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Preface

It is already six years since I started graphics research thanks to Miquel Feixas and Mateu Sbert, who
were studying the application of the information theory to computer graphics within the Girona Graphics
Group. I have the personal impression that only a few months have passed since then. This is not a
paradox of the Theory of Relativity1 but rather a consequence of the effort and dedication that we
have all invested. This thesis, and other lines of research that have been opened up, is the fruit of this
collaboration.

Abstract

This work is framed within the context of computer graphics starting out from the intersection of three
fields: rendering , information theory , and complexity .

Initially, the concept of scene complexity is analysed considering three perspectives from a geometric
visibility point of view: complexity at an interior point , complexity of an animation, and complexity of
a region.

The main focus of this dissertation is the exploration and development of new refinement criteria for
the global illumination problem. Information-theoretic measures based on Shannon entropy and Harvda-
Charvát-Tsallis generalised entropy, together with f-divergences, are analysed as kernels of refinement.
We show how they give us a rich variety of efficient and highly discriminative measures which are appli-
cable to rendering in its pixel-driven (ray-tracing) and object-space (hierarchical radiosity) approaches.

Firstly, based on Shannon entropy, a set of pixel quality and pixel contrast measures are defined.
They are applied to supersampling in ray-tracing as refinement criteria, obtaining a new entropy-based
adaptive sampling algorithm with a high rate quality versus cost. Secondly, based on Harvda-Charvát-
Tsallis generalised entropy, and generalised mutual information, three new refinement criteria are defined
for hierarchical radiosity. In correspondence with three classic approaches, oracles based on transported
information, information smoothness, and mutual information are presented, with very significant results
for the latter. And finally, three members of the family of Csiszár’s f-divergences (Kullback-Leibler , chi-
square, and Hellinger divergences) are analysed as refinement criteria showing good results for both
ray-tracing and hierarchical radiosity.
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The Universe is the totality of the continuous space-time in which we exist, together
with all the matter and energy contained in it. It is the greatest possible real 4D scene.
It contains innumerable enigmas and an immense collection of objects: planets, nebulae,
stars, galaxies, black-holes, etc. Many of them give out light with a great diversity of
frequencies. Others only absorb it and, with few exceptions, all reflect it.
Modern scientific cosmology began in 1917 with Albert Einstein’s publication [59] of
his modification of the General Theory of Relativity [58, 57, 56] which enabled him to
define the static Universe of the time. The same year, he challenged the Universe in
expansion of Willem de Sitter, but in 1922, Alexander Friedmann showed that Einstein’s
original equations allowed such an expansion. Georges Lemâıtre rediscovered these
solutions in 1927 and the Big-Bang theory appeared —the Universe is formed from a
huge explosion—, confirmed by Edwin P. Hubble’s law (1929) and by the discovery of
the cosmic background radiation by Arno Penzias and Robert W. Wilson (1964). This
is currently the theory accepted by most scientists.
The size of the Universe is an open problem but it is not for the Observable Universe
—everything that can affect us since Big-Bang— as it is finite because of the speed of
light. A volume of 5×1032 cubic light-years is calculated for it. Its shape can be Closed,
Open, or Flat, depending on the solution chosen for the relativist equations. In a Closed
Universe, the expansion can be slowed down and it starts to contract until all matter
collapses to a point: the Big-Crunch; otherwise the expansion continues forever. With
the other shapes, the expansion can accelerate and all material objects will disintegrate
into unbound elementary particles: the Big-Rip; can continue until it is too cold to
sustain life: the Big-Freeze; and can become a state of maximum entropy —where
there are no gradients needed for information processing, one form of which is life—:
Heat-Death. Most astrophysical data to date is consistent with this last option in a Flat
Universe [255].
We form part of this huge scene as we are inhabiting the object Earth. The origin
of coordinates is the Big-Bang and our position is 13.7 billion light-years away. All
the knowledge we have is based on the light which comes to us from the Observable
Universe. The key is the information contained in the electromagnetic spectrum of every
ray of light. Consequently, all observations come out of the past.

Image: The Universe.
Date: January 2004.
Earth distance: 0 Km.
Credit: NASA, ESA, S. Beckwith (STScI) and the
Hubble Ultra Deep Field Team.

The deepest portrait of the Observable Universe ever achieved by humankind. Located
in the constellation Forna, the region is below the constellation Orion and it contains an
estimated 10,000 galaxies, which existed between 400 and 800 million years ago, with a
wide range of sizes, shapes, and colours. It reveals the first galaxies to emerge from the
so-called dark ages, the time shortly after the Big-Bang when the first stars reheated
the cold, dark Universe [61, 143].



Chapter 1

Introduction

This work has been carried out in the context of computer graphics and in particular within the field
of image synthesis. Its aim is to apply information theory to rendering problems. Three sets of new
refinement criteria for global illumination are introduced using different information-theoretic tools and
divergence measures. Previous to introducing these criteria and from a geometric visibility perspective,
we present a group of information-theoretic complexity measures of a scene based on the interaction
between its different parts.

Three fundamental areas are involved in this dissertation: rendering , information theory , and com-
plexity . The relationship between them is discussed in this chapter (§1.1) where the objectives (§1.2)
and an overview (§1.3) are also presented.

1.1 Framework

Let us situate the content of this work by presenting the three foundations on which it is based: rendering
(§1.1.1), information theory (§1.1.2), and complexity (§1.1.3). As we shall see later on, each one of these
fields is multidisciplinary. This work is in itself an example of this (Fig. 1.1).

1.1.1 Rendering

●

Information
Theory

ComplexityRendering

Animation

Medicine

Architecture

Learning

Communication

Linguistics

Automata

Biology

Physics

Figure 1.1: The framework with some
multidisciplinary interactions. Our work
is placed in the common intersection.

According to László Szirmay-Kalos, “the ultimate objective of
image synthesis or rendering is to provide the user with the
illusion of watching real objects on a computer screen” [229]1.
Given that obtaining an exact representation of the illumina-
tion is an insurmountable objective, the algorithms of render-
ing do not have any option other than to search for an approx-
imation to the solution. To produce realistic images, the pre-
cise treatment required for lighting effects can be achieved by
“simulating” the underlying physical phenomena of light emis-
sion, propagation, and reflection [221]. It is along these lines
that rendering algorithms are developed becoming a blend of
concepts from three fields: physics, signal processing, and vi-
sion [79]. This produces multiple working alternatives and,
as a consequence, different techniques are used to solve the
rendering problem [30, 221, 79].

1 We choose this definition for the aptness of the word “illusion” which reminds us explicitly that we have an uncom-
putable problem: how “to recreate” the behaviour of nature. Objective reasons are: the exact simulation of the light
perceived by the eye requires infinite computations, the discretisation of a continuous function produces errors, and the
colours produced by an output device are limited with respect to the infinite variety of the real world.

1
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Figure 1.2: Phases of rendering process.
Credit: Adapted from László Szirmay-Kalos [229].

Within rendering, the context of this work is physically-based global illumination. Next, we comment
on its meaning followed by an analysis from the perspective of the signal theory .

Physically-Based Global Illumination

The first part of the term makes a reference to the physical description of the world to be rendered.
Thus, the input of the problem remains determined [12]:

Scene Geometric description of a set of 3D objects from a primitive surface set (e.g., triangles, spheres,
and cylinders).

Materials Assignation of materials to the surfaces of the scene and description of the physical properties
of each one:

◦ Colour. Modelled by a colour space (§2.2.4).
◦ Emissivity. Spontaneous emission of light modelled by an emittance distribution function

(§2.2.3).
◦ Light scattering. Reflectance and transmittance. Modelled by a bidirectional reflectance and

transmittance distribution functions (§2.2.3).

Camera A description of a virtual camera that includes:

◦ The virtual observer position in 3D space with a viewing direction: eye.
◦ A geometric description of an image plane2 with resolution and pixel data.

A surface of the scene that has non-zero emission is called a lightsource. There is a set of abstract
lightsources with an important role in rendering: point-lightsource, directional lightsource, and sky-light
illumination [229].

The second part of the term, global illumination, refers to how the light within the scene is treated.
The global illumination takes the interactions of the light with all the surfaces of the scene into account
(e.g., shadows and reflections), as against a local illumination, where only the interactions between a
lightsource, a surface and a viewing position are considered [12].

Once our input is determined, we consider the output: “physically-based illumination computations
are used in order to generate a photo-realistic image of the scene corresponding to the virtual camera
data” [12]. In order to attain this objective, it is necessary to measure the intensity of the light of the
scene which the camera is gathering accurately. We describe the generic process of rendering in three
well differentiated phases [229] (Fig. 1.2):

Global pass Determines the light reflected off the surface points at different directions. It is represented
by a wavelength-dependent function [257]. The intensity of the light on a given wavelength is the
radiance (§2.2.3). For the scenes without participating media, the radiance is only on the surface
point and therefore we must consider the material properties exclusively. Under this consideration,
the behaviour of light becomes formalised by the rendering equation (2.46). The process by which
its solution is calculated is the global pass.

2 Without loss of generality, we consider a plane being aware that every mechanism of output has a specific, often
uneven, geometry. We also assume that the light distribution of the scene is not influenced by the observer (i.e., virtual
image plane).
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Local pass This is the measurement of the global radiance function by a camera understood as a set
of light measuring devices (usually pixels). They are characterised by a function describing the
points and directions involved in the measuring.

Tone-mapping It is necessary to visualise the values of the image plane in a display. To do this, the
radiance must be converted into a colour space appropriate for the device, taking into account the
technical characteristics and the human visual system [242] (§2.2.4).

The critical task of the rendering for obtaining a photo-realistic image of quality is well identified: “the
average radiance perceived through each pixel of the image needs to be computed” [12]. Next, following
Bekaert [12], we recall the approaches used to attain this goal3:

Pixel-driven Search for the radiance of the scene, sampling only in the specific areas that are necessary
for creating the image. The usual situation consists in sampling each pixel of the image plane in
directions determined by the observer. Applying the sampling theory, the final radiance value per
pixel is obtained. The ray-tracing algorithms belong to this approach (§2.3).

The advantage consists in the storage necessary being little more than that related to the description
of the scene and the main disadvantage is that at any movement of the viewing plane or the observer,
we need a new set of samples and so, they are view-dependent solutions.

Object-space Sample a representation of the radiance function on all surfaces of the scene. After this,
we need only sample the function on each pixel of the image plane using the sampling theory. In
order to achieve this, algorithms to obtain the visible surfaces (e.g., projection, ray-casting, and
Z-buffer) through each pixel are used. The radiosity algorithms belong to this approach (§2.4).

One advantage is that we can move the viewing plane or the observer through the scene with
minimum computation and so, they are view-independent solutions4. Another advantage is the
possibility of reusing the previous computations with a change of physical description. The disad-
vantage is the amount of storage required for complex scenes.

Multi-pass Compute the radiance in object-space while the resources allow it and then use a pixel-
driven approach. It is a hybrid option presented by Wallace et al. [251] and continued by other
authors [107, 228].

The Signal of Light

The synthetic images can be considered to be 2D signals where, in the image plane, the “image” corre-
sponds to the signal and the “pixel” to a region of domain [79]. This point of view is very important
because it has allowed the application of aspects of signal processing theory to rendering (§2.1). From
this perspective, we can consider the process of collecting the signal transmitted through a 3D scene in
a 2D image plane in two phases: the sampling and the reconstruction process. The two phases are of
equal importance, so when one of the processes is not carried out correctly, the signal obtained contains
unwanted energy that shows visually notable errors. The term aliasing (§2.1.1) is employed, sometimes
erroneously, to refer to all of these: jaggies, motion strobing, moiré patterns, blurring, and many other
objectionable artifacts in images and animations. It is important for any rendering method to reduce
the effects of aliasing.

Descriptively, if f is the 2D signal seen from the image plane, p = (x, y) is any point in this plane,
P any finite set of points p, and S(P ) = {(p, f(p)) | p ∈ P} the samples set over P , we can consider an
initial S(P0) that is evaluated to reconstruct an estimation f̂ of the signal that may later be resampled
over a new set of points P1 in order to obtain the final set of samples Ŝ(P1) (Fig. 1.3).

By the theory of the signal, in order to be able to evaluate it optimally, it is essential for it to be
band-limited5 (§2.1.1). In rendering, we have an important handicap, we cannot assume that the signal

3 The global pass and local pass can be mixed but the tone-mapping is independent of the rendering equation solution.
4 In classic radiosity, the projection step is efficiently made by hardware and therefore, the visualisation of a change of

view is very fast.
5 The spectrum F (ω) of a signal f(t) has finite support: ∀|ω| > ωF .F (ω) = 0. The ωF frequency is the cut-off frequency

and the bandwidth.
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f - sampling -S(P0) - reconstruction - bf - resampling - bS(P1)

Figure 1.3: Discretisation of a continuous signal.

coming from a scene actually is band-limited, basically due to the make up of finite objects and the
need to obtain sharpness images. This implies that the direct techniques of sampling and reconstruction
cannot be strictly employed. The signal can be prefiltered before beginning the process of sampling but
the actual scenes contain more and more complex geometry, surface textures, and shading models, and
other components besides (e.g., light, fire, smoke, and fog), which are not at all easy to handle and which
make the process unapproachable. For the same reason any analytic technique is also discarded. Thus,
the current methods of rendering have to be based on point sampling so as to obtain information and
take decisions on the value of visualising.

However, a new handicap appears: the complexity of the scene carries with it a very high cost for
the sampling due to the value of the function being determined by the modelling of all the physical
phenomena of light which occur inside the scene, complex enough in themselves. As Glassner says so
well: “Every sample is precious” [79]. This is more certain every day, as in computer graphics more and
more sophisticated scenes are manipulated, we distance ourselves from more analytical solutions and get
closer to more costly samplings. Using a closer semantic to our objectives (§1.2), we can rewrite the
previous claim as:

Minimise the number of samples and maximise its information. (1.1)

That is, reduce the costs and improve the quality.
To attain a correct discretisation of the signal, techniques have been designed which tackle each

process independently (Fig. 1.3), or otherwise, all at the same time. The majority of methods contain a
common scheme called adaptive refinement (details in §2.1.3 and §4.4.1). There are two subjacent ideas:

◦ The signal of the image can present wide regions where there may be values that are constant or with
few variations. This would mean that the signal is band-limited and so, within this neighbourhood,
with a density of sampling which is not very high, we can collect the signal accurately. On the
other hand, in other regions the signal can be very complex and will need a more detailed analysis.
That will lead to increasing the sampling density in order to extract from it high frequencies and
to reduce aliasing.

◦ In the majority of signals used in computer graphics, the intensity decreases on increasing the
frequency, then as we increase the sampling rate we decrease the aliasing.

A standard process includes a test necessary, the refinement criterion, for determining when we consider
the density of sampling, for capturing the signal, to be right. On finalising the sampling , the signal is
sent to the reconstruction process by afterwards applying, if the occasion should arise, a filtering process
before finally undergoing resampling to obtain the final datum (Fig. 1.3).

In rendering, the essential objective is to put a unique value on a pixel, so that the final resampling
will coincide with the pixel grid (e.g., the centre of a pixel). With the pixel-driven approach, in order
to estimate the signal, each sample takes the role of a ray of light which simulates physical laws. The
whole image must be sampled from a viewpoint and the final resampling is included in the local process
by every pixel. With the object-space approach, the signal has been reconstructed over the whole scene
and the last part of the process consists in a global resampling from the viewpoint.

1.1.2 Information Theory

Developed in 1940s by Shannon [206], the information theory deals with the transmission and compression
of data in any communication system [37] (§2.5). Currently, information theory is applied to many fields
of science and technology such as communication theory, probability theory, physics, computer science,
mathematics, economics, and statistics. It has brought fundamental contributions to other fields like
biology, linguistics, neurology, learning, etc. [18, 37, 245]. In particular, it is also applied successfully to
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(a) (b) (c)

Figure 1.4: In an intuitive way, the entropy corresponds to the average number of binary questions to
find out the result (§2.5.1). (a) The entropy of an Euro is 1: heads or tails (i.e., we only need one binary
question for two options: log2 2). (b) For a dice, the entropy is 2.585 (log2 6). (c) To guess a number
between 1 and 1,024 we need 10 questions (entropy of 10).
Credit: (a) c© 2000 European Commission.

fields closely related to computer graphics such as medical image processing [253, 227, 171] or computer
vision and robot motion [250, 5].

The basic concept in a communication system is information. It is simply the outcome of a selection
from among a finite number of possibilities [249]. Entropy (§2.5.1) is the classical measure of information
and expresses the information content or uncertainty (Fig. 1.4) of a random variable (§B). In other
words, it is also a measure of the variation, dispersion, or diversity of a probability distribution of
observed events. Mutual information (§2.5.2), a derived measure of entropy, expresses the information
transfer in a communication channel. It is also a measure of the dependence or correlation between two
random variables.

Recently, it has been demonstrated that we can apply information-theoretic measures in order to
capture characteristics of the complexity of a scene [66, 68]. Thus, within a scene, the entropy measures
its degree of randomness or uncertainty and the mutual information quantifies its degree of structure or
correlation. In this work, we use information-theoretic measures to capture new types of scene complexity
and to obtain new refinement criteria to improve the quality of the rendering.

1.1.3 Complexity

The study of complexity (§2.7) has become a very active research area in many different fields: automata,
information theory, computer science, physics, biology, neuro-science, etc. The problem of characterising
complexity in a quantitative way is a vast and rapidly developing subject and various interpretations of
the term have been given in different disciplines.

In a generic way, in a first instance we dispose of the dictionary definition of “complex” object or
system [139]: “a whole made up of complicated or interrelated parts”, and for “complicated” we obtain:
“consisting of parts intricately combined” or “difficult to analyse, understand, or explain”. All the possible
definitions of complexity employed seem to converge towards the measure of “difficulty” of performing
any action or task on the object or system in question (i.e., construction, description, compression,
updates, queries, etc. [126]). This difficulty will depend directly on how many parts there are and how
the system is made up. From this perspective, and in agreement with Badii [9], the simultaneous presence
of elements of order and disorder , some degree of unpredictability , and interactions between subsystems
which change in dependence on how the system is subdivided, can be good parameters in the evaluation
of its complexity.

Within the context of physically-based rendering (§1.1.1), a scene is a perfectly defined system.
From the perspective of global illumination, given that in the behaviour of the simulation of the light
propagation in the scene it is necessary to take all the interreflections between all the surfaces in the
environment into account, the scene complies with all the characteristics of a complex system and there
is no doubt that we can consider that we are faced with a problem of elevated “complexity”. Thus, from
both geometric visibility and illumination points of view, measures can be obtained which allow us to
evaluate its complexity [66]. In this thesis, the study of new complexity measures in a scene helps us to
better understand the structure and dependence of its elements (Fig. 1.5).
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(a) (b)

Figure 1.5: Visibility complexity of a discrete scene (§2.7.3). Which scene do you feel to be more
“complex” from a visibility point of view?
Credit: Miquel Feixas [65].

(a) Measured scene (b) Simulated scene (c) Difference scene

Figure 1.6: The rendering transforms a 3D world into a 2D image. We show the Cornell Box, the
first scene in rendering. (a) The image was captured from a physical model under controlled lighting
conditions using a photometric CCD camera. (b) The image was rendered using a geometric model
with material properties and lighting set to identical values to the physical conditions of (a). (c) The
difference image is simply a pixel-by-pixel subtraction of one image from the other.
Credit: c© 1998 Cornell University Program of Computer Graphics, Cornell University, Ithaca (NY),
USA.

1.2 Objectives

Over the last few decades, the field of action of computer graphics has become increasingly more im-
portant. This area covers a wide range of activities in society today: engineering, architecture, design,
medicine, chemistry, biology, animation, photography, etc. The common factor is the description of real
or virtual scenes through their analysis and transformation into digital image (Fig. 1.6). It is in this
direction that this work is focused and is trying to make its contribution.

In 1998, within our research group, the possibilities of the application of information theory to
computer graphics started to be studied. Acebo et al. [48] presented the first work in which its viability
became clear and in Feixas [65] specific applications are shown. Following this line of research, this thesis
was motivated by the analysis of the complexity of a closed scene. Thus, our first objective is:

To present the study of complexity from a point of a scene (interior and on the surface) and
also the interaction between different parts, from a geometric visibility point of view.

The second, and main objective, arises out of the difficulty in obtaining an accurate computation of
the global illumination of a scene (§1.1). From this goal, we analyse the application of the information-
theory to the kernel of the algorithms of rendering. Given the diversity of the existent methods, we
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evaluate the most representative of the pixel-driven and object-space approaches (§1.1.1): ray-tracing
and radiosity, with the path-tracing and hierarchical modalities, respectively.

On the one hand, the ray-tracing method (§2.3.1) attempts to solve the equation of rendering (2.46)
by an implicit function, evaluating for each pixel a set of point samples of the unknown radiance function.
Like all point sampling algorithms, ray-tracing leads to the potential problem of aliasing (§2.1.1). To
reduce this problem, the number of samples, the method of sampling, where they are cast, and also the
mixed system used to assign the final colour of a pixel, are important. Many combinations of different
techniques have been studied, but one critical factor amongst all of them is the search for a balance
between the cost, proportional to the number of samples, and the image obtained (1.1). In order to
attain this, one question is fundamental: what is the criterion in deciding when more samples are needed
or not? And if more are needed, where? These questions are answered by the refinement criteria (§2.1.4).

On the other hand, the radiosity method (§2.4.2) attempts to solve the rendering equation by the
construction of an explicit function that approximates the unknown radiance function. Classical radiosity
eases the problem making some relaxations. The rendering equation is transformed into a radiosity
equation (2.62) which is solved by an algorithm from the discretisation of the surfaces of the scene into
a mesh of polygons, called patches, and the form factors (§2.2.2) between them. The main problems of
the radiosity method are meshing and form factor computation. Scene meshing not only has to represent
illumination variations accurately, but it also has to avoid unnecessary subdivisions of the surfaces that
would increase the number of form factors to be computed, and consequently the computational time.
Even though many variants of these techniques exist, yet again, one of the most common problems
they have is in determining when a good balance has been reached between the cost and a good level of
accuracy (1.1). The response to this critical factor is closely related to the refinement criteria, responsible
for deciding when the computation is sufficient (§2.4.4). In this context, it is usual to refer to them as
oracles.

Summarising, let us assume that a generic problem of rendering methods is taking decisions with
respect to when we dispose of sufficient quality on the signal coming from the scene. More specifically, how
many samples are necessary and where (ray-tracing), or how much discretisation is lacking (radiosity)?
The study of the refinement criteria attempts to give an answer to these questions. In this work, the
solutions are designed from information-theoretic concepts. Thus, our main objective is:

To introduce new refinement criteria in global illumination for rendering techniques (ray-
tracing and radiosity) from information-theory-based tools.

Basically, only two groups of measures will be used to reach our objectives:

• Information-theoretic measures (§1.1.2 and §2.5).

– Entropy.
∗ Shannon entropy: classic version defined initially for communication analysis (§2.5.1).
∗ Harvda-Charvát-Tsallis entropy: generalised version used in many fields of physics (§5.1).

– Mutual information. Classic (§2.5.2) and generalised (§5.1.2) versions.

• f -Divergences. Family of convex functions that measure the divergence between probability distri-
butions (§6.2).

– Kullback-Leibler: Shannon relative entropy (2.77 and 6.7).
– Chi-square: Classic divergence used in statistical areas (6.8).
– Hellinger: Important divergence whose square root is a true metric (6.9).

In conclusion, in this dissertation we show the feasibility of the set of measures mentioned to deal
with scene rendering problems. Our work is the natural step to be taken following Feixas [65] in the
application of information theory to computer graphics, and we believe that other applications can be
derived from the concepts introduced here (§7.4). Just as Glassner foresaw: “when a photon is emitted
from a lightsource and then strikes an object, that photon has effected the transfer of some information
... it also tells us something about the relative visibility of the two points, and the amount of impact that
lightsource will have on the final image” [79].
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1.3 Overview

Our previous objectives are developed in four chapters preceded by a summary of the concepts related in
the framework. The work ends with a chapter of conclusions. Therefore, it is organised into the following
chapters:

The foundations of the framework The foundations of the framework are reviewed to obtain a start-
ing point for the continuing chapters and, at the same time, this gives us the opportunity to recog-
nise existent problems. Also, the common necessary background is introduced leaving the most
specific previous work for each corresponding chapter so these become more self-contained. First,
an introduction to sampling theory is reviewed. Next, rendering tools are presented followed by
an brief and specific overview of techniques of global illumination of ray-tracing and radiosity. An
information-theoretic section is also presented following its applications to the scene as an infor-
mation channel. The last section is dedicated to the complexity concept as well as its application
in a scene.

Scene complexity measures From a geometric visibility point of view, three typologies of complexity
on a scene are presented. Previously, the definition of measures to compute the “fields” of both
information content and information transfer existing in the interior space of a scene, entropy field
and mutual information field respectively, are introduced. From this latter, the point complexity is
presented. Also, the concept of animation complexity is analysed. Finally, the region complexity
is shown from two perspectives: from the surface points and from the interior points of the space
which the region encloses.

Entropy-based sampling for ray-tracing By sampling, we capture radiance information, as well as
geometric information, from the scene through the pixel in order to evaluate the homogeneity of the
information and measure the necessity of taking samples from a double perspective: geometry and
illumination. To do this, an appropriate information-theoretic tool is the Shannon entropy because
of its properties. From it, we define the measures of pixel quality and pixel contrast both in relation
to geometry and colour. We obtain, using the pixel contrast, new refinement criteria which are
directly applicable to any supersampling ray-tracing technique. In addition, the recursive property
of entropy enables us to present a new stochastic adaptive scheme: entropy-based ray-tracing .

Oracles based on generalised entropy for hierarchical radiosity We investigate the use of gen-
eralised information-theoretic measures to obtain better and cheaper oracles for hierarchical ra-
diosity. Thus, new oracles in hierarchical radiosity based on Harvda-Charvát-Tsallis generalised
entropy and generalised mutual information are introduced. Alongside three classic approaches
(based on transported power, kernel smoothness and smoothness of received radiosity), we obtain
the oracles based on transported information, information smoothness, and mutual information.
The performance of these oracles is compared with the classic ones and with each other, the mutual
information based oracle being the one which stands out.

Refinement criteria based on f-divergences The f-divergences are successfully used as measures of
discrimination or distance in different scientific and engineering areas (e.g., multi-modal image
registration [171]). Thus, we study their application to ray-tracing and hierarchical radiosity tech-
niques for three members of the family of Csiszár’s f-divergences: Kullback-Leibler, chi-square, and
Hellinger divergences. Their behaviour is analysed with satisfactory results in both techniques.

Conclusions The conclusions and the main contributions of these previous chapters are presented, as
well as some indications of connected works and future research. Also, the publications related
with this thesis are referred to.

The appendixes give support at specific concepts of the framework. They review the preliminary
mathematics employed throughout the work and establish notational aspects.
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By default, all the considerations are made from a geometric visibility point of view of the mod-
elled scene. When colour is considered, this is indicated explicitly6. All the results contained in this
dissertation have been obtained with the same software. For the input, the Materials and Geometry For-
mat7 developed by Ward et al. [252], and for the output, the RenderPark8 developed at the Computer
Graphics Research Group of the Katholieke Universiteit Leuven, Belgium [33].

Summary

This dissertation belongs to the computer graphics field and deals with the application of the information
theory to rendering problems. The framework of this work is three-rooted: rendering (image synthesis
in computer graphics), information theory , and complexity .

The objectives of this thesis are: to present a study of the complexity in a scene from the interac-
tions between its different parts and to introduce new refinement criteria for ray-tracing and radiosity
techniques, from information-theoretic and f-divergence measures. This last goal constitutes the kernel
of our work.

This work has been structured into the following chapters: the foundations of the framework, scene
complexity measures, entropy-based sampling for ray-tracing, oracles based on generalised entropy for
hierarchical radiosity, refinement criteria based on f-divergences (ray-tracing and radiosity), and conclu-
sions.

6 The term geometric visibility must be considered implicit in all the definitions of information-theoretic tools which do
not consider colour.

7 “A least common denominator language for describing scenes and objects suitable for physically-based rendering
applications” [252].

8 “A photorealistic rendering tool” [33].



Mankind has studied the Universe ever since the first human raised his eyes to the heav-
ens. The sum of all this work is what has enabled us to forward our knowledge of the
Universe. Many have dedicated their lives to it. As a homage to all of them, we cite
among others Aristarchus of Samos (310BC-230BC), Hipparchus of Nicaea (190BC-
120BC), Claudius Ptolemy (85-165), Nicolaus Copernicus (1473-1543), Tycho Brahe
(1546-1601), Galileo Galilei (1564-1642), Johannes Kepler (1571-1630), Isaac Newton
(1642-1727), Charles Messier (1730-1817), William Herschel (1738-1822), William Hug-
gins (1824-1910), Albert Einstein (1879-1955), Edwin Hubble (1889-1953), Carl Sagan
(1934-1996), and Stephen Hawking (1942).
In the field of observation, the human eye has been aided by different instruments
through time: from the first telescope designed by Galileo (1609) to today’s creations
of higher engineering such as the terrestrial telescopes of Mauna Kea (Hawaii, USA),
Mt. Fowlkes (Texas, USA), Cerro Paranal (Chile), and Mt. Hopkins (Arizona, USA).
But technology enabled us to go far beyond. The keenest observer was placed in the
Earth’s orbit in order to overcome the handicap of the atmosphere. It is the Hubble
Space Telescope: our eye in the Universe scene.

Image: The Hubble Space Telescope.
Date: May 2001.
Earth distance: 600 Km.
Credit: ESA.

The HST is a cooperative program of the ESA and NASA to operate a long-life space-
based observatory for the benefit of the international astronomical community. The
STScI, operated for NASA by the AURA, is the scientific entity responsible for the
HST. This is a 2.4m reflecting telescope which was launched in low-Earth orbit by the
space shuttle Discovery on 25 April 1990. In 1993, the Endeavour captured the HST and
modified it by adding a camera to correct problems with the primary mirror. In 1997,
a second servicing mission changed some of Hubble’s instruments. After this, NASA
decided to extend Hubble’s operations until 2010. In 1999, a new mission repaired one
of the HST’s gyroscopes.
Ground-based telescopes can provide resolutions of about 1.0 arc-seconds while that of
the HST is 10 times better. Currently, scientists are working on a substitute: the James
Webb Space Telescope [61, 143].



Chapter 2

The Foundations of the Framework

In this chapter, we present the concepts that we consider to be essential for the development of the
following chapters. The foundations of the three fields which make up the framework of this work (i.e.,
rendering, information theory, and complexity) are reviewed and, at the same time, the more important
problems are formulated (§1.1). Initially we revise the sampling theory which includes the basis for
understanding the handicaps that have to be faced in the digitisation of an image (§2.1). Following this,
there are three specific rendering sections: rendering tools are presented (§2.2) together with two specific
techniques, ray-tracing (§2.3) and radiosity (§2.4). Next, general concepts about information theory are
reviewed (§2.5) followed by an interpretation of the scene as an information channel (§2.6). Finally, a
special section about complexity and its application in a scene is presented (§2.7). More specific concepts
will be introduced later according to the needs of each chapter.

2.1 Sampling Theory

In the previous chapter we remembered how important the signal processing is within the rendering
theory (§1.1). Because a computer image is a digital signal, one of the most important areas in signal
processing is the sampling theory, whose goal is to study the conversion of a continuous signal1 to a
discrete one. Therefore, we will focus our review on those specific aspects directly related to rendering.
We follow the discussion of Glassner [79] closely.

2.1.1 Aliasing

The acquisition process of an continuous signal and converting it into digital can often lead to errors.
These are the outcome of both the errors coming out of the sampling phase and the reconstructed
signal. The latter, also called reconstruction errors, are particularly complex and often misinterpreted
as sampling errors. Studying them falls beyond our scope so we will focus specifically on the sampling
phase.

A basic question is: how many samples are necessary to ensure we are preserving the information
contained in the signal? If the signal contains high frequency components, we will need to sample at
a higher rate to avoid losing information that is in the signal. If we sample a band-limited continuous
signal with a sampling frequency that is higher than twice the bandwidth of the input signal, then the
sampling theorem2 provides that we are able to reconstruct the original signal perfectly from the sampled
data. Consequently, the maximum measurable frequency, called the Nyquist limit , is half of the sampling
frequency. When a signal is sampled at a lower frequency than required by the sampling theorem, we say

1 In general, computer graphics deals with continuous-time (or analytic) signals. They have a representation that enable
us to evaluate them for any parameter value. We use only the term “continuous” due to the fact that the parameter may
represent anything, not necessarily time.

2 The theorem was formulated initially by Nyquist [149] (1928). It was later published by Kotelnikov (1933), Whittaker
(1935), and Gabor (1946). Finally, it was proved by Shannon [207] (1949). It is also known as the Nyquist-Shannon
sampling theorem.

11
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(a) Original (b) 4× 4 (c) 8× 8 (d) 16× 16

Figure 2.1: Image undersampling with three uniform grids. The sample set corresponds to the central
point of each cell set. The jaggies appear at any level of the grid.

that the signal is undersampled (Fig. 2.1), and if it is sampled more than necessary, it is oversampled .
If the signal frequency is higher than the Nyquist limit, then a phenomenon called aliasing takes place.
This problem was presented in rendering by Crow [38, 39] and it can show up either in static images
(spatial aliasing) or animated ones (temporal aliasing).

Aliasing is the presence of unwanted components in the reconstructed signal. These components were
not present when the original signal was sampled and, moreover, some of the frequencies in the original
signal may be lost in the reconstructed signal. That happens because different copies of the signal, called
alias, can overlap if the sampling frequency is too low. If an image is sampled with a regular pattern
that is too low, a variety of aliasing structures are visible in the result because the pattern inherent
in the signal combines with the pattern created by the sampling geometry to produce a new pattern
(e.g., a moiré pattern3). When we sample edges, we get a typical kind of aliasing, called jaggies, which
cause stair steps. Notice that increasing the sampling frequency does not help to avoid this phenomenon
(Fig. 2.1).

To solve the aliasing issue in rendering we cannot consider analytical answers, since they would only
be efficient for those situations that present very simple conditions of geometry and colour (e.g., flat
polygons and text). The signal usually has a finite width (e.g., square side length or height and radius of
cylinders) and therefore, the continuous representation of the objects cannot be captured without error
because the signal has an infinite support in frequency domain4. Thus, in general, it is unknown and
not band-limited [79]. Nevertheless, a low-pass filter allows all frequencies over a specified frequency to
be cut5, and we could apply it before sampling to ensure that no components with frequencies greater
than half the sample frequency remain. The ideal 2D low-pass filter is the box function:

Πb
a(x, y) =

{
1, if |x| ≤ a

2 ∧ |y| ≤
b
2 ,

0, otherwise,
(2.1)

where (a, b) is the bandwith. The Fourier transform is (Fig. 2.2):

F b
a(u, v) = ab sinc(ua) sinc(vb) sinc(x) =

{
sin(πx)

πx , if x 6= 0,

1, if x = 0.
(2.2)

3 Interference pattern created by two grids (different angles or sizes). The term originates from the French word “moiré”,
a type of textile with a rippled or watered appearance.

4 Fourier analysis allows to prove that a signal cannot, simultaneously, have finite width (i.e., compact support in signal
space) and be band-limited (i.e, compact support in frequency space).

5 A high-pass filter is the opposite and a band-pass filter is a combination of both.
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Figure 2.2: The Fourier transform of Π1
1.

Since the sinc function has infinite support6, apply-
ing an ideal low-pass filter to the frequency domain, be-
sides a loss in quality, it requires infinite spatial support
and so is not computable7. If we take the approach of
truncating this spatial support with another box filter8

then we get a new filter in the frequency domain that
involves loss of information and the appearance of new
artifacts (e.g., ringing or Gibbs phenomenon). And, to
make things more difficult, assuming that we could meet
the theoretical conditions for applying the sampling the-
orem, the reconstruction process is by convolution of the
sinc function9 so, there is no easy way to remove the issues
referred to here. Summing up, the optimal reconstruction
is theoretically possible, but in practise, the conditions
cannot be met or, it is not computable.

2.1.2 Point Sampling

As an alternative to the conclusion of the previous section, we can think of a simple and cheap approach
that consists of taking a point sample within each pixel to capture the signal (usually the centre of the
pixel). Given the possibility that this sampling frequency is not enough, we can sample at a higher
frequency: supersampling . This means that each pixel will take more than one sample that will be
later converted into a single value. The number of samples that we may need depends on the spatial
distribution of the samples, the quality of the reconstruction method, and the complexity of the scene.
The simplest way to implement supersampling consists of taking a n× n grid of samples for each pixel,
and an easy way to get a single value is by weighting each sample proportionately to the area it represents
(i.e., by using a reconstruction box filter for each region). Thus,

S ≈
n2∑
i=1

aisi, (2.3)

where si is the function value sampled, ai is the proportional area representative of sample si (
∑n2

i=1 ai =
1), and S is the estimated value. Now, if we consider the image in Fig. 2.1.a as an individual pixel, we
can observe the evident gain of quality with the use of supersampling. Obviously, supersampling offers
many possibilities (grid size, sample location, low-pass filter, reconstruction filter, etc.) and, at the same
time, the combination of them offers many variants [49, 79]. It is important to bear in mind that we
should strive for a balance between the computational cost and the outcome (1.1), for we will never be
able to represent a continuous signal on a discrete plane with precision.

2.1.3 Sampling Methods

There are two main groups of sampling methods10:

Uniform Also called regular or periodic. The sampling pattern can be described with respect to a lattice
(i.e., a set of points generated by combining a basis of vectors in all possible ways): rectangular [254,
195], hexagonal [49], triangular [217], diamond [22], etc.

6 It can also be expressed as Π∞k=1

“
1− x2

k2

”
, Π∞k=1 cos x

2k , or (Γ(1 + x)Γ(1− x))−1 (C.1). Fourier analysis allows it to

be proved that any near-ideal low-pass filter has infinite support in the spatial domain.
7 Real options employed for sinc consist in a tabulated sampling at a predetermined rate.
8 The set of functions used to truncate the sinc functions are called windows (e.g., rectangular or box, Bartlett, Welch,

and Parzen).
9 This is no surprise since the sampling theorem filters with the inverse Fourier transform of ideal filter: a box function.

10 We follow the classification of Glassner [79].
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Nonuniform Also called stochastic or aperiodic. Any sampling technique that produces a pattern
that is not periodic: Poisson-disk sampling [49, 140, 138], jittered sampling [35, 49], hierarchical
sampling [111], importance sampling [211], N-rooks sampling [213, 212], complete stratification at
each refinement level [204], quasi-Monte Carlo sampling [115, 150], etc.

The advantage of uniform sampling is that if we assume that the signal is band-limited, then the
reconstruction process can be theoretically driven (sampling theorem) and the original signal can be
reconstructed with its corresponding losses and artifacts (§2.1.1). We also have aliasing11 because this
assumption is not valid within our context. The search for patterns that help to avoid this is the source of
a great variety of nonuniform sampling methods. The origins go back to Yen [260] and Leneman [124] and
were applied to rendering by Cook [34], Dippé and Wold [49], Bouville et al. [22], etc. The nonuniform
methods are used in computer graphics for two basic reasons: they offer the chance to use variable
sampling density, and they allow structured aliasing for noise to be traded. As a result of this, the
reconstructed signal is still wrong but now it is important to take into account that the human visual
system is able to ignore a large amount of noise, with the exception of the structural errors. This major
tolerance to noise makes nonuniform sampling the most widely used method. We mention here the basic
strategies of nonuniform sampling (combinations of them are also used).

Poisson Sampling The basic nonuniform sampling method. The goal is just to place the samples
out of the regular uniform pattern (Fig. 2.3.a). To achieve this, the samples are placed, randomly,
anywhere and so, are aperiodic (i.e., there is no single structure that is repeated across the domain).
The advantage, as we said above, is that the highly structured aliasing artifacts that intrude in uniformly
sampled signals turn into noise. A disadvantage is that, in those cases where the number of samples is
minimised, a worst case sample distribution can generate a wrong reading of the signal.

Stratified Sampling The method of stratification is a particular case of Poisson sampling. The
objective is to avoid the problem mentioned above, where a group of samples occur in the same region.
To solve this, the domain is broken into strata or regions that do not necessarily have the same size or
shape. Each of these regions will receive one sample (Fig. 2.3.b). However, a poor design of the strata
can still clump the samples together locally. The advantage of stratified sampling is the guarantee that
the samples are not all clumped together in one region, and the disadvantage is that we must decide on
the number and shape of strata.

Importance Sampling The importance sampling consists in distributing the samples in such a way
that each one represents the same amount of energy (Fig. 2.3.c). Thus, they are located more densely in
regions where the signal has a large value, but this requires knowing the function in advance. To lessen
the problem, a filter function is used in rendering which controls the density over the domain, in the
hope that the filtered signal will have about the same shape as the filter. In practise, the filter is divided
into regions which are evaluated by determining its importance. The process can be recursively repeated
for each region.

Adaptive Sampling The adaptive sampling methods attempt to put samples where they will do
the most good by concentrating them in “complex” regions and leaving them sparse in simple regions
(Fig. 2.3.d). It is often implemented by first sampling with a base pattern of some predetermined density.
This set of samples is our first estimate of the signal. Afterwards, the samples are evaluated with respect
to any refinement criterion. If required, a refinement strategy creates and evaluates additional samples
in the selected region. This process is applied recursively until the criterion is met or some upper limit on
the recursion level is achieved. The two important issues in adaptive refinement are where to place the
new samples and what criteria to use to stop the refinement. Kirk and Arvo [116] show that the simple
form of refinement process introduces a bias into the final result. The problem is a connection between
the values of the base samples, the test, and the final set of samples. It is not quite clear whether this

11 We understand aliasing as the result of all artifacts that occur.
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(a) Poisson (b) Stratified (c) Importance (d) Adaptive

Figure 2.3: Four types of nonuniform sampling.

theoretical issue has much effect on the problems of computer graphics. Regardless of this, the same
authors presented a solution for correcting the bias.

2.1.4 Refinement Criteria

In any adaptive strategy, the critical factor is the selection of a good refinement criteria that will be used
in the process of subdivision12. The objective of the process is to work out the best characterisation of
the signal of a region. So, when the captured values are homogeneous enough, we may consider that
the signal is a good representation of the region. Otherwise, if it is too heterogeneous, we understand
that the signal is not very clear and we proceed to apply a refinement. We present a basic selection of
the refinement criteria according to the type of information: intensity (image-space based) or geometry
(object-space based). Over-refined variants and hybrid methods have been designed, while at the same
time we always looked for the right balance between cost and efficiency (1.1).

Image-Space

The intensity is the signal in the image-space sampling. We consider two subgroups: those that are
based on intensity comparisons and those based on statistical measures. Let S = {s1, . . . , sn} be the set
of values obtained by sampling which are put in the test.

Intensity Comparison A representation can be:

• Intensity difference. The difference between the minimum and maximum values are compared with
a constant parameter:

Smin − Smax < ε. (2.4)

If the test fails, the refinement continues13. Whitted presented this test in his first paper on
adaptive point-sampling [254].

• Intensity groups. A variant of the intensity difference is used by Jansen and van Wijk [104]. The
minimum and maximum values are compared separately with a new constant parameter t:

|Smax − t| < ε ∧ |Smin − t| < ε. (2.5)

If one of these differences is not lower than a predefined ε, then the test fails and a new subdivision
will be generated. In order to reduce the computational time, the ε value can be increased as the
recursion level increases14. This means that first levels of recursion are more important than the
rest.

• Intensity contrast. Mitchell [140] presents one of the most widely used intensity measures, the
contrast [25]:

C(S) =
Smax − Smin

Smax + Smin
. (2.6)

12 By default, if the criterion fails, more refinement is necessary.
13 A common rule at the image plane is to use ε = 1

2d , where d is the depth of the colour value. Beyond this limit, the
human eye cannot perceive the difference.

14 The authors obtained good results with a sequence of 0, 0.05, and 0.15 for ε values.
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Mitchell observes that, in an RGB colour system (§2.2.4), the different contrast values can be used
for each channel, thus allowing each component to be weighted according to the human system of
vision, where the eye is more sensitive to green, red, and blue, in this order. Mitchell computes
a separate contrast for each channel and the test fails when any contrast is higher than a given
threshold15. Other definitions of contrast can be used (e.g., (Smax − Smin)/Smax).

This method presents problems when the values are all zero or very small. In the latter case,
the test is too sensitive (e.g., for S = {1, 3} and S = {0.01, 0.03}, we obtain the same result:
C(S) = 0.5). It is possible that we may not be interested in continuing the sampling when the
values are very small and the test should control this. A solution consists of weighting the contrast
by the mean of the samples: C(S) = C(S)S [79] (e.g., for the previous case, C(S) will be 1 and
0.01 coinciding with what we would like to happen).

Simmons and Séquin [222], within an interactive rendering context, present a priority-value based
on the above concepts (contrast and perception) for their refinement test in a RGB space. With
regard to the colour, they use

pc = 0.4C(R) + 0.3C(G) + 0.6C(B), (2.7)

where R, G, and B represent the subset of intensity values for the red, green, and blue components
of set S, respectively. The pc value is combined with a geometric datum (2.14) in order to get a
more accurate priority-value (2.15).

Intensity Statistics Representative examples are shown here:

• Variance test. The variance σ2
n (B.1) of a set S of n samples is the base of this method proposed

by Lee et al. [122]. The test evaluates the quality of S by checking if the variance is below a
predetermined threshold t:

σ2
n < t. (2.8)

The sampling process finishes when the test is true. They also suggest a less precise variant which
tests if the probability that the variance is less than t is within some probability tolerance β:

σ2
n

χ2
β

< t, (2.9)

where χ2 is the chi-square function (C.6). If the test fails, another sample is made and the test is
repeated.

From a visual perception perspective, Mitchell [140] considers that variance is a poor measure of
local variation. Bolin and Meyer [20] control the variance with an error metric to determine the
optimal number of samples in Monte Carlo ray-tracing and also present an interesting adaptive
sampling algorithm based on a visual perception model that estimates the error as a function of
variance [21].

• Confidence test. This method was presented by Purgathofer [175]. The idea is to continue sampling
until the confidence level or probability that the true value ST is within a given tolerance t of the
estimated value S is 1− α (§C):

Pr{ST ∈ [S − t, S + t]} ≥ 1− α. (2.10)

When only the sample standard deviation s (B.2) is known, the true mean lies within the interval
of width 2t around ST with minimum probability α if

t1−α,n−1
s√
n
≤ t, (2.11)

15 The author suggests ε=(0.4, 0.3, 0.6) for an RGB colour system.
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where t1−α,n−1 is the parameter of the t-distribution with n− 1 degrees of freedom with an error
probability of 1− α (C.4).

The predefined parameters are studied by Purgathofer and

n ≥ log(1− α)
log(1− t)

(2.12)

is a suggested number of samples to start the test. Observe how n grows fast as the confidence
increases and the interval decreases.

Painter and Sloan [157] also use a confidence level together with the variance to compare the t-
test with a threshold. Tamstorf and Jensen [230] use the confidence interval in the same way as
Purgathofer but with the inclusion of a tone-operator included in the formula with the objective that
the samples be concentrated in those regions where they contribute most to the final appearance
of the image.

• Sequential analysis test. Maillot et al. [131] presented this method to guide their sampling process.
The idea is to assume that the range of intensity values of S with respect to the mean S is a good
measure of homogeneity. The test calculates the probability p that the value of a sample si is
within a margin ε of S:

p = Pr{|si − S| < ε}. (2.13)

The way this method works consists in initially taking a sample set as base and determining S.
For each of the samples si we check if they are within the range [S − ε, S + ε] and we calculate the
percentage of those that fall inside, pin, and outside, pout. If pin is greater than a threshold tin, it
suggests that the domain of samples is sufficiently homogeneous and the process can be stopped.
If pout is greater than a threshold tout, the process can also be stopped because we assume that
the region is heterogeneous and the actual set of samples is representative enough of this variety.
Finally, if the percentages are not big enough to take a decision, then we need more sampling, and
the process continues16.

Many other possible valid tests using similar or different statistical measures and combinations of them
can be used (e.g., Dippé and Wold [49] present an error estimator based on the root-mean-square signal-
to-noise ratio of the sample set).

Object-Space

If we consider the sample as a ray that crosses the scene we will obtain data on the objects that are
found along the way: an object-intersection history. This history can be gathered either by considering
the path of the sample as a simple beam or a bounced-off beam of light. In both cases, the sample
set can provide much additional information about the contents of the scene besides the intensity. The
refinement methods that are designed using this information are known as object-based refinement tests
and are typically ray-tracing techniques (§2.3). Some examples: object-difference test [195], four-level
test [6], object-count test [92], mean-distance test [246], Cooks’s test [34], and ray-tree comparison [2].

Here we only comment on a useful and simple geometric measure for refinement: the depth difference,
used recently in the image based rendering field to weight pixel colour for reconstruction purposes [174],
adaptive sampling strategies [45, 46], and interactive rendering [222]:

pd = 1− Dmin

Dmax
, (2.14)

where D is the set of distances of the first object hits. Note that pd ∈ [0, 1] plays the role of depth of
field of the camera.

Simmons and Séquin [222] combine this measure with colour using pc (2.7) in order to obtain a better
priority-value:

pv = δpc + (1− δ)pd, (2.15)

where δ ∈ [0, 1]. They obtained good results with δ = 0.9.
16 Based on the human visual system, Maillot [78] proposes tin = 0.7 i tout = 0.9 as good threshold values.
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2.1.5 Refinement Geometry

While the refinement test tells us when we need to sample at a higher rate, the refinement geometry tells
us where we should address the new set of samples. The range of methods is very wide since there is a
strong dependency on the sampling process that has been chosen. Below we present a selection of three
groups with the understanding that there is an intersection of certain criteria. More or less to a degree,
all methods follow an adaptive strategy searching for the geometric location of the most complex signal:

Cell Partition Initially we consider a group of cells that is made up of a grid on the image plane, which
does not necessarily have to match the grid of pixels. These cells are the basis for starting the sampling,
and the methods that divide them up, one way or another, belong to this group. One straightforward
way to reconstruct the signal, which is done quite often by these methods, consists of weighting the
values representative of each subcell proportionally by its area (2.3).

Roth [195] presents a bipartition system that looks for edges with the help of an object-difference
test for refinement. Searching for edges too, Hashimoto et al. [92], in the case where there are more than
two objects, split the cell into four subcells and this is repeated until the object-count refinement test is
achieved.

