Figure 4.8: Round jet, Re = 230000 and H/D = 2. Comparison of mean

velocity at r/D = 0.5, r/D = 1. Lines: numerical results; symbols: experiments

by Cooper et al. [8].

In Figure 4.8, mean velocities in radial direction are presented for the round im-
pinging jet case with H/D = 2. At r/D = 0.5, a change of the mean flow velocities
from axial to radial direction is observed. At that stage, the comparison with experi-
ments shows different quality fittings for the turbulence models used. However, in this
position, the mean velocity is dominated by pressure and is only slightly affected by
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Reynolds stresses. For this reason, predictions derived from the different turbulence
models are similar. Downstream, at r/D = 1 position, only CLS (kǫ-NLEVM) and
AJL (kω-NLEVM) fit the velocity peak. Furthermore, the rest of models give too
much spreading of the jet because of the high levels of turbulence predicted in the
stagnation zone [3].
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Figure 4.9: Round jet, Re = 230000 and H/D = 2. Comparison of rms

velocity at r/D = 0.5, r/D = 1. Lines: numerical results; symbols: experiments

by Cooper et al. [8].

Fluctuating velocities are shown in Figure 4.9. As can be seen, LEVM over-
predict fluctuating velocity values near stagnation point. Furthermore, at r/D =
1.0, it is illustrated that an adequate prediction of turbulent stresses contributes to
capture more accurately mean velocity peak. Moreover, improvements of CLS (kǫ-
NLEVM) in predicting fluctuating values (consequently turbulence energy), and AJL
(kω-NLEVM), particularly in the impingement region (x/B = 0.5), result in a better
prediction of Nu number in this zone (see Figure 4.5). Thus, the analysis of rms values
confirms that the model that overpredicts fluctuating velocity levels also produces an
excessively rapid mixing. Moreover, it is found that the anisotropy of the Reynolds
stresses predicted by NLEVM plays an important role in the production of turbulence
kinetic energy at the jet centre line. As a result of the differences predicted for each
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one of the normal stresses (anisotropy), Pk becomes negative in the stagnation region,
which is in accordance with experimental results presented by Geers et al. [23].

4.6.3 Influence of the aspect ratio

In this subsection the Reynolds number is maintained, but the aspect ratio is changed
to test its influence on turbulence models performance. Thus, for the plane jet the
new aspect ratio of H/B = 9.2 is studied, whereas for round jet the new aspect ratio
is set to H/D = 6.

Plane impinging jet, ReB = 20000 and H/B = 9.2

In Figure 4.10 local Nu number results for the plane impinging jet case with H/B =
9.2 are shown. Similarly to the previous results presented in Figure 4.3 for the small
aspect ratio of H/B = 4, results of k − ǫ models present a large scattering, and none
of them reproduce adequately the experimental Nu profile. Moreover, IL (kǫ-LEVM)
and CLS (kǫ-NLEVM) incorrectly predict a secondary maximum for this quantity.
As to k − ω models, all except AJL (kǫ-NLEVM) predict similar profiles overpre-
dicting experimental data near stagnation region. Furthermore, AJL (kǫ-NLEVM)
incorrectly presents a secondary maximum. Therefore, there are no advantages in
using this platform (see Figure 4.10(b)), nor in the use of higher order terms in the
constitutive relation used to calculate Reynolds stresses.
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Figure 4.10: Plane jet, ReB = 20000 and H/B = 9.2. Local Nusselt at the

impingement plate. Lines: numerical results; symbols: experiments by Ashforth-

Frost et al. [11].

For this case, fluctuating (rms) velocities have also been studied. Profiles obtained
are comparable to those shown in Figure 4.7 for H/B = 4. Thus, k−ǫ models present
deficient results near bottom wall. On the other hand, LEVM k − ω models predict
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streamwise rms velocity adequately at x/B = 1. However, downstream (at x/B = 5)
k − ω models also under-predict it near the impingement plate, with exception of
WJO (kω-EARSM) and AJL (kω-NLEVM) models that reproduce experimental rms
data in this zone [45].

Round impinging jet, Re = 23000 and H/D = 6

In Figure 4.11 local Nu results for the round impinging jet configuration with Re =
23000 and H/D = 6 are shown. In general, the same trend observed for H/D = 2
(see Figure 4.5), is found for this aspect ratio. Thus, k − ω based models present
poor predictions of the Nu number at the stagnation region. However, AJL (kω-
NLEVM) reproduces experimental data and WJO (kω-EARSM) slightly improves
LEVM results (see Figure 4.11(b)). Whereas, among k− ǫ models, CLS (kǫ-NLEVM)
correctly reproduces experimental data, followed by GPC (kǫ-LEVM). Once again,
the use of CLS (kǫ-NLEVM) is necessary, or in this case AJL (kω-NLEVM), to obtain
adequate results for the Nu number near stagnation region (see Figures 4.5 and 4.11).
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(b) k − ω models.

Figure 4.11: Round jet, Re = 23000 and H/D = 6. Local Nusselt at the

impingement plate. Lines: numerical results; symbols: experiments by Baughn

and Shimizu [18].

Fluctuating velocities are considered in Figure 4.12. In line with the results of
Figure 4.9, LEVM continue overestimating rms velocity near the stagnation region
(r/D = 0.5). This difference can be attributed to the fact that models based on linear
relations between turbulent stresses and the rate of strain do not account adequately
for the sensitivity of the wall jet to streamline curvature effects [25].

Moreover, as can be seen in Figures 4.5 and 4.9 for H/D = 2, and also in Figures
4.11 and 4.12 for H/D = 6, the wall normal Reynolds stress plays an important
role. An inaccurate evaluation of this component at impingement and reattachment
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Figure 4.12: Round jet, Re = 23000 and H/D = 6. Streamwise fluctuating

velocity component. Lines: numerical results; symbols: experiments by Cooper et

al. [8].

points can give rise to important errors in the Nu number [30]. However, this trend
does not prevail downstream because of the inadequacy of LEVM it becomes less
important as shear stress dominates turbulence energy production. Furthermore, far
from stagnation regions the heat transfer rate is more influenced by shear stress and
there is no clear connection with the normal Reynolds stresses.

4.6.4 Influence of Reynolds number

In order to check the generality of the models, a higher Reynolds number is imposed
and its effects are analysed in both plane and round impinging jet configurations,
keeping the same aspect ratios considered before.

Plane impinging jet ReB = 30000, H/B = 4 and H/B = 9.2

For the plane impinging jet configuration a Reynolds number of ReB = 30000 is
studied. Analysis is centred in the lower aspect ratio of H/B = 4 due to the fact that
there is no experimental information of the fluid-dynamic field for the larger aspect
ratio of H/B = 9.2. However, illustrative results are also presented for the larger
aspect ratio.

In Figure 4.13, the obtained local Nusselt number for H/B = 4 is compared with
the empirical correlation presented by Hofmann et al. [46]: Nu = 0.042Pr0.42(Re3

B +
10Re2

B)0.25exp−0.052x/2B. This correlation presents an almost linear profile without
the minimum and subsequent secondary peak which should exist. Furthermore, the
aspect ratio is not taken into account in this expression. In general, behaviour of all
models is similar to that shown for the plane jet at ReB = 20000 already studied (see
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Figure 4.13: Plane jet, ReB = 30000 and H/B = 4. Local Nusselt at the

impingement plate. Lines: numerical results; symbols: empirical correlation by

Hofmann et al. [46].

Figure 4.3). Thus, it seems that CLS (kǫ-NLEVM) presents a delay in the transition.
Conversely, WXT (kω-LEVM), WJO (kω-EARSM) and AJL (kω-NLEVM) present
the secondary Nu maximum too soon.
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Figure 4.14: Plane jet ReB = 30000 and H/B = 9.2. Local Nusselt for

impingement plate. Lines numerical results and symbols empirical expression by

Hofmann et al. [46].

In Figure 4.14 local Nusselt number for H/B = 9.2 is also compared with the em-
pirical correlation given by Hofmann et al. [46]. As shown, AJL (kω-NLEVM) and
CLS (kǫ-NLEVM) predict adequately Nusselt at the stagnation region, and down-
stream in the redeveloping region (x/B > 7). However, the secondary maximum
presented, incorrectly follows the same trend observed in Figures 4.3 and 4.10 for the
plane jet at ReB = 20000.
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Concerning fluctuating velocity parallel to the wall, deficiencies observed for a
Reynolds number of 20000 continue for this Reynolds number (see Figure 4.7). These
results confirm the idea that a constitutive stress algebraic equation containing only
velocity gradients, as a combination of strain and vorticity terms, is not enough to
achieve a good representation of near-wall anisotropy in the presence of weak shear
and strong normal straining associated with impingement and reattachment [30].

Round impinging jet, Re = 70000, H/D = 2 and H/D = 6

In this subsection, a higher Reynolds number of 70000 considering two aspects ratios
of 2 and 6 is here studied for the round impinging jet case.

Firstly, the configuration with an aspect ratio of 2 is analysed. In Figure 4.15, a
comparison of the local Nusselt number at the impingement plate with experimen-
tal data for Re = 70000 is presented. The performance exhibited by the models is
similar to the one shown at the lower Reynolds number for this aspect ratio. How-
ever, two circumstances are highlighted: i) AJL (kω-NLEVM) incorrectly predicts
Nusselt maximum far from stagnation region; ii) although CLS (kǫ-NLEVM) model
overpredicts the Nu in the stagnation region, it still predicts heat transfer in broadly
satisfactory agreement with experiments.
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(b) k − ω models.

Figure 4.15: Round jet, Re = 70000 and H/D = 2. Local Nusselt at the

impingement plate. Lines: numerical results; symbols: experiments by Baughn

and Shimizu [18].

Analogous results for the streamwise fluctuating velocity to those shown in Figure
4.9 for a Re = 23000 are now observed for a higher Reynolds of 70000 and H/D = 2.
Thus, the reason for the overprediction of Nu around the stagnation zone can be
understood from the predicted fluctuating velocity. For example, at r/D ≈ 0 it
is possible to observe that the models which overpredict fluctuating velocity, also
overpredict Nu near the stagnation point, e.g. IL (kǫ-LEVM), GPC (kǫ-LEVM),
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WX (kω-LEVM), WXT (kω-LEVM), etc. On the other hand, CLS (kǫ-NLEVM) and
AJL (kω-NLEVM) models return near-wall values closer to the experimental data
allowing a more accurate prediction of Nu in the stagantion region.
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Figure 4.16: Round jet, Re = 70000 and H/D = 2. Streamwise fluctuating

velocity component at r/D = 0.0 and r/D = 1. Lines: numerical results; symbols:

experiments by Cooper et al. [8].

Furthermore, plotted rms values at r/D = 1 are shown in Figure 4.16, where the
minimum Nu according to experiments is located. From this Figure it is possible to
relate the rms velocity with the erroneous maximum presented by AJL (kω-NLEVM)
for the local Nu far from the stagnation region. As shown, the AJL (kω-NLEVM)
exhibits a pronounced peak near the wall, which generates a significant increment
in the turbulence level and, therefore, a positive step gradient in the Nu profile.
Thus, this model improves results near stagnation region, but still presents problems
downstream in strongly accelerating zones for Re = 70000. However, the connection
between fluctuating velocity and local Nu downstream is not evident for the lower
Reynolds number of 23000 (see Figures 4.5(b) and 4.9).

The analysis is now focussed on the case with H/D = 6. Figure 4.17 shows
Nu number distribution for Re = 70000. Even though AJL (kω-NLEVM) improves
Nusselt number predictions of LEVM at the stagnation point, it also incorrectly
predicts a maximum far downstream again. Furthermore, local Nu profile predicted
using CLS (kǫ-NLEVM) is not as good as the results obtained with H/D = 2, specially
near stagnation region. Thus, comparing Figures 4.5 and 4.11 with Figures 4.15 and
4.17 respectively, it is observed that the performance of the models is degraded when
the Reynolds number increases.

In Table 4.4 non-dimensional turbulent viscosity near the bottom wall for two
radial positions (jet centreline and r/D = 1) is presented. It is used to illustrate
once again the relation between turbulence level and impingement plate heat transfer
in the situation under consideration. As shown, there is a connection between local
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(b) k − ω models.

Figure 4.17: Round jet, Re = 70000 and H/D = 6. Local Nusselt at the

impingement plate. Lines: numerical results; symbols: experiments by Baughn

and Shimizu [18].

Turbulence model

Posit. IL GPC AMGS CLS WX WXT WXCD LAR ARG AJL WJO
r
D

≈ 0 21.2 16.9 108.9 8.5 41.5 42.3 34.0 32.9 48.3 1.1 11.3
r
D

= 1 8.2 6.4 21.7 7.6 10.0 10.5 6.7 8.9 11.2 6.7 9.2

Table 4.4: Round jet, Re = 70000 and H/D = 6. Non-dimensional turbulent

viscosity (µt/µ) at the jet centreline and at r/D = 1 for y/D = 0.005.

Nu and turbulent viscosity at both positions. At the stagnation region, where heat
transfer predicted agrees with experimental data, AJL (kω-NLEVM) presents a tur-
bulent viscosity similar to the molecular one. Downstream a marked increase of the
turbulence level near the bottom wall at r/D = 1 seems to be the reason for the local
Nusselt number peak predicted by the AJL (kω-NLEVM). On the other hand, the
rest of the models present a high eddy viscosity value at the stagnation region that
decreases downstream.

4.7 Conclusions

Both plane and round turbulent impinging jets have been simulated using LEVM,
NLEVM and EARSM, based on k− ǫ as well as k −ω platforms, and using represen-
tative models of each formulation. A verification procedure has been applied in order
to ensure credibility of numerical results obtained.

The correct prediction of the second peak in Nusselt number is related with the
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increase of turbulence levels near the bottom wall. In some models, such as IL (kǫ-
LEVM), CLS (kǫ-NLEVM), WXT (kω-LEVM) and AJL (kω-NLEVM), an increase of
turbulence near the place where the second maximum of Nusselt appears is detected.
Thus, a connection between Reynolds stresses, turbulence level and heat transfer is
observed.

Reviewing the wall heat-transfer coefficient, local Nusselt number, in both plane
and round impinging jet configurations, it is possible to observe the lack of generality
of the models. In fact, models with good performance in the round jet case show poor
results in the plane jet configuration.

Part of the reason for the poor performance of AMGS (kǫ-EARSM) model may
be the fact the k − ǫ formulation in general does not handle very well wall-bounded
adverse pressure gradients without wall damping functions and additional terms to
improve its performance near solid walls.

The limitations of LEVM are more relevant at low aspect ratios, specially for
the round impinging jet configuration. Furthermore, the cases studied show that the
behaviour of NLEVM is better for the round impinging jet, whereas, as it was said
before, their improvements are limited in the plane jet configuration.

Finally, for the kind of flows under consideration, the effect of including the cross-
diffusion term in the WXCD (kω-LEVM) is only remarkable in the evaluation of
fluctuating velocities. Furthermore, throughout this work it has been found that
models based on the k − ω platform produce less scattered results.
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Chapter 5

Air curtains. Experiments
and code validation.

Abstract. The main purpose of this chapter is to characterize in detail actual air cur-

tains using both experimental and different types of numerical approaches. At the beginning

semi-empirical models to design air curtains are shown. After that, multidimensional math-

ematical models based on the numerical solution of the Navier-Stokes equations using CFD

are briefly summarized. Then, an experimental setup used in the study of air curtain dis-

charge and jet downstream is explained. Measurements of different air curtian prototypes

are presented in order to characterize the air-curtain fluid-dynamic and thermal fields. The

technique used in velocity measurement, which is hot wire constant temperature anemome-

try, is introduced. Furthermore, thermal field is assessed with thermocouples type K located

in several planes within adapted chamber, as well as at air inlet and outlet sections. Finally,

air curtains are simulated using CFD and the mathematical formulation is validated with

experimental data acquired.
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5.1 Introduction

The principle of an air curtain mounted in buildings doorway, is to supply a jet over
the whole opening with sufficient momentum to counter the pressure force across it
due to wind, buoyancy and the pressure difference due to ventilation system across
the opening. The design of air curtains depends on the installation site and on the size
of the opening. In supermarkets, or public buildings, the velocity must be low. For
industrial applications like furnace, refrigeration storage or fire security in tunnels,
the velocity may be higher and the jet thicker. The air blown across the doorway can
be drawn from outside the building or it can be indoor air. The air curtain can be
designed as a recirculating system, where the jet is directed to the exhaust opening
and a portion of the air is allowed to recirculate in the system. However, in most of
the systems, the air blows partly into interior space and partly out of the building.
The jet can be heated to improve comfort conditions (people through the opening).
According to the jet temperature, the system can be said to be warm air curtain or
cold air curtain.

Figure 5.1: Schematic representation of an air curtain.

The temperature difference between the spaces creates a pressure difference that
drives air through the doorway, while the wind creates a second fluctuating pressure
component. Additional factors to be taken into account in the design of air curtains
are the space height, the building leakage characteristics and the influence of the
ventilation system (the effect of imbalanced ventilation can be strong and deflect the
jet inwards or outwards) [1]. Therefore, in the technical dimensioning of an air curtain
both a fluid mechanical approach and a thermal approach is needed. In the first case,
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it is necessary to determine the pressure differences across the opening for some given
weather conditions, so fixing the required nozzle width, jet velocity exit and discharge
angle. In the thermal dimensioning, it is important to establish energy losses. The
heat loss through opening with the air curtain system is due to jet turbulence level
and net mass flow across it. Because air is entrained into the jet from both sides, in
part because of mixing process and part when the jet hits the floor, the air curtain can
not totally prevent heat and/or mass transport across the doorway, but remarkably
reduce them.

In this Chapter, different possibilities to study air curtains are introduced. Firstly,
semi-analytical mathematical models used as a fast tool to design air curtains are
presented. Afterwards, multidimensional mathematical models involving the solution
of the Navier-Stokes equations using CFD are shown. Then, an experimental setup
adapted in order to study air curtains is explained and measurements carried out
are presented. Finally, the experimental setup is numerically reproduced using CFD
and predictions compared with experimental data in order to validate mathematical
formulation used in the CFD approach.

