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Appendix A

Additional material on distances

Definition A.I Let E -be a vector space over K — R or C. Every function p of E:

p: £-»R+U{0}

such that, Vx, y 6 E, A 6 K:

1. p(x) = 0=> x = 0

2. p(x + y) < p(x) + p(y)

3. p(\x] = \\\p(x)

is a norm on E. A space E with a norm p is a normed space (E,p).

Proposition A.I Every normed space (E, p) can be converted in a metric space (E, d) by
defining d(x, y) = p(x -y).

Proof: see [Kolmogorov and Fomin, 75].

Lemma A.I Let E = EI x £"2, . . . , xEn and d\, . . .,dn such that d¡ 6 D(Ei) (these functions
are not necessarily equal). Then,

Proof: By fulfilment of the conditions in Definition (4.1). For all x,y,zç. E,

1. (/s(x,j/) = 0
= (def. ofd s)
Er=i f /¿(^,y¿) = o
= ( d i ( x i , y i ) > 0 )

301
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Vi : 1 < i <n :di(xi,yi) = Q
= (di are all distances)
V¿ : 1 < i < n : a;,- = y¿

x = y ü

2. ¿E (¡c, y)
= (def. of

£?=!<*.•(*.•, w)
= (d¿ are all distances)
EÍU^Íyt.zf)
= (def. of ¿E)
dv(y,x) ü

3. ¿s (z, y) < dz(x, z) + CÍE(Z, y)
= (def. ofd s)
E?=i di(*i, y«) < E?=i d¿(i¿, z,-) + £?=! d,-(

E"=i rf.-(*.-, y¿) < E?=i {¿¿(^f, 2¿) + ¿te, y¿)
= (</,- are all distances)
true ü

Lemma A.2 Let d € £>(£). Then,

Va e R+, ad

Proof: obvious, since a can be cancelled everywhere.

Lemma A. 3 Let E = E\ x £2, . . . , xEn and di, . . .,dn such that d{ € D(Ei) (these junc-
tions are not necessarily equal). Then, any linear combination of the d,- with non-negative
coefficients is a distance in E.

Proof: By making use of Lemmas (A.I) and (A.2).

Lemma A.4 Let d Ç D ( E ) . Then,

Va € (O, 1], rf° € D ( E )

Proof: By fulfilment of the conditions in Definition (4.1). Forall a;, y, z € E,

= (d is non-negative)
d(a:,y) = 0
= (d is a distance)
x = y ü
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2. dx,a

d ( x , y ) - d ( y , x )
= (d is a distance)
true O

3. d(x,y)a<d(x,z}a + d(
= (defining ß = ¿ > 1)

= ( raising to the ß power )

d(x,y) <

d ( x , y) < d ( x , z) + d ( z , y) + G(z, y, z, ß)
= (d is a distance and G(x, y, z, ß) > 0)
true D

A well-known method of introducing a norm in a vector space is by defining first a scalar
product.

Definition A. 2 (Scalar product) A scalar product in a real vector space Tl is a real func-
tion ( x , y ) verifying, V.r ,y ,yi ,y 2 € R-

1. (z,y) = (y,x) .

~. (x, yi + y2) = (x, yi) + (x, y2).

3. (Ax,y) = A(a- ,y ) , A € R.

4- (x, x) > O anrf (z, a;) = 0 &• x = 0.

A vector space where a scalar product is defined is an Euclidean space. In such space,
the norm is introduced by the formula: \\x\\ = \/(x, x). Having defined a norm, it is immediate
to define a distance, by Proposition (A.I).

The choice TÍ — R™ (the common space of coordinates in n dimensions, which is a vector
space) leads to the classical example of Euclidean space, with:

1=1

In this case, ( x , y ) is usually written .-c-y, for ;?, y £ Rn. In general, every Euclidean space
is normed, but the opposite does not hold. A necessary and sufficient condition for a vector
space Ti to be Euclidean is that:

V*. y 6 Tí, ||a- + y||2 + ||.T - y||2 = 2(||a;||
2 +
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For instance, by taking 7£ = Rn with its customary norm:

\t=l /

For q > 1 e R, all the required properties of the norm (Definition (A.I)) are fulfilled.
However, R™ is an Euclidean space only for q = 2. This means that, for q ̂  2, the norm in
Rn cannot be defined out of any scalar product [Kolmogorov and Fomin, 75].