On a separate approach, the following references mostly use a refinement test based on intensity
comparison. Whitted [254] assigns the cell to the pixel and samples at each corner. If we need to sample
more, the cell is partitioned off into four equal subcells and the process is repeated at each new quadrant.
Triangular partitions have been analysed by Shu and Liu [217]. A diamond pattern based on adaptive
refinement is used by Bouville et al. [22] in a similar way to that of Whitted. Similarly, Akimoto et
al. [2] show a method that starts with supercells, where at each level of refinement they switch between
square and diamond patterns. Jansen and Van Wijk [104] propose a grid of cells at a high level and a
grid of pixels at a low level. From now on the positions of the sampling set and the refinement test are
totally predetermined. If a subdivision is required, they are also partitioned off into four subcells and
the process goes to a lower level.

Multiple-Level The main feature of this group consists of having several sampling patterns with
different densities available. It is started with the lowest level and while the refinement test requires
it and not all the levels have run out, the following pattern in density will be employed. Therefore,
the geometry is explicit in the definition of the pattern. Examples of these models are Cook [34],
Mitchell [140], and Dippé and Wold [49].

Tree-Based These are methods which base the geometric distribution of the samples on a tree struc-
ture. Here the refinements and the structure base are closely related. A binary tree which is scanned
breadth-first was presented by Kajiya [111]. Every node (region) is sampled once and if refinement is
necessary, the node is split in two, now sampling the empty subnode and re-evaluating the two subnodes.
This type of structure allows us to estimate the signal for adaptive hierarchical integration, weighting the
sample values by the areas of their nodes (e.g., piecewise-continuous (2.16)). Similarly, the approach of
Painter and Sloan [157] also uses a tree. Starting from the pixel level, the adequate density is approached
by refining the structure. Other factors apart from homogeneity are taken advantage of in considering
refinement tests: areas, means of samples, variances, etc. Some of these measures can be employed by
designing levels of priority between the nodes or sub-trees (e.g., the variance weighted by the area).

2.1.6 Reconstruction

As we have already mentioned in the previous chapter (§1.1), all the effort of the process of sampling
could be devalued if there is not enough care taken in the process of reconstruction. New artifacts
can appear along with the aliasing: ripple, anisotropic effects, ringing, blurring, etc. These are the
reconstruction errors.

We have seen (§2.1.1) that, in theory, certain functions can be perfectly reconstructed from a set of
samples (i.e., uniform sampled, band-limited ones) but that, in practise, this approach cannot be used
due to the complexity of the function sinc (2.2). So it is necessary to get close to a balance between the
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difficulty of implementing the process and the perfection of the filter within the spatial domain. We are
entering the field of filter design. There are simple and complex possibilities in all the fields of application
but we must not lose sight of two aims: reducing the aliasing introduced in the sampling process and
capturing the original undistorted signal.

In uniform sampling, simple and usual reconstruction filters are17: rectangular or box (2.1), linear
interpolation or tent function, quadratic functions, cubic functions, Gaussian functions, etc. Discussions
on the problem can be found in Oppenheim and Schafer [151], Gabel and Roberts [75], Dudgeon and
Mersereau [51], Wolberg [256], etc. In our context, we focus on the nonuniform sampling which allows
us to deal with a sample rate variable and, as a consequence, to obtain a reduction in aliasing at the
cost of the introduction of noise (§2.1.3). A type of noise at high-frequency is the shot noise, which is
due to the fact that several samples, called rogues or outliers18, have an excessive value with respect to
the rest.

We should remember that the reconstruction process is followed by a resampling process at lower
density (§1.1.1). This creates the need for a low-pass filter after the reconstruction filter so that there are
no frequencies over the Nyquist limit (e.g., shot noise). Whenever it is possible, for practical reasons19,
the two processes are combined. Therefore, the methodology of the reconstruction point is characterised
by evaluating the set of samples and obtaining one value from the signal which has already been recon-
structed and filtered. In this way, we save carrying out the final resampling process. This reconstruction
point refers to the neighbourhood corresponding to the set of samples which have been evaluated.

In rendering, we are interested in local approximation to the specific signal: the pixel. The resam-
pling process always coincides with the pixel grid and usually at the centre of the pixel. When the
neighbourhood coincides with the pixel, the reconstruction phase and resampling can be joined together
by considering the reconstruction point to be the centre of the pixel. Regarding the filter, it is usual
to assume that the values of the estimated signal near the centre of pixels are more important than the
values in the zones that are further away from this centre. What is happening is that we are applying
importance sampling to the resampling, implicitly guided by the great weight that we give to the centre
of the pixel in comparison with its borders.

The possibilities of combining reconstruction and filtering for nonuniform sampling are numerous, and
they vary from algorithm to algorithm, and for each of the adopted solutions many variations appear. A
list of surveys and applications on nonuniform reconstruction are: Shirley and Wang [216], Feichtinger
and Gröchening [64], Heckbert [95], Pratt [140], etc. We now make note of some of the techniques that
are employed20:

Local Filters Set of techniques which apply a reconstruction filter (or a combination with a low-pass
filter) directly to the sampled data, centred on the reconstruction point, just as it would be done for the
phase of resampling of a uniform sampling. As a result, the filters used in uniform sampling are also
valid options but, how a filter is applied to nonuniform reconstruction depends of each algorithm.

In the survey of Mitchell and Netravali [141] the characteristics of the local filters are evaluated
and, with textures, in Greene and Heckbert [86]. A collection of radially symmetric filters would be:
Pavicic [165] (B-splines), Cook [34] (difference of Gaussians), Dippé and Would [49] (cosinus), Max [137]
(special curve), and Mitchell and Netravali [141] (splines curves). This last is one of the most frequently
used in rendering because of its good behaviour and it includes a set of usual spline filters as particular
cases.

Warping Techniques which convert the nonuniform sampling into uniform sampling by using an in-
vertible mapping. If this mapping is band-limited, then the signal can be reconstructed by a nonuniform
version of sampling theorem. These methods are restrictive and complex [28, 95, 256].

17 The majority of them are also employed to truncate the function sinc as windows (§2.1.1).
18 Lee and Redner [121] introduced an alpha filter to eliminate them.
19 Cost in time which includes Fourier transforms.
20 We follow the classification of Glassner [79].
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Iteration An estimate of the signal and a variable of error are calculated. Afterwards, these data are
worked on iteratively to obtain new estimates until convergence is attained. The results are generally
good but they are high in cost. [158, 199, 136, 63].

Piecewise-Continuous The neighbourhood is tiled in regions without gaps. This method was pre-
sented by Whitted [254] using rectangular regions and a box filter to form a single flat reconstructed
surface over the neighbourhood. The signal estimation is weighted by the area of each region. Wyvill
and Sharp [258] opt for dividing up in accordance with one edge21 that passes through a region. A
special system weights the sample values with the areas. Painter and Sloan [157] use a tree to make
the reconstruction. The tree-structure contains rectangles with a sample22 representative of it. The
structure contains complete information on a perfect partition of any region where the application of a
filter is easy. We can express its calculation as

p(x, y) =
∫

A

f(x− u, y − v)s(x, y)dudv

=
n∑

i=1

si

∫
Ai

f(x− u, y − v)dudv, (2.16)

where p(x, y) is the value of the reconstruction point in a neighbourhood A, and f(x, y) a filter function
over a signal s(x, y) represented in the last expression as a sum of n subregions with area Ai and value
si.

Multi-Step In situations of great changes in density and those which are far from uniform, recon-
struction generates grain noise. Mitchell [140] contributes with a multistage filter which consists in the
successive application of a box filter. The process begins by filtering at a first stage with a small step
which will be doubled at every stage until it covers the whole region. Every new stage has the effect of
smoothing the signal at the next level. Thus, by the last stage, the value returned by the filter should
contain less grain noise.

Finally, we should consider that all the proceedings employed to produce a good signal are trying
to find a trade off between the aliasing and the noise. Given that these two factors cannot be totally
eliminated23, with respect to the quality of rendering, we will never be capable of reproducing the perfect
image but we will be able at least to create an illusion close enough to reality (§1.1.1).

2.2 Rendering

As we have already advanced in §1.1.1, the process of synthesising a real scene aims to transform an
image of the continuous 3D world to the discrete 2D one with the greatest precision possible (Fig. 2.4).
To attain this goal it is necessary to design multidisciplinary algorithms (signal processing, physics, and
vision) which achieve a good approximation to the solution. Within our framework of physically-based
global illumination, complementing the concepts of signal processing (§2.1), in this section we present
some mathematical concepts24 useful for rendering which are related to physics and vision: Monte Carlo
integration (§2.2.1), form factors (§2.2.2), the light behaviour from the rendering equation (§2.2.3), and
colour spaces (§2.2.4).

21 Restriction for each region.
22 Assumption that the whole rectangle is uniform in the sample colour.
23 In real particle physics, the uncertainty principle (Werner K. Heisenberg, 1927) is fulfilled [98]. A consequence is that

any pair of related physical data fulfil a strong relationship with respect to the precision of their measurement: the better
the knowledge of one value, the less certain we can be about the other. Because of the product of two incertitudes has to be
maintained over a universal constant, below a certain limit, reductions in aliasing will correspond to increases in noise and
vice versa. As a result, the error in the signal must continue and it will be either in a regular way (aliasing), or otherwise,
in an irregular way (noise) [79].

24 See §A and §B for geometric and probabilistic notation, respectively.
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(a) (b)

Figure 2.4: Two rendering applications: (a) engineering design and (b) architecture.
Credit: (a) Mercedes-Benz SLK, c© 2004 Daimler-Chrysler AG. Rendered with mental ray r©, c© 2005
mental images GmbH., Berlin, Germany. (b) TGV Station, c© 2005 Isao Nagoaka of DigiArchitecture.
Rendered with NuGraf r©, c© 2005 Okino Computer Graphics, Inc., Toronto (Ontario), Canada.

2.2.1 Monte Carlo Integration

In order to obtain an image of quality we must calculate the colour of each pixel accurately. Given
that we are only interested in one sole value per pixel, an efficient way of doing this is to apply the
reconstruction point, simplifying the process of reconstruction of the signal (§2.1.6). A useful technique
to deal with this kind of problems is Monte Carlo integration [89].

The aim of the Monte Carlo method is to formulate the solution of a given mathematical problem
as the expected value of a given random variable. By sampling this random variable, the solution of
the problem is estimated. Thus, to solve an integral by Monte Carlo we convert it to an expected
value. Following, we give a brief overview. For a general and more detailed description of Monte Carlo
method, see Rubinstein [196], Kalos [114], Sillion and Puech [221], Glassner [79], Bekaert [12], and
Szirmay-Kalos [229].

Let us suppose we want to solve the integral of a function f(x). This can be written as

I =
∫

D

f(x)dx =
∫

D

f(x)
g(x)

g(x)dx, (2.17)

where g(x) is a pdf of a random variable X. The integral can be read as the expected value of the
random variable f(X)

g(X) with respect to the pdf g(x):

I = Ef

[
f(X)
g(X)

]
. (2.18)

The term f(x1)
g(x1)

, where x1 is obtained by sampling from the g(x), is a primary estimator for the
integral I:

I ≈ Î1 =
f(x1)
g(x1)

. (2.19)

This estimator is unbiased (i.e., E[Î1] = I). The variance of this estimator is given by

σ2
[
Î1
]

= E

[(
f(X)
g(X)

)2
]
−
(

E

[
f(X)
g(X)

])2

=
∫

D

f(x)2

g(x)
dx− I2. (2.20)

Averaging n independent primary estimators (obtained by sampling n independent values x1, . . . , xn

from g(x)), we obtain the unbiased secondary estimator Î2
n:

I ≈ Î2
n =

1
n

n∑
i=1

f(xi)
g(xi)

, (2.21)
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with variance

σ2
[
Î2
n

]
=

1
n

σ2
[
Î1
]

=
1
n

(∫
D

f(x)2

g(x)
dx− I2

)
. (2.22)

So, we obtain better estimators as the number of samples increases. This result is according to the
weak law of large numbers, which states that, for identically independent distributed random variables,
1
n

∑n
i=1 Xi is close to its expected value E [X] for large numbers of n. Obviously the variance depends

on the pdf chosen. When we use a pdf that resembles the integrand we are doing importance sampling ,
which can dramatically reduce the variance of our estimator [114].

It can be observed from (2.22) that the standard deviation σ[X], which represents the error, decreases
at a rate of 1√

n
as the number of samples increases.

2.2.2 Form Factors

x dAx
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Figure 2.5: Differential to differential form
factor.

In physics, the term form factor describes the fraction
of radiant energy which leaves one surface and reaches
a second surface [218]. In other fields it is also called
geometric factor, configuration factor, or shape factor. It
takes into account the distance between the surfaces (the
centre), their orientation in space relative to each other,
and their differential of areas. It is important to note
that the form factor is exclusively a geometric relationship,
independent of any viewpoint or surface attributes, and
that it is a dimensionless quantity.

Definition 1 The form factor between two elements is
given by

• Differential-to-differential (Fig. 2.5)

FdAx↔dAy
=

cos θ
−→xy
nx

cos θ
−→yx
ny

πr2
xy

V (x, y) (2.23)

• Differential-to-finite

FdAx→Aj =
∫

Aj

FdAx↔dAydAy (2.24)

• Finite-to-finite

FAi→Aj
=

1
Ai

∫
Ai

∫
Aj

FdAx↔dAy
dAydAx (2.25)

Within the context of a discretised scene (closed environment), the previous form factors are called
point-to-point25, point-to-patch, and patch-to-patch, respectively, under the understanding that all the
points involved belong to surfaces of the scene26. The intermediate point-to-patch form factor can be
seen as the limit of the patch-to-patch form factor when the area of the first patch decreases to zero. The
set of all form factors can be seen as a matrix FNp×Np where27 Fij = Fi→j and all rows and columns
add up to 1. The form factors play an essential role in many of the techniques used and, particularly, in
radiosity (§2.4).

25 Noted Fx↔y .
26 This will not be the case in §3.
27 A matrix element F

Np×Np
i,j is usually noted Fij if it does not generate any ambiguity.
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Form Factor Properties

We note the following properties between patches:

• Reciprocity
AiFi→j = AjFj→i ∀i, j (2.26)

• Energy conservation (closed environment)∑
j∈S

Fi→j = 1 ∀i (2.27)

• Additivity
Fi→j∪k = Fi→j + Fi→k, (2.28)

where i, k, and j are three disjoint patches. In general the reverse is not true: Fi∪j→k 6= Fi→k +
Fj→k. In fact, if the patch i is divided into n subpatches, we obtain

n∑
k=1

Aik
Fik→j = AiFi→j . (2.29)

Form Factor Computation

The computation of the form factors is difficult even for simple surfaces, and the presence of occlusions
makes it even more difficult (visibility function §A). The first idea, the Nusselt analog (1928), is based
on the hemispherical projection body that allows the simple and accurate calculation of the form factor
between a surface and a point on a second surface:

FdAx→Aj
=

Ap

πr2
, (2.30)

where Ap is the area projected by Ωx→Aj
on the base of the hemisphere of radius r centred at x. It was

from the 80’s that this problem was tackled in more depth. Thus, based on the Nusselt analog, Cohen
and Greenberg [29] presented the hemicube, Malley [132] published a Monte Carlo approach, and Sillion
and Puech [220] the method of the single-plane (a variation of hemicube).

No analytical closed-form solution exists except for very simple shapes without occlusions. Schroeder
and Hanrahan [205] solved the polygon-to-polygon case, and in Siegel and Howell [218] or Glassner [79],
we can find an extensive list of formulæ for simple shapes. When occlusions between patches exist, we
can use deterministic numerical approximations to compute the form factors. Different methods can be
found in the literature [221, 79]. We review here three different ways of computing the patch-to-patch
form factor (2.25) based on Monte Carlo technique [201, 12].

• Uniform area sampling.

To calculate the patch-to-patch form factor (2.25) we take random points x and y on patches i
and j respectively (Fig. 2.6.a). This means taking as pdf f(x, y) = 1

AiAj
, which is a uniform

distribution.

A primary estimator is given by

F̂ 1
i→j =

1
Ai

Fx↔y

f(x, y)
= AjFx↔y. (2.31)

It is easy to see that this estimator is unbiased (E
[
F̂ 1

i→j

]
= Fi→j). For a set of samples represented

by the pairs (x ∈ Ai, y ∈ Aj), that defines the nonempty set of random segments Si×j , the form
factor integral is approximated by the secondary estimator

F̂ 2
i→j = Aj

1
|Si×j |

∑
(x,y)∈Si×j

Fx↔y. (2.32)
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• Uniformly distributed lines.

– Local lines. Each one of the local lines is a ray with its origin uniformly distributed on the
surface of i and its direction distributed according to the cosine with respect to the normal
at the origin. So, we rewrite (2.25) as

Fi→j =
1
Ai

∫
Ai

∫
Ωx→j

cos θΘ
nx

π
V (x,Λ(x,Θ))dωΘdAx, (2.33)

and we take the pdf f(x, Θ) = 1
Ai

cos θΘ
nx

π .

An unbiased primary estimator F̂ 1
i→j takes the value 1 if the local line hits the patch j

directly and 0 if not. Let us recall that if a random variable X takes the values 1 and 0 with
probabilities p and 1− p, its variance is given by σ2[X] = p(1− p) [159]. Thus,

σ2
[
F̂ 1

i→j

]
= Fi→j(1− Fi→j). (2.34)

A secondary estimator for Fij is given by

F̂ 2
i→j =

|Li×j |
|Li×S |

, (2.35)

where Li×S is the set of local lines with origin on i and Li×j is the set of local lines with origin
on i that hit j28. It shows clearly that the Fi→j can be interpreted as the fraction of local
lines with origin on i that have j as the nearest patch intersected (Fig. 2.6.b). The variance
is σ2[F̂ 1

i→j ]/|Li×S |.
– Global lines. The global lines [200, 201] can be generated by putting the scene within a

sphere and selecting a pair of random points on the surface of this sphere [224]. Interestingly,
this uniform density generation does not have a counterpart in 2D. That is, taking pairs of
points uniformly distributed on a circumference does not provide a uniform density within the
circumference. In 2D, a way to get a random chord consists in choosing uniformly at random
a direction on the circle and then uniformly at random a point on the corresponding radius:
the chord is the line segment whose endpoints are located on the circle and perpendicular to
the radius [224, 26].
The lines connecting each pair of points are uniformly distributed throughout the scene. So,
Fi→j can also be considered to be the probability of a global line that, crossing i, hits j
(Fig. 2.6.c). It can be shown that each line can contribute to the computation of several form
factors. Also, it is important to note that, from integral geometry [198, 201], the probability
that, for a planar patch, a global line will intersect patch i is proportional to Ai.
A secondary estimator for Fi→j is given by

F̂ 2
i→j =

|Gi×j |
|Gi×S |

, (2.36)

where now, Gi×S is the set of global lines which cross i and Gi×j is the set of global lines that
crossing i, also cross j29. Its variance is

σ2
[
F̂ 2

i→j

]
=

1
|Gi×S |

Fi→j(1− Fi→j). (2.37)

To sample with global lines is equivalent to casting, for each patch, a number of local lines
proportional to its area. Observe that the variance will be higher for smaller patches as |Gi×S |
is proportional to Ai [201].

28 Li×j ⊆ Li×S 6= ∅.
29 Gi×j = Gi×S ∩ Gj×S and Gi×j ⊆ Gi×S 6= ∅.
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Figure 2.6: Form factor computations. (a) Twelve segments are used to calculate Fij by uniform area
sampling. (b) Twelve local lines calculate Fij = 1

6 and Fik = 1
3 . (c) Twenty global lines calculate all the

form factors (i.e., they add Fji = 1
4 , Fjk = 1

2 , and Fki = Fkj = 4
9 ).

2.2.3 Light

Light is electromagnetic radiation with a wavelength that is visible to the eye (i.e, wavelength in [380,780]
nm). Three dimensions of any electromagnetic radiation are:

◦ Intensity (or amplitude), perceived by humans as the brightness.
◦ Frequency (or wavelength), perceived by humans as the colour.
◦ Polarisation (or angle of vibration), perceived by humans in special cases.

Due to wave-particle duality, light simultaneously exhibits properties of both waves and particles.
The light is quantified as particles called photons30. Electromagnetic radiation in the vacuum always
travels at the speed of light, relative to the observer, independently of the observer’s velocity31. Next,
we present some necessary concepts in rendering.

Radiometry

Radiometry is a field of physics which undertakes the measurement of the intensity of electromagnetic
radiation in absolute units. Next, we enumerate the basic definitions related with the flux of energy:

Radiant flux Radiant energy, defined as the energy carried by electromagnetic radiation (joule), flow-
ing in radial direction per unit time: Φ = dQ

dt (watt).

Irradiance Incident flux per unit area: E = dΦ
dA (watt·m−2).

Radiance exitance Radiated flux, called radiosity , from a surface per unit area: B = dΦ
dA (watt·m−2).

Radiant intensity Radiated flux from a point source per unit solid angle in a radiant direction: I = dΦ
dω

(watt·sr).

Radiance Radiant flux per unit projected area in a radial direction that arrives at or leaves from a
surface [112, 90]: L = d2Φ

dAdωΦ
(watt·m−2·sr−1).

We add the following notation:

◦ L(x→Θ) is the outgoing radiance from x in direction Θ.
◦ L(x←Υ) is the incoming radiance to x from direction Υ.
◦ L(x→y) is the outgoing radiance from x to y (direction −→xy).
◦ L(x←y) is the incoming radiance to x from y (direction −→yx).

Two usual properties are assumed in radiometric equations:
30 Its energy is related to the frequency of the wave given by Planck’s relation E = ~v, where ~ is Planck’s constant,

and v the frequency of the wave. Electromagnetic waves were predicted by Maxwell’s equations (1864) and subsequently
discovered by Heinrich R. Hertz (1888).

31 The Special Theory of Relativity, published by Albert Einstein in 1905 [55], is based on this fact.
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• Radiance invariance in vacuum32

L(x→y) = L(y←x) (2.38)

• Wavelength dependency

L(x→Θ) =
∫ 780 nm

380 nm

L(x→Θ, λ)dλ (2.39)

Optics

Optics is a branch of physics that describes the behaviour and properties of light and the interaction of
light with matter. On light-surface interaction, the surface illuminated by an incident ray may reflect
and transmit a portion of the incoming energy and it absorbs the rest. In a physically correct model, the
energy equilibrium is maintained (i.e., the reflected, transmitted, and absorbed energy must be equal to
the incident energy). Here, we consider an isotropic model (i.e., all the surfaces reflect equally from any
direction viewed from, otherwise it is anisotropic).

The probability theory tools (§B) are used to model the complex behaviour of the light-surface
interactions. In general, the transfer probability density of a surface point x is [229]

w(Υ, x,Θ)dωΘ = Pr{photon is reemitted to dωΘ | coming from Υ}. (2.40)

To obtain the total energy reemitted (i.e., reflected or refracted), we have to take all possible directions
Υ into account. If the surface itself emits energy (i.e., it is a lightsource), the emission also contributes
to the output flux in direction Θ [229].

The bidirectional reflectance distribution function (BRDF) at a point x (Fig. 2.7) is the ratio between
the incident flux reflected from dΥ into dΘ over all dAx (sr−1):

fr(Υ, x,Θ) =
dL(x→Θ)
dE(x←Υ)

. (2.41)

In terms of probabilities:

fr(Υ, x,Θ) =
w(Υ, x,Θ)dωΘ

cos θΘ
nx

dωΘ
. (2.42)

We can also define for transmission the corresponding bidirectional transmittance distribution function
(BTDF). Both BRDF and BTDF exist for each side of the surface. We note two important properties:

• Helmholtz-symmetry. Reversing the roles of the incident and reflected energy does not change the
value of the BRDF:

fr(Υ, x,Θ) = fr(Θ, x,Υ). (2.43)

• Energy conservation. The energy reflected must be a fraction of the energy received (the other
fraction is absorbed). The albedo is the ratio of the total reflected power and incoming power.
Thus,

a(x,Υ) = Pr{photon is reemitted | coming from Υ}

=
∫

Ωx

w(Υ, x,Θ)dωΘ

=
∫

Ωx

fr(Υ, x,Θ) cos θΘ
nx

dωΘ ≤ 1. (2.44)

A lot of different models are discussed for BRDFs according to different types of reflectance and
transmittance (see details in [79, 229]). They attempt to model all the types of reflection:

Specular The light is propagated without scattering. The incoming direction and outgoing direction
are on the same plane with equal angles with respect to the surface normal (Fig. 2.7.a). This is
also called regular or mirror reflection.

32 In this work, we consider non participating media.
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(a) Specular (b) Diffuse (c) Retro-reflection (d) Gloss

Figure 2.7: Four kinds of reflectance.
Credit: Adapted from Andrew S. Glassner [79].

Diffuse The light is reflected in all directions with uniform distribution (Fig. 2.7.b).

Mixed A combination of specular and diffuse reflectance.

Retro-reflection The incident energy is mostly reflected in directions close to the incident direction
(Fig. 2.7.c).

Gloss A set of mixed reflections (Fig. 2.7.d). It is what originates the production of the mirror-like
effects. It is composed of different grades: from a perfect mirror (1 gloss) to perfect diffuser (0 gloss).
This incoherent reflection is usually broken down into diffuse and specular components [47]. For this
last, a lot of models have been presented (e.g., Phong [167], Blinn [19], and Cook-Torrance [36]).

In a similar way to reflection, transmittance can be divided into: specular , diffuse, and mixed . In this
thesis, we are interested in perfect diffuse reflection. If the BRDF is independent of the viewing direction
(i.e., isotropic), it must be independent of the direction of light (2.43) and the BRDF is constant:

fr(Υ, x,Θ) = ρd
r (x) ∀Υ,Θ. (2.45)

Note that ρd
r is the ratio of outgoing radiance to incoming flux density. A more convenient quantity is

the ratio of reflected radiance to incoming total flux (i.e., the albedo). This ratio is called the diffuse
reflectance, or simply reflectance, and is given by ad(x) = ρd

r (x)π = ρ(x). Thus, taking into account
(2.44): ρd

r (x) ≤ 1
π .

A distinction is usually made between types of origins of light in order to simplify the algorithmic
designs. Thus, we have the direct light (Ld), which comes directly to us from the lightsources, and the
indirect light (Li), any type of light that is not direct.

Equation

The light transported in a virtual closed environment is described by the rendering equation [111],
which is a second-order Fredholm integral equation. This equation, which describes all energy exchanges
between surfaces, gives us the distribution of light at every point of a scene.

It expresses the radiance from point x in direction Θ with the integration over the hemisphere33:

L(x→Θ) = Le(x→Θ) +
∫

Ωx

L(x←Υ)fr(Υ, x,Θ) cos θ−Υ
nx

dωΥ, (2.46)

where Le is the emitted radiance34 of a surface point at a given direction. Rewriting this expression over
all surfaces we obtain:

L(x→Θ) = Le(x→Θ) +
∫

A

L(x→y)fr(−→yx, x,Θ)G(x, y)dAy, (2.47)

where G(x, y) is the geometric kernel :

G(x, y) =
cos θ

−→xy
nx

cos θ
−→yx
ny

r2
xy

V (x, y) = πFx↔y. (2.48)

33 We consider radiance to be invariant in vacuum (2.38), wavelength dependency (2.39), and do not consider transmit-
tance (a problem equivalent to that of reflectance).

34 It depends on the physical property of emissivity of each material.
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The rendering equation can be presented in slightly different forms depending on the assumptions that
are made about the physical conditions [221, 79]. Observe that the radiance distribution L is described
implicitly and we only know what conditions it must satisfy, but we do not know its value. The unknown
radiance appears inside and outside the integral and, in order to obtain a solution, this coupling should
be solved. If we consider the T to be a contraction operator35 as the light-surface interaction, we can
group together the techniques to solve it in [229]:

• Inversion. Group the terms that contain the unknown function on the same side of the equation
and formally apply an inversion operation (1 − T )L = Le ⇒ L = (1 − T )−1Le. This technique is
not practised due to its time complexity and numerical instability.

• Expansion. Eliminate the coupling rewriting the equation into a Neumann series:

L =
n∑

i=0

T iLe + T n+1L
n→∞=

∞∑
i=0

T iLe. (2.49)

• Iteration. The solution is the fixed point of an iteration scheme as

Ln = Le + T Ln−1. (2.50)

Due to T operator, the scheme converges towards the solution from any initial function L0.

Υ

L(Λ(x,−Υ)→Υ)

Λ(x,−Υ)

θ−Υ
nx

x

Θ

L(x→Θ)

Figure 2.8: Geometry of rendering equation.
Credit: Adapted from László Szirmay-
Kalos [229].

Specific applications of expansion and iteration are ray-
tracing (§2.3) and radiosity (§2.4), respectively, which
can be complemented by forming hybrid designs be-
longing to the class of multi-pass algorithms [220, 96,
211, 210, 219] (§1.1.1), the aim of which is to differen-
tiate phases in the rendering process as to where the
best of them could be applied. It seems reasonable to
consider that an algorithm which uses the best of each
one must obtain superior results to each one of them
separately.

The radiance describes the interaction between an
emitter and a receiver from the point of view of the
emitter (Fig. 2.8). The reverse situation is explained
from the potential W (y,Υ). “It expresses the effect
of that portion of the unit power ray emitted by y in
direction Υ, which actually lands at a given measuring device either directly or indirectly after some
reflections or refractions” [229]. The potential equation is defined by [164]

W (y→Υ) = We(y→Υ) +
∫

Ωx

W (x→Θ)fr(Υ, x,Θ) cos θΘ
nx

dωΘ, (2.51)

where x = Λ(y,Υ).

2.2.4 Colour Spaces

In a strict way, we can consider the rendering process exclusively as the search for a solution to its
equation and then, the tone-mapping independent of it (Fig. 1.2). We have seen how the rendering
equation (2.46) reflects a simplification of the model of global illumination in order to attempt to decide
the colour for each of the pixels of the image plane (§2.1.6). In any case, for the process of rendering
itself as much as for tone-mapping, we must consider the spaces of colour in the framework.

Colour is the human perception of light in the visible domain of the spectrum incident on the retina
(§2.2.3). The intensity of energy, radiance, received through every wavelength is expressed by the spectral

35 For λ < 1, ‖ T L ‖< λ ‖ L ‖ and then limn→∞ T n+1L = 0.
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R G B white
x 0.64 0.30 0.15 0.3127
y 0.33 0.60 0.06 0.3290
z 0.03 0.10 0.79 0.3583

Table 2.1: The xyz values for sRGB (D65).

power distribution (SPD). In rendering equations we assume a unique luminance for all the SPD (2.39),
but in practise, systems of colour must be established for the output devices. We will comment on the
two systems of colour which we use in this work (XYZ and sRGB).

Based on the system of perception of the eye, through photometry different models on colour have
been created and studied [27, 257, 88, 172]. Because of the nature of the human eye, energy is sampled
and integrated in three overlapping frequency ranges by three types of photoreceptors. As a consequence
of this, any colour perception can be represented by three scalars, called tristimulus values, instead of
complete SPD. One important result is that different SPDs can become the same tristimulus values and
so the same colour. In fact, any colour has an infinite number of SPDs, called metamers.

The Commission Internationale de L’Éclairage (CIE) defines luminance as the radiant power (cd·m−2
in photometry) weighted by a spectral sensitivity function that is characteristic of vision. The SPD
integrates with the luminance weighting function resulting in the CIE luminance Y that is normalised
with respect to a specified white reference (e.g., the standard daylight defined by CIE as illuminant
D65). In 1931, the CIE created the tristimulus system XYZ to represent the SPD [257]. It is based on
luminance Y and two components X and Z so that a value XYZ describes any colour.

On considering pure colours with an absence of brightness, the CIE defines a normalisation process,
(x, y, z), to compute the chromaticity coordinates (x, y) (i.e, a projection of 3D space on the 2D plane
X+Y+Z=1)36. Thus, a colour is well determined by its chromaticity and luminance: CIE xyY37. Other
more specific spaces are: L∗u∗v∗, L∗a∗b∗, YCbCr, HSL, etc. The mapping between the different spaces
is always easy if, and only if, they have correspondence. The process of this correspondence is called
gamut mapping . In rendering, it is usual for the characteristic of the colour of a material to be specified
in the chromaticity coordinates (device-independent).

The current technology for monitors is based on screens where a pixel is drawn with three phosphor
layers which are stimulated to produce red, green and blue light: (r,g,b). It is necessary to find the
stimulus values to produce a metamer of the energy desired. Also, before sending the signal to the
monitor, a correction of the intensities is necessary in order to adapt them to the specific characteristics
of the human perception system [173, 172]. This process is called gamma correction.

An RGB space is a system based on physical devices where a range of colours is produced by an
additive mixture of the three primary spectra of phosphors (i.e., adding the corresponding fractions of
the XYZ components). The systems based on subtraction are, in general, more complex (e.g., CMY is
the complementary one for RGB). One RGB system is specified by the chromaticities of its primaries
and its white point. So as to unify the definition of spaces RGB, the International Electrotechnical
Commission (IEC) has defined the standard sRGB (IEC 61966-2-1) [226, 32]. The expected primary
colours on phosphorous and the white setting of an sRGB on D65 are shown in Table 2.1 for an xyz
system38.

The conversion between sRGB and XYZ tristimulus D65 values is R
G
B

 =

 3.2406 −1.5372 −0.4986
−0.9689 1.8758 0.0415

0.0557 −0.2040 1.0570

×
 X

Y
Z

 . (2.52)

The negative coefficients are due to the fact the some XYZ colours are out of the gamut of sRGB space39.

36 x = X
X+Y +Z

, y = Y
X+Y +Z

, and z = 1− x− y.
37 X = x

y
Y and Z = 1−x−y

y
Y .

38 Following the previous recommendation of the ITU-R BT.709 [243].
39 All values are clipped between 0 and 1.
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(a) (b)

Figure 2.9: Ray-tracing of two scenes with different material types. (a) Still life picture rendered by
the Radiance ray-tracing research software. (b) Five transparent chess figures rendered by the NuGraf r©

commercial software.
Credit: (a) c© 1994 Dr. Martin Moeck41, Pennsylvania State University, University Park (PA), USA.
Radiance c© 2005 University of California Regents. (b) c© 2005 Okino Computer Graphics, Inc., Toronto
(Ontario), Canada, original model from the 3D Cafe Internet site created by Renzo del Fabbro of Italy.

The inverse transformation is: X
Y
Z

 =

 0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

×
 R

G
B

 , (2.53)

where the middle row adds up to 1 due to the white normalisation40. For details about nonlinear sR’G’B’
transformation (gamma of the monitor of 2.2) and more specification of the viewing environment, see
IEC 61966-2-1 [32].

In practise, the process of obtaining the final colour of the pixel of a device consists in computing the
pixel value by initiating a rendering process (usually with a CIE XYZ space colour) and finishing with
a gamut mapping for a specific nonlinear RGB device system (usually sR’G’B’). This colour process is
the basis of tone-mapping.

2.3 Ray-Tracing

The aim of the pixel-driven approach is to obtain the final colour of each pixel of the image plane (§1.1.1).
To achieve this, we can use Monte Carlo integration techniques (§2.2.1) with point sampling (§2.1.2). It is
necessary to estimate the scene radiance signal integrating within the solid angle formed by the position
of the camera and the pixel (Fig. 2.9). In this section, we follow the work of Szirmay-Kalos [229].

2.3.1 Method

The expansion technique to solve the rendering equation is based on Neumann series (2.49). The mea-
sured power is

ML =
∞∑

i=0

MT iLe, (2.54)

40 To recover the primary chromaticities, transform the values RGB (1,0,0), (0,1,0), and (0,0,1) to XYZ and normalise.
The same for RGB (1,1,1) to obtain the white reference.

41Contact address: Pennsylvania State University, Department of Architectural Engineering, 104 Engineering A, Uni-
versity Park (PA) 16802, USA, e-mail: mm12@psu.edu.
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Figure 2.10: The gathering ray-tracing expansion.
Credit: Adapted from László Szirmay-Kalos [229].

whereM is a measuring operator. The termMT iLe is used to determine the radiance going through a
pixel and can be seen as a single multi-dimensional integral:

MT iLe =
∫

A

∫
Ωx1

· · ·
∫

Ωxi

c(x0)
A

w0 · · ·wiLe(xi+1→−Θi)dωΘi
· · ·dωΘ1dAx0 , (2.55)

where A is the pixel area, x0 is the sample point of the pixel, c(x0) is the camera parameter function, Θ0

is the sample direction (from observer to x0), Θk∈{1,...,i} are directions of the reflections, xk∈{1,...,i+1} is
Λ(xk−1,Θk−1), and the weight wk∈{1,...,i} is fr(xk,−Θk→−Θk−1) cos θΘk

nxk
(Fig. 2.10).

For i = 0, the term of the series represents the emission intensity, but at level i > 0, i reflections
have been taken into account. This infinite theoretical process can be implemented algorithmically for
a finite number of reflections: a ray is cast recursively from a visible point at a direction Θ1 and onto
the next surface, at direction Θ2, and this continues until Θi. The emission intensity of the last point
is achieved and attenuated according to the cosine weighted BRDFs of the stages of the walk. If the
emission is transferred from all points of the walk, we have an estimation of i-bounce transfer thanks to
this random walk (§B).

This process constitutes the basis for a calculation of Monte Carlo integration with one multi-
dimension sample. Another interpretation of the term (2.54) is a recursive evaluation of many directional
integrals:

MT iLe =
c(x0)

A

∫
A

w0

(∫
Ωx1

w1

(
· · ·
∫

Ωxi

wiLe(xi+1→−Θi)dωΘi
· · ·

)
dωΘ1

)
dAx0 . (2.56)

Note that if n sample points are considered for computing each Monte Carlo integral, the cost is
exponential along the path: ni. With the independence of a possible stratification for the integration,
in order to speed up the calculations, one of the simplest options is to consider one strata and one
single sample for each one (i.e., only one random walk is used to estimate a specific irradiance). For
this simplification an important price must be paid: the estimate of the result is worse. On the other
hand, the relationship between quality and cost is very good (1.1), and this is why this method and its
variations are often used at the present time.

The walks are generated in a ray-tracing process and can be interpreted as the inverse walk of a
photon (ray of light) that bounced around the scene. The camera gathers the illumination of the path
and consequently, the methods using this approach are called gathering walks or backward ray-tracing
(§2.3.2).

The same technique of expansion can be applied in a similar way to the potential equation (2.51)
obtaining the shooting walks or forward ray-tracing (§2.3.3), where the random walks are generated from
lightsources.

No matter what type of approach (gathering or shooting), the difficulty of the calculation of intersec-
tions in the current complex scenes, plus the difficulty of the calculations of illumination themselves for
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each of the rays, makes the total computational cost for the image high and as a result many techniques
have been developed in order to accelerate the processes.

Among others, in Arvo and Kirk [8], Shirley [215, 214], Glassner [78, 79], and Szirmay-Kalos [229]
there is a good collection of ideas and methods for producing ray-tracers (e.g., Sbert et al. [202] presents
a technique of reusing paths for the speeding up of the calculation in problems of global illumination
which could be adapted to methods for backward as well as for forward ray-tracing).

Both approaches have advantages and disadvantages of calculation, and as a consequence, taking into
account that the two modalities vary in their design but not in their results (the physics laws of light
transport do not change if paths are reversed), the bidirectional random walks methods have come up.
They are based on the combination of shooting and gathering walks and take advantage of the strong
points only. Some examples are: bidirectional path-tracing [119, 247], Metropolis light transport [248],
and photon map [108, 107, 109].

2.3.2 Gathering Random Walks

In theory, the expansion is applied to the radiance equation (2.46). In practise, it results in generating
random walks from the camera through the pixel approaching a Monte Carlo solution (backward ray-
tracing §2.3.1). The evaluation of the set of rays employed by each one of the random walks will determine
the final colour of the pixel. The general scheme of a gathering random-walk algorithm would be [229]:

for each pixel p do

colour = 0
for each sample si∈{1,...,n} do

rΘ
c = sample ray from camera through p

colours = (c/A)×Trace(rΘ
c )

colour = colour + colours/n
endfor

display(p, colour)
endfor

The Trace function calculates the radiance carried by the ray to the camera, the value c is a scaling
camera parameter according to the display settings, and A is the size of the integration domain. This
function ends by determining the quantity of random walks in play depending on the precision which
is desired and on the kinds of illumination involved. Thus, each possibility of implementation of Trace
gives way to a different method of gathering. Next, following Szirmay-Kalos [229], we revise the most
important.

Ray-Casting

The ray-casting algorithm replaces the unknown radiance inside the integral of the rendering equation
by an approximation of the emission function. Thus, the Trace function computes the irradiance in the
first intersection point only due to the lightsources (Ld) and the function accumulates it to the point’s
own emissivity (Le) in order to obtain the final radiance. It is a particular case: local-illumination and
no recursive ray-tracing.

The Trace process is:

function Trace(rΘ
x )

y = Λ(x, Θ)
if 6 ∃y then return Le(background)
colour = Le(y→−Θ)+DirectLightsource(y,−Θ)
return colour

end

The DirectLightsource returns

N∑̀
i=1

Ldi
(y←−Υdi

)fr(−Υdi
, y,−Θ), (2.57)
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obtained by casting a shadow ray rΥd
y on each one of the N` lightsources.

The indirect illumination Li must be calculated so that the process will become recursive. This is the
case of the three following techniques. Recursivity will finalise the attainment of certain predetermined
conditions of stop such as: a fully absorbing surface, escape from the environment, recursion level, Russian
roulette, values less than a predefined threshold, and other options which are strongly dependent on the
algorithms used.

Visibility Ray-Tracing

The visibility ray-tracing or classic ray-tracing is a recursive ray-tracing algorithm where we can follow
multiple light paths for ideal reflection and refraction. The rays cast from the camera through a pixel are
weighted from an appropriate filter and we obtain an estimate of the radiance of the pixel. The concept
was introduced by Whitted [254].

If ρr and ρt are the ideal reflection and refraction coefficients, respectively, the Trace process is:

function Trace(rΘ
x )

y = Λ(x, Θ)
if 6 ∃y then return Le(background)
colour = Le(y→−Θ)+DirectLightsource(y,−Θ)
if ρr > 0 then colour = colour+Trace(rΥr

y )
if ρt > 0 then colour = colour+Trace(rΥt

y )
return colour

end

The computation of the direct illumination at each point of the random walk using a ray towards the
lightsources is called next event estimation. Any of the stopping criteria mentioned previously are valid
for stopping the recursivity (e.g., recursion level). From Whitted’s contribution, many combinations and
variants of calculation opened up. Two of the most important are distributed ray-tracing and path-tracing
which we show below.

Distributed Ray-Tracing

It was introduced by Cook [34] and it is generically called stochastic ray-tracing . It is a recursive ray-
tracing of global illumination algorithm which can model all the possible paths. When a ray hits a diffuse
surface, child rays are generated randomly according to the BRDF characterising the surface. The values
returned for this set of rays are averaged to obtain the final result.

Let BRDFSampling be a function that selects, with a low-variance estimator, an elementary BRDF
with the probability of its albedo in order to generate an out direction Υri

(from an in direction and a
surface normal) and to return the selection probability42 (details in Szirmay-Kalos [229, p. 64]). Then,
the process Trace for reflectance43 is:

function Trace(rΘ
x )

y = Λ(x, Θ)
if 6 ∃y then return Le(background)
colour = Le(y→−Θ)+DirectLightsource(y,−Θ)
for each sample si∈{1,...,n} do

p = BRDFSampling(Θ, ny, Υri)

if p > 0 then colour = colour+Trace(r
Υri
y )× w(−Υri , y,−Θ)/(p× n)

endfor

return colour
end

42 0 indicates that the walk has to be stopped.
43 Process analogous for the transmittance.
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Path-Tracing

Apart from distributed ray-tracing, path-tracing is the other very important Monte Carlo approach. It
was proposed by Kajiya [111] and consists of creating a path history for a single particle interacting
with the surfaces of the object of the scene until its absorption (e.g., using BRDF sampling and Russian
roulette). Differing from the distributed ray-tracing, now instead of spawning new rays at each surface
intersection, a random direction is chosen according to a density which is approximately proportional to
the weight w (2.40) (e.g., the BRDF).

An implementation43 of the Trace sampling with a BRDF would be:

function Trace(rΘ
x )

y = Λ(x, Θ)
if 6 ∃y then return Le(background)
colour = Le(y→−Θ)+DirectLightsource(y,−Θ)
p = BRDFSampling(Θ, ny, Υr)
if p > 0 then colour = colour+Trace(rΥr

y )× w(−Υr, y,−Θ)/p
return colour

end

2.3.3 Shooting Random Walks

As with the gathering algorithms, now the expansion (2.49) is applied to the potential equation (2.51).
The random walks are generated at the lightsource and they try to find the camera (forward ray-tracing
§2.3.1). The general scheme of a shooting random-walk algorithm would be:

image = black

for each sample si∈{1,...,n} do

rΘ
x = sample ray from a lightsource with probability p

power = Le(x→Θ)× cos θΘ
nx

/(p× n)
Shoot(rΘ

x , power)
endfor

The function Shoot is that which is responsible for obtaining the power to send to the camera and also
for identifying the pixel when the random walk finishes. We mention two variants of Shoot function:

Photon tracing A random walk is followed if ideal reflection or refraction exist (Pattanaik [162]). It
is the opposite method to visibility ray-tracing (§2.3.2).

Light tracing When a photon hits a surface, a ray is traced to the camera to add its contribution to
the corresponding pixel, if this is deemed necessary (Dutre [54]). Veach and Guibas [248] present
Metropolis light transport, an important variant inspired by the Metropolis sampling method in
physics which consists in randomly mutating a single path.

2.4 Radiosity

The radiosity is an important object-space approach for solving a simplified equation of the global
illumination in a scene based on iteration (2.50). The method was introduced in Goral et al. [80] with
later developments [29, 148]. It obtains an approximate solution to the problem of illumination for the
environment of diffuse surfaces (Fig. 2.11). In this section, we look at the radiosity equation (§2.4.1),
the general method (§2.4.2), the hierarchical radiosity technique (§2.4.3), and some refinement criteria
for the latter (§2.4.4).

2.4.1 Equation

For diffuse surfaces, the BRDF does not depend on the outgoing and incoming directions (2.45). Thus,
the outgoing radiance L(x→Θ) and the self-emitted radiance Le(x→Θ) are also independent of the
outgoing direction (Fig. 2.7.b). This simplification is applied to the rendering equation (2.47).
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(a) (b)

Figure 2.11: Two scenes rendered with hierarchical radiosity.
Credit: (a) Pat Hanrahan, David Salzman, and Larry Aupperle [91]. c© 1991 Association for Computing
Machinery, A Rapid Hierarchical Radiosity Algorithm, July 1991. (b) Philippe Bekaert [12]. Community
Theatre (unbuilt) of the Candlestick Point State Recreation Area. c© 1989 University of California
Regents. Designed by Mark Mack Architects and modelled by Charles Ehrlich and Greg Ward. This
work was conducted as a research project during the Architecture 239X course taught by Kevin Matthews
formerly at UC Berkeley, College of Environmental Design.

Continuous Equation

The rendering equation (2.47) for diffuse surfaces can be expressed as

L(x) = Le(x) +
∫

A

ρd
r (x)L(y)G(x, y)dAy. (2.58)

If we integrate L(x) on the whole hemisphere Ωx of the outgoing directions, we obtain the radiosity at
point x [221, 79]:

B(x) =
∫

Ωx

L(x) cos θΘ
nx

dωΘ = πL(x). (2.59)

In addition, the total self-emitted flux per unit area is expressed by E(x) = πLe(x), and is called the
emittance at point x. The radiosity equation is then obtained by multiplying the equation (2.58) by π
and applying (2.59) and the definition of the reflectance (2.45):

B(x) = E(x) +
ρ(x)
π

∫
A

B(y)G(x, y)dAy, (2.60)

where, according to the previous definitions,

• B(x) and B(y) are, respectively, the radiosities at points x and y (watt·m−2).

• E(x) is the emittance or emitted flux of energy per unit area at point x (watt·m−2).

• ρ(x) is the diffuse reflectance at point x (dimensionless).

The corresponding directional form of the radiosity equation is

B(x) = E(x) +
ρ(x)
π

∫
Ωx

B(y) cos θΘ
nx

dωΘ, (2.61)

where y = Λ(x, Θ).
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Discrete Equation

To solve the radiosity equation we can use a finite element approach, discretising the scene S into S (Np

patches) and considering the radiosities, emissivities and reflectances constant over the patches. With
these assumptions, the integral equation (2.60) becomes the system of radiosity equations [80]:

Bi = Ei + ρi

∑
j∈S

FijBj , (2.62)

where

• Bi, Ei, and ρi are respectively the radiosity, emittance (or emissivity), and reflectance of patch i.

• Bj is the radiosity of patch j.

• Fij is the Fi→j from the patch-to-patch form factor matrix (§2.2.2), which is only dependent on
the geometry of the scene.

Power Equation

The radiosity equation (2.62) can be rewritten44 as the power equation:

Pi = Φi + ρi

∑
j∈S

FjiPj , (2.63)

where

• Pi = BiAi and Pj = BjAj are, respectively, the total powers emitted by patches i and j (watt).

• Φi = EiAi is the self-emitted power of patch i (watt).

In the power equation, the form factor represents the fraction of power leaving patch j which goes directly
to patch i (§2.2.2).

2.4.2 Method

The classic radiosity method consists of the following steps [30, 221, 79]:

• Discretise the environment into patches.

• Compute the form factors Fij for each pair of patches i and j (form factors matrix).

• Solve the system of linear equations.

• Display the solution.

In this method, the input data is the geometric information about the scene (for the form factors), the
physical properties of the materials (for the emissivities and reflectances), and viewing conditions [221].

The radiosity equation (2.62), which refers to a single patch, can be expressed as a system of Np

linear equations: B1

...
BNp

 =

 E1

...
ENp

+

 ρ1F11 . . . ρ1F1Np

...
...

...
ρNpFNp1 . . . ρNpFNpNp


 B1

...
BNp

 .

This linear system can be written in the form

B = E + RB, (2.64)

44 Multiplying both sides by Ai and applying the reciprocity relation (2.26).
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where B and E are, respectively, the vectors of radiosities and emittances, and R is the Np×Np matrix
of the terms ρiFij . The solution B of such a system can be written as a Neumann series. As ρi is strictly
less than 1, the matrix R has a norm45 strictly less than 1. In this case, the Neumann series converges
and we can write the radiosity vector as a sum of an infinite series:

B = E + RE + R2E + · · ·+ RnE + · · · (2.65)

Since R represents the effect of one reflection on all the surfaces of the scene, RnE can be interpreted
as the radiosity obtained after n rebounds from the emitted light through the scene.

In the literature, different iterative solution methods [221, 79] are available for solving the radiosity
and power systems: Jacobi relaxation, Gauss Seidel relaxation, Southwell relaxation, and also their
respective stochastic versions [211, 145, 221, 144, 146, 12].

