
Universitat Politècnica de Catalunya
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Motivation and outline of the thesis

Variable stars are stars that vary in their light output. The origin of this variability

may be intrinsic, in which the variability is either of pulsating type or of eruptive

type, while the extrinsic variability leads to two other classes of variable stars: eclips-

ing binaries and rotating stars. We started on the quest that led to this thesis work

with a lot of enthusiasm and curiosity for finding out what is the mechanism that

drives irregularly pulsating stars. The large-amplitude long-period variables gener-

ally called Mira variables were the first to attract the attention of many astronomers

— see the historical introduction of Gautschy (1997). David Fabricius mentioned

the variability of o Ceti, the prototype of Mira variables, in 1596 in a letter to Ty-

cho Brahe. Significantly later, more precisely in 1784, John Goodricke discovered

the variability of δ Cephei, the second known Cepheid variable and name patron for

this very important class of variable stars. In the absence of any other viable theory

on the cause of this stellar variability, the pulsating stars were interpreted as binaries

until the beginning of the 20th century. Even if some ideas on intrinsic variability

started to appear at the end of the 19th century, it is only in the mid-sixties that com-

putational studies (Baker & Kippenhahn 1962) replaced manual discretization and

calculus and brought the final explanation of the Cepheid-type pulsational instabil-

ity, as it will be shortly exposed in the Introduction. Ever since, astrophysicists have

concentrated their efforts on the regular classical variables for which most of the ba-

sic pulsation mechanism is now understood. Semiregular and irregular variables and

some Mira-type variables which exhibit erratic or strange behavior have been gener-

ally disregarded until recently. This was mainly due to the lack of high-accuracy data

and perhaps to an apparent lawless and stochastic behavior. With the advent of the

rapid developments in nonlinear time-series analysis and in the theory of dynamic

systems with emphasis on chaotic dynamics, the study of the irregular variability has

become a hot topic. Mainly due to pioneers such as J. Robert Buchler, Jean Perdang

and Edward A. Spiegel (Buchler et al. 1985), irregular stellar variability proved to

be, in some cases, due to deterministic chaos, and nonlinear phenomena in stellar

astrophysics turned into a research field of its own (Takeuti & Buchler 1993).

In this context and in the framework of the theory of nonlinear dynamics in

which simple models can exhibit complex behavior, we have engaged in this endeavor

of seeking for the root-cause of the complex stellar variability by means of simple

models. The main questions leading us in our work were:
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1. Why do some stars pulsate irregularly?

2. Is irregularity a common evolutionary phase in evolved stars?

3. What evolutionary consequences can the irregular pulsations have on the life

of the star?

4. What are the consequences of the interplay between pulsation and convection?

5. What feedback exists between pulsation and mass loss?

6. What can or cannot one-zone models account for and which are their limita-

tions?

Even if some of the above questions will not be commented throughout this the-

sis, they served their role as guiding lights and helped us in interpreting our results.

As a natural sequence of this section, we introduce in Chapter 1 more details

about the main causes of intrinsic stellar variability and present some of the ba-

sic equations of stellar pulsations that are used frequently throughout this thesis.

In Chapter 2, we review the most relevant simple models and the models which

played an important role in our approach to studying stellar pulsations. Chapter

3 concerns a simple oscillator proposed and studied in Icke et al. (1992) which is

aimed to reproduce the adiabatic radial pulsations of small and intermediate mass

stars (M ≤ 8M¯) exhibiting pulsational instability when reaching the evolutionary

phase called the Asymptotic Giant Branch (AGB). We present the results obtained

by analyzing this model extended to characterize more massive and luminous stars

(8M¯ ≤ M ≤ 11M¯). We expose in detail the outcome of the parametric study

with emphasis on the local and global bifurcations undergone by the dynamic sys-

tem and their influence on the subsequent behavior. This work was included in a se-

ries of articles of a slightly more mathematical nature than the present astrophysical

thesis, and therefore only the basic mathematical results appear in the present thesis.

However, the reader is referred to the corresponding bibliography for more mathe-

matical implications of the dynamics. In Chapter 4, we introduce a one-zone model

of nonlinear nonadiabatic stellar oscillations. We present the parametric study of the

system and draw attention on a particular set of numerical solutions which may have

implications in the study of the variability of long period variables. In Chapter 5, we

investigate the pulsation-convection interaction in the framework of the nonadia-

batic one-zone model proposed in Stellingwerf (1986). We present comments and

caveats on the results from this model as they appear in several papers in the relevant

literature, and we also introduce new results and further possible extensions of the

model. Finally, we conclude the work exposed in the previous chapters and discuss

the questions that this study has raised, that are more numerous, as is often the case,

than the questions initially asked.



Chapter 1

Introduction

The study of pulsating stars has attracted much attention from astronomers. Pulsa-

tional instabilities are encountered in many phases of stellar evolution, and also for

a wide range of stellar masses. Moreover, pulsational instabilities provide a unique

opportunity to learn about the physics of stars and to derive useful constraints on

the stellar physical mechanisms that would not be accessible otherwise (see Stobie &

Whitelock 1995).

1.1 Important timescales

Before discussing the stability and the dynamics of stellar structure, we shall con-

sider, for orientative purposes, some important timescales and their corresponding

orders of magnitude. They are of particular interest in connection with the study of

pulsating stars. The first one of these is the free-fall or dynamic timescale, tff which

is the characteristic time associated with a dynamic collapse. When evolutionary

times approach the free-fall timescale significant departures from hydrostatic equi-

librium are expected. An estimate of the order of magnitude can be readily obtained

by calculating the time required for a unit mass to fall freely through a distance of

the order of R? (the stellar radius) under the influence of a (constant) gravitational

acceleration equal to the surface gravity GM/R2
? of a star of mass M :

tff ∼
1√
G ρ

, (1.1)

where ρ is the average density. It will be seen later that the pulsation periods are

comparable to this timescale. This is a well-known result and it is a consequence

of the fact that the characteristic velocities associated with low-order, largely radial

pulsations and low-order, nonradial gravity oscillations are all determined by the

gravitational energy of the star.

The Kelvin-Helmholtz or the thermal timescale, tKH, is essentially the relaxation

time for departures of a star from thermal equilibrium, that is from the timescale

necessary to balance the energy generated by thermonuclear reactions in the stellar
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interior and the energy lost by radiation (either by photons or by neutrinos) through

the stellar surface. If Eth is the total internal (thermal) energy of the star and L is its

luminosity (net rate of loss of energy through the surface), then tKH ∼ Eth/L. Using

the virial theorem (for a stable, self-gravitating, spherical object, the gravitational

potential must equal two times the kinetic energy) and assuming that the pressure is

supplied by a simple, perfect, nonrelativistic gas, one obtains

tKH ∼
3

4

GM2

LR?