To conclude, we enunciate a classical result:

Definition A.3 (Equivalent norms) Two norms \\ • \\a, \\ • HO, a, b > 1 € R, defined on a
vector space Ti are said to be equivalent if:

3ci,c2 > 0 Cl||.r||a < ||x||b < czlHIa, Vz € U

where GÌ, ci only depend on a, 6.

Proposition A.2 In Tí = R" all the norms are equivalent.



Appendix B

Proofs of Propositions

Those not proven in the main body.

Proof of Proposition (4.1). Obvious, since 5 C X implies x, y, z 6 S => x, y, z € X and
every x, y, z G X fulfills Definition (4.1) because (X,d) is a metric space D.

Proof of Proposition (4.2). Refer to [Queysanne, 85].

Proof of Proposition (4.3). Use N C 'í C Q C E and Proposition (4.1) D.

Proof of Proposition (4.4). By fulfilment of Definition (4.3).

i) Minimality. 99>n(f; v) = 0 «• z = 0. Obvious, by noting that Vi : 1 < i < n : u¿ > 0.

ii) Symmetry is kept by applying Qq'n(z;v) = Qq'n(a(z);a(v)), thanks to the commuta-
tivity property of summation.

iii) The function Q<i'n(z;v) is strictly monotonie w.r.t. any 2,-.

Proof of Proposition (4.5). Let z = {zi, 22,..., zn} e Rn be a vector of non-negative
components. Denote p = ©'•", Vg > 1 € K. We prove this p is a norm in Rn by fulfilment of
Definition (A.I). For all f,fi,£2 € R",

1. p(2) = 0^> z = 0

2. /)(fi + £2) < p ( z \ ) + p(z-2) First, we see that n' is a positive constant factor and can
thus be cancelled, leading to:

5 / " /I-1|V;\ i / JL /U2 | \7 \ "

«
305
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which is _ a weighted form of the general Minkowski's inequality
[Kolmogorov and Fomin, 75]. Since the denominators u; are also positive constants,
equal for both sides, they do not alter the inequality.

3. p(Xz) = \X\p(z). We have:

p(\z) = (-
Vi

(| • | is a norm in IR)

Proof of Proposition (4.6). By application of Propositions (4.5) and (A.I).

Proof of Proposition (4.7). First, note that an n-linear aggregation 0 fulfills the condi-
tions of a general aggregation operator in (4.3). Second, since such an operator performs a
linear combination of its arguments, and these are distances d¡ G D ( X l ) , by Lemma (A.3),
its ?i-linear aggregation 0 is a metric distance in X — X1 x ... x Xn.

Proof of Proposition (4.8). It is clearly a n-linear operator (Definitions (4.5) and (4.6)).

Proof of Proposition (4.9). It is a particular case of Proposition (4.4), for v = 1, n' = n.

Proof of Proposition (4.10). By Proposition (4.8) for u = (^ , . . . , ^ ) . Alternatively, it
can be seen as a particular case of (4.9) for q = 1.

Proof of Proposition (4.11). We prove it by fulfilment of the conditions in Definition
(4.7).

1. Non-negativity. By definition of Qs.

2. Symmetry. By the symmetry of O.,.

3. Boundedness. By definition of©.,.

4. Minimality. This reads:

0s({si,..., sn}) & \/i : 1 <i <n: Si = smax
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(a) (<i=) By the idempotency of 0S.

(b) (=>) By contradiction. Suppose 3¿ : 1 < i < n : ss- < smax such that 0s(s) =
In this case, an s' such that s' = {smax,..., smax} would yield, by the

l
"max-monotonicity property of 0S, 03(s') > Qs(s) = s.

5. Semantics is expressed in conditions (u) to (vii).

Proof of Proposition (4.12). By fulfilment of the conditions in Definition (4.11). Let
s = FX(SQ), So of length no and s of length n. All the properties but the last are to be valid
for the present components in SQ, that is to say, for all the components in s. In all cases, the
treatment of missing components is done by defining 0s(s0) = 0s(s) (this fulfills property
[viii)]). For the sake of clarity, we begin by the simplest of the three families.