2.4.3 Hierarchical Radiosity

The two most important problems to solve in radiosity technique are meshing and form factor computa-
tion. A fine mesh determines a good accuracy in the solution, but a lot of computation due to the high
number of form factors. On the other hand, a thick mesh reduces the calculation time of its form factors,
but its solution does not capture the illumination variations enough. It is necessary to find a strategy
to balance the reduction in the number of patches and the precision of the illumination. To solve this,
some techniques have been introduced: progressive refinement, substructuring, adaptive refinement, and
hierarchical refinement. Other techniques are an attempt to reduce the number of form factors arriving
at a solution within a given error boundary. Additional information can be found in [221, 79, 12].

The hierarchical refinement method was introduced by Hanrahan et al. [91]. The concept is based on
the existent analogy between the problem of gravitational forces between various bodies (n-body physics
problem) and the radiosity between several patches. It is worth noting that both problems are based
on the interaction between all pairs of objects and also that the gravitational force and the form factor
have a similar mathematical expression. The idea is that if the interaction between two bodies decreases
with the distance and the size of the body, then, a distance will exist from which a pair of bodies may be
considered a single body, and then this new body may be joined with another body (or set of bodies).
This system is called clustering interactions and it can be applied recursively. If each one of the n bodies
exerts interactions on the other n−1, then there are O(n2) interactions to account for, and with clustering
O(n) can be attained. The clustering ideas of the n-body problem are reversed (i.e., splitting instead of
clustering) and then can be applied to radiosity, resulting in the hierarchical radiosity algorithm. The
bodies are substituted by patches and these are subdivided into smaller elements if necessary, in order
to achieve accurate light transport between them.

The main objective is to obtain an accurate piecewise constant approximation of the radiosity on all
the elements. To do this, the mesh is generated adaptively: when a constant radiosity assumption on
patch i is not valid for the radiosity due to another patch, the refinement algorithm will refine i in a set
of subpatches or elements (Fig. 2.12). However, we could still have a lot of unnecessary computation
due to the fact that the last level of refinement which patch i has attained, due to its interaction with a
patch j, is certainly unnecessary for its interaction with another patch k. In order to solve this problem,
hierarchical refinement radiosity uses a multi-resolution element mesh representing the radiosity on each
patch at multiple levels of detail. Contrary to a single-level element mesh, an element hierarchy allows
the computation of the light transport at the right level of detail for each source instead of just one level
of detail which suffices for all sources [79, 12].

Given that the two basic pillars of the algorithm are the creation of an adaptive mesh and the use of
a multi-resolution representation of the radiosity function on a hierarchy of elements, it is clear that the
accuracy of the oracle of refinement is essential. The oracle collects geometric and visibility information
about the patches and also the source radiosity and receiver reflectance, and answers whether or not the
interaction is valid (Fig. 2.12). Some of these patches will need further refinement, up to a certain level
where no more refinement is needed or a previously imposed limit on the area of the patches is reached.

45 The norm of R can be defined by ‖ R ‖= maxi{
P

j |ρiFij |} = maxi{ρi} < 1. Then, R represents a contraction

operator (2.50).
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Figure 2.12: Three levels of a hierarchical radiosity subdivision from Fig. 2.11.a. The refinement is
based on the energy transported between patches. The colour of the interaction segments indicates the
visibility factor used in the estimation of the form factor: completely visible (white), partially visible
(green), cut by aeroplane (pink), and relatively visible (blue).
Credit: Pat Hanrahan, David Salzman, and Larry Aupperle [91]. c© 1991 Association for Computing
Machinery, A Rapid Hierarchical Radiosity Algorithm, July 1991.

Its cost should not make the method prohibitive. Bekaert et al. [13] have incorporated hierarchical
refinement in Monte Carlo radiosity (stochastic Jacobi radiosity). Given its importance, the following
section deals specifically with the refinement criteria in hierarchical radiosity.

2.4.4 Refinement Criteria

We review some refinement criteria for hierarchical radiosity46. The cheapest and most widely-used oracle
has been the power-based oracle [91]. However, it leads to unnecessary subdivisions in smoothly illumi-
nated unoccluded regions receiving a lot of power. As an alternative, oracles based on the smoothness of
the geometric kernel and on received radiosity have been proposed [223, 81, 129, 128, 163, 14, 225, 101, 68].
Nevertheless, oracles based on kernel smoothness also have the problem of unnecessary subdivisions where
the kernel is unbounded, and the ones based on received radiosity rely on a costly accurate computation
of form factors. All in all, the additional cost invested in both smoothness-based oracles, mainly through
visibility computations, may outweigh the improvements obtained.

The application of a good refinement criterion and strategy is fundamental for the efficiency of the
hierarchical refinement algorithm. Next, we review some oracles based on different approaches.

Transported Power

The initial version of hierarchical refinement radiosity was presented for constant radiosity approxima-
tions by Hanrahan et al. [91]. The Fij is calculated, by estimating the subtended solid angle, in order
to measure the accuracy of an interaction between an element j and an element i. If max{Fij , Fji}
exceeds a given threshold ε, the larger of the two elements i and j is subdivided using regular quadtree
subdivision. Otherwise, the candidate link is considered admissible.

On this basis of refinement, three added values are incorporated. Firstly, one more level of precision
using a correction of the form factor for a factor of visibility between the two patches. Secondly, refine-
ment of the hierarchy as the iteration proceeds (multigridding implemented reducing the ε by levels).
Finally, the number of refinements is reduced considerably without affecting image quality by weighting
the Fij with the source element radiosity Bj , which is the total amount of energy transported between
the patches (Fig. 2.12).

Weighting with receiver element area Ai and reflectance ρi also further reduces the number of links
without deteriorating image quality. Thus, the power-based criterion to stop refinement can be given by

ρiAiFijBj < ε. (2.66)

46 This section is a summary of the discussion in Bekaert [12] and Feixas [68].
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The left hand expression can be rewritten (2.26) as ρiAjFjiBj , representing the power emitted by i
thanks to j (2.63).

Other strategies can also be used to reduce the number of form factors [235, 73]. We can see that
power-based refinement criterion uses no information about the variation of the received radiosity across
the receiver element. This results, for instance, in sub-optimal shadow boundaries and excessively fine
refinement in smooth areas. The main advantage of this criterion is its very low computational cost
while yielding a fair image quality.

Kernel Smoothness

In order to improve on power-based refinement, the variation of the radiosity kernel between a pair of
elements is taken into account. In Smits et al. [223], the refinement criterion is given by

ρi(Fmax
ij − Fmin

ij )AjBj < ε, (2.67)

where Fmax
ij = max{Fx↔y | x ∈ Ai, y ∈ Aj} and Fmin

ij = min{Fx↔y | x ∈ Ai, y ∈ Aj} are the maximum
and minimum radiosity kernel values47 estimated by taking the maximum and minimum value computed
between pairs of random points on both elements.

A similar approach was used in Gortler et al. [81] in order to drive hierarchical refinement with higher-
order approximations. When applied to constant approximations, the refinement criterion is given by

ρi max{Fmax
ij − F avg

ij , F avg
ij − Fmin

ij }AjBj < ε, (2.68)

where F avg
ij = Fij/Aj is the average radiosity kernel value. Kernel variation is a sufficient condition for

received radiosity variation, but not a necessary condition [12].

Smoothness of Received Radiosity

Because bounding kernel variation is not a necessary condition for bounding received radiosity variation,
we can expect that hierarchical refinement based on kernel smoothness will yield hierarchical meshes
with more elements and links than required. Optimal refinement can be expected by directly estimating
how well the radiosity Bj , received at x ∈ Ai from Aj , is approximated by a linear combination of the
basis functions on Ai (i.e., by estimating the discretisation error directly).

This approach was first proposed by Lischinski et al. [129] for constant approximations:

ρi max{Fij − min
x∈Ai

{Fx→j}, max
x∈Ai

{Fx→j} − Fij}Bj < ε. (2.69)

Pattanaik and Bouatouch [163] proposed a similar strategy for linear basis functions. Other approaches
are given in [128, 14, 225, 101]. The computational cost of kernel and radiosity smoothness-based oracles
has not yet been found to compensate for the gain in mesh quality [12].

Mutual Information

Feixas et al. [68] introduced an information-theoretic oracle based on the mutual information (§2.5.2)
between two patches or elements. The fundamental idea is that the difference between continuous
and discrete patch-to-patch (or element-to-element) mutual information gives us the loss of information
transfer or, equivalently, the maximum potential gain of information transfer between two elements
(§2.6.1). This difference is the discretisation error δij (2.97) and can be interpreted as the benefit to be
gained by refining and can be used as a criterion for a decision.

The oracle takes a similar approach to the classic smoothness-based oracles (2.68 and 2.69). In these,
the term ρiBj from the radiosity equation (2.62) is weighted by an expression of the visibility gradient
between the two patches involved. Now, the visibility gradient is substituted by the discretisation error,
which, in a way, also represents the variation of the radiosity kernel. So, the mutual information based
oracle is given by

ρiδijBj < ε, (2.70)
47 The point-to-point form factor is also referred to as the radiosity kernel value.
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where δij can be computed with area-to-area sampling between i and j (2.32):

δij ≈
AiAj

AT

 1
|Si×j |

 ∑
(x,y)∈Si×j

Fx↔y log Fx↔y


−

 1
|Si×j |

∑
(x,y)∈Si×j

Fx↔y

 log

 1
|Si×j |

∑
(x,y)∈Si×j

Fx↔y

 . (2.71)

Observe that in this expression the receiver area appears to be weighting the oracle and thus avoiding
an excessively small receiver subdivision.

2.5 Information Theory

The information theory studies the transmission and compression of data (§1.1.2). It is considered to
have begun with Shannon in 1948 when he introduced the basic laws on communication [206]. Currently,
thanks to computers, information theory has extended its applicability to many other fields besides elec-
trical engineering: physics, statistics, mathematics, computer science, etc. In this section, we present a
selection of measures of information theory48. We follow the excellent reference of Cover and Thomas [37]
(other good references are Blahut [18] and Lubbe [245]).

2.5.1 Entropy

The Shannon entropy is the classical measure of information, where information is simply the outcome
of a selection from a finite number of possibilities. Let X be a discrete random variable (X , pX) where
X is the alphabet {x1, . . . , xn} and pX the corresponding probability distribution (§B).
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Figure 2.13: Binary Entropy. The mini-
mum value is 0 when P ∈ {0, 1} and the
maximum is 1 when P = 1

2 .

Definition 2 The entropy of a discrete random variable X
is given by

H(X) = −
n∑

i=1

pi log pi. (2.72)

The logarithms are taken in base 2 (entropy is expressed in
bits), and we use the convention that 0 log 0 = 0, which is
justified by continuity. We can use the notation H(X) or
H(p) interchangeably for the entropy. In the particular case
of a binary alphabet, the binary entropy is

H(X) = −P log P − (1− P ) log(1− P ), (2.73)

where p = {(x1, P ), (x2, 1− P )} (Fig. 2.13).
Some interpretations of entropy are:

• We can think of the value − log pi as the information associated with the result xi. Thus, the
entropy gives us the expected information or uncertainty of a random variable. Information and
uncertainty are opposites. Uncertainty is considered before the event, information after. So,
information reduces uncertainty.

• The term − log pi can also be interpreted as the surprise associated with the outcome xi. The
value of pi and the surprise are inversely related to one another (i.e., if one is small it implies the
other is large). Thus, the entropy is expectation of surprise [69].

48 Basic and notional concepts about probability and convexity are shown in §B and §D, respectively.
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• Entropy is also related to the difficulty of guessing the outcome of a random variable. Thus, it
can be seen [37, 69] that H(X) ≤ Nq < H(X) + 1, where Nq is the average minimum number of
binary questions for determining X (Fig. 1.4). This idea agrees with the interpretation of entropy
as a measure of uncertainty and also with the important results in information theory for storing
or transmitting efficiently [206].

• An important interpretation comes from the classical thermodynamics where the term “entropy”49

was coined50. In the late 19th century, James C. Maxwell, Ludwing Bolzmann, and Josiah W. Gibbs
extended the thermodynamic concept of entropy, through the molecular theory of gases, into the
domain actually called statistical mechanics. The Boltzmann-Gibbs entropy is S = −k

∑
i pi log pi,

where pi is the probability that particle i will be in a given microstate (all of the probabilities are
evaluated for the same macrostate of the system) and k is the Boltzmann’s constant which deter-
mines the units51. The important role of entropy is reflected in the second law of thermodynamics:
the total entropy of any isolated thermodynamic system tends to increase over time, approaching
a maximum value.

Some relevant properties of the entropy are:

• H(X) is concave52 in pX .

• Range53: 0 ≤ H(X) ≤ log n.

– H(X) = 0⇔ ∃i. pi = 1 (i.e., we are certain of the outcome).
– H(X) = log n⇔ ∀i. pi = 1

n (i.e, the most uncertain situation).

• If we equalise the probabilities, entropy increases.

• Grouping:

H({p1, . . . , pn}) = H({p1 + p2, p3, . . . , pn}) + (p1 + p2)H(
p1

p1 + p2
,

p2

p1 + p2
). (2.74)

Now, we consider another discrete random variable Y = (Y, qY ) where Y = {y1, . . . , ym} is the
alphabet. Then, with respect to the pair (X, Y ), we have the joint pXY , and conditionals pX|Y and pY |X
probability distributions. From this, we can define:

Definition 3 The joint entropy of discrete random variables (X, Y ) is given by

H(X, Y ) = −
n∑

i=1

m∑
j=1

pij log pij . (2.75)

Definition 4 The conditional entropy of discrete random variables (X, Y ) is given by

H(Y |X) = −
n∑

i=1

m∑
j=1

pij log pj|i. (2.76)

The conditional entropy can be thought of in terms of a discrete channel . This is a system X → Y
consisting of an input alphabet X , output alphabet Y, and a probability transition matrix pY |X that
expresses the probability of observing the output symbol y given that we send the symbol x. The H(X|Y )
corresponds to the uncertainty in the channel input from the receiver’s point of view, and vice versa for
H(Y |X). Note that in general H(X|Y ) 6= H(Y |X). The following properties are also met:

49 Greek word meaning “transformation”, also chosen for its similarity to the word energy.
50 Rudolph Clausius (1865) defined the change in entropy (S) of a thermodynamic system, during a reversible process

in which an amount of heat (Q) is introduced at constant absolute temperature (T ): ∆S = ∆Q
T

.
51 Ludwig Boltzmann interprets the entropy as an statistical form of disorder but his proposal was met with scepticism

and not accepted in his lifetime. Suffering from poor health and despondent over the rejection of his work, Boltzmann
committed suicide (the famous equation is engraved at the top of his tombstone).

52 Concavity: from log-sum inequality (D.5).
53 The discrete entropy is bounded: from Jensen’s inequality (D.4) and f(x) = log x concave, with equalities in the

specified cases.
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◦ H(X, Y ) ≤ H(X) + H(Y ).
◦ H(X, Y ) = H(X) + H(Y |X) = H(Y ) + H(X|Y ).
◦ Conditioning reduces entropy54: H(X) ≥ H(X|Y ) ≥ 0.
◦ Independence bound on entropy55: H(X1, . . . , Xn) ≤

∑n
i=1 H(Xi).

Finally, we introduce two special entropies to measure the distance between two distributions.

Definition 5 The relative entropy or Kullback-Leibler distance between two probability distributions pX

and qX is given by

DKL(p, q) =
n∑

i=1

pi log
pi

qi
. (2.77)

We use the convention that pi log pi

0 = ∞ and 0 log 0
qi

= 0 (based on continuity). The relative entropy
is a measure of the inefficiency of assuming that the distribution is q when in reality it is p. It is convex
in the pair (p, q)56 and satisfies the information inequality57 DKL(p, q) ≥ 0. It has a drawback when the
distribution q contains a 0. Note that it is not a true distance (§6.1.1) because it does not complete the
triangle inequality and it is not symmetric58.

Definition 6 The cross entropy between two probability distributions pX and qX is given by

HC(p, q) =
n∑

i=1

pi log qi. (2.78)

It measures the overall difference between the two distributions. Cross entropy is closely related to the
relative entropy since it is equivalent to H(p)+DKL(p, q). When comparing a distribution q with a fixed
reference distribution p, cross entropy and relative entropy are only different in an additive constant.
Both take on their minimal values when p = q, which is 0 for the relative entropy and H(p) for cross
entropy [255].

2.5.2 Mutual Information

We introduce here a measure of the amount of information that one random variable contains about
another random variable. It represents a reduction in the uncertainty of one random variable due to
knowledge of the other.

Definition 7 The mutual information between two discrete random variables (X, Y ) with a joint proba-
bility distribution pXY and marginal probability distributions pX and qY is defined as the relative entropy
between pXY and pXqY :

I(X, Y ) = DKL(pXY , pXqY ) =
n∑

i=1

m∑
j=1

pij log
pij

piqj
. (2.79)

Therefore, I(X, Y ) is a measure of the shared information between X and Y . From a channel perspective
X → Y , the knowledge of X decreases the uncertainty of Y , and vice versa.

54 From Jensen’s inequality (D.4) and f(x) = log x concave, with equality if (X, Y ) are independent.
55 From Jensen’s inequality (D.4) and f(x) = log x concave, with equality if Xi independent.
56 Convexity: from log-sum inequality (D.5).
57 Non-negativity: from Jensen’s inequality (D.4) and f(x) = x log x convex, with equality if p = q.
58 Kullback and Leibler themselves defined a symmetric version as DKL(p, q) + DKL(q, p). Defined from the Kullback-

Leibler distance, the Jensen-Shannon divergence is symmetric and it is the square of a metric [238].
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H(X|Y) H(Y|X)I(X,Y)

H(X,Y)

H(Y)H(X)

Figure 2.14: Venn diagram of the re-
lationship between entropy and mu-
tual information of random variables
(X, Y ).

From Bayes’ theorem (B.5), we can rewrite the mutual infor-
mation in the following expressions:

◦ I(X, Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)
◦ I(X, Y ) = H(X) + H(Y )−H(X, Y )

This strong relationship between entropy and mutual information
can be expressed by Venn diagrams (Fig. 2.14). The following
properties are satisfied by the mutual information:

◦ I(X, Y ) ≥ 0 (Non-negativity59)
◦ I(X, Y ) ≤ H(X) and I(X, Y ) ≤ H(Y )
◦ I(X, Y ) = I(Y, X)
◦ I(X, X) = H(X)

A special mention must be made of the following property:

Theorem 1 (Data processing inequality) If X → Y → Z is a Markov chain (i.e., pXY Z = pXpY |X
pZ|Y ), then I(X, Y ) ≥ I(X, Z). In particular, I(X, Y ) ≥ I(X, f(Y )).

Proof in [37, p. 32–33]. This result demonstrates that no processing of Y , deterministic or random, can
increase the information that Y contains about X.

2.5.3 Continuous Channel

In this section, entropy and mutual information are defined for continuous sources of information. For a
continuous source X, messages are taken from a continuous set S. In a similar way to the entropy of a
discrete random variable (2.72), we define

Definition 8 The continuous entropy of a continuous random variable X with a pdf pX is defined by

Hc(X) = −
∫

S

p(x) log p(x)dx. (2.80)

Similarly, for a pair of continuous random variables (X, Y ) with pX and qY as marginal pdfs, and
pXY and pX|Y as the joining and conditional pdfs, respectively, we have:

Definition 9 The continuous conditional entropy of two continuous random variables (X, Y ) is given
by

Hc(X|Y ) = −
∫

S

∫
S

p(x, y) log p(x|y)dydx. (2.81)

Definition 10 The continuous mutual information of two continuous random variables (X, Y ) is given
by

Ic(X, Y ) =
∫

S

∫
S

p(x, y) log
p(x, y)

p(x)p(y)
dydx. (2.82)

If we divide the range of the continuous random variable X into n bins of length ∆, and we consider
its discretised version X∆, two relevant facts can be observed (proofs in [37, 69]):

Theorem 2 The entropy of a continuous random variable does not equal the entropy of the discretised
random variable within the limit of a finer discretisation:

lim
∆→0

H(X∆)→ Hc(X)− log ∆. (2.83)

59 From non-negativity of Kullback-Leibler distance.
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Theorem 3 The mutual information between two continuous random variables X and Y is the limit
of the mutual information between their discretised versions. Thus, when the number of bins tends to
infinity:

lim
∆→0

I(X∆, Y ∆) = Ic(X, Y ). (2.84)

In addition, the mutual information is defined as supPQ{I([X]P , [Y ]Q)} by Kolmogorov [117] and
Pinsker [168], where the supremum is over all finite partitions P and Q. Together with the previous
theorems, two important properties have been deduced [85]:

◦ The continuous mutual information is the least upper bound for the discrete mutual information.
◦ Refinement can never decrease the discrete mutual information.

2.6 Scene Information Channel

This section is an intersection between the fields of rendering (§2.2) and information theory (§2.5).
The study of a scene from an information-theoretic perspective was introduced by Acebo et al. [48]
and Feixas et al. [67, 66]. It has represented the first step in the application of Shannon’s concepts to
computer graphics obtaining measures of complexity (§2.7.3) and introducing specific applications for the
techniques of radiosity (2.70). For detailed information about the use and behaviour of these measures,
see Feixas [65].

From a visibility geometric perspective, measures for a discrete and continuous scene are defined for
3D and 2D scenes. They are based on the existence of a Markov chain and the knowledge of its stationary
distribution (§B). The most outstanding information-theoretic definitions were applied in [66, 181]. An
analogous study for the radiosity setting appears naturally with the null variance probability transition
matrix [65].

2.6.1 Information-Theoretic Measures in 3D

We present here the information-theoretic definitions corresponding to a discrete and continuous 3D-
scene. After, we review the discretisation error based on the scene mutual information.

Discrete Scene

Let S be a discretisation of scene S, with area AT, and let Ai and ai be, respectively, the area and the
relative area ( Ai

AT
) of patch i ∈ S (§A). The scene can be modelled in two equivalent ways60:

A random walk A discrete random walk in a discretised scene is a discrete Markov chain where the
states correspond to the Np patches of a scene, the transition probabilities Pij are the patch-
to-patch form factors (i.e., Fij), and the stationary distribution is given by the relative area of
patches [201] {ai} (or length in 2D, Fig. 2.15.a) (§B).

An information channel A scene can be interpreted as a discrete information channel X → Y where
the input and output variables take values over the set of patches with probability distribution
{ai} and the conditional probabilities pY |X are the patch-to-patch form factors matrix Fij (§2.5).

Below we present the basic definitions.

Definition 11 The discrete scene positional entropy of S is given by

HP(S) = −
∑
i∈S

ai log ai. (2.85)

It is the Shannon entropy of stationary distribution and it expresses the uncertainty on the position
(patch) of a particle travelling an infinite random walk. Thus, HP(S) = H(X) = H(Y ), where pX =
pY = {ai}.

60 By default, our framework is taken from a geometric visibility point of view (§1.2).
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Figure 2.15: Random walk into a 2D-scene: (a) discrete (Li∈{0,...,6} is the length of each path) and (b)
continuous cases.

Definition 12 The discrete scene entropy of a patch i ∈ S is given by

HS(S, i) = −
∑
j∈S

Fij log Fij . (2.86)

It measures the uncertainty about the destination patch when the source patch is i.

Definition 13 The discrete scene entropy of S is given by

HS(S) =
∑
i∈S

aiHS(S, i) = −
∑
i∈S

ai

∑
j∈S

Fij log Fij . (2.87)

It can be interpreted as the average uncertainty about the destination patch of a random walk that
remains when the source patch is known, and vice versa: HS(S) = H(Y |X) = H(X|Y ). It is also the
expected minimum number of bits per symbol required to code a random walk in a scene. Note that
the Bayes’ theorem (B.5) applied to a scene is expressed by the reciprocity property of the form factors
(2.26): ∀i, j. pij = aiFij = ajFji.

Definition 14 The discrete scene joint entropy of S is given by

HJ(S) = −
∑
i∈S

∑
j∈S

aiFij log(aiFij). (2.88)

It is the Shannon entropy of a random variable with probability distribution {aiFij} and can be inter-
preted as the uncertainty about the pair position-target of a particle in an infinite random walk. Thus,
HJ(S) = H(X, Y ).

Definition 15 The discrete scene mutual information of S is given by

IS(S) =
∑
i∈S

∑
j∈S

aiFij log
Fij

aj
. (2.89)

It is a measure of the average information transfer or dependence between the different parts of a scene
and expresses the amount of information that the destination patch conveys about the source patch, and
vice versa. Thus, IS(S) = I(X, Y ).

It is especially interesting to ask about the extreme cases of maximum and minimum visibility entropy,
which correspond, respectively, to the maximum and minimum unpredictability in the path. Maximum
unpredictability can be obtained in scenes with no privileged visibility directions (i.e., sphere61) and
minimum unpredictability in the contrary case. The behaviour of the entropy and mutual information
is illustrated with the scenes in Fig. 2.16. Also, normalised measures for HS and IS were defined in this
context.

61 The Fij = aj and implies that IS(S) = 0, for all i, j.
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(a) (5.776, 4.809) (b) (6.237, 4.348) (c) (5.653, 4.932)

Figure 2.16: Three different scene visibility configurations. For each scene, the (HS, IS) is shown. Form
factors have been computed using 108 global lines (§2.2.2). The scenes with the same discretisation have
the same HP due to the fact that the increase in entropy remains compensated by an mutual information
decrease, and vice versa (10.585 in this case).
Credit: Miquel Feixas [65].

Continuous Scene

The scene is now modelled by a continuous random walk (Fig. 2.15.b) or by a continuous information
channel. We can obtain the continuous information-theoretic formulæ directly from the continuous
information-theoretic channel (§2.5.3) applying the following substitutions:

dx,dy � dAx,dAy

p(x), p(y) �
1

AT

p(x|y), p(y|x) � Fx↔y

p(x, y) �
Fx↔y

AT

From fundamental information-theoretic results (§2.5.3), we know that when the number of patches
of S tends to infinity (and the size of all the patches tends to zero):

◦ The scene entropy tends to infinity: limNp→∞HS(S) =∞ (Th. 2).
◦ The discrete mutual information of a scene converges to continuous mutual information: limNp→∞

IS(S) = Ic
S(S) (Th. 3).

For our objectives, in the continuous case we are interested exclusively in the mutual information (see [65]
for continuous scene entropy). Thus,

Definition 16 The continuous scene mutual information of S is given by

Ic
S(S) =

∫
A

∫
A

1
AT

Fx↔y log(ATFx↔y)dAydAx. (2.90)

As in the discrete channel, it expresses the information transfer in the scene and the null value corresponds
to the sphere62. One important characteristic of the introduced information-theoretic measures is that,
with the exception of continuous entropy, they are invariant to a change in the scale.

This Ic
S can be solved by Monte Carlo integration. The computation can be done efficiently by casting

uniformly distributed global lines (§2.2.2). Thus, the value can be approximated by

Ic
S(S) ≈ 1

|GS2 |
∑

(x,y)∈GS2

log(ATFx↔y), (2.91)

62 Any pair (x, y) fulfils Fx↔y = 1
AT

and then, Ic
S(S) = 0: limNp→∞ IS(S) = Ic

S(S) = 0.
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where GS2 is the set of global segments (x, y), joining the visible surface points x and y of S, generated
by any global line63. The values of Ic

S for the Fig. 2.16 are 5.678, 4.867 and 6.055, respectively.

Discretisation Error

By discretising a scene into patches, a distortion or error is introduced. Taking into account that the
maximum accuracy of the discretisation is obtained when the number of patches tends to infinity (see
mutual information properties in §2.5.3), we find that

◦ If any patch is divided into two or more patches, the discrete mutual information of the new scene
increases or remains the same.

◦ The continuous scene mutual information is the least upper bound to the discrete scene mutual
information.

Thus, a scene fulfils Ic
S(S)− IS(S) ≥ 0. This difference expresses the loss of information transfer due to

the discretisation. From this fact,

• From an information-theoretic point of view, the ideal discretisation is the one that captures all
the information transfer in a scene. Then, between different discretisations of the same scene, the
most precise will be the one that has a higher discrete mutual information (i.e., the one that best
captures the information transfer).

Definition 17 The discretisation error of S is given by

δ(S) = Ic
S(S)− IS(S) (2.92)

and the relative discretisation error as the quotient δ(S) = (Ic
S(S) − IS(S))/Ic

S(S). The relative
discretisation accuracy is IS(S)/Ic

S(S).

• Continuous mutual information expresses the difficulty in obtaining an accurate discretisation. The
higher the Ic

S (i.e., when there is more information transfer in a scene), the more difficult it is to
obtain an accurate discretisation, and probably more refinements will be necessary to achieve a
given precision64.

The same arguments are valid at patch level. Thus, it is possible to calculate the difference between
both continuous and discrete patch-to-patch visibility information transfers. From (2.89), we can consider
the inner term as an element of an mutual information matrix and then,

Iij(S) = aiFij log
Fij

aj
, (2.93)

where each element represents the information transfer between patches i and j (note that Iij(S) =
Iji(S)). Also, we can consider that

Ii(S) = ai

∑
j∈S

Fij log
Fij

aj
(2.94)

expresses the information transfer from patch i. Using the concavity property of the logarithm function
(D.5), we obtain65 that Ii(S) ≥ 0. Thus, we can rewrite (2.89) as

IS(S) =
∑
i∈S

Ii(S) =
∑
i∈S

∑
j∈S

Iij(S). (2.95)

63 Note that a global line can contribute with no, one, or more than one global segment to GS2 and that |GS2 | is half of
the total number of intersections of the lines with the scene.

64 The difficulty in discretising an empty sphere is null because the discretisation error is always zero: Ic
S(S) = IS(S) = 0.

65 Substituting ai, bi, and n by Fij , aj , and Np, respectively.
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The information transfer between two patches can be obtained more accurately if we consider the
continuous mutual information between them. Thus, from the continuous mutual information (2.90), we
have

Ic
ij(S) =

∫
Ai

∫
Aj

1
AT

Fx↔y log(ATFx↔y)dAydAx. (2.96)

This continuous measure expresses, with maximum precision, the visibility information transfer between
two elements. Then, from (2.93) and (2.96):

Definition 18 The discretisation error between patches i, j ∈ S is given by

δij(S) = Ic
ij(S)− Iij(S). (2.97)

The positivity of δij is obtained from the log-sum inequality (D.5). Observe that δij is symmetric:
δij(S) = δji(S). This difference gives us the discretisation error between two elements and it is used
as the kernel in an mutual information based oracle for hierarchical radiosity (2.70). Using area-to-area
sampling (2.32), δij is approximated to (2.71). Of course we can rewrite (2.92) as

δ(S) =
∑
i∈S

∑
j∈S

δij(S) = Ic
S(S)− IS(S). (2.98)

2.6.2 Information-Theoretic Measures in 2D

Introduced in Rigau et al. [181], the definitions of 3D-scene are adapted to flatland by only changing the
area by the length. Flatland and form factors are studied in [97, 152].

Definition 19 The differential-to-differential 2D form factor is given by

F 2D
dLx↔dLy

=
cos θ

−→xy
nx

cos θ
−→yx
ny

2rxy
V (x, y). (2.99)

It has the same interpretation as its 3D expression (2.23) and all the 3D definitions and concepts related
(§2.2.2) can be derived to 2D. Thus, we can consider the 2D point-to-point, point-to-patch, and patch-
to-patch form factors. As a result, we also dispose of the matrix of patch-to-patch form factors F 2D of
dimension Np ×Np.

Discrete 2D-Scene

Let S be a discretisation of 2D-scene S, with a total length LT, and let Li and `i be, respectively, the
length and the relative length ( Li

LT
) of patch i ∈ S (§A). By analogy with 3D (§2.6.1), with the same

interpretations we have the following definitions:

Definition 20 The discrete 2D-scene positional entropy of S is given by

HP(S) = −
∑
i∈S

`i log `i. (2.100)

Definition 21 The discrete 2D-scene entropy of a patch i ∈ S is given by

HS(S, i) = −
∑
j∈S

F 2D
ij log F 2D

ij . (2.101)

Definition 22 The discrete 2D-scene entropy of S is given by

HS(S) =
∑
i∈S

`iHS(S, i) = −
∑
i∈S

`i

∑
j∈S

F 2D
ij log F 2D

ij . (2.102)



2.7. COMPLEXITY 49

Definition 23 The discrete 2D-scene joint entropy of S is given by

HJ(S) = −
∑
i∈S

∑
j∈S

`iF
2D
ij log(`iF

2D
ij ). (2.103)

Definition 24 The discrete 2D-scene mutual information of S is given by

IS(S) =
∑
i∈S

∑
j∈S

`iF
2D
ij log

F 2D
ij

`j
. (2.104)

Continuous 2D-Scene

Following the same reasoning as in 3D (§2.6.1):

Definition 25 The continuous 2D-scene mutual information of S is given by

Ic
S(S) =

∫
L

∫
L

1
LT

F 2D
x↔y log(LTF 2D

x↔y)dLydLx. (2.105)

Similarly to (2.90), this integral can be solved by Monte Carlo integration with global lines:

Ic
S(S) ≈ 1

|GS2 |
∑

(x,y)∈GS2

log(LTF 2D
x↔y), (2.106)

with the same considerations as in 3D.

Discretisation Error

The 2D discretisation error between continuous and discrete mutual information, and between patch-to-
patch geometric visibility information transfers, can be defined and computed in the same way as in 3D
expression (2.97). The mentioned changes in areas for lengths and the new definitions of 2D form factors
derived from (2.99) must be taken into account.

2.7 Complexity

Given that the study of complexity is absolutely multidisciplinary, it is not our aim to analyse the
extremely wide research which is going on, but rather to present, in a generic form, the concept (§2.7.1)
and the measures (§2.7.2) of complexity which are used within the scene context (§2.7.3).

2.7.1 Concept

The term complexity is employed in many different fields, but what is “complexity”? Li [126] defines
complexity as a measure of the difficulty concerning the object or the system. But, what “difficulty”?
The difficulty in constructing an object, in describing a system, in reaching a goal, in performing a task,
etc. We can consider this description to be accepted by the majority, but the next step is to ask: how can
the difficulty be measured? The answer to this is particular to each framework and this is why we find as
many definitions of complexity [84, 130, 126, 9, 71, 4] as different ways of quantifying these difficulties.
It is logical then that a precise and agreed definition cannot be found [4].

Baddi and Politi [9] consider that the concept of complexity is closely related to that of understanding,
in so far as the latter is based upon the accuracy of model descriptions of the system obtained using
condensed information about it. They consider three fundamental points:

◦ Understanding implies the presence of a subject having the task of describing the object, usually
by means of model predictions.
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◦ The object, or a suitable representation of it, must be conveniently divided into parts which, in
turn, may be further split into subelements, thus yielding a hierarchy66.

◦ Having individuated hierarchical encoding of the object, the subject is faced with the problem of
studying the interactions among the subsystems and of incorporating them into a model67.

In this same direction, it is important to note that among the typical characteristics of complex behaviour
there is also a simultaneous presence of elements of order and disorder, some degree of unpredictability,
interactions between subsystems which change in dependence on how the system is subdivided [9]. All
these requirements can be considered in a scene.

2.7.2 Measures

From Lloyd [130], the complexity measures are classified in accordance with the answer to three questions
about the system68:

How Hard Is It To Describe?

Entropy and algorithmic complexity are the most representative measures. Entropy is widely applica-
ble for indicating randomness (§2.5.1). It also measures uncertainty, ignorance, surprise, information,
etc. Moreover, it is closely related to statistical entropy (Boltzmann’s principle, 1877) and also to al-
gorithmic complexity69 which can be used to measure disorder or randomness without any recourse to
probabilities [125, 261]. The algorithmic complexity of an object is defined as the length of the minimal
universal Turing machine program needed to reproduce it. A basic theorem states that the entropy of a
random variable X taking values in S is equal, except for an additive constant, to the expected value of
algorithmic complexity of elements in S.

Other measures are: Fisher information, code length (e.g., prefix-free, Huffman, Shannon-Fano, error-
correcting, and Hamming), Chernoff information, dimension, fractal dimension, Lempel-Ziv complexity,
etc. Typically they are measured in bits.

How Hard Is It To Create?

The computational complexity is the most important measure in this group. It is related to the compu-
tational resources (usually time or space) needed to solve a problem [102]. The logical depth, introduced
by Bennett [15], measures the computational resources taken to calculate the results of a program of
minimal length. And thermodynamic depth, introduced by Pagels and Lloyd [130], is a measure of how
hard it is to put something together.

Other measures are: information-based complexity, cost, crypticity, etc. Typically these are measured
in time, energy, etc.

What Is Its Degree of Organisation?

This may be divided into two quantities: difficulty of describing organisational structure and amount of
shared information between the parts of a system as a result of this organisational structure.

• Effective complexity. Metric entropy, fractal dimension, excess entropy, stochastic complexity,
sophistication, effective measure complexity, etc.

• Mutual information. Algorithmic mutual information, correlation, stored information, organisa-
tion, etc.

66 It need not be manifest in the object but may arise in the construction of a model. Hence, the presence of an actual
hierarchical structure is not an infallible indicator of complexity.

67 Considerations of the interactions of resolution at different levels bring in the concept of scaling.
68 Subtle differences distinguish measures in the same group because they are closely related.
69 Also called algorithmic randomness and Kolmogorov-Chaitin complexity (1965-1969).
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A great diversity of complexity measures have been proposed from different fields to quantify the
degree of structure or correlation of a system [84, 126, 71, 70]. To avoid confusion, Feldman and Crutch-
field [71] proposed calling them measures of statistical complexity . These researchers, from the Santa
Fe Institute Research Group70, together with Gell-Mann [76], have studied this vision of complexity in
great depth. We summarise the most basic ideas below:

◦ Information is important in the study of complex structures.
◦ Randomness and unpredictability of a system (entropy) does not completely capture the correla-

tional structure in its behaviour.
◦ The larger and more intricate the correlations between the system’s constituents, the more struc-

tured the underlying distribution is.
◦ Structure and correlation, however, are not completely independent of randomness.
◦ Both maximally random and perfectly ordered systems possess no structure.
◦ Statistical complexity measures provide a measure of the regularities present in an object above

and beyond pure randomness.

Diverse approaches to measuring statistical complexity have been taken. One line is based on information
theory and the quantities used are related to various forms of mutual information. Another line appeals
to computation theory’s classification of devices that recognise different classes of formal languages. On
the other hand, other researchers of the Santa Fe Institute define the statistical complexity of a system
“so as to capture the degree to which the system consists of regularities versus randomness” [76]. This
group expresses the concept of complexity that we are adopting in this work. Our complexity approach
will be based on information theory and the complexity (correlation-structure-dependence) of a scene
will be quantified by the mutual information.

2.7.3 Scene Complexity

Feixas et al. [67] introduced information-theoretic tools to analyse a scene from the points of view of
visibility and radiosity (§2.6). It was from out of these measurements that they also presented a discussion
on the statistical complexity of a scene.

Scene complexity has to answer the question of how difficult it is to compute the visibility and
radiosity of a scene with sufficient accuracy. As we have seen, to solve the problem of illumination we
need to simulate the interreflection of light between all the surfaces (§2.2.3). This simulation presents
typical characteristics of complex behaviour. The difficulty in obtaining a precise illumination solution
depends on

◦ The degree of dependence between all the surfaces.
◦ How the interaction between these surfaces changes in dependence when the system is subdivided.
◦ The degree of unpredictability.

The two first considerations can be represented by a statistical complexity measure (§2.7.2), which
quantifies correlation, structure, or interdependence between the parts of a system, and the third one
by the entropy, which measures randomness or unpredictability. The word complexity is reserved for a
measure of statistical complexity and entropy is referred to as randomness.

From §2.6, the entropy, HS (2.87), and mutual information, IS (2.89) and Ic
S (2.90), express two basic

aspects of a scene: the first measures its degree of uncertainty and the second quantifies its degree of
structure or correlation. Both interpretations coincide, respectively, with the randomness and statistical
complexity of a system. Since the continuous mutual information expresses the information transfer or
correlation in a scene with maximum precision (§2.6.1), it has been considered to be the measure of
complexity. Hence, the entropy is referred to as scene randomness and mutual information as scene

70 The Santa Fe Institute, Santa Fe (NM), USA, is dedicated to basic research with emphasis on the study of problems
that involve complex interactions between their constituent parts (http://www.santafe.edu).

http://www.santafe.edu
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complexity . For example, Fig. 1.5.a is more complex71 than Fig. 1.5.b. In this case, the scene with more
“order” is more complex than the one with more ‘disorder”.

The relationship between the discrete and continuous mutual information is shown to be closely
related to the difficulty in obtaining an accurate discretisation. A scene is a continuous system, and
consequently, its discretisation introduces a distortion or error (2.97). In a way, to discretise means
to make it uniform, and consequently some information is lost. The aim is to model the scene with
the minimum loss of mutual information. Badii and Politi [9] are in agreement with the idea that the
complexity of a system is directly related to the extent to which it is intrinsically hard to model and for
Li [126], an intuitively satisfactory definition of complexity should measure the amount of effort put in
generating correlations. In conclusion, we assume that [66, 181]:

• The entropy and mutual information of a scene measure the degree of uncertainty and structure,
respectively.

• The continuous mutual information represents the complexity of a scene (how difficult it is to
discretise).

• The best discretisation is the one with the highest discrete mutual information72 (measure of how
well we have done it).

• The greater the complexity the more difficult it is to get a discretisation which expresses the
visibility of a scene with precision.

This approach to complexity is different from the ones based on integral geometry results [26] and
reachability graph [147].

Summary

In this chapter, we present fundamental concepts related to the framework: sampling theory , rendering ,
information theory , and complexity .

In the first instance, the sampling theory is introduced. It is essential for the conversion of continuous
signals into discrete ones, such as in the case of image synthesis. It is in this theory where the bases
of the problems and errors in the signal transformation of the 3D world to the 2D are formulated
(e.g., sampling, aliasing, filters, and reconstruction). Different methods of sampling are presented (e.g.,
Poisson, stratified, importance, and adaptive samplings) and also various types of refinement criteria for
sampling (based on intensity). We also comment on certain modalities of refinement geometry such as
the problem of signal reconstruction (with a brushstroke of its options).

With regard to rendering , Monte Carlo integration and the concept of form factor are introduced.
Then, the light is presented as a main character. Basic questions about radiometry, optics, and the
rendering equation are reviewed. Next, we comment on the colour spaces involved in this work.

The two methodologies of rendering which solve simplifications of the rendering equation are given
in their own sections. On the one hand, the ray-tracing technique, as a representative of the pixel-driven
approach is commented on. Concept and variants are shown (e.g., visibility ray-tracing, distributed ray-
tracing, and path-tracing). On the other hand, the radiosity technique is introduced as a representative
of the object-space approach. The general method and the hierarchical radiosity modality, together with
refinement criteria, are then reviewed.

Next, we introduce the information theory with its most important measures: entropy and mutual
information. Some properties of the continuous channel are also introduced. This basis allows us to
present the scene as an information channel. The analysis of the scene, in discrete and continuous
version, is introduced from the perspective of geometric visibility. The measure of the discretisation
error is also introduced.

Finally, we review the concept of complexity while enumerating its most important measures. Statis-
tical complexity is the area where the definitions of scene complexity are presented.

71 The (HS, IS, Ic
S) values from Fig. 1.5 are (5.271, 6.270, 7.324) and (6.761, 4.779, 5.993), respectively. The computation

has been done with 107 global lines.
72Or minimum discretisation error (2.92).
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The huge number of objects which make up the Universe confer great complexity to
its study. Luckily, most of the objects emit and reflect light which continually collides
with other objects. This creates diverse effects (e.g., shadows, distortions, and reac-
tions) which can be captured by the human eye or by adequate scientific instruments.
The complexity of global illumination increases since all the objects are in continual
movement.
One of the kind of objects that do not emit light is the planet. Historically, we had nine
planets in our Solar System: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus,
Neptune, and Pluto. Recent discoveries and currently available scientific information
were evaluated and debated obtaining a new definition of planet (International Astro-
nomical Union, August 24, 2006): A body that is in orbit around a star but is not a
star itself; it has sufficient mass for its self-gravity to overcome rigid body forces so
that it assumes a hydrostatic equilibrium (nearly round) shape; and it has cleared the
neighborhood around its orbit. If the last condition is not met and the object is not
a satellite of a planet or other nonstellar object, we have a dwarf planet. Thus, Pluto
belongs to this category (due to the Kuiper Belt) and the Solar System remains with
eight planets. Two other celestial bodies have been classified as dwarf planets: 2003-
UB313 (temporally named Xena) and Ceres (asteroid). The status of Charon, currently
regarded as a satellite of Pluto, remains uncertain. The system Charon-Pluto may in
the future be designated as a binary planet system turning Charon into another dwarf
planet. There are several bodies potentially qualified to enter this category.
The planets which belong to our Solar System have been and are the subject of much
study thanks to the light they reflect and their proximity. It was thus that Galileo
discovered four satellites around Jupiter (1610): Ganymede, Io, Callisto, and Europa
(named by him the planets of Medici and known today as Galileo’s satellites). Their
discovery was a key piece of evidence in asserting that the Earth was not the centre of
the Universe. Even though Galileo initially thought they were stars, after several more
weeks of observation, he was able to show that they were in orbit around Jupiter, thus
proving that not all objects in the heavens orbited the Earth.

Image: Jupiter.
Date: March 2004.
Earth distance: 778 million km (average).
Credit: NASA, ESA, and E. Karkoschka (Univer-
sity of Arizona).

Five spots, one coloured white, one blue, and three black, are scattered across the
planet. They are a rare alignment of its three largest moons (i.e., Ganymede, Callisto,
and Io). The tell-tale signatures of this alignment are the shadows, the three black
circles, cast by the moons. Only two of the moons, however, are visible in this image.
Io is the white circle in the centre of the image, and Ganymede is the blue circle in the
upper right corner. Callisto is out of the image and to the right. The shadows belong,
from left to right, to Ganymedes, Io, and Callisto [61, 143].



Chapter 3

Scene Complexity Measures

Information-theoretic measures to study scene visibility were introduced in Feixas et al. [66]. The results
of this work and others that followed constitute a well-founded theory which interprets the scene as an
information channel (§2.6). While entropy gives us the average uncertainty in a scene, mutual information
quantifies the average information transfer and has been proposed as a scene complexity measure (§2.7.3).

From the relationship between information theory and scene visibility, we consider that the points
or patches of a scene “interact” by exchanging information, creating a dependence or correlation (§2.6).
Thus, for instance, the variation of the position of the objects of a scene changes the degree of interaction
between all the parts of the environment and, consequently, the information transfer between the parts
also varies. Based on this geometric information, in this chapter we introduce new tools for studying 3D
and 2D closed scenes. We analyse the application of the most basic information-theoretic measures to
the set of interior points of a scene (§3.1), an animated scene (§3.2), and a region of a scene (§3.3). For
each one, we define measures of statistical complexity (§2.7.2).

3.1 Point Complexity

The aim of this section is to introduce the definitions of entropy and mutual information fields at an
interior point. We call an interior point of a scene the one which belongs to the region IS , which
is contained strictly between the enclosure and the objects included (by default, in this chapter, a
point will be considered to be always interior if we do not say otherwise). We make the development
for 3D (§3.1.1) and 2D (§3.1.2) scenes. Afterwards, we show some empirical results (§3.1.3) which
illustrate the characteristics of the measures presented. They can be applied to areas such as rendering,
computer vision, robot motion, object recognition, architecture, design, neuroimaging, crowd rendering
and simulation1, and visualisation, where it is necessary to capture information from a certain point.

3.1.1 3D-Scene

The base for defining the entropy and mutual information at a point is the introduction of a new concept
of form factor: that of an interior point of a scene. From here, the information theory methodology for
the study of the 3D scene is applied (§2.6.1).

Form Factor Extension

From the perspective of geometric visibility, we consider the form factor from a point x ∈ IS over a
differential of area dAy like the solid angle subtended by the visible part of dAy from x. As the global
visibility of the point is constant (i.e., solid angle of the sphere) we can normalise and define:

1 Techniques for visualising, in real-time, large urban environments which are populated with as many dynamic entities
(humans, cars etc) as desired. They have various relevant issues such as collision detection, rendering of the animated
avatars, improved illumination, occlusion culling and simulation of pedestrian movement, etc.

55
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ny
x

θ
−→yx
ny

y

Figure 3.1: An interior point x ∈ IS . Ge-
ometry for point-to-differential form factor
at point x (3.1) and complexity segments at
point x (3.12).

Definition 26 The point-to-differential form factor at point
x ∈ IS is given by

Fx→dAy
=

cos θ
−→yx
ny

4πr2
xy

V (x, y). (3.1)

In our framework, we interpret this expression as the de-
gree of geometric visibility between an interior point x and
a surface point differential dy of the scene (Fig. 3.1). As
for each x ∈ IS , ∀y ∈ AS. Fx→dAy

∈ [0, 1] and
∫

AS
Fx→y

dAy = 1, this form factor represents the visibility pdf of
x. We note the similarity of this form factor with respect
to the volume-to-area form factor [197, 221] used in global
illumination with participating media2:

FVi→Aj =
∫

Vi

∫
Aj

cos θ
−→yx
ny

κt(i)
πr2

xy

τ(rxy)V (x, y)dydx, (3.2)

where κt is the extinction coefficient (sum of absorption and scattering coefficients) of the volume, and
τ is the transmittance of the medium along a path3. Taking into account that in our context we do not
consider participating media, the extinction coefficient and the transmittance vanish and we obtain the
same result, save the respective constants of normalisation, for an infinitesimal volume.

Extending (3.1) to a finite element of surface A, we have∫
A

Fx→ydAy =
∫

A

cos θ
−→yx
ny

4πr2
xy

V (x, y)dAy

=
1
4π

∫
Ωx→A

V (x, y)dωΘ

=
1
4π

∫
Ωv

x→A

dω

=
ωx→A

4π
= ωx→A, (3.3)

where dω is the infinitesimal solid angle with a direction variable Θ, y is Λ(x, Θ), Ωx→A is the hemisphere
of directions from x subtended by surface A, Ωv

x→A is the hemisphere of directions from x subtended by
the visible part of A, ωx→A is the solid angle subtended by the visible part of A, and ωx→A its normalised
solid angle.

Definition 27 The point-to-finite form factor at point x ∈ IS on surface A is given by

Fx→A = ωx→A. (3.4)

If the surface is a patch of a discretised scene, we speak about a point-to-patch form factor at point x as
Fx→i, where i is a patch of area Ai.

Field Analogy

We can consider the interior point x as a virtual spherical particle of an infinitesimal radius centred on
x. Three geometric factors intervene on determining its form factor with respect to a point y ∈ AS:
visibility, orientation, and distance. If there is no mutual visibility, the level of geometric relation is null
otherwise its value is increasing as it improves its direction and closeness.