∼ 2× 107
M2

LR?

yr, (1.2)

where L, M and R? are in solar units. The Kelvin-Helmholtz timescale is normally

not of immediate interest as far as the periods of pulsating stars are concerned. How-

ever, it is relevant in connection with the study of rates of growth or decay of pul-

sations, that is with the secular changes. Therefore, a more useful dimensionless

quantity is the ratio of the dynamic timescale (∼ pulsation period) to the thermal

timescale:

tff
tKH
∼ LR

5/2
?

G3/2M5/2
∼ 10−12

LR
5/2
?

M5/2
, (1.3)

where, again, L, M , and R? are in solar units.

Finally, the nuclear timescale, tnuc is only of indirect interest in the study of pul-

sating stars. However, for the sake of completeness it will be also discussed here. This

timescale represents the time required for the properties of a star to change apprecia-

bly as a result of the nuclear evolution. For a hydrogen-burning star, and assuming

that 10% of the mass is available for thermonuclear reactions, one gets

tnuc ∼ 1010
M

L
yr, (1.4)

where, again, M and L are in solar units. A comparison among these timescales

usually yields

tnuc À tKH À tff , (1.5)

which is not only true for the sun, but for all the stars which burn hydrogen and

helium in a non-explosive manner. However, for more advances stages of stellar

evolution some differences may arise.

1.2 Basic equations of stellar pulsations

In the theory of stellar pulsations, there are three basic characteristics of the mo-

tions that the associated model may include. That is, the oscillations can be linear

or nonlinear, adiabatic or nonadiabatic, and radial or nonradial. Actual pulsations

of real stars must certainly involve some nonlinear effects which cannot possibly be

explained directly by the linear theory. In fact, the irregular behavior observed in
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many variables is definitely not the result of linear combinations of simple sinusoidal

waves. Finally, the fact that the observed pulsation amplitudes of pulsating stars of a

given type do not show enormous variations from star to star suggests the existence

of a limit-cycle behavior typical to nonlinear systems. However the full set of non-

linear equations is so complicated that there are no realistic stellar models for which

analytic solutions exist. Accordingly, most recent theoretical studies of stellar pulsa-

tions proceed either through pure numerical methods or, conversely, they adopt a set

of simplifying assumptions in order to be able to deal with a extraordinarily complex

problem.

The advantage of a linear theory is that there are well-known and powerful the-

orems and methods that can be applied to obtain solutions of the variations and the

results appear to be reasonably accurate for a good fraction of the pulsating stars.

The linear approximation is the framework in which stability conditions are eval-

uated and the means by which instability regions in the Hertzsprung-Russell (HR)

diagram are determined for large sets of stellar models. In fact, the theory of linear

stability is concerned with the question of whether a given solution is stable or not

against a small perturbation. This solution could presumably exist in nature more

than transiently only if it were stable against every kind of perturbation. If the star

is subject to small oscillations about an equilibrium configuration, then it is possible

that the star was at one time unstable against such oscillations and that the oscilla-

tions would have arisen essentially spontaneously from the instability because of the

random fluctuations. Oscillations which arise from an instability against infinitesi-

mal perturbations are often called soft self-excited oscillations. If the oscillation is a

pulsation, the system is said to be pulsationally unstable or overstable. Oscillations

that grow only after a finite perturbation has been applied to the system are called

hard self-excited oscillations.

As a first example of such oscillations, we will discuss small-amplitude motions

that are strictly periodic and radially symmetric, that is, linear adiabatic radial pul-

sations. In this case the time-averaged energy content of the star remains constant,

which is the same as saying that the oscillations are adiabatic. It is an approxima-

tion based on the assumption that the energy redistribution within the star takes

place over time scales which are very long compared to the period of the oscillation

(tff ¿ tKH). Therefore, all heat exchanges may be ignored, and consequently the

system is purely mechanical. Then the problem reduces to studying the behavior of

sound waves confined in a box. This approach gives a good dynamic description of

many features of actual pulsating stars (it provides reasonably accurate pulsational

periods and relatively reliable pulsational amplitudes), but it cannot provide any in-

formation about what really causes the star to pulsate (and, hence, we do not obtain

any information on the pulsational stability). Moreover, it cannot give us direct in-

formation regarding the thermal behavior of the star, and, most important, it cannot

provide us with the form of the light curve or the location of the red boundary of the

instability strip, since these are clearly nonadiabatic effects. In this case, the mechan-

ical structure can be described using only the mass and momentum conservation
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equations together with the adiabatic condition:

∂Mr

∂r
= 4πr2ρ (1.6)

r̈ = −4πr2
(

∂P

∂Mr

)

− GMr

r2
(1.7)

Γ1 =

(

∂P

∂Mr

)

ad

. (1.8)

Linearizing these equations and assuming the standing wave solutions of the

form ζ(r, t) ≡ δr/r = ξ(r)eiσt, one obtains, after introducing the boundary equa-

tions, the so-called Linear Adiabatic Wave Equation, herein after LAWE — see Cox

(1980):

L(ξ) ≡ − 1

ρr4
d

dr

(

Γ1Pr
4dξ

dr

)

− 1

rρ

{

d

dr
[(3Γ1 − 4)P ]

}

ξ = σ2ξ, (1.9)

where the Sturm-Liouville operator L is self-adjoint. There are some interesting

consequences of this property for stellar pulsations. First, there is an infinite number

of eigenvalues, σ2n. Second, these eigenvalues are real and can be ordered σ20 < σ21 <
..., with σ2n → ∞ for n → ∞. If σ2 > 0, then σ is the angular frequency of the

associated standing wave. On the contrary if σ2 < 0, then σ is imaginary and the

perturbations grow/decay exponentially in time.

The LAWE can also be derived in a purely physical way by conceptually displac-

ing a thin mass shell adiabatically from its hydrostatic equilibrium position in a star

and then computing the restoring forces acting on the displaced shell. In this way,

it comes out that σ2 is proportional to the force constant of a simple harmonic os-

cillator. The assumption that σ is constant means that all such shells have the same

natural oscillation frequency. In general, a star does not necessarily oscillate in this

way. However, a large number of stars (including classical Cepheids, RR Lyrae vari-

ables and some W Virginis variables) do appear to be pulsating in this simple way,

as if only one mode were present. The simplest (and somehow unrealistic) case is

the constant-density or homogeneous model (ρ(r) = 〈ρ〉). We may consider also

homologous motion (ζ constant in space throughout the star as ∂ζ/∂Mr = 0) and

that Γ1 is also constant. Then Eq.(1.9) transforms to

σ2 = (3Γ1 − 4)
4πG

3
〈ρ〉. (1.10)

Obviously, the importance of the adiabatic index Γ1 appears very clear. If Γ1 >
4/3, σ is real and Eq.(1.10) is just the period-mean density relation. On the contrary,

if Γ1 < 4/3, then σ is imaginary and the e-folding time for either growth or decay of

the motions is
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τ =
1

|σ| =
1

√

|3Γ1 − 4|〈ρ〉4πG/3
. (1.11)

which is essentially the free-fall time-scale (corrected for various factors), tff , dis-

cussed before.