The normalized modulus.

1. Minimality. Since Qfn(s) = O =ï Vz : 1 < i < n : s,; = 0 both conditions are
satisfied. The 0 is noi, in this case, an absorbing element.

2. Symmetry. By the commutativity property of summation.

3. Monotonicity. The function ®l'n(s) is strictly monotonie w.r.t. any s;.

4. Idempotency. For an arbitrary s¿ 6 [0, smaj, let s't = (s^, . . . , s¿).

Note that this also ensures that 6f'n : [0, sma:c]
n -t [0, smax], Vc > 1 e K, Vra € N+.

5. Cancellation law.

,</ _ „</62 _ S3

= («2,S3> 0)

s2 = s3 D

6. Continuity. 0'1" is a continuous function.

7. Compensativeness. min,-s,- < Qs(s) < max¡5¿

Let s ^ ( s ) = (max,- s , - , . . . , max¿s¿). We have ©s'"(s) < Q q
s ' n ( s ^ ( s ) ) , by the mono-

tonicity property, and Qfn(s>í(s)) = max¿ s¿ by the idempotency property. Anal-
ogously for min,- s¡.
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Additive measures.

i=l

Where / is strictly increasing and continuous, /(O) = 0 and f(smax) = smaxï and v is
such that $3"=1

 vi = 1) with u¿ > 0.

1. Minimality. The first condition reads:

EIU ".7(5,-) = o
= ( V t , u i > 0 )
Vi : 1 < ¿ < n : /(s¿) = O
==^>

3¿ : l < i < n : /(s,-) = O

3i : 1 < i < n : s{ = O ü
The second condition is proven by reading the previous proof from the universal
quantifier up.

2. Symmetry. By applying Qs(z;v) = 0s(cr(¿);<r(u)), thanks to the commutativity
property of summation.

3. Monotonicity. The functions /, f~l are strictly increasing.

4. Idempotency. For an arbitrary Sk 6 [0, smoj, let Sk — (sjt, . . . , s¿).

,-/(5fc) = r1 /(**
\i=l / \ t=l /

Again, this ensures that 9^'™ : [0,sma;c]" -> [0, smaj, V</ > 1 Ç E,Vn 6 N+.

5. Cancellation law.

Vif (s-2) = V3f(s3)

= ( in case all the u,- are equal)

S2 = S3 D

This assumption appears in the common case of weightings as an averaging mecha-
nism. If the Vi are different, then strict equality is not necessary, and the condition:
22. = Üí4 has to be met.
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6. Continuity. Qs is continuous because /, f~l are.

7. Compensativeness. min,-s,- < Qs(s;v) < maxf-s»

Let sß(s;v) = (max,-s,-, . . ., max¿ s¿). We have Qs(s;v) < QS(S^(S)]V}, by the
monotonicity property, and Qs(sß(s);v) = max¿ s¡- by the idempotency property.
Analogously for min¿ s¿.

Multiplicative measures.

\:=1 /

with / and v in the same conditions as for additive measures.

1. Minimality. The first condition reads:
Qs(s-v) = Q '

3i : 1 < i < n : f(s¡)v> = O

3-í : l < / < n : /(s,-) = 0

Bi: l < i < n : s,- = O Q

The second condition is proven by noting that:

V¿ : 1 < i < n : s¡ = O => 3i : l < í < ?i : s,- = O

and reading the previous proof backwards.

2. Symmetry. For the same reasons than for additive measures.

3. Monotonicity. For the same reasons than for additive measures.

4. Idempotency. For an arbitrary s¿ € [0, smax], let Sk = (sjt, . . . , Sfc

\t=i /

Again, this ensures that Ql'n : [0,smax]n -> [0,5TOaI],Vc > 1 e K,Vn € N+.

5. Cancellation law.

An analogous derivation leads to: /(s2)
t'2 = /(«a)1'3.

6. Continuity. For the same reasons than for additive measures.
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7. Compensativeness. min,-s; < Qs(s;v) < max,-st-
Let 8^(3; v) = (max,-s t-,.. . ,max¿ s,-). We have Qs(s;v) < 0s(s^(s);i;), by the
monotonicity property, and Q s ( s ß ( s ) ; v ) = max,-s,- by the idempotency property.
Analogously for min,-s¿.