2 Simplified case of an isotropic scattering medium where the phase function is constant (i.e., 1
4π

).
3 For homogeneous media, it only depends on the distance r: τ(r) = e−

R r
0 κt(u)du.
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An interesting interpretation of the extension of the form factor at a point is to consider it from
the point of view of a “geometric interaction”. In fact, all the information of a scene that is measured
by the information-theoretic tools defined in §2.6 is based exclusively on geometric interactions. This
interpretation will be of great help to us in understanding the expressions derived from the formalisms
of the form factor at a point, especially from the physical concept of “field”, which is perfectly adapted
to our interests. The justification of this interpretation is based on the parallelism that exists with some
physical interactions, such as the gravitational and electromagnetic forces. In our context, the concept
of field can be interpreted in the following way: all the elements of a scene (surfaces in 3D or segments
in 2D) contribute to creating a field at a point due to the geometric interaction at this point.

Using the point-to-finite form factor at a point (3.4) and the field concept, we introduce the scalar
fields of entropy and mutual information of a scene.

Entropy Field

From the discrete scene visibility entropy,
∑

i∈S aiHS(S, i) (2.87), we consider that the contribution of
patch i to the entropy is aiHS(S, i), where HS(S, i) = −

∑
j∈S Fij log Fij is the entropy of patch i (2.86).

By analogy, substituting in this formula patch i by point x and, consequently, the patch-to-patch form
factor by the point-to-patch form factor (3.4), we can define

Definition 28 The discrete entropy field at point x ∈ IS is given by

Hp(S, x) = −
∑
i∈S

Fx→i log Fx→i =
∑
i∈S

Hp(S, x, i), (3.5)

where
Hp(S, x, i) = −ωx→i log ωx→i (3.6)

is the contribution of patch i to the entropy field.

The measure Hp(S, x) represents the information field that all the patches create at point x.

Mutual Information Field

Proceeding in a similar way to the entropy, from IS(S) =
∑

i∈S

∑
j∈S aiFij log Fij

aj
(2.89), we can

consider that the contribution of patch i to the discrete mutual information of S is aiIi(S) where
Ii(S) =

∑
j∈S Fij log Fij

aj
(2.94). By analogy, substituting in this formula patch i by point x and the

patch-to-patch form factor by the point-to-patch form factor (3.4) as a new probability distribution, we
obtain

Definition 29 The discrete mutual information field at point x ∈ IS is given by

Ip(S, x) =
∑
i∈S

Fx→i log
Fx→i

ai
=
∑
i∈S

Ip(S, x, i), (3.7)

where
Ip(S, x, i) = ωx→i log

ωx→i

ai
(3.8)

is the contribution of patch i to the mutual information field.

Now, Ip(S, x) expresses the information transfer field that all the patches of S create at point x. Following
the same reasoning which is valid for the scene information channel, we can obtain finite values for the
continuous mutual information. Thus, we will obtain the continuous expression using the following
substitutions:

ai �
1

AT

Fx→i � Fx→dAy
, dAy ∈ AS∑

i∈S

�
∫

x∈AS
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Then, from (3.1) and (3.7), we can obtain the continuous field at point x:

Definition 30 The continuous mutual information field at point x ∈ IS is given by

Ic
p(S, x) =

∫
AS

Fx→dAy
log(ATFx→dAy

)dAy

=
1
4π

∫
Ωv

x→AS

log
AT cos θ

−→yx
ny

4πr2
xy

dωΘ, (3.9)

where y = Λ(x, Θ) in the last expression.

It expresses the continuous information transfer of the whole scene at point x and we call this value the
point complexity . We will use the notation Cp(x) to refer specifically to the complexity at point x of a
predetermined IS .

This integral of (3.9) can be solved by Monte Carlo integration using a pdf equal to 1
4π . The compu-

tation can be done efficiently by casting random lines from x in all directions (§2.2.2). These lines are
converted into 3D-segments when they reach the first point of intersection and they are called complexity
segments4 (Fig. 3.1). Thus, the continuous visibility mutual information field can be approximated by

Ic
p(S, x) ≈ 1

|Px×S |
∑

y∈Px×S

log
AT cos θ

−→yx
ny

4πr2
xy

(3.10)

=
1

|Px×S |
∑

y∈Px×S

(
ID
p (S, x, y) + IO

p (S, x, y)
)

(3.11)

=
1

|Px×S |
∑

y∈Px×S

IC
p (S, x, y) (3.12)

where

• Px×S is the set of points {y ∈ S | rΘ
x is a random ray ∧ y = Λ(x, Θ)} where (x, y) is a complexity

segment.

• ID
p (S, x, y) = log AT

4πr2
xy

is the distance component of a complexity segment (x, y).

• IO
p (S, x, y) = log cos θ

−→yx
ny

is the orientation component with respect to x of a complexity segment
(x, y).

• IC
p (S, x, y) = ID

p (S, x, y) + IO
p (S, x, y) is the value of complexity segment (x, y).

The contribution of any area A to Ic
p(S, x) is given by

Ic
p(S, x, A) =

∫
A

Fx→dAy log(ATFx→dAy )dAy

≈ 1
|Px×S |

∑
y∈Px×A

IC
p (S, x, y), (3.13)

where Px×A is the set of complexity segments5 that, originating at x end at a point of A which is hit
by a random ray coming from x. It is important to note that the set Px×A ⊆ Px×S determines Fx→A:
ωx→A. From here, Ip(S, x) (3.7) can be calculated.

4 The random line associated with each segment is called complexity line.
5 Px×A = {y ∈ Px×S | y ∈ A} and we assume that Px×A 6= ∅, otherwise Ic

p(S, x, A) = 0.
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Discrete Cross Entropy

We can also analyse the behaviour of the sum of the fields of entropy and mutual information in a
discretised scene. From (3.5) and (3.7) we have

Hp(S, x) + Ip(S, x) =

(
−
∑
i∈S

Fx→i log Fx→i

)
+

(∑
i∈S

Fx→i log
Fx→i

ai

)

=
∑
i∈S

Fx→i

(
log

Fx→i

ai
− log Fx→i

)
= −

∑
i∈S

Fx→i log ai. (3.14)

As {Fx→i} and {ai} are probability distributions over the same space of patches of S and according to
(2.78), we obtain the cross entropy:

Definition 31 The discrete cross entropy field at point x ∈ IS is given by

Hc(S, x) = Hp(S, x) + Ip(S, x). (3.15)

This expression can be alternatively expressed as

Hc(S, x) = H({Fx→i}) + DKL({Fx→i}, {ai}). (3.16)

From this cross entropy, we obtain the following propositions:

Proposition 1 Given a scene discretisation S and any point x ∈ IS , if the set of visible patches from
x, Svx = {i ∈ S|Fx→i > 0}, have the same relative area a, then Hc(S, x) = − log a.

Proof:

Hc(S, x) = Hp(S, x) + Ip(S, x)

= −
∑
i∈S

Fx→i log ai

= − log a
∑

i∈Svx

Fx→i

= − log a. �

From this proposition, we obtain

Proposition 2 If all the patches of S have the same relative area a = 1
|S| (i.e., a regular discretisation),

then Hc(S, x) = log |S| for all points of IS .

Proof:
Hc(S, x) = − log a = log |S| ∀x ∈ IS . �

Thus, if all the patches of S have the same relative area, any increase in Hp is compensated by a decrease
in Ip for any interior point, and vice versa. This property is not fulfilled for a nonregular discretisation.

3.1.2 2D-Scene

The concepts and respective definitions of information-theoretic point measures in 3D (§3.1.1) are adapted
to flatland by changing the surface areas for the segment lengths (§2.6.2). The interpretation of geometric
interaction continues to be valid in this new dimension. The semantics of the 3D definitions is totally
maintained. As regards to the syntax, taking into account the changes mentioned, we keep the notation
for the geometry (identical concepts in 2D). The only exception is the form factor extension, a critical
definition which must be distinguished syntactically in order not to induce mistaken interpretations.
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Form Factor Extension

Now, we can consider the interior point which belongs to the interior space I2D
S defined by a 2D-scene.

Analogously to the 3D process, from the 2D form factor (2.99) we can define

Definition 32 The point-to-differential form factor at point x ∈ I2D

S is given by

F2D
x→dLy

=
cos θ

−→yx
ny

2πrxy
V (x, y), (3.17)

where 1
2π is the normalisation constant (3.1). Extending the above definition to a finite element, segment

L, we have ∫
L

F2D
x→ydLy = ωx→L, (3.18)

where ωx→L is the normalised angle subtended by the visible part of L. Then,

Definition 33 The point-to-finite form factor at point x ∈ I2D

S on segment L is given by

F2D
x→L = ωx→L. (3.19)

If the segment is explicitly a patch of a discretised scene, we will speak about a point-to-patch form
factor at point x as F2D

x→i, where i is a patch of length Li.

Entropy Field

From the discrete scene entropy of a 2D-scene,
∑

i∈S `iHS(S, i) (2.102), we consider that the contribution
of patch i to the entropy is `iHS(S, i), where HS(S, i) = −

∑
j∈S F 2D

ij log F 2D
ij is the entropy of patch i

(2.101). By analogy, substituting in this formula patch i by point x and, consequently, the patch-to-patch
form factor by the point-to-patch form factor (3.19), we can define

Definition 34 The discrete entropy field at point x ∈ I2D

S is given by

Hp(S, x) =
∑
i∈S

Hp(S, x, i), (3.20)

where
Hp(S, x, i) = −ωx→i log ωx→i (3.21)

is the contribution of patch i to the entropy field.

As in 3D, this measure represents the information field that all the patches create at point x.

Mutual Information Fields

From IS(S) =
∑

i∈S

∑
j∈S `iF

2D
ij log F 2D

ij

`j
(2.104), we can consider that the contribution of patch i to the

mutual information of S is `iIi(S) where Ii(S) =
∑

j∈S F 2D
ij log F 2D

ij

`j
. By analogy, substituting in this

formula patch i by point x and patch-to-patch form factor by the point-to-patch form factor (3.19) as a
new probability distribution, we obtain

Definition 35 The discrete mutual information field at point x ∈ I2D

S is given by

Ip(S, x) =
∑
i∈S

Ip(S, x, i), (3.22)

where
Ip(S, x, i) = ωx→i log

ωx→i

`i
(3.23)

is the contribution of patch i to the mutual information field.
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It expresses the transfer information field that all the patches of S create at point x. We will obtain the
continuous expression using the following substitutions:

`i �
1

LT

F2D
x→i � F2D

x→dLy
, dLy ∈ LS∑

i∈S

�
∫

x∈LS

Then, from (3.22) we can obtain the continuous field at point x:

Definition 36 The continuous mutual information field at point x ∈ I2D

S is given by

Ic
p(S, x) =

∫
LS

F2D
x→dLy

log(LTF2D
x→dLy

)dLy

=
1
2π

∫
Ωv

x→LS

log
LT cos θ

−→yx
ny

2πr2
xy

dωΘ, (3.24)

where y = Λ(x, Θ) in the last expression.

This value expresses the continuous information transfer of the whole scene through point x and repre-
sents the 2D-point complexity , Cp(x).

The integral (3.24) can be solved by Monte Carlo integration casting random lines from x in all
directions (§2.2.2). Thus, if Px×S is now the set of 2D complexity segments we have

Ic
p(S, x) ≈ 1

|Px×S |
∑

y∈Px×S

log
LT cos θ

−→yx
ny

2πrxy

=
1

|Px×S |
∑

y∈Px×S

(
ID
p (S, x, y) + IO

p (S, x, y)
)

=
1

|Px×S |
∑

y∈Px×S

IC
p (S, x, y) (3.25)

where, with respect to 3D, there is only the change of the distance component of a complexity segment
(x, y): ID

p (S, x, y) = log LT
2πrxy

. The contribution of any segment L to Ic
p(S, x) is given by

Ic
p(S, x, L) =

∫
L

F2D
x→dLy

log(LTF2D
x→dLy

)dLy

≈ 1
|Px×S |

∑
y∈Px×L

IC
p (S, x, y), (3.26)

where Px×L is the set of complexity segments6 that hit length L coming from x. As in 3D, the set
Px×L ⊆ Px×S determines F2D

x→L: ωx→L. From here, Ip(S, x) (3.22) can be calculated.

Discrete Cross Entropy

We have from (3.20) and (3.22): Hp(S, x) + Ip(S, x) = −
∑

i∈S F2D
x→i log `i. Then,

Definition 37 The discrete cross entropy field at point x ∈ I2D

S is

Hc(S, x) = Hp(S, x) + Ip(S, x). (3.27)

6 Px×L = {y ∈ Px×S | y ∈ L} and we assume that Px×L 6= ∅, otherwise Ic
p(S, x, L) = 0.
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(a) (b) [1.080, 4.392] (c)

Figure 3.2: The field map for a simple scene. (a) A 16× 16 square grid for computing the intensity at
the central point of each square (set Id

S). (b) A continuous mutual information field map made up from
a 64 × 64 square grid and 104 complexity lines for each central point. (c) Thermic colour scale. The
lowest intensity corresponds to the blue and the highest to the red.

It can be alternatively expressed as

Hc(S, x) = H({F2D
x→i}) + DKL({F2D

x→i}, {`i}). (3.28)

From this cross entropy, Prop. 1 and Prop. 2 are also valid considering the relative distribution of areas
changed for lengths. Thus, as in Prop. 2, if all the patches of S have the same relative length, any
increase in Hp is compensated for a decrease in Ip for any interior point, and vice versa. We will observe
this property in the next section (§3.1.3). However, it is not fulfilled for a nonregular discretisation:
there are points x where Hp(S, x) > log |S| and Hp(S, x) < log |S| (Figs. 3.3.∗.iii).

3.1.3 Results

In this section, some experiments in flatland demonstrate the behaviour of the measures introduced in
the previous sections. For each scene we show its field maps (entropy and mutual information). The
field map is a graphic representation of the intensity field at different points based on a specific thermic
colour scale associated with the range of intensities (Fig. 3.2.c). The finite set of points which make up
a field map is obtained by taking a square grid and computing the intensity at the central point of each
square [182]. We note this finite set of points as Id

S (Fig. 3.2.a). All the measures in this section have
been computed using an Id

S made up from a 64 × 64 square grid and casting 104 complexity lines for
each central point. In all figures we specify the range of intensity obtained in each scene. Obviously, the
precision of the data depends directly on how fine the grid is and the number of complexity lines used.
Consequently, the intensity range also depends on these (Fig. 3.2.b).

In Fig. 3.3 and Fig. 3.4, the entropy (Figs. 3.3.∗.i and Figs. 3.4.∗.i) and cross entropy (Figs. 3.3.∗.iii
and Figs. 3.4.∗.iii) field map sequences have been calibrated between the minimum and maximum in-
tensities for each sequence. On the other hand, sequences of discrete mutual information field maps
(Figs. 3.3.∗.ii and Figs. 3.4.∗.ii) have been calibrated together with the continuous mutual information
field map (Fig. 3.2.b).

Firstly, field maps for entropy (Figs. 3.3.∗.i), discrete mutual information (Figs. 3.3.∗.ii), and cross
entropy (Figs. 3.3.∗.iii) are given for a scene with 208 patches and four different discretisations. We can
see that:

• The entropy field maps are clearly different. The position and value of the entropy maximums de-
pend on the discretisation. We observe a big difference between Fig. 3.3.a.i (regular discretisation),
Fig. 3.3.b.i, and Fig. 3.3.d.i (very irregular discretisation). The entropy tends to infinity when the
size of patches tends to zero (Th. 2).

• The discrete mutual information field maps are very similar. For example, small changes can be
appreciated at the corners of the objects. The main reason for this behaviour is that, at every
point, Ip is relatively near to Ic

p (Fig. 3.2.b).
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• In Fig. 3.3.a.iii, the points with maximum entropy have minimum mutual information, as the sum
of fields is constant (log |S|). In the other cases (Figs. 3.3.b–d.iii) the sum is not constant: there
are some points where the sum is greater than log |S|, and other points where it is lower.

• In Figs. 3.3.c–d.i, where the square and the rectangle have been highly discretised, respectively,
maximum entropy points are moved towards the most discretised object. Points of maximum
entropy do not have to coincide with points of minimum mutual information.

• Figs. 3.3.a.∗ and Figs. 3.3.b.∗ are quite similar due to their discretisation similarity.

Secondly, entropy (Figs. 3.4.∗.i), mutual information (Figs. 3.4.∗.ii), and cross entropy (Figs. 3.4.∗.iii)
field maps are given for a scene with 26, 78, 130, and 182 patches. We can see that:

• A more precise discretisation increases entropy and mutual information fields.

• Discrete mutual information field maps converge very quickly towards the continuous mutual in-
formation field map (Fig. 3.2.b).

• The cross entropy field map is constant in Fig. 3.4.a.iii. In Figs. 3.4.b–d.iii, there are some points
where the sum is greater than log |S|, and other points where it is lower (see the intensity range).

Figure 3.5: Continuous mutual information field
map from Fig. 3.6.d.iii with contour lines.

And thirdly, the continuous mutual information
or complexity field (Figs. 3.6.∗.iii), and its split-
ting up into distance (Figs. 3.6.∗.i) and orientation
(Figs. 3.6.∗.ii) components, are given for four dif-
ferent scenes (Fig. 3.6). To obtain maximum field
contrast, in all figures the range has been gradu-
ated independently for each one. For the continu-
ous mutual information field from Fig. 3.6.d.iii, a
plot of contour lines7 is shown in Fig. 3.5. On the
one hand, we can see that the complexity and dis-
tance field maps are quite similar since the first one
depends mostly on distance contribution. On the other hand, orientation component values present a
small range of intensity.

3.2 Animation Complexity

In the previous section we have presented a measure of point complexity based on a geometric visibility
perspective. Here, we apply the same concepts to the movement of objects in a scene (i.e., dynamic
environments, such as the ones considered in [17, 43]).

After considering different alternatives, we define two animation complexity measures (§3.2.1). Some
of the applications that we envisage for animation complexity are cost prediction for visibility and
radiosity recomputations and the development of meshing strategies to obtain an accurate discretisation.
The study of animation complexity has also potential applications in fields such as robot motion and
architectural design. We compute the complexity of different sequences of frames and analyse the main
reasons for the growth in complexity (§3.2.2).

3.2.1 Measures

Within our context, we establish first what we understand by an animation:

7 Quoting Feynman, “One way of thinking about scalar fields is to imagine contours which are imaginary surfaces
drawn through all points for which the field has the same value, just as contour lines on a map connect points with the
same height” [72].
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(a.i) [3.511, 6.632] (a.ii) [1.068, 4.190] (a.iii) [7.700, 7.700]

(b.i) [3.963, 6.329] (b.ii) [1.067, 4.340] (b.iii) [6.668, 8.986]

(c.i) [2.534, 5.395] (c.ii) [1.008, 3.471] (c.iii) [5.700, 7.793]

(d.i) [2.822, 5.444] (d.ii) [1.016, 3.618] (d.iii) [5.700, 7.566]

Figure 3.3: (i) Entropy, (ii) mutual information, and (iii) cross entropy field map sequences, correspond-
ing to the scene in Fig. 3.2.b, with four different discretisations of 208 patches: (a) regular, (b) irregular,
(c) highly discretised square, and (d) highly discretised rectangle. For each subfigure, the intensity range
is shown.
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(a.i) [2.051, 3.819] (a.ii) [0.881, 2.649] (a.iii) [4.700, 4.700]

(b.i) [2.923, 4.886] (b.ii) [1.018, 4.170] (b.iii) [5.409, 7.222]

(c.i) [3.503, 5.633] (c.ii) [1.054, 4.330] (c.iii) [6.274, 8.274]

(d.i) [3.890, 6.136] (d.ii) [1.066, 4.336] (d.iii) [6.513, 8.828]

Figure 3.4: (i) Entropy, (ii) mutual information, and (iii) cross entropy field map sequences, correspond-
ing to the scene in Fig. 3.2.b, with four different discretisations: (a) 26 (regular), (b) 78, (c) 130, and (d)
182 patches. For each subfigure, the intensity range is shown.
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(a.i) [1.148, 5.654] (a.ii) [−0.898,−0.175] (a.iii) [0.843, 4.802]

(b.i) [1.538, 5.688] (b.ii) [−0.716,−0.167] (b.iii) [1.204, 5.229]

(c.i) [2.624, 6.388] (c.ii) [−0.987,−0.185] (c.iii) [2.204, 5.684]

(d.i) [3.107, 7.434] (d.ii) [−1.003,−0.202] (d.iii) [2.507, 6.875]

Figure 3.6: (i) Distance component, (ii) orientation component, and (iii) continuous mutual information
field map sequences for four different scenes. For each subfigure, the range of intensities is shown. A
contour lines plot from Fig. 3.6.d.iii is shown in Fig. 3.5.
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Definition 38 We define an animation as a sequence of n > 0 frames on a discretised scene S: Sn =
(Sn

1 , . . . , Sn
n), where only the positions of objects can change (translations and rotations) and never their

shapes.

Therefore, for Sn
k∈{2,...,n} there is a subset of patches which are geometrically repositioned with respect

to their previous frame8. The relationship between the points of patches changes at each frame, and
consequently their complexity. Since each movement is modelled as a collection of small movements, the
animation complexity will be given by the sum of the complexities of each step, and obviously the bigger
the number of frames, the higher the animation complexity. This complexity (or dissimilarity between
two frames) is a measure of the degree of recomputation required.

An animation complexity measure has to capture the variation of interactions between all the points
or patches of a scene. With this aim we will analyse four possible dissimilarity measures. In order to
compare two frames, a restriction is imposed: the discretisation should not be changed. And, obviously,
the finer the discretisation the more accurate the measures.

Difference of Complexities

Since the continuous mutual information, Ic
S (2.90), represents the complexity of a frame, we could try

to define the animation complexity between two successive frames as the absolute value of the difference
between the respective continuous mutual information. But the difference between complexities does
not express the cost of movement. For example, it is easy to imagine a scene in which the movement
of an object does not change the complexity and, despite this, the transformation can have a high cost
(e.g., a rotation of a symmetric object or a movement of a nonsymmetric object but which ends up in
a symmetrical position with respect to the set and its initial position). This subtraction of complexities
does not contain dynamic information. In fact, IS or Ic

S express a global property of a system but there
is a loss of information with respect to the diversity of the relationships between the pairs of points or
patches of a scene. In conclusion, this proposal is not appropriate.

Kullback-Leibler Distance

In the context of information theory, the most used measure of discrimination between probability
distributions is the Kullback-Leibler distance (§2.5.1). From (2.77), the relative entropy or Kullback-
Leibler distance between two probability distributions p and q, which are defined over the same set of
states X = {x1, . . . , xn}, is defined by

DKL(p, q) =
n∑

i=1

pi log
pi

qi
. (3.29)

In our case, it should be given by

DKL(p, q) =
Np∑
i=1

Np∑
j=1

a′iF
′
ij log

a′iF
′
ij

aiFij
, (3.30)

where F is the form factor patch-to-patch matrix (§2.2.2), and p = {aiFij} and q = {a′iF ′ij} are the
joint probability distributions of two successive frames. It is easy to see that some probabilities can be
zero: those corresponding to pairs of nonvisible patches which, in another frame, can become visible to
each other, and then pi log pi

0 =∞. In consequence, this measure fails in the majority of cases (we could
adopt measures to foresee these cases but they would not reflect the geometric reality).

8 If is not the case, Sk = Sk−1 and its contribution to the animation complexity should be null.
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Animation Complexity

As we have seen in the interpretation of a scene as an information channel (§2.6), discrete scene visibility
mutual information (2.89) is given by

IS(S) =
∑
i∈S

∑
j∈S

aiFij log
Fij

aj
. (3.31)

Moreover, we can consider that the terms

Iij(S) = aiFij log
Fij

aj
(3.32)

form part of a symmetric mutual information matrix (Iij(S) = Iji(S)), where each term represents the
exchange (or transfer) of information between the patches i and j (2.93).

We observe that negative values appear when Fij < aj . This situation reflects a very low interaction
between the two patches involved. A case illustrating this is when the discretisation is uniform (i.e.,
ai = 1

Np
). Without knowledge of the scene, we would assign Fij = 1

Np
. This would correspond to a

uniform random distribution (or visibility). Then we can interpret

◦ NpFij < 1 Negative contribution (less interaction, occluded and far patches)
◦ NpFij = 1 No contribution (neutral or random interaction)
◦ NpFij > 1 Positive contribution (more interaction, high visibility and near patches)

From the mutual information matrix, we initially propose an animation complexity measure that
quantifies the variation of interactions between all the patches for two frames. Thus,

Definition 39 The animation complexity between two frames k, k′ ∈ {1, . . . , n} of Sn, not necessarily
consecutive, is given by

Ca(Sn
k , Sn

k′) =
√∑

i∈S

∑
j∈S

(Iij(Sn
k )− Iij(Sn

k′))
2
, (3.33)

where Iij(Sn
k ) is the exchange of information between the patches i and j in frame k.

If k = k′, the measure is 0 as is desired. Then, with the sum of the complexities between two successive
frames we can define

Definition 40 The animation complexity of Sn is given by

Ca(Sn) =
n−1∑
k=1

Ca(Sn
k , Sn

k+1). (3.34)

We have proposed root squared differences against absolute value differences because of their much
greater robustness.

In flatland, both definitions coincide (taking into account the corresponding semantics in each di-
mension). In the expansion of its expressions, §2.6.2 should be considered and, therefore, the {`i} and
{`iF

2D
ij } probability distributions.

Euclidean Distance

Starting from the same idea on which the Ca is based, we can consider a non-information-theoretic
measure, Euclidean distance. We obtain the two following analogous definitions:
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.7: Set of Sn scenes with a vectorial representation of movement. All the patches of each scene
have the same length.

Definition 41 The Euclidean distance between two frames k, k′ ∈ {1, . . . , n} of an animation Sn, not
necessarily consecutive, is given by

De(Sn
k , Sn

k′) =
√∑

i∈S

∑
j∈S

(
ak

i F k
ij − ak′

i F k′
ij

)2
=
√∑

i∈S

ai

∑
j∈S

(
F k

ij − F k′
ij

)2
, (3.35)

where {ak
i F k

ij} is the probability distribution of frame k.

In the last equivalence we have considered ak
i = ak′

i = ai because the discretisation of all the frames is
the same. It vanishes when k = k′. With the sum of the complexities between two successive frames we
can define

Definition 42 The Euclidean distance of an animation Sn is given by

De(Sn) =
n−1∑
k=1

De(Sn
k , Sn

k+1). (3.36)

As we will see in the next section, this measure exhibits a very similar behaviour to Ca, and thus could
be considered a cheaper computational alternative to this one.

The same considerations for the flatland made for Ca are valid for De.

3.2.2 Results

In order to illustrate the feasibility of the animation complexity measure, we compute Ca and De for
eight sequences of frames in flatland (Fig. 3.7) whose values are contained in Table 3.1.

For each sequence of frames, 105 global lines have been cast to obtain an approximated Monte Carlo
solution for the form factors [201], by counting the number of intersections between pairs of segments
which are visible.
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S frames |S| Ic
p Ca(Sn) De(Sn)

a 7 176 [1.573, 1.659] 0.126 0.030
b 7 176 [1.239, 1.309] 0.241 0.048
c 7 176 [1.124, 1.546] 0.748 0.129
d 7 176 [1.087, 1.647] 0.710 0.121
e 7 176 [1.192, 1.227] 0.133 0.032
f 10 200 [1.567, 1.833] 0.501 0.085
g 2 200 1.825 0.139 0.028
h 75 234 [1.833, 1.889] 2.227 0.373

Table 3.1: The scene, the number of frames and patches, the Ic
p range, and the Ca and De values for

the Sn scenes in Fig. 3.7 are shown. A total of 105 global lines were used to obtain these values.

(a) [1.046, 5.229] (b) [1.390, 5.043] (c) [2.185. 5.661]

Figure 3.8: Complexity field maps and ranges corresponding to Sn
1 in Figs. 3.7.{a, b, h}, respectively.

The computation has been carried out by casting 103 lines from a grid of 96×96.
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Figure 3.9: Evolution from Figs. 3.7.a–e of (a) Ca(Sn
k , Sn

k+1) and (b) De(Sn
k , Sn

k+1).
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Figure 3.10: Evolution from Fig. 3.7.f of (a) Ca(Sn
k , Sn

k+1) and (b) Ic
S(S).
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Figure 3.11: Evolution from Fig. 3.7.h of (a) Ca(Sn
k , Sn

k+1) and (b) De(Sn
k , Sn

k+1).

The first two sequences (Figs. 3.7.a–b) show a moving square following two different paths. Animation
in Fig. 3.7.b is more complex than in Fig. 3.7.a because the movement is produced in a more complex
region (between the wall and four objects). This can be seen in Figs. 3.8.a–b where we show the
complexity field maps (§3.1.3), computed with (3.25), corresponding to both sequences in Figs. 3.7.a–b,
respectively. It is interesting to remark that in the sequence from Fig. 3.7.b, the scene complexity Ic

S is
lower than in the other one where the four objects are placed near one edge (Fig. 3.7.a).

In Figs. 3.7.c–d all the objects are moved simultaneously. As we might expect, the animation com-
plexity increases dramatically.

In Fig. 3.7.e, the decrease in size of the moving square implies a decrease in animation complexity.
Fig. 3.9 collects the first five sequences together (Figs. 3.7.a–e) and shows the animation complexity and
the Euclidean distance of each step. An almost identical behaviour can be observed from both graphs.

In Fig. 3.7.f, an interior square rotates (5 degrees on each step) in a square enclosure from a position
with parallel sides to a position where the vertexes of the interior square almost touch the enclosure. In
this case, the animation complexity increases at each step (Fig. 3.10.a), similarly to the scene complexity
Ic
S (Fig. 3.10.b).

Fig. 3.7.g simply represents a rotation of 90 degrees. In this case, the animation complexity is high
because the variation of the relationship between the patches has been important.

Finally, in the labyrinth scene (Fig. 3.7.h), the high complexity is due to the large number of frames.
In Fig. 3.8.c we show the corresponding complexity field map and in Fig. 3.11 we again observe a very
similar evolution of Ca and De.
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Figure 3.12: Animation complexity ver-
sus complexity field. Two alternative ani-
mations are represented by a continuous
line and a dashed line with Ca equal to
0.241 and 0.126, respectively. The com-
plexity field map is shown in Fig. 3.8.a.
The cost of the animation which crosses
a higher complexity field is higher.

Now, in the first scene (Fig. 3.7.a) we have two alterna-
tive animations (Fig. 3.12). From its complexity field map
(Fig. 3.8.a), we expect that the animation represented by a
continuous line is more complex because it crosses a more
complex region. If we measure the complexity of these two
animations, we observe the concordance between this mea-
sure and the complexity field map: Ca values are 0.241 for
the continuous line and 0.126 for the dashed line. Crossing
complex regions will yield a higher value in the animation
complexity measure.

From all these experiments, we conclude:

• Both measures, Ca and De, capture the complexity of
the animation well, exhibiting very similar behaviour.

• The animation will be more complex if it is produced
in regions with a higher complexity field.

• The increase in the number of moving objects increases the animation complexity.

• Given a moving object, the bigger its size relative to the scene, the higher the animation complexity.

3.3 Region Complexity

As we have seen, the mutual information measure is used to quantify the average information shared
in a scene (2.90), the correlation between all their patches (2.89), the complexity at a point (3.9), or
the complexity of an animation (3.34). In this section, the mutual information is used to study the
complexity of a region of a scene.

On the one hand, we study the complexity generated between the surfaces which delimit a region
(§3.3.1) and, on the other hand, the complexity of a region of the interior space of a scene (§3.3.2). Some
potential applications of these measures are determining how difficult it is to recompute the visibility for
an animation or to obtain the complexity of the movement of a robot. They could also be applied in
parallel computation (e.g., by obtaining an optimal load balancing by dividing the geometry into equal
complexity regions).

3.3.1 Surface-to-Surface Complexity

In order not to introduce a specific notation for the region, we consider it to be a subscene s ⊆ S ∧s 6= ∅.
Below we define the complexity of the region s from the geometric interaction established between the
surfaces (3D) or lengths (2D) which make it up. Our starting point is the scene complexity (§2.6).

Continuous Scene

From (2.90), considering the property of additivity in integration, we can define

Definition 43 The continuous scene mutual information or surface-to-surface complexity of a region
s ⊆ S is given by

Ic
S(S, s) =

∫
As

∫
AS

1
AT

Fx↔y log(ATFx↔y)dAydAx, (3.37)

where As is the area of the region s.

It can be interpreted as the total information transferred by this subscene or its contribution to the
global complexity. Clearly, Ic

S(S, s) = Ic
S(S) when s = S. If we apply the same property to the interior

integral, we obtain
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Definition 44 The continuous scene mutual information or surface-to-surface complexity between two
regions s, s′ ⊆ S is given by

Ic
S(S, s, s′) =

∫
As

∫
As′

1
AT

Fx↔y log(ATFx↔y)dAydAx, (3.38)

where As and As′ are the areas of regions s and s′, respectively.

It can be interpreted as the total information transferred between two subscenes or its contribution to
the global complexity. A particular case is Ic

S(S, s, s), which expresses the interaction inside the subscene
itself. Obviously, Ic

S(S, s, s′) = Ic
S(S, s) when s′ = S and Ic

S(S, s, s′) = Ic
S(S) when, moreover, s = S.

According to (2.91), the scene complexity can be approximately computed by casting uniformly
distributed global lines. Analogously, the surface-to-surface complexity of s can be obtained by the same
process, but now we need only to consider the segments related to As. Thus,

Ic
S(S, s) ≈ 1

|GS2 |
∑

(x,y)∈GAs×S

log(ATFx↔y), (3.39)

where the pdf is 1
AT

Fx↔y, GS2 is the set of all global segments in S, and GAs×S = {(x, y) ∈ GS2 | x ∈
As ∨ y ∈ As} (§2.2.2). The global segment set GAs×As′ = GAs×S ∩ GAs′×S will be used to calculate the
surface-to-surface complexity between s and s′:

Ic
S(S, s) ≈ 1

|GS2 |
∑

(x,y)∈GAs×A
s′

log(ATFx↔y), (3.40)

Conceptually, in expression (3.39) each term log(ATFx↔y) can be interpreted as the information
transfer between the points x and y. Note that this expression has the same structure as the global
segment generated by the random line used in point complexity calculation (3.10): log(ATFx↔y). Both
expressions play the role of a complexity segment . The distance and orientation components are also
present in them (§3.1.1). Note that GAs×S and Px×S refer to segments between points of AS ×AS and
IS ×AS , respectively.

Considering the relation GAs×As′ ⊆ GAs×S ∪GAs′×S ⊆ GS2 , it can be seen that the precision of results
will decrease in the same measure as do the relative areas since the number of complexity segments
decreases. To solve this, either we increase the number of global lines, or we use the local lines strategy
(§2.2.2).

As we already know §3.1.2, the adaptation to flatland requires only changing the concept of areas by
lengths and using the corresponding new form factors. Thus, the previous concepts are the same and
the two basic definitions are:

Definition 45 The continuous scene mutual information or length-to-length complexity of a 2D-region
s ⊆ S is given by

Ic
S(S, s) =

∫
Ls

∫
LS

1
LT

F 2D
x↔y log(LTF 2D

x↔y)dLydLx, (3.41)

where Ls is the length of the region.

Definition 46 The continuous scene mutual information or length-to-length complexity between two
2D-regions s, s′ ⊆ S is given by

Ic
S(S, s, s′) =

∫
Ls

∫
Ls′

1
LT

F 2D
x↔y log(LTF 2D

x↔y)dLydLx, (3.42)

where Ls and Ls′ are the lengths of regions s and s′, respectively.

The calculation via complexity lines is identical to 3D considering the 2D term: log
(
LTF 2D

x↔y

)
.
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Discrete Scene

If we take the discretised scene, the subscene s ⊆ S which defines the region consists of a nonempty set
of patches. This allows us to consider the kind of subscenes of minimum cardinality: a single patch (i.e.,
|s| = 1). Any other subscene is the union of a subset of a sole patch. Analogously to the continuous case,
where we split the integration domain at area level, now we can split the discrete sums at patch level.

From (§2.6.1), we can define IS (2.89) in terms of a symmetric mutual information matrix INp×Np :

• Iij(S) = aiFij log Fij

aj
(2.93)

• Ii(S) = ai

∑
j∈S Fij log Fij

aj
(2.94)

• IS(S) =
∑

i∈S Ii(S) =
∑

i∈S

∑
j∈S Iij(S) (2.95)

where each of them represents the corresponding level of complexity (i.e., discrete visibility information
transfer) between the elements involved. From this perspective, we can consider

Definition 47 The discrete scene mutual information or surface-to-surface complexity of a region s ⊆ S
is given by

IS(S, s) =
∑
i∈s

Ii(S). (3.43)

It expresses the information transferred by s (i.e., its contribution to the total complexity). For the
particular cases of the minimum (s = {i}) and the maximum (s = S) subscene, we have IS(S, s) = Ii(S)
and IS(S, s) = IS(S), respectively.

As in the continuous case, we can define

Definition 48 The discrete scene mutual information or surface-to-surface complexity between two re-
gions s, s′ ⊆ S is given by

IS(S, s, s′) =
∑
i∈s

∑
j∈s′

Iij(S). (3.44)

It can be interpreted as the total information transferred between two subscenes (i.e., its contribution to
the total complexity). A particular case is Ic

S(S, s, s), which expresses the interaction inside the subscene
itself. Now the simplest case appears when both subscenes are made of a sole patch (s = {i} and
s′ = {j}) and we have IS(S, s, s′) = Iij(S). Obviously, the most complex case appears when s = s′ = S
obtaining IS(S, s, s′) = IS(S).

The adaptation to flatland is straightforward: only the areas and form factors needs to be changed, by
lengths and 2D form factors, respectively, in order to obtain the segment-to-segment complexity . Thus,
the previous concepts are the same in 2D and the two basic definitions, Def. 47 and Def. 48, remain

syntactically equal but considering the matrix term Iij(S) = `iF
2D
ij log F 2D

ij

`j
.

Example



3.3. REGION COMPLEXITY 75

s 1 2 3 4 Ic
S(S, s) % ıc(S, s)

1 0.110 0.058 0.013 0.089 0.270 10.74 0.688
2 0.058 0.371 0.037 0.051 0.517 20.53 2.541
3 0.013 0.037 0.752 0.162 0.964 38.28 3.547
4 0.089 0.051 0.162 0.464 0.766 30.45 1.536

2.517 100.00

Table 3.2: Surface-to-surface complexities from Fig. 3.13, their contributions to the global complexity
Ic
S , and their indexes of clustering ıc.

2

3 4

1

Figure 3.13: Four regions have been la-
belled in this basic scene. Its surface-to-
surface complexities are in Table 3.2.

In order to illustrate the behaviour of the measures intro-
duced, we show in Table 3.2 the values obtained for a simple
2D-scene, with a rectangle and a square in its interior, which
has been partitioned into four regions (Fig. 3.13). We can
see that region 3 has a higher complexity with an important
contribution to the interaction between the patches of this re-
gion and the scene. In contrast, in region 1, the complexity is
lowest and the total contribution of the interaction with the
other regions is more important than the interaction inside
the region itself.

In neuroscience studies, mutual information has been used
to analyse the brain complexity. A subset of regions that are
much more highly interactive among themselves than with the rest of the brain is called a functional
cluster. Tononi et al. [236] measure the functionality of a cluster with the cluster index, obtained by
dividing the statistical dependence within the subset by that between the subset and rest of the brain.
A cluster index value nearly 1 indicates a homogeneous system, while a high cluster index indicates
that a subset of brain regions forms a distinct functional cluster (i.e., an area that is mutually highly
statistically dependent while at the same time independent from the rest of the system). This measure
is applied to multidimensional data sets from computer simulations as well as from neurophysiology or
neuroimaging. In a similar way, we can consider instead of the neuronal complex graph the graph formed
by the surfaces of the scene and their geometric visibility relationship. Then,

Definition 49 The cluster index of a region s ⊆ S is given by

ıc(S, s) =
Ic
S(S, s, s)

Ic
S(S, s,S − s)

=
Ic
S(S, s, s)

Ic
S(S, s)− Ic

S(S, s, s)
. (3.45)

It can be interpreted as the degree of internal versus external dependence, between the surfaces of the
region and the rest of the scene, respectively. This measure is applicable as much to the continuous case
as to the discrete one. In Table 3.2, we have included this measure. Observe how the minimum value
corresponds to region 1, due to the fact that the weak internal complexity is surpassed by the also small
relation with the rest of the regions. The maximum is in region 3, where its high internal complexity
widely surpasses its dependence of the rest of regions.

3.3.2 Spatial Complexity

In this section, we present a measure for the complexity of a region s defined as a subset of the interior
points IS (I2D

S in 2D). The basic concept used will be point complexity (3.9).

3D-Scene

The idea is to capture all the average information transfer intensity inside a spatial region. Given that
we can compute the field intensity at a point (§3.1.1), we can consider the complexity of a region as the
average of its complexity fields. That is,
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Definition 50 The spatial complexity of a region s ⊆ IS is given by

Cr(S, s) =
1
Vs

∫
s

Ic
p(S, x)dx, (3.46)

where Vs is the volume of s.

This value can be obtained by computing9 the complexity of (ideally) all the points in s. In practise,
we compute an approximation from the information which the corresponding complexity field map of the
region provides us with. This is the equivalent of a uniform sampling of the function based on the 3D
uniform grid associated with the complexity map (Fig. 3.2.a). With this set of sampling points sd, the
set of complexity segments Px×S of each of them (of the Monte Carlo integration for point complexity),
and the application of (3.12) we can compute

Cr(S, s) ≈ 1
|sd|

∑
x∈sd

Ic
p(S, x)

≈ 1
|sd|

∑
x∈sd

 1
|Px×S |

∑
y∈Px×S

IC
p (S, x, y)


=

1
|sd|N

∑
x∈sd

∑
y∈Px×S

log
AT cos θ

−→yx
ny

4πr2
xy

, (3.47)

where we consider the same number of complexity lines per point in the last expression: ∀x ∈ sd.|Px×S | =
N .

This measure associates a quantitative value of complexity to a spatial region of a scene. Presented
together with the corresponding field map and with its range, they characterise the complexity in a
univocal way (§3.1.3). As it will be seen later on (Table 3.3), in a more complex region it will be more
costly to insert an object than in a less complex one confirming an earlier result: the more complex the
region the more complex the animation in this region (§3.2.2).

2D-Scene

The spatial complexity in flatland is straightforward considering the usual changes (§3.1.2). The measure
of volume is replaced by the area in Def. 50 and, for the approximate computation of complexity, we
obtain

Cr(S, s) ≈ 1
|sd|N

∑
x∈sd

∑
y∈Px×S

log
LT cos θ

−→yx
ny

2πrxy
, (3.48)

where s ⊆ I2D
S and taking into account the same considerations as in (3.47).

Example
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(a) (0.588, 0.031, 3.471) (b) (2.037, 1.080, 4.392) (c) (2.767, 2.001, 5.683)

(d) (3.068, 2.185, 5.661) (e) (1.928, 1.021, 4.454) (f) (2.836, 1.929, 5.914)

Figure 3.15: Spatial complexity and complexity field map for six regions (s = S): (Cr, min{Ic
p},

max{Ic
p}). Different grids have been used with 103 lines cast from each x ∈ sd.

2

3

5

1

4

Figure 3.14: A hexagon is situated in
Fig. 3.15.b in five different places. The
scene complexity value for each position
is shown in Table 3.3.

In order to analyse the spatial complexity of a region,
without loss of generality, we consider the defined region as
the main scene (s = S) and compute Cr in six different 2D-
scenes (Fig. 3.15). For each scene we show the complexity
field map which illustrates the field intensity of each region.
In these figures we specify the range of complexity obtained in
each scene. As we already knew about complexity at a point
(§3.1.2), the highest complexity is found near the objects, the
walls, in the corners, and especially in the narrow spaces.

An experiment is designed to test the increase in scene
complexity Ic

S when we insert an object in a region. In Fig.
3.14, a hexagon is placed in five different places corresponding
to five different area complexities of a region (Fig. 3.15.b). In
Table 3.3, we observe the perfect concordance between the two measures: the higher the area complexity
of a region the higher the increase in scene complexity.

9 We consider s such that integral (3.46) exists.

case Ic
S(S) ∆ %

0 2.517 0 0
1 2.860 0.343 13.62
2 2.795 0.278 11.06
3 2.733 0.216 8.58
4 2.663 0.146 5.79
5 2.763 0.245 9.75

Table 3.3: Ic
S values from Fig. 3.14 where an hexagon is

situated in five different positions. The increase in scene
complexity is shown in each case [1..5] with respect to the
reference scene in Fig. 3.15.b.
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Summary

We have presented a set of information-theoretic tools to deal with the geometric visibility of a scene
(3D/2D) using the entropy and mutual information. From them, three types of complexity are defined.

Firstly, we define a new form factor formalism for an interior point of a scene from where, interpreting
the scene as an information channel and carrying out a physical analogy with the concepts of interaction
and field , the measures of discrete entropy fields, discrete mutual information field, and continuous mutual
information field at an interior point are defined. The discrete entropy field represents the information
content that all the patches create at a point while the mutual information field is interpreted as the
information transfer which exists at the point due to the patches (discrete scene) or to all the surface
points (continuous scene). The continuous mutual information field is considered to be point complexity .
The discrete entropy and discrete mutual information fields are related through the discrete cross entropy
field . From the calculation of the complexity at an interior point using random lines, the concept of
complexity segment appears as the basic element for the calculation of the transference of geometric
information. The field maps, based on the range of intensities of the field, are employed to represent
the influence of these measures on the scene. These measures can be applied in areas such as rendering,
computer vision, robot motion, object recognition, architecture, design, crowd rendering and simulation,
and visualisation.

Secondly, in the field of animation, we present a study of several measures to evaluate the complexity of
a sequence of 3D/2D animated discrete scenes. Two measures showed a good behaviour: the animation
complexity and the Euclidean distance. The first consists in the accumulation of the differences of
information exchange, due to the movement, which the patches of the two consecutive frames present.
The other is based on the accumulation of the differences between the form factors of the patches which
make up the frames. Both present similar results which are coherent with the measures of the scene and
point complexities (e.g., the movement is more costly in regions of high complexity).

And thirdly, the complexity of a region has been studied from two perspectives. From the geometry of
the surfaces which delimit a region, surface-to-surface complexity (segment-to-segment complexity in 2D),
and from the interior space defined by a region, spatial complexity (3D/2D). For the surface-to-surface
complexity, the measure is obtained from the continuous scene mutual information between the region
and the scene. It expresses the information transfer between their respective surfaces. The measure is
also defined between two regions and for the discrete cases (using the discrete scene mutual information).
For the spatial complexity of a region, we define the average of the transference of existing information
between all the points of the interior space which makes up the region itself. Its calculation therefore is
based on the complexity at a point. We compute both complexity measures using complexity segments.
The results allow us to obtain the contribution of the complexity of a region to the complexity of a scene
(considering surface or volume). Direct applications of these measures are to look for an optimal load
balancing in a parallel computation and to evaluate the information in fields such as neuroimaging and
image registration.
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For their shapes and colours, one of the prettiest kind of objects in the Universe scene
are nebulae. They are interstellar clouds of dust, gas and plasma. The nebulae are
classified by how they are illuminated: diffuse nebulae are illuminated nebulae which are
divided into emission nebulae, which are internally illuminated clouds of plasma (e.g.,
the Orion Nebula), and reflection nebulae, which are illuminated by reflections from
nearby stars (e.g., the Witch Head Nebula); planetary nebulae are compact shells of
gas around a dead star or an intermittently active star (e.g., the Cat’s Eye Nebula);
supernova remnants are generally moving away from their parent star at high speed and
are heated by colliding with galactic dust and gas (e.g., the Crab Nebula); and dark
nebulae are unilluminated (e.g., the Horsehead Nebula).
An H-II region is a cloud of glowing gas and plasma in which star formation is taking
place. Young, hot, blue stars which have formed from the gas emit copious amounts of
ultraviolet light, ionising the nebula surrounding them. H-II regions may give birth to
thousands of stars over a period of several million years. In the end, supernova explosions
and strong stellar winds from the most massive stars in the resulting star cluster will
disperse the gases of the H-II region, leaving behind a cluster such as the Pleiades. Since
Nicolas-Claude Fabri de Peiresc discovered the first nebula (Orion Nebula, 1610), large
numbers of H-II regions have been found in our galaxy and others [255].

Image: H-II region of Eagle Nebula (M16-NGC6611).
Known as The Pillars of Creation.
Date: April 1995.
Earth distance: 6,500 light-years.
Credit: NASA, ESA, STScI, and J. Hester and P.
Scowen (Arizona State University).

These eerie dark pillar-like structures are columns of cool interstellar hydrogen gas and
dust that have survived longer than their surroundings in the face of a flood of ultraviolet
light from hot, massive newborn stars (photo-evaporation). The light is also responsible
for illuminating the convoluted surfaces of the columns and the ghostly streamers of gas
boiling away from their surfaces, producing 3D visual effects. The tallest pillar is about
4 light-years long from base to tip.
As the pillars themselves are slowly eroded away by the ultraviolet light, small globules
of even denser gas buried within the pillars are uncovered. These globules have been
dubbed Evaporating Gaseous Globules. Eventually, the stars themselves emerge from
them as they themselves succumb to photoevaporation [61, 143].



Chapter 4

Entropy-Based Sampling for
Ray-Tracing

Although ray-tracing is a straightforward and powerful image synthesis technique, it usually requires
many rays per pixel to eliminate the aliasing or noise in the final image (§2.1.1). However, not all the
pixels in the image require the same number of rays. The edge of an object, the contour of a shadow,
and a high illumination gradient will require a much better treatment than a region with almost uniform
illumination. To this effect, many pixel supersampling refinement criteria have been defined in the
literature (§2.1.4).

The measures used in these criteria are based on intensities (image space) and also on geometry
(object space). They are also useful for an adaptive subdivision of image space for progressive refine-
ment [157]. Some of them have been applied in the image based rendering field for weighting pixel
colour for reconstruction [174] and adaptive sampling strategies [45, 46], and creating a priority scheme
for sampling in interactive rendering [222]. The final objective is always to find the best final-image
quality with a reasonable cost (1.1). In order to do this, we have to sample each pixel of the image
plane carefully. It is essential to have a quantitative measure in order to evaluate when there is sufficient
information about the pixel.

The data of a sample set through the pixel can be used to calculate a pixel homogeneity measure
from two different points of view: radiance and visibility . The information which we will manipulate
will be exclusively colour (radiance) and geometry (visibility), essential parameters for deciding on the
“quality” of a pixel. In this context, the Shannon entropy will be interpreted as a measure of the degree
of homogeneity of a pixel in the sense that the more heterogeneous the pixel, the more difficult it is
to obtain its actual value. From it, we associate homogeneity with quality, so that the need for pixel
refinement is proportional to the lack of quality (i.e., heterogeneity of the samples). The idea behind
the new scheme is to obtain sufficient information in the refinement algorithm in order to find out the
sampling needs (§2.1.4).