Before getting into any basic theoretical consideration on stellar hydrodynamics

and heat flow, it is worth mentioning the two approaches that are used for describ-

ing a general fluid medium: the Eulerian description and the Lagrangian description.

The fundamental difference between Eulerian and Lagrangian hydrodynamics lies in

the choice of the coordinate system. In the former, all the physical quantities (fluid

velocity, total pressure, mass density, temperature) are regarded as functions of po-

sition r and time t, the last ones being the independent variables. The variable r

represents the position of the observation point and can be varied arbitrarily, inde-

pendently of the time t. In this case, the time derivative taken following the motion

of a particular fluid element has the form D/Dt = ∂/∂t + v · ∇ (i.e., the Stokes
derivative). In the Lagrangian description, the motion of a particular fluid element

is followed and as r denotes its position, it is no longer an independent variable.

Rather, r is a function of time t and of the position of the element at time t = 0,

r0(r10 , r20 , r30). The general advantage of attaching the coordinate system to the

fluid (Lagrangian approach) is that the nonlinear terms related to the difference be-

tween the observation-point velocity and fluid velocity (advection terms) disappear,

making the system much easier to solve. Unfortunately, this is valid only for one

dimensional systems, as in two or three dimensions the coordinate quickly deforms

following the shear motions of the fluid. Therefore, the Eulerian grid is used for gen-

eral equations and high-dimensional approaches, paying special attention and effort

to solving the difficult advection terms. Fortunately, there exists a method to solve

the Lagrangian hydrodynamics that is virtually gridless which is called “Smoothed

Particle Hydrodynamics”. Its advantages — the simplicity of a Lagrangian approach

and the absence of a grid — made it a very successful and powerful computational

method (Benz 1991).

In the previous paragraphs it was analyzed the case of linear adiabatic radial os-

cillations. A very quick view of the more general cases will be given below. The treat-

ment adopted in this section has only descriptive purposes and, therefore, we will

not include the heavy calculus — for a detailed analysis, see Cox (1980). Generally,

several assumptions are considered independently of the specific model adopted. For

instance, turbulence and all forms of viscosity, large-magnetic fields and any compo-

sition changes due to nuclear transformations are always neglected in simple models.

Let us now consider nonadiabatic terms. The energy equation can be written as:

d lnP

dt
= Γ1

d ln ρ

dt
+ ρ

Γ3 − 1

P

(

ε− ∂Lr
∂Mr

)

, (1.12)

where the second term of the right-hand side represents the nonadiabatic terms and

the adiabatic exponent Γ3 is given by
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Γ3 − 1 ≡
(

d lnT

d ln ρ

)

ad

. (1.13)

It is possible to combine Eq.(1.6), (1.7), and (1.12) into a single partial differ-

ential equation of third order in time that characterizes the nonlinear nonadiabatic

radial oscillations.

...
r − 2ṙr̈

r
− 4GMr

r3
ṙ − 4πr2

∂

∂Mr

[

4πΓ1Pρ
∂(r2ṙ)

∂Mr

]

= −4πr2 ∂

∂Mr

[

ρ(Γ3 − 1)

(

ε− ∂Lr
∂Mr

)]

. (1.14)

Since the system is now no longer conservative, there can exist solutions with

complex frequencies, that is solutions characterized by secularly increasing (driving

or unstable) or decreasing (damping or stable) pulsation amplitudes. It is therefore

possible to investigate the important question of pulsational stability, or in other

words, the causes of pulsations in stars, as an intrinsically variable star is one in

which the nonadiabatic effects drive the star to pulsational instability.

1.3 Mechanisms of driving

Adiabatic radial pulsations in stars are relatively well understood. However, the in-

trinsic variability of some stars implies that something inside the star causes the pul-

sation, while the adiabatic pulsations have no beginning, end or apparent cause. In

order for a star to present sustained oscillations, the gases comprising the layers par-

ticipating to the pulsation must do net positive PdV work on its surroundings dur-

ing one entire period. In the case of a negative net work, they contribute to the

damping of the oscillations.

As the work performed during one cycle is the integral of the absorbed heat, a

more precise form of the integral work W can be obtained by considering it as an

integral over the shells of mass dMr characterized by the heat exchange dQ:

W =

∫

M

∮

δT

T
dQ dMr

=

∫

M

∮

δT

T

[

δε− δ
(

1

ρ
∇ · (F rad + F conv)

)

r

]

dt dMr, (1.15)

with W > 0 being the driving condition (initial perturbations will increase) and

W < 0, the damping condition (stability). The effect of nuclear reactions (δε > 0,

with ε being the thermonuclear energy production per unit mass) is to push the stars

toward instability. This is called the ε-mechanism: ε increases and adds heat to a
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Figure 1.1: The κ-mechanism in the pressure-volume diagram. DA: adiabatic compression,

with maximum contraction velocity attained in D; AB: energy increase by increasing κ lead-

ing to increasing pressure; BC: adiabatic expansion; CD: energy release by decreasing κ lead-

ing to maximum luminosity in D. Adapted from de Loore & Doom (1992).

compressing element which is exactly the driving criterion expressed above. How-

ever, no intrinsically variable star has been shown to be unstable due to this effect,

but this mechanism seems to be the cause of mass limitation of the main sequence at

higher luminosities.

The true mechanism for intrinsic variable stars was first proposed in Eddington

(1917) and further developed in Eddington (1919) where it was suggested the exis-

tence of a valve mechanism due to which these stars behave as thermodynamic heat

engines: heat is absorbed (dQ > 0) when the temperature is increasing (δT > 0) —

see Figure 1.1. In order for this mechanism to be possible, the opacity must increase

as the mass shell is compressed. From the general formula of opacity (Kramers law)

κ ∝ ρnT−s , (1.16)

with n = 1 and s = 3.5, it results that the opacity usually decreases upon com-

pression as, even if both temperature and density increase during compression, κ
is more dependent on the temperature due to its power of 3.5. However, it takes

special conditions for the driving to overcome the damping effect of most stellar

layers, conditions that were discovered significantly later than the first works of Ed-

dington (Zhevakin, 1963) and concern the partial ionization regions in the star. In

these zones, ionized particles are created during compression and this leads to heat

absorption and a smaller increase in temperature than in other regions. This trans-

lates into the density increasing more than the temperature, and thus the opacity

increases. This in turn traps the heat and starts the expansion of the star. Now dur-

ing the expansion, the temperature does not drop by as much as would be expected

because the ions recombine with the electrons producing energy as they do so. The
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density also decreases which in turn lowers the opacity, allowing the star to contract

and start the cycle again. This mechanism is referred to as the κ-mechanism.