Proof of Proposition (4.13). By fulfilment of the conditions in Definition (4.7).

1. Non-negativity. By definition of s.

2. Symmetry. By the symmetry of s.

3. Boundedness. By definition of s.

4. Minimality. This reads:

s ( s ( x , y ) ) = smax &x = y
= (s(z) = smax only for z = smax)
s(z,y) = smax •& x = y
~ (s is a similarity)
true d

5. The semantics of s is kept in sos since s is a continuous and strictly increasing function.

Proof of Proposition (4.14). By fulfilment of the conditions in Definition (4.7).

1. Non-negativity. By definition of s.

2. Symmetry. By symmetry of d.

s ( x , y )

s ( d ( x , y ) )
= (d is a distance)
s ( d ( y , x ) )

s ( y , x ) D

3. Boundedness. By definition of s.

4. Minimality. This reads:

s(.T,y) — smax 4=> x = y

s(d(x,ij)) = smax & x = y
= (s(0) = smax, s is strictly decreasing)
d(x,y) = 0 & x = y
= (d is a distance)
true d
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5. The semantics of s is that of the inverse in d(x, y) (the more the distance, the less the
similarity, and vice versa), since s is a continuous and strictly decreasing function.

Proof of Proposition (4.15). Considering the properties fulfilled by s,s, we have:

• s o s is strictly decreasing.

• s(l(0)) = s(smax) = smax

• limz-Hx,s(s(z)) = /imz_^00s(0) = s(0) = 0.

Proof of Proposition (4.16). Since a normalized distance is a distance, the same proof as
for Proposition (4.14) applies. The extra condition s(dmax) = 0 is required to ensure that the
formed similarity s covers [0, smax] (this is already guaranteed in Proposition (4.14), although
not needed for the proof).

Proof of Proposition (4.17). It suffices to define:

.,, , _ s(z) - s(dmax)
I — s(dmax)

Proof of Proposition (4.24). By fulfilment of the conditions in Definition (4.7).

1. Non-negativity. By definition of s.

2. Symmetry. By symmetry of s.

3. Boundedness. By definition of s.

4. Minimality. This reads:

s ( x , y ) = smax & x = y
= (smax — 1)
s ( x , y ) = 1 <=> .T = y
= ( by def. of s)
true ü

5. The semantics of s is binary, in that either two objects are similar or not. This is an
equivalence relation.

Proof of Propositions (4.25, 4.27). They are discussed in the text, pages 94ss, and
obtained by application of Proposition (4.16).

Proof of Proposition (4.26). By fulfilment of the conditions in Definition (4.7).
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1. Non-negativity. By definition of s.

2. Symmetry. By symmetry of s.

3. Boundedness. By definition of s.

4. Minimality. This reads:

s(x,y) - smax & x = y
= 1)

s ( x , y ) = 1 & x = y
= ( by def. of s)

1 (m min(ri(x),n(y)) _ ,\ _
m-1 \mmax(r,(x),r,(y)) LJ -

m¿n(t)(r),r)(i/))

min(n(x),r](y)) _ ^ _
max(ij(x),r¡(y)) ~ "

min(r¡(x),T](y)) = max(r¡(x),T](y)) <¿> x = y

true O

5. This measure has a clear semantics, discussed in page (95).

Proof of Proposition (4.28). By fulfilment of the conditions in Definition (4.7).

1. Non-negativity. By definition of s.

2. Symmetry. By symmetry of s.

3. Boundedness. By definition of s.

4. Minimality. This reads:

s ( x , y ) = smax «• x = y

s ( x , y ) = 1 & x = y
= ( by def. of s)

~ (set properties)
true ü

5. This measure has a clear semantics: number of shared elements w.r.t. to the number of
different elements apported between the two sets. Interestingly, the empty set means
that the variable has no value and can thus be used to express missing information,
with the semantics: s(0, a;) = 0, MX 6 <S, in accordance to its definition. Alternatively,
s(0, x) = X can also be defined.



Appendix C

Notes on integrability

The following material can be found in textbooks on real analysis. Our references are
[Jarauta, 93] for R and [de Burgos, 95] for R". The propositions with proof are due to the
author. We begin with a brief review on integrability in R and follow on to Rn.