Consequently, in this chapter we present a framework for entropy-based sampling applied to ray-
tracing methods. First, definitions of new measures of pixel quality based on entropy are presented
(§4.1). Next, we present the pixel quality as a measure of pixel contrast (§4.2). Then, this contrast is
applied to classic supersampling ray-tracing (§4.3) and adaptive sampling (§4.4). This framework is easily
adaptable to other stochastic processes which require measures of quality in order to reach decisions.

4.1 Pixel Quality

In this section we introduce a new pixel quality measure, the pixel entropy . This measure will be defined
from the information provided by set of samples on the image plane. We use the following sets:

◦ Let P be the set of pixels of the image plane with |P| = Np > 0.
◦ Let Sp be the set of samples of a pixel p ∈ P with |Sp| = Np

s > 1.

81
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◦ Let SP be the set of samples of the image plane where SP = ∪p∈PSp with |SP| = NP
s =

∑
p∈P Np

s .

The implementation of a sample consists in casting a ray rΘ
v from a scene viewpoint v through the image

plane and, in particular, through a pixel: Θ ∈ Ωv→P. Let us consider that each sample s ∈ SP that
hits a scene surface gives us information about the colour, distance and orientation of the hit point with
respect to the viewpoint.

The definition of entropy (2.72)

H(X) = −
n∑

i=1

pi log pi, (4.1)

measures the expectation of the surprise of the distribution p and it can be considered also to be a
measure of its homogeneity (§2.5.1). From the sample set and from the entropy, two different quality
measures are defined, pixel colour entropy and pixel geometry entropy , based on the colour and geometry
respectively. These concepts are in agreement with the considerations made in §2.1.4 with respect to a
clear signal (homogeneity) and to the classification of the refinement criteria in image-space (colour) and
object-space (geometry).

4.1.1 Pixel Colour Entropy

Our first objective is to define the pixel colour entropy. We start with a global definition of entropy
concerning all the samples passing through the image plane. We consider that the colour belongs to a
colour system c structured in components called colour channels1. Without loss of generality, in the
majority of cases our colour measures will refer to a single channel c ∈ c, c(s) being the colour channel
data of a sample s ∈ S (e.g., radiance, luminance, and RGB values).

Let us consider the probability of each image plane sample as its colour channel contribution relative
to the whole of the image plane sample set. Thus,

Definition 51 The image plane channel entropy of a channel c is given by

Hc(P) = −
NP

s∑
i=1

ri log ri ri =
c(si)∑NP
s

j=1 c(sj)
, (4.2)

where ri represents the channel colour fraction of sample si ∈ SP.

This measure can be interpreted as the colour channel homogeneity of the samples passing through the
image plane (§2.5.1). Analogously, at the pixel level, we consider the probability of each pixel sample as
its colour channel contribution relative to the whole of the pixel sample set. Then,

Definition 52 The pixel channel entropy of a channel c is given by

Hc(p) = −
Np

s∑
i=1

pi log pi pi =
c(si)∑Np
s

j=1 c(sj)
, (4.3)

where pi represents the channel colour fraction of sample si ∈ Sp.

From the properties of the entropy (§2.5.1), the image plane channel entropy ranges from 0 to log NP
s

and the pixel channel from 0 to log Np
s . The maximum values are obtained when the channel colour of all

the samples is the same (i.e., we have an uniform probability distribution). Using the grouping property
(2.74) it is easy to see that image plane and pixel channel entropies can be related in the following way:

Hc(P) =
Np∑
i=1

qiH
c(pi)−

Np∑
i=1

qi log qi =
Np∑
i=1

qiH
c(pi) + Hc

I (P), (4.4)

1 Or simply channel throughout this chapter. This name has been chosen because the colour information captured by
an observer is due to the information which three nerves, or channels, transmit from the eye to the brain. These channels
carry information which is derived from the three retinal photoreceptors. It is for this reason that the majority of colour
systems are based on tristimulus values (§2.2.4).
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where qi =
∑N

pi
s

j=1 rj is the importance (sum of probabilities) of pixel pi, Hc(pi) is the channel entropy of

pixel pi, and Hc
I (P) = −

∑Np

i=1 qi log qi is the importance entropy of the image plane calculated from the
importance of each pixel. Thus, the global entropy of the image plane is the sum of all the pixel entropies,
weighted by the importance of each pixel, and the importance entropy obtained from the importance of
each pixel.

The image plane and pixel entropies can be interpreted as the colour homogeneity or uniformity
measured by its sample set and thus can be considered measures of the quality of the colour channel
(i.e., lack of heterogeneity and noise). We can also observe that the entropy increases with the number
of samples. In order to give a pixel quality measure between 0 and 1, the pixel channel entropy can be
normalised with log Np

s . Thus,

Definition 53 The pixel channel quality of a channel c is given by

Qc(p) =
Hc(p)
log Np

s
. (4.5)

If we want to consider the global quality of a pixel, we need only mix its set of channels. Then,

Definition 54 The pixel colour quality of a colour system c is given by the weighting of its pixel channel
qualities:

Qc(p) =
∑

c∈c wcQc(p)∑
c∈c wc

, (4.6)

where wc is the weight of channel c.

The weighted values depend on each colour system. Without a priori information, the same weight per
channel can be considered, otherwise a weight based on human perception2. This measure will enable
us to define a new colour contrast measure for pixel sampling (§4.2.1). Note that the larger the number
of samples the more accurate the quality measure.

In Fig. 4.1.b, we present a colour quality map to show the colour quality of all the pixels from Fig. 4.1.a
using an sRGB colour system with the same weight by channel. The colour scale used corresponds to
Fig. 3.2.c where the minimum quality corresponds to the blue and the maximum to the red3. A low
quality in shadow areas and edges can be observed.

4.1.2 Pixel Geometry Entropy

Similar concepts introduced in the above section can be defined in this one with respect to a geometric
measure. If x = Λ(v,Θ) is the hitpoint of a sample ray s = rΘ

v , the geometric information of each sample
is given by θ−Θ

nx
(i.e., the angle of the normal at the hit point) and by the distance rvx between this point

and the origin of the ray (i.e., ray length). We take

g(s) =
cos θ−Θ

nx

r2
vx

(4.7)

as a geometry factor of a sample. This value provides a quality measure of visibility of a scene point from
the observer’s point of view. Note that this factor is directly proportional to the point-to-differential
form factor at an interior point of a scene (3.1). Given that x = Λ(v,Θ) ⇒ V (v, x) = 1, we have
g(s) = 4πFv→dAx

.
Let us define the probability of each image plane sample as its relative geometric contribution to the

whole image plane sample set.

2 For an sRGB system, wR = 0.2126, wG = 0.7152, and wB = 0.0722 (2.53).
3 In order to observe more details in the colour quality maps, the outliers are reduced to the borders of the interval

[−kσ, kσ] where σ is the standard deviation of the results and k is a parameter that modulates the width of the interval.
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(a) Reference (b) Qc (c) Qg

Figure 4.1: Colour and geometry quality maps. (a) Reference image obtained with Np
s = 8. (b) Pixel

colour quality QsRGB with the same weight per channel. (c) Pixel geometry quality Qg.

Definition 55 The image plane geometry entropy is given by

Hg(P) = −
NP

s∑
i=1

ri log ri ri =
g(si)∑NP
s

j=1 g(sj)
, (4.8)

where ri represents the geometry fraction of sample si ∈ SP.

Considering the probability of each pixel sample as its relative geometrical contribution to the whole
of the pixel sample set we have

Definition 56 The pixel geometry entropy is given by

Hg(p) = −
Np

s∑
i=1

pi log pi pi =
g(si)∑Np
s

j=1 g(sj)
, (4.9)

where pi represents the geometry fraction of sample si ∈ Sp.

Analogously to the pixel colour entropy (4.4), an identical relation can be established between the
geometric entropies of the image plane and the pixel. We can also normalise the pixel geometry entropy
and therefore,

Definition 57 The pixel geometry quality is given by

Qg(p) =
Hg(p)
log Np

s
. (4.10)

In Fig. 4.1.c we show the geometry quality map from Fig. 4.1.a based on a grey scale. The lowest
entropy corresponds to the darkest part, the highest entropy to the lightest4. Observe that the edges
have a very low entropy and are very clearly emphasised.

4.2 Pixel Contrast

In this section we present new pixel contrast measures based on pixel entropy (§4.1). As the entropy
represents the homogeneity of the information brought back by the samples (i.e., rays crossing a pixel),
we can define a simple measure which expresses the diversity or contrast of a pixel.

4 The outliers have the same treatment as in the colour quality maps.
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4.2.1 Pixel Colour Contrast

In the colour theory, the colour contrast is the phenomenon that alters the observation of the colours
depending on their surroundings5 [79]. We use the same words to express the degree of heterogeneity of
the colour in the region defined by a pixel given that this value depends directly on the colours that are
around it. As we have seen, Hc(p) represents the entropy or the degree of colour homogeneity of pixel
p. From this measure,

Definition 58 The pixel channel contrast of a channel c is given by

Cc(p) = 1−Qc(p) = 1− Hc(p)
log Np

s
. (4.11)

It represents the colour channel heterogeneity or contrast of a pixel with a range of [0, 1]. We can also
introduce the pixel binary contrast from minimum and maximum colour channel probabilities captured
by this pixel. This measure is obtained from the binary entropy of these values (2.73). Thus,

Definition 59 The pixel channel binary contrast of a channel c is given by

Cc
b(p) = 1−Hc

b(p) Hc
b(p) = H({ pmin

pmin + pmax
,

pmax

pmin + pmax
}), (4.12)

where Hc
b(p) is the binary entropy of the minimum and maximum channel colour probabilities, pmin and

pmax, respectively.

Both measures, Hc
b(p) and Cc

b(p), range also between 0 and 1 due to the fact that, in this case, only two
values are taken into account. As we will see in our experiments, this binary measure yields more radical
contrast than Cc(p).

Similarly to previous works [140, 79, 222] (§2.1.4), we can obtain the colour contrast of a pixel
by averaging all the colour channel contrasts weighted by their respective importances (colour channel
average). This avoids oversampling on the areas with small colour values. Then, considering all the
colour channels,

Definition 60 The pixel colour contrast of a colour system c is given by the weighting of its pixel channel
contrasts:

Cc(p) =
∑

c∈c wccCc(p)∑
c∈c wcc

c =
1

Np
s

Np
s∑

i=1

c(si), (4.13)

where the channel contrasts are weighted by perceptual coefficients wc, and c is the colour average in
channel c of all s ∈ Sp.

Definition 61 The pixel colour binary contrast of a colour system c is given by

Cc
b(p) =

∑
c∈c wccCc

b(p)∑
c∈c wcc

. (4.14)

In an sRGB system, the colour contrast measures (CsRGB and CsRGB
b ) have three channels with

coefficients wR, wG, and wB. These values depend on the specific use of contrast, but in general they
can take the values proposed in the pixel colour quality (4.6), or also, for a perceptual balance of the
channels, they can take those of the thresholds proposed in [140, 222]: 0.4, 0.3, and 0.6, respectively
(§2.1.4).

This last option is chosen in the next examples where a colour contrast map is used as a visual
representation of the contrast measures in the same way that the quality map is used for the quality
measures. Thus, in Fig. 4.2 we show different colour contrast maps to compare the heuristic (2.7),
pc (Fig. 4.2.b), with measures Cc (Fig. 4.2.c), and Cc

b (Fig. 4.2.d). Another comparison is shown in
Fig. 4.3 with a more complex scene. We can observe how these measures present a very good behaviour
in critical areas (represented by warm colours) such as object edges and shadow contours. With respect
to Fig. 4.2.b and Fig. 4.3.b, our measures are more discriminating, especially the binary contrast.

5 The origin of the colour contrast is the way in which the information is transmitted from the retinal photoreceptors
to the brain. The name of this study is the colour opponency theory.
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(a) Reference (b) pc

(c) Cc (d) Cc
b

Figure 4.2: Colour contrast maps. (a) Reference image obtained with Np
s = 8. (b) Pixel colour contrast

pc (2.7). (c) Pixel colour contrast Cc. (d) Pixel colour binary contrast Cc
b.

(a) Reference (b) pc

(c) Cc (d) Cc
b

Figure 4.3: Colour contrast maps. (a) Reference image obtained with Np
s = 8. (b) Pixel colour contrast

pc (2.7). (c) Pixel colour contrast Cc. (d) Pixel colour binary contrast Cc
b.

Credit: Modelled by Gregory J. Ward, Albany (CA), USA.
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4.2.2 Pixel Geometry Contrast

As we have seen in (4.9), Hg represents the entropy or the degree of geometric homogeneity of a pixel.
From this measure,

Definition 62 The pixel geometry contrast is given by

Cg(p) = 1−Qg(p) = 1− Hg(p)
log Np

s
. (4.15)

Similarly to the above section, we introduce the pixel binary contrast from minimum and maximum
geometry factor probabilities of this pixel. Thus,

Definition 63 The pixel geometry binary contrast is given by

Cg
b(p) = 1−Hg

b(p) Hg
b(p) = H({ pmin

pmin + pmax
,

pmax

pmin + pmax
}), (4.16)

where Hg
b(p) is the binary entropy of the minimum and maximum geometry factor probabilities, pmin

and pmax respectively.

A third case can also be considered:

Definition 64 The pixel logarithmic-difference contrast is given by

Cg
log(p) = log pmax − log pmin = log

pmax

pmin
. (4.17)

This measure, introduced in Rigau et al. [179], is based on the gradient between the minimum and
maximum complexity segments (3.12). As we will see, Cg

log(p) also shows a good behaviour.
For the previous reference scene in Fig. 4.2.a, we now show the geometry contrast measures using

the corresponding maps in Figs. 4.4.a–c. These maps are compared with the map in Fig. 4.4.d, created
using the depth difference heuristic pd (2.14). The same comparison is carried out for the reference scene
Fig. 4.3.a in Fig. 4.5. It can be seen that our measures capture the majority of edges because we take into
account two components: distance and orientation. These geometry contrast maps have been generated
by using the representation scale of the colour contrast maps in order to be able to compare, visually
with each other, how the two types of contrast, colour (Fig. 4.3) and geometry (Fig. 4.5), work. The
specialisation of each of the contrasts is evident: colour maps show the heterogeneity of regions while
geometric maps identify edges.

4.2.3 Pixel Colour-Geometry Contrast

Finally, a combination of colour and geometry contrasts is considered. This combination enables us to
graduate, with a coefficient δ between 0 and 1, the influence of both measures. Then,

Definition 65 The pixel contrast of colour system c is given by

Cc(p) = δCc(p) + (1− δ)Cg(p). (4.18)

This combination can be made with any type of pixel colour contrast and geometry contrast. In general,
good behaviour has been shown with binary contrasts (colour and geometry), and δ ∈ [0.8, 0.95].

We show for another scene, Fig. 4.6, two different lineal combinations. On the one hand, in Fig. 4.6.a
we use the priority-value combination pv (2.15), made up also of colour, pc (2.7), and geometry, pd (2.14).
And, on the other hand, in Fig. 4.6.b we combine our measures Cc

b (4.14) and Cg (4.15). The same
values Np

s = 4 and δ = 0.9 are used in both cases. A significant difference is observed: our combination
tends to obtain more radical contrasts (highly or less complex cases) as opposed to the other option
which takes values in a far more homogeneous interval. The explanation lies in the behaviour of the
binary colour contrast which works exclusively with the extreme data.



88 CHAPTER 4. ENTROPY-BASED SAMPLING FOR RAY-TRACING

(a) Cg (b) Cg
b

(c) Cg
log (d) pd

Figure 4.4: Geometry contrast maps from Fig. 4.2.a obtained with Np
s = 8. (a) Pixel geometry contrast

Cg. (b) Pixel geometry binary contrast Cg
b. (c) Pixel logarithmic-difference contrast Cg

log. (d) Pixel
depth difference pd.

(a) Cg (b) Cg
b

(c) Cg
log (d) pd

Figure 4.5: Geometry contrast maps from Fig. 4.3.a obtained with Np
s = 8. For a visual comparison

between the geometry and colour contrast in Fig. 4.3, the thermic scale is used. (a) Pixel geometry
contrast Cg. (b) Pixel geometry binary contrast Cg

b. (c) Pixel logarithmic-difference contrast Cg
log. (d)

Pixel depth difference pd.
Credit: Modelled by Gregory J. Ward, Albany (CA), USA.
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(a) pv (b) Cc

Figure 4.6: Pixel contrast obtained with Np
s = 4 and a lineal combination with δ = 0.9. (a) Pixel

priority-value pv (2.15). (b) Pixel contrast Cc using Cc
b and Cg.

Credit: Model included in RenderPark [33], Computer Graphics Research Group, Department of Com-
puter Science, Katholieke Universiteit Leuven, Leuven, Belgium.

4.3 Entropy-Based Supersampling

In this section, we apply the newly defined contrast measures to supersampling (§2.1.2) in a stochastic
ray-tracing implementation (§2.3.2).

4.3.1 Method

Ray-tracing is a point-sampling-based technique for image synthesis (§2.3). Rays are traced from the
camera through a pixel to sample radiance at the hitpoint in the scene, where radiance is usually
computed by a random walk method (§2.3.2 and §2.3.3). Since a finite set of samples is used, some of the
information in the scene is lost. Thus, aliasing errors are unavoidable [49]. These errors can be reduced
by using extra sampling, called supersampling , in regions where the sample values vary most (§2.1.2).

In order to obtain reliable data to achieve photo-realistic effects (e.g., diffuse and specular interreflec-
tions, shadow and penumbra, depth of field, motion blur, and translucency), the regions of the scene
with the most complex illumination would need a more intensive treatment than a region with almost
uniform illumination. This way of supersampling is called adaptive sampling [49, 157] (§2.1.3). A pixel
is first sampled at a relatively low density. From this set of samples, a refinement criterion is used to
decide whether more sampling is required or not. Finally, all the samples are used to obtain the final
pixel colour values. We can consider two kinds of adaptive sampling: first, when the refinement criterion
plays the role of an oracle which decides the place and the quantity of supersampling necessary in one
evaluation of the initial sampling only and, second, when the refinement criterion constantly evaluates
the information received because of a supersampling and acts in consequence until it becomes satisfied.
In this work we use the term supersampling exclusively for the first case and adaptive sampling for the
second (§4.4).

We implement a simple supersampling technique: the sample set S will be proportionally distributed
over the image plane with respect to the contrast Cc estimated in each p ∈ P. This is equivalent to the
use of the pixel contrast as an oracle. For definition of the measure itself (§4.2), the cost in samples
is controlled by the diversity of colour and geometry in the pixel (i.e., low quality). Given that a high
contrast is synonymous of low pixel quality and low contrast of high quality pixel, the measure adapts the
densities of sampling to the necessity of improvement in pixel quality. Remembering the importance of
each one of the samples (1.1) and without more prior information, this system will improve, on average,
the pixel quality in particular and the image in general. The generic procedure is made up of three
sequentially quite different phases:

Oracle A pixel contrast is selected as oracle and a first estimate of actual contrast per pixel is obtained
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using an initial stratified sampling against the image plane (§2.1.3). Usual values are 2, 4, and 8
(np

s ). If we consider that the total number of samples NP
s destined for the image is prefixed, the

final value of the average of samples per pixel is Np
s = NP

s
Np

and then, 1 < np
s � bN

p
s c where the left

side inequality is due to the definition of the measure of contrast and the right side inequality to
being able to carry out supersampling. The result of this phase is the answer from the oracle: the
contrast map.

Sampling The unused samples in the calculation of the contrast, Np(N
p
s − np

s ), are proportionally
distributed to the values of contrast obtained per pixel. In each one of them, the sampling is also
carried out with stratification. The distribution of the new set of samples gathers information from
the scene in the regions of more diversity, with a proportional effort on this. The result of this
phase is a supersampling directed exclusively by the contrast map generated in the previous phase.

Reconstruction The colour information gathered in the previous phase is put together with that ob-
tained in the initial phase. Its evaluation allows us to achieve a more precise vision of the contents
of the pixel and as a result an improvement in its quality. It only remains for the signal to be
recuperated and to carry out the resampling process for each one of the pixels p ∈ P with any
of the reconstruction methods applicable to the sampling system used (§2.1.6). The result of this
phase is the solution for the image plane thanks to the assignment of the final colour to all of its
pixels.

This proceeding is adaptable in any of its phases (e.g., stochastic ray-tracing method, pattern of
initial sampling, supersampling method, and filters).

4.3.2 Results

Here, we show an example of our contrast measure Cc (4.18) used as a supersampling oracle in path-
tracing (§2.3.2).

In Fig. 4.7.a.i we show a supersampling image obtained with Np
s = 32 in the following way. First, a

uniform stratified sampling with np
s = 8 has been made in order to obtain the contrast map in Fig. 4.7.a.ii.

Secondly, this map has been used in the supersampling process with an average of 24 rays per pixel. And
thirdly, in order to analyse the behaviour of the contrast, the signal reconstruction in the last phase is
carried out by a piece-wise continuous reconstruction (2.16) using a box filter (2.1). The final pixel value
corresponds to its signal average. The contrast measure used is a colour and geometry combination
with δ = 0.5 based on binary contrasts Cc

b (4.14) and Cg
b (4.16). This means that the more critical

the area, the more supersampled it is (warm colours), and the less critical, the more undersampled it
is (cool colours, with a minimum of 8 rays per pixel). Two detailed regions are compared from the
supersampling image (Figs. 4.7.b–c.i) and a similar image obtained by uniform stratified sampling with
Np

s = 32 (Figs. 4.7.b–c.ii). We can observe a decrease in noise in the supersampled regions, and a better
representation of shadow contour and edges.

4.4 Entropy-Based Adaptive Sampling

In (4.4) we have seen that image plane and pixel channel entropies are related thanks to the grouping
property (2.74). It is important to note that this kind of decomposition can be applied recursively if the
pixels are recursively subdivided. We will show in this section that this recursive decomposition provides
us with a natural method of dealing with an adaptive sampling technique (§2.1.3). Our scheme, valid for
any pixel sampling and ray-tracing method, is applied to stochastic ray-tracing (§2.3.2) and compared
with other options.

4.4.1 Adaptive Sampling

In previous sections (i.e., §2.1.1, §2.1.2, §2.1.3, and §4.3.1) it has been explained that, in order to obtain
a realistic image, the aliasing has to be reduced by adapting the density sampling to the complexity of
the region aiming at a good balance between cost and quality (1.1).
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(a.i) Supersampling image (a.ii) Oracle Cc for (a.i)

(b.ii) Close-up from (a.i) (b.ii) Close-up from uniform sampling

(c.i) Close-up from (a.i) (c.ii) Close-up from uniform sampling

Figure 4.7: Entropy-based supersampling versus uniform sampling. (a.i) Supersampling with an Np
s =

32. (a.ii) Binary contrast map Cc used as oracle to obtain (a.i). It has been calculated with np
s = 8,

Cc
b, Cg

b, and δ = 0.5. Close-up details from (a.i) are shown in (b-c.i). They are compared with the same
regions, (b-c.ii) respectively, taken from a uniform stratified sampling image with Np

s = 32.
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refinement
test

geometry

reconstruction filtering resamplingsampling

true

geometry
ref. testinitial

sampling

false

Figure 4.8: Adaptive sampling process with three phases: initial sampling (blue), refinement tree (gold),
and image reconstruction (green).

We consider three phases in order to describe a generic process of adaptive sampling [79] (Fig. 4.8,
§1.1.1, and §2.1.3), for which the scheme used in the supersampling procedure of §4.3.1 is a particular
case:

Initial sampling An initial sampling pattern at a predetermined density is established. Normally, in
order to choose its density we assume that the signal has a Nyquist rate (§2.1.1) similar to the
frequency of the reconstruction samples (e.g., one sample per pixel6). It is also usual for this density
to be constant across the space, even though in the next phase, it should be increased locally if
necessary.

Refinement tree The image space is divided up into regions (e.g., pixels). For each one of them, a
refinement test geometry selects a subset of samples for evaluation. A refinement test is a criterion
used for the evaluation of one or more characteristics which estimate the good quality of the current
density. If the result is negative, a new set of samples are generated at the points indicated by
the new sampling geometry and the process goes back to the refinement test geometry until the
refinement criterion decides that the density of sampling in the region is accurate enough. The
result of this process is a refinement tree of the image space where every node is a region with
a density of sampling adapted to its own signal. In order to control extreme cases, it is usual to
dispose of other criteria to finish the recursion (e.g., minimum area of the regions and/or maximum
depth of tree).

Reconstruction The information of the signal collected at every region is unified by a reconstruction
process and, if necessary, sent to a filtering process. Finally, a resampling process (e.g., centre of
pixel) determines the final values for each of the pixels on the image plane (§2.1.6).

Note that however much we increase the density of sampling locally, given that the signal is not
usually band-limited, the sampling theory tell us that we can never capture it correctly (§2.1.1). Thus,
fine details of edges, shadings, textures, and others will hardly have enough quality in the final image. The
approximation done by the method consists in looking for the minimum set of samples which estimates
the signal locally accurately enough (1.1). A critical subproblem appears in each of its phases [157] and
many approaches are found to deal with them:

• Efficient sample generation. Different nonuniform pixel sampling methods have been introduced
(§2.1.3).

• Control of the sampling rate. Diverse refinement criteria for adaptive sampling, based on image
and/or object space, can be found to control the sampling rate (§2.1.4).

• Filtering. A great variety of filter shapes are used in image reconstruction (§2.1.6).

We focus our attention on obtaining an adaptive algorithm centred mainly on the refinement tree
phase bringing a new perspective to the subproblem of controlling the sampling rate (new refinement
criterion).

6 The minimum number of samples per pixel fulfils Np
s > 1 (§4.1).
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4.4.2 Recursive Entropy Tree

The natural way to represent information is by entropy (§2.5.1), which in our context is interpreted as
a measure of the degree of homogeneity of a region. Thus, using an entropy criterion means to evaluate
the homogeneity (§4.1) or heterogeneity (§4.2) on a pixel. The fundamental idea behind our scheme is
to capture the information in the refinement tree which results from the recursive decomposition of the
entropy.

Generalising the grouping property (2.74), the entropy can be recursively decomposed in the following
way: Let X be a discrete random variable over the set X = {x1, . . . , xn} with probability distribution
p = {p1, . . . , pn} (§B). Let us consider a partition of the set X in m-disjoint sets Y = {Y1, . . . ,Ym}
where |Yj | = nj . Let us associate the discrete random variable Y to Y with probability distribution
q = {q1, . . . , qm} where qj =

∑nj

k=1 pjk
(jk ∈ {1, . . . , n}), and a new discrete random variable Yj to each

set Yj with probability distribution rj = {rj1 , . . . , rjnj
} where rjk

= pjk

qj
. Then

H(X) =
m∑

j=1

qjH(Yj)−
m∑

j=1

qj log qj . (4.19)

This formula can be written as H(X) = Hin(Y) + Hout(Y) where Hin(Y) =
∑m

j=1 qjH(Yj) and
Hout(Y) = H(Y ) = −

∑m
j=1 qj log qj represent, respectively, the hidden information (pending to be

discovered) and the information already acquired in the descent of the tree created from an Y partition
(Fig. 4.9).

In our case, (4.19) can also be interpreted taking into account only one colour channel (4.3) in the
following way:

• H(X) represents the entropy of the image plane.

• H(Yj) represents the entropy of each root pixel.

• Probability qj is the proportion between the channel colour of pixel j and the sum of the channel
colour of all pixels. It can be considered the “importance” of pixel j.

The decomposition of entropy can be recursively extended to the subpixels. This interpretation can also
be applied to geometry entropy (4.9).

In our approach, probabilities are obtained by stochastic sampling. From the definition of entropy, we
can see that when the number of samples tends to infinity, entropy also goes to infinity (§2.5.1). In fact,
we can consider that the original continuous scene contains infinite information. The following sampling
algorithm will extract more information from the regions with more sample variation.
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4.4.3 Algorithm

We present a new adaptive scheme for adaptive sampling, complementary to the entropy-based super-
sampling method (§4.3.1), with the important feature that it is based on the recursive expression of
the Shannon entropy (i.e., the entropy tree). For the sake of simplicity, in the following analysis we
only consider the colour information of one channel, although in the final algorithm we will take the
combination of colour and geometry contrasts into account (4.18).

A general description of our algorithm is as follows: On the image plane we sample each pixel to
capture the colour of hitpoints and thus evaluate the information content (entropy) from the colour
probability distribution. If the information of a pixel is high enough (i.e., the rays provide us with
sufficient colour homogeneity on that pixel), refinement is not made, and the colour reconstruction of
this pixel is done. When the information is not high enough, this pixel is subdivided into regions and
we proceed in the same way for each region (subpixel). “The approach will be to make sure that all the
samples in a given region are similar in some specified way, so we can feel that we have captured what is
happening in a region of the signal” [79].

This recursive process defines a tree with two well-separated phases for a pixel:

◦ Pixel refinement. Until enough information is extracted (tree descent).
◦ Pixel colour. Computation of the final colour (tree ascent).

The descent in the refinement tree can be interpreted as a progressive gain in information. The in-
formation acquired at each level is added together so that, at the end of the refinement process, the
total information from the tree is the sum of the information obtained over all the branches (4.19). The
measure used to capture the information will be the pixel contrast (§4.2).

Before introducing the algorithm we will give the definitions of the data used in it. Concerning the
tree data structure, n represents the tree level where

◦ n = 0 is the image level (root).
◦ n = 1 is the pixel level (composed of Np pixels of the image).
◦ n > 1 is the subpixel level.

We consider an n-node at any node of the tree with a level of n > 0 (i.e., no root). The set of data
is described in Table 4.1. To compute the final colour of a pixel, we follow a path through the tree
(Fig. 4.10). In the analysis below, we focus our attention on the tree-path k of length m going from
pixel k0 to subpixel km−1. In this path, pn represents the probability of the tree-branch at level n and
qn the importance of the n-node. In our algorithm, this quantity appears naturally due to recursive
decomposition of the entropy (see (4.19), Fig. 4.9, and Fig. 4.10). The value of importance is given by
the probability of the n-node:

qn =

{
1, if n = 0,

p0 · · · pn−1 = c0,k0P
i∈R0

c0,i

∏n−1
`=1 p`, if n > 0.

(4.20)

For our purposes, qn does not need to be normalised, thus we omit the normalisation constant
∑

i∈R0
c0,i

and we take qn = c0,k0

∏n−1
`=1 p`.

Proposition 3 The computation of qn can be simplified to7

qn ≈
cn

Nn−1
r

. (4.21)

Observe first that for a given path and n > 0, the colour cn of an n-node is more accurate than the
colour average of its respective region, kn−1, in the preceding level. Thus, the accuracy of pn, and at the
same time of qn, can be increased by substituting cn−1,kn−1 for cn. Let us prove now (4.21) by induction.

7 In an abuse of notation, all the superindexes corresponding to arithmetic expressions must be interpreted as a power.
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id description asserts

Nr
Number of regions in which an n-node can poten-
tially be subdivided. Nr > 1 ∧A1≤i≤Nr = An−node

Nr

N r
s Number of samples of an n-node. N r

s ≥ Nr ∧N r
s ∈ NrN

+

Rn Set of regions of an n-node. |R0| = Np ∧ ∀n>0. |Rn| = Nr

Sn Set of samples of an n-node. |S0| = N r
s Np ∧ ∀n>0. |Sn| = N r

s

Sn,i Set of samples of an n-node region i ∈ Rn.
Sn =

⋃
i∈Rn

Sn,i

|Sn,i| = |Sn|
|Rn| = Nr

s
Nr

k
Path-tree k = (k0, . . . , km−1) where kn is the re-
gion chosen at level n. m > 0 ∧ ∀n<m. kn ∈ Rn

cn Average colour channel data in an n-node. cn = 1
|Sn|

∑
s∈Sn

c(s)

cn,i Average colour in an n-node region i ∈ Rn.
cn,i = 1

|Sn,i|
∑

s∈Sn,i
c(s)

cn = 1
|Rn|

∑
i∈Rn

cn,i

pn Probability of region kn of an n-node in a path k. pn =
P

s∈Sn,kn
c(s)P

s∈Sn
c(s) = cn,knP

i∈Rn
cn,i

qn Probability of an n-node in a path k. qn =
∏n−1

`=0 p`

Table 4.1: Description of the data set of the refinement phase of entropy-based adaptive sampling in an
image plane of Np pixels. An n-node is a node of level n > 0 in the refinement-tree.
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Figure 4.10: A refinement-tree-path k = (k0, k1, k2) of length m = 3 of entropy-based sampling. The
number of regions of an n-node is Nr = 4. We show the computation of the k0-pixel colour: c0,k0 = c1

from the refinement (red) and reconstruction (blue) phases. The probabilities pn and importances qn

are computed in the refinement phase to evaluate the entropy contrast (4.18).
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Proof: For n = 1,

qn = c0,k0 ≈ c1 =
c1

N0
r

=
cn

Nn−1
r

.

Hypothesis: ∀0<`<n. q` = c`

N`−1
r

. Then, for n > 1

qn = c0,k0

n−1∏
`=1

p` = qn−1pn−1

=
cn−1

Nn−2
r

cn−1,kn−1∑
i∈Rn−1

cn−1,i

≈ cn−1

Nn−2
r

cn

cn−1Nr
=

cn

Nn−1
r

. �

Now we can proceed to explain the algorithm. In the descent phase we sample an n-node and compute
the contrast using expression Cc (4.18). In (4.13) we must substitute the channel importance c by qn and,
according to §4.2, for a sRGB colour system (§2.2.4) we can take the perceptual coefficients wR = 0.2126,
wG = 0.7152 and wB = 0.0722 which capture the sensitivity of human colour perception [32] (2.53).

Thus, for each n-node, the colour contrast (4.13) converts into

Cc
n =

∑
c∈c

wcCc
nqc

n (4.22)

and the colour and geometry combination (4.18) will be

Ccn = δCc
n + (1− δ)Cg

n. (4.23)

Note that this expression could also be calculated from the respective binary versions of colour and
geometry contrasts (§4.2).

In the algorithm, we subdivide the pixel or subpixel when the contrast of an n-node is not less than
a given threshold (Ccn ≥ ε). Thus, the phase of ascent begins when the test fails (Ccn < ε). This happens
because either the contrast (which represents the colour heterogeneity) or the importance (qn → 0 for
growing n) are low. In this phase, each n-node in the path provides its colour estimation ĉn from the
signal reconstructed for each c(s) where s ∈ Sn.

The final colour of an n-node is given by

cn =

{
ĉn, if Ccn < ε,∑

i∈Rn
cn,i, otherwise,

(4.24)

where cn,i is the final colour of i-region of the n-node. Finally, we get c1 for the colour of the pixels (or
equivalently c0,k0 in the path considered). An example of this process is shown in Fig. 4.10.

Observe that importance sampling is naturally integrated in the algorithm. Following importance
sampling criteria a function should be sampled proportionally to its value which is what we obtain with
our adaptive descent.

4.4.4 Implementation

The only precondition to implementing the entropy-based adaptive algorithm is to have at our disposal
a method that gives us back the colour and geometry data from any sample in the image plane. We can
also trade aliasing for noise using stochastic ray-tracing, as the human visual system is more sensitive
to structured aliasing artifacts than to noise (§2.1.3). In particular, we use the path-tracing method
(§2.3.2). With respect to the three subproblems of an adaptive sampling scheme (§4.4.1), we should
consider the following:
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Sampling Generation

A usual implementation of adaptive sampling consists in an adaptive subdivision of the sampling region
in a predetermined way. This subdivision generally corresponds to a split into k equal subregions. Then,
the data is stored in a k-tree, usually a binary-tree or quad-tree [254, 111, 157] (§2.1.5). We use this last
option.

For each region, we choose an adaptive stratified sampling [79]. As its name indicates, it is a hybrid of
both stratified sampling and adaptive sampling (§2.1.3). Stratified sampling is not very practical when it
is not known in advance how many samples can be employed. In adaptive sampling, we want to start with
a sparse sampling density and gradually increase it. For this situation, the adaptive strategy is joined
together with the stratified sampling method. The basic idea is to start with an initial stratification of
the domain (as sparse as desired), and if we want to take one more sample, then we can choose a stratum
and split it. One of the two new strata does not have any samples and it is there where the new sample
will fall. The process can be repeated until the refinement criteria indicate that it is enough. The critical
issues in this method are choosing which stratum to split, how to split it, and how to store the strata.

We use this approach and, in order to simplify the implementation, the stratification is adapted to
the number of subregions and samples. This makes the re-use of the samples at every new level of
subdivision easier while it also offers the answers to the previous issues: the strata to split are all those
which belong to the region selected by the refinement criterion, the split is done in k equal regions, and
the strata data is stored in the k-tree.

Sampling Rate

The refinement criteria is essential in any scheme of adaptive sampling (§2.1.3). Our scheme used the
entropy from the pixel contrast Cc (4.18) in any of its variants (e.g., binary contrast).

The entropy-based refinement tree built in §4.4.3 enables us to evaluate the information from the
signal in order to adapt the density of sampling. The structure implements an importance sampling
approach (contrast-based) directed towards the complex regions (heterogeneity in colour and geometry).
For extreme situations, the refinement criterion evaluates additional parameters of stop, independent of
the signal sampled, as those already mentioned in §4.4.1. When this is the case, the stop criterion used
will be indicated. Note that the controls for depth of the refinement-tree and for minimum area are
equivalent when the subdivision produces equal regions8.

Filtering

The same considerations made in supersampling are valid (§4.3.1). Due to the stratified system, we use
the piecewise-continuous image reconstruction (2.16) method using a box filter (2.1) directly incorporated
into the colour computation phase (tree ascent). For this case, the final colour is equivalent to adding
each one of the s ∈ Sp weighted by the area of its corresponding stratum (2.3). Other local filters can
be applied in this context (§2.1.6). The resampling is replaced by the reconstructed signal averaged in
the whole domain of the pixel. Note that, from the perspective of the signal space domain, the task
of the refinement criterion consists precisely in “conducting” the sampling, with the maximum possible
precision, towards the most complex regions of the space. In consequence, at the lowest level, the
precision of the tiling achieved (strata of the leaves of the refinement-tree) is what determines the quality
of the final image.

In conclusion, respect to the presented method (Fig. 4.8), we have:

◦ Initial sampling: stratified (N r
s Np samples).

◦ Refinement test geometry: true (Sn).
◦ Refinement test criterion: pixel contrast (Ccn < ε).
◦ Sampling geometry: quad-tree (k = 4).
◦ Reconstruction: piecewise-continuous image (2.16).

8 We assume the same area for all the pixels.
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(i) General view (ii) Close-up of (i)

Figure 4.11: Reference image used in the test in Fig. 4.12: (i) general view and (ii) close-up of (i). The
image has been obtained with a path-tracing algorithm with 1,024 samples per pixel in a stratified way.

◦ Filtering: box filter (2.1).
◦ Resampling: any (signal average at pixel domain).

4.4.5 Results

For the purpose of comparison, in Fig. 4.12 we present the results for different techniques for the test
scene in Fig. 4.11. We compare the following methods:

• Classic contrast (CC): A recursive adaptive sampling scheme based on contrast by channel (2.6)
(with thresholds proportional to the visual system) weighted by its respective channel colour aver-
age [79, 222]. The maximum recursive level has been limited to 4 (Fig. 4.12.a).

• Importance-weighted contrast (IC): The same as in CC but each channel contrast is weighted with
the respective importance q (4.21), as in our approach (Fig. 4.12.b).

• Confidence test (CT): Statistical approach based on a confidence interval (2.11) with a confidence
level of α = 0.1 and a tolerance t = 0.025 (§C) (Fig. 4.12.c).

• Entropy-based contrast (EC): Our approach (4.24) taking only colour contrast, δ = 1 in (4.23)
(Fig. 4.12.d).

Observe that the EC approach can be easily implemented on any standard hierarchical algorithm,
using importance (4.21) and the new refinement criterion (4.23), with negligible additional cost.

In CC, IC, and EC, the number of subdivisions is Nr = 4 and the number of samples is N r
s = 8. To

compute the contrast measures for the refinement decision, the samples have been cast in a stratified
way at each n-node (i.e., pixel or subpixel) and re-used at the next levels in the tree. In CT, groups of 8
samples were added in a stratified way until meeting the condition of the criterion. An implementation of
classic path-tracing with next event estimator was used to compute all images (§2.3.2). The parameters
were tuned so that all four test images were obtained with a similar average number of rays per pixel
(Np

s = 60) and computational cost. The resulting images are shown in Figs. 4.12.∗.i with close-ups in
Figs. 4.12.∗.ii. A sampling density map9 (SDM) for each one is given in Figs. 4.12.∗.iii.

The overall aspect of the images in Figs. 4.12.∗.i shows that our supersampling scheme performs
best. Observe, for instance, the reduced noise in the shadows cast by the objects. This is further checked
in the close-up images in Figs. 4.12.∗.ii. Observe also the detail of the sphere shadow reflected on the
pyramid. It is important to note that we managed to improve the classic contrast approach in CC greatly
by including the importance used in our scheme (compare results in Fig. 4.12.a with Fig. 4.12.b). A

9 Generated under the same conditions as the quality (§4.1) and contrast (§4.2) maps. According to the scale in
Fig. 3.2.c, warm colours correspond to the highest sampling rate and cold colours to the lowest.
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oracle general view close-up
RMSEa RMSEp PSNRa PSNRp RMSEa RMSEp PSNRa PSNRp

CC 13,727 13,599 25,379 25,461 20,276 20,024 21,991 22,100
IC 8,124 8,110 29,935 29,951 13,751 13,568 25,364 25,481
CT 5,194 5,174 33,822 33,855 8,407 8,338 29,638 29,710
EC 6,937 7,018 31,308 31,207 9,886 9,933 28,231 28,189

Table 4.2: The RMSE and PSNR of CC, IC, CT, and EC oracles applied to the general view (Fig. 4.11.i)
and close-up (Fig. 4.11.ii) of the test scene. The average number of rays per pixel is Np

s = 60 in all
methods.

comparison of the SDMs shows a better discrimination of complex regions of the scene in the entropy case
against the classic contrast case. This explains the better results obtained by our approach. Moreover, the
confidence test approach CT (Fig. 4.12.c) also performs better than the classic contrast-based methods
CC (Fig. 4.12.a) and IC (Fig. 4.12.b). The SDM of CT also explains why it performs better. However,
it is unable to render the reflected shadows under the mirrored pyramid and sphere with precision (see
close-up in Fig. 4.12.c.ii).

In Table 4.2 we show two measures (error and quality) obtained in Figs. 4.12.∗.i–ii with respect to
the test scene in Figs. 4.11.i–ii, respectively. We select the root of the mean square error10 (RMSE)
and the peak signal to noise ratio11 (PSNR) to evaluate the results. For each one, we consider a weight
balanced by every colour channel (RMSEa and PSNRa) and a perceptual one (RMSEp and PSNRp) in
accordance with the sRGB system12. These measures reflect the good behaviour mentioned in CT and
EC oracles (i.e., low RMSEs and high PSNRs). Although the error obtained using our approach is bigger
than that with CT method, the visual results are better in the EC case (observe Figs. 4.12.c–d). This is
due to the fact that the measures do not manage to reflect exactly the perceptual quality of the image.
The EC images look better because the oracle distributes the samples in the perceptual critical regions
more accurately (see SDMs).

Now, we present a test using the geometry component with 1−δ = 0.1 in (4.23) and, at the same time,
the binary contrast in colour and geometry. To do this, our approach is compared with the priority-value
combination (2.15) made up of a colour contrast of the CC type and also by an usual geometry factor.
Perceptual coefficients are taken equal as in our approach in both cases (§4.4.3). The tree depth level
is set to 4 and the N r

s is reduced by half (i.e., 4 samples) but maintaining the average per pixel (i.e.,
Np

s = 60).
The images obtained are shown in Fig. 4.13. In Fig. 4.13.a, the entropy-contrast Ccn (4.23) with Cc

(4.13) and Cg (4.15). In Fig. 4.13.b, the binary-entropy contrast: Ccn using Cc
b (4.14) and Cg

b (4.16).
And, in Fig. 4.13.c, the priority-value approach pv (2.15) with pc (2.7) and pd (2.14). The respective
SDMs from Figs. 4.13.∗.i are shown in Figs. 4.13.∗.ii.

We see from comparing the images that the entropy contrast is much better than the classic contrast
used here. Observe for instance the ceiling, the shadows and the mirroring wall. A drawback of our
approach is the peaks of high radiance that we observe on the right wall because this region is under-
sampled in our method. However, this effect can be easily solved by a filtering technique (§2.1.6). The
comparison of the SDMs shows a better discrimination of complex regions of the scene in the entropy
case (Figs. 4.13.a–b.ii) against the priority-value contrast case (Fig. 4.13.c.ii). This explains the better
results obtained with our approach.

Finally, in Fig. 4.14.a we show another scene obtained with our approach using an average of Np
s = 200

and δ = 0.95. Observe, in Fig. 4.14.b, how well the SDM works out both the geometry and colour details
as in the shadow contours on the walls13.

10 It is calculated from the MSE (B.3) of each colour channel.
11 Measure of the quality of a reconstructed image compared with an original image computing the ratio between the

maximum possible power of a signal and the power of corrupting noise that affects the fidelity of its representation.
Because many signals have a very wide dynamic range, it is usually expressed in terms of the logarithmic decibel scale:
10 log10(I2

max/MSE) dB.
12 wR = 0.2126, wG = 0.7152, and wB = 0.0722 (2.53).
13 The remaining spiked noise could easily be eliminated by filtering with an image smoothing method.
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(a.i) CC (a.ii) Close-up of (a.i) (a.iii) SDM of (a.i)

(b.i) IC (b.ii) Close-up of (b.i) (b.iii) SDM of (b.i)

(c.i) CT (c.ii) Close-up of (c.i) (c.iii) SDM of (c.i)

(d.i) EC (d.ii) Close-up of (d.i) (d.iii) SDM of (d.i)

Figure 4.12: Results of comparisons: (a) adaptive sampling scheme based on classic contrast (CC), (b)
importance-weighted contrast (IC), same as in (a) but weighting with importance q (4.21), (c) confidence
test method (CT), and (d) entropy-based method (EC) with colour contrast only (δ = 1). By columns:
(i) shows the resulting images, (ii) close-up of regions of (i), and (iii) the sampling density maps of (i).
The average number of rays per pixel is Np

s = 60 in all methods, with a similar computational cost.
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(a.i) Entropy contrast (a.ii) SDM of (a.i)

(b.i) Binary-entropy contrast (b.ii) SDM of (b.i)

(c.i) Priority-value contrast (c.ii) SDM of (c.i)

Figure 4.13: Images obtained with adaptive sampling where Np
s = 60 and N r

s = 4: (a) entropy contrast,
(b) binary-entropy contrast, and (c) priority-value contrast. By columns: (i) Image sampled and (ii)
sampling density map of (i).



102 CHAPTER 4. ENTROPY-BASED SAMPLING FOR RAY-TRACING

(a) Entropy-based contrast (b) SDM of (a)

Figure 4.14: Image obtained with entropy-based adaptive sampling where Np
s = 200 and δ = 0.95. (a)

Sampled image. (b) Sampling density map of (a).

Summary

We present a set of entropy-based measures to evaluate the pixel quality. The interpretation of quality
corresponds to the idea that the colour assigned to a pixel is more exact the more homogeneous the signal
of the scene sampled through the pixel is. The entropy is chosen to express the level of homogeneity of
the information extracted from a region. Two types of data are obtained by sampling the image plane:
colour and geometry.

With respect to colour, the measures are defined by a colour system based on channels or components.
From the application of the entropy to the information provided by sampling on the image plane, we
obtain the image plane channel entropy and the pixel channel entropy . The normalisation of the value
of homogeneity brought by the entropy allows us to define the pixel channel quality which duly weighted
by each of the channels becomes the pixel colour quality corresponding to the colour system. A set of
analogue measures are defined by using the geometric information contributed by samples: orientation
and distance. The image plane geometry entropy , pixel geometry entropy , and pixel geometry quality
measures are obtained.

Complementary to the concept of pixel quality, the pixel contrast (heterogeneity) is defined. For
each of the measures of quality we obtain a contrast measure as well as a binary variant for the colour
(pixel channel binary contrast and pixel colour binary contrast) and two for the geometry (pixel geometry
binary contrast and pixel logarithmic-difference contrast). A linear combination of both perspectives,
colour and geometry, is used to define a global pixel contrast . Assigning more weight to one option
than the other, the aspects of colour (e.g., shadows) or geometry (e.g., edges) stand out. The measures
of quality and contrast can be extended to any process that requires an evaluation of these types of
characteristics, simply adapting the probability distributions to the kind of relevant information.

Two applications of the pixel contrast are presented as refinement criteria in adaptive sampling meth-
ods used in ray-tracing techniques. On the one hand, a method of supersampling based on a refinement
criterion of one sole level of analysis is shown: entropy-based supersampling . The supersampling of each
pixel is carried out directly proportional to its contrast. On the other hand, the same measure is applied
in a recursive adaptive sampling scheme. Taking advantage of the recursive property of the entropy,
an entropy-tree is generated bringing about the adaptive refinement-tree. This allows the measure of
contrast to be naturally incorporated into the method and a new entropy-based adaptive sampling is
presented. It works by locally adapting the density of sampling to the contrast of the region being eval-
uated until a sufficiently low predetermined contrast is attained. Examples and comparisons with other
usual methods of contrast accompany both applications, showing how well the entropy-based approach
behaves.
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The stars are the main lightsources of the Universe scene. These objects are self-
gravitating spheres of plasma in hydrostatic equilibrium, which generate their own energy
through the process of nuclear fusion. This energy radiates into space as electromag-
netic radiation and the peak frequency of the light depends on the temperature of the
outer layers of the star. Besides the emitted visible light, the ultraviolet and infrared
components are typically significant. The age and lifecycle of a star is related to its
mass. Once a star has used up its fuel, its life can end in several ways, becoming a
supernova, a black-hole, a neutron star, or a white dwarf.
Astronomers estimate that there are at least 7× 1022 stars in the Observable Universe.
Some of them are grouped in clusters. The globular clusters are a spherical collection of
stars that orbit a galaxy as satellites. They are very tightly bound by gravity, which gives
them their spherical shape, and relatively high stellar density towards their core. They
are generally composed of hundreds of thousands of old stars (e.g., Omega Centauri).
The open clusters are a group of up to a few thousand stars that were formed from
the same giant molecular cloud, and are still loosely gravitationally bound to each other
(e.g., Pleiades). They are found only in the centre of spiral and irregular galaxies, in
which active star formation is occurring, and are usually less than a few hundred million
years old. Young open clusters may still be contained within the molecular cloud from
which they formed, illuminating it to create an H-II region [255].