There are two main ionization regions: the first one is the hydrogen partial ion-

ization zone, which is a broad region where both HI→ HII and HeI→ HeII occur,

being its typical temperature of 1 to 1.5× 104 K; whereas the second one is a deeper

zone which involves the HeII→HeIII ionization and, hence, it is known as the HeII

partial ionization zone, being its temperature of about 4×104 K. The ability of these

zones to produce pulsational instability in stars arises essentially from the fact that

the ionization of an abundant element can result in modulations of the flux variation

— the right-hand side of Eq.(1.15). Detailed calculations show that in most stellar

pulsators within the instability strip (classical Cepheids, RR Lyrae and W Vir stars)

it is indeed the combination of HI and HeII ionization zones which is responsible

for driving the oscillations, while the same role is played by the HI ionization zone

for Long Period Variables (hereafter, LPVs) and by the C and O ionization regions

for the variable planetary nebulae nuclei (PG 1159 objects). Moreover, the efficiency

of the excitation mechanisms extends to some pre-white dwarfs — DOV or GW Vir

variables, see Cox (2003) — driven by the C/O partial ionization, and in different

families of white dwarfs: the DB driven by HeII ionization and the DA (the ZZ Ceti

objects) corresponding to the extension of the instability strip below the main se-

quence, to lower luminosities (Figure 1.2).

If s in Eq.(1.16) is large and negative (as may be the case in the HI zones), there

may be driving, even if Γ3 has a value close to the normal one of 5/3. In particular,

at the temperature (≈ 1.5 × 105 K) at which the photon energy in the maximum-

energy peak in the radiation field is close to the ionization potential (54.4 eV) of HeII,

there is an increase in the opacity because s becomes less positive than usual which,

again, produces driving. This is the so-called bump mechanism (Stellingwerf, 1979).

It is expected to be more efficient for stars departing from main sequence than for

giants. Another enhancement in the opacity corresponds to temperatures between

1 − 3 × 105 and is due to intra-M-shell transition in Fe. It is generally called Z-
bump mechanism and appears to produce the variability of the β-Cephei stars and

to enhance the pulsational instability in all the other variable stars (Figure 1.2).

The most important effect of such ionization zones is that Γ3−1 becomes rather

small in such regions. Most of the work on adiabatic compression goes into ionizing

the corresponding chemical species rather than into thermal energy of the mass shell

(and, hence, δT/T is smaller). Since the luminosity scales as Lr ∝ T 4, for a given

opacity κ, the flow of radiation is locally diminished upon compression and the radi-

ation is absorbed by the matter in the region of decreasing Γ3−1 at the instant of the

largest compression. This absorption causes the temperature, and therefore the pres-

sure, to be slightly larger during the ensuing expansion. This mechanism is referred

to as the γ-mechanism. In Figure 1.2 we represent the regions in the Hertzsprung-

Russell diagram which provide the distinct classes of pulsating stars as well as their

main excitation mechanism. Also shown are the main sequence (dashed line), the

white dwarf colling curve (dot-dot-dashed line) and the evolutionary tracks (solid
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Figure 1.2: Hertzsprung-Russell diagram illustrating several classes of pulsating stars. Pul-

sation is due to HI ionization zone (left-inclined dashed), HI and HeII ionization zones

(left-inclined solid), HeII ionization zone (white regions), the Z-bump mechanism (dotted

regions) and to C/O ionization regions (right-inclined solid). Adapted from Christensen-

Dalsgaard (2003).

lines) for 1, 2, 3, 4, 7, 12 and 20 M¯.

The contribution of all these mechanisms (the κ-, γ- and the bump-mechanisms)

to the sign of the work integral associated to a radiative envelope with no nuclear

burning is best reflected in Eq.(35) of Gautschy & Saio (1995)

sign(W ) = sign

[

d

dr

(

−s+ n

Γ3 − 1

)]

. (1.17)

The location of the ionization zones within the star determines its pulsational

properties. Indeed, the excitation mechanisms win over damping only if the zones

of ionization, which provide the excitation, contain a sizable fraction of the mass of

the star. In order to fulfill this requirement these zones have to be located at suitable

depths. Since ionization is mainly a function of the temperature, it results that it is

essentially the surface temperature which determines whether the star is vibrationally

stable or unstable via the κ-mechanism. At effective temperatures slightly below and

above the instability strip, the He II ionization zones are located either too deep (Teff
low) or too high (Teff high) for them to be effective (Carroll & Ostlie, 1996). And for

these cases, the H ionization zone is located either not deep enough or too high for it
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Figure 1.3: Schematic view of the variability of the RR Lyrae (solid line), Classical Cepheids

(dotted line) and Long-Period Variables (dashed line). Adapted from Malatesta (2002).

to work, and it is necessary a lower Teff for it to become a driving region — this is the

case of the LPVs. However, when considering models with still lower effective tem-

peratures, one has to keep in mind that Eq.(1.15) holds only in radiative regions, and

therefore a proper treatment of the pulsation-convection interaction is imperative.

It is expected that the κ/γ interaction be weakened or even disabled if convection

can transport away some of the energy trapped in the ionization regions. However,

there exist results suggesting the existence of convection-induced oscillations (Wood

2000) which might shed some light on the newly-discovered and still-unexplained

period-luminosity law for lone-period variables (Wood et al. 1999).

As we have seen, the instability strip contains the pulsating stars which are vi-

brationally unstable via the κ-mechanism. The star models of masses between 5 and

10 M¯ loop horizontally back and forth during the phase of core helium burning,

thereby passing through the instability strip at least twice. Depending on their mass,

the passages occur at quite different luminosities. In fact, and as a general result, it

can be said that the larger the mass, the higher the luminosity and the longer the

period (see the Cepheid instability strip in Figure 1.2). In the present thesis we shall

be concerned mainly about long-period variables and in some particular cases, the

stars of the Cepheid instability strip. For comparative and completness reasons we

present in Figure 1.3 a schematic view of the pulsational characteristics of these type

of variables.

However, the position on the HR diagram does not automatically render the pul-

sational properties of the star. In fact, it depends notably on the chemical compo-

sition. For instance, assume that two stars are situated at the same point in the HR
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diagram, a Population I star and a Population II star. Being at the same point in the

HR diagram, they have the same radii, temperature and luminosity, but the larger

metal content of Population II stars implies higher opacities, therefore less trans-

parency and lower mean density. The period-density relation (Eq. 1.10) yields a

longer period than in the case of a Population I star. Therefore, pulsating Population

I stars have always higher luminosities than pulsating Population II stars of the same

period (de Loore & Doom, 1992).





Chapter 2

One-zone models for stellar pulsations

Nonadiabatic stellar pulsations are definitely a complicated phenomenon even for

very small amplitudes and for purely radial oscillations, where the linear theory is

applicable. For larger amplitudes where nonlinear effects are more important, the

situation is almost hopeless. Most of the simple models of stellar pulsations are based

on a one-zone type of model which may be visualized as a single, relatively thin,

spherical mass-shell concentric with the stellar center. These models have helped

considerably in clarifying some of the complicated physics involved in stellar pul-

sations and the role played by different physical mechanisms. In this chapter we

describe the most relevant and successful of such simple models. This short review

is motivated by the important role played by these models in the formulation of our

approach to the study of stellar oscillations.