5.2 Semi-analytical mathematical models

The best option for analyzing and optimizing air curtains is for sure the simulation of
the flow by the use of computational fluid mechanics (CFD). But three dimensional
CFD simulations of the fluid flow induced by an air curtain device is time consuming
and needs large computational resources. Skilled personal familiar with CFD is also
required. As these requisites are not always given in industrial environments, compa-
nies often have to use more simple techniques. This simplified model only considers
main boundary conditions, as the outside and inside temperature, building character-
istics and wind induced forces, and gives an estimation for the major variables needed
for a technical dimensioning of the air curtain. The results obtained with this model
are immediate. However, it only delivers the values needed for the dimensioning and
the heat exchange through the curtain. It does not give any further information
needed for an optimization in terms of energy-saving.

Air curtains direct the air toward the incoming at an angle ranging from 12 to
45 grades according to user necessities [2]. They can supply heated air, air at room
temperature, or air at the outdoor temperature. Air curtains with heated air are
recommended for doors smaller than 3.6 by 3.6 m and for more than five aperture
times or for longer than 40 minutes during 8 hours shift. Also those which are designed
for regions with low winter temperatures. Air curtains that supply unheat indoor air
have application in spaces: with a heat excess, with temperature stratification over
the room height and in regions with a mild climate [2].

As it was said, air curtain must have the moment necessary to counter pressure
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forces. Thus, the momentum of the air curtain discharge jet can be expressed as:

Mdis = ρv2
disWbdis (5.1)

where,

• vdis =discharge velocity.

• W =length of supply slot (depth).

• bdis =effective width of supply slot (see figure 5.1).

• ρ =density air supply.

If the jet is set a discharge angle αdis, by assuming conservation of the jet momentum
and that the discharge angle is equal to the negative impact angle (αdis = α1), its
change in a direction normal to the plane of the opening is (see Figure 5.1) [2]:

FM = 2ρv2
disWbdissinαdis (5.2)

Applying momentum balance for a control volume in the doorway, FM must be at
least equal to the force due to pressure difference (FP ), to prevent air flow across the
jet, FP = WH∆pt, where H is the opening height and ∆pt = p2 − p1 is the total
pressure difference (see figure 5.1).

With FM = FP or
∑

FP =
∫

cs

ρvxv̄ · dĀ, the supply velocity vdis will be:

2ρv2
disWbdissinαdis = WH∆pt

vdis =

√

H

bdis

∆pt

2ρsinαdis
(5.3)

From equation 5.3 it can be seen that vdis depend on bdis and αdis for a given value
of H, ∆pt and ρ.

The pressure difference (∆pt) is calculated in an analytical way, and expressed as
the sum ∆pt = pw + ps + ∆pm, being

• Wind pressure (pw): Wind impacting on the building.

• Stack pressure (ps): Difference in temperature (densities) between air inside
and outside the building.

• Mechanical pressure (∆pm): Pressure between the air supply and extract ter-
minals, due to ventilation system.
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A different approach is proposed by Sirén [1], who has taken moment-of-momentum
balance in the doorway, assuming conservation of angular momentum. The results are
slightly different but the model includes the same empirical limitations. The general
moment-of-momentum is the cross product of the forces F acting on a control volume
and the vectors of position r from a given point of rotation.

∑

r̄ × F̄P =

∫

cs

ρr̄ × v̄v̄ · dĀ (5.4)

Which in a two-dimensional case yields [1]:

∑

rnFP =

∫

cs

ρrnv2dA (5.5)

Where rn is the normal distance from the point of rotation to the corresponding force
or velocity vector. If the impact point is chose as the point of rotation the right part
of equation 5.5 gives:

∑

rnFP = ρWbdisv
2
dissinαdisH − ρWbdisv

2
discosαdisX1 (5.6)

Where X1 is the distance of the point of impact from the doorway. Comparing
equation 5.6 with equation 5.3 the difference is that no assumption about impact
angle is necessary, instead the impact point is included now (X1 = ±0.208

√
bdisH).

5.2.1 Wind pressure (pw)

It is the force due to the impact of air against the building. It can be obtained from:

pw = Cp
ρextv

2
w

2
(5.7)

where: vw is the wind speed at datum level (height of building or opening), ρext is
the exterior ambient density and Cp is static pressure coefficient. This coefficient is
determined by: building geometry, wind velocity (speed and direction) relative to the
building and location of the building respect to other buildings, the topography and
roughness of the terrain in wind direction. Cp is obtained from tables or correla-
tions extracted from wind tunnel experimental data in scaled prototypes. Swami and
Chandra [3] proposed the following empirical relation:

Cp = 0.6 ∗ ln(1.248− 0.703sin
β

2
− 1.175sin2β + 0.131sin3(2βG) + (5.8)

0.769cos
β

2
+ 0.07G2sin2 β

2
+ 0.717cos2β

2
)
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Where, β is wind incidence angle. G = ln(S) = ln(L1/L2). Where S is side ratio of
the lengths of adjacent walls L1 and L2 of the building. The determination of this
coefficient is one of the most complicated tasks in designing air curtains.

Natural wind has a highly turbulent character and if a time-mean speed is defined
this is found to vary with height from the ground depending on the roughness of the
terrain over which the wind passes [2]. Mean velocity vw can be obtained from [2]:

vw

vr
= cHa (5.9)

where: vr is mean wind speed measured at a weather station (usually 10 meters above
ground), and c and a are terrain dependent constants (see table 5.1) and H is the
building height where vw is needed.

Terrain c a

Open flat country 0.68 0.17

Country with scattered wind breaks 0.52 0.20

Urban 0.35 0.25

City 0.21 0.33

Table 5.1: Terrain factors for equation 5.9 from [4]

5.2.2 Stack pressure (ps)

The pressure due to buoyancy effect is an additional component, which controls the
air leakage through the contour of building. Neglecting the effect of the vertical
distribution in the indoor temperature, the pressure difference across the facade (ps)
becomes a linear function of the vertical coordinate (z). This pressure difference can
be expressed as:

ps = pi(z) − po(z) = (ρo − ρi)gz + (pig − pog) (5.10)

where ρo and ρi are the exterior and interior air densities, g is the acceleration
due to gravity, z is the height from the ground level pog the exterior pressure and pig

is interior pressure on the ground level. The neutral pressure level (zns), which is the
height where the pressure difference over the building facade equals zero, is

zns =
(pig − pog)

(ρo − ρi)g
(5.11)

Once zns is known the stack pressure becomes

ps = (ρo − ρi)g(z − zns) (5.12)
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The neutral pressure level can be evaluated as a function of the leakage characteristics
of the building:

zns =
(Au/A1)

mHu + H1

(Au/A1)m + 1
(5.13)

where Au and A1 are the total leakage areas of the upper zone and lower zone, Hu

and H1 corresponding area-weighed vertical distances from the ground level and m is
the inverse of the flow exponent, characteristic of the flow type, m = 2 for turbulent
flows and m = 1 for laminar flows.

5.2.3 Mechanical pressure (∆pm)

The mechanical pressure can be determined from the difference in pressure between
the air supply and extract terminals of the ventilation system. The air infiltration or
exfiltration rate created by a mechanical extract or supply fan on a building can be
determined by matching the characteristic curve of the fan with th air leakage curve
of the building [2].

5.2.4 Illustrative results
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Figure 5.2: Discharge velocity contours obtained assuming conservation of an-

gular momentum. H = 2.5m , b0 = bdis=7cm , α0 = αdis = ±25◦

143



Chapter 5. Air curtains. Experiments and code validation.

Figure 5.2 shows the discharge velocity predicted using conservation of angular mo-
mentum proposed by Sirén (eq. 5.6) [1], for a discharge angle of 25◦, an indoor
temperature of 25◦C, and a variable outdoor temperature varying, plotted on the
y-axis. On the x-axis the wind velocity lies between no wind at all and approximative
6m/s, which corresponds to a wind velocity of 10m/s measured at a meteorological
station. The air for the jet is taken from the inside, its temperature is not changed.
The door height is 2.5m and the nozzle width 7cm. The building is assumed to be
non-leaky or to have an even vertical leakage distribution.
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Figure 5.3: Discharge velocity contours obtained assuming conservation of linear

momentum. H = 2.5m , b0 = bdis=7cm , α0 = αdis = ±25◦

Figure 5.3 shows the different discharge velocities for the same input parameters
as for the anterior case but obtained with the more simple assumption of conservation
of linear momentum (Eq. 5.3).

As shown, taking the air for the jet from the inside, the simpler Equation 5.3
predicts lower discharge velocities than Equation 5.6. This is because discharge ve-
locities predicted by Equation 5.3 are independent of the temperature difference for
an airtight building.

Although, results are not presented, some shortcomings of the simplified models
are observed, e.g. the necessary discharge velocity gets lower as the discharge angle
increases. It is true that the initial momentum in x-direction increases with a higher
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Figure 5.4: Interface designed to use semi-analytical model.

discharge angle, in that case also the track of the jet gets longer. The model does
not take this into account and therefore does not take into account the optimization
problem that actually lies behind the selection of the right angle.

5.2.5 Web interface designed

An interface has been created in order to allow the use of developed semi-analytic
model through Internet. The software is called Software for Air-Curtains Systems
(SACS). In Figure 5.4 is shown the interface as it appears in the Web Browser. The
page is composed of two main blocks, the left side is used to introduce required input
data to run the program. Whereas, in the right side output data are presented. At
current stage, the interface is not designed for the final customer, but to the partner
company. The program is designed to give the discharge velocity of the air curtain
when the environment and geometry of the air curtain are known (calculated using
both procedures explained). Furthermore, a graphic representation of the air curtain
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jet centerline velocity decay and centerline position is included. Moreover, sealing
efficiency of the air curtain evaluated using empirical correlations and costs savings
in terms of energy are given as output data.

5.3 Advanced multidimensional mathematical model

In this section a brief summary of the mathematical formulation used to carry out
CFD computations of air curtains is presented. Multidimensional mathematical mod-
els are introduced together with turbulence models applied for the solution of turbu-
lence (for more details see Chapter 2).

∂ūi

∂xi
= 0 (5.14)

∂ūi

∂t
+ ūj

∂ūi

∂xj
= −1

ρ

∂p̄i

∂xi
+

1

ρ

∂

∂xj

(

2µS̄ij − ρu′
iu

′
j

)

− β(T − To)gi (5.15)

∂T̄

∂t
+ ūi

∂T̄

∂xi
=

1

ρcp

∂

∂xi

(

λ
∂T̄

∂xi
− cpρu′

iT
′

)

(5.16)

∂(ρk)

∂t
+

∂(ρūik)

∂xi
=

∂

∂xi

[(

µ +
µt

σk

)
∂k

∂xi

]

+ Pk − ρDis (5.17)

∂(ρǫ̃)

∂t
+

∂(ρūiǫ̃)

∂xi
=

∂

∂xi

[(

µ +
µt

σǫ

)
∂ǫ̃

∂xi

]

+ f1Cǫ1
ǫ̃

k
Pk − f2Cǫ2ρ

ǫ̃2

k
+ E + Yc (5.18)

∂(ρω)

∂t
+

∂(ρūiω)

∂xi
=

∂

∂xi

[(

µ +
µt

σω

)
∂ω

∂xi

]

+ α
ω

k
Pk − βρω2 + Eω (5.19)

µt = Cµfµ
ρk2

ǫ
= α∗ ρk

ω
(5.20)

In these models the set of equations (continuity (5.14), momentum (5.15), energy
(5.16) and turbulent quantities (5.17, 5.18 or 5.19)) are transformed to algebraic
equations using a general fully implicit finite-volume technique. They are solved
using a structured and staggered grid, applying fully implicit time integration. A
structured grid of NxM control volumes for the scalar variables (T, k, ǫ or ω) has
been used and a staggered grid in the x and y directions has been employed to
compute the u and v velocities respectively. Due to the presence of internal solids
obstacles and/or inlet and outlet ports, the domain is divided into zones where the
CV-lines are concentrated symmetrically or partially over its right or left side using
a tanh-like function [5]. A pressure based method of the SIMPLE (Semi-implicit
Method for Pressure-Linked Equations)[6] family is applied to couple the velocity
and pressure fields central differences are employed for the evaluation of diffusion

146



5.3. Advanced multidimensional mathematical model

terms and convective terms are discretized using upwind or power law [6] scheme. A
multi-grid iterative solver is used to solve the algebraic linear system of equations in
a segregated manner (for further details see Chapter 2).

In the k and ǫ or ω equations the source terms are linearised: Sφ = Sc + Spφp,
where Sφ is the source term associated with the dependent variable φ, in order to
prevent numerical instabilities and avoid negative values in turbulence quantities.
For instance in the k-equation (eq. 5.17) the source terms have been included in the
form: Sc = Pk + max(Gk, 0) and Sp = −[ρǫ̃ + D−min(Gk, 0)]/k. Where production
terms have been included in the Sc term and all the destruction terms in the Sp term
[5].

Global convergence is achieved when the mass balance is verified in all control
volumes within a prescribed value (10−8) and when the residual values of the different
equations are sufficient low (10−7).

5.3.1 Boundary conditions

Inlet flow

When a flow is imposed entering the domain (inflow conditions), the values for veloc-
ity, temperature and turbulence quantities are given (Vin, Tin), the inflow turbulent
kinetic energy is estimated assuming a given percentage value of the kinetic energy at
the inlet (kin = (Ivin)2, where I = 0.03), while its dissipation rate is estimated from

ǫin =
c0.75

µ k1.5
in

lc
where lc = αǫb and αǫ = 0.03.

Outlet flow

Outflow conditions are evaluated specifying zero normal gradients (∂φ
∂x = 0 where

φ = vt, T, k, ǫ, ω), except for the velocity normal to exit which is specified from a
mass balance.

Inlet/outlet flow

The boundary condition assumed in opened walls (inlet/outlet flow) are more compli-
cated because they must permit that the fluid come in or goes out the computational
domain. Where incoming external fluid must be at fixed temperature and pressure,
it was necessary to implement a new condition where the code assign a value for
temperature, pressure and turbulence quantities (if turbulence modelling is applied)
at the boundary when the fluid flows into the computational domain or it takes the
internal conditions when the fluid runs out.

One of the next set of boundary conditions is applied depending on the direction
of the mass flow in the boundary studied.
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The air is assumed to enter the computational domain from the surroundings at
a temperature and a turbulence level which correspond to the ambient and with an
adiabatic and reversible process, so that pressure energy in the surrounding air is
converted to kinetic energy and pressure at the inlet:

T = T∞ pb +
1

2
ρu2 = p∞ kin = k∞ = (IVin)2 ǫin =

c0.75
µ k1.5

in

lc
(5.21)

Where I and lc are specified in the same way as inlet flow boundary condition (see
Chapter 3).

If the air goes out the domain, the temperature is considered to remain constant
and all the kinetic energy of the air is assumed to be converted to heat, resulting in
an outlet pressure equal to the surrounding air pressure.

∂T

∂x
= 0 pb = p∞

∂k

∂x
= 0

∂ǫ

∂x
= 0 (5.22)

where b means boundary and ∞ ambient.

Solid walls

Non-slip boundary condition is applied in the solid walls. If the wall is considered
isotherm a temperature is imposed, and if the wall is adiabatic it has to satisfy
(∂T

∂x )wall = 0. Turbulence quantities are imposed in walls too, for turbulent kinetic
energy k = 0.0 is imposed and for the turbulent length scale, the value depends on
the model that is used:

• k − ǫ models, if D = 0 ⇒ ǫwall = 2ν
(

∂
√

k
∂xn

)2

else ǫwall = 0.

• k − ω models, ⇒ ωwall = 6ν
β(xn)2

5.4 Air curtains: experimental setup

In this section a summary of the work carried out in order to design and construct an
experimental setup to test air curtain is presented. These experiments are performed
in order to characterise the air-curtain fluid-dynamic and thermal fields. Moreover,
experimental data are used to validate numerical results in situations involving air
curtains.

5.4.1 Climatic chamber

A new experimental set-up has been designed to perform experiments on air curtains.
The air curtain is placed within an already existing climatic chamber adapted to
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Figure 5.5: Draft of adapted climatic chamber.

achieve a set of desired conditions [7]. The climatic chamber has the next dimensions:
6.60 m length, 2.25 m width and 2.27 m height. A crossflow air supply of as much
as approximately 1.5kg/s can be imposed in the chamber. A division is practised to
place the curtain, leaving an opening that acts as door of 1.90 m height and 1.0 m
width (see Figures 5.5 and 5.6). The expected temperature difference between spaces
is of aproximately 10oC.

The main room is divided in two spaces to obtain two areas at different condi-
tions, with the sectioning controlled by the tested air-curtain. Local values of veloc-
ity, turbulence characteristics and temperature are measured. They are supported
by positioning instrumentation and adequate data processing units. Experiments are
focussed on two different zones: i) air curtain discharge; ii) downstream jet charac-
terization. Moreover, the study is carried out with or without imposed air crossflow.
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(a) Separation practiced with opening. (b) Front. Cold environment space

Figure 5.6: Adapted climatic chamber distribution.

The technique used in velocity measurement is the hot wire constant temperature
anemometry. Thermal field is assessed with K type thermocouples located at different
planes in the conditioned spaces, as well as at air inlet and outlet sections. A special
heat exchanger has been designed, constructed and mounted in the chamber to cool
the air in the space used to simulate environmental conditions.

5.4.2 Air curtains studied

Considering the range of possible environmental conditions and the place where the
air curtain is tested, a commercial type produced by one of the COMHEX project
partners is selected (see Figure 5.7(a)). Furthermore, keeping the same power and air
flow rate another prototype with an improved blow out nozzle is studied. In the new
prototype the element used to orient discharge jet flow is removed and the nozzle is
enlarged from air curtain border (see Figure 5.7(b)). Finally, within the new nozzle
it is placed a flow straightener to homogenize the flow.

5.4.3 Positioning device

Air curtain discharge is studied in a horizontal plane (xz plane) parallel to the air
curtain discharge nozzle. Furthermore, an area of 1300 mm of height (y-direction) and
1000 mm of length (x-direction) is considered in order to characterize discharge jet by
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(a) Commercial model (b) Prototype of air curtain with nozzle modified.

Figure 5.7: Air curtains studied.