Image: Star V838 Monocerotis. Known as Starry
Night after the stars of Vincent van Gogh’s famous
painting.
Date: February 2004.
Earth distance: 20,000 light-years.
Credit: NASA, Hubble Heritage Team (STScI-
AURA), and ESA.

View of an expanding halo of light around V838-Mon at the outer edge of our Milky
Way galaxy. The illumination of interstellar dust comes from the red supergiant star at
the middle of the image, which gave off a flashbulb-like pulse of light in 2002, becoming
600,000 times more luminous than our Sun. It was thus one of the most luminous stars
in the entire Milky Way. The dust and gas was probably ejected from the star after a
previous explosion some tens of thousands of years ago.
Nature’s own piece of performance art, this structure will continue to change its ap-
pearance in coming years as the light from the stellar outburst continues to propagate
outwards and bounce off more distant black clouds of dust. Astronomers expect the
echoes to remain visible for at least the rest of the current decade [61, 143].



Chapter 5

Oracles Based on Generalised
Entropy for Hierarchical Radiosity

In the previous chapter we have observed how the application of entropy measures to refinement criteria
has given good results in the ray-tracing technique (pixel-driven approach). Now, we consider the
application of new information-theoretic measures to hierarchical radiosity (object-space approach).

The radiosity method solves the problem of illumination in an environment with diffuse surfaces
by using a finite element approach (§2.4). The scene discretisation has to represent the illumination
accurately by trying to avoid unnecessary subdivisions that would increase the computation time. The
two most important problems are [12]:

• Meshing (accuracy). Meshing largely determines the accuracy of the solution that can be obtained.
The mesh should be fine enough to capture smooth illumination variations accurately, as well as
illumination discontinuities such as at shadow boundaries.

• Form factor computation (speed and storage). The number of form factors is the square of the
number of mesh elements., and, for each form factor, a difficult integral needs to be solved.

A good meshing strategy will balance the requirements of accuracy and computational cost. In the
hierarchical radiosity algorithms the mesh is generated adaptively (§2.4.3): when the constant radiosity
assumption on a patch is not valid for the radiosity received from another patch, the refinement algorithm
will refine it in a set of subpatches or elements. A refinement criterion, usually called oracle in hierarchical
radiosity, informs us if a subdivision of the surfaces is needed, bearing in mind that its cost should remain
acceptable (§2.4.4). The difficulty in obtaining a precise solution to the global illumination mainly
depends on the degree of dependence between all the elements of the adaptive mesh. This dependence
can be quantified by the mutual information, which is a measure of the information transfer between the
different parts of a scene (§2.6). In addition, the mutual information was used in Feixas et al. [68] to
obtain a refinement criterion for the hierarchical radiosity algorithm (§2.4.4). The results motivated us
further to try new information-theoretic oracles based on entropy measures.

In this chapter, we tackle the radiosity problem from the perspective of generalised information-
theoretic measures. Because of its good properties and recent applications in physical problems, we
analyse the behaviour of the generalised entropy of Harvda-Charvát-Tsallis, or HCT entropy, and the
generalised mutual information (§5.1). Their use in hierarchical radiosity is based on the information
content and information transfer between two elements of the mesh, from a geometric visibility per-
spective. Thus, new information-theoretic oracles are defined in hierarchical radiosity (§5.2) —based
on transported information (§5.3), information smoothness (§5.4), and mutual information (§5.5)— to
look for a correspondence with the classic oracles —based on transported power, kernel smoothness, and
smoothness of received radiosity (§2.4.4)—. The results obtained show that the new oracles improve on
their classic counterparts confirming the usefulness of the information-theoretic approach in dealing with
the radiosity problem. The oracle based on mutual information stands out among them (§5.6).
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5.1 HCT Entropy

As a previous step in defining the oracles of hierarchical radiosity, we present the HCT generalised
entropy together with some of its properties (§5.1.1), and its associated relative entropy and mutual
information (§5.1.2). The historical origins and evolution of these measures can be found in Taneja [233,
234]. Currently, they are frequently applied in the statistical mechanics field thanks to the works of
Tsallis [239, 240, 241].

5.1.1 Generalised Entropies

Since Rudolph Clausius coined the word entropy (1865), different scientists have reformulated the con-
cept several times. Ludwing Boltzmann and Josiah W. Gibbs introduced entropy in terms of microscopic
quantities (1867, see also §2.5.1). John von Neumann presented the quantum entropy (1927). Shannon
defined a new entropy expression and interpreted it in terms of information and communication the-
ory [206] (1948, §2.5). In 1957, Jaynes reformulated statistical mechanics in terms of probability distri-
butions derived from the use of the principle of maximum entropy, contributing with a very practical
general vision [105, 106]. New and different entropic forms appeared in various fields (e.g., information
theory, complexity, and nonlinear dynamical systems). Among them, a group of parametrised entropies
called generalised entropies.

It was in 1960 when Rényi [178] proposed a generalised entropy1, which recovers the Shannon entropy
as a special case2. In 1963, Aczél and Daróczy [1] presented a generalisation that includes the Rény en-
tropy. In 1967, Harvda and Charvát [93] introduced a new generalised definition of entropy. Afterwards,
in 1970 Daróczy [44] gave an alternative approach for it. In 1975, Sharma and Mittal [208], and Sharma
and Taneja [209] introduced two-parameter entropies where Rényi and Harvda-Charvát entropies are
particular cases. Tsallis, in 1988 [239], used the Harvda-Charvát entropy again3, in order to generalise
the Boltzmann-Gibbs entropy in statistical mechanics.

Definition 66 The Harvda-Charvát-Tsallis entropy of a discrete random variable X, with |X| = n and
pX as a probability distribution, is given by

Hα(X) = k
1−

∑n
i=1 pα

i

α− 1
, (5.1)

where k is a conventional positive constant and α ∈ R\{1}.

The transition to continuous measures is straightforward. In Fig. 5.1.a we show its behaviour for some
α values4. This entropy recovers the Boltzmann-Gibbs-Shannon discrete entropy (§2.5.1) when α→ 1:

H1(X) ≡ lim
α→1

Hα = lim
α→1

k
1−

∑n
i=1 pie

(α−1) ln pi

α− 1

= lim
α→1

k
1−

∑n
i=1 pi(1 + (α− 1) ln pi)

α− 1
= −k

n∑
i=1

pi ln pi. (5.2)

The HCT entropy exhibits notable properties. We list some of them below [169, 241]:

1 According to Csiszar’s survey [42], it seems that this was a rediscovery of a former work by Paul-Marcel Schutzenberg
in 1954.

2 In the limit when α → 1.
3 He was only aware at that moment of Rényi’s entropy [241]. The origins of the Tsallis’ measures are detailed specifically

in Taneja [234]. In this context, the classical physical system Σ with W possible microscopic configurations and pi the
probability of finding the system in the configuration i, is replaced by the discrete random variable X = (X , pX), where
|X | = n (§B). Finally, recall that all the superindexes corresponding to arithmetic expressions must be interpreted as a
power.

4 In a scene, for α = 2 and k = 1, we obtain the trace of the covariance matrix (i.e., sum of variances) of a multinomial
distribution defined by estimating all form factors. For each patch i, and j ∈ {1, . . . , Np}, we have

P
j Fij(1 − Fij) =

1 −
P

j F 2
ij = H2({Fij}), using local or global lines (§2.2.2). As form factors represent visibility, this value gives the

expected error in visibility for the primary estimator.
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Figure 5.1: HCT entropy for α = i
4 , i ∈ {−8, . . . , 8} (green to blue, through red, respectively), and

k = 1. (a) Case of n = 2 (5.1) and (b) the contribution of an event to the entropy (5.12).

Non-negativity From (5.1), Hα ≥ 0. The equality holds whenever there is a unique pi = 1.

Boundaries A global absolute maximum (α > 0) or minimum (α < 0) is obtained in the case of
equiprobability (i.e., pi = 1

n ): Hα = k n1−α−1
1−α . In the limit α → 1, the Boltzmann expression is

obtained: H1 = k lnn.

Concavity The functional Hα is (§D)

◦ Concave: α > 0
◦ Constant: α = 0 (H0(X) = n− 1)
◦ Convex: α < 0

Grouping If the NX states of a system X, with probability distribution pX , are divided into two
subsystems Y and Z with NY and NZ states respectively (i.e., NY + NZ = NX), we can define
py =

∑
i∈Y pi and pz =

∑
i∈Z pi (i.e., py + pz = 1). Then,

Hα(pX) = Hα({py, pz}) + pα
y Hα

(
pY

py

)
+ pα

z Hα

(
pZ

pz

)
, (5.3)

where pW

pw
= { pi

pw
| pi ∈ pW }. Note that this expression is a generalisation of Shannon’s grouping

property for the particular case of bipartition (2.74).

5.1.2 Entropic Index

A number of entropy-like quantities have appeared in the scientific literature sharing some properties with
the Boltzmann-Gibbs-Shannon entropy [7, 233]. Taneja [232] unifies some of the generalised entropies
and presents a complete study in [233]. The HCT entropy5 is currently considered to be one of the most
important examples of generalised entropies. It is suitable for dealing with nonextensive settings [241]:

Definition 67 If two systems X and Y , with respective marginal probabilities pX and qY , are indepen-
dent in the sense of the theory of probabilities (i.e., pXY = pXqY , §B), then

Hα(X, Y ) = Hα(X) + Hα(Y ) + (1− α)Hα(X)Hα(Y ), (5.4)

where superextensivity, extensivity or subextensivity occurs when α < 1, α = 1, and α > 1, respectively.

5 Without loss of generality, we assume from now on k = 1.
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From the good results obtained by Tsallis, Hα is being applied to many different areas of research.
Important applications have been developed in thermodynamics and more recent examples include [169,
241]: self-gravitating systems, two dimensional pure electron plasma, solar neutrino problems, cosmology,
chaotic systems, the n-body gravitational problem, etc. This last case [170] has a clear correspondence
with the hierarchical radiosity (§2.4.3). Tsallis’ attempt to develop a complete thermostatically formalism
on the basis of a nonlogarithmic entropy function has raised many interesting issues related both to the
mathematical structure and the physical implications. Many scientists refer to the α parameter as
the entropic index or the nonextensive index (5.4). It appears to be a simple and efficient manner to
characterise what is currently referred to as complexity , or at least some types of complexity [83]. The
case of α = 2 becomes the Gini-Simpson index of diversity which has been widely used in learning (e.g.,
Elomaa and Rousu [60]).

Analogously to the Kullback-Leibler divergence (2.77), Tsallis proposed in [240] a generalised di-
vergence associated with Harvda-Charvát-Tsallis entropy that was presented years ago by Rathie and
Kannappan [176]:

Definition 68 The directed divergence or relative entropy of type-α between probability distributions pX

and qX is given by

Dα(p, q) =
1

1− α

(
1−

n∑
i=1

pα
i

qα−1
i

)
, (5.5)

with α ∈ R\{1}.

When α→ 1, the Kullback-Leibler divergence is obtained6. It benefits from the good properties derived
from the HCT entropy (see [240, 74]) and it is applied, also with good results, outside physics (e.g., image
registration [135]). From this divergence, Tsallis [240] defined the corresponding mutual information,
previously proposed by Taneja [231, 232] (§2.5.2):

Definition 69 The generalised mutual information between two discrete random variables (X, Y ), with
|X| = n, |Y | = m, joint probability distribution pXY , and marginal probability distributions pX and qY ,
is defined as the directed divergence between pXY and pXqY :

Iα(X, Y ) = Dα(pXY , pXqY ) =
1

1− α

1−
n∑

i=1

m∑
j=1

pα
ij

pα−1
i qα−1

j

 . (5.6)

An alternative form of (5.6) using entropies is given by

Iα(X, Y ) = Hα(X) + Hα(Y )− (1− α)Hα(X)Hα(Y )−Hα(X, Y ). (5.7)

Shannon mutual information (§2.5.2) is obtained with α→ 1. Some alternative ways for the generalised
mutual information can be seen in [232]. The transition to continuous measures is straightforward.

5.2 Towards the Information-Theoretic Oracles

Our objective is to study the behaviour of three information-theoretic oracles for hierarchical radiosity
based on the HCT generalised entropy in correspondence with the three classic oracles reviewed in §2.4.4.
Once introduced Hα (5.1), we set up the common framework.

As we have seen, the radiosity method uses a finite element approach, discretising the diffuse envi-
ronment into patches and considering the radiosities, emissivities and reflectances constant over them
(§2.4). With these assumptions, the discrete radiosity equation is given by (2.62):

Bi = Ei + ρi

∑
j∈S

FijBj , (5.8)

6 The Dα(p, q) can be expressed also as −
Pn

i=1 pi lnα
qi
pi

, where lnα(x) ≡ xα−1−1
1−α

with the convention 0 lnα(·) ≡ 0.

This form reminds of the usual Kullback-Leibler divergence.
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where Bi, Ei, and ρi, are respectively the radiosity, emissivity, and reflectance of patch i, Bj is the
radiosity of patch j, and Fij is the patch-to-patch form factor. The matrix element Fij is given by
(2.25):

Fij =
1
Ai

∫
Ai

∫
Aj

FdAx↔dAydAydAx, (5.9)

where FdAx↔dAy (2.23) corresponds to the point-to-point form factor (Fx↔y, §2.2.2). From (2.32), Fij

can be calculated using an area-to-area sampling:

Fij ≈ Aj
1
|Si×j |

∑
(x,y)∈Si×j

Fx↔y, (5.10)

where the computation accuracy depends on the number of random segments between i and j (|Si×j |).
To solve the system (5.8), a hierarchical refinement algorithm is used (§2.4.3). The application of a good
refinement criterion is fundamental for its efficiency. In the classic oracles (§2.4.4), the form factor plays
an important role. It appears with different expressions in the three kernels weighted by the reflectance
of patch i and the radiosity of patch j. Similarly to the radiosity equation, where we observe that the
contribution of patch j to the radiosity of patch i is given by ρiFijBj , we can consider these oracles
under the form

ρiτBj < ε, (5.11)

where τ is a specific kernel function for every approach and the inequality is understood as referring to
current discretisation S.

For each of the classic methods, we will obtain a similar oracle within the context of information
theory, using the HCT entropy. The use of this measure is justified by the good results obtained in
other areas with nonnegative entropic indexes7. Thus, within the hierarchical radiosity context, we will
interpret the scene as an information channel (§2.6) and we will use the HCT entropy to substitute for
the Shannon entropy (§2.5.1).

The application of the HCT entropy introduces the concepts8 of α-information content and α-
information transfer between the elements of a hierarchical mesh. In the following new oracles, as
in the classic cases, we will weight the corresponding α-information kernel by the factor ρiBj to obtain
the oracle (5.11). Thus, we will convert kernels based on geometric data into kernels based on geo-
metric α-information. In the rest of this chapter, we refer to the generalised α-information simply as
information.

5.3 Transported Information

As we know from §2.4.4, the classic transported power oracle is based on the energy transported between
the patches (2.66):

ρiAiFijBj < ε. (TP)

From (5.11), we have9 τ = AiFij . Now, we want to replace this geometric kernel by an information-
theoretic kernel based on the information content between two patches.

5.3.1 Concept

From (5.1), an individual term of HCT entropy is given by

hα(p) =
1

α− 1
(p− pα). (5.12)

It expresses the contribution of an event with probability p into the system entropy10 (Fig. 5.1.b). Thus,
we can rewrite (5.1) as Hα(X) =

∑n
i=1 hα(pi) and, from the discrete scene entropy (2.87), we have

7 For values of α < 0, the values of the HCT entropy are unbounded and grow with −α (Fig. 5.1.b).
8 The word α-information is used to denote the generalisation of the Shannon information introduced by the Harvda-

Charvát-Tsallis entropy.
9 It gives the measure of lines between i and j.

10 For α = 2, it represents a term of the trace as commented in footnote 5.
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(i) (ii)

Figure 5.2: Test scene: (i) view1 and (ii) view2. The image has been obtained with a path-tracing
algorithm with 1,024 samples per pixel in a stratified way.

Definition 70 The discrete scene HCT entropy of S is given by

Hα(S) =
∑
i∈S

ai

∑
j∈S

hα(Fij) =
∑
i∈S

∑
j∈S

Hαij
(S), (5.13)

where the term Hαij
(S) = aihα(Fij) is an element of the discrete scene HCT entropy matrix.

The Hα value gives the average information content11 of S and is equivalent to the Shannon information
content (2.87) when α → 1. It is always nonnegative and, in general, Hαij

6= Hαji
. It represents the

degree of information content between two surfaces i and j from the perspective of i (i → j). In the
hierarchical radiosity context, the event represents the emission of energy from the element j and the
reception on i. Thus, while the energy transported is evaluated from j → i, the information content is
obtained from the visibility from i→ j.

We build the new oracle by replacing τ in (5.11) with Hαij . In order to standardise the shape of its
expression, we multiply the inequality by the constant AT (ai = Ai

AT
) and we have:

Definition 71 The oracle for S in hierarchical radiosity based on transported information is given by

ρiAihα(Fij)Bj < ε. (TI)

This new oracle is proportional to the geometric information content between two elements of the hi-
erarchical mesh and to the area of the receiver element. The cost of this oracle does not change with
respect to the classic version: it depends on the accuracy which is desired in the estimate of the form
factor (5.10).

5.3.2 Results

11 For α = 2, it represents the visibility scene error when computing the form factors (see footnotes 10 and 5).
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(a.i) TP (a.ii) TP

(b.i) TP (b.ii) TP

Figure 5.4: TP oracle for the scene in Fig. 5.2: (a) Gouraud shaded solution and (b) its final adaptive
mesh. By columns, (i) view1 and (ii) view2 are shown. The oracle has been evaluated by using only one
line as a cheap form factor estimator.

Figure 5.3: Test scene. The
image has been obtained with
a path-tracing algorithm with
1,024 samples per pixel in a strat-
ified way.

The classic and information-theoretic oracles have been imple-
mented on top of the hierarchical Monte Carlo radiosity method and
we show the results obtained for Fig. 5.2 and Fig. 5.3 (scenes used
as a common test throughout this chapter). It should be noted here
that our oracles can be used with any hierarchical radiosity method.
Both oracles (TP and TI) have been evaluated with only one line as
a cheap form factor estimator.

With respect to Fig. 5.2, around 2,684,000 rays are cast in order to
distribute the power and a final mesh of approximately 19,000 patches
is obtained for each oracle. For comparison purposes, these values are
kept for all the oracles on this scene. In Fig. 5.4 we show the results
for the TP oracle with a Gouraud shaded solution and its adaptive
mesh. In Fig. 5.5 we present the behaviour of the TI oracle for three
entropic indexes: a superextensivity of 0.5, the extensivity, and a
subextensivity of 1.5. The final meshes corresponding to Fig. 5.5 are
mapped to Fig. 5.6. In Table 5.1 we show the measures of RMSE and
PSNR for the mentioned images and for two entropic indexes more
(α ∈ {0.75, 1.25}).

We proceed in the same way for the scene in Fig. 5.3, where for each oracle, only 129,000 rays are
cast to distribute the power and around 1,000 patches are obtained for each mesh. These values are also
kept for all the oracles on this scene. In Fig. 5.7 we show the images for the TP and TI oracles with
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(a.i) TI1.50 (a.ii) TI1.50

(b.i) TI1.00 (b.ii) TI1.00

(c.i) TI0.50 (c.ii) TI0.50

Figure 5.5: Gouraud shaded solution for the TI oracle for the scene in Fig. 5.2. An entropic index of (a)
1.5, (b) 1, and (c) 0.5 has been used. By columns, (i) view1 and (ii) view2 are shown. The respective
meshes are shown in Fig. 5.6. The oracles have been evaluated by using only one line as a cheap form
factor estimator.
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(a.i) TI1.50 (a.ii) TI1.50

(b.i) TI1.00 (b.ii) TI1.00

(c.i) TI0.50 (c.ii) TI0.50

Figure 5.6: Adaptive mesh for the TI oracle for the scene in Fig. 5.2. An entropic index of (a) 1.5, (b)
1, and (c) 0.5 has been used. By columns, (i) view1 and (ii) view2 are shown. The respective Gouraud
shaded solutions are shown in Fig. 5.5. The oracles have been evaluated by using only one line as a cheap
form factor estimator.
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oracle view1 view2

RMSEa RMSEp PSNRa PSNRp RMSEa RMSEp PSNRa PSNRp

TP 9.836 9.064 28.275 28.984 10.670 10.005 27.567 28.127
TI1.50 9.717 8.924 28.380 29.120 10.579 9.785 27.642 28.320
TI1.25 9.685 8.916 28.409 29.127 10.459 9.753 27.741 28.348
TI1.00 9.675 8.884 28.418 29.158 10.316 9.605 27.860 28.481
TI0.75 9.847 9.058 28.265 28.990 10.489 9.747 27.716 28.354
TI0.50 10.154 9.390 27.998 28.678 10.603 9.880 27.622 28.236

Table 5.1: The RMSE and PSNR measures of the TP and TIα oracles applied to Fig. 5.2. The images
for the TP and TIα for α ∈ {0.5, 1, 1.5} oracles are shown in Fig. 5.4 and Fig. 5.5, respectively. The
oracles have been evaluated with one line only as a cheap form factor estimator.

oracle RMSEa RMSEp PSNRa PSNRp

TP 11.301 11.198 27.068 27.148
TI1.50 11.369 11.358 27.016 27.025
TI1.25 11.332 11.231 27.045 27.123
TI1.00 11.186 11.062 27.157 27.254
TI0.75 11.472 11.414 26.938 26.982
TI0.50 11.649 11.682 26.805 26.780

Table 5.2: The RMSE and PSNR measures of the TP and TIα oracles applied to Fig. 5.3. The images
for the TP and TIα for α ∈ {0.5, 1, 1.5} oracles are shown in Fig. 5.7. The oracles have been evaluated
with one line only as a cheap form factor estimator.

a Gouraud shaded solution (Figs. 5.7.∗.i) and their respective meshes (Figs. 5.7.∗.ii). In Table 5.2, we
show the measures of RMSE and PSNR for a set of results obtained with these oracles, including the
previously mentioned images.

For the visual and quantitative results for the scenes tested, the quality of the new oracle with respect
to its classic counterpart is similar with slight improvements over TP without being able to establish a
firm conclusion about an optimal value of α. The best case occurs when α = 1, where we find the lowest
RMSEs, and in consequence, the highest PSNRs.

5.4 Information Smoothness

The kernel smoothness-based oracles are defined from the “variation” of the radiosity kernel between
a pair of elements in order to improve on power-based refinement (§2.4.4). In particular, the oracle
proposed by Gortler et al. [81] is given by (2.68)

ρi max{Fmax
ij − F avg

ij , F avg
ij − Fmin

ij }AjBj < ε, (KS)

where the kernel is a difference of form factors created from the maximum and minimum values computed
between pairs of random points on both elements: τ = max{Fmax

ij − F avg
ij , F avg

ij − Fmin
ij }Aj , where

F avg
ij = Fij

Aj
(5.10) is the average of the point-to-point form factors between elements i and j. In this

section, this oracle is taken as the reference for a new oracle based on the variation of information content
between these elements.

5.4.1 Concept

As we have seen in §5.3.1, the information content between two elements i and j of a scene is given by
Hαij

(S) = aihα(Fij) (5.13). The same uniform area-to-area sampling employed for the estimate of Fij

provides us with the minimum and maximum point-to-point form factor between the elements i and j:
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(a.i) TP (a.ii) TP

(b.i) TI1.50 (b.ii) TI1.50

(c.i) TI1.00 (c.ii) TI1.00

(d.i) TI0.50 (d.ii) TI0.50

Figure 5.7: TP and TIα∈{0.5,1,1.5} oracles for the scene in Fig. 5.3. By columns, (i) Gouraud shaded
solution and (ii) its final adaptive mesh are shown. The oracles have been evaluated by using only one
line as a cheap form factor estimator.
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oracle view1 view2

RMSEa RMSEp PSNRa PSNRp RMSEa RMSEp PSNRa PSNRp

KS 13.791 13.128 25.339 25.767 15.167 14.354 24.513 24.991
IS1.50 9.983 9.218 28.146 28.838 10.212 9.497 27.948 28.579
IS1.25 9.957 9.193 28.168 28.862 10.189 9.502 27.968 28.575
IS1.00 9.905 9.144 28.213 28.908 10.210 9.501 27.950 28.576
IS0.75 9.793 9.017 28.312 29.029 10.131 9.394 28.018 28.674
IS0.50 9.712 8.931 28.384 29.113 9.930 9.162 28.192 28.891

Table 5.3: The RMSE and PSNR measures of the KS and ISα oracles applied to Fig. 5.2. The images for
the KS and ISα for α ∈ {0.5, 1, 1.5} oracles are shown in Fig. 5.8 and Fig. 5.9, respectively. The oracles
have been evaluated with 10 random lines between elements.

Fmin
ij and Fmax

ij , respectively. We consider their corresponding information terms:

Hmin
αij

(S) = aihα(Fmin
ij ) = ai(Fmin

ij − (Fmin
ij )α)(α− 1)−1 (5.14)

Hmax
αij

(S) = aihα(Fmax
ij ) = ai(Fmax

ij − (Fmax
ij )α)(α− 1)−1. (5.15)

From these expressions12, analogously to the KS, we can consider the difference between the information
values corresponding to minimum and maximum point-to-point form factors with respect to that obtained
on the estimate of the form factor. Then, taking the maximum variation of information content of i→ j,
we can obtain the new kernel on S as

τ = max{|Hαij −Hmin
αij
|, |Hmax

αij
−Hαij |}

= ai max{|hα(Fij)− hα(Fmin
ij )|, |hα(Fmax

ij )− hα(Fij)|}. (5.16)

The oracle is obtained by applying (5.11) and, to standardise the shape of its expression, we multiply
the inequality by the constant AT:

Definition 72 The oracle for S in hierarchical radiosity based on information smoothness is given by

ρiAi max{|hα(Fij)− hα(Fmin
ij )|, |hα(Fmax

ij )− hα(Fij)|}Bj < ε. (IS)

Thus, this new oracle is proportional to the maximum variation in the geometric information content
between two elements of the hierarchical mesh and to the area of the receiver element. Like the TI oracle
(§5.3), the cost of the IS oracle does not change with respect to its classic counterpart KS, and continues
to be determined by the desired accuracy in the calculation of the form factor.

5.4.2 Results

The same setting presented for the test scenes Fig. 5.2 and Fig. 5.3, in the previous TP and TI oracles
(§5.3.2), is now presented for KS and IS ones. For the sake of comparison, adaptive meshes of identical
size have been generated with the same cost for the power distribution. With regard to the estimate
of the form factor, the number of random lines has been increased to 10 (|Si×j |) since we require more
information to be able to carry out the smoothing process.

For the scene in Fig. 5.2, the mesh and power distribution is made up of approximately 19,000
patches and 2,684,000 rays, respectively. In Fig. 5.8 we show the results obtained for the KS oracle with
a Gouraud shaded solution and its final adaptive mesh. In Fig. 5.9 we present the behaviour of the IS
oracle for the three entropic indexes of 0.5, 1, and 1.5. The final meshes of these results are mapped to
Fig. 5.10. In Table 5.3, we show the results for the RMSE and PSNR measures and the entropic index
set used in Table 5.1, with respect to images obtained with the KS and IS oracles.

Analogously, we present the results for the scene in Fig. 5.3, where 129,000 rays are cast to distribute
the power and approximately 1,000 patches are obtained for each mesh. In Fig. 5.11 we show the images

12 Observe that in general, for a sampling between i and j, Hmin
αij

6= min{Hαij } and Hmax
αij

6= max{Hαij }.
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(a.i) KS (a.ii) KS

(b.i) KS (b.ii) KS

Figure 5.8: KS oracle for the scene in Fig. 5.2: (a) Gouraud shaded solution and (b) its final adaptive
mesh. By columns, (i) view1 and (ii) view2 are shown. The oracle has been evaluated with 10 random
lines between elements.
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(a.i) IS1.50 (a.ii) IS1.50

(b.i) IS1.00 (b.ii) IS1.00

(c.i) IS0.50 (c.ii) IS0.50

Figure 5.9: Gouraud shaded solution for the IS oracle for the scene in Fig. 5.2. An entropic index of (a)
1.5, (b) 1, and (c) 0.5 has been used. By columns, (i) view1 and (ii) view2 are shown. The respective
meshes are shown in Fig. 5.10. The oracles have been evaluated with 10 random lines between elements.
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(a.i) IS1.50 (a.ii) IS1.50

(b.i) IS1.00 (b.ii) IS1.00

(c.i) IS0.50 (c.ii) IS0.50

Figure 5.10: Adaptive mesh for the IS oracle for the scene in Fig. 5.2. An entropic index of (a) 1.5, (b)
1, and (c) 0.5 has been used. By columns, (i) view1 and (ii) view2 are shown. The respective Gouraud
shaded solutions are shown in Fig. 5.9. The oracles have been evaluated with 10 random lines between
elements.
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oracle RMSEa RMSEp PSNRa PSNRp

KS 13.531 13.520 25.504 25.511
IS1.50 10.978 10.899 27.321 27.383
IS1.25 10.989 10.909 27.311 27.375
IS1.00 11.086 10.977 27.235 27.321
IS0.75 11.126 11.019 27.204 27.288
IS0.50 11.220 11.224 27.131 27.128

Table 5.4: The RMSE and PSNR measures of the KS and ISα oracles applied to Fig. 5.3. The images
for the KS and ISα for α ∈ {0.5, 1, 1.5} oracles are shown in Fig. 5.11. The oracles have been evaluated
with 10 random lines between elements.

for the KS and IS oracles with Gouraud shaded solutions (Figs. 5.11.∗.i) and their respective meshes
(Figs. 5.11.∗.ii). In Table 5.4, we show the measures of RMSE and PSNR for a set of results obtained
with these oracles, including the previously mentioned images.

The results obtained for the scenes tested present an improvement against the classic version but,
as in the the case of the TI, we cannot establish a predefined behaviour for the entropic index. For
the scenes shown, the tendency is subextensive for Fig. 5.2 and superextensive for Fig. 5.3. The better
results are for an index of 0.50 and 1.50, respectively.

5.5 Mutual Information

We consider now a classical oracle based on the smoothness of received radiosity, where an optimal
refinement can be expected by directly estimating how well the radiosity Bj(x), received at x ∈ Ai from
Aj , is approximated by a linear combination of the basis functions on Ai. This is achieved by estimating
the discretisation error (§2.4.4). Specifically, we select the oracle (2.69) proposed by Lischinski et al. [129]:

ρi max{Fij − min
x∈Ai

{Fx→j}, max
x∈Ai

{Fx→j} − Fij}Bj < ε. (RS)

The cheapest and most frequently used oracle has been the TP oracle. However, its use results in
sub-optimal shadow boundaries and excessive refinement in smoothly illuminated areas receiving a lot
of power. The KS and RS oracles were proposed as an alternative for solving this problem. However,
the oracle based on kernel smoothness has the problem of unnecessary subdivisions where the kernel
is unbounded, and the one based on received radiosity relies on a costly accurate computation of form
factors. All in all, the additional cost invested in both smoothness-based oracles, mainly through visibility
computations, may not be balanced by the improvements obtained. We will see below how the generalised
mutual information can be introduced in this oracle scheme obtaining good results with regard to quality
versus cost.

5.5.1 Concept

In the previous TP and KS oracles we have directly applied the HCT entropy in order to obtain kernels
based purely on the geometric information content. In order to approximate a good balance between
cost and results, now our strategy will be based on the estimate of the discretisation error taking the
difference between the continuous and discrete information transfer, or mutual information (5.6), between
two elements of the adaptive mesh. The scene discretisation error based on Shannon mutual information
has been introduced by Feixas et al. [68] (§2.6.1) and applied to hierarchical radiosity with very good
results (2.70).

First of all, analogously to how we proceeded with the previous oracles based on the information
content, we need to rewrite the generalised mutual information in order to be able to work at patch level.
Let us consider the expression

ıα(p, q) =
1

1− α

qα − pα

qα−1
. (5.17)
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(a.i) KS (a.ii) KS

(b.i) IS1.50 (b.ii) IS1.50

(c.i) IS1.00 (c.ii) IS1.00

(d.i) IS0.50 (d.ii) IS0.50

Figure 5.11: KS and ISα∈{0.5,1,1.5} oracles for the scene in Fig. 5.3. By columns, (i) Gouraud shaded
solution and (ii) its final adaptive mesh are shown. The oracles have been evaluated with 10 random
lines between elements.
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Then, the discrete directed divergence (5.5) can be expressed as Dα(p, q) =
∑n

i=1 ıα(pi, qi) and, conse-
quently, the discrete generalised mutual information (5.6) can be rewritten as

Iα(X, Y ) = Dα(pXY , pXqY ) =
n∑

i=1

m∑
j=1

ıα(pij , piqj). (5.18)

The transition to continuous measures is straightforward. In the context of a discrete scene information
channel (§2.6), the marginal probabilities are pX = qY = {ai} (i.e., relative area) and the conditional
pXY = {aiFij}. Then, from (5.18):

Definition 73 The discrete scene generalised mutual information of S is given by

Iα(S) =
∑
i∈S

∑
j∈S

ıα(aiFij , aiaj). (5.19)

It is defined as a measure of the average information transfer in a discrete scene. The term ıα(aiFij , aiaj)
can be considered as an element of the symmetric scene generalised mutual information matrix Iα,
representing the information transfer between patches i and j.

To compute Iα, the area-to-area sampling (5.10) is used obtaining for each pair of elements
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=
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T

 1
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∑
(x,y)∈Si×j

Fx↔y

α . (5.20)

This information transfer between two patches can be obtained more accurately with the continuous
generalised mutual information between them. The pdfs are p(x) = q(y) = 1

AT
and p(x, y) = 1

AT
Fx↔y

and, from the discrete form (5.19), we have

Definition 74 The continuous scene generalised mutual information of S is given by

Ic
α(S) =

∫
A

∫
A

ıα

(
1

AT

Fx↔y,
1

A2
T

)
dAydAx. (5.21)

This represents the global information transfer in the continuous scene. We can split the integration
domain and for two surface elements i and j we have

Ic
αij

(S) =
∫

Ai

∫
Aj

ıα

(
1

AT

Fx↔y,
1

A2
T

)
dAydAx (5.22)

that, analogously to the discrete case, expresses the partial contribution of information shared between
two patches.

Both continuous expressions, (5.21) and (5.22), can be solved by Monte Carlo integration (§2.2.1).
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Thus, taking as pdf 1
AiAj

, the last expression (5.22) can be approximated by
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At this point, we have the discrete and continuous generalised mutual information of the scene, as
much global as partial between two surfaces. Both measures, for a determinate entropic index α, can
be considered as geometric visibility complexity measures of a scene (§2.7). These mutual information
complexity measures are interpreted as the difficulty of discretising a scene: the higher the continuous
mutual information, the more difficult it is to obtain an accurate discretisation and probably more
refinements are necessary to achieve a predefined precision (§2.6.1).

Definition 75 The generalised discretisation error of S is given by

∆α(S) = Ic
α(S)− Iα(S) =

∑
i∈S

∑
j∈S

∆αij
(S), (5.24)

where ∆αij
(S) = Ic

αij
(S)− Iαij

(S).

This expresses the loss of information transfer in a scene due to the discretisation. The term ∆αij
gives

us the loss of information transfer or the maximum potential gain of information transfer between the
elements i and j. Hence this difference can be interpreted as the benefit to be gained by refining and can
be used as a decision criterion. It also represents the variation of the radiosity kernel and constitutes the
base of the new oracle.

Using (5.20) and (5.23), we obtain
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where

δαij
(S) =

 1
|Si×j |

∑
(x,y)∈Si×j

Fx↔y

α

− 1
|Si×j |

∑
(x,y)∈Si×j

Fα
x↔y

 . (5.26)

The expression ∆αij
is nonnegative and, therefore, ∆α also. The function f(xα) is convex for α > 1

(§D) and using Jensen’s inequality (D.3), δαij
≤ 0 but ∆αij

≥ 0 thanks to the factor 1−α. When α < 1,
the previous inequalities are reversed and they keep the non-negativity. Observe that ∆αij

is symmetric
for the reciprocity property of the form factors (2.26). From these values, the global discretisation error
∆α can be computed (5.24). For α → 1, we obtain the particular case of Shannon mutual information
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oracle view1 view2

RMSEa RMSEp PSNRa PSNRp RMSEa RMSEp PSNRa PSNRp

RS 14.925 14.144 24.653 25.119 14.254 13.845 25.052 25.305
MI1.50 11.889 11.280 26.628 27.084 13.046 12.473 25.821 26.211
MI1.25 10.872 10.173 27.405 27.982 11.903 11.279 26.618 27.086
MI1.00 9.998 9.232 28.133 28.825 10.438 9.709 27.758 28.387
MI0.75 9.555 8.786 28.526 29.254 10.010 9.257 28.122 28.801
MI0.50 9.370 8.568 28.696 29.473 9.548 8.740 28.533 29.300

Table 5.5: The RMSE and PSNR measures of the RS and MIα oracles applied to Fig. 5.2. The images
for the RS and MIα for α ∈ {0.5, 1, 1.5} oracles are shown in Fig. 5.12 and Fig. 5.13, respectively. The
RS and MI oracles have been evaluated with 100 and 10 random lines between elements, respectively.

commented on in §2.6.1 and used in the hierarchical radiosity oracle (2.70). Note the conceptual similarity
between δαij

(5.26) and δij (2.71).
Taking the generalised discretisation error between two patches as the new kernel for our smoothness-

based oracle, we have τ = ∆αij
. To standardise the shape of its expression, we multiply the inequality

by the constant AT
2−α(1− α):

Definition 76 The oracle for S in hierarchical radiosity based on generalised mutual information is
given by

ρiAiAjδαij
Bj < ε. (MI)

The critical factor is the continuous versus discrete error of information transfer which represents a loss
of information due to the discretisation and which must be minimised. The oracle works in this direction
looking for an optimum adaptive mesh from the point of view of geometric visibility α-information.

5.5.2 Results

Finally, the setting for the scenes in Fig. 5.2 and Fig. 5.3 of the previous oracles is shown by both RS
and MI oracles. We continue to keep the same size for the adaptive mesh and the same cost for the
power distribution. As we have said previously (§5.5.1), MI focuses on the calculation of the kernel of the
smoothness of received radiosity from another point of view, in order to reduce the cost of RS. Thus, RS
has been calculated using 100 lines (10 point-to-patch form factors have been computed with 10 random
lines for each one), while MI has been evaluated using only 10 random lines between two elements (for
the sake of comparison with IS).

We recall that for Fig. 5.2, we use around 19,000 patches and 2,684,000 rays for the mesh and power
distribution, respectively. In Fig. 5.12 we show the results obtained for the RS oracle with a Gouraud
shaded solution and with a final adaptive mesh. In Fig. 5.13 we present the behaviour of the MI oracle for
the three entropic indexes of 0.5, 1, and 1.5. The final meshes of these results are mapped to Fig. 5.14.
As in the previous oracles, in Table 5.5 we show the measures of RMSE and PSNR for these previous
images and other entropic indexes with respect to the scene in Fig. 5.2.

Differing from the TI and IS information-theoretic oracles, the improvement of the MI is significantly
important with respect to the classic version. Moreover, the behaviour of MI, which is based on gener-
alised discretisation error, denotes a tendency to improve towards the entropic subextensive indexes. It
is necessary to take also into account, that the cost for the calculation of the new oracle with respect to
RS is one tenth. In fact, for the same cost, the images improve as against any of the previous oracles.
Within the values analysed, the best result is obtained for α = 0.5 but if the size of the mesh increases
(19,875 patches with 6,711,250 rays to distribute the power) and also the accuracy of the calculation
of the oracle (20 random lines), the index decreases to 0.25 obtaining a better quantitative and visual
result: (RMSEa, RMSEp, PSNRa, PSNRp) is equal to (8.719, 7,836, 29.322, 30.249) and (8.618, 7,704,
29.423, 30.397) for view1 and view2, respectively (see Fig. 5.15).

With regard to Fig. 5.3, we keep the 129,000 rays for the power distribution and around 1,000 patches
for mesh. Similarly to the previous oracles, in Fig. 5.16 we show the images for the RS and MI oracles
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(a.i) RS (a.ii) RS

(b.i) RS (b.ii) RS

Figure 5.12: RS oracle for the test scene in Fig. 5.2: (a) Gouraud shaded solution and (b) its final
adaptive mesh. By columns, (i) view1 and (ii) view2 are shown. The oracle has been evaluated with 100
random lines between elements.
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(a.i) MI1.50 (a.ii) MI1.50

(b.i) MI1.00 (b.ii) MI1.00

(c.i) MI0.50 (c.ii) MI0.50

Figure 5.13: Gouraud shaded solution for the MI oracle for the scene in Fig. 5.2. An entropic index of
(a) 1.5, (b) 1, and (c) 0.5 has been used. By columns, (i) view1 and (ii) view2 are shown. The respective
meshes are shown in Fig. 5.14. The oracle has been evaluated with 10 random lines between elements.
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(a.i) MI1.50 (a.ii) MI1.50

(b.i) MI1.00 (b.ii) MI1.00

(c.i) MI0.50 (c.ii) MI0.50

Figure 5.14: Adaptive mesh for the MI oracle for the scene in Fig. 5.2. An entropic index of (a) 1.5, (b)
1, and (c) 0.5 has been used. By columns, (i) view1 and (ii) view2 are shown. The respective Gouraud
shaded solutions are shown in Fig. 5.13. The oracle has been evaluated with 10 random lines between
elements.
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(a.i) MI0.25 (a.ii) MI0.25

(b.i) MI0.25 (b.ii) MI0.25

Figure 5.15: MI0.25 oracle for the scene in Fig. 5.2: (a) Gouraud shaded solution and (b) its final adaptive
mesh. By columns, (i) view1 and (ii) view2 are shown. The data (RMSEa, RMSEp, PSNRa, PSNRp) are
equal to (i) (8.719, 7,836, 29.322, 30.249) and (ii) (8.618, 7,704, 29.423, 30.397). The oracle has been
evaluated with 20 random lines between elements.
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oracle RMSEa RMSEp PSNRa PSNRp

RS 13.198 13.171 25.721 25.738
MI1.50 13.162 13.178 25.745 25.734
MI1.25 12.011 11.943 26.539 26.588
MI1.00 11.175 11.109 27.166 27.217
MI0.75 10.810 10.745 27.454 27.507
MI0.50 10.361 10.344 27.823 27.837

Table 5.6: The RMSE and PSNR measures of the RS and MIα oracles applied to Fig. 5.3. The images
for the RS and MIα for α ∈ {0.5, 1, 1.5} oracles are shown in Fig. 5.16. The RS and MI oracles have been
evaluated with 100 and 10 random lines between elements, respectively.

oracle RMSEa RMSEp PSNRa PSNRp

RS 14.768 13.909 24.744 25.265
MI1.50 16.529 15.530 23.766 24.307
MI1.25 15.199 14.145 24.494 25.119
MI1.00 14.958 13.844 24.633 25.306
MI0.75 14.802 13.683 24.724 25.407
MI0.50 14.679 13.573 24.797 25.477

Table 5.7: The RMSE and PSNR measures of the MIα oracle applied to Fig. 5.17.a. The image for MI0.5

oracle is shown in Fig. 5.17.b. The oracle has been evaluated with 10 random lines between elements.

with Gouraud shaded solutions (Figs. 5.16.∗.i) and their respective meshes (Figs. 5.16.∗.ii). In Table 5.6,
we show the measures of RMSE and PSNR for a set of results obtained with these oracles, including the
previously mentioned images.

For this oracle, in order to analyse its behaviour, we add another set of data in Table 5.7. The
reference scene is in Fig. 5.17.a and the meshes are made up of 10,000 patches with 9,268,000 rays to
distribute the power. We have kept the cost for the each kind of oracle: 100 and 10 random lines between
elements for the RS and MI oracles, respectively. In spite of the biggest work invested by RS, similar
values of error and quality are reached in MI for an entropic index of 0.5 (Figs. 5.17.b–c). Note the
sequence of improvements in the table of results of each scene with respect to the subextensivity.

5.6 Back over the Information-Theoretic Oracles

At this point, a brief overview of the results is needed. In the previous sections we have presented three
new information-theoretic oracles for hierarchical radiosity for solving the problem of illumination in an
environment with diffuse surfaces in accordance with the general aims of §5.2 and those particular to
each approach: transported information (§5.3), information smoothness (§5.4), and mutual information
(§5.5). They have been compared with their classic counterparts: transported power, kernel smoothness,
and received radiosity smoothness, respectively.

Observe in the view1 of the test scene in Fig. 5.2, obtained by the information-theoretic oracles, the
finer details of the shadow cast on the wall by the chair on the right-hand side and also, the better-defined
shadow on the chair on the left-hand side and the one cast by the desk. In view2 we can also see how
the new oracles outperform the classic ones, especially in the much more defined shadow of the chair
on the right. Note the superior quality mesh created by the smoothness information-theoretic oracles
as opposed to the classic ones (e.g., on the table). Comparing our three information-theoretic oracles
we conclude that TI is an effective and cheap cost oracle, and that IS gives a very good quality mesh,
although they are outperformed, with the same cost, by the MI oracle. In general, we observe a better
behaviour of the information-theoretic oracles towards the classic versions, especially for a specific value
of entropic index.

We should point out the better behaviour of the MI oracle with respect to the other ones. For
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(a.i) RS (a.ii) RS

(b.i) MI1.50 (b.ii) MI1.50

(c.i) MI1.00 (c.ii) MI1.00

(d.i) MI0.50 (d.ii) MI0.50

Figure 5.16: RS and MIα∈{0.5,1,1.5} oracles for the scene in Fig. 5.3. By columns, (i) Gouraud shaded
solution and (ii) its final adaptive mesh are shown. The RS and MI oracles have been evaluated with
100 and 10 random lines between elements, respectively.
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(a)

(b) MI0.50

(c) MI0.50

Figure 5.17: MI0.50 oracle: (a) reference scene obtained with a path-tracing algorithm with 1,024 samples
per pixel in a stratified way, (b) Gouraud shaded solution, and (c) its final adaptive mesh. The oracle
has been evaluated with 10 random lines between elements.
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subextensive indexes (α < 1), the oracle also improves the results of its corresponding version in Shannon
mutual information (α→ 1). We consider the use of the discretisation error based on generalised mutual
information instead of the generalised entropy as the key factor for the good results of this oracle. The
refinement achieved using the discretisation error is much more accurate than the one obtained from
the simple evaluation of the uncertainty among the elements of the mesh. This mutual information
based kernel adequately directs the oracle towards the minimum loss of information in the refinement,
obtaining an optimum mesh from an α-information point of view. The cost of all the oracles is similar
(TI and IS) or even less (MI) than its corresponding classic ones.

The study carried out confirms the feasibility of the information-theoretic oracles, based on the HCT
entropy and generalised mutual information, for dealing with the hierarchical radiosity; but it is evident
that further studies are necessary to analyse possible correlations between the entropic index and the
scene complexity (§2.7.3). On the other hand, characterisations could exist for the scenes (geometric
and/or physical) which would enable us to associate them with a specific type of extensivity which would
be applicable from the point of view of the oracles.

Summary

Three new refinement criteria based on generalised information-theoretic measures have been introduced
for hierarchical radiosity. From the Harvda-Charvát-Tsallis generalised entropy (HCT entropy), the
concept of α-information for an event appears. The α is called the entropic index and characterises a
specific system. Associated with the HCT entropy, the generalised mutual information is reviewed.

When these generalised measures are applied to a scene as an information channel, we obtain the
measures of discrete scene HCT entropy and discrete/continuous scene generalised mutual information.
From the perspective of α-information, the consideration of these measures at patch level brings us
the information content (entropy) and information transfer (mutual information) between two elements.
When, in the hierarchical radiosity context, we consider these elements as components of an adaptive
mesh involved in a transport of energy (source and receiver elements), the aforementioned measures of
information make up the kernels of the new oracles. The aim is to create a correspondence between three
classic typologies of oracles based on kernels of geometric data and three new kernels based on geometric
α-information. The new oracles are made up proportionally to the radiosity of the source element, the
reflectance of the receiver element, and the new kernel.

Firstly, we present the transported information oracle in correspondence with the transported power
oracle. The new kernel considers the α-information content between the source and receiver elements of
the hierarchical mesh and the area of the receiver element. In the tests developed, slight improvements
with respect to the classic version are shown.

Secondly, we present the information smoothness oracle in correspondence with the smoothness-
based oracle. The new kernel is based on the variation of the α-information content between the source
and receiver elements of the hierarchical mesh and the area of the receiver element. The variation is
obtained from the α-information values corresponding to the maximum, minimum, and average point-to-
point form factors (from the source element with respect to the receiver element). The results obtained
improve on the classic version in all the tests carried out.

And lastly, we present the mutual information oracle, which is based on the generalised discretisation
error, in correspondence with the classic smoothness of received radiosity based oracles. This error
is calculated from the difference between the continuous and discrete generalised mutual information
between two elements of the adaptive mesh. This difference expresses the loss of α-information transfer
in a scene due to the discretisation. The results obtained improve on the classic method significantly and
become the best of the three options, being better even than the version based on the Shannon mutual
information. The best entropic index is obtained with values of subextensivity in all the tests developed.

The concepts and results presented bring solidness to the applicability in hierarchical radiosity of the
oracles based on generalised information-theoretic measures. The MI oracle denotes good behaviour in
subextensivity and offers the best results. The cost of all the oracles is not higher than the corresponding
classic ones. Further work needs to be carried out to find out more details of the relationship between
the HCT entropy and the system formed by a scene.
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The galaxies are a huge gravitationally bound system of stars, interstellar gas and dust,
plasma, and dark matter. At least, 1011 of them are estimated in the Observable
Universe. Typical galaxies contain 10 million to one trillion stars, all orbiting a common
centre of gravity. In addition to single stars and a tenuous interstellar medium, most
galaxies contain a large number of multiple star systems and star clusters as well as
various types of nebulae. They make up, therefore, a very bright compound object
within the Universe scene.
Most galaxies are several thousand to several hundred thousand light-years in diameter
and are usually separated by millions of light-years. They are joined together in fields,
groups, or clusters, which make up superclusters. Three main types are considered:
elliptical, spiral, and irregular (the Hubble sequence is a slightly more extensive descrip-
tion). Our own galaxy, the Milky Way, is a large spiral galaxy about 100,000 light-years
in diameter and 3,000 light-years in thickness. It contains about 3 hundred billion stars
and has a mass of about 6 hundred billion times the mass of the Sun. It is a member
of the Local Group, which it dominates together with the Andromeda Galaxy. However,
the Local Group is part of the Virgo Supercluster, which is dominated by the Virgo
Cluster.
The study of galaxies began in Ancient Greece —from where the word galaxy comes,
meaning “milky circle” because of its appearance in the sky and it gives its name to
our own galaxy— and continues to this day. In 1929, Edwin P. Hubble and Milton L.
Humason formulated the empirical Redshift Distance Law of Galaxies, which is consistent
with the solutions of Einstein’s General Relativity equations [56] for a homogeneous and
isotropic expanding Universe (supporting the Big-Bang theory) [255].