A one-zone model — see Schatzman et al. (1993) — is characterized by a shell of

mass ∆Mr at radius r(t) on top of a region called the core of mass Mc and radius rc
which provides a luminosity Lc. Synthetically, the behavior of the zone is governed

by the equations

d2r

dt2
= g(r, s) (2.1)

ds

dt
= ξh(r, s), (2.2)

where s is the specific entropy, ξ is the ratio of the dynamic and thermal timescales,

while the total acceleration, g(r, s) and the entropy production rate, h(r, s) are given

by

g(r, s) = −GMr

r2
+ 4πr2

P (ρ, s)

∆Mr

(2.3)

h(r, s) =
Lc − L

∆MrT (ρ, s)
. (2.4)
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The functions P (ρ, s), T (ρ, s) are given by the equation of state taking into ac-

count the ionization change during the motion, and ρ is given by mass conservation

for the one-zone model, 4πρ(r3 − r3c) = 3∆Mr. The luminosity L in the shell is

obtained using the radiative energy transport law in the diffusion approximation

Lr = −
64π2acr4T 3

3κ

dT

dMr

, (2.5)

with a being the radiation density constant and c, the speed of light. A star in dynam-

ically stable hydrostatic equilibrium, but not in thermal equilibrium will evolve away

from this equilibrium on a thermal timescale. When this happens, the right-hand

side of the thermal-balance equation (2.2) does not vanish:

ds

dt
=

1

T

(

q − dLr
dMr

)

, (2.6)

where q represents local energy sources and (dLr/dMr) the divergence of the flux. As

a result the entropy s depends on time. If there is sufficient energy available, then the

thermal instability and the dynamic instability have opposite effects. A large variety

of oscillatory motions are then possible, including relaxation oscillations. In partic-

ular, if the dynamic and thermal timescales are comparable, irregular variations can

occur.

2.1 The one-zone model of Baker

The one-zone model of Baker (1966) was primarily designed for dealing with very

small, radial oscillations, that is for elucidating some physical problems which can be

described with linear physics. The model is represented by a single spherical shell of

mass ∆Mr considered as the envelope in which all the physical variables (except the

variations of luminosity) are assumed to be constant in space, and that ε = 0. For

this case, in the linearized mass, energy and momentum conservation equations all

the spatial derivatives are dropped except ∂(δLr/Lr)/∂Mr. A further approximation

is done by assuming that

∂

∂Mr

(

δLr
Lr

)

=
2

∆Mr

(

δLr
Lr

)

, (2.7)

where the factor 2 appears from considering that the small variations in the luminos-

ity of the shell are the mean average of luminosity fluctuations of the upper and lower

boundary of the shell, with the latter being taken as zero. Additionally, the transfer

of energy is considered to be only radiative and the opacity is given by Eq.(1.16).

Assuming also a time dependence for all pulsation variables of the form eλt and

combining the above-mentioned equations and the linearized equation of state

δP

P
= χρ

δρ

ρ
+ χT

δT

T
, (2.8)
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where χ denotes the logarithmic partial derivate of the pressure with respect to the

relevant physical variable. The result is the following cubic equation for the eigen-

values λ:

λ3 +Kσ0Aλ
2 +Bσ20λ+Kσ30D = 0 , (2.9)

where

A ≡ (Γ3 − 1)(s+ 4)/χρ (2.10)

B ≡ 3Γ1 − 4 (2.11)

D ≡ (Γ3 − 1)[3nχT − s(4− 3χρ) + 4(χT + 3χρ − 4)]/χρ (2.12)

K ≡ χρ

Γ3 − 1

2L

∆MrcVT

1

σ0
(2.13)

σ20 ≡ GM/R3
?, (2.14)

while all the other symbols have their usual meaning. ForK = 0, which corresponds

to an adiabatic motion, the only non-vanishing roots of Eq.(2.9) are

λ0 = ±i(3Γ1 − 4)1/2σ0

= ±i[(3Γ1 − 4)
4πG

3
ρ]1/2, (2.15)

where

ρ ≡ Mr

4
3
πr3

(2.16)

is the average density of the region interior to radius r. If Γ1 > 4/3, these roots are

purely imaginary, corresponding to pulsations of constant amplitude. If Γ1 < 4/3,

both roots are purely real, corresponding to exponential increase or decrease in per-

turbation, both cases being denominated dynamic instability. Thus, the condition of

dynamic stability is B > 0.

For the case of K 6= 0, two additional stability conditions are necessary so that

the one-zone model shall be stable with respect to all radial motions. The condition

for secular stability isD > 0. To illustrate this condition, one can start by considering

that there exists the root of Eq.(2.9) given by

λs ≈ −
Kσ0D

B
= − Kσ0D

3Γ1 − 4
, (2.17)

which is purely real (aperiodic motion) for D > 0 (and, of course, Γ1 > 4/3). This

is the smallest possible root. The time scale of this motion, 1/λs, is of the order of

(L/cVT∆Mr)
−1, which is clearly the thermal time scale of the zone. For the partic-

ular case of χρ = χT = 1 (a simple perfect gas), the condition of secular stability
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becomes: 3n − s > 0, which means that δLr/Lr must decrease upon compression

(stable configuration). The condition for pulsational stability is

AB −D > 0, (2.18)

which comes from considering the roots of Eq.(2.9) as first-order expansions in

terms of K, that is λ = λ0 + λ1K:

λ2,3 ≈ ±iB1/2σ0 −
σ0(AB −D)

2B
K + ... (2.19)

A more physical version of Eq.(2.18) is

4(Γ3 − 1) + [s(Γ3 − 1)− n]− 4

3
> 0. (2.20)

The first term, 4(Γ3 − 1), is always positive, and therefore always tends to stabilize.

This term represents cooling upon compression as a result of enhanced radiation

flow at this moment (Lr ∝ T 4 and T ∝ ρΓ3−1 in the adiabatic approximation).

In an ionization zone of a dominant element, Γ3 − 1 → 0 and, thus, the damping

effects are diminished. That is, the ionization prevents the temperature from rising

very much upon compression and hence inhibits the loss of radiation at this mo-

ment. It is practically the γ-mechanism. The second term, s(Γ3 − 1) − n, gives

the effect of the opacity variations and can be of either sign. For the normal values

n ≈ 1, s ≈ 3, Γ3 − 1 ≈ 2/3, this term is positive and therefore contributes to the

damping. For ionization zones, this term can be negative as Γ3−1→ 0 and therefore

contributes to the driving (κ-mechanism). If s is large and negative, this term would

represent trapping of radiation during compression, and hence driving, even if Γ3

had its normal value of about 5/3. It is the bump mechanism. The third term,−4/3,

which arises from the assumed spherical symmetry, being negative, always tends to

destabilize. It merely reflects the dependence of the local luminosity on the area of

the spherical surface of the mass region of interest (Lr ∝ r4). The area of this sur-

face becomes smaller upon compression, thus producing trapping of radiation, and

hence a destabilizing tendency. This effect of curvature is usually referred to as the

radius effect or “throttling effect” (Baker 1966).