C.I Integrability in M

Let / a real function, integrable in any real interval [a,x] for all x > a, that is:

fx

F ( x ) = / f ( t ) d t exists and is finite Va; > a e R
Ja

Let us consider the limit of these integrals:

lim F(x)= lim f f ( t ) d t (C.I)
x-¥oo a--V+oo Ja

If this limit exists, it is written:

/

+00
f ( t ) d t (C.2)

..

and called improper integral (of the first kind) of / in [a,-fooj. We say that (C.I) is
convergent and the limit in (C.2) is the value of the integral. Otherwise, we say it is divergent.
Analogously, whenever / is (Riemann) integrable in any real interval [a:, a] for all a: < a, it
can be defined:

/ f(t)dt= lim / f (t) dt (C.3)
J-co z->-°°Jx

313
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Hence, if the function is integrable in any interval [z,y] C K, then the improper integral
can be defined:

/

+00 ra ry

f(t)dt= lim / f(t)dt+ lim / f ( t } d t , ( o € R ) (C.4)
-00 x-*-oo Jx V-++00 Ja

In any case, the improper integral is convergent if it exists and is finite; otherwise, we say
it is divergent. From now on, we write:

/•+00 f

I f(t)dt= I f ( t ) d t (C.5)
./-co JK

and consider a = 0. We say that / is integrable in A, / : A — » R, A C R measurable if
/A f(£)dt is convergent. Since the codomain of / is R, the value of the integral, in case it
exists, is a real number. We denote by /(A) = {/ : A — > R | / integrable in A}. We also
denote by C(A) the set of continuous functions in A.

Proposition C.I Let f a positive function. If f Ç /(A), then JA f ( t ) d t > 0.

Proposition C.2 If a function f £ /(A), where A is the support of f (that is, f is null
outside A,), then f € /(E), and /A f ( t ) d t = JR f ( t ) d t .

Proposition C.3 (Comparison criterion 1) Let /, g : E -* E, such that f , g Ç.
/([a, o:]), Va; > a, f is positive in [a, +00) and \g(x)\ < /(a;), Va; 6 [a, +00). // Ja°° f ( t ) d t
is convergent, then Jo°° g ( t ) d t is convergent.

Proposition C.4 (Comparison criterion 2) Let f,g : E — > K, such that f,g €
I ( [ x , a}), Va; < a, f is positive in (—00, a] and \g(x)\ < /(a:),V.r € (—00,0]. // J^ f ( t ) d t
is convergent, then f^gfydt is convergent.

Proposition C.5 The following families of functions g(z) : [0,+oo) — > IR are continuous
and integrable in [O, +oo), arici have a positive integral:

2- flf^) = ÎT-^1 a > 0 , a > l

3. i/3(2) = e- ( a z>a , a > 0 , a > 0

yls a consequence, the functions obtained replacing z by \z\ are defined g(z) : E — > E and
are integrable in E.

Proposition C.6 Let f € /(E). Let h(x) = af(x),a € R. T/zen /i € /(E).
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Proposition C.T Let f , g € /(R). Let h(x) = f ( x ) + g ( x ) . Then h € /(M).

This can be extended to any number of functions. Let {/,} a collection of n integrable
functions, /,• € /(R) such that /R h(x)dx = /,• € R, for all 1 < t < n. Then, the function
h(x) = £2=1 MX) € /(R) and JR h(x)dx = E?=1 /,'•

C.2 Some notes on integrability in R2

Proposition C.8 The function h(x,y) = f(x) + g(y), f(x) > Q,g(y) > 0,Vz,y € R is not
integrable in R2, even if f , g € /(R), ezcepf /or i/ie trima/ case f(x) = #(y) = 0, Vx, y € E.

Proof. Since /(*) > 0 and g(y) > 0, /i(x,y) > f(x) and /i(x,y) > y(y). Let F'(x) = f ( x ) .
Given XQ, consider a rectangular slice of XQ, /(XQ) > 0, and define: AXo e = { ( x , y ) \ \x — XQ\ <

We have:

/ h(x,y)dxdy> í f(x)dxdy = / dy í f ( x ) d x = í d y { F ( x ) \ x
x ° n Í l }

JAIQ,< JAx0,< JR J\x-z0\<( JR

= / dy{F(xa + í) - F(x0 - e)} = {F(x0 + e) - F(x0 - e)} / Idy = oo (C.6)
«*R JR

Note that the Proposition is still valid for the particular case / = g.