Image: The Whirlpool Galaxy (M51-NGC5194).
Date: January 2005.
Earth distance: 31 million light-years.
Credit: NASA, ESA, S. Beckwith (STScI), and
The Hubble Heritage Team (STScI-AURA).

The Whirlpool Galaxy is a great design of a spiral galaxy, from its curving spiral arms,
where young stars reside, to its yellowish central core, a home of older stars. These
arms serve an important purpose in spiral galaxies. They are star-formation factories,
compressing hydrogen gas and creating clusters of new stars. In the Whirlpool, the
assembly line begins with the dark clouds of gas on the inner edge, then moves to bright
pink star-forming regions, and ends with the brilliant blue star clusters along the outer
edge.
Some astronomers believe that the Whirlpool’s arms are so prominent because of the
effects of a close encounter with NGC5195, the small yellowish galaxy at the outermost
tip of one of the Whirlpool’s arms [61, 143].



Chapter 6

Refinement Criteria Based on
f-Divergences

Just as we have seen in the previous chapters (§2.1, §4, and §5), when sampling a signal we need a
criterion to decide whether to take additional samples, albeit within the original domain or within a
hierarchical subdivision. The refinement criteria are mainly based on the homogeneity encountered in
the samples. Heterogeneity should lead to further sampling, possibly with an adaptive subdivision of the
domain. Oracles are then built based on these criteria. Examples in image synthesis of this refinement
process have been applied to specific ray-tracing techniques (§4) and radiosity (§5) where, for each of
them, we have incorporated new entropy-based methods.

In this chapter, we introduce new refinement criteria based on f-divergences. The introduction of
these measures is motivated by the observation that the mutual information-based oracle (2.70) can be
rewritten as an f-divergence. f-Divergences are a family of convex functions that possess very remarkable
properties. They were introduced by Csiszár [40] and Ali and Silvey [3] as measures of discrimination
or distance between probability distributions and have been successfully used in image processing and
several engineering areas [156, 123, 100, 171].

Our purpose is to demonstrate the usefulness of f-divergences in computer graphics by applying them
to defining new refinement criteria for the techniques of the previous chapters: hierarchical radiosity
(§6.3) and adaptive sampling in ray-tracing (§6.4). We consider that some divergences are perfectly
fitted as homogeneity measures, when we consider how distant the distribution of the samples is with
respect to the uniform distribution. We will see how, compared with classic refinement criteria, the
f-divergence-based ones give significantly better results. Previously, we give a brief introduction to
divergence measures (§6.1) and in particular to the f-divergences (§6.2).

6.1 Divergence Measures

In this section, we establish the semantics of divergence measures (§6.1.1) and we present three specific
types of them (§6.1.2).

6.1.1 Concept

What does “divergence” mean? One brief definition for divergence is “a deviation from a course or
standard” [139]. In general, the difference in shades of meaning between words such as difference,
dissimilarity, distance, and divergence are so subtle that we end up considering them practically synonyms
in every day language. In a statistical context, the objective is to measure the level of separation between
two elements of a sampling. Depending on the properties that make up the measure, it can be qualified
in one sense or another [82, 23, 134].

Let X be a nonempty set and d : X2 → R a function. Then, d is a measure of
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Difference If it fulfils

◦ Symmetry: d(x, y) = d(y, x) ∀x, y ∈ X
◦ Minimum difference: d(x, y) ≥ d(x, x) ∀x, y ∈ X

Dissimilarity If it is a difference measure which fulfils

◦ Non-negativity: d(x, y) ≥ 0 ∀x, y ∈ X
◦ Self-similarity: d(x, x) = 0 ∀x ∈ X

Distance Also called a metric, if it is a dissimilarity measure which fulfils

◦ Defined: d(x, y) = 0⇒ x = y ∀x, y ∈ X
◦ Triangle inequality: d(x, y) + d(y, z) ≥ d(x, z) ∀x, y, z ∈ X

When the objective of the measure is to reflect the discrepancy or difference between two probability
distributions, it is called divergence1 [24]:

Definition 77 Let X be a countable observation space with n > 1 elements and P the set of all the
possible probability distributions of X . Then, D : P2 → R+ ∪ {0} is a divergence if, for all (p, q) ∈ P2,
it fulfils:

◦ D({p1, . . . , pn}, {q1, . . . , qn}) is a continuous function of its 2 · n variables.
◦ D(p, q) is invariant under the permutations of the pairs (pi, qi) for i ∈ {1, . . . , n}.
◦ D({p1, . . . , pn, 0}, {q1, . . . , qn, 0}) = D(p, q).
◦ D(p, q) ≥ 0.
◦ D(p, q) = 0⇔ p = q.

Note that if a divergence were symmetric it would be equivalent to a defined dissimilarity which only
lacks the triangle inequality to attain the category of metric.

6.1.2 Divergence Classes

With the previous definition of divergence, it is possible to obtain a large set of divergence measures
D(p, q). In general, the problem consists in discerning the suitable measures for every specific case.
Convexity is a desirable property (D.1). A generalisation of it, Jensen’s inequality (D.2), is widely used
in mathematics, information theory, and different engineering areas as a kernel of divergence measures.
For example, it has been successfully applied to image registration [94] and DNA segmentation [16].

We now see particular examples of divergences (following Pardo [161]). From the perspective of infor-
mation theory, the importance of the information divergence, or Kullback-Leibler distance, is objectively
accepted. In mathematical statistics, the same role is played by the chi-square divergence. Also, in
convex analysis, arithmetic and geometric means are used in the arithmetic-geometric divergence. In the
probability theory, the Vasershtein-Ornstein divergence plays an important role together with Lα-norm
divergence, which is also very useful in statistics and other mathematical areas (see Table 6.1).

These examples and many others are special cases of a kind of divergence measure which obeys the
scheme2

D(p, q) =
∑
x∈X

ϕ(p(x), q(x)) (6.1)

for a given real function ϕ(u, v) of positive variables u, v. This function is assumed to be extended to
[0,∞)× [0,∞) taking:

ϕ(0, 0) = 0 ϕ(0, v) = lim
u→0+

ϕ(u, v) ϕ(u, 0) = lim
v→0+

ϕ(u, v) (6.2)

1 Without loss of generality, divergences are limited to discrete probability distributions. See §B and §D for probability
and convexity concepts, respectively.

2 In this context, we keep the usual functional notation for the probability distributions.
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divergence field definition

information information theory I(p, q) =
∑

x∈X p(x) log p(x)
q(x)

chi-squared statistics χ2(p, q) =
∑

x∈X
(p(x)−q(x))2

q(x)

arithmetic-geometric convex analysis AG(p, q) =
∑

x∈X ln (p(x)+q(x))/2√
p(x)q(x)

Vasershtein-Ornstein probability theory V O(p, q) = 1−
∑

x∈X min{p(x), q(x)}
Lα-norm mathematics Lα(p, q) =

∑
x∈X | p(x)− q(x)|α α ∈ {1, 2}

Table 6.1: A subset of useful divergences with its most common fields of application.

for u, v > 0 where the limits may be infinite.
This scheme has been introduced in information theory for some classes of functions ϕ(u, v) where

(u, v) ∈ [0, 1]2. An important case is the kind of divergences that can be generated with the help of a
convex function f : (0,∞)→ (−∞,∞) (§D), extended to [0,∞]→ (−∞,∞] by the continuity rules:

f(0) = lim
x→0+

f(x) f(∞) = lim
x→∞

f(x). (6.3)

Let F be the set of these functions f which are twice differentiable with continuous derivatives satisfying
f(1) = 0 and f ′′(1) > 0. Using f ∈ F , the following divergences are defined in accordance with (6.1):

Csiszár divergences ϕ(u, v) = vf
(

u
v

)
Bregman divergences ϕ(u, v) = f(u)− f(v)− f ′(v)(u− v)

Burbea-Rao divergences ϕ(u, v) = f(u)+f(v)
2 − f

(
u+v

2

)
These three kinds are partially overlapping [160]. We focus our attention on Csiszár divergences [40, 41],
also called f-divergences and denoted by Df (p, q).

6.2 f-Divergences

f-Divergences are based on convex functions and were independently introduced by Csiszár [40], and
Ali and Silvey [3]. These measures have been applied to different areas, such as medical image reg-
istration [171] and classification and retrieval [100], among others. We introduce, in this section, the
definition, properties, and particular instances which we will use in the following sections [127, 153].
Accordingly §6.1.2, we take ϕ(u, v) = vf

(
u
v

)
and

Definition 78 Let (p, q) ∈ P2 and f ∈ F . The f-divergence of the probability distributions p and q is
given by

Df (p, q) =
∑
x∈X

q(x)f
(

p(x)
q(x)

)
. (6.4)

By extension rules (6.2), for p, q > 0

0f

(
0
0

)
= 0 qf

(
0
q

)
= qf(0) 0f

(p

0

)
= p lim

y→∞

f(y)
y

. (6.5)

Then, Df (p, q) is well defined as a divergence measure [244]. Two important properties are:

• Df (p, q) is convex on (p, q).
If (p, q) and (p′, q′) are two pairs of probability distributions, then

λDf (p, q) + (1− λ)Df (p′, q′) ≥ Df (λp + (1− λ)p′, λq + (1− λ)q′). (6.6)
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Figure 6.1: Plot for x ∈ [0, 3] of three strictly convex functions: u log u (blue), (u − 1)2 (red), and
1
2 (
√

u − 1)2 (green). The shared intersection is f(1) = 0. From these functions, the Kullback-Leibler,
chi-square, and the Hellinger f-divergences are obtained, respectively.

• Uniqueness.
If f, g ∈ F , then Df (p, q) = Dg(p, q)⇔ ∃r ∈ R. f(u)− g(u) = r(u− 1).

f-Divergences have been studied in depth. The Research Group in Mathematical Inequalities and Ap-
plications3 deserves a special mention since over recent years its members have made many contributions
to this area [155, 50, 11, 153]. f-Divergences can be grouped together in terms of their convex func-
tions. Considering the classification of Österreicher [153], we have the following types: χα-divergences,
(symmetrised) dichotomy, Matusita’s divergences, elementary divergences, Puri-Vincze Divergences, and
Divergences of Arimoto-type. Within each type, other families of f-divergences can be created. We
should mention particularly the subtype of fα-divergences (dichotomy class) presented by Liese and
Vajda [127].

Next, we select three of the most important f-divergences [50, 77, 153], called “distances” in the
literature. They are built up from the convex functions in Fig. 6.1:

Kullback-Leibler f(u) = u log u:

DKL(p, q) =
∑
x∈X

p(x) log
p(x)
q(x)

. (6.7)

Introduced by Kullback and Leibler [118], it corresponds to the relative entropy or Kullback-Leibler
distance (2.77). Based on continuity arguments, 0 log 0

q(x) = 0 for all q(x), and p(x) log p(x)
0 = ∞

for all p(x) > 0 (6.2). Hence, the measure takes values in [0,∞]. It is not a metric, since it is
not symmetric and does not satisfy triangle inequality but, despite of this, it has many useful
properties [177, 37, 77]. A square root version of Kullback-Leibler divergence has been used by
Yang and Barron [259]. In Fig. 6.2.a we show the behaviour of this divergence by means of the
contribution of a pair (p(x), q(x)). The maximum contribution is∞ in (p(x), 0), and the minimum is
−(e ln 2)−1 ≈ −0.531 in (1

e , 1). The contribution is null for any pair where p(x) = 0 or p(x) = q(x).
Note the relevance which the divergence takes with respect to p.

Chi-square f(u) = (u− 1)2:

Dχ2(p, q) =
∑
x∈X

(p(x)− q(x))2

q(x)
. (6.8)

Defined by Pearson [166]4, this measure takes values in [0,∞] due to the limit when q(x) = 0 (6.2).
It is not symmetric. Reiss [177] defined a divergence using the square root of Dχ2 . In Fig. 6.2.b we
show the same representation as in the previous divergence. The maximum contribution is also ∞
in (p(x), 0), but the minimum is 0 and it is attained in all the pairs where p(x) = q(x). Observe
that, even though a strong relevance with respect to p is maintained, the values of q take on more
importance than in the case of DKL.

3 Founded in 1998 at Victoria University, Melbourne, Australia. It is chaired by professor Sever S. Dragomir and now
boasts over 800 members worldwide. They publish regularly a Research Report Collection and the Journal of Inequalities
in Pure and Applied Mathematics (http://rgmia.vu.edu.au).

4 The history of this measure can be found in Liese and Vajda [127].

http://rgmia.vu.edu.au
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Figure 6.2: Density maps of the contribution of a pair (p(x), q(x)) for all x ∈ X : (a) DKL, (b) Dχ2 , and
(c) Dh2 .

Hellinger f(u) = 1
2 (
√

u− 1)2:

Dh2(p, q) =
1
2

∑
x∈X

(√
p(x)−

√
q(x)

)2

. (6.9)

The origins are in Hellinger [99]5. This symmetric measure takes values in [0, 1] due to the normal-
isation factor of 1

2 . If it is omitted in f , we obtain the general Hellinger form 2Dh2 . The quantity
1−Dh2 is called the Hellinger affinity, a measure popularised by Kakutani [113] who also applied
the square root to the general form of Hellinger obtaining a metric [237] (the normalisation factor
is 1√

2
). In Fig. 6.2.c, the contribution of each pair is shown. The maximum contribution is 1

2 in
(1, 0) and (0, 1) and the minimum is 0 when p(x) = q(x). Note how the relevance between p and q
has balanced out due to the symmetry.

x
2

√
x

Dh2

log(1 + x)
DKL Dχ2

Figure 6.3: Bounds between DKL,
Dχ2 , and Dh2 , where Df

h→ Dg

means Df (p, q) ≤ h(Df (p, q)).
Credit: Adapted from Gibbs and
Su [77].

However, none of the above f-divergences are true distances. In
Österreicher [154] there is a discussion about which f-divergences
have a metric behaviour. Gibbs and Su [77] provide a summary
of bounds between probability metrics and distances. Three rela-
tionships between the f-divergences presented are (Fig. 6.3):

◦ Dh2(p, q) ≤ 1
2DKL(p, q) [177]

◦ Dh2(p, q) ≤
√

Dχ2(p, q) [177]
◦ DKL(p, q) ≤ log(1 + Dχ2(p, q)) [77]

6.3 f-Divergences in Radiosity

In this section, new refinement criteria based on f-divergences are introduced for hierarchical radiosity
(object-space approach). For comparison purposes, they have been applied in the same framework as in
the entropy-based refinement criteria for hierarchical radiosity (§5).

6.3.1 Method

Analysing the mutual information-based oracle ρiδijBj < ε (2.70) [68] we observe that it can be rewritten
from a Kullback-Leibler distance. In fact, the kernel of the oracle is based on the mutual information,
which at the same time is defined as a the Kullback-Leibler distance (2.79) and which, in accordance
with (6.7), belongs to the f-divergences family. In order to obtain the new expression, we need to make
the following considerations:

5 Historical references can be found in Liese and Vajda [127] and Le Cam and Yang [120].
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◦ Let |Si×j | = Ns be the number of samples of the area sampling form factor computation.
◦ Let F̂ =

∑Ns
k=1 Fxk↔yk

be the form factor estimation where (xk, yk) ∈ Si×j (F̂ ≈ Fji

Ai
= Fij

Aj
).

◦ Let p = {pk = Fxk↔ykbF | 1 ≤ k ≤ Ns} be the probability distribution given for the contribution of

every sample to F̂ .

Note that avg1≤k≤Ns
{pk} = 1

Ns
. Then, from the discretisation error (2.71)

δij ≈
AiAj

AT

 1
|Si×j |

 ∑
(x,y)∈Si×j

Fx↔y log Fx↔y


−

 1
|Si×j |

∑
(x,y)∈Si×j

Fx↔y

 log

 1
|Si×j |

∑
(x,y)∈Si×j

Fx↔y

 , (6.10)

we can rewrite

δij ≈
AiAj

AT

(
avg1≤k≤Ns

{Fxk↔yk
log Fxk↔yk

} − avg1≤k≤Ns
{Fxk↔yk

} log avg1≤k≤Ns
{Fxk↔yk

}
)

(6.11)

=
AiAj

AT

F̂
(
avg1≤k≤Ns

{pk log pk} − avg1≤k≤Ns
{pk} log avg1≤k≤Ns

{pk}
)

(6.12)

=
AiAj

AT

F̂

(
avg1≤k≤Ns

pk log pk −
1

Ns
log

1
Ns

)
=

AiAj

ATNs
F̂ ((

∑
1≤k≤Ns

pk log pk

)
− log

1
Ns

)
=

AiAj

ATNs
F̂ DKL(p, q), (6.13)

where q = {qk = 1
Ns
| 1 ≤ k ≤ Ns} is the uniform distribution.

This fact suggests that we try other f-divergences in the kernel of the refinement oracle. These
measures will give us the distance of the distribution of the point-to-point form factors, p, with respect
to the uniform distribution, q. Thus, the Kullback-Leibler (6.7), chi-square (6.8), and Hellinger (6.9)
distances have been tested. The Kullback-Leibler-based oracle has already been studied in [68, 65] from
an information-theoretic perspective.

Definition 79 Three oracles for hierarchical radiosity, based on their respective f-divergences, are given
by

• Kullback-Leibler divergence
ρiAiAjF̂ DKL(p, q)Bj < ε (KL)

• Chi-square divergence
ρiAiAjF̂ χ2(p, q)Bj < ε (CS)

• Hellinger divergence
ρiAiAjF̂ D2

h2(p, q)Bj < ε (HL)

Observe that the constants 1
AT

and 1
Ns

have been removed since they are specific constants for each scene
and are implicit in the threshold.

It is important to note that the expression between parenthesis in (6.11) corresponds to Jensen’s
inequality (D.3) with f(x) = x log x and x ∈ p. Moreover, we can also see that expression (6.12) is equal
to the first term of the log-sum inequality (D.5), taking ai = pk, bi = 1, and n = Ns. Thus, δij ≥ 0.
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(i) KL (ii) KL

Figure 6.4: KL oracle for the scene in Fig. 5.2.i : (i) Gouraud shaded solution and (ii) its final adaptive
mesh. The oracle has been evaluated with 10 random lines between elements.

6.3.2 Results

For comparative effects, the kernel-smoothness-based oracle,

ρi max{Fmax
ij − F avg

ij , F avg
ij − Fmin

ij }AjBj < ε, (KS)

is chosen as a representative of the oracles which work evaluating the variation of the radiosity kernel
between a pair of elements (2.68). This oracle and the f-divergence-based oracles have been implemented
on top of the hierarchical Monte Carlo radiosity method (§2.4.3). It should be noted that our oracles
can be used with any hierarchical radiosity method.

In Fig. 6.4 we show a general view of the test scene (Fig. 5.2.i) obtained with the KL oracle. The
left image (i) shows the Gouraud shaded solution, while the right one (ii) corresponds to the subdivision
obtained. Each oracle has been evaluated with the same general parameters that in §5: Ns = 10 random
lines between the corresponding pair of elements; an average of 2,684,000 rays to distribute the power
have been cast for each solution; and the ε parameter has been tuned so that the meshes obtained have
approximately 19,000 patches in all the methods.

For another view of the test scene (Fig. 5.2.ii), we present the results obtained with the f-divergence-
based oracles KL, CS, and HL (Figs. 6.5.a–c, respectively) and the KS oracle (Fig. 6.6.a). We can see
how the f-divergence-based oracles outperform the KS one, working the more complex light zones better
and obtaining an improved sharpness in the objects. The meshes created are of higher quality and their
precision in the corners and in the transitions of light show this feature. On the other hand, comparing
our three f-divergence oracles we conclude that, although they exhibit a similar quality, the KL one
is slightly better. For instance, observe that the shadows on the table are more defined. A possible
explanation for this better behaviour could be that the KL oracle, unlike the other ones, meets the
conditions of Jensen’s inequality (D.3). This confers a distinct theoretical advantage on this oracle.

From the above, one could be tempted to use Jensen’s inequality alone as a kernel for a refinement
oracle. We have experimented with the function f(x) = x2, which when substituted in Jensen’s inequal-
ity, corresponds to the variance (B.1). Thus, substituting Fxk↔yk

log Fxk↔yk
by F 2

xk↔yk
in (6.11), the

variance-based oracle is given by
ρiAiAjF̂

2 V (p, q)Bj < ε, (VT)

where V (p, q) = avg1≤k≤Ns
{p2

k} −
(

1
Ns

)2

. The results obtained are presented in Fig. 6.6.b, showing the
inadequacy of this function.

In Table 6.2, the results of the previous methods are evaluated with the RMSE and PSNR measures,
both for the two views in Fig. 5.2. The improvement with regard to the KS and VT is reflected and the
results of the KL oracle are noteworthy.
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(a.i) KL (a.ii) KL

(b.i) CS (b.ii) CS

(c.i) HL (c.ii) HL

Figure 6.5: The view2 of the scene in Fig. 5.2.ii for comparison of f-divergence-based oracles, (a)
Kullback-Leibler (KL), (b) chi-square (CS), and (c) Hellinger (HL), versus KS and VT ones (Fig. 6.6). By
columns, (i) Gouraud shaded solution and (ii) its final adaptive mesh. The oracles have been evaluated
with 10 random lines between elements.
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(a.i) KS (a.ii) KS

(b.i) VT (b.ii) VT

Figure 6.6: The view2 of the scene in Fig. 5.2.ii for comparison of (a) kernel-smoothness-based (KS)
and (b) variance-based (VT) oracles versus f-divergence-based ones (Fig. 6.5). By columns, (i) Gouraud
shaded solution and (ii) its final adaptive mesh. The oracles have been evaluated with 10 random lines
between elements.

oracle view1 view2

RMSEa RMSEp PSNRa PSNRp RMSEa RMSEp PSNRa PSNRp

KL 9.475 8.698 28.599 29.342 9.712 8.956 28.385 29.088
CS 10.097 9.355 28.047 28.710 10.556 9.825 27.661 28.284
HL 9.990 9.217 28.139 28.839 10.404 9.687 27.787 28.407
KS 13.791 13.128 25.339 25.767 15.167 14.354 24.513 24.991
VT 16.414 15.898 23.826 24.104 17.829 17.378 23.108 23.331

Table 6.2: The RMSE and PSNR measures of the f-divergence-based, KS, and VT oracles applied to
Fig. 5.2. A set of images are shown in Fig. 6.4 (KL), Fig. 6.5 (KL, CS, and HL), and Fig. 6.6 (KS and
VT). The oracles have been evaluated with 10 random lines between elements.
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6.4 f-Divergences in Adaptive Sampling for Ray-Tracing

In this section, we apply the f-divergences to the refinement criteria based on ray-tracing (pixel-driven
approach). To do this, we incorporate the divergences into the adaptive sampling scheme using the same
basic idea as in hierarchical radiosity (§6.3) but considering the luminance information instead of the ge-
ometric information of the form factors. Therefore, we evaluate the homogeneity of a region of the image
plane in accordance with the divergence between its luminance distribution and the uniform distribution.
To make the comparison easier, we use the same framework as in the entropy-based refinement criteria
for ray-tracing (§4).

6.4.1 Method

The f-divergences defined in §6.2 will be used to evaluate the heterogeneity of a set of samples in a region.
The scheme used is the following:

1. A first batch of Np
s samples is cast through a pixel and the corresponding luminances Li∈{1,...,Np

s } are
obtained. For an sRGB colour system, the luminance corresponds to the value of Y in (2.53) [32].

2. The f-divergences Df (p, q) are taken between the normalised distribution of the obtained lumi-
nances,

p = {pi =
Li∑Np
s

j=1 Lj

| 1 ≤ i ≤ Np
s }, (6.14)

and the uniform distribution q = {qi = 1
Np

s
| 1 ≤ i ≤ Np

s }.

3. The refinement criterion, given by
1

Np
s
LDf (p, q) < ε (6.15)

is evaluated, where Df represents the Kullback-Leibler, chi-square, or Hellinger divergences, L is
the average luminance

L =
1

Np
s

Np
s∑

i=1

Li, (6.16)

and ε is a predefined threshold for the refinement test. The divergence measure Df (p, q) in the
kernel plays the role of a contrast. Note that to assign an importance to this value, we weight it
with the average luminance (6.16), as in Glassner’s version of classic contrast [79] (§2.1.4), used
also in the method CC in §4.4.5. Division by the number of samples Np

s in (6.15) ensures that the
refinement process stops.

4. Successive batches of Np
s rays are cast until the result of the test is true and no more refinement is

necessary.

The new criteria give good visual results, but the RMSE obtained in our tests (see Table 6.3), although
better than for the classic contrast, is higher than with the confidence test criterion ((2.11) and CT in
§4.4.5). Our next logical step was to try the square root of Hellinger divergence, as it is a true metric.
The results obtained were very encouraging and, by analogy, we extended the experimentation to the
square root of the other divergences6. The results also improved the previous ones and were also better
than in the confidence test case. The square root versions of this set of f-divergences have already been
used previously in statistics. Thus,

Definition 80 Three refinement criteria for adaptive ray-tracing, based on their respective f-divergences,
are given by

6 Also used in other fields [177, 259, 237].
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Figure 6.7: Test scene (Fig. 4.11) for the ray-tracing comparison in Fig. 6.8 and Fig. 6.9, obtained with
a path-tracing algorithm with 1,024 samples per pixel in a stratified way.

• Square root of Kullback-Leibler divergence

1
Np

s
LD

1
2
KL(p, q) < ε (KL

1
2 )

• Square root of chi-square divergence

1
Np

s
LD

1
2
χ2(p, q) < ε (CS

1
2 )

• Square root of Hellinger divergence
1

Np
s
LD

1
2
h2(p, q) < ε (HL

1
2 )

6.4.2 Results

In Fig. 6.8 and Fig. 6.9 we present comparative results with different techniques for the test scene in
Fig. 6.7. The following two methods are compared with the three f-divergence-based criteria (KL

1
2 , CS

1
2 ,

and HL
1
2 of Def. 80):

◦ CC: Classic contrast (2.6) of the luminance weighted with the respective importance L.
◦ CT: Confidence test with a confidence level of α = 0.1 and a tolerance t = 0.025 (see (2.11), §C,

and §4.4.5).

In order to evaluate their behaviour, the images are generated by a similar process to that of adaptive
sampling ray-tracing in §4.3. Clearly, all the methods are directly applicable to adaptive sampling
schemes such as that presented in §4.4.1. In all the methods, 8 initial rays are cast in a stratified way
at each pixel to compute the contrast measures for the refinement decision, and 8 additional rays are
successively added until the condition of the criterion is met. An implementation of classic path-tracing
with next event estimator was used to compute all images. The parameters were tuned so that all five
test images were obtained with a similar average number of rays per pixel (Np

s = 60) and a similar
computational cost. The reconstruction method applied is the piecewise-continuous image (2.16) with
box filter (2.1). Finally, the pixel value is the reconstructed signal average at pixel domain.

The resulting images are shown in Figs. 6.8.∗.i (CC and CT) and Figs. 6.9.∗.i (KL
1
2 , CS

1
2 , and HL

1
2 ),

with the sampling density maps in Figs. 6.8.∗.ii and Figs. 6.9.∗.ii, respectively. The analysis of the
critical points of the images shows how our sampling scheme performs the best. Observe, for instance,
the reduced noise in the shadows cast by the objects. Observe also the detail of the shadow of the sphere
reflected on the pyramid.
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(a.i) CC (a.ii) SDM of (a.i)

(b.i) CT (b.ii) SDM of (b.i)

Figure 6.8: Images of the test scene (Fig. 6.7) obtained with an adaptive sampling scheme based on
(a) classic contrast (CC) and (b) confidence test (CT) methods. By columns, (i) shows the resulting
images and (ii) the sampling density maps of (i). The average number of rays per pixel is 60 in all the
methods.Compare with the images in Fig. 6.9.
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method criterion RMSEa RMSEp PSNRa PSNRp

Classic Contrast (CC) 6.157 6.126 32.344 32.387
Confidence test (CT) 5.194 5.174 33.822 33.855
Kullback-Leibler (KL) 5.508 5.553 33.311 33.241

f-divergences chi-square (CS) 5.414 5.452 33.461 33.400
Hellinger (HL) 5.807 5.862 32.852 32.770

Square root of Kullback-Leibler (KL
1
2 ) 4.824 4.793 34.463 34.519

f-divergences chi-square (CS
1
2 ) 4.772 4.736 34.557 34.623

Hellinger (HL
1
2 ) 4.595 4.560 34.884 34.951

Table 6.3: The RMSE and PSNR measures of the CC, CT, and f-divergence-based refinement criteria
applied to Fig. 6.7. The images for the CC and CT methods are shown in Fig. 6.8, and for the f-
divergence-based ones, in Fig. 6.9. The average number of samples per pixel is 60 in all the methods.

Comparison of the SDMs shows a better discrimination of complex regions of the scene in the three
divergence cases against the classic contrast and confidence test cases. This explains the better results
obtained by our approach. On the other hand, the confidence test approach also performs better than
the classic contrast-based method. Its SDM also explains why it performs better than the contrast-based.
However, it is unable to suitably render the reflected shadows under the mirrored pyramid and sphere
with precision.

In Table 6.3, we show the RMSE and PSNR of the images obtained with classic (Figs. 6.8.∗.i), f-
divergence, and square root of f-divergence (Figs. 6.9.∗.i) methods respective to the test image in Fig. 6.7.
Visual comparison is in concordance with numerical data. The f-divergence-based criteria used in our
experiments (KL

1
2 , CS

1
2 , and HL

1
2 ) outperform both classic contrast and confidence test experiments.

Finally, the better results of the HL
1
2 criterion could be explained by the fact that it is a true distance.

Summary

The observation that the kernel of the mutual information-based oracle of hierarchical radiosity can be
rewritten as an f-divergence motivates the study of this family of divergences as refinement criteria in
image synthesis. The basic idea consists in looking for the divergence between a uniform distribution
(homogeneity) with respect to a defined distribution from a sample set.

We present the concept of divergence measure as against those of difference, dissimilarity, and dis-
tance. Its respective properties define its semantics unambiguously. The definition and properties for
f-divergences are introduced and three particular instances of the family of Csiszár f-divergences are
presented: the Kullback-Leibler , chi-square, and Hellinger divergences.

In an object-space approach, the f-divergences mentioned are analysed in the context of hierarchical
radiosity. Their role as the kernel of the refinement oracle is studied starting from the mutual informa-
tion based oracle (reinterpreted as the Kullback-Leibler divergence). The two distributions in play are
represented, on the one hand, by the uniform distribution and, on the other one, by the distribution
obtained from the normalised point-to-point form factors between two patches. The divergence between
both distributions makes up the kernel of the oracle which will refine the mesh while a predetermined
minimum threshold is not attained. The oracles based on the three divergences are tested against the
kernel-smoothness-based and variance-based oracles showing a better behaviour.

For the pixel-driven approach, the use of the three f-divergences in the adaptive sampling technique
in ray-tracing is analysed. The criterion of refinement is based on the divergence between the uniform
distribution and that represented by the value of luminance of a sample with respect to the global
luminance in a specific region. Until the minimum required balance, expressed by a threshold, has not
been obtained, the density of the sampling is increased. The results obtained show a good behaviour
of the square roots of the three divergences and particularly of the Hellinger one. Compared with the
methods of classic contrast and confidence test, the measured error decreases.



148 CHAPTER 6. REFINEMENT CRITERIA BASED ON F-DIVERGENCES

(a.i) KL
1
2 (a.ii) SDM of (a.i)

(b.i) CS
1
2 (b.ii) SDM of (b.i)

(c.i) HL
1
2 (c.ii) SDM of (c.i)

Figure 6.9: Images of the test scene (Fig. 6.7) obtained with an adaptive sampling scheme based on
square root of (a) Kullback-Leibler (KL

1
2 ), (b) chi-square (CS

1
2 ), and (c) Hellinger (HL

1
2 ) f-divergences.

By columns, (i) shows the resulting images and (ii) the sampling density maps of (i). The average
number of samples per pixel is 60 in all the methods. Compare with the images in Fig. 6.8.
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A black-hole is a concentration of mass great enough for the force of gravity to prevent
anything passing its event horizon where the escape velocity exceeds the speed of light.
Then, they are not visible objects in the Universe scene but they are detectable because
of their radiation and interaction with their surroundings. They were predicted by John
Michell in 1783 when Newton’s Theory of Gravity was already known. In 1915, Karl
Schwarzchild demonstrated their theoretical existence by means of the equations of the
General Theory of Relativity [58]. He not only showed that black-holes can exist, but in
fact predicted that they will be formed in nature whenever a sufficient amount of mass
gets packed into a given region of space, through a process called gravitational collapse
(e.g., massive stars).
In 1971, Stephen Hawking showed that the total area of the event horizon can never
decrease. This is similar to the Second Law of Thermodynamics, with area playing
the role of entropy. Classically, one could violate this law by material which enters a
black-hole disappearing from our Universe and resulting in a decrease of the entropy.
Therefore, Jacob Bekenstein proposed that a black-hole should have an entropy and
that it should be proportional to its horizon area. Since black-holes do not classically
emit radiation, the thermodynamic viewpoint was simply an analogy. However, in 1974,
Hawking applied quantum field theory and discovered that black-holes can emit thermal
radiation. Using black-hole mechanics, it follows that the entropy of a black-hole is one
quarter of the area of the horizon. It was later suggested that black-holes are maximum-
entropy objects, meaning that the maximum entropy of a region of space is the entropy
of the largest black-hole that can fit into it. This led to the holographic principle: all
of the information contained in a volume of space can be represented by a theory based
on the boundary of that region [255].

Image: Black-Hole-Powered Jet of Virgo-A
(M87-NGC4486).
Date: February 1998.
Earth distance: 50 million light-years.
Credit: NASA and The Hubble Heritage
Team (STScI-AURA).

Streaming out from the centre of the galaxy Virgo-A like a cosmic searchlight is one of
nature’s most amazing phenomena, a black-hole-powered jet of electrons and other sub-
atomic particles travelling at nearly the speed of light. The blue jet contrasts with the
yellow glow from the combined light of billions of unseen stars and the yellow, point-like
clusters of stars that make up this galaxy. It was detected in 1918 by Heber D. Curtis
as a curious straight ray protruding. When in 1950 the field of radio was blossoming,
one of the brightest radio sources in the sky, Virgo-A, was discovered to be associated
with this jet. Lying at the centre of the galaxy is a supermassive black-hole, which has
swallowed up a mass equivalent to 2 billion times the mass of our Sun.
The jet originates in the disk of superheated gas swirling around this black-hole and
is propelled and concentrated by the intense, twisted magnetic fields trapped within
this plasma. The light (and the radio emission) is produced by electrons twisting along
magnetic field lines in the jet, a process known as synchrotron radiation, which gives
the jet its bluish tint [61, 143].



Chapter 7

Conclusions

In this chapter we present the conclusions (§7.1) and main contributions (§7.2) of this work as well as
those publications which support it (§7.3). We also enumerate some related works with this thesis (§7.4)
and some directions for future research (§7.5).

7.1 Conclusions

In this thesis we have extended the work started by Feixas et al. [66] on the application of information-
theoretic tools to visibility and radiosity. Information-theoretic measures based on the Shannon and
Harvda-Charvát-Tsallis entropies have been explored as divergence measures. Together with some
Csiszár’s f-divergences, they have been applied as refinement criteria in image synthesis, pixel-driven
(ray-tracing) and object-space (hierarchical radiosity) approaches, obtaining a rich selection of efficient
and discriminative measures. In addition, the concept of scene complexity, from a geometric visibility
point of view, has been further explored and developed. Next, in accordance with the initial objectives
(§1.2), we present the main concepts and conclusions of each chapter.

• A set of information-theoretic tools to deal with the geometric visibility information of a scene
(3D/2D) have been defined. Based on mutual information, three typologies of complexity on the
scene have been obtained.

– The scene is interpreted as an information channel and, on carrying out a physical analogy
with the concepts of interaction and field, new measures based on information have been
defined:

∗ The discrete entropy field represents the information content that all the patches create
at a point1.
∗ The mutual information field represents the information transfer which exists at the point

due to the patches (discrete field) or to the surface points (continuous field) of the scene.

The continuous mutual information field is considered the point complexity . The discrete
entropy field and discrete mutual information field are related by the discrete cross entropy
field at a point. The concept of complexity segment has been defined from the calculation of
these measures via random lines and this concept is the basic element of the transference of
geometric visibility information. The field map, based on the range of intensities of a field at
an interior point of a scene, is employed to represent the influence of these measures on the
scene.

– Two measures have been defined to evaluate the complexity of a sequence of animated discrete
scenes:

1 By default, in this context, a point belongs to the interior space of the scene IS (§3.1).
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∗ Animation complexity . Based on the accumulation of the differences of information ex-
change due to the movement between the patches of two consecutive frames. It is com-
puted from the scene discrete mutual information using complexity segments.
∗ Euclidean distance. Based on the accumulation of the differences between the form factors

of the patches which appear in consecutive frames.

Both present similar results which are coherent with the measures of complexity at a point:
the cost of the movement is related with the complexity field of its path.

– The region complexity of a scene has been evaluated from two perspectives:

∗ Surface-to-surface complexity (segment-to-segment complexity in 2D). Defined from the
geometry of the surfaces which delimit the region. Based on the continuous (or discrete)
scene mutual information between two regions of a scene.
∗ Spatial complexity . Defined from the interior space which delimit the region. Based on

the average of the complexity of all the points contained in this space.

Both measures are calculated from complexity segments. The results allow us to study the
contribution of the parts of the scene to the global complexity of a scene so that they can be
applied to optimal load balancing in parallel computation problems or to clustering algorithms
in image processing and neuroimaging fields.

• A set of entropy-based measures to evaluate the pixel have been defined. These measures have
been used in ray-tracing as refinement criteria in supersampling methods.

– The concept of pixel quality has been presented from the homogeneity of the colour of the
pixel. The entropy has been chosen to express the level of homogeneity of the information
extracted from a region. Two types of information are obtained by sampling the image plane:
colour and geometry.

∗ Based on the probability distributions constructed from the information brought by the
samples we have defined, for a colour system based on channels, the image plane channel
entropy , the pixel channel entropy , the image plane channel quality , the pixel channel
quality , and the pixel colour quality .
∗ The probability distributions based on the geometric information of the samples have

enabled us to define the image plane geometry entropy , the pixel geometry entropy , and
the pixel geometry quality .

∗ Complementary to the pixel qualities, concepts about contrast have been defined: the
pixel channel contrast , the pixel colour contrast , and the pixel geometry contrast .

∗ Several variants of contrast have also been presented. The combination between colour
and geometric contrasts has been defined as a pixel contrast . Assigning more weight to
one option than the other, the aspects of colour or geometry stand out. The measures of
quality as much as contrast can be extended to any process that requires an evaluation
of these types of characteristics, simply by adapting the probability distributions to the
relevant information.

– An entropy-based supersampling method based on the pixel contrast has been presented for
ray-tracing. The supersampling of each pixel is carried out directly proportional to its pixel
contrast. This measure shows a very good behaviour in the selection of what needs to be
supersampled.

– An entropy-based adaptive sampling method has been presented in the same context. The
pixel contrast is used as a refinement criterion of a region. Its sampling densities are locally
adapted until a sufficiently high quality is achieved. The entropy is shown to be a natural
measure for the criterion used in the refinement tree thanks to the grouping property. The
results obtained show that the new refinement algorithm improves substantially over uniform
sampling and also on classic adaptive refinement techniques.
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• The application of a generalised entropy, the Harvda-Charvát-Tsallis entropy, has been studied as
a refinement criterion in hierarchical radiosity and compared with three classic approaches.

– The interpretation of the scene as an information channel (§2.6) allows the application of the
HCT entropy and its associated generalised mutual information. Analogous to the Shannon
entropy (§2.6), both measures have allowed us to define (discrete and continuous):

∗ The scene HCT entropy .
∗ The scene generalised mutual information.

– HCT entropy introduces the concepts of α-information and entropic index to the scene. The
probabilities considered are those corresponding to the scene information channel considering
the elements of the hierarchical adaptive mesh as patches. The concepts of α-information
content and α-information transfer correspond to the HCT entropy and generalised mutual
information, respectively.

– The transported information oracle has been defined from a transported power approach. It is
based on the scene HCT entropy at patch level. Its kernel considers the α-information content
between the source and receiver elements of the hierarchical mesh and the area of the receiver
element.

– The information smoothness oracle has been defined from a kernel-smoothness-based ap-
proach. It is also based on the discrete scene HCT entropy at patch level. Its kernel is made
up from a variation of the α-information content between two elements of the hierarchical
mesh and the area of the receiver element.

– The mutual information oracle has been defined from the approach based on smoothness of
received radiosity. With the aim of reducing cost, it is based on minimising the generalised
discretisation error. This measure has been defined from the difference between the continuous
and discrete versions of the generalised mutual information of a scene. It expresses the loss of
α-information transfer in a scene due to the discretisation and, between two elements (patch
level), constitutes the kernel of this oracle together with the area of both elements.

– The results obtained for the three information-theoretic oracles improve on the respective
classic methods. The mutual information based oracle obtains the most significant results
among all of them, for values of subextensivity (α < 1), even improving the particular case
of Shannon’s mutual information oracle. The cost of any of the information-theoretic oracles
does not go higher than the respective classic ones.

• The application of Csiszár’s f-divergences as refinement criteria in rendering has been analysed.
Their good behaviour in hierarchical radiosity and adaptive sampling in ray-tracing approaches
has been validated for the Kullback-Leibler, chi-square, and Hellinger divergences. The basis for
the three refinement criteria consists in evaluating the divergence between a uniform distribution
(homogeneity) with respect to a defined distribution from a sample set.

– In hierarchical radiosity, each one of the three f-divergences has produced a refinement crite-
rion. The new kernel is defined from the calculation of the divergence between the uniform
distribution and that defined from the normalised point-to-point form factor between two
patches of the adaptive mesh. The oracles based on the three divergences have been tested
against the kernel-smoothness-based and variance-based oracles showing a better behaviour
on the whole.

– The application of the three f-divergences in the adaptive sampling techniques of ray-tracing
has produced three new refinement criteria. The criterion is led by the divergence between
uniform distribution and that represented by the value of luminance of a sample with respect
to the global luminance in a specific region. With regard to the methods of classic contrast
and confidence test, the results show a better behaviour for the square roots of the three
divergences, especially for the Hellinger case.
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7.2 Contributions

According to the previous conclusions, the principal contributions of this thesis are described below. We
also indicate the papers related to each contribution.

Scene complexity The concept of complexity for a 3D and 2D scene has been analysed from a geometric
visibility point of view. Three aspects have been considered (§3):

Point complexity The concepts of entropy and mutual information fields at an interior point of
a scene have been defined (§3.1). They represent the information content and information
transfer at a point, respectively. The continuous mutual information field at a point expresses
its complexity. From [180].

Animation complexity This represents the complexity of a sequence of frames for a discrete
scene (§3.2). Two measures have been defined: animation complexity, based on the discrete
scene mutual information, and the Euclidean distance of an animation, based on the form
factors. From [183].

Region complexity This expresses the complexity of a region of a scene from two perspectives
(§3.3): surface-to-surface complexity (segment-to-segment complexity in 2D), based on the
continuous scene mutual information between the surface of the regions; and spatial complex-
ity, based on the complexity of the interior points which defines the region itself. From [182].

Entropy-based refinement criteria in ray-tracing A set of measures of pixel quality and pixel con-
trast have been introduced from the homogeneity of the received information (§4.1 and §4.2). The
Shannon entropy has been used as a measure to capture this homogeneity in a region considering
two kinds of information: colour and geometry. A combination of pixel colour and pixel geometry
contrasts has been defined as a basic measure. This has been applied as a refinement criterion for
supersampling in ray-tracing applications showing, with respect to the classic methods, very good
behaviour in isolating the areas that need a density of specific sampling (§4.3 and §4.4). These
measures can be adapted to any application which requires quality or contrast criteria on taking
decisions on a sample set. From [185, 184, 186].

Entropy-based adaptive sampling algorithm The result of the study of pixel contrast as a refine-
ment criteria, a new adaptive stochastic sampling algorithm for ray-tracing, based on the recursive
decomposition of the entropy, has been presented (§4.4). Entropy is shown to be a natural mea-
sure for establishing the refinement tree bringing a sound theoretical framework to the procedure
and, in practise, a good rate quality versus cost (1.1). Our method is orthogonal to the particular
sampling and ray-tracing algorithm used. From [184, 186].

Refinement criteria based on generalised entropy in hierarchical radiosity Based on the HCT
generalised entropy, a group of new information-theoretic oracles for hierarchical radiosity (based
on transported information, information smoothness, and mutual information) have been presented
(§5) in correspondence with three classic approaches (based on transported power, kernel smooth-
ness, and received radiosity smoothness). The transported information and information smoothness
oracles use the information content (entropy) between two elements of the hierarchical adaptive
mesh while the mutual information oracle is based on minimising the loss of information trans-
fer between them, defined from the generalised mutual information (derived from HCT entropy).
The results obtained for these oracles, especially for the mutual information oracle, improve the
ones obtained from the analysed classic oracles. This study gives strength to the proposal to use
information-theoretic oracles to deal with the radiosity problem. From [187].

f-Divergence-based refinement criteria New refinement criteria based on three f-divergences are
introduced: Kullback-Leibler , chi-square, and Hellinger . We have applied these criteria to hierar-
chical radiosity (§6.3) and to adaptive sampling in ray-tracing (§6.4). In both areas, the results
obtained with the f-divergence-based criteria show a better behaviour compared to the analysed
classic ones. From [188, 189].
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7.3 Publications

The set of publications that support the contents of this work is the following:

• Visibility Complexity of a Region in Flatland. Jaume Rigau, Miquel Feixas, and Mateu Sbert.
Short Presentations of Eurographics, EG Digital Library, 2000 [182].

• Information Theory Point Measures in a Scene. Jaume Rigau. Miquel Feixas, and Mateu Sbert.
Research Report of the Institut d’Informàtica i Aplicacions, University of Girona, 2000 [180].

• Visibility Complexity of Animation in Flatland. Jaume Rigau, Miquel Feixas, and Mateu Sbert.
Journal of WSCG (Proceedings of Winter School on Computer Graphics and CAD Systems ’01),
Union Agency - Science Press, 2001 [183].

• New Contrast Measures for Pixel Supersampling. Jaume Rigau, Miquel Feixas, and Mateu Sbert.
Advances in Modeling, Animation and Rendering (Proceedings of CGI ’02), Springer-Verlag,
2002 [185].

• Entropy-Based Adaptive Supersampling. Jaume Rigau, Miquel Feixas, and Mateu Sbert. The 13th
Eurographics Workshop on Rendering (poster papers proceedings), National Research Council of
Italy, 2002 [184].

• Information-Theory-Based Oracles for Hierarchical Radiosity. Jaume Rigau, Miquel Feixas, and
Mateu Sbert. Computational Science and Its Applications - ICCSA 2003, Springer-Verlag (Lecture
Notes in Computer Science), 2003 [187].

• Entropy-Based Adaptive Sampling. Jaume Rigau, Miquel Feixas, and Mateu Sbert. Graphics
Interface, A. K. Peters Ltd., 2003 [186].

• Refinement Criteria Based on f-Divergences. Jaume Rigau, Miquel Feixas, and Mateu Sbert. Ren-
dering Techniques 2003 (14th Eurographics Symposium on Rendering), ACM New-York, 2003 [188].

• Refinement Criteria for Global Illumination Using Convex Functions. Jaume Rigau, Miquel Feixas,
and Mateu Sbert. The First Compositional Data Analysis Workshop (CoDaWork ’03), Universitat
de Girona, 2003 [189].

7.4 Concurrent Developments

The main stem of this work is the application of information-theoretic measures to rendering. Along
with this development, the discussions and collateral tasks developed have generated new lines of work
with interesting results. Here, we include some hints of these concurrent works, some of which are still
open for further investigation.

• The concept of image complexity has been introduced [191]. We have presented a partitioning
algorithm where the image is structured into homogeneous regions, by maximising the mutual
information gain of the channel going from the histogram bins to the regions of the partitioned
image [190]. Algorithms based on mutual information for image segmentation have been also
designed [190]. The partitioning and segmentation algorithms have been applied to pre-process the
medical images for multi-modal registration [194, 10].

• Definition of geometric information-theoretic measures for the recognition of objects [192, 193].

• New sampling systems for image synthesis are studied [203].

• Information-theoretic measures for scene discretisation in flatland have been analysed [179].

Publications in which I have participated are:
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• View-Dependent Information Theory Measures for Pixel Sampling and Scene Discretization in
Flatland. Jaume Rigau, Miquel Feixas, Philippe Bekaert, and Mateu Sbert. Proceedings of Spring
Conference on Computer Graphics, IEEE Computer Society, 2001 [179].

• Medical Image Segmentation Based on Mutual Information Maximization. Jaume Rigau, Miquel
Feixas, Mateu Sbert, Anton Bardera, and Imma Boada. 7th International Conference on Medical
Image Computing and Computer-Assisted Intervention (MICCAI ’04), Springer-Verlag (Lecture
Notes in Computer Science), 2004 [194].

• An Information Theoretic Framework for Image Segmentation. Jaume Rigau, Miquel Feixas,
and Mateu Sbert. IEEE International Conference on Image Processing (ICIP ’04), IEEE Press,
2004 [190].

• An Information Theoretic Framework for Image Complexity. Jaume Rigau, Miquel Feixas, and Ma-
teu Sbert. Computational Aesthetics 2005 - First Eurographics Workshop on Computational Aes-
thetics in Graphics, Visualization and Imaging (CAGVI’ 05), Eurographics Association, 2005 [191].

• Shape Complexity Based on Mutual Information. Jaume Rigau, Miquel Feixas, and Mateu Sbert.
International Conference on Shape Modeling and Applications (SMI ’05), IEEE Computer Society,
2005 [192].

• An Information-Theoretic Approach to Shape Complexity. Jaume Rigau, Miquel Feixas, and Mateu
Sbert. Computer Graphics & Geometry, Scientific Electronic Library eLibrary.Ru, 2006 [193].

• Systematic Sampling in Image-Synthesis. Mateu Sbert, Jaume Rigau, Miquel Feixas, and László
Neumann. Computational Science and Its Applications - ICCSA ’06, Springer-Verlag (Lecture
Notes in Computer Science), 2006 [203].