2.2 The model of Moore & Spiegel

The model of Moore & Spiegel (1966) was constructed for studying overstability in a

convectively unstable zone. The equation of motion of an oscillating mass immersed

in a horizontally stratified fluid was obtained by Moore & Spiegel in the form

d3z

dt3
+ q

d2z

dt2
−
(

gαβ +
dr

dz

)

dz

dt
− qr(z) = 0, (2.21)
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where z is the displacement of the mass element, g is the gravitational acceleration,

α is the thermal expansion coefficient from the Boussinesq approximation, while the

temperature gradient, β and the restoring force, r(z) are defined for small oscilla-

tions as

β(z) = −T0(z)
dz

= β0 + 0(z) , r(z) = −λ2z +O(z2) , (2.22)

with T0 being the ambient temperature and λ and β0 real constants. Additionally,

the characteristic time for radiative damping, q−1, results from the evolution of the

temperature as dT (t)/dt = −q[T (t)− T0(z)]. In the first approximation, Eq.(2.21)

becomes

d3z

dt3
+ q

d2z

dt2
− [(gαβ0 − λ2)− gαβ0z2]

dz

dt
+ qλ2z = 0. (2.23)

In the case of adiabatic motion, Eq.(2.23) leads to a cubic equation for the eigen-

values of the type

(Λ− 1)z + z3/3 = b, (2.24)

where Λ ≡ λ2/gαβ0 and b a constant of integration. The analysis of the cubic equa-

tion shows that for Λ > 1, it has one root, whatever b is, while for Λ < 1, it has one

real root for |b| > bc, with 3bc ≡ 2(1− Λ)3/2, and three real roots for |b| < bc. More

precisely, in the phase plane (z, ż) , the case Λ < 1 will show two stable fixed points

of elliptic type and one unstable fixed point between them of hyperbolic type (see

Appendix A). For Λ > 1, the phase plane will show one elliptic fixed point.

When dissipation is introduced (q 6= 0), a new property of the trajectories in the

phase plane appears: period doubling. For q = 0, the system has a periodic orbit

of period Π; for q 6= 0 and small, the orbit is still periodic, but closes only after a

period 2Π — this is the first bifurcation. As q increases, the orbit is still periodic, but

now with periods 2Π and 4Π, with the orbit closing after 4Π. As the parameter q is

increased more bifurcations appear, and the distance between successive bifurcations

(qn+1 − qn) decreases. There is a critical value, q∞, above which the orbits are no

longer regular at all and the dynamic system becomes chaotic — see also Schatzman

et al. (1993). The mathematical details of this model with emphasis on the aperiodic

behavior were explored thoroughly in Baker et al. (1971).

2.3 The model of Rudd & Rosenberg

The one-zone model of Rudd & Rosenberg (1970) tried to clarify some of the mathe-

matics underlying fully nonlinear stellar pulsations and the occurrence of limit cycle-

like phenomena of the kind observed in real pulsating stars. More specifically, they

wanted to devise a model which would exhibit overstability at small amplitudes and

a stable limit cycle at large amplitudes. The model is obtained as follows. If Mr is



18 2 One-zone models for stellar pulsations

the mass of the rigid core, ∆Mr ¿ Mr is the mass of the gas in the shell, and r the

instantaneous radius of the shell, then the equation of motion of the shell is taken to

be

d2r

dt2
= −4πr2 P

∆Mr

− GMr

r2
, (2.25)

being P , as usual, the pressure of the gas. The equilibrium radius, r0, of the shell

results from setting the acceleration equal to zero in Eq.(2.25). The energy equation

is introduced as the integral form of Eq.(1.12), that is

P

P0
=

(

ρ

ρ0

)Γ1

K(1− r

r0
), (2.26)

where K is a function of (1 − r/r0) which incorporates the nonadiabatic effects of

the pulsation mechanism and whose nature is determined from astronomical data.

The relation radius-density for this model follows the one from Usher & Whitney

(1968) written in the form

ρ

ρ0
=

(

r

r0

)−m

, (2.27)

where

m ≡ 1

ln(r/r0)
ln
[(r/r0)

3n30 − 1

n30 − 1

]

, (2.28)

being n0 = r0/rc ≥ 1, and rc the radius of the core. If r ≈ r0, then m becomes a

constant depending only on n0,

m =
3n30
n30 − 1

. (2.29)

Should the core be of zero radius (n0 = ∞), it would give the homogeneous

model, that is m = 3. One can see that if n0 is finite then m > 3. The authors argue

that a value of m ≈ 12 corresponding to n0 ≈ 1.2 might be appropriate for real

pulsating stars for which only the outermost layers are effectively pulsating. With

these assumptions, the final equation of motion of the model is

ẍ =
GM

r30

[

K

xq
− 1

x2

]

, (2.30)

where x ≡ r/r0, q ≡ mΓ1−2. The dynamic stability condition (i.e., the existence of

oscillatory solutions) now becomes mΓ1 − 4 > 0 instead of the previously obtained

Γ1 > 4/3. The main novelty of this model consists in regarding the expansion and

contraction phases as qualitatively different: these two phases appear to occur about

two different equilibrium radii, the one for the expansion being larger than that for

contraction. The difference consists in the functional forms of K:
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Ke = E0 + E2(1− x)2 (2.31)

Kc = C0 + C2(1− x)2, (2.32)

where the subscripts “e” and “c” refer, respectively, to the expansion and contraction

phases. The quadratic terms are chosen in accordance with the requirement that K
should never be negative. The same considerations also require thatE0, C0, E2, and

C2 should all be positive numbers. The transitions between Eq.(2.31) and Eq.(2.32)

are assumed to occur discontinuously at the end of successive phases of expansion

and contraction. However, x and ẋ are assumed to be continuous throughout the

motion, while ẍ changes discontinuously at the end of each phase of expansion and

of contraction. Another necessary condition is E0 > 1 > C0. In the limit of small

amplitudes (x ≈ 1), the condition E0 > C0 leads to a built-up of the amplitude

(self-excitation of the pulsations). Also, treatingK as a constant during half-cycles is

equivalent to assume that the motion is adiabatic during each half-cycle, but nonadi-

abatic for an infinitesimal time at each turn-around point. In other words, the model

is piecewise conservative, but globally nonconservative.

The limitation of the amplitude and the occurrence of a limit cycle are produced

by the quadratic terms, while the existence of a stable limit cycle is given by the

necessary and sufficient condition C2 > E2. Physically, it means that nonadiabatic

effects must produce a relative strengthening of the outward restoring forces when

the gas is moving inward toward minimum radius, and a relative weakening of the

inward restoring force when the gas is expanding away from minimum radius, if a

limit cycle is about to exist.

2.4 The model of Castor

The main purpose of this model was to investigate the problem of the amplitude lim-

itation for soft self-excited oscillations. In Castor (1971) — see also Cox (1980) —

it is first noted that for adiabatic motion, pulsations of every amplitude are possible.