Proposition C.9 The function fc(arlf • • - ,*„) = E"=i /«(^¿). /«(*) > 0,Vx,y € R is not
integrable in R", even i//¿ € /(R), /or all 1 < t < n.

Proof. Failure for the case n = 2 -Proposition (C.8)- invalidates any superior proof.

Proposition C.10 The function h(z,y) = f(x)g(y), f(x) > 0,g(y) > 0 ,Vx,y € R is inte-
grable in R¿, provided f , g € /(R).

Proof. Let /R f(x)dx = // € R, Let /R ^(x)dx = /fl € R. Then,

,
= JR l/g(y)dy = If J g(y)dy = ljlg € R

The extension to R" is straightforward, just by iteration of the property fo rn - 9
the function A(*i, • ..,*„) = n?., /*(**) € 7(R») provided /,-(*) € I(R) Y " ~ 2"
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C. 3 Integrability in En

A set / C R" has zero measure if Ve > 0, there exists a covering (possibly finite) of / which
is enumerated, formed by compact intervals, whose sum of measures is less than e. Formally,

Ve > 0, B/i, . . . , 7fc, . . . with I{ C R™ compact intervals, such that / = I) 7¿ and ^jM/t') < €

t=i 1=1

In particular, any enumerable set has zero measure. The propositions and definitions
about the Riemann integral in R can be extended to Rn. The multiple integral is denoted:

/ f(x)dx- ¡ ... I f(xi,...,xn)dxi,...,dxn
J I Ji^TJi(n)

Theorem C.I (Lebesgue's, about the Riemann integral) Let / : 5 ->• R, with S C
R™ compact interval and f bounded in S. Then f Ç. I (S) if and only if the set of points x £ S
where f (x) is discontinuous has zero measure.

Many of the properties introduced for the real case (in an interval) are still valid. In
particular, we remark the following. Let 5 C Rn be a compact interval:

1. Let / : S -»• R, / e C(5) implies / e 7(5).

2. Let f,g : 5 -» R, f,g G 7(5). Then af + ßg, f g, f + g, \f\ e 7(5), and also 5- provided
g is non-null in 5.

3. Let f ( x ) < g(x) in 5. Then, ¡s f < fsg.

4. Let / : 5 -> R, / 6 7(5). Then, \ f s f\ < ¡s \ f \ .

For non-negative functions, the generic integrability conditions can be particularized in a
useful way.

Definition C.I Let f : S ->• R,/ e C(S), being 5 Ç R" an arbitrary set. If there exists
an increasing succession {5¿} formed of compact and measurable subsets of S, such that
5j U . . . U Si U . . . = 5, we say that such set S is a-compact. In particular, any open sel is
a-compact.

Theorem C.2 Let S &Rn a a-compact set, / : 5 -> R a function and let x = (.TI, . . . , xn).
U f (x) > O, Vf € 5, then the integral ¡s f exists and:

f — sup < I / I 5' C 5, 5' compact and measurable set \
Js (Js1 }
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This integral is" then convergent or divergent depending only on the supremum being finite
or infinite, respectively.

Theorem C.3 In the same hypotheses of Theorem (C.2), a necessary and sufficient condi-
tion for the integral J5 / (guaranteed to exist by previous Theorem) to be convergent, is to
find a succession {Si} making S an a-compact set, such that the numeric succession { f s /}
is upper-bounded —that is to say, it has a finite limit, which will correspond to J<, /.

We note that S can be any cr-compact set. In particular, the entire set Kn is a-compact
in Kn. In these conditions, the previously stated Propositions can be restated for 5. We
summarize the most relevant:

Proposition C.ll Let /,g : S —»• K, S C Rn, being S a-compact in Rn. Provided fs /, fsg
exist and are convergent:

1. Let h = a f + ßg. Then, f g h exists and is convergent.

2. L e t f ( x ) < g ( x ) . Then, fsf < fsg.

As an example of use of Theorem (C.3), we develop the following integral of a non-negative
function:

= if e-*-*ds
J JR2

dxdy
J JE?