• Medical Image Registration Based on BSP and Quad-tree Partitioning. Anton Bardera, Miquel
Feixas, Imma Boada, Jaume Rigau, and Mateu Sbert. Biomedical Image Registration - Third In-
ternational Workshop (WBIR ’06), Springer-Verlag (Lecture Notes in Computer Science), 2006 [10].

7.5 Future Work

Our work is one more step towards the incorporation of information-theoretic measures in the study of
the complexity of a scene, as well into refinement criteria used for its rendering. In a new phase, some
possibilities of future work are:

• From the scene complexity measures, the point complexity can be applied directly to robot vision,
design, crowd rendering and simulation, etc. Many options appear on dealing with the problem
of finding the best viewpoint (e.g., security cameras, television retransmissions, and recognition
of objects). From a theoretical point of view, the scene complexity at a point could be extended
to global illumination. Along other lines, we can look for the correlation between the animation
complexity measures (i.e., animation complexity and Euclidean distance) and also the correlation
with respect to the computational cost of the animation. With regard to region complexity, it
could be applied in the field of architecture to search for a relationship between the complexity of a
design and the distribution of spaces. Finally, radiosity could be incorporated into the complexity
measures in the way indicated in [66].

• The application of the HCT entropy as a refinement criteria in hierarchical radiosity brings with it
many questions to be answered. The most interesting one would be to analyse the characterisation,
geometrical and/or physical, of a scene with respect to the entropic index as well as to search for a
correlation between this and scene complexity. It would also be necessary to analyse the existence
of an association between the theoretical entropic index of a scene and its results as a refinement
criteria for the methods presented with special attention given to the behaviour of the mutual
information-based oracle.
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• The introduction of three f-divergences as an refinement criteria in hierarchical radiosity and ray-
tracing presents the following question: How would other families of f-divergences behave?

In hierarchical radiosity, f-divergences based on generalised entropies (e.g., Rényi entropy [178])
would they behave similarly to HCT entropy-based ones? In adaptive ray-tracing, can the gener-
alisation of the f-divergences, which include taking the α power of the basic divergence [127, 100],
shed light on the good behaviour of the exponent value 1

2 used in the ray-tracing case? Why does
the criterion based on true distance behave better than the ones based on pseudo-distances? The
answers to these questions make up a whole second phase of analysis with respect to the use of
f-divergences.

• In general, refinement criteria require a threshold in order to be able to calibrate the final result
with the quality that the user desires with respect to the cost (1.1). Our case is not different
and so the possibility of calculating a previous threshold, analytically, is an open investigation.
An automatic option could be considered by doing a prior study of the scene (e.g., trying out
tendencies for predetermined values with low densities of sampling). Other options would be to go
through a previous classification of the scenes in accordance with a parameter that is dependent on
refinement criteria (e.g., the entropic index). Nevertheless, additional costs would be inevitable.

• The concepts of complexity of a scene, pixel quality, and pixel contrast defined can be applied to
imaging. In recent years, growth in this field has been remarkable (e.g., photography, images by
satellite, and medical images). From these concepts, applications to image complexity, medical
image registration, image compression, and computational aesthetics are viable. Some of these
lines of research have been taken up (§7.4).
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Appendix A

Geometry

In this section, we compile the basic geometric notation1 used in this work on a modelled scene S
(closed environment). Detailed definitions can be found in the bibliography of computer graphics and
related fields. Within the context of rendering, we should mention particularly Sillion and Puech [221],
Glassner [79], Bekaert [12], Szirmay-Kalos [229], and Dutre et al. [53].

◦ AS is the surface of S and AT its area.
◦ S is an enumeration of the set of patches of a discretisation of S (finite countable with |S| = Np > 1).
◦ Ai is a surface of i-element of a partition or discretisation (by default, a patch of S).
◦ nx is the normal at surface point x ∈ AS.
◦ dAx is the differential area at surface point x ∈ AS.
◦ −→xy is the normalised direction vector y − x.
◦ rxy is ‖ x− y ‖ (i.e., distance between x and y).
◦ Θ, Υ represent normalised direction vectors. By default, with respect to a point x ∈ AS, Θ and Υ

represent outgoing and incoming directions, respectively.
◦ θΥ

Θ is the angle between the direction vectors Θ and Υ. A usual case is θ
−→xy
nx

for x, y ∈ AS.
◦ rΘ

x represents a ray from point x in direction Θ: set of points {x + αΘ | α ∈ R+}.
◦ Λ(x,Θ) is the closest visible surface point function (from x in direction Θ). The value is defined2 by

y.y ∈ D∧rxy = minz∈D{rxz}, where D = rΘ
x ∩AS . If y = Λ(x,Θ) and x ∈ AS , then x = Λ(y,−Θ).

◦ V (x, y) is the visibility function for all x and y of AS . Defined by 1 if x and y are mutually visible
(i.e., ∃Θ. y = Λ(x,Θ)) and 0 otherwise.

◦ IS is the set of interior points of the spatial region defined by S (I2D
S for a 2D-region).

◦ Ω is a solid angle (steradians sr).
◦ Ωx is the hemispherical solid angle at surface point x (2π sr).
◦ Ωx→A is the solid angle with apex at surface point x and subtended by surface A.
◦ S2

x is the solid angle of the unit sphere at surface point x (4π sr).

◦ dωΘ is the differential solid angle with direction Θ. It is equivalent to differential area
cos θ

−→yx
ny

r2
xy

dAy,
where x is the apex of dωΘ and y = Λ(x,Θ).

Fig. A.1 illustrates part of this notation. The same concepts are valid in flatland with analogous
interpretations and the respective changes of areas for lengths, solid angles for angles, spheres for circles,
etc.

1 As a starting point we have taken Dutre [52].
2 In an open environment, this function might be undefined.
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θΘ
nx

nx

y = Λ(x, Θ)

−Θ

Θ

x = Λ(y,−Θ)

Θ

dωΘ

rxy

y dAy

x

(a) (b)

Figure A.1: Geometry in a scene. (a) Between surface points. (b) Differential solid angle and differential
surface.



Appendix B

Probability

An enumeration of some probability concepts which are used throughout this work follows.

◦ A set is countable if there is a bijective correspondence with a subset of N. A countable set can be
finite or infinite.

◦ An alphabet is a finite nonempty set.
◦ A sample space is a set that includes all possible outcomes of an experiment.
◦ An event is a subset of a sample space.
◦ If S ⊂ R is a finite set, we denote as Smin = min{s ∈ S}, Smax = max{s ∈ S}, and S = 1

|S|
∑

s∈S s

its minimum, maximum, and average values, respectively.
◦ A random variable X describes the outcome of an experiment in a sample space X where each

element x has a probability of occurring (i.e., Pr{X = x}). Thus, X is characterised by a pair
(X , pX) where the probability of occurrence or success is measured by the function pX : X → [0, 1],
called probability distribution. For all x ∈ X , we have pX(x) = Pr{X = x} ≥ 0 and pX must be
the sum of 1 over the domain of X .

◦ The cumulative distribution of a random variable X is the function PX : X → [0, 1] where PX(x) =
Pr{X ≤ x}.

◦ A discrete random variable X is a random variable (X , pX) with a countable sample space. Its
probability distribution is called probability mass function satisfying:

-
∑

x∈X pX(x) = 1
- ∀Y ⊂ X .

∑
y∈Y pX(y) = Pr{X ∈ Y}

If there is no ambiguity, it is usual to refer to a probability mass function simply as a probability
distribution.

◦ A continuous random variable X is a random variable (X , pX) with a cumulative continuous dis-
tribution PX . When the derivative P ′X = pX is defined and integrates to 1, then pX is called the
probability density function (pdf) of X:

-
∫∞
−∞ pX(x)dx = 1

- ∀Y ⊂ X .
∫
Y pX(y)dy = Pr{X ∈ Y}

The set where pX(x) > 0 is the support set of X.
◦ The expectance or expected value of a random variable X = (X , pX) is E [X] defined as:

- Discrete:
∑

x∈X pX(xi)xi

- Continuous:
∫

x∈X pX(x)xdx
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◦ The variance of X is the expected square deviation from the expectation:

σ2 [X] = E
[
(X − E [X])2

]
= E

[
X2
]
− E [X]2 . (B.1)

Always1 σ2 ≥ 0.
◦ An estimator is a random variable X̂ which expected value is used to estimate an unknown popu-

lation parameter x. The bias of an estimator is E[X̂]− x.
◦ The sample variance of a set of random samples S (|S| > 1) is the unbiased estimator of the

variance:
s2 [S] =

1
|S| − 1

∑
s∈S

(s− S)2. (B.2)

◦ The standard deviation σ of a random variable is the square root of the average squared deviation
from the expectation (i.e., the variance square root).

◦ The mean square error (MSE) of an estimator X̂ of a value x is given by

MSE(X̂) = E
[
(X̂ − x)2

]
(B.3)

and it is equal to the variance when the estimator is unbiased (i.e., E[X̂] = x). The root mean
square error (RMSE),

√
MSE, is normally used to measure the good functioning of the estimator.

◦ If (X, Y ) is a pair of random variables with respective events EX and EY , we can define:

- The joint probability is the probability of an event of X in conjunction with one of Y :
Pr{EX , EY }. We denote pXY for the probability distribution where pXY (xi, yj) = Pr{X =
xi, Y = yj}.

- The conditional probability is the probability of event EX , assuming event EY : Pr{EX |EY } =
Pr{EX ,EY }

Pr{EY } . We denote pX|Y for the probability distribution where pX|Y (xi|yj) = Pr{X =
xi|Y = yj}.

- The marginal probability is the probability of one event, ignoring any information about the
other event2: Pr{EX} (Pr{EY }). We denote pX (qY ) for the marginal probability distribu-
tions where pX(xi) = Pr{X = xi} (qY (yi) = Pr{Y = yi}).

◦ Two events are independent if Pr{EX , EY } = Pr{EX}Pr{EY }. With probability distributions:
pXY (x, y) = pX(x)qY (y). The discrete random variables X and Y are independent if pXY = pXqY .

◦ Theorem 4 (Bayes) The inverse probability law is

Pr{EX |EY } =
Pr{EX}Pr{EY |EX}

Pr{EY }
. (B.4)

The proof is based on Pr{EX , EY } = Pr{EY }Pr{EX |EY }. In terms of pdfs, we have

pXY (x, y) = qY (y)pX|Y (x|y) = pX(x)pY |X(y|x). (B.5)

◦ A stochastic process is an indexed collection of random variables, each of which is defined on the
same probability space and takes values in the same domain. A particular stochastic process is
determined by specifying the joint probability distribution. An important case is the discrete set
where the collection runs over a discrete index set. In a continuous stochastic process, the index set
is continuous (usually time or space), resulting in an uncountable set of random variables [31, 255].

◦ A random walk is a stochastic process consisting of a sequence of discrete steps of fixed length. One
o more characteristics (e.g., magnitude or direction) are determined at random [31, 196, 103, 62].

1 Non-negativity of variance. From the convex function f(x) = x2 and Jensen’s inequality (D.4), with equality for a
constant random variable.

2 Marginal probability is obtained by summing (discrete) or integrating (continuous) the joint probability for the ignored
event.
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◦ A discrete Markov chain X1 → X2 → . . . is a sequence of random variables X1, X2, . . . which makes
up a discrete-time stochastic process with the Markov property : the past is irrelevant for predicting
the future given knowledge of the present [133, 31, 37, 142, 255]. Thus, for time n = 1, 2, . . . we
have

Pr{Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, . . . , X1 = x1} =

Pr{Xn+1 = xn+1|Xn = xn} ∀(x1, . . . , xn, xn+1) ∈ Xn+1. (B.6)

Then, pX1X2...Xn
= pX1pX2|X1 . . . pXn|Xn−1 . A Markov chain is characterised by the conditional

distribution called the transition probability of the process: pXn+1|Xn
. If the state space is finite,

the transition probability is a finite matrix, called the transition probability matrix P .

The stationary distribution is a vector which satisfies π∗P = π∗, where the stationary distribution
π∗ is a left eigenvector of the transition matrix, associated with the eigenvalue 1.

The Markov chain can also be interpreted as a random walk with an infinite countable sequence
of random variables Xk≥0, in which each Xk>0 depends only on the previous Xk−1 and not on the
ones before. The random variables Xk indicate the probability of finding an imaginary particle in
each state after k steps from an initial distribution given by X0.

Assuming that any probability function has a random variable associated with it, if there is no
ambiguity, we can simply note p and q by pX and qY , respectively. However, when the sample space is
an alphabet X with cardinality n, the associated function pX is the correspondence p = {(xi, pi) | i ∈
{1, . . . , n}} which allows us to consider, depending on the context, the usual and simplified notations:
pi = p(xi) = pX(xi), p = {pi, . . . , pn}, and p = {pi}. This can be extended to join, conditional, and
marginal probabilities.
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Appendix C

Statistics

Some statistical concepts mentioned in this work are [87]:

Confidence interval This is an estimated range of values, obtained from a set of samples, which is
likely to include an unknown parameter. The confidence limits are the lower and upper boundaries
and the confidence level is the probability value associated 1 − α (i.e., for α = 0.05 it is the 95%
confidence level).

Gamma function It was introduced by Leonhard Euler (1707-1783) when he aimed at generalising the
factorial to non-integer values (Fig. C). It is defined over C except for the nonpositive integers:

Γ(z) =
∫ ∞

0

e−ttz−1dt. (C.1)

Euler’s following limit form is valid for all complex numbers including the nonpositive integers:

Γ(z) = lim
n→∞

n!nz

Πn
k=0(z + k)

. (C.2)

The Gamma function satisfies Γ(z + 1) = zΓ(z) = z! for all complex numbers except nonpositive
integers. In particular, Γ(n + 1) = n! for any positive integer (Γ(1) = 1).

Student’s distribution It is used to estimate the mean of a normally distributed population when the
sample size is small (William Sealey Gosset1, 1908). Let X = {x1, . . . , xn} be a set of independent

1 He was an employer of Guinness Breweries and had to publish under a pseudonym: Student.

(a) Re(Γ(z)) (b) Im(Γ(z)) (c) |Γ(z)|

Figure C.1: The gamma function in complex plane: (a) the real component, (b) the imaginary compo-
nent, and (c) the absolute value.
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Figure C.2: Ten degrees of freedom from r = 1 (red) to r = 10 (green-yellow) for (a) the t-distribution
and (b) the χ2-distribution.

measurements that are normally distributed2. The estimation of the true mean is X−µ
σ/
√

n
. Using the

sample variance s2 (§B) we have the following value

t =
X − µ

s(X)/
√

n
. (C.3)

Student’s distribution is defined as the distribution of the random variable t and it approaches the
normal distribution when n increases. Its pdf, called t-distribution, is:

fr(t) =
Γ((r + 1)/2)√

rπΓ(r/2)
(1 + t2/r)−

r+1
2 , (C.4)

where r = n − 1 are the degrees of freedom (Fig. C.2.a). The support set is (−∞,+∞), µ = 0,
and σ2 = r

r−2 . Its importance is rooted in the fact that it does not depend on µ neither σ, but on
r and that it is the best approximation without knowing σ.

χ2-distribution It is the probability distribution of the random variable

χ2
r =

r∑
i=1

X2
i , (C.5)

where the Xi are normal independent distributions2. The corresponding pdf is

fr(x) =
x

r
2−1e−

x
2

Γ(r/2)2
r
2
, (C.6)

where r are the degrees of freedom (Fig. C.2.b). The support set is [0,+∞), µ = r, and σ2 = 2r.

2 µ = 0 and σ2 = 1.



Appendix D

Convexity

The property of convexity is widely applied to mathematics, information theory, and different engineering
areas to obtain divergence measures.

Definition 81 A function f : D ⊂ Rn → R is convex if

x, y ∈ D ∧ λ ∈ [0, 1]⇒ λx + (1− λ)y ∈ D

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)
(D.1)

A function is strictly convex if equality holds, only if λ = 0 or λ = 1 for x 6= y.

For n = 1, the graph of a convex function lies below any chord. The functions x2, ex, and x log x for
x > 0 are strictly convex (Fig. D.1).

Definition 82 A function f(x) is (strictly) concave if and only if −f(x) is (strictly) convex.

For n = 1, the graph of a concave function lies above any chord. For instance, log x for x > 0 is a strictly
concave function (Fig. D.1). An important inequality with convexity (concavity) is:

Theorem 5 (Jensen’s inequality) If f is a convex function on the interval [a, b], then

n∑
i=1

λif(xi)− f

(
n∑

i=1

λixi

)
≥ 0, (D.2)

where 0 ≤ λ ≤ 1,
∑n

i=1 λi = 1, and xi ∈ [a, b]. If f is a concave function, the inequality is reversed.

Proof in [110]. A very special case of this inequality is when λi = 1
n because then

1
n

n∑
i=1

f(xi)− f

(
1
n

n∑
i=1

xi

)
≥ 0. (D.3)

0 0.5 1 1.5 2 2.5 3

�4

�2

0

2

4

Figure D.1: The behaviour of two logarithmic functions for x ∈ (0, 3]: the x log x (red), a strictly convex
function, and the log x (blue), a strictly concave function.
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The value of the function at the mean of the xi is less than or equal to the mean of the values of the
function at each xi. In particular,

Theorem 6 If f is convex on the range of a random variable X ∈ Rn, then

E [f(X)] ≥ f (E[X]) . (D.4)

For f concave, the reverse inequality holds.

Proof in [37, p.25–26] by induction on the number of mass points. If f is strictly convex (concave), then
equality in (D.4) implies that X = E [X] (i.e., X is a constant). Important properties are derived from
this inequality (e.g., the non-negativity of variance (B.1) and other information-theoretic measures (2.72,
2.79). Another important inequality can be obtained from Jensen’s inequality:

Theorem 7 (The log-sum inequality) If a1, . . . , an and b1, . . . , bn are nonnegative numbers with A =∑n
i=1 ai and B =

∑n
i=1 ai, then1

n∑
i=1

ai log
ai

bi
≥ A log

A

B
, (D.5)

with equality if and only if ai

bi
is constant.

Proof [37, p.28] is obtained using the strict convexity of x log x and Jensen’s inequality (Th. 5). Note
that the conditions in this inequality are much weaker than for Jensen’s inequality. The expression (D.5)
can be rewritten as

n∑
i=1

ai

A
log

ai/A

bi/B
≥ 0, (D.6)

from which properties of non-negativity are derived in information theory (§2.5).

1 With the convention, from continuity, that 0 log 0 and 0 log 0
0

is 0, and x log a
0

= ∞ for a > 0.
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Acta Mathematica, 30:175–193, 1906.

[111] James T. Kajiya. The rendering equation. Computer Graphics (Proceedings of SIGGRAPH ’86),
20(4):143–150, August 1986.

[112] James T. Kajiya. Radiometry and photometry for computer graphics. In Andrew S. Glassner,
editor, SIGGRAPH ’90 Advances Topics in Ray Tracing (course notes), chapter 2. ACM Siggraph,
New York (NY), USA, August 1990.

[113] Shizuo Kakutani. On equivalence of infinite product measures. Annals of Mathematics, 49:214–224,
1948.

[114] Malvin H. Kalos and Paula A. Whitlock. The Monte Carlo Method. John Wiley & Sons Inc., 1986.

8A new foundation of the theory of quadratic forms of infinite many variables.
9On the convex functions and the inequalities between the averages.



VIII BIBLIOGRAPHY

[115] Alexander Keller and Stefan Heinrich. Quasi-Monte Carlo methods in computer graphics, Part I:
The QMC-buffer. Technical Report 242/94, University of Kaiserslautern, Kaiserslautern, Germany,
1994.

[116] David Kirk and James Arvo. Unbiased variance reduction for global illumination. In Proceedings
of the 2nd Eurographics Workshop on Rendering, pages 153–156, May 1991.

[117] Andrei N. Kolmogorov. On the Shannon theory of information transmission in the case of contin-
uous signals. IRE Transactions on Information Theory, 2:102–108, 1956.

[118] Solomon Kullback and Richard A. Leibler. On information and sufficiency. Annals of Mathematical
Statistics, 22:76–86, 1951.

[119] Eric P. Lafortune and Yves D. Willems. Bi-directional path tracing. In Proceedings of 3th Interna-
tional Conference on Computational Graphics and Visualization Techniques (Compugraphics ’93),
pages 145–153, December 1993.

[120] Lucien M. Le Camp and Grace L. Yang. Asymptotics in Statistics: Some Basic Concepts. Springer-
Verlag, New York (NY), USA, 1990.

[121] Mark E. Lee and Richard A. Redner. Filtering: A note on the use of nonlinear filtering in computer
graphics. IEEE Computer Graphics and Applications, 10(3):23–29, May 1990.

[122] Mark E. Lee, Richard A. Redner, and Samuel P. Uselton. Statiscally optimized sampling for
distributed ray tracing. Computer Graphics (Proceedings of SIGGRAPH ’85), 19(3):61–67, July
1985.

[123] François LeGland. Stability and approximation of nonlinear filters: an information theoretic ap-
proach. In Proceedings of the 38th IEEE Conference on Decision and Control, pages 1889–1894,
December 1999.

[124] Oscar A. Z. Leneman. Random sampling of random processes: Impulse processes. Information
and Control, 9(4):347–363, August 1966.
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[155] Ferdinand Österreicher and Igor Vajda. Statistical information and discrimination. IEEE Trans-
actions on Information Theory, 39(3):1036–1039, May 1993.

[156] Joseph A. O’Sullivan, Richard E. Blahut, and Donald L. Snyder. Information-theoretic image
formation. IEEE Transactions on Information Theory, 44(6):2094–2123, October 1998.

[157] James Painter and Kenneth Sloan. Antialiased ray tracing by adaptive progressive refinement.
Computer Graphics (Proceedings of SIGGRAPH ’89), 23(3):281–288, July 1989.

[158] Athanasios Papoulis. A new algorithm in spectral analysis and band-limited extrapolation. IEEE
Transactions on Circuits and Systems, 22(9):735–7342, September 1975.

[159] Athanasios Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New
York (NY), USA, 2 edition, 1984.
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[178] Alfréd Rényi. On measures of entropy and information. In Proc. Fourth Berkeley Symp. Math. Stat.
and Probability’ 60, volume 1, pages 547–561, Berkeley (CA), USA, 1961. University of California
Press.

[179] Jaume Rigau, Miquel Feixas, Philippe Bekaert, and Mateu Sbert. View-dependent information
theory measures for pixel sampling and scene discretization in flatland. In Proceedings of Spring
Conference on Computer Graphics ’01, pages 173–180, Los Alamitos (CA), USA, April 2001. IEEE
Computer Society.

[180] Jaume Rigau, Miquel Feixas, and Mateu Sbert. Information theory point measures in a scene. Re-
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(SC), Brazil, 2006. To appear.

[235] Seth J. Teller and Pat Hanrahan. Global visibility algorithms for illumination computation. In
James T. Kajiya, editor, Computer Graphics (Proceedings of SIGGRAPH ’93), volume 27 of Annual
Conference Series, pages 239–246, August 1993.

[236] Giulio Tononi, Anthony R. McIntosh, D. Patrick Russell, and Gerald M. Edelman. Functional clus-
tering: Identifying strongly interactive brain regions in neuroimaging data. Neuroimage, 7(2):133–
149, February 1998.

[237] Flemming Topsøe. Some inequalities for information divergence and related measures of discrimi-
nation. IEEE Transactions on Information Theory, 46(4):1602–1609, 2000.

[238] Flemming Topsøe. Jensen-Shannon divergence and norm-based measures of discrimination and
variation. World wide web document, Institute for Mathematical Sciences, University of Copen-
hagen, 2003. http://www.math.ku.dk/~topsoe/manuscripts.html.

[239] Constanino Tsallis. Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical
Physics, 52(1/2):479–487, 1988.

[240] Constanino Tsallis. Generalized entropy-based criterion for consistent testing. Physical Review E,
58:1442–1445, 1998.

[241] Constanino Tsallis. Entropic nonextensivity: A possible measure of complexity. Chaos, Solitons,
& Fractals, 13(3):371–391, 2002. Update review corresponding to the inaugural talk delivered at
the International Workshop on Classical and Quantum Complexity and Nonextensive Thermody-
namics, Denton (TX), USA, 2000.

[242] Jack Tumblin and Holly Rushmeier. Tone reproduction for realistic images. IEEE Computer
Graphics and Applications, 13(6):42–48, 1993.

[243] International Telecommunication Union. Basic parameter values for the HDTV standard for the
studio and for international programme exchange. In ITU-R Recommendation BT.709. ITU,
Geneva, Switzerland, 1990. Formerly Comité Consultatif International Radio.

[244] Igor Vajda. Theory of Statistical Inference and Information. Kluwer Academic Publishers, Boston
(MA), USA, 1989.

[245] Jan C. A. van der Lubbe. Information Theory. Cambridge University Press, Cambridge, UK, 1997.

[246] Theo van Walsum, Peter E. van Nieuwenhuizen, and Frederick W. Jansen. Refinement criteria
for adaptive stochastic ray tracing of textures. In Frits H. Post and Wilhelm Barth, editors,
Eurographics ’91 (Proceedings of European Computer Graphics Conference and Exhibition), pages
155–166, Amsterdam, Holland, September 1991. Elsevier North-Holland.

[247] Eric Veach and Leonidas J. Guibas. Bidirectional estimators for light transport. In Stefan Haas,
Stefan Mueller, Georg Sakas, and Peter Shirley, editors, Photorealistic Rendering Techniques (Pro-
ceedings of the 5th Eurographics Workshop on Rendering), pages 147–162, New York (NY), USA,
1994. Springer-Verlag.

[248] Eric Veach and Leonidas J. Guibas. Metropolis light transport. In Turner Whitted, editor, SIG-
GRAPH ’97 Conference Proceedings, Annual Conference Series, pages 65–76. ACM SIGGRAPH,
Addison-Wesley, August 1997.

http://www.mtm.ufsc.br/~taneja/book/book.html
http://www.math.ku.dk/~topsoe/manuscripts.html


XVI BIBLIOGRAPHY
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Set of words that we consider more relevant. Bold face page numbers indicate pages with a definition
or description of the entry, while page numbers in normal (italic) type indicate a textual (footnote)
reference.

Symbols
α-information, 109, 109, 124, 132, 153

∼ content, 109, 153
geometric ∼, 109
∼ transfer, 109, 153

f-divergence, 137, 147
chi-square, v, 7, 8, 138, 147, 153, 154
Hellinger, v, 7, 8, 139, 147, 153, 154
Kullback-Leibler, v, 7, 8, 138, 147, 153, 154
∼s, 7, 135, 137, 153

2D-point complexity, 61

A
adaptive

∼ hierarchical integration, 18
∼ refinement, 4
∼ sampling, 14, 81, 89, 92, 97
∼ stratified sampling, 97

albedo, 26, 33
algorithm, 94

gathering random-walk ∼, 32
multi-pass ∼s, 28
partitioning ∼, 155
ray-tracing ∼, 33
refinement ∼, 152
∼s, 105
sampling ∼, 93
shooting random-walk ∼, 34

algorithmic
∼ complexity, 50
∼ randomness, 50

alias, 12
∼ing, 3, 12

alpha filter, 19
animation, 67

∼ complexity, 8, 63, 68, 78, 152, 154, 156
complexity of an ∼, v
Euclidean distance of an ∼, 69

anisotropic, 26

B
backward ray-tracing, 31
band-limited, 3
band-pass filter, 12
bandwidth, 3
Bayes’ theorem, 162
bias, 162
bidirectional

∼ path-tracing, 32
∼ random walks, 32
∼ reflectance distribution function, 26
∼ transmittance distribution function, 26

binary entropy, 40
box

∼ filter, 20
∼ function, 12

C
camera, 2
certainty

un∼, 5, 40, 44, 45
channel, 82

colour ∼s, 82
discrete ∼, 41
information ∼, 44

chi-square, v, 7, 8, 138, 147, 153, 154
∼ distribution, 166

chromaticity coordinates, 29
classic

∼ contrast, 98
∼ radiosity, 36
∼ ray-tracing, 33

closest visible surface point function, 159
cluster

∼ index, 75
∼ing, 37
∼ing interactions, 37

colour, 2, 28, 152
∼ channels, 82
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∼ contrast, 85
∼ contrast map, 85
∼ opponency, 85
pixel ∼, 94
∼ quality map, 83

complex, 14
complexity, v, 1, 5, 9, 49, 51, 52, 108, 154

2D-point ∼, 61
algorithmic ∼, 50
animation ∼, 8, 63, 68, 78, 152, 154, 156
∼ at an interior point, v
computational ∼, 50
effective ∼, 50
image ∼, 155
Kolmogorov-Chaitin ∼, 50
length-to-length ∼, 73
∼ line, 58
∼ lines, 62, 73
∼ of a region, v
∼ of an animation, v
point ∼, 8, 58, 63, 75, 78, 151, 154, 156
region ∼, 8, 152, 154, 156
scene ∼, 51, 52, 132, 154, 156
∼ segment, 73, 78, 151
segment-to-segment ∼, 74, 78, 152, 154
∼ segments, 58, 61, 152
spatial ∼, 76, 78, 152, 154
statistical ∼, 51
surface-to-surface ∼, 72–74, 78, 152, 154

component
distance ∼, 58, 61
orientation ∼, 58

computation
∼al complexity, 50
form factor ∼, 7

conditional
∼ entropy, 41
∼ probability, 162

confidence
∼ interval, 165
∼ level, 16, 165
∼ limits, 165
∼ test, 16, 98

content
α-information ∼, 109, 153
information ∼, 5, 8, 105, 110, 120, 132

continuous
∼ 2D-scene mutual information, 49
∼ conditional entropy, 43
∼ entropy, 43
∼ mutual information, 43
∼ mutual information field, 58, 61
∼ random variable, 161

∼ scene generalised mutual information, 122
∼ scene mutual information, 46, 72, 73

contrast, 15, 152
classic ∼, 98
colour ∼, 85
entropy-based ∼, 98
importance-weighted ∼, 98
intensity ∼, 15
∼ map, 90
pixel ∼, v, 8, 81, 87, 89, 94, 97, 102, 152,

154
pixel channel ∼, 85, 152
pixel channel binary ∼, 85, 102
pixel colour ∼, 85, 152
pixel colour binary ∼, 85, 102
pixel geometry ∼, 87, 152
pixel geometry binary ∼, 87, 102
pixel logarithmic-difference ∼, 87, 102

correlation, 5
cross entropy, 42
Csiszár divergences, 137
cut-off, 3

D
data processing inequality, 43
dependence, 5, 45, 50
depth

∼ difference, 17
logical ∼, 50
thermodynamic ∼, 50

difference, 136
depth ∼, 17
intensity ∼, 15

difficulty, 49
diffuse, 27
direct light, 27
directed divergence, 108, 122
discrete

∼ 2D-scene entropy, 48
∼ 2D-scene entropy of a patch, 48
∼ 2D-scene joint entropy, 49
∼ 2D-scene mutual information, 49
∼ 2D-scene positional entropy, 48
∼ channel, 41
∼ cross entropy field, 59, 61, 78, 151
∼ entropy field, 57, 60, 78, 151
∼ Markov chain, 163
∼ mutual information field, 57, 60
∼ random variable, 161
∼ scene entropy, 45
∼ scene entropy of a patch, 45
∼ scene generalised mutual information, 122
∼ scene HCT entropy, 110
∼ scene joint entropy, 45
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∼ scene mutual information, 45, 74
∼ scene positional entropy, 44

discretisation
∼ error, 39, 47, 52, 120, 132
∼ error between patches, 48

disorder, 5, 50, 52
dissimilarity, 136
distance, 135, 136

∼ component, 58, 61
Euclidean ∼, 69, 78, 152, 154, 156
Kullback-Leibler ∼, 42, 138
∼s, 138

distortion, 47
distributed ray-tracing, 33
distribution

chi-square ∼, 166
probability ∼, 161
spectral power ∼, 29
Student’s ∼, 165

divergence, 135, 136, 147
Csiszár ∼s, 137
directed ∼, 108, 122

E
effective complexity, 50
emissivity, 2
emittance, 35
emitted

∼ radiance, 27
energy conservation, 26
entropic index, 108, 132, 153, 156
entropy, 5, 40, 50–52, 93, 97, 106

binary ∼, 40
conditional ∼, 41
continuous ∼, 43
continuous conditional ∼, 43
cross ∼, 42
discrete 2D-scene ∼, 48
discrete 2D-scene joint ∼, 49
discrete 2D-scene positional ∼, 48
discrete scene ∼, 45
discrete scene HCT ∼, 110
discrete scene joint ∼, 45
discrete scene positional ∼, 44
∼ field, 8
generalised ∼, 105, 132, 154
grouping, 41
Harvda-Charvát-Tsallis ∼, see HCT entropy
HCT ∼, 105, 106, 106, 107, 109, 110, 132,

153, 156
HCT generalised ∼, 106, 108, 154
image plane channel ∼, 82, 102, 152
image plane geometry ∼, 84, 102, 152
importance ∼, 83

joint ∼, 41
pixel ∼, 81
pixel channel ∼, 82, 102, 152
pixel colour ∼, 82
pixel geometry ∼, 82, 84, 102, 152
relative ∼, 42, 108, 138
scene HCT ∼, 153
Shannon ∼, 81

entropy-based
∼ adaptive sampling, v, 102, 152, 154
∼ contrast, 98
∼ ray-tracing, 8
∼ supersampling, 102, 152

equation
potential ∼, 28, 31
power ∼, 36
radiosity ∼, 35, 36
radiosity ∼s, 36
rendering ∼, 2, 27

error, 47
discretisation ∼, 39, 47, 52, 120, 132
generalised discretisation ∼, 123, 124, 132
mean square ∼, 162
reconstruction ∼s, 11, 18
relative discretisation ∼, 47
root mean square ∼, 162

estimator, 162
primary ∼, 21
secondary ∼, 21

Euclidean
∼ distance, 69, 78, 152, 154, 156
∼ distance of an animation, 69

expansion, 28, 30, 34
expected information, 40
extensivity, 107

sub∼, 107
super∼, 107

eye, 2

F
f-divergence, see f-divergence
field, 57, 78, 151

continuous mutual information ∼, 58, 61
discrete cross entropy ∼, 59, 61, 78, 151
discrete entropy ∼, 57, 60, 78, 151
discrete mutual information ∼, 57, 60
entropy ∼, 8
information ∼, 57, 60
information transfer ∼, 57
∼ intensity, 75
∼ map, 151
∼ maps, 62, 78
mutual information ∼, 8, 78, 151
∼s, 8
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transfer information ∼, 61
filter

alpha ∼, 19
band-pass ∼, 12
box ∼, 20
∼ design, 19
high-pass ∼, 12
∼ing, 4, 92
local ∼s, 19
low-pass ∼, 12

form factor, 22
additivity, 23
∼ computation, 7
differential-to-differential, 22
differential-to-differential 2D ∼, 48
differential-to-finite, 22
energy conservation, 23
finite-to-finite, 22
patch-to-patch, 22
point-to-differential ∼, 56, 60
point-to-finite ∼, 56, 60
point-to-patch, 22
point-to-patch ∼, 56, 60
point-to-point, 22
point-to-point ∼, 109, 114
reciprocity, 23
∼s, 7
volume-to-area ∼, 56

forward ray-tracing, 31, 34
frequency, 25
function

bidirectional reflectance distribution ∼, 26
bidirectional transmittance distribution ∼,

26
box ∼, 12
closest visible surface point ∼, 159
concave, 167
convex, 167
Gamma ∼, 165
probability density ∼, 161
probability mass ∼, 161
strictly concave, 167
strictly convex, 167
visibility ∼, 159

G
gamma correction, 29
Gamma function, 165
gamut mapping, 29
gathering

∼ random-walk algorithm, 32
∼ walks, 31

generalised
∼ discretisation error, 123, 124, 132

∼ entropies, 106
∼ entropy, 105, 132, 154
∼ mutual information, 105, 108, 120, 122,

124, 132
geometric

∼ α-information, 109
∼ factor, see form factor
∼ data, 109
∼ information, 55
∼ interaction, 57
∼ kernel, 27, 38
∼ visibility, 9, 56, 63, 78, 105, 151

geometry, 15, 152
∼ quality map, 84
refinement ∼, 18
refinement test ∼, 92
sampling ∼, 92

Gini-Simpson index, 108
global

∼ illumination, 2
∼ lines, 24
∼ pass, 2
∼ segment, 73
∼ segments, 47, 73

gloss, 27
grain noise, 20
grouping, 152

H
Harvda-Charvát-Tsallis entropy, see HCT en-

tropy
HCT entropy, 105, 106, 106, 107, 109, 110, 132,

153, 156
HCT generalised entropy, 106, 108, 154
Hellinger, v, 7, 8, 139, 147, 153, 154
Helmholtz-symmetry, 26
hierarchical

∼ radiosity, 37, 38, 52, 139, 154
∼ refinement, 37

high-pass filter, 12
homogeneity, 8, 17, 82–84, 102, 135, 144, 152,

154
pixel ∼, 81

I
illumination

global ∼, 2
local ∼, 2
physically-based global ∼, 2

image
∼ complexity, 155
piecewise-continuous ∼, 97
∼ plane, 2
∼ plane channel entropy, 82, 102, 152
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∼ plane channel quality, 152
∼ plane geometry entropy, 84, 102, 152
∼ segmentation, 155

importance, 83, 93, 94
∼ entropy, 83
∼ sampling, 14, 22, 96

importance-weighted contrast, 98
independent, 162
index

cluster ∼, 75
entropic ∼, 108, 132, 153, 156
Gini-Simpson ∼, 108
nonextensive ∼, 108

indirect light, 27
inequality

data processing ∼, 43
information ∼, 42
Jensen’s ∼, 167
log-sum ∼, 168

information, 5, 7, 40, 81, 93, 109, 151
∼ channel, 44, 52
∼ content, 5, 8, 105, 110, 120, 132
expected ∼, 40
∼ field, 57, 60
geometric ∼, 55
∼ inequality, 42
mutual ∼, see mutual information
shared ∼, 50
∼ smoothness, v, 8, 116, 129, 132, 153, 154
∼ theory, v, 1, 4, 9, 40, 52
∼ transfer, 5, 8, 45, 46, 58, 61, 73, 105, 120,

122, 132
∼ transfer field, 57
transported ∼, v, 8, 110, 129, 132, 153, 154

initial sampling, 92
integration

adaptive hierarchical ∼, 18
Monte Carlo ∼, 21, 30, 31, 46, 49, 52, 58,

61, 76, 122
intensity, 15, 25

∼ comparison, 15
∼ contrast, 15
∼ difference, 15
field ∼, 75
∼ groups, 15
radiant ∼, 25
∼ statistics, 16

interaction, 78, 151
clustering ∼s, 37
geometric ∼, 57
∼s, 50

interior point, 55, 60
inversion, 28

irradiance, 25
isotropic, 26

an∼, 26
iteration, 19, 28, 34

J
jaggies, 12
Jensen’s inequality, 167
joint

∼ entropy, 41
∼ probability, 162

K
kernel, 6, 39, 48, 116, 120, 124, 132, 136, 139,

140, 144, 147, 153
geometric ∼, 27, 38
radiosity ∼, 39, 114, 123, 141
∼s, 109, 132

Kolmogorov-Chaitin complexity, 50
Kullback-Leibler, v, 7, 8, 138, 147, 153, 154

∼ distance, 42, 138

L
lattice, 13
length-to-length complexity, 73
light, 25, 52

direct ∼, 27
energy conservation, 26
frequency, 25
Helmholtz-symmetry, 26
indirect ∼, 27
intensity, 25
polarisation, 25
radiance invariance, 26
∼ scattering, 2
∼ tracing, 34
wavelength dependency, 26

lightsource, 2
limit

confidence ∼s, 165
Nyquist ∼, 11

line
complexity ∼, 58
complexity ∼s, 62, 73
global ∼s, 24
local ∼s, 24
random ∼, 73
uniformly distributed ∼s, 24

local
∼ filters, 19
∼ illumination, 2
∼ lines, 24
∼ pass, 3

log-sum inequality, 168
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logical depth, 50
loss of information transfer, 47
low-pass filter, 12
luminance, 29

M
map

colour contrast ∼, 85
colour quality ∼, 83
contrast ∼, 90
field ∼, 151
field ∼s, 62, 78
geometry quality ∼, 84
photon ∼, 32

marginal probability, 162
material, 2, 29

∼s, 2
matrix

probability transition ∼, 41, 44
transition probability ∼, 163

mean square error, 162
mesh

∼ing, 7
multi-resolution element ∼, 37

metamers, 29
metric, 136, 139
Metropolis light transport, 32, 34
mixed, 27
Monte Carlo

∼ integration, 21, 52
Monte Carlo integration, 30, 31, 46, 49, 58, 61,

76, 122
multi-pass, 3

∼ algorithms, 28
multi-resolution element mesh, 37
multi-step, 20
mutual information, v, 5, 8, 42, 50–52, 120, 129,

153, 154
∼ based oracle, 39
continuous ∼, 43
continuous 2D-scene ∼, 49
continuous scene ∼, 46, 72, 73
continuous scene generalised ∼, 122
discrete 2D-scene ∼, 49
discrete scene ∼, 45, 74
discrete scene generalised ∼, 122
∼ field, 8, 78, 151
generalised ∼, 105, 108, 120, 122, 124, 132
scene generalised ∼, 153

N
next event estimation, 33
noise

grain ∼, 20

shot ∼, 19
nonextensive index, 108
nonuniform, 14
Nusselt analog, 23
Nyquist limit, 11

O
object-based refinement tests, 17
object-space, 3, 52
oracle, see refinement criterion, 89, 105, 110

mutual information based ∼, 39
∼s, 7

order, 5, 50, 52
dis∼, 5, 50, 52

orientation component, 58
outliers, 19, 83

P
partitioning algorithm, 155
pass

global ∼, 2
local ∼, 3

patch
discrete 2D-scene entropy of a ∼, 48
discrete scene entropy of a ∼, 45
discretisation error between ∼es, 48
∼es, 7

path-tracing, 33, 34
bidirectional ∼, 32

photometry, 29
photon, 31

∼ map, 32
∼s, 25
∼ tracing, 34

physically-based global illumination, 2
piecewise-continuous, 20

∼ image, 97
pixel

∼ channel binary contrast, 85, 102
∼ channel contrast, 85, 152
∼ channel entropy, 82, 102, 152
∼ channel quality, 83, 102, 152
∼ colour, 94
∼ colour binary contrast, 85, 102
∼ colour contrast, 85, 152
∼ colour entropy, 82
∼ colour quality, 83, 102, 152
∼ contrast, v, 8, 81, 87, 89, 94, 97, 102, 152,

154
∼ entropy, 81
∼ geometry binary contrast, 87, 102
∼ geometry contrast, 87, 152
∼ geometry entropy, 82, 84, 102, 152
∼ geometry quality, 84, 102, 152



INDEX XXIII

∼ homogeneity, 81
∼ logarithmic-difference contrast, 87, 102
∼ quality, v, 8, 81, 152, 154
∼ refinement, 94

pixel-driven, 3, 52
plane

image ∼, 2
virtual image ∼, 2

point
∼ complexity, 8, 58, 63, 75, 78, 151, 154, 156
complexity at an interior ∼, v
interior ∼, 55, 60
reconstruction ∼, 19, 20
∼ sample, 13
∼ sampling, 4, 30

point-to-differential form factor, 56, 60
point-to-finite form factor, 56, 60
point-to-patch form factor, 56, 60
point-to-point form factor, 109, 114
Poisson sampling, 14
polarisation, 25
potential, 28

∼ equation, 28, 31
power equation, 36
predictability

un∼, 5, 45, 50, 51
primary estimator, 21
priority-value, 16, 17
probability, 161

conditional ∼, 162
∼ density function, 161
∼ distribution, 161
joint ∼, 162
marginal ∼, 162
∼ mass function, 161
∼ theory, 26
transition ∼, 163
∼ transition matrix, 41, 44

Q
quality, 81, 83

image plane channel ∼, 152
pixel ∼, v, 8, 81, 152, 154
pixel channel ∼, 83, 102, 152
pixel colour ∼, 83, 102, 152
pixel geometry ∼, 84, 102, 152

R
radiance, 2, 25, 28, 81

emitted ∼, 27
∼ exitance, 25
∼ invariance, 26
ir∼, 25

radiant

∼ flux, 25
∼ intensity, 25

radiosity, 3, 25, 34, 52
classic ∼, 36
∼ equation, 35, 36
∼ equations, 36
hierarchical ∼, 37, 38, 52, 139, 154
∼ kernel, 39, 114, 123, 141

random
algorithmic ∼ness, 50
∼ line, 73
scene ∼ness, 51
∼ variable, 161
∼ walk, 44, 162

ray, 159
ray-casting, 32
ray-tracing, 3, 31, 52, 81, 144, 154

∼ algorithm, 33
backward ∼, 31
classic ∼, 33
distributed ∼, 33
entropy-based ∼, 8
forward ∼, 31
stochastic ∼, 33, 96
visibility ∼, 33, 34

reconstruction, 3, 4, 90, 92
∼ errors, 11, 18
iteration, 19
local filters, 19
multi-step, 20
piecewise-continuous, 20
∼ point, 19, 20
warping, 19

refinement
adaptive ∼, 4
∼ algorithm, 152
∼ criteria, 7, 9, 97, 147

f-divergence-based, 154
entropy-based, 154

∼ criterion, see oracle, 4, 89, 105
chi-square, 140, 145
Hellinger, 140, 145
Kullback-Leibler, 140, 145

∼ geometry, 18
cell partition, 18
multiple-level, 18
tree-based, 18

hierarchical ∼, 37
pixel ∼, 94
∼ test, 92
∼ test geometry, 92
∼ tree, 92

refinement criteria, 154
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reflectance, 27
diffuse, 27
gloss, 27
mixed, 27
retro-reflection, 27
specular, 26

region
∼ complexity, 8, 152, 154, 156
complexity of a ∼, v

relative
∼ discretisation accuracy, 47
∼ discretisation error, 47
∼ entropy, 42, 108, 138

rendering, v, 1, 9, 52
∼ equation, 2, 27

resampling, 4, 92
retro-reflection, 27
rogues, 19
root mean square error, 162

S
sample

point ∼, 13
∼ variance, 162

sampling, 3, 4, 90
adaptive ∼, 14, 81, 89, 92, 97
adaptive stratified ∼, 97
∼ algorithm, 93
entropy-based adaptive ∼, v, 102, 152, 154
∼ geometry, 92
importance ∼, 14, 22, 96
initial ∼, 92
nonuniform, 14
point ∼, 4, 30
Poisson ∼, 14
re∼, 4, 92
stratified ∼, 14, 97
super∼, 13, 81, 89
∼ theorem, 11
∼ theory, 11, 52
uniform, 13
uniform area ∼, 23

scene, 2
∼ complexity, 51, 52, 132, 154, 156
∼ generalised mutual information, 153
∼ HCT entropy, 153
∼ randomness, 51

secondary estimator, 21
segment

complexity ∼, 73, 78, 151
complexity ∼s, 58, 61, 152
global ∼, 73
global ∼s, 47, 73
image ∼ation, 155

segment-to-segment complexity, 74, 78, 152, 154
sequential analysis test, 17
Shannon entropy, 81
shared information, 50
shooting

∼ random-walk algorithm, 34
∼ walks, 31

shot noise, 19
signal

oversampled, 12
∼ processing theory, 3
∼ theory, 2
undersampled, 12

spatial complexity, 76, 78, 152, 154
spectral power distribution, 29
specular, 26
statistical

∼ complexity, 51
∼ mechanics, 41

stochastic
∼ process, 162
∼ ray-tracing, 33, 96

strata, 14
stratified sampling, 14, 97
Student’s distribution, 165
subextensivity, 107
superextensivity, 107
supersampling, 13, 81, 89

entropy-based ∼, 102, 152
surface-to-surface complexity, 72–74, 78, 152,

154
surprise, 40

T
t-distribution, see Student’s distribution
test

confidence ∼, 16, 98
object-based refinement ∼s, 17
refinement ∼, 92
sequential analysis ∼, 17
variance ∼, 16

theorem
Bayes’ ∼, 162
sampling ∼, 11

theory
information ∼, v, 1, 4, 9, 40, 52
∼ of Relativity, v, 25
probability ∼, 26
sampling ∼, 11, 52
signal ∼, 2
signal processing ∼, 3

thermodynamic depth, 50
tone-mapping, 3, 28, 30
tracing
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light ∼, 34
photon ∼, 34

transfer
α-information ∼, 109, 153
information ∼, 5, 8, 45, 46, 58, 61, 73, 105,

120, 122, 132
∼ information field, 61
loss of information ∼, 47
∼ probability density, 26

transition
∼ probability, 163
∼ probability matrix, 163

transmittance, 56
diffuse, 27
mixed, 27
specular, 27

transported information, v, 8, 110, 129, 132,
153, 154

tristimulus, 29

U
uncertainty, 5, 40, 44, 45
uniform, 13

∼ area sampling, 23
∼ity, 83
∼ly distributed lines, 24
non∼, 14

unpredictability, 5, 45, 50, 51

V
variable

continuous random ∼, 161
discrete random ∼, 161

variance, 162
sample ∼, 162
∼ test, 16

view-dependent, 3
view-independent, 3
virtual image plane, 2
visibility, 81

∼ function, 159
geometric ∼, 9, 56, 63, 78, 105, 151
∼ ray-tracing, 33, 34

volume-to-area form factor, 56

W
walk

bidirectional random ∼s, 32
gathering ∼s, 31
random ∼, 44, 162
shooting ∼s, 31

wavelength dependency, 26
windows, 13
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Back-cover image: The Earth (west).
This image is still the most detailed true-colour image of the entire Earth to date. Using a collection of
satellite-based observations, scientists and visualisers stitched together months of observations of the land
surface, oceans, sea ice, and clouds into a seamless, true-colour mosaic of every square kilometre of our planet.
Date: February 2002.
Credit: NASA Goddard Space Flight Center Image by Reto Stöckli (land surface, shallow water, clouds).
Enhancements by Robert Simmon (ocean colour, compositing, 3D globes, animation). Data and technical
support from Moderate Resolution Imaging Spectroradiometer (MODIS): MODIS Land Group, MODIS Sci-
ence Data Support Team, MODIS Atmosphere Group, and MODIS Ocean Group. Additional data: United
States Geological Survey (USGS) Earth Resources Observation and Science Data Center (topography), USGS
Terrestrial Remote Sensing Flagstaff Field Center (Antarctica), and Defense Meteorological Satellite Program
(city lights). URL: http://visibleearth.nasa.gov.

http://visibleearth.nasa.gov


Loads of information is moving fast.
I’d like to understand everything sent.
Great images of the past.
Hidden reflexes of the present.
The paths towards the future are cast.

http://veimages.gsfc.nasa.gov/2429/globe_west_2048.jpg
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