He thus reasoned that the main physical cause of amplitude limitation is likely to

be found in nonlinearities in the nonadiabatic part of the motion. This conclusion

is consistent also with the amplitude-limiting mechanism of the Rudd-Rosenberg

model. He noticed that the general, nonlinear, nonadiabatic third-order partial dif-

ferential equation Eq.(1.14) has all explicit nonadiabatic effects contained in the right

hand side. Therefore, he linearized only the left hand side, while the right hand side

was expanded into a linear term plus one higher order term. Finally, in this model,

Eq.(2.27) is written as

ρ̇

ρ
= −mr

ṙ

r
, (2.33)

where
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mr ≡
3n30
n30 − 1

(

r

r0

)3(
ρ

ρ0

)

, (2.34)

using the same notation of Eq.(2.27) and Eq.(2.28). The final nonlinear equation has

the form

...
r − ṙr̈

r
(mrΓ1 − 2) + (mrΓ1 − r)

GM

r3
ṙ =

= 4πr2
ρ(Γ3 − 1)

∆Mr

(

ε− ∂Lr
∂Mr

)

. (2.35)

In linearizing the left hand side one assumes that the unperturbed model is in hy-

drostatic equilibrium (r̈0 = 0) and that Γ1 is constant. Also, a characteristic angular

frequency can be defined as

ω0 ≡
[

(m0Γ1 − 4)
GM

r30

]1/2

, (2.36)

where m0 is the value of mr in the unperturbed model and Γ1 ≥ 4/m0, so that ω0 is

purely real. Now, expanding the right side of Eq.(1.46) into a linear term ζ ≡ δr/r
and a cubic term in ζ and defining a new time scale as τ ≡ ω0t, one gets the final

form of Eq.(2.35) as

d3ζ

dτ 3
+
dζ

dτ
+ ε(ζ −Qζ3) = 0, (2.37)

where ε andQ are two parameters. For certain conditions, Castor obtained four limit

cycles, but only one of these was found to be stable.

2.5 The model of Stellingwerf

The one-zone model from Stellingwerf (1972) is an extension of the Rudd & Rosen-

berg model and definitely inspired in that of Usher & Whitney (1968). From the

Rudd-Rosenberg model, Stellingwerf takes the momentum equation, that is Eq. (2.25),

and the geometry equations — namely Eq.(2.27) and Eq.(2.28). Using the equilib-

rium condition d2r0/dt
2 = 0 and the notationX ≡ r/r0, it can be easily shown that

the equation of motion becomes

d2X

dt2
=
GM

r30

[(

P

P0

)

X2 −X−2

]

. (2.38)

He furthermore introduced the notation τ ≡ t/Π — being Π the period of oscilla-

tion — and the quantity ξ, defined as
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ξ =
GM

r30
Π2. (2.39)

The nonadiabatic effects are contained in the function H defined by

P

P0
=

(

ρ

ρ0

)Γ1

H. (2.40)

With these definitions, the final equation of motion turns out to be

d2X

dτ 2
= ξ(HX−(mΓ1−2) −X−2), (2.41)

where m is defined in Eq.(2.28). In order to obtain the variation of the function H ,

the energy equation is used in the form

∂P

∂t
=

Γ1P

ρ

∂ρ

∂t
− ρ(Γ3 − 1)

∂Lr
∂Mr

, (2.42)

where the thermonuclear production rate has been neglected (ε = 0). In order to

allow for a possible variation of the luminosity interior to the inner boundary of

the pulsating region, he assumes the form ∂Lr/∂Mr ≈ (L − Li)/∆Mr, where Li is

the luminosity of the rigid core. The luminosity in the case of radiative transport of

energy is given by

Lr = −
64π2acr4T 3

3κ

dT

dMr

, (2.43)

with a being the radiation density constant and c, the speed of light. For the one-

zone model, this formula translates into

L

L0
= X4

(

T

T0

)4(
κ

κ0

)−1

, (2.44)

with L0 being the equilibrium luminosity of the model and κ, the opacity, while

Eq.(2.42) becomes

dH

dτ
= −ζXm(Γ1−1)[XbHs+4 − Li/L0], (2.45)

where s is defined in Kramers law of opacity (Eq.1.16) and

b = 4 +m[n− (s+ 4)(Γ1 − 1)] (2.46)

ζ = Π
ρ0L0
P0∆Mr

(Γ3 − 1) =
L0Π

Es

. (2.47)

In other words, the nonadiabaticity parameter, ζ , is the ratio of the total radi-

ated energy during one period to the total internal energy of the shell, Es. As in
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Cox (1980), ζ is considered to be almost unity in the instability strip, while having

high values in the ionization regions of hot stars and low values for cool stars. It is

worth noticing that the values and forms of ζ constitute a very controversial matter,

implying distinct analytic forms and values (Ostlie & Cox 1986; Saitou et al. 1989).

In connection with ζ , it is also of interest the elegant approach from the old but still

actual work of Usher & Whitney (1968) where their solution led to a significant al-

teration of the oscillation frequency associated with the variations of entropy, with

the frequency change being of second order in ζ .

In the model of Stellingwerf, Eqs.(2.41, 2.45) constitute the final set of relations

for the unknowns X and H . Taking n = 1, s = 3, Li/L0 = 1 and n0 such that the

shell thickness comprises 10−15% of the stellar radius, the three basic parameters of

this model remain Q, ξ and Γ1. The model yields an approximate value of 90◦ phase

lag in the emergent luminosity variation which is thought to be caused by the combi-

nation of damping in the interior and driving in the shell. This phase lag is observed

in the majority of Cepheids. Stellingwerf also shows that the linear one-zone formu-

lation agrees quite well with the nonlinear results as far as the phase shift and the

luminosity amplitude are concerned. However, in contrast to the Rudd-Rosenberg

model, the Stellingwerf model does not possess a built-in amplitude-limiting mech-

anism.

2.6 Other simple models

Buchler & Regev (1982) developed a simple one-zone model of interest for the os-

cillations in stars with extended convective partial ionization regions, which is very

similar to the Moore & Spiegel (1966) oscillator. Later, Tanaka & Takeuti (1988)

have shown that the Rössler dynamic system (Strogatz 1994) can be considered a

fare model of stellar oscillations. Kovács & Buchler (1988) later found that chaotic

pulsations in the numerical hydrodynamic modeling of W Vir stars seem to have the

topology of the Rössler attractor. Saitou et al. (1989) argued in a one-zone treatment

that the saturation by large-amplitude dissipation can explain the semi-regular vari-

ability of yellow giants. In a more mathematical approach, Unno & Xiong (1993)

formulated a theoretical one-zone modeling of the irregular variability in red super-

giants considering the nonlinear coupling of finite amplitude pulsation with con-

vection. Another approach to convection treatment is the extension of the above-

mentioned Stellingwerf model to include the treatment of convection in Stellingwerf

(1986). A previous step toward the study of the pulsation-convection interaction in

simple models was done by Pesnell (1985). While there is strong evidence that, to

some degree, pure radiative models are inconsistent with the observations (Buchler

1998) and that a treatment of pulsation-convection interaction in red giants is indis-

pensable, no common agreement exists yet neither on its form nor on its influence

on the pulsation.