Technical data

Depth Nozzle width Air rate Heating power Fan Fan Fan Weight

(m) bdis(m) (m3/h) (kW) (Volts) (kW) (A) (kg)

1.0 0.07 1200-1800 3/6/9 230 0.555 2.49 47

Table 5.2: Air curtain prototype characteristics

means of vertical planes. Thus, horizontal and vertical movements are required. The
horizontal movement is accomplished by using an automatic system type cantilever
with stationary steeping motors and mobile axis body (see Figure 5.8(a)). The vertical
positioning is done by means of a portal axis toothed belt driven linear system (see
Figure 5.8(b)). Each movement is controlled remotely by means of a RS-232 port.
Technical characteristics of horizontal (LM-A608R-AT5) and vertical (LM-P/H608R-
AT5) positioning devices are shown in Table 5.3.

5.4.4 Hot wire anemometry

The hot wire anemometry is a well known technique, due to it has been used in the
last years with considerable success and it has become a standard tool for researchers
examining the nature of turbulence. The hot-wire anemometry is a device used to
convert fluid velocity and its variation into an electrical output signal, which can be
properly analysed. Compared with other fluid velocity techniques (PIV, PTV, LDA
and so on), it is a relatively cheap and effective method to measure fast velocity
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(a) Horizontal LM-A608R-AT5. (b) Vertical LM-P/H608R-AT5.

Figure 5.8: Positioning system.

fluctuations. Thermal anemometry measures fluid velocity by sensing the changes
in heat transfer from a small, electrically heated element exposed to the fluid. In
constant temperature anemometry method, the cooling effect produced by the flow
passing over the element is balanced by the electrical current to the element, then
the element is maintained at a constant temperature [8]. The change in current due
to a change in flow velocity shows up as a voltage at the anemometer output. The
anemometer is linked to a personal computer, where the data are postprocessed. In
figure 5.9(a) is shown a draft of hot wire anemometry technique.

A set of experiments using hot wire constant temperature anemometry involves
three main steps. Firstly, before getting results, a function correspondence between
the electrical output and the instantaneous velocities must be obtained (calibration),
the probe must be calibrated in the measurement environment over the velocity range
of interest. A second stage is the acquisition or measurement and store of the data.
Finally, a post analysis is used to calculate mean velocity, normal stress, standard
deviation (root mean square), turbulence intensity, skewness and flatness coefficients
for all probes. Then, it is possible to display time history and histograms of stored
data, store time history information in an ASCII file, and calculate and show power
spectral density, auto-correlation and cross-correlation.
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Technical data positioning devices

Max. load Stroke Max. drive torque Idle torque

LM-A608R-AT5 18 kg 600 mm 15 Nm 0.54 Nm

LM-P/H608R-AT5 30 kg 1250 mm 15 Nm 0.67 Nm

Max. speed Repeatability Stroke per revolution Mass

LM-A608R-AT5 5 m/s ±0.05 mm 100 mm 10.7 kg

LM-P/H608R-AT5 5 m/s ±0.05 mm 100 mm 15.6 kg

Drive element Guide Max. Fx Max. Fy

LM-A608R-AT5. Toothed belt Roller guide 300 N 300 N

LM-P/H608R-AT5 Toothed belt Roller guide 942 N 300 N

Max. Fz Max. Mx Max. My Max. Mz

LM-A608R-AT5 942 N 205 Nm 125 Nm 35 Nm

LM-P/H608R-AT5 300 N 35 Nm 100 Nm 160 Nm

Table 5.3: Horizontal and vertical positioning device characteristics (Data from
BERGER-LAHR catalogue).

Probe Calibration

As it was mentioned above, calibration plays an important role in the anemometry
technique. In this work it is carried out by means of an automated calibrator model
TSI-1129, such as that shown in figure 5.9(b). The velocity in the calibrator is calcu-
lated using differential and absolute pressure, temperature and specific air properties
as follows:

ao = [γR(T + 273.15)]1/2 (5.23)

M =







2

(
p+∆p

p

) γ−1
γ − 1

γ − 1







1/2

(5.24)

a =

[

a2
o

1 +
(

γ−1
2 M2

)

]1/2

(5.25)

v = M · a (5.26)

153



Chapter 5. Air curtains. Experiments and code validation.

(a) Overview of hot wire technique. (b) TSI 1129 calibrator.

Figure 5.9: Hot wire anemometer and probe automated calibrator (Figures from
TSI catalogue).

where: p is absolute pressure, ∆p differential pressure, T temperature, γ = 1.399 for
air, R = Ro/MW with Ro = 8314J/kmolK and MW = 28994kg/kmol, a is speed of
sound and v velocity.

The curve presented in figure 5.10 is an example of results obtained after a cali-
bration of a probe employing the automated calibrator. The calibration consists in
obtaining a relation between the voltage at the output of the anemometer and the
velocity imposed in the automated calibrator. In the calibration process a velocity is
imposed and the voltage is the dependent variable.

Data acquisition

The CTA signal is a continuous analogue voltage. In order to process it digitally
it has to be sampled as a time series consisting of discrete values digitised by an
analogue-to-digital converter (A/D board).

The parameters defining the data acquisition are the sampling rate (SR) and
the number of samples (N). They determine the sampling time as ST = N/SR.
The values for SR and N depend primarily on the specific experiment, the required
data analysis, the available computer memory and the acceptable level of uncertainty.
Time-averaged analysis, such as mean velocity, requires non-correlated samples, which
can be achieved when the time between samples is at least two times larger than the
integral time scale of the velocity fluctuations. The number of samples depends on
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Figure 5.10: Calibration curve.

the required uncertainty and confidence level of the results. They can be evaluated
as follows:
Sampling rate:

SR ≤ 1

2TI
(5.27)

Number of Samples:

N =

(
1

u

(za

2

)

Tu

)2

(5.28)

where TI integral time scale of the velocity fluctuations, u uncertainty (%U), Tu
turbulence intensity. za

2 is a variable related to confidence level (1-a) of the Gaussian
probability density function according to table 5.4.

za/2 (1-a)%

1.65 90

1.96 95

2.33 98

Table 5.4: Confidence level.

The integral time-scale can be calculated from the auto-correlation. It is the time
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that takes the auto-correlation coefficient to drop from the unity starting value to
zero.

Other important factors are the skewness, which indicates the lack of statistical
symmetry in the flow, and the flatness factor, which is a measure of the amplitude of
the distribution.

Available acquisition parameters in the hot wire anemometer used, using the
IFA300 software, are:

• Sample rate: from 1Hz to 500kHz.

• Number of channels: 3

• Frequency response: 260 kHz.

• Maximum probe current: 0.8 A

• Maximum bridge voltage: 12 VDC.

• Analog output impedance: 50 Ω.

• Temperature measurement: Built-in thermocouple circuit in each cabinet.

In the adquisition process is made the assumption that the velocity is normal to
the sensor axis and it has the same orientation relative to the support during both
calibration and measurement.

The temperature is obtained by means of an additional channel. However, in this
work it is acquired by means of an additional J-type thermocouple positioned near
the sensor film.

Data obtained for each one of the velocity components:

• Mean velocity: Umean = 1
N

N∑

i

Ui .

• Standard deviation of velocity: Urms =

(

1
N−1

N∑

1
(Ui − Umean)2

)0.5

.

• Turbulent stress: u′u′ = (Urms)
2.

• Turbulence intensity: Tu = I = Urms/Umean .
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Hot wire versus hot film

The traditional sensor has been a fine wire. It gives better frequency response and
lower noise but is more fragile and cannot be used in conductive liquids. On the
other hand, cylindrical film sensor is more rigid, stable and strong than wire sensors,
making them the preferred choice. Rigidity is specially important for multi-sensor
measurements. Also, film sensors are less susceptible to damage by particles in the
flow than are wire sensors. Film sensors are constructed of platinum film on a fused-
quartz substrate. As a result the film sensor has the same spatial resolution and
conduction than wire sensor. Therefore, in this work two types of cylindrical film
sensors are used: i) TSI1210-20 which is a single sensor, with a diameter of 50.8µm,
a sensing length of 1.02mm, distance between supports of 1.65mm and maximum
ambient temperature of 150oC (see figure 5.11); ii) sensor model TSI1241-20 is a X-
probe (measurements of two component velocity) with the same characteristics that
the TSI1210-20 probe, but with the films placed at 45o.

Figure 5.11: Sensor probe TSI 1210-20 (Figure from TSI catalogue).

Disturbing effects

Temperature: Temperature variations are normally the most important error source,
as the heat transfer is directly proportional to the temperature difference between the
sensor and the fluid. For a film probe operated under normal conditions, the error
in measured velocity is approximately 2% per 1oC change in temperature respect to
the used in the calibration process [8]. In this work, the output voltage in the case
of the anemometer employed is automatically corrected inside it with a temperature
measured by means of a J-type thermocouple placed near velocity sensor. Therefore,
this effect is not considerable.

Pressure: Since pressure variations from calibration to experiment, and during an
experiment are normally small, the pressure influence in the CTA can be normally
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neglected. The lower limit for pressures, at which a probe can be used, are determined
by the slip-flow conditions defined by the Knudsen number (ratio between molecular
mean free path and sensor diameter should be smaller than 0.01 [8]).

Contamination: Film probes with 50µm can be used without problems in normal
laboratory air, if they are re-calibrated at regular intervals. Contamination is a much
bigger problem in liquid fluids than in gas fluids.

Sensor orientation: The only problem in our experimental setup is the sensor
orientation. Although in most part of experiments the jet flows vertically (near nozzle
discharge), when a cross-flow is imposed the jet is displaced and curved. Therefore,
perhaps some errors can be present if this topic is not taken into account. In the case
of discharge and jet characterisation without cross-flow this source of error can be
neglected.

Uncertainty in constant temperature anemometer measurements

Following ISO uncertainty model, which combines uncertainty contributions U(yi)
from each individual input variables xi into a total uncertainty at a given confidence
level, it is possible to obtain the relative standard uncertainty u(yi) as a function of
the standard deviation of the input variance:

u(yi) =
1

yi
· S ·

(
∆xi

ki

)

(5.29)

being S = ∂yi

∂xi
the sensitivity factor and ki the coverage factor related to the distri-

bution of the variance.
If a Gaussian error distribution is assumed with a 95% confidence level then k = 2.
The total relative uncertainty becomes:

utot = 2
√∑

u2(yi) (5.30)

Therefore, the uncertainty of the results of a CTA anemometer is a combination of
individual uncertainties.

Individual uncertainties of a velocity sample

Anemometer: Common anemometers have low drift, low noise and good repeata-
bility, then u(yi) ≈ 0
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Calibration equipment: It constitutes a major source of uncertainty. The error
is stochastic with a normal distribution and the relative standard uncertainty is:

ucal =
1

100
∗ ±(acal + bcal) (5.31)

In the case of a good dedicated calibrator, acal = 1 and bcal = 0.02.

Linearization (conversion): The linearization uncertainty is related to the curve
fitting errors. It is stochastic:

ulin =
1

100
∗ (∆ulin) (5.32)

where ∆ulin is the standard deviation of the curve fitting errors in the calibration
points in %.

A/D board resolution: The resolution uncertainty is stochastic with a square
distribution and its relative standard uncertainty can be expressed as:

ures =
1√
3
· 1

u
· EAD

2n
· ∂u

∂E
(5.33)

being EAD the A/D board input range, n its resolution in bits, u the velocity and ∂u
∂E

is the sensitivity factor of the inverse calibration curve.

Probe positioning: The positioning uncertainty relates to the alignment of the
probe in the experimental set-up after calibration. It can be expressed as:

upos =
1√
3
· (1 − cosθ) (5.34)

Generally a probe can be positioned with an uncertainty of θ = ±1o.

Temperature variations: Temperature variations from calibration to experiment
or during an experiment, if not corrected, introduce systematic errors as follows:

utemp =
1√
3
· 1

u
· 1

Tw − T0
·
(

A

B
· u−0.5 + 1

)0.5

≈ 1√
3
· ∆T

273
(5.35)

where Tw is the sensor temperature, T0 the ambient reference temperature, ∆T is the
difference between the ambient reference temperature and the temperature during
measurement, A = 1.396 and B = 0.895.
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Ambient pressure variations: Ambient pressure changes influences the density
and therefore the calculated velocity.

uρ,p =
1√
3
·
(

p0

p0 + ∆p

)

(5.36)

Gas composition, humidity: Under normal conditions changes in gas composi-
tion are mainly caused by changes in humidity. Then it introduces a contribution
of:

uhum =
1√
3
· 1

u
· ∂u

∂pwv
· ∆pwv (5.37)

The influence on the heat transfer is very small, ∂u/∂pwv ≈ 0.01 per 1 kPa change in
water vapour pressure pwv.

Velocity sample uncertainty

The relative uncertainties of a single velocity sample obtained with a single-sensor
probe in air, can be summarised in Table 5.5, with the following input data: Tw−T0 =
200oC, u = 4.5m/s and ∂u/∂E = 4m/s v. Furthermore, it is taken into account that
the sample velocity is corrected during measurement and the sensor calibration is
done in a good dedicated calibrator (model TSI 1129).

Source of

uncertainty

Input

variants

Typical

value

Typical

value

Coverage

factor

Relative standard

uncertainty

∆xi ∆xi
1
u

· ∆yi k 1
k
· 1

u
· ∆yi

Calibration ∆ucal 1% 0.01 2 0.005

Linearization ∆ulin 5% 0.05 2 0.025

A/D resolution EAD, n 10 V, 12 bit 0.0008
√

3 0.0013

Positioning θ 2o 0.0006
√

3 0.0004

Temperature ∆T 2oC 0.007
√

3 0.004

Pressure ∆p 10 kPa 0.01
√

3 0.006

Humidity ∆pwv 1 kPa 0.0006
√

3 0.0003

Relative uncertainty: usample = 2 ·
q

P`

1
k
· 1

u
· ∆yi

´2 = 0.053 = 5.3%

Table 5.5: Relative expanded uncertainty for one velocity sample [8].
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Results presented in Table 5.5 are an example of the uncertainty of a CTA mea-
surement. However, the uncertainty of the reduced data (mean velocity, turbulence
intensity or root mean square velocity, turbulent stresses, etc.) depends on the un-
certainty of the individual samples as previously described and on how true the data
represents the flow. Due to the nature of turbulent flows and the random character
of the data adquisition, the choice of the appropiate sampling rate and number of
samples is more determinant in the uncertainty level accomplished in the sampling
process.

5.4.5 Heat exchanger used

With the purpose of cooling air entrying in the cold space to simulate environ-
mental conditions a special heat exchanger is used (see figure 5.12), which is de-
signed taking into account different expected air conditions, assuming the temper-
ature is around 20oC in the warm room, and that three air mass flow rates of
1000, 2000 and 4000m3/h are handled.

(a) Back side exchanger. (b) Front and setup.

Figure 5.12: Heat exchanger used to refrigerate crossflow air.

Heat exchanger is designed with quickCHESS program [9]. Behind the exchanger
a drops separator is mounted to eliminate water carryover, in the bottom part a
recipient is placed to collect condensed fluid (see figure 5.12(a)). As it is shown in
Figure 5.5, the heat exchanger is mounted in the upper part of the wall at the warm
room air outflow (x = 6500mm, y = 2000mm).
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5.5 Air curtains: experimental results

In this section acquired results of the experimental data are presented. Firstly, results
of two current commercial prototypes, with discharge nozzle of 1.0m depth and 0.07m
width, are shown with and without blade for flow orientation. Then, results of the
different alternative nozzle configurations designed are presented. Finally, compar-
isons among them are shown to better illustrate improvements achieved with the new
nozzle prototypes.

Figure 5.13: Local coordinates location.

As it was noted before, the attention is focused both on air curtain discharge
and jet characterisation. Thus, for the depiction of the discharge, five sets of points
are acquired in z-direction, at z = 670, 897, 1125, 1352 and 1580mm. An interval
of 5mm in x-direction is used for these measurements. Furthermore, another set
of data is acquired longitudinally at the central line of the nozzle in x-direction at
x = 3075mm and at intervals of 20mm in z-direction. For comparison purposes the air
curtain discharge nozzle edge of all prototypes studied is located at the same height,
y = 1890mm (see Figure 5.5).

Furthermore, as is shown in Figure 5.13 a local origin of coordinates is placed in
the external right edge of the air-curtain to facilitate understanding of air curtain
discharge measurements.

In order to characterise the jet produced downstream discharge, data are acquired
each 200mm in y-direction and with intervals of 20mm in x-direction, in the central
plane of the doorway. Thus, jet centerline velocity decay and spreading of the jet can
be observed. Furthermore, fluid-flow profiles near the floor of the warm room and
near the front and rear walls are studied when an air crossflow is imposed. All these
measurements are carried out at center plane z = 1125mm, z′ = 500mm.
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Figure 5.14: Prototype A. Air curtain discharge velocities, turbulence intensity

and velocity vectors. x′ and z′ according to Figure 5.13 (measured from the external

border of the air curtian).

The sampling rate used is changed according to the turbulent integral time ob-
tained in each experiment. At the discharge it is set to 1000Hz (measurements per
sample), whereas in the jet a sampling rate of 500Hz is selected. 12 samples were
taken in every point during 1s or 2s at the discharge and jet respectively, with time
intervals of 5s between each sample. Obtained data are postprocessed using statistical
tools to obtain mean value and deviation of each variable.

5.5.1 Actual commercial air curtain prototype

Discharge with blade for flow orientation

A first group of experiments is carried out in two current commercial air curtain mod-
els of different manufacturers. They are denoted by prototype A and B respectively.
The size, geometry and fan power is similar in both prototypes. However, the blade
for flow orientation in prototype B is slightly different. It has a couple of small wings
to orientate the flow towards the lateral walls of the doorway near each edge of the
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Figure 5.15: Prototype A. Streamwise V mean velocity and turbulence intensity

at x = 3075mm, x′ = 55mm. Comparison of measurements using TSI1210-

20 and TSI1241-20 probes. z′ according to local coordinates (mesuared from the

external border of the air curtain).

blade for flow orientation (see figure 5.7(a)).

Prototype A: For the study of this prototype firstly some measurements are carried
out with a two dimensional probe, after a one dimensional probe is used and the results
are compared to establish if the flow can be considered one or two dimensional. Thus,
first results of the experiments carried out with the TSI1241-20 two-dimensional probe
are analyzed and plotted in Figure 5.14. In this figure is observable the irregularity of
the discharge velocity profile. This, roughness contributes to increase eddies formation
and therefore turbulence increasing through shear production.