Let Bn = { ( x , y ) € IR2 | x2 + y2 < n}. These are balls centered at (0,0) and with radius
/ñ. Note that Bn> C Bnì for n' < n, and BI U ... U B¿ U ... = E2. Thus, / = lim^oo /„,

with:

/„ = e--dxdy
J JBn

Clianging to polar coordinates: x = pcosO, y = psinß, we have:

p ¿K r n

In = / dd e'
Jo Jo

- í * J(l - ne-n2)d& = ?r(l - ne~n2) (C.8)
Jo 2

and limn_^oo In — ̂  — I•
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Proposition C.12, Let h ( x , y ) = /(v/x2 + y2), with f € /(K). Then h e /(E2).

Proof. By application of Theorem (C.3). Let Bn = {(x,y) 6 R2 | x2 + y2 < n}, and F a
primitive of /, where J*R f(x)dx — lx € R. Thus, / = limn_>.oo /n> with:

In = í í f(V^ + y2}dxdy
J JBn

Changing to polar coordinates: x = pcosd, y = psinO, we have:

/•2rr rn rïit r"2ir

/ „ = / dO f(p)dp = d0{F(p)\%} = {F(n) - F(Q)}M
Jo Jo Jo Jo

r2v
= {F(n) - F(0)} / Id» = 27r{F(n) - F(0)} (C.9)

Jo

and limn_*oo 2?r{F(n) - F(0)} = 2ir{lx - F(0)} € R.

This result can be extended to any number of coordinates.

Proposition C.13 Let f 6 /(R), a positive monotonically decreasing function in [0,+oo),
Then, given h(-) = f(\\ • \\q), with q>lçR,hÇ /(Rn).

Proof. We make use of the equivalence of all norms in R" -Proposition (A. 2)- and the
fact that the result holds for q = 2 -Proposition (C.12). Taking b = 2 in the Proposition, we
have that:

Vc > 1 6 R, 3ci,c2 > 0 : ci\\x\\g < ||x||2 < c2||£||?, Vx € R"

where c j ,C2 only depend on q. Since / is monotonically decreasing in [0, +00), it holds:

Being /(c2||x||?) upper-bounded by an integrable function, it is integrable, by Proposition
(C.3); note that the factor c2 does not affect integrability.



Appendix D

Other Topics

Chebyshev inequality. Let „Y be a random variable with expected value ¿í and standard
deviation a. Then, Vi > 0,

Pr(| .X:-,z|>í<7)< :Í

Jensen's theorem. Let /, J be two real intervals, and /, g : I —> J two strictly increasing
and continuous functions. Then, the following assertion holds :

if and only if there exist a, ß € R such that f(z) = ag(z) + /?, z Ç /. The proof of the
assertion in page (319) is obtained by setting f(z) = zq,q > 1, which is a strictly increasing
and continuous function.

Proof of assertion in page (110). Let D = {x} a real data set and D' = {x'} the new
(normalized) data set, with x' = f(x) and f(x) = ax + 6, a, b real constants obtained from
D, a > 0. Assuming D = [m, M], the similarity between any two x,y £ D is given by (4.52):

, - M_m

On the other hand, we have:
— 1 _ |ag+6-ay-6[ _ -, _ \ax-ay\ _ -, _ a\x-y\ _ -, _ \x-y\
~ ~ ~ ~

_ — _ — _ _ _ _ _ _ _
1 M'-m' ~ l /(A/)-/(m) ~ aM+b-am-b ~ i aM-am ~ i a(M-m) ~ ¿ M-m

Therefore s ( x , y ) = s ( x ' , y ' ) . This simple linear normalization scheme includes most of
the commonly found methods: to D' = [0,1], by setting a =t= M

l_m,b = M™m] and to zero
mean, unit standard deviation, by setting a = j-,6 = — ̂ -.

An analogous proof can be derived for ordinal types. For nominal types, the measure
(4.45) is clearly not affected by any normalization. As for the fuzzy ones, their values are
obtained from the continuous ones in such a way that scale is unimportant.
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