Reviewing V -velocity component (left plot Figure 5.14), is possible to distinguish
three regions with lower velocity: near the bottom, central and top regions (z′ = 0,
z′ = 0.5m and z′ = 1m). Top and bottom minimums are due to the presence of the
wall edges of the air curtain. Whereas, the minimum in the center corresponds with
the device used to mount the blade for flow orientation. Furthermore, it can be seen
that regions with the highest V -velocity values are near the external border of the
curtain (x′ = 30mm). In the second plot from left to right in Figure 5.14, turbulence
intensity for the streamwise velocity is shown. As it can be seen, high values of
between 10% and 50% are found. Moreover, the maximum values are located in the
regions where velocity is low.

Turning to U -velocity component, it can be seen that it presents values up to 1m/s,
which are lower than the ones measured for the V -velocity component. Therefore, air
curtain discharge velocity can be considered one-dimensional, flowing in y-direction.

If the centre line (x = 3075mm, x′ = 55mm) along z-direction is plotted a
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Figure 5.16: Prototype A. Air curtain transverse profiles of V mean velocity at

two different z, z′ locations. Error bars Vrms root mean square velocity. Probe

TSI1241-20. Local x′ coordinate (measured from the front wall of the air curtain).

more detailed information can be extracted. Thus, the V -velocity component and
its turbulence intensity are presented in Figure 5.15. In this Figure, uneven profiles
for both the mean streamwise velocity and turbulence intensity in that direction are
observed.

Furthermore, a comparison of the experimental data measured with the TSI1210-
20 one dimensional probe and TSI1241-20 two dimensional probe is shown in Figure
5.15. Similar results have been obtained for both probes and the differences in some
points correspond to the elevate turbulence level observed.

Details of the streamwise discharge velocity at two z positions are presented in
Figure 5.16. In this Figure, the standard deviation of the velocity, i.e. root mean
square velocity, is plotted using error bars. At z = 990mm most of the flow goes
by the outer part, near the curtain external wall, towards the interior the velocity
is reduced and it remains almost constant at this position. At z = 1350mm, even
though the velocity distribution is more uniform, velocity presents a peak near the
external region. At both positions an increment of the velocity is observed near the
interior side of the blade for flow orientation.

Prototype B: For the prototype A, both x and y-direction velocity components
were measured. Results indicate that it is correct to assume flow field is one dimen-
sional in vertical y-direction. Thus, probe TSI1210-20 is used hereafter. Measure-
ments of the prototype B are presented in Figure 5.17. Due to the special configura-
tion of the blade for flow orientation with small wings near both edges, longitudinal
V -profile presents important roughness in the region where wings are mounted (see
figure 5.7(a)). Therefore, characteristics of this profile produce turbulence production
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Figure 5.17: Prototype B with blade for flow orientation. V mean velocity.

Error bars Vrms root mean square velocity. x′ and z′ according to local coordinates

(measured from the external walls of the air curtain).

because of the different velocity values in an relatively small space, which is generated
by shear stress between neighbor velocities.

Reviewing transversal profiles shown in Figure 5.17, it can be seen that the blade
for flow orientation introduces a discontinuity in the V profile. Regions in front and
behind the blade are clearly separated, and most of the fluid flows toward exterior edge
for z = 670, 1125, 1352 and 1580mm. Furthermore, velocity minimum near direc-
tional plate is more evident away from air curtain lateral walls (z = 897 and 1352mm).
It also produces an increase of the turbulence level in this region. Furthermore, mea-
surements acquired at z = 1125mm coincide with physical obstacles such as the
assembling system of the blade, therefore turbulence is specially increased near this
region. Moreover, at z = 670 and 1580mm, near lateral walls, V profile is very irreg-
ular (see figure 5.17). Presence of winds and edges form a stepped geometry system
resulting in a flow with many scales of motion, therefore quite turbulent.
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Figure 5.18: Prototype B without blade for flow orientation. V mean velocity.

Error bars Vrms root mean square velocity. x′ and z′ according to Figure 5.13

(ordinates measured from the external borders of the air curtain).

Discharge without blade for flow orientation: Prototype B

The third experiment is carried out in the air curtain commercial prototype B, but
without blade for flow orientation. The discharge characterisation is carried out in
the same form as in the previous case. First a longitudinal profile is studied, then
data are measured in five transversal positions. Vertical position is preserved constant
at y = 1870mm. Error bars are shown to indicate the fluctuating part (root mean
square) of the mean velocity. Moreover, in some points where turbulence level is very
high, above 30%, measurements should be taken with care.

In figure 5.18 longitudinal profile along air curtain discharge at x = 3075mm.
Some irregularities for the V profile are observed is shown. However, profile measured
seems to be smoother than in the case with blade for flow orientation. In this Figure
transversal profiles are also presented. A peak in mean velocity is observed towards the
front (exterior, x′ ≈ 25mm) wall of the air curtain at z = 670, 1125 and 1352mm. On
the other hand, at z = 897 and 1580mm V profile seems more a normal turbulent jet,
but it is not symmetric. Fluctuating velocity is considerable and of similar magnitude
in all the positions measured.
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Figure 5.19: Prototype with enlarged nozzle geometry and without blade for

flow orientation. V mean velocity. Error bars Vrms root mean square velocity.

Local x′ and z′ coordinates according to Figure 5.13 (measured from the external

borders of the air curtain).

5.5.2 Prototype with enlarged nozzle

The second nozzle geometry is now studied. Firstly discharge is analyzed continuing
with the same methodology employed above. The nozzle has been extended and the
blade for flow orientation is not used. Moreover, it is applied to generate a more
developed profile at the air curtain discharge.

The first study carried out is done along z direction for x = 3075mm, x′ = 55mm
(longitudinally). As it is expected this profile is smoother than that obtained with
the prototypes A and B with blade for flow orientation. However, velocity mini-
mums in the zones without fans are more prominent with this nozzle type (see figure
5.19). Furthermore, it causes regions with adverse pressure gradient and considerable
turbulence intensity.

Streamwise V velocity at different z locations is also presented in Figure 5.19.
Analyzing these profiles near air curtain edges (z = 670 and 1580mm), it is observed
that mean velocity profile is smoother and most of the flow is moved towards the
interior region (see figure 5.19). Furthermore, in the another locations the peak
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Figure 5.20: Prototype with new nozzle geometry and flow straightener. Longi-

tudinal profile x = 3075mm. V mean velocity. Error bars Vrms root mean square

velocity. Local x′ and z′ coordinates according to Figure 5.13.

observed near the front wall is less important. Thus, at z = 897mm the form of the
curve is changed respect to that obtained with previous prototypes, and the flow is
directed towards exterior edge. Finally, at z = 1352mm is observed as the velocity
profile is broken and it presents two maximum points.

5.5.3 Prototype with enlarged nozzle and flow straightener

Due to enlarged nozzle has presented advantages respect to the prototypes A and B,
and with the aim of improving characteristics of the discharge jet produced, which
means a smoother velocity profile and even less turbulence intensities, a flow straight-
ener is placed within the nozzle. The flow straightener has pipes with a diameter of
approximately 3mm. Therefore, it directs flow vertically and helps nozzle function.
Furthermore, a resistance is imposed to homogenise discharge jet.

In figure 5.20 is shown how mean velocity presents smaller fluctuations and a
smooth profile. As shown, the error bars which represent turbulence level are also
reduced in the studied region. Furthermore, in the right side of figure 5.20 the impor-
tance of the role played by the flow straightener is illustrated. It is very important
because less turbulence means also less mixing.

5.5.4 Comparative study

In this subsection longitudinal and transversal profiles measured for the nozzle con-
figurations studied are compared.

In Figure 5.21 profiles measured at x = 3075mm, x′ = 55mm (i.e. mid point of
the discharge in x, x′ direction) for the nozzles configurations studied are presented.
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As it can be observed in the left side of Figure 5.21 resultant V -profile with the new
prototype, and specially with the prototype with flow straightener, is smoother and
presents an even profile. A velocity profile less oscillatory produce minor shear stress
and eddies in z direction are also reduced. Another important aspect is the reduction
in the turbulence level produced by the new prototype with flow straightener (plotted
at the right side of Figure 5.21). Since the flow becomes more laminar, the separation
between adjacent regions at each side of the jet (which is the main objective of air
curtain) shows a better behavior.

In Figure 5.22 results of mean and fluctuating streamwise velocity in the jet central
plane region at z = 1125mm, z′ = 500mm and in x-direction are shown. The trends
are similar to those presented above, mean velocity profile produced with the new
nozzle with flow straightener is flatter than others. Moreover, turbulence represented
by root mean square velocity is a 50% of the rest of nozzle configurations. Therefore,
benefits explained for the longitudinal profile are similar in x-direction. The produced
fluctuating velocity resembles more a plane jet, thus as with less turbulence less mixing
and less infiltration. It is also expected a narrower jet as mixing process decreases.

5.5.5 Discharge jet experimental results

In this subsection the study is focussed on the analysis of the jet produced by the air
curtain downstream discharge nozzle. Thus, a xy-plane is constructed by measuring
fluid flow characteristics in the central region of the doorway (z = 1125mm, z′ =
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Figure 5.22: Comparison for transversal profiles z = 1125mm (central plane z-

direction). V mean velocity. Vrms root mean square velocity. x′ ordinates mesured

from air curtain exterior front wall (see Figure 5.13).

500mm). Prototype A and Prototype B without blade for flow orientation are not
taken into account here because they have not presented improvements and their
results are similar to prototype B with blade.

Isothermal situation without crossflow

For the first situation considered the air curtain is placed inside the climatic chamber
but the temperatures at both sides of the air curtain are the same, furthermore an
air crossflow is not imposed.

Mean velocity profiles When velocity profiles in the jet are reviewed, it is ob-
served as the new prototype with enlarged nozzle (see central plot of Figure 5.23)
produce a wider jet at the bottom region. On the other hand, the jet is narrower
and core velocity is bigger in the case of prototype with enlarged nozzle and flow
straightener, therefore penetration is higher. In the stagnation region the effects of
the impingement wall (floor) begins to be important. Two big changes can be ob-
served using the new prototype with enlarged nozzle and flow straightener: i) it is
narrower in the base of the jet. ii) the length of the core region, thereby, penetration
is larger.

Turbulence intensity In the inner (core) region of the jet produced by the air
curtain, the prototype with enlarged nozzle produces higher turbulence levels than
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Figure 5.23: Mean velocity profile. Left: commercial model Prot. B; mid-

dle: prototype enlarged nozzle; right: prototype with flow straightener. z =
1125mm, z′ = 500mm (central plane doorway).

commercial prototype B. However, placing the flow straightener this trend is inverted,
and the turbulence intensity is reduced (see central plot in Figure 5.24).

The external edge of the jet is the region where turbulence exhibits the highest
values. However, new prototype with flow straightener generates less turbulence in
that zone than the another prototypes, thus it is expected that energy gains/losses be
less in the first one. Figure 5.24 also shows that higher values of turbulence intensity
are located in the interior (edge) region. In general turbulence is lower using the new
prototype with flow straightener. Moreover, in the prototype B turbulence intensity
achieve values of as much as 100%, which is very high.

Non-isothermal situation with crossflow

In figure 5.25 streamwise velocity and turbulence intensity are shown for the case with
crossflow. These results correspond to the transversal jet produced by the air curtain
with enlarged nozzle and flow straightener, with a discharge velocity of 4.5m/s and
an imposed crossflow of 2000m3/hr. It has been measured at the midplane of the
opening. A sampling rate of 500 samples per second and a measuring time of 40s
are used. Therefore, a total of 20000 samples are acquired. It is worth to highlight
two aspects. The first one, is the correct deflection of the jet in the crossflow direc-
tion. The second characteristic, is the high level of turbulence generated in the front
boundary of the jet. This turbulence level promotes mixing, increasing also infiltra-
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Figure 5.24: Turbulence intensity profile. Left: commercial model Prot. B;

middle: prototype enlarged nozzle; right: prototype with flow straightener. z =
1125mm, z′ = 500mm (central plane doorway).

tion. However, these values remain still lower compared with ones exhibited by the
commercial prototypes A and B.

5.6 Air curtains specific code validation

Two different sets of experimental data are used to validate the numerical code used in
the air curtain simulation. Firstly, experimental data provided by a company involved
in the COMHEX project [10], where the code was adapted to study air curtains, are
used for comparison purposes. After that, the adapted climatic chamber used in the
above presented experimental data is numerically simulated. Thus, measurements at
the discharge of the prototype with enlarged nozzle and flow straightener are imposed
as boundary condition and the experimental data of the jet produced by this prototype
with air crossflow are used to validate the code. The mathematical models numerically
implemented, which are compared in this section, have been introduced in Chapter 2
and summarized in section 5.3.
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Figure 5.25: Air curtain prototype with enlarged nozzle and flow straightener.

Jet characterisation with crossflow. Left: mean velocity; right: turbulence intensity.

5.6.1 Code validation using external experimental data

In the first part of this section a set of experimental data, provided by a COMHEX
project partner [10], is used to validate the code adapted for air curtain simulations.
The objective of these experiments is to validate the numerical code used in the simu-
lations of three dimensional situations involving air curtains. However, experimental
data only present temperature data, thus in this section comparison is restricted to
temperature profiles. A schematic representation of the experimental setup geometry
can be seen in Figure 5.26. The experiment represents a situation of an air curtain
located at the doorway of a big building in winter season. Wall of left (interior)
space is opened, therefore inflow/outflow boundary condition is applied. Air entering
computational domain through this side is considered at constant temperature (Tint)
and nonturbulent (k ≈ 0), pressure is also fixed (for details see subsection 5.3.1).
In the right space (exterior), a cold air inlet flow (Vext−in) at constant temperature
(Text−in) is imposed at the top boundary condition. Furthermore, another air outlet
flow (Vext−out) is assumed in the floor of this space. So then, a cold air flow is obli-
gated to pass through the protected doorway. The discharge jet produced by the air
curtain is characterised by means of a fixed velocity (vdis), temperature (Tdis) and
discharge angle (α).

In Table 5.6 are summarised conditions of some tests carried out by the COMHEX
partner, which are numerically reproduced, and that are used as boundary conditions
in the code employed for the numerical simulation of air curtains.
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Figure 5.26: Computational domain simulated to validate numerical code with

the COMHEX partner experimental data.

The temperature in the inner room at 3m from the door, and in the midplane in
spanwise direction, is the variable selected for the comparison between experiments
and numerical results obtained by the author. This parameter is useful because
together with the comfort PED factor (percentage of people experiencing draught,
see subsection 6.3.6) [2], provides an indication of the comfort level in the region.
Two and three dimensional simulations are done to check the influence of the third
dimension in the final results.

Air curtain Exterior input Exterior output Interior room

α vdis Tdis Text−in Vext−in Text−out Vext−out Tint

(o) (m/s) (oC) (oC) (m3/h) (oC) (m3/h) (oC)

TestA 0 0.0 0.0 1.6 3300 8.7 635 17.5

TestB 15 7.0 21.0 2.5 2552 13.4 2486 19.5

Table 5.6: Experimental data used as boundary conditions in the numerical

simulations.
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Test A

In Test A no air curtain is used. Thus, this case constitutes a first approximation
to air curtain simulation, and will be used for comparative purposes in later sec-
tions. In Figure 5.27 two and three dimensional simulations results are compared
with COMHEX project partner experimental data for this case. In this Figure is seen
as the warm room is cooled by the air coming from the refrigerated space. There are
important losses of heat towards the exterior room. Three dimensional simulation
performs adequately and reproduces correctly experimental data. On the other hand,
results from two dimensional simulations depart from experiments in the region near
the floor.
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Figure 5.27: Code validation test A. Top: numerical vs. experimental interior

temperature profiles at 3 m from door. Bottom: temperature contours and velocity

vectors at two room sections.
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Test B

In this test an air curtain is placed just behind the door in the warm room. In Figure
5.28 are shown vectors, isotherms and the comparison with experimental data for this
test. In this Figure is observed as the air-curtain prevents the entry of cold air into
the inner room. It is also important to highlight the fairly good agreement between
predictions and experimental data, specially for the three dimensional simulation.
Air curtain contributes to maintain the warm temperature, and the energy provided
by the curtain is enough to heat the air mass flow entering to the interior room.
Furthermore, both the warm room and refrigerated space are maintained almost at a
uniform temperature, which means air curtain is working near its ideal conditions.
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Figure 5.28: Code validation test B. Top: numerical vs. experimental interior

temperature profiles at 3 m from door. Bottom: temperature contours and velocity

vectors at two room sections.

177



Chapter 5. Air curtains. Experiments and code validation.

5.6.2 Code validation using own experimental data

As it was said before, in order to study numerically a flow it is necessary to determine
inlet boundary conditions, when they are unknown, previous experiments are required.
Referring to the air curtain discharge, this aspect is fulfilled in previous sections of this
chapter. The results of the transversal jet produced by the air curtain with enlarged
nozzle and flow straightener with imposed cross flow are selected to be simulated.
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Figure 5.29: Code validation. Numerical results for the air curtain placed inside

CTTC climatic chamber subjected to cold air cross-flow.

The climatic chamber shown in Figure 5.5 is also simulated numerically using
CFD. Experimental measurements of the air curtain discharge and inlet cold air in
the left room are used to feed boundary conditions in the numerical simulation. Thus,
experimental data are imposed (having been previously interpolated) in the control
volumes belonging to the respective inlet boundary conditions. Moreover, due to the
fact that the air inside the air curtain is heated by means of electrical resistances, it is
necessary to implement a subroutine in order to simulate air heating process inside air
curtain. Therefore, air curtain discharge temperature depends on the air conditions
at its suction and the electrical power supplied. The results are obtained with a grid
with 41300 control volumes, distributed in four subdomains in order to reproduce
climatic chamber experimental geometry. The grid is intensified using a tanh-like
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function towards the solid walls, near doorway and air curtain discharge. The model
used in these numerical studies is the IL (kǫ-LEVM) model. Due to symmetry in z
direction, only half domain is simulated. Separating wall is 10cm thick and has a
λ = 0.03W/m ·K and a cp = 1210J/kg ·K. The rest of the walls are simulated using
an overall heat transfer coefficient (U = 0.3W/m2 · K) and an ambient temperature
of 296K. In Figure 5.29 numerical illustrative results of temperature contours and
velocity vectors are presented.
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Figure 5.30: Numerical and experimental mean velocity comparison for an air

curtain subjected to crossflow. Jet centreline velocity decay, and streamwise veloc-

ity near the floor at x ≈ 4.575m, x ≈ 4.775m and x ≈ 4.975m for z ≈ 1.125m
in the warm space.

From the experiments carried out, it has been found a mean discharge velocity
and turbulence intensity. Therefore, experimental measurements of the air curtain
and cold air discharges are imposed as inlet boundary conditions in the numerical
simulation. Furthermore, a crossflow of cold air of approximately 2000m3/hr obtained
from numerical experiments is imposed. Temperature of the inlet cold air is also
maintained at approximately 11oC. Moreover, due to the fact that the air inside the
air curtain is heated by means of electrical resistances, it is necessary to implement a
subroutine in order to simulate this process. Then, air curtain discharge temperature
depends on the air conditions at the suction of the air curtain and the electrical power
supplied. In Figure 5.29 temperature contours, velocity vectors and some streamtraces
are presented for the numerical results obtained using the explained conditions.

Numerical results are compared with experimental data in Figures 5.30 and 5.31.
Experimental measurements are indicated with symbols, while error bars indicate the
standard deviation, wich in the case of velocity means its fluctuating part or root
mean square velocity. In Figure 5.30 a comparison of the air curtain discharge jet
centreline velocity decay (z ≈ 1.125m) and streamwise velocity near the floor at three
different positions in x direction (x ≈ 4.575m, x ≈ 4.775m and x ≈ 4.975m) in
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Figure 5.31: Numerical and experimental temperature results comparison for an

air curtain subjected to crossflow. Left: cold space at x ≈ 1.455m, z ≈ 1.125m;

right: temperature in the warm space at x ≈ 5.35m and z ≈ 1.125m.

the central plane (z ≈ 1.125m) in the warm room is presented. In order to compare
predictions and experimental data, in the case of the jet velocity centreline decay, both
numerical velocity components are taken into account, due to in the experiments a
one-dimensional probe is used, which only allows velocity magnitude measurement.
This is not the case near the floor because velocity direction is known. As can be
seen in Figure 5.30, numerical results reproduce correctly experimental data for the
mean velocity in all the positions analysed. Moreover, in Figure 5.31 temperatures
from experiments are presented together computational predictions in a vertical line
near the centre (x ≈ 1.455m, z ≈ 1.125m) of cold and warm room (x ≈ 5.35m, z ≈
1.125m) are presented. As shown, experimental data for temperature are numerically
adequately predicted. Thus, agreement between predictions and experimental data
is fairly good for velocity and temperature as well. From these results is possible to
consider the mathematical model validated and thereby suitable for the study of three
dimensional applications involving air curtains.

5.7 Conclusions

A semi-empirical model has been numerically implemented in order to have a very
fast tool to calculate air curtain discharge velocity under different ambient conditions.
Some shortcomings of the model have been mentioned.

A new set-up has been designed to perform experiments on air curtains. Existent
climatic chamber has been adapted to achieve desired conditions. The experiment
has involved the design of a special heat exchanger. Furthermore, instrumentation
has been acquired and adequate post-processing tools have been created.

Air curtain prototypes have been studied experimentally. Hot wire anemometry,
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specifically constant temperature anemometry has been used to determine local values
of velocity. Thus, two different nozzle geometry have been tested and their discharge
characterized. A modification of the air curtain discharge has been designed. This
nozzle has been enlarged and finally, a variant of the second prototype has been
proposed, in which a flow straightener between fans exit and air curtain discharge,
has been introduced.

With this design some advantages are found, turbulence is reduced in both regions
discharge and downstream jet produced. Moreover, core velocity is also increased,
and the core region is maintained more distance downstream. Furthermore, velocity
obtained at the air curtain discharge is more uniform and the presence of regions
where fans are not blowing is minimized.

If actual nozzle configuration want to be conserved, there are some recommenda-
tions that should be considered: i) in the central region, separation between the blades
for flow orientation generates turbulence. ii) improvements to the system employed
for mounting the blade for flow orientation are required.

Some experiments have been numerically reproduced. Thus, a geometry of a
COMHEX partner and the CTTC experimental setup are simulated using IL (kǫ-
LEVM) RANS model, on cartesian grid and both two and three dimensions using
multiblock technique. These results are useful to have a full detail of fluid-dynamic
and thermal fields characteristics produced by the air curtain when it is placed in a
doorway, and to validate the code with home-made experiments in three dimensions.
Satisfactory results are obtained comparing numerical and experimental results.
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Chapter 6

Air curtains. Numerical
parametric studies.

Abstract. The main purpose of this chapter is the development of a set of numerical

studies to test air-curtains. Thus, systematic parametric studies are carried out, providing

conclusions about the influence on the air-curtain behavior of its location, discharge veloc-

ity, discharge angle, and discharge temperature. Applications of air curtains in both air

conditioning and refrigeration are numerically studied. Global energetic balances are spe-

cially considered together with global parameters selected in order to evaluate air curtain

performance and human comfort.

183



Chapter 6. Air curtains. Numerical parametric studies.

6.1 Introduction

One of the main advantages of CFD is the possibility of performing studies of the
effect of different parameters on the devices analyzed without big investments. Once,
air curtains physic is understood, the code developed verified and the mathematical
formulation validated, parametric studies can be carried out. Thus, in this Chapter
studies are centred on the most relevant parameters influencing air curtain perfor-
mance, e.g. location, discharge velocity, discharge temperature and discharge angle.
Further work on the reduction of the detailed numerical results into overall energetic
parameters, which are useful in air curtain or cold store rating and design codes, is
also presented.

Parametric studies are divided in three different sections. In the first one, a
simplified geometry is considered and two dimensional simulations are carried out
as a first approximation to the study of the effect of different parameters on air
curtain performance. After, a more complex geometry involving three dimensional
simulations of an air curtain placed in the doorway of a building in winter season
is studied. Finally, the analysis is centred in unsteady air curtain simulations in
refrigeration applications.

6.2 Two dimensional study, air curtain device di-
viding two spaces

Figure 6.1: Configuration for the case of an air curtain dividing two spaces.

Firstly, two dimensional parametric studies of air curtains in heating applications
are carried out to have an idea of the influence of different variables, e.g. discharge

184



6.2. Two dimensional study, air curtain device dividing two spaces

velocity, conditioned space air tightness characteristics, and discharge temperature.
Therefore, in this part some illustrative results obtained from two dimensional nu-
merical simulations of complete air curtain systems are presented. In this case an air
jet blows vertically from the upper zone and divides one room of 2m length by 2m
height, and a bigger space that represents the open exterior space (environment) (see
Figure 6.1 for details).
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Figure 6.2: Influence of leakage. Velocity vectors and isotherms for air curtain

device.

For all cases (if nothing different is said) the velocity imposed at the inlet is
vin = 5m/s (Reynolds number based on nozzle width (bdis) of 27000) and H/bdis = 25.
As is shown in Figure 6.1, the temperature at the inlet is 298K, the floor and roof
are considered adiabatic and non-slip conditions are assumed for solid walls. At the
discharge, the turbulent kinetic energy (k) is calculated with an intensity of I = 0.03,
the characteristic length used to determine the dissipation rate (ǫ) is lc = 0.03∗bdis/2.
At the exterior space (right) special boundary conditions, which permit flow inlet and
outlet, are applied maintaining constant pressure equal to atmospheric pressure and
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Chapter 6. Air curtains. Numerical parametric studies.

a constant temperature of 273K, if the air entries the computational domain. IL
(kǫ-LEVM) turbulence model is used in these simulations.

6.2.1 Influence of building leakage

Four cases are compared to test the influence of the building leakage: without opening,
and with 10, 20, and 100cm openings practiced in the left wall. For all the cases a
mesh with 120x90 control volumes is used. In Figure 6.2 numerical results obtained
for the four cases are compared. When the wall is closed a considerable amount of
heat is wasted to exterior space, whereas with any of the openings less heat is lost
and the interior space is maintained warmer. The differences are clear between the
case without opening and those with leakage. Furthermore, some differences remain
for the cases with an opening of 10cm and 20cm in the left wall. However, similar
results are obtained for 20cm and 100cm opening.
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Figure 6.3: Influence of leakage. Velocity contours in air curtain region.

In Figure 6.3 mean velocities isolines in the air curtain region are also plotted for
the four cases under consideration. As can be seen in Figure 6.3, the curtain flows
almost vertically when an opening of 20cm or 100cm is done, but when the room is
closed the curtain curves towards the right exterior space. In Table 6.1 are presented
the impact points for each opening measured from the vertical centerline of the air
curtain. The impact point of the air curtain in the floor moves depending on the size
of the opening practised in the left wall. As it can be appreciated, the impact point
is displaced towards the left as the opening is increased. However, in the last case the
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6.2. Two dimensional study, air curtain device dividing two spaces

impact point increases. This effect is produced by the air entrance through opening
on the left wall.

Opening (cm) Impact Point (cm) Impact point/H

Closed 33.3 0.08

10 23.3 0.06

20 8.6 0.02

100 14.5 0.04

Table 6.1: Relation between impact point and protected space leakage (opening

in the left wall).

6.2.2 Influence of discharge velocity

Now the geometry is fixed with an opening in the left wall of 10cm, and the air curtain
discharge velocity is changed, to evaluate its influence on air curtain performance.
Thus, three values are considered 2.5m/s, 5.0m/s and 10.0m/s, which correspond to
Reynolds numbers (Re = ρvinbdis

µ ) of 13500, 27000 and 54000 respectively. For these
studies a mesh with 128x90 control volumes is used.

In Figure 6.4 isothermal contours and velocity vectors are plotted for the three
cases. As shown, with a discharge velocity of 2.5m/s breakthrough of the jet is
presented and it is deflected towards the cold space. Therefore, the heat flux to the
exterior environment is important and the temperature in the interior room decreases.
Whereas, increasing the velocity to 5.0m/s the air curtain reaches the floor and sep-
aration between spaces is observed. However, by doubling the discharge velocity to
10.0m/s, similar results are obtained.

In Figure 6.5 vertical velocity isolines, in the air curtain jet zone, are plotted for
the three different inlet velocities studied. As it can be observed, with the velocity
of 2.5m/s the air curtain does not reaches the floor, and the air curtain is deflected
towards the exterior space. However, with discharge velocities of 5.0m/s and 10.0m/s
air curtain impacts the floor, and the shape of the jet predicted is similar.

Inlet velocity (m/s) Impact Point (cm) Impact point/H

2.5 68.8 0.172

5.0 23.3 0.058

10.0 15.8 0.04

Table 6.2: Relation between impact point and inlet velocity.
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Figure 6.4: Influence of discharge velocity. Velocity vectors and isotherms for air

curtain device for three discharge velocities.

In Table 6.2 the variation of the impact point of the air curtain, measured from the
vertical centerline of the air curtain, for each one of the discharge velocities studied
is shown. As it is expected, the distance of the impact point is inversely related with
inlet velocity, therefore at higher velocities the point is nearer to the doorway vertical
plane.

6.2.3 Influence of discharge temperature

A higher temperature of 303K is imposed at the discharge jet of the case with an
opening of 10cm in the left wall. It is compared in Figure 6.6 with results obtained
from the same geometry and conditions, but with discharge temperature of 298K. A
difference of 5K in the discharge temperature increases the mean temperature in the
conditioned space (left side in Figure 6.6) in 4K. Furthermore, the heat wasted to
the exterior space is almost the same. The impact point for the inlet temperature is
of 27.1cm measured from the vertical centerline of the air curtain, which is slightly
larger than that with inlet temperature of 298K. The reason for this change is the rise
of the pressure generated by the stack effect when temperature difference is increased.
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velocities (2.5m/s, 5.0m/s and 10.0m/s) in the air curtain region.
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Figure 6.6: Influence of discharge temperature. Temperature contours and ve-

locity vectors for two inlet temperatures.

6.2.4 Global energy and mass balances

The case studied with an air curtain dividing two spaces with an opening of 10cm
in left wall, and air curtain discharge velocity of 5.0m/s is now analysed in terms of
energy and mass balances. Different control volumes are considered. Height where
the flow changes direction is also marked to separate and understand the direction of
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(a) Interior space. (b) Interior space plus curtain width.

(c) Air curtain area. (d) Exterior space.

Figure 6.7: Two dimensional energy and mass balances.

the flows.

The first balance is done over the interior room. The control volume is cut at the
air curtain discharge inner corner. In Figure 6.7(a) are shown the different inlet and
outlet flows of the space. In the right side transport of mass and energy is important.
Moreover, it is interesting to note that in the right upper part exists a small heat
and mass air entrance, maybe produced by turbulence mixing process. Entrainment
of warm air into the air curtain jet, as a result of mixing process, is observed in the
middle region. As product of the air curtain impingement, part of the air is re-entered
to the conditioned space near the bottom wall. In the left side, a small amount of
warm air leaves the room through the opening in the left wall. When the width of the
air curtain is included (see Figure 6.7(b)), a flow entrance is still observed near the
bottom wall at the right side of the studied volume. This agrees with the location of
the impact point shown in Table 6.2. Since the impact point is located further away,
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6.3. Building doorway in winter conditions

the global control volume selected to carry out energy balances does not include the
whole air curtain jet.

When the area around air curtain is studied, the different contributions are clearly
observed in Figure 6.7(c). As a result of recirculation generated in the warm room, a
big quantity of energy returns to the air curtain through the upper part, which entries
due to mixing process and sub-pressure caused by the air curtain jet. However, part of
this energy is again entrained to the warm room in the bottom region after air curtain
jet impingement. Reviewing right boundary, it is seen as part of the energy introduced
to the domain by the air curtain is rejected to the environmental space when the jet
impinges with the floor. Finally, the outside space is studied and results obtained
are presented in Figure 6.7(d), where the energy losses towards the environment are
shown.

6.3 Building doorway in winter conditions

In this section some illustrative results obtained from both two and three dimensional
numerical simulations of air curtain systems in heating applications considering an air
crossflow through the door are presented. Three dimensional simulations are carried
out in order to evaluate the three dimensional effects on the final results. Further-
more, discharge angle is now considered within the parametric study presented. The
geometry studied is similar to that used in the previous Chapter, in the section about
experimental and code validation (see section 5.6). In this configuration, the air from
the air curtain blows downwards from the upper zone at different angles and sepa-
rates the warm room (left, opened in the left side to simulate a bigger building) from
the cold space (right, which represents the exterior space,i.e. the environment). The
warm room is 5m height, 6.2m depth (when three-dimensional effects are studied) and
5m length. The cold space is 3m height, 6.2m depth and 2m length. The doorway
where the air curtain is mounted is 2.5m height and 2m depth (see Figure 5.26).

For all cases (if nothing different is said) the jet produced by the air curtain is
characterized by imposing a constant discharge velocity, angle and temperature. At
the interior space (left) a boundary condition, which permits flow inlet and outlet (see
5.3.1), is applied in the left wall. Furthermore, it is considered that the air entering
the studied space is at a constant known temperature. The same turbulence model,
IL (kǫ-LEVM), and grid are maintained throughout all the study (see section 2.2 for
details). Taking advantage of symmetry conditions only half domain is simulated. In
Table 6.3 the different situations analyzed are summarized.

The importance of this kind of studies is the low investment resources invested.
This contribute to the study of several different situations of interest in short time
periods demanding relatively little computational capacity. The reason why two di-
mensional simulations are carried out at the beginning, is to have a first vision of
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α vdis Tdis vs Text−in V̇ext−in V̇ext−out Tint

Case (o) (m/s) (K) (m/s) (K) (m3/h) (m3/h) (K)

Standard 15 7.0 308.0 1.73 273.0 3000 1000 293.0

test1 15 7.0 308.0 1.73 268.0 3000 1000 293.0

test2 15 7.0 308.0 1.73 278.0 3000 1000 293.0

test3 15 7.0 308.0 1.73 273.0 4000 1000 293.0

test4 15 7.0 308.0 1.73 273.0 2000 1000 293.0

test5 0 7.0 308.0 1.73 273.0 3000 1000 293.0

test6 15 7.0 313.0 1.73 273.0 3000 1000 293.0

test7 15 5.0 308.0 1.23 273.0 3000 1000 293.0

test8 15 9.0 308.0 2.22 273.0 3000 1000 293.0

test9 30 7.0 308.0 1.73 273.0 3000 1000 293.0

test10 15 7.0 303.0 1.73 273.0 3000 1000 293.0

Table 6.3: Boundary conditions used in the parametric study of an air curtain

placed at the entrance of a building in winter conditions.

the problem to be solved. However, the most refined step to simulate an air curtain
together with its adjacent areas is the use of three dimensional computational fluid
dynamics.

6.3.1 Influence of discharge velocity

Representative results obtained for different discharge velocities are herewith pre-
sented. Such parameter can be controlled by the air curtain designer and the dif-
ferences among the different situations analyzed are appreciable. In the top part
of Figure 6.8 an example of three dimensional simulation results is presented. Fur-
thermore, results from two dimensional simulations in the doorway central plane are
presented in the middle of the Figure. Finally, the inner room temperature profiles
(3m left from the door) and exterior temperature profiles (middle plane) are presented
at the bottom of this Figure.

It can be seen that for the situations analyzed, the air curtain discharge velocity
has relatively little influence over the inner temperature, even though it reduces when
velocity is increased as product of the mixing process. However, temperature in
the right space is much more influenced, for higher velocity values it produces an
increment in thermal losses to the exterior space. Referring to the exterior room,
visible discrepancies between two and three dimensional results are observed in the
detailed study presented at the bottom of Figure 6.8. This is expected due to three
dimensional characteristics of the flow studied. Moreover, it maybe explained because
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6.3. Building doorway in winter conditions

with the velocity of 5m/s the jet is suctioned by the vertical flow imposed in the cold
space (jet too deflected), which can be seen in the central top plot of three dimensional
results in the same Figure.

X

Y

Z

T

303.421
298.684
293.947
289.211
284.474
279.737
275

X

Y

Z

T

304.7
299.7
294.7
289.7
284.7
279.7
274.7

X

Y

Z

T

304.7
299.7
294.7
289.7
284.7
279.7
274.7

X

Y

Z

T

304.7
299.7
294.7
289.7
284.7
279.7
274.7

X
4 4.5 5 5.5 6

T

305.812
301.438
297.062
292.688
288.312
283.938
279.562
275.188

a.1

vdis=7m/s

X
4 4.5 5 5.5 6

a.2

vdis=5m/s

X
4 4.5 5 5.5 6

a.3

vdis=9m/s

Tout
275 280 285 290

3D

Tin

y

294 295 296

0.5

1

1.5

2

2.5

Tout
274 276 278 280 282 284

2D

Tin

y

288 289 290 291 292 293 294

0.5

1

1.5

2

2.5

3

STD. Vdis=7m/s
Test7 Vdis=5m/s
Test8 Vdis=9m/s

Figure 6.8: Comparative study for three jet discharge velocities. Left: standard

case (vdis = 7m/s); Centre: test 7 (vdis = 5m/s); Right: test 8 (vdis = 9m/s).

Top: three-dimensional simulations; Mid: two-dimensional simulations, and bot-

tom: temperature profile comparison for inner temperature (Tin) 3m left from door

and outside temperature (Tout) 1m right from door.

193



Chapter 6. Air curtains. Numerical parametric studies.

6.3.2 Influence of air mass flow through the door

Illustrative results of different imposed air mass flows through doorway are presented
in Figure 6.9.
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Two air flow rates are imposed at the inlet (top) of exterior room, in tests3 and
test4 (V̇ext−in = 4000m3/h, V̇ext−in = 2000m3/h), while V̇ext−out is maintained con-
stant. Therefore, two different air flows are obligated to pass through the protected
doorway. They are also compared with standard case. The idea is to simulate a
higher wind pressure and check its effect. At the top of Figure 6.9 three-dimensional
results with representative planes are shown. In the middle two-dimensional results
of air curtain region can be seen. The inner room temperature profile (3m left from
the door) and exterior temperature profile (middle plane) of two-dimensional and
three-dimensional numerical results are presented at the bottom of Figure 6.9.

In Figure 6.9 it can be observed as in each simulation temperature profiles change
with the mass flow imposed. However, influence of mass flow is more significant in the
exterior space (right), where some differences remain between two dimensional and
three dimensional simulations. In the last one a big difference between a Vext−in =
2000m3/h and both standard and Vext−in = 4000m3/h cases is observed in the cold
exterior room.

As shown in the mid plots of Figure 6.9, the bottom part of the jet is also deflected
towards the interior room as the flow imposed through the door is increased. But, in
the upper part the path of the jet is almost the same for the three situations studied,
and it is not deflected to produce breakthrough.

6.3.3 Influence of discharge temperature

In Figure 6.10 are presented representative numerical results varying the air-curtain
discharge temperature for a constant discharge velocity and angle (see Table 6.3).
Three dimensional, two dimensional and punctual results are shown in Figure 6.10.
As it can be seen, mean velocities within the domain studied are not affected by the
changes in discharge temperature, which is known a priori because these cases are of
the forced convection type, thus momentum results are decoupled of energy solutions.

Influence of air-curtain discharge temperature affects mainly inner temperature
near the bottom region. Furthermore, with a discharge temperature bigger than
303K the air inside the interior room is heated considerably, which is undesirable
because it can be necessary to refrigerate at the same time this space wasting energy.
On the other hand, discharge temperature effects are not significant in the exterior
temperature profile studied (at 1m right from door plane), then energy losses are
comparable for the three discharge temperatures.

Even though, differences in the profiles depicted in the interior and exterior room
are more marked when three dimensional simulations are reviewed, the shape of the
temperature profiles analyzed is similar for two and three dimensional simulations in
these cases.
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Figure 6.10: Comparative study for discharge temperature. Left: standard

case (Tdis = 308K); Centre: test 6 (Tdis = 313K); Right: test 10 (Tdis =
303K). Top: three-dimensional simulations; Mid: two-dimensional simulations,

and bottom: temperature profile comparison for inner temperature (Tin) 3m left

from door and outside temperature (Tout) 1m right from door.

6.3.4 Influence of discharge angle

Characteristic results accomplished for different air curtain discharge angles are now
analyzed. In the top of Figure 6.11 an example of three-dimensional simulation results
is shown. Two dimensional results are presented in the middle of this Figure.
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Figure 6.11: Comparative study for discharge angle. Left: standard case (α =
15o); Centre: test 5 (α = 0o); Right: test 9 (α = 30o). Top: three-dimensional

simulations; Mid: two-dimensional simulations, and bottom: temperature profile

comparison for inner temperature (Tin) 3m left from door and outside temperature

(Tout) 1m right from door.

Moreover, the inner room temperature profiles (3m left from the door) and ex-
terior temperature profiles (central plane) are presented at the bottom of the same
Figure. When the angle is increased thermal losses to the outside cold space are also
incremented. These losses are particularly important when the angle change from 15o

to 30o. Furthermore, temperature in the inner room diminishes considerably for the
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discharge angle of 30o. Nevertheless, when the angle is increased from 0o to 15o tem-
perature in this space becomes bigger, specially reviewing three dimensional results.
Thus, in this study differences from two dimensional to three dimensional simulations
are significant. This can be explained by the effects of air entrained through the ends
of the jet produced by the air curtain. When the angle is increased, the air curtain
is deflected towards the exterior space leaving unprotected the sides of the doorway.
This effect is not taken into account in two dimensional simulations.

6.3.5 Global energetic study

In Figure 6.12 a simple and generic representation of a thermal system including
HVAC and air curtain components can be observed. The method used in this section
is different to that presented in the previous one because of the presence of cold air
crossflow imposed through the air curtain and the HVAC system is also taken into
account. A net mass flow is assumed from the exterior space to the warm room. This
flow is discharged at certain enthalpy, ho to an external environment with a pressure,
po. The air provided by the air curtain can be heated with electrical resistances or
hot water, Q̇AC . Furthermore, the air is blowed by a fan using a work, ẆAC .

Figure 6.12: Heat, enthalpy and mass fluxes energetic study.

The internal warm temperature, T int is maintained by a heater. The warm space
can lose some energy to its environment, Q̇int

lost. Therefore, the heater must compensate
the losses and perhaps, the net flow of air through the door.

The global mass (Eq. 6.1) and energy (Eq. 6.2) balances for this situation are as
follows:

−ṁext + ṁext
lost + ṁo = 0 (6.1)
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ṁext
lost(h

ext

lost−hext)+ṁo(h
int

out−hext)−ṁint
in (h

int

in −h
int

out) = −Q̇int
lost+Q̇AC +Q̇ext

in +ẆAC

(6.2)

Reordering and introducing new terms the next expression is obtained:

∆Hext = ṁext
lost(h

ext

lost − hext) − Q̇ext
in

∆Hṁo = ṁo(h
int

out − hext)

∆Q̇H = ṁint
in (h

int

in − h
int

out) − Q̇int
lost

∆Hext + ∆Hṁo = ∆Q̇H + Q̇AC + ẆAC (6.3)

The physical meaning of the terms obtained is explained as follows:

• ∆Hext : represents the energy lost to the ambient by the air curtain and possible
input heat through the external walls.

• ∆Hṁo : is the energy gained by the net input air from the exterior.

• ∆Q̇H : additional heating provided to face the losses in the interior (warm)
room. The extra power delivered by the heater is needed to keep mean warm
room temperature.

When an air curtain is heated and a heater is used, there are different possibilities to
consider:

• ∆Q̇H = 0 : the air curtain compensates the heat losses due to the open door.

• ∆Q̇H > 0 : the heater must heat, in part, the inlet air through the open door.

• ∆Q̇H < 0 : it is an undesirable situation. Too much energy is delivered by the
air curtain.

By means of numerical simulations is possible to obtain each of the terms appearing in
the global energy balance to obtain graphics such as that presented in Figure 6.13, in
a situation with an imposed mass flow through the door. In this graphic, the optimum
of the air curtain, from the energetic point of view, is found in the intersection of the
two plotted lines. The energy that must be supplied to the air curtain can be read in
the horizontal axe.
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Figure 6.13: Graphical representation of energetic balance.

Results global energetic study

This energetic study is carried out on the test cases presented in Table 6.3 in order
to evaluate optimum air curtain discharge jet conditions.

The discharge velocity of the air curtain has relevant effects on the jet profile, thus
it is the first parameter to be considered in the energetic study. It has been observed
in the parametric study how, as velocity increases, the mixing with the exterior and
the heat losses are greater. When applying the above mentioned energy balance to
these cases, and reviewing results presented in Figure 6.14(a), it can be concluded
that a discharge velocity between 5 and 7m/s is the optimal. Otherwise, either the
energy needed to create the jet is partly lost to the ambient, or the air curtain is not
able to isolate the room from the exterior. This conclusion is made by comparison of
five different discharge velocities, i.e. 3, 5, 7, 9 and 12m/s. In all these cases the rest
of parameters of the jet and the external conditions are fixed; therefore, the velocity
of about 5 − 7m/s is only optimal under these conditions.

Now the discharge temperature is considered in the energetic analysis. As it was
shown in the parametric study, the influence of the discharge temperature (among
a reasonable range) is more relevant on the interior room mean temperature than
the discharge velocity. Therefore, the optimum discharge temperature should also
be considered in the air curtain design process. Thus, Figure 6.14(b) shows that
the optimal temperature should have a value around 307K. However, more studies
should be carried out on this sense, because this point is the adequate for the discharge
velocity studied, and could change for a different velocity. Therefore, these results
should be considered with due regard for the range of values they have been obtained.
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Figure 6.14: Global energetic study results. Graphic representation.

Referring to the discharge angle, it can be seen that angles greater than 15 degrees
bring a situation where losses to the exterior are so important that the jet is not able
to isolate the room from the exterior. The behavior of the jet respect to the discharge
angle can be seen in the previous section, but to determine the optimal angle, by
means of the energetic study, more cases should be studied in the range from 0 to 15
degrees.

6.3.6 Comfort considerations: PDE factor

In air conditioning/heating applications, the purpose of an air curtain is to isolate a
room or a building from the external weather conditions for the comfort and well-
being of the human occupants within these spaces. Therefore, a study of parameters
like temperature, humidity or air velocity must be accomplished to determine human
comfort.

The percentage of people experiencing draught (PED), is the parameter selected
to evaluate the comfort of people near a doorway with an air curtain. This parameter
takes into account the mean air speed (v̄) and air temperature (Ta), at the height
analyzed [1]. The PED is an empirical correlation product of a linear regresion analysis
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of experimental data, which can be written as follows:

PED = 113(v̄ − 0.05)− 2.15Ta + 46 (6.4)

The PED is expressed as the percentage of unsatisfied people. It is evaluated at 3m
away from the doorway where the air curtain is mounted, and until a height of 2m.
The same study is also done at specific heights like at ankle level (0.1m), knee level
(0.6m) and neck level (1.1m), to study the comfort of a person seated at 3m far from
the air curtain in the interior room. The study is carried out comparing the different
tests studied in the foregoing parametric study on a building in winter conditions.

In Figures 6.15-6.18 the PED factor, mean velocity and mean air temperature are
plotted at the different height studied and for each of the parameters analyzed in the
last section, i.e. discharge velocity, discharge temperature, discharge angle and mass
flow passing trough the door. In these Figures is shown that the air curtain discharge
velocity and air mass flow through the door are the most determinant parameters on
comfort level. Moreover, for all cases the PED is too high to be acceptable due to
the mean air speed at ankle height (0.1m). The point is that in case of studying a
fixed net flow incoming from the exterior, high velocities at ankle level always appear
at 3m far from the doorway in the interior room. In a real situation involving air
curtains is supposed that this event would be avoided.

0

20

40

60

80

100

Vdis = 7 m/s
Vdis = 5 m/s
Vdis = 9 m/s
Vdis = 12 m/s
Vdis = 3 m/s

Overall H = 0.1 m H = 0.6 H = 1.1 m

PED

284

286

288

290

292

294

Overall H = 0.1 m H = 0.6 H = 1.1 m

Tav [K]

0

0.4

0.8

1.2

1.6

Overall H = 0.1 m H = 0.6 H = 1.1 m

Vav [m/s]

Figure 6.15: Comfort study varying the air curtain discharge velocity.
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Figure 6.16: Comfort study varying the air curtain discharge temperature.
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Figure 6.17: Comfort study varying the air curtain discharge angle.
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Figure 6.18: Comfort study varying mass flow through door.
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6.4 Application to refrigerated chambers

Performance of air curtains in refrigeration applications have been studied during
the last years. Thus, as it was noted in the introductory Chapter, similar studies
to the developed in this section, have been experimentally done by Foster et al. [2].
Moreover, Foster et al. [3] evaluated the effectiveness of a plane jet air curtain used
in refrigerated rooms. They found an effectiveness between 0.2 and 0.8, depending
on the air curtain discharge velocity. A study of air curtains separating two adjacent
spaces was also numerically studied by Costa et al. [4], but they restricted the study
to a two dimensional situation. More recently Foster et al. [5] have studied three-
dimensional effects of air curtains in the entrance of refrigerated rooms, they have
also compared measured air curtain efficiency at different discharge velocities against
a three-dimensional CFD model.
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Figure 6.19: Geometry for numerical studies in refrigerated chambers.

This section is devoted to the application of air curtain devices to mitigate the
refrigerated chambers heat and humidity gains. Further work on the reduction of
the detailed numerical results into overall energetic parameters, which are useful in
air curtain or cold store rating and design codes, is also presented. Unsteady three-
dimensional numerical parametric studies are carried out, simulating the process of
refrigerated chamber sudden door opening, and maintaining the door opened during a
certain time. In this work efficiency is evaluated, but the influence of more parameters
is studied,e.g. discharge angle, discharge temperature, discharge velocity, location of

204



6.4. Application to refrigerated chambers

the air curtain, etc.
In Figure 6.19 the geometry used for all the numerical experiments carried out in

this section is presented. It consists of two spaces separated by a wall with an opening
above which air curtain is mounted. The dimensions of the left (warm) space are:
10m × 7m × 3m. The dimensions of the right (cold) room are: 3m × 3m × 3m. The
width of the door is 1m and its height is 2m. The wall is 10cm thick (white colour
in Figure 6.19). At the beginning of the simulation the temperature is assumed to
be constant in each one of the spaces for all the cases presented. Thus, in the left
space a temperature of 298K is imposed, if nothing different is said, whereas in the
right space a temperature of 273K is assumed. Non-slip condition is used at the
walls and they are considered adiabatic with exception of separating wall which has
a λ = 0.03W/m · K and a cp = 1210J/kg · K. For the air curtain suction a pressure

outflow (p = pout,
∂φ
∂n = 0, where φ = u, T, k, ǫ, ω) boundary condition is used.

Case α∗ Vinlet Tcold Twarm Suction/ Location Model

(o) (m/s) (K) (K) discharge (side)

No curtain 0 4.55 273.0 298.0 - - IL

test 1 0 4.55 273.0 298.0 Cold Cold WXT

test 2 0 4.55 273.0 298.0 Warm Warm IL

test 3 0 4.55 273.0 298.0 Cold Cold IL

test 4 0 4.55 273.0 298.0 50% warm Warm IL

test 5 0 4.55 273.0 298.0 66% warm Warm IL

test 6 0 4.55 273.0 313.0 Warm Warm IL

test 7 0 2.50 273.0 298.0 Warm Warm IL

test 8 0 7.50 273.0 298.0 Warm Warm IL

test 9 15 4.55 273.0 298.0 Warm Warm IL

test 10 30 4.55 273.0 298.0 Warm Warm IL

test 11 -15 4.55 273.0 298.0 Warm Warm IL

Table 6.4: Characterisation of tests studied in refrigerated chamber parametric

study. ∗angle positive towards cold side.

Furthermore, an inflow condition is imposed at the air curtain discharge, with a
given constant velocity, a mean temperature equal to that of the suction and turbu-
lence quantities set by means of a turbulence intensity of I = 0.07 and a lc = 0.3∗B/2
(see Figure 4.1(a)). Moreover, taking advantage of the geometry proposed, only half
domain is simulated due to symmetry conditions. The whole domain is divided into
three subdomains to reduce CPU time. The division is marked by a horizontal black
line in Figure 6.19, and the subdomains denoted as I, II and III respectively. Thus,
the upper part of the warm room is solved in subdomain I, the upper part of the cold
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room in II, and the bottom part of the whole domain in subdomain III.
In table 6.4 the different situations considered are shown.

6.4.1 Parameters selected for air curtain performance evalua-
tion

Parameters selected in order to evaluate air curtain performance are explained in
detail. These parameters give an idea about energy gains or losses of the refrigerated
chamber. Using them is also easy to quantify air curtain efficiency. Therefore, they
make possible from numerical experiments to select the best air curtain parameters
for given outside conditions, and the set of desired conditions inside the refrigerated
chamber. Thus, a post-process was implemented in the code used for the numerical
simulation of air curtains in order to evaluate them.

Energy gains of the refrigerated room

Using CFD simulations, the temperature is known in all the domain. With this
information is possible to evaluate the energy gains or losses of the air within the
refrigerated chamber. This is a very important value because it represents a refrig-
eration load that at the end is going to increase the operation cost of the chamber.
The energy variation is evaluated as follows:

Q =

t2∫

t1

Ėdt =

t2∫

t1




∂

∂t

∫

V

(ρcpTdV )



 dt (6.5)

Mean temperature

Eventhough temperature is known everywhere inside domain simulated, the mean
temperature inside the refrigerated room gives a global indicator of the changes in
this room. For its evaluation a volumetric average is applied:

Tmean =
1

V

∫

V

TdV (6.6)

being V the volume of air inside the refrigerated chamber.

Sealing efficiency

The sealing efficiency of the air curtain can be also calculated from the temperature
(energy) variations within the domain considered. The efficiency of the air curtain
is the relation between the heat flux with or without air curtain across the doorway.
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Thus, the sealing efficiency can be calculated as Eff = 1 − Q
Qo

. Where Qo is the
internal energy variation without air curtain and Q is the equivalent when the air
curtain is working. An efficiency of one means perfect sealing, while an efficiency of
zero signifies no sealing at all.

Mass exchange

Another interesting parameter that can be evaluated after a numerical simulation
is the mass exchange between two given areas. For the situation under study the
mass exchange through the opening doorway is calculated. The mass exchange is
necessary specially when temperatures are all lower than zero and latent heat needs
to be evaluated. A simplified model presented below has been developed to calculate
mass exchange. In this model air displacement is assumed and diffusion effects are
neglected. The mass exchange is calculated in terms of temperature. Considering
that M is the mass of air inside the refrigerated chamber, then M =

∫
ρdV . Carrying

out a energy balance in terms of enthalpy is possible to write:

∂

∂t

∫

hρdV +

∫

hρ−→v · −→n dS ≈ 0 (6.7)

which integrated in the whole refrigerated room

M
∂h̄int

∂t
+ ṁ(hint − hext) = 0 (6.8)

where, M = ρV ; doing the time integration from t = 0 to t = t, and assuming that
hint = h0

int and the exterior enthalpy (hext) remains constant,

M(h̄int − h̄0
int) +

t∫

t=0

ṁ(h0
int − hext)dt = 0 (6.9)

if now it is assumed that m∗ =
∫

ṁdt, expressing enthalpy variation in terms of
temperature and dropping int subscript, we have

ρV cp(Tmean − T 0) + m∗cp(T
0 − Text) = 0 (6.10)

reordering and working out the value of mass exchange, the following relation is
obtained

m∗ =
Tmean − T 0

Text − T 0
ρV (6.11)

where T 0 is the initial temperature inside refrigerated room.
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Entrainment rate and infiltration

Infiltration (I) or entrainment rate (ER) values can be evaluated as function of global
temperatures or more precisely in terms of the mass exchange across the doorway as
follows:

ER = 1 − m∗

ρV
(6.12)

I =
m∗

ρV
(6.13)

An entrainment rate near to the unity is desirable. On the other hand, infiltra-
tion should be as small as possible in order to have a sealed refrigerated chamber.
Infiltration is given in number of refrigerated chamber volumes exchanged.

6.4.2 Influence of turbulence model, grid and time step

Before a set of numerical experiments is carried out, one of the most important aspects
to be considered is to verify that the solution obtained is independent of the grid used
and, if the problem involves a transient simulation, of the time step selected. In this
work both verification procedures are considered. In a first study the original grid
with approximately N1 = 21000 control volumes has been increased to a finer one
with N2 = 107000 control volumes. In Figure 6.20 results obtained for the mean
temperature and entrainment rate using both meshes, for the first two seconds of
test3 case are compared. As it can be observed with both grids similar solutions are
achieved, thus the coarse grid can be used in the parametric study, and the results
using it can be considered grid independent.
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Figure 6.20: Grid independence verification. Mean temperature cold room and
entrainment rate. dt2 means a time step of 0.05s, N1: coarse grid and N2: fine
grid.
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Figure 6.21: Time step independence verification. Mean temperature cold room.

∆t1 = 0.01s, ∆t2 = 0.05s and ∆t3 = 0.1s.

The second verification procedure is done in order to check the time independence
of the obtained solutions. This is accomplished in this work using three different time
steps, with each one of the grids considered, and comparing results obtained among
them. The time steps considered are: ∆t1 = 0.01s, ∆t2 = 0.05s and ∆t3 = 0.1s. In
Figure 6.21(a) are presented the results of mean temperature in the refrigerated room
for the coarse grid and for the first 5s of simulation. Mean temperature obtained
using both ∆t2 = 0.05s and ∆t3 = 0.1s for the fine mesh is also presented in Figure
6.21(b). As shown, no influence of the time step used in the simulation is observed.
Therefore, results obtained using a time step of ∆t2 = 0.05s or ∆t3 = 0.1s can be
considered time independent and thus credible. However, for ∆t3 convergence time
is extended, therefore a time step of ∆t2 = 0.05s is used throughout this section.

Even though the study of the results presented by two or more turbulence models
can not be considered as part of a verification procedure, actually it is important
to compare the different results obtained if various turbulence models are used. In
this section IL (kǫ-LEVM) [6] and WXT (kω-LEVM) [7], two-equation linear eddy
viscosity models, representative of k− ǫ and k−ω platforms, are applied to the same
case (test1 and test3 in Table 6.4), in order to check the influence of the turbulent
length scale determining variable (ǫ or ω) on the final results. As it was explained
in section 2.2, both models use the low Reynolds approach to the integration of the
variables near solid walls. These models are selected for their adequate performance
in the simulation of impinging plane jets (see Chapter 4 for details).

Thus, in Figure 6.22 mean temperature and entrainment rate are plotted for both
IL (kǫ−LEV M) and WXT (kω−LEV M) models using the N1 grid and a dt = 0.05s
for the first 8s of simulation. Due to the differences presented by the models are not
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Figure 6.22: Influence of the turbulence model. Mean temperature cold room
and entrainment rate.

significant, any of these models can be used. However, IL (kǫ−LEV M) is selected due
to WXT (kω−LEV M) has presented some convergence instabilities at the beginning
of the simulation.

6.4.3 Influence of air curtain location

In the first set of studies the analysis is centred in the influence of the side where the
air curtain is placed. Furthermore, for comparison purposes, first a simulation of the
situation without air curtain is done (case no − curtain Table 6.4), after that, the
air curtain is placed in the cold side, behind the wall separating spaces (test3 Table
6.4), and finally the air curtain is located in front of the door (warm side), and the
suction is of warm air (test2 Table 6.4). A temperature comparison at time t = 7, 5s is
presented in Figure 6.23. As it can be observed, without air curtain, warm air entries
to the refrigerated space and fills almost completely its top part. However, when the
air curtain is located in the cold side, it prevents warm air entering top part, but due
to mixing produced warm air crosses the jet and contributes to increase temperature
in the bottom part of the refrigerated space. Furthermore, when the air curtain is
placed in the warm side, it brings warm air to the bottom part of the cold room, but
it still remains colder than in the test3 configuration.

In terms of global balances, clearly air curtain reduces energy gains in the refrig-
erated space (see Figure 6.24). Moreover, placing the air curtain in the exterior warm
space seems to be the best option for long door opening periods. But, if the door is
opened for very short time intervals, it is better to place the curtain in the cold side
(major efficiency). A combination of both suctions could improve results. Finally, it
is important to highlight that in both cases the air curtain reaches an almost constant
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value for the efficiency: for test2 it is of 0.75 and for test3 it is of 0.62. These results
agree with those presented by Foster et al. [5].
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Figure 6.23: Temperature comparison at t = 7.5s. Influence of air curtain

location.
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Figure 6.24: Energy gains of the refrigerated room and efficiency according to

air curtain placement.

6.4.4 Influence of combining air suction

As it was inferred above, perhaps a combination of cold and warm air could improve
the air curtain sealing efficiency. Therefore, the objective of this study is to review
the effect that suction and discharge combining cold and warm air has on the global
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Chapter 6. Air curtains. Numerical parametric studies.

parameters considered. In test2 all the air is taken from warm room, in test4 50% of
the air is aspired from the warm (left) side, while in test5 66% is warm air and the
rest is suctioned from the cold room. Accordingly, for test4 the half width of the air
curtain next to refrigerated space discharges cold air, the other half discharges warm
air. In test5 one third is of cold air and the rest warm air, i.e. air is not mixed inside
the air curtain device. In both cases the air curtain is mounted in the left side of the
door (warm room).

Illustrative results of the temperature contours obtained after 7.5s of numerical
simulation are presented in Figure 6.25. In this Figure can be seen as with test2
temperature inside refrigerated room is still colder than with test4 and test5. Fur-
thermore, is observed as temperature of the bottom part of the warm space diminishes
proportionally with the fraction of cold air used in the air curtain.
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Figure 6.25: Temperature comparison at t = 7.5s. Mixed suction effect.

It seems that a mixed air curtain suction/discharge does not increase air curtain
sealing efficiency in this case. Furthermore, efficiency varies inversely with cold air
used, when the quantity of cold air suctioned by the air curtain is increased, efficiency
reduces (see Figure 6.26). This can be attributed to the renovation generated by
the air curtain, i.e. if the air curtain takes air from the refrigerating room an air
renovation is forced, cold air is extracted, mixed with warm air and then returned to
the refrigerated space. Moreover, a jet with warm temperature can avoid formation
of fog and ice blocks in the floor, improving in this way security.
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according to air curtain suction/discharge air mixing.

6.4.5 Influence of temperature difference between spaces

As it was noted before, temperature difference between spaces creates stack effect,
which generates a pressure difference across the air curtain. If the temperature differ-
ence increases, so does pressure difference. Therefore, the purpose of this study is to
determine how a change in the temperature difference affects air curtain performance.
Then, two cases with temperature differences of 25 K (test2, temperature in cold and
warm room are 273 K and 298 K respectively) and 40 K (test6, temperatures of 273
K and 313 K in cold and warm room respectively) are compared.
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Figure 6.27: Temperature comparison at t = 7.5s. Temperature difference

effect.

In Figure 6.27 is possible to observe that when an increase in the temperature
difference occurs, an air curtain with the discharge characteristics of test6, is not
capable of correctly counteract stack effect created. It is deflected towards the right
side and the impact point is inside the cold room. In this way, a considerable amount
of air is introduced to the cold space after jet impingement.

213



Chapter 6. Air curtains. Numerical parametric studies.

t [s]

E
ne

rg
y

[j]

5 10 15 20 25 30

50000

100000

150000

200000

250000

300000
Test2 ∆t=15K
Test6 ∆t=40K

t [s]

E
R

[-]

5 10 15 20 25 30
0.6

0.7

0.8

0.9

1
Test2 ∆t=15K
Test6 ∆t=40K

Figure 6.28: Energy gains of the refrigerated room and entrainment rate accord-

ing to temperature difference between rooms.

Furthermore, for test6 is not possible to evaluate the efficiency because the same
case without air curtain has not been simulated. Therefore, efficiency is expressed
in terms of entrainment rate (ER). In Figure 6.28 is observed as energy gains of
the refrigerated room increases and the sealing efficiency, represented in terms of
entrainmet rate, of the air curtain reduces when conditions are changed from test2 to
test6. However, air curtain still gives an acceptable sealing effect, i.e. the entrainment
rate does not decrease considerably. Moreover, the energy gained by the refrigerated
room is somewhat less than that without air curtain when the temperature difference
is 25K (see Figures 6.24 and 6.28).

6.4.6 Influence of the air curtain discharge velocity

Since discharge velocity can be controlled by the air curtain manufacturer or designer,
an important question that must be addressed is if the discharge velocity that is
being used is correct, or what is the effect of increasing or reducing it. Thus, three
different velocities of 2.5m/s, 4.55m/s and 7.5m/s, which correspond to test7, test2
and test8 respectively, are used in order to answer previous questions and check
discharge velocity influence on temperature field and global parameters studied.

Representative results after 7.5s are herewith presented in Figure 6.29. In the
case of test7, the jet produced by the air curtain is broken and deflected towards
the refrigerated room as consequence of the reduction of the air curtain discharge
velocity. Then, air curtain fails in the task of separating the rooms. Therefore,
temperature in the upper part of the cold room is increased. Moreover, if the air
curtain discharge velocity is increased to 7.5m/s (test8), air entrained with the air
curtain jet is increased and therefore temperature at the bottom of the refrigerated
space is augmented respect to the case studied for 4.55m/s (test2) (see Figure 6.29).
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Influence of air curtain discharge velocity.

Results of energy gains in the refrigerated space and air curtain sealing efficiency
are presented in Figure 6.30. In this Figure is easy to observe the problems generated
from an inadequate selection of the air curtain discharge velocity. When a too low
velocity is used (2.5m/s, test7), energy gains/losses are notably increased, and a
marked reduction in the sealing efficiency is also observed. Furthermore, for short
time openings efficiency becomes negative, what means air curtain effect is harmful.
Moreover, in Figure 6.30 it can be seen as air curtain efficiency diminishes when
the discharge velocity is increased to 7.5m/s (test8), respect to that obtained with
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Chapter 6. Air curtains. Numerical parametric studies.

a discharge velocity of 4.55m/s. However, for the first instants the use of a higher
velocity is beneficial.

6.4.7 Influence of the air curtain discharge angle

Another parameter that can be modified by the air curtain designer is the discharge
angle. Thus, in this section four different angles (−15o, 0o, 15o and 30o; which
correspond to test11, test2, test9 and test10 of Table 6.4 respectively) are used in
order to study their influence on air curtain performance. These angles are assumed
to be positive towards the cold room. In all these situations the air curtain is placed
in the warm side.
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Figure 6.31: Temperature comparison at t = 7.5s. Influence of air curtain

discharge angle.

In Figure 6.31 characteristic maps obtained for the different air curtain discharge
angles are presented. As can be seen in this Figure, when the angle is fixed towards
cold space (test9 and test10) temperature in the refrigerated room is more elevated
than that of test2. This difference is particularly important when the angle is changed
from 15o to 30o. Taking into account the pressure distribution generated by the
stack effect in an airtight building, in which the zero pressure level is placed in the
middle height of the door, i.e. in the case without air curtain (test1), it is observed
that the cold air flows by the bottom part of the doorway, from the right (cold)
room towards the left (warm) room, and viceversa in the upper part. Then, if the
jet is directed towards the warm side a major momentum is generated in order to
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counteract momentum due to stack effect, therefore this is expected to improve air
curtain behaviour. If the angle is set to the opposite, cold side, the pressure generated
by the stack effect contributes to deflect the jet and a breakthrough is presented.
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Influence of air curtain discharge angle.

Furthermore, reviewing global results presented in Figure 6.32, it is seen that when
the angle is set to 30o the air curtain efficiency is always around zero, what means a
null sealing effect. Moreover, energy gains with the air curtain discharge angle of 30o

are three times greater than those for a vertical discharge. On the other hand, when
the angle is set to −15o slight improvements respect to test2 are observed. Thus a
negative angle to some extend improves current results. Nevertheless, positive angles
could be beneficial in the case of cold air suction/discharge when the air curtain is
placed behind the door, i.e. in the cold room side (test3 in Table 6.4), where most of
the cold air aspired from the refrigerated space would be returned to it.

6.5 Conclusions

In general two-dimensional simulation must be taken with care, and its results as a
qualitative approximation. However, these simulations permit to achieve predictions
in short time and with reasonable computational capacity. Throughout the first part
of this chapter has been observed that is necessary to carry out three dimensional
simulations to have adequate results. Furthermore, three dimensional effects are more
important when flow configuration is changed,e.g. when flow rate or discharge angle
are varied.

From the energetic study it can be extracted the optimum power that might be
supplied to the air curtain to correctly isolate contiguous spaces, with the minimum
thermal losses to the exterior, and maintaining an adequate temperature in the interior
space. This optimal value depends on the imposed conditions.
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Human comfort has been quantified employing PED factor. In the cases simulated
a mass flow is always obligated to pass through the door, and due to the presence of the
air curtain the main stream flows near the bottom wall, what creates a considerable
discomfort in this region. However, as height is increased velocities are reduced, what
improves comfort sensation and decreases PDE factor.

A verification procedure to ensure the grid and time independence of the numerical
solutions has been applied as a previous necessary step to any parametric study.
Furthermore, the effect of using a different turbulence model has been analyzed.

Cases displayed are an example of the versatility and possibilities that numerical
simulation provides for the study of air curtains. Several parameters such as, air
curtain location, discharge velocity, discharge angle, etc. have been studied in order
to check their influence in the air curtain performance. In the case of refrigeration
applications it has been found that the discharge velocity and discharge angle are
the most sensitive parameters, an inadequate value for these variables can produce a
undesirable effect, and contribute to increase energy gains/losses. Moreover, others
parameters such as, air curtain location and the use of combined air suction/discharge,
affect to some extent air curtain efficiency.
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Chapter 7

Concluding remarks and
future actions.

Concluding remarks.

Turbulent flows are unsteady, irregular, chaotic and with many scales of motion.
Therefore, an essential characteristic of flows in turbulent regime is that the velocity
field varies significantly and irregularly in both position and time. Considering the
complexity of these flows, it is remarkable that the Navier-Stokes equations describe
them accurately and in complete detail. However, they provide a huge amount of infor-
mation, which is not tractable for high-Reynolds number flows. As a result, the direct
approach of solving the Navier-Stokes equations do not provide a tractable model for
them. Thus, different statistical techniques, e.g. Reynolds Averaged Navier-Stokes
and Large Eddy Simulations, aimed at developing tractable mathematical models that
can accurately predict properties of turbulent flows have emerged. Nevertheless, their
solution requires the assistance of elaborated numerical methodologies supported by
computer aided systems. Due to RANS models can be appropriate to describe most
of the main characteristics of the fluid motions, this technique has been selected in
this thesis to analyze turbulent flows.

An air curtain is, in general, a turbulent jet of air blown across a doorway or an
entrance to prevent or reduce the ingress of air at different conditions from outside
the building of between two adjacent zones within a building.

The main contributions of the present thesis are: i) using RANS technique, to in-
vestigate the potential of explicit algebraic Reynolds stress models and both non-linear
and linear eddy viscosity models in terms of accuracy and numerical performance in
the description of turbulent internal forced convection flows. ii) to study air curtains
using different approaches such as, simplified analytical models, computational fluid
dynamics and experimental studies.
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In Chapter 2, an introduction to the mathematical formulation used troughout
this thesis has been presented. Since RANS modelling is selected the explanation
has been centered on it. Moreover, the models used to relate turbulent stresses
with the mean rate of strain are explained. Furthermore, a brief description of the
discretization of the governing equations and computational methodology has been
included. Finally, a rigorous post-processing procedure for the assessment of the
quality of the numerical solutions in order to quantify errors and uncertainties used
in this thesis is summarized. It is based on the generalized Richardson extrapolation
for h-refinement studies and on the Grid Convergence Index.

Three basic test cases (plane channel, backward facing step, and confined imping-
ing slot jet) have been studied in Chapter 3. Turbulent stresses are related with
the mean rate of strain using linear and non-linear eddy viscosity models (LEVM,
NLEVM) and explicit algebraic Reynolds stress models (EARSM), based on k − ǫ
as well as k − ω platforms. Reviewing the plane channel, which is the simplest case
studied, non-linear or explicit algebraic models show reasonably good behavior. In
the case of backward facing step flow, NLEVM improve the accuracy in the predic-
tions of skin friction coefficient and reattachment point, while the improvements in
Stanton number, Reynolds stress tensor and mean velocity fields are limited. In the
impinging jet case, it has been found that terms of higher order in the relation be-
tween turbulent stresses and mean strain rates do not improve considerably results
for the models studied. Whereas the use of better tuned dumping functions and/or
additional terms, such as YAP correction, in the length-scale determining equation
seems to play a more important role.

Further studies of the numerical performance and accuracy of models in both
plane and round impinging jets have been addressed in Chapter 4. With this purpose,
results from numerical simulations, using different models, have been compared among
them and with experimental data available in the literature. Comparisons have been
performed in terms of mean and fluctuating velocities and local Nusselt number. A
verification procedure has been applied in order to ensure credibility of numerical
results obtained. Reviewing the wall heat-transfer coefficient, local Nusselt number,
in both plane and round impinging jet configurations, it is possible to observe the
lack of generality of the models. In fact, models with good performance in the round
jet case show poor results in the plane jet configuration.

The second part of this thesis has been devoted to the detailed study of air curtains.
They have been analyzed numerically using different levels of description, from simple
semi-empirical models to multidimensional numerical simulations, and experimentally
measuring velocities and temperatures. In Chapter 5 air curtain prototypes have
been studied numerically as well as experimentally. Constant temperature hot wire
anemometry has been used to determine local values of velocity. Thus, experiments
of two different nozzle geometry have been carried out and discharge characterized.
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A variant of the third prototype has been designed introducing a flow straightener.
With this design turbulence is reduced in both regions, air curtain discharge and jet
downstream. Furthermore, velocity obtained at the air curtain discharge has been
more uniform.

Experimental data presented in Chapter 5 are useful to have an idea of fluid-
dynamic and thermal fields characteristics of the air curtain when it is placed in a
doorway, and to validate the code with home-made experiments in three dimensions.
Satisfactory results are obtained comparing numerical and experimental results. As
a result of these comparisons, it has been learned that two-dimensional simulation
must be taken with care, and its results as a qualitative approximation. Furthermore,
it has been observed that is necessary to carry out three dimensional simulations to
have adequate numerical predictions of air curtains.

Once, air curtains physic is understood, the code developed verified and the math-
ematical formulation validated, numerical experiments can be carried out. Thus, in
Chapter 6 several parameters such as, air curtain location, discharge velocity, dis-
charge angle, etc. have been studied in order to check their influence on the air
curtain performance. Global indicators of the air curtain efficiency and human com-
fort have been applied as well. Applications to both, air conditioning and refrigeration
have been numerically studied.

Cases displayed in Chapter 6 are an example of the versatility and possibilities
that numerical simulation provides for the study of air curtains. It has been found
that the discharge velocity, discharge angle and turbulence intensity of the jet are
the most sensitive parameters. Inadequate values for these variables can produce
undesirable effects and contribute to increase energy gains/losses.

Future actions.

Due to this work has had a double purpose, future strategies to continue with this
study have to be divided accordingly. Due to the shortcomings of numerical simu-
lations using traditional RANS models (lack of generality and accuracy), unsteady
three-dimensional behavior of the flow can be better solved by means of LES mod-
elling. However, as it was commented before, due to LES solves the flow near solid
walls, it still requires considerable computational resources [1]. Therefore, this limi-
tation can be avoided if hybrid LES/RANS models are used. The main idea of these
models is to modelise the wall layer with a RANS model, while the external zone is
solved with LES. Furthermore, a different mathematical formulation which assures
that some important properties of the Navier-Stokes equations are considered in the
discretization, e.g. symmetry-preserving discretization [2], might be implemented.

Even though, three dimensional simulations with relatively complex geometry have
been numerically simulated. It is necessary to use more efficient algorithms, improve
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mesh generation and develop faster solvers. Therefore, to solve the system of algebraic
equations full parallel direct and iterative sparse linear solvers should be implemented.
Local refinement of the grid should be allowed and Laplacian smoother post-processing
tools should be applied [3]. Regarding solution of the pressure equation, a Direct
Fourier Schur Decomposition using sparse Cholesky for the local variables with an
iterative or direct solver for the interface system, or conjugate-gradient (CG) with a
PFSAI preconditioner, might be considered [4, 5].

Despite, LES or hybrid LES/RANS models are thought to be accurate, it is impor-
tant to compare results obtained for these kind of turbulence models with benchmark
results as well as with experimental data, in order to establish their real advantages
and shortcomings.

Turning to air curtains subject, a good air curtain should provide a jet with
low turbulence level, at discharge parabolic profile skewed to the protected zone and
enough momentum to counter pressure differences across the opening [6]. Conse-
quently, the analysis of the plenum before discharge should be taken into considera-
tion in future studies. Thus, in the near future geometry of the plenum and influence
of blades for flow orientation, should be studied in detail.

(a) Symmetry-preserving. (b) LES model. (c) Hybrid RANS/LES model.

Figure 7.1: Velocity contours for air curtain with blade for flow orientation.

Comparison of turbulence models.

Actually, our Group is already working in these subjects, and the author of the
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present thesis has begun with some preliminary studies of the air curtain discharge
plenum using a Dynamic Smagorinsky SGS LES model [7] and an hybrid RANS/LES
model [8] to solve turbulence. Thus, in Figure 7.1 illustrative results of mean velocity
contours obtained for a geometry including a blade for flow orientation, and using a
turbulence intensity of 0.15 are shown. Similar results are observed for the RANS/LES
model and the symmetry-preserving formulation without model. An increment of the
velocity magnitude is seen towards the exterior wall in the discharge region at x ≈ 0,
y ≈ 0 using these models. On the other hand, the LES model predicts a minor
increase of the velocity in this zone.

These preliminary results are encouraging, but more studies are required. Dif-
ferent numerical works considering parameters such as: inlet and outlet boundary
conditions, the size and geometry of the computational domain used, and three di-
mensional simulations, ought to be carried out. Moreover, a larger domain taking into
account building envelope characteristics, and airflow patterns around the building
where the air curtain is mounted, should be useful.
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Appendix A

Specific turbulence model
constants and damping
functions

In Table A.1 a summary of model closure coefficients is shown. Table A.2 shows
extra terms for damping functions in low Reynolds version summarised for k − ǫ
models, where τ = k

ǫ .

Model Cµ Cǫ1 Cǫ2 σk σǫ

IL [1] 0.09 1.44 1.92 1.00 1.30

GPC [2] 0.09 1.44 1.92 1.00 1.30

CLS [3] min

»

0.09,
1.2

1 + 3.5η + frs

–

1.44 1.92 1.00 1.30

AMGS [4] 0.081 1.44 1.83 1.00 1.5544

Table A.1: Appendix A. High Reynolds coefficients for k − ǫ models.

In tables A.1 and A.2: xn is the distance to the nearest wall, uτ =
√

τw/ρ is the
friction velocity and:

η = max[S̄, W̄ ], S̄ =
√

2SS, W̄ =
√

2WW, y+ =
ρxnuτ

µt

Y AP = max

[

0.83ρ

(
k3/2

2.5ǫ̃xn
− 1

)2
ǫ̃2

k
, 0

]

, Tt =
k

ǫ
max[1,

√

2/Rt]

frs = 0.235(max(0 , η − 3.333))2exp−
Rt
400
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Rt =
k2

νǫ
, Ry =

√
ky

ν
, ϑ = max[k1/2, (νǫ)1/4], Ψ = max

[
∂k

∂xj

∂(k/ǫ)

∂xj
, 0

]
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Model fµ D f1 f2 E Yc

IL[1] exp

„ −3.4

(1.0 + Rt/50)2
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∂
√

k

∂xj

!

2

1.0 1 − 0.3 exp(−R2

t ) 2νµt

„

∂2ūi

∂xj∂xk

«2

YAP

GPC[2]
1 − exp(−0.01Rt)

1 − exp(−
√

Rt)
× 0.0 1.0 1.0

0.3ρϑ
√

ǫTtΨ

Tt

0.0

max

»
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r

2

Rt

–

CLS[3] 1− 2µ

 

∂
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!
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t ] 0.0022
S̄µtk2

ρǫ̃
YAP

exp

"

−
r

Rt

90
−
„

Rt

400

«2
#

„

∂2ūi

∂xj∂xk

«2

, Rt < 250

AMGS[4] 1.0 0.0 1.0 1 − exp

„

− Ry

12.5

«

0.0 0.0

Table A.2: Appendix A. Viscous terms in low Reynolds k − ǫ models.
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Model WX [5] WXT [6] WXCD [7] WJO [8] AJL [9] LAR [10] ARG [11]

α∗ 1.0
1.0
40 + Rω

6.0

1 + Rω
6.0

1.0
Cµ

β∗

C∗

µfµ

β∗

1

6.5 +
√

6cos(φ)U∗T
1.0

β∗ 0.09

9.0

„

5.0
18 +

“

Rω
8.0

”4
«

100

„

1 +
“

Rω
8.0

”4
« β∗

ofβ∗

9.0

„

5.0
18 +

“

Rω
10.0

”4
«

100

„

1 +
“

Rω
10.0

”4
«

9.0

„

β
0.27 +

“

Rω
9.0

”4
«

100

„

1 +
“

Rω
9.0

”4
« 0.09 1.0

α
5.0

9.0

5.0
“

1.0
10 + Rω

2.7

”

9.0
“

1.0 + Rω
2.7

”

α∗

13.0

25.0

5.0
“

1.0
10 + Rω

2.7

”

9.0
“

1.0 + Rω
2.7

”

α∗

0.45α∗
5.0

9.0
0.5467

β
3.0

40

3.0

40
βofβ

3.0

40
0.0747

3.0

40
0.83

σk 2.0 2.0 2.0 2.0
1.2

ft

2.0 1.4

σω 2.0 2.0 2.0 2.0
1.5

ft

2.0 2.0

Ew 0 0 0 0 Ew 0 0

Table A.3: Appendix A. Model parameters for k − ω models.
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Table A.3 shows the different parameters for k − ω models. Where (Rω =
ρk

ωµ
)

and in the WXCD model:

βo =
9

125
, fβ =

1 + 70χw

1 + 80χw
, χw ≡

∣
∣
∣
∣

W̄ijW̄jkS̄ki

(β∗
oω)3

∣
∣
∣
∣

β∗
o =

9

100
, fβ∗ =







1 , χk ≤ 0
1 + 680χ2

k

1 + 400χ2
k

, χk > 0






, χk ≡ 1

ω3

∂k

∂xj

∂ω

∂xj

At the solid walls non-slip boundary condition is used ~vwall = 0. At that point,
turbulent kinetic energy disappears, kwall = 0, and the value imposed for ǫ or ω
depends on the model applied:
k − ǫ models,

ǫwall = 2ν

(

∂
√

k

∂xn

)2

or ǫ̃wall = 0

k − ω models,

ωwall =
6ν

βx2
n

Tables A.4 and A.5 show the coefficients used for NLEVM and EARSM in the relation
used to evaluate the Reynolds stress tensor. For Cµ and fµ functions see Tables A.1
and A.2 respectively.

In Tables A.4 and A.5 both models AMGS and ARG use:

η2 = α2(SijSij)(τ
2) ξ2 = α3(WijWij)(τ

2)

α1 = (4/3 − C2)(g/2) α2 = (2 − C3)
2(g2/4) α3 = (2 − C4)

2(g2/4)

α4 =

(
2 − C4

2

)

g α5 = (2 − C3)g g =
1

0.5C1 + C5 − 1

while AMGS model uses:

C1 = 6.8, C2 = 0.36, C3 = 1.25, C4 = 0.40, C5 = 1.88 and τ =
k

ǫ

.
ARG model uses:

C1 = 3.0, C2 = 0.8, C3 = 1.75, C4 = 1.31, C5 = 2.0 and τ =
1

ω

.
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Appendix A. Specific turbulence model constants and damping functions

Model AMGS [4] CLS [12] LAR [10]

C∗

µ

α1(3(1 + η2) + 0.2(η6 + ξ6))

3 + η2 + 6η2ξ2 + 6ξ2 + η6 + ξ6
Cµ Cµ

f∗

µ 1.0 fµ 1.0

β1 α5C∗

µ −0.4C∗

µf∗

µ 0.0

β2 α4C∗

µ 0.4C∗

µf∗

µ 2

p

1 − (3CµS∗T )2

1.0 + 6S∗Ω∗T 2

β3 0.0 −1.04C∗

µf∗

µ 0.0

γ1 0.0 40(C∗

µ)3f∗

µ 0.0

γ2 0.0 40(C∗

µ)3f∗

µ 0.0

γ3 0.0 0.0 0.0

γ4 0.0 −80(C∗

µ)3f∗

µ 0.0

Table A.4: Appendix A. Coefficients for non-linear stress-strain relationship.

In the case of LAR model:

U∗ =
√

SijSij + WijWij , Ω∗ =
√

WijWij , S∗ =
√

SijSij

W ∗ =
SijSjkSki

(S∗)3
, T = τ =

1

β∗ω
, φ = 0.333acos

√
6W ∗

In the WJO model, the following relations arise:

B1 = −6

5

N

N2 − 2IIw
, B4 = −6

5

1

N2 − 2IIw
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Model ARG [11] WJO [8] AJL [9]

C∗

µ

α1(3(1 + η2))

3 + η2 + 6η2ξ2 + 6ξ2
−0.5B1fµ CBC∗

µfµ , C∗

µ = 0.12

f∗

µ 1.0 1.0 1.0

β1 α5C∗

µ

(1 − f2
µ)(3B2 − 4)

max(IIS , IIeq
S

)
4CDCB(C∗

µfµ)2(1 − fw(A)|A=26)

β2 α4C∗

µ −
B2(f2

µB4 − (1 − f2
µ))

2max(IIS , IIeq
S )

4CDCB(C∗

µfµ)2(1 − fw(A)|A=26)

β3 0.0 0.0 0.0

γ1 0.0 0.0 0.0

γ2 0.0 0.0 0.0

γ3 0.0 0.0

γ4 0.0 0.0 0.0

Table A.5: Appendix A. Coefficients for non-linear stress-strain relationship.

where,

IIS = [S2], IIW = [W2], IIeq
S = 5.735, B2 = 1.8

fµ = 1 − exp

(

−
2.4
√

Rey + 0.003Re2
y

26.0

)

, τ = max

(
1.0

β∗ω
, 6.0

√
µ

ρβ∗kω

)

N =







c′1
3

+ (P1 +
√

P2)
1/3 + sign(P1 −

√

P2)
∣
∣
∣P1 −

√

P2

∣
∣
∣

1/3

, P2 ≥ 0

c′1
3

+ 2(P 2
1 − P2)

1/6 cos

[

1

3
arccos

(

P1
√

P 2
1 − P2

)]

, P2 < 0






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Appendix A. Specific turbulence model constants and damping functions

being,

P1 =

(
1

27
c′21 +

9

20
IIS − 2

3
IIw

)

c′1, P2 = P 2
1 −

(
1

9
c′21 +

9

10
IIS +

2

3
IIW

)3

c′1 =
9

4
(c1 − 1), c1 = 1.8

In the AJL model, the basic constitutive relation (τ ′
ij ≡ eq. 2.73) is additioned with

the two next fragments intended to account, respectively, for high normal straining
and strong near-wall anisotropy [9],

u′
iu

′
j

k
= τ ′

ij + τ
(s)
ij + τ

(w)
ij (A.1)

where,

τ
(s)
ij = (1 − fw(A)|A=26)

[

−2fs1CBC∗
µfµS + 4fs2CDCB(C∗

µfµ)2
(

S2 − 1

3
[S2]

)]

τ
(w)
ij = fw(A)|A=26

{

− αw

(

didj −
δij

3
dkdk

)

+ 2(1 − f2
r1)

×
[

− βwCw

1 + Cw

√
s∗2w

∗
2

(s∗ikw∗
kj − w∗

iks∗kj)

+
γwCw

1 + Cws∗2

(

s∗iks∗kj −
δij

3
s∗2

)]}

In the above,

fs1 = fr1fr2Cs1(CDC∗
µfµ)2τ2(W2 − S2),

fs2 = −fr1fr2

[

1 + Cs2CDC∗
µfµτ(

√

W2 − S2)
]

,

fr1 =
w2 − s2

w2 + s2
, fr2 =

s2

w2 + s2
, s2 = SmnSmn, w2 = WmnWmn,

fw(A) = exp

[

−
(

y∗
n

A

)2
]

, y∗
n =

yn(νβ∗ωk)1/4

ν
,

CD = 0.8, Cs1 = 15.0, Cs2 = 7.0,
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also,

s∗ij = τDSij , w∗
ij = τDWij ,

s∗2 = s∗ijs
∗
ij , w∗

2 = w∗
ijw

∗
ij ,

τD = (1 − fw(A)|A=15)
1

β∗ω
+ fw(A)|A=15

√
ν

β∗ωk
,

αw = 1, βw = 0.25, γw = 1.5, Cw = 0.5,

and

di =
Ni√
NkNk

, Ni =
∂yn

∂xi
(A.2)

represent the orientation of the wall to which the distance yn relates.
Eventhough this model uses k − ω platform, a number of features derives from the
ǫ-equation. Thus,

µt = ρC∗
µfµ

k2

ǫ
= C∗

µfµ
k2

β∗ωk
=

(
C∗

µfµ

β∗

)
k

ω
= α∗ k

ω
,

where

fµ =

{

1 +
35

R
3/4
t

exp

[

−
(

Rt

30

)3/4
]}

(1 − fw(A)|A=26)

ft = 1 + 5.0fw(A)|A=5,

Eω = (1 − fw(A)|A=600)Cω1C
∗
µfµτ

∂k

∂xj

∂ω

∂xj
, Cω1 = 1.5,

CB =
1

1 + (CDC∗
µfµ)2

(
22
3 W2 + 2

3 (W2 − S2)fB

) ,

fB = 1 + 100CDC∗
µfµτ(

√

W2 − S2)
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• J. Jaramillo, A. Oliva., C. D. Pérez Segarra, and C. Oliet. Application of
Air Curtains in Refrigerated Chambers. In Refrigeration and Air Conditioning
Conference, 2008.
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