Chapter 3

One-zone model for Super-AGB stars

Long term photometry of several LPVs has revealed not only regular light curves,

but also irregularities superimposed onto the regular variations, which lead to a high

degree of unpredictability. Due to the lack of appropriate tools for analyzing these ir-

regular fluctuations of the luminosity or the stellar radius, the scientific community

did not pay much attention to this category of variable stars. The development of

new nonlinear time-series analysis tools during the last decade has changed this per-

spective. In particular, it has been found that these tools have rich applications in a

broad range of astrophysical situations, which include wavelet analysis of gamma-ray

bursts (Norris et al. 1994), of variable white dwarfs (Goupil et al. 1991), of gravita-

tionally lensed quasars (Hjorth et al. 1992) or X-rays within galaxy clusters (Slezak

et al. 1994). To be more specific, in the field of stellar variability, Serre et al. (1996a,b)

confirmed that the irregular pulsations of W Vir models are indeed chaotic and they

furthermore proved that the physical system generating the time series is equivalent

to a system of 3 ordinary differential equations (hereinafter ODEs). A similar ap-

proach has been used also for the study of the pulsations of other type of stars like,

for instance, the RV Tau stars, R Scuti (Buchler et al. 1995) and AC Her (Kolláth

et al. 1998) and has provided significant results concerning the underlying dynam-

ics. This result is not a trivial one since it is not evident at all that stellar pulsations

can be fully described by such a simple system of ODEs. This stems from the fact that

the classical method to physically describe stellar pulsations is based on the use of a

hydrodynamic code where the partial differential equations (PDEs) of fluid dynam-

ics are replaced by a discrete approximation consisting ofN mass shells. Therefore, a

set of 3N coupled nonlinear ODEs must be solved, where N is typically of the order

of 60.

From the point of view of the dynamic systems theory, there have been several

attempts to interpret the irregularities in the stellar variability from the perspective

of chaotic regimes or, equivalently, to discover the nature of the underlying chaotic

or intermittent mechanism and how this mechanism produces the observed effects

(Buchler & Kolláth, 2001). However, there is no consensus in the literature about

which features of the oscillations might be at the root of the chaotic behavior. It is
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important to point out here that the observations show that these oscillations be-

come more and more irregular in time, especially at the very end of this evolutionary

phase, when the mass loss rate becomes increasingly large. The general approach

adopted by most of the studies is to investigate how the outer layers of the stars

respond to the pulsations originating in the stellar interior. These outer layers are

driven periodically by pressure waves generated well below the stellar photosphere.

The outer layers are generally assumed to behave as driven oscillators whose dynam-

ics can be of significant variety: regularly periodic motions, at first, multiperiodic

as time increases and, finally, chaotic motions as the mass of the envelope decreases

more and more rapidly due to mass loss.

3.1 Description of the one-zone model

In the search for a description which embodies the essentials of stellar oscillations,

we follow the simple model of the driven keplerian oscillator extensively studied by

Icke et al. (1992) and successfully applied to Asymptotic Giant Branch (AGB) stars.

This oscillator has not been used for studying the thermal pulses of Super Asymp-

totic Giant Branch (SAGB) stars and this is where we concentrate our efforts. The

assumptions of the model are the following:

• The outer layers are extended while the interior is compact, and thus the outer

layers and the interior are effectively decoupled.

• The driving originates in the stellar interior and consists in a pulsation gener-

ated by pressure waves. Moreover, the model considers only the case of sinu-

soidal driving.

• The outer layers are driven by the interior pressure waves that pass through a

transition zone characterized by a certain coefficient of transmission.

• No back reaction of the outer layers is considered on the inner layers.

• The motion is calculated at successive states of hydrostatic equilibrium.

The driving oscillator is generally denominated “the interior” and the driven os-

cillator, “the mantle”. These are separated by a transition zone through which the

pressure waves from the interior propagate until they hit the mantle where they dis-

sipate. The driving oscillator is represented by variations of the interior radius, Rc,

around an equilibrium position, R0, according to:

Rc = R0 + αR0 sinωct, (3.1)

where α is the fractional amplitude of the driving and ωc is the frequency of the

driving (see Figure 3.1). The mantle is represented by a single spherical shell of mass
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Figure 3.1: Model of the stellar envelope

m at instantaneous radius Rm. Starting from the equation of motion in the absence

of driving force, it can be easily shown that the equation of motion is:

d2Rm

dτ 2
=

4πR2
m

m
P − GM

R2
m

, (3.2)

where τ is the time, P is the pressure inside Rm, and M is the mass of the rigid core.

In accordance with Icke et al. (1992), we additionally assume that the gas follows a

polytropic equation of state (P ∝ ργ) with polytropic coefficient γ = 5/3. If we

further assume that the region where the pulsation occurs is nearly isothermal and

we focus on the dynamics near the mantle (or, equivalently, that Rm ≈ R?, being R?

the radius of the star), it can be shown that the equation of motion reduces to

d2r

dt2
= − 1

r2

(

1− 1

r

)

+Qω4/3α sin[ω(t− r + r0 + αr0 sinωt)], (3.3)

where we have introduced the following set of nondimensional variables:

r ≡ Rm/R?

r0 ≡ R0/R? (3.4)

ω ≡ ωc/ωm = r
−3/2
0

t ≡ ωmτ,

where

ωm =
(GM

R3
?

)1/2

(3.5)

is the characteristic dynamic frequency of the physical system and Q is the transmis-

sion coefficient of the transition zone through which the pressure waves from the

interior propagate. In the limit r ≈ 1 (small oscillations) and absorbing some terms
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into t as phase shifts, one arrives to the simplified equation of motion that is the

object of the initial part of our study:

d2x

dt2
= −x+ ε sin[ω(t− x+ αω−2/3 sinωt)], (3.6)

where x ≡ r − 1 and ε = Qω4/3α. Note that for ε = 0, Eq.(3.6) transforms into the

classical equation of the linear oscillator, that is ẍ = −x. All the interesting features

of the motion are created by the perturbation (the second term of the right-hand side

of Eq.(3.6) with ε 6= 0) and its interaction with the unperturbed motion (ẍ = −x).

The most important parameters of our dynamic system are: α (the fractional

amplitude of the driving), ε (the total driving amplitude) and ω (which is a measure

of the core/envelope ratio, a kind of compactness of the star giving information about

where in the interior of the star is the source of the driving). Writing the system as

dx

dt
= y

(3.7)
dy

dt
= −x+ ε sin[ω(t− x+ αω−2/3 sinωt)],

one can see that the system is Hamiltonian, and hence it has the form:

dx

dt
= +

∂H(x, y; t)

∂y
(3.8)

dy

dt
= −∂H(x, y; t)

∂x
,

where the (time-dependent) Hamiltonian is:

H(x, y; t) =
x2 + y2

2
− ε

ω
cos[ω(t− x+ αω−2/3 sinωt)]. (3.9)

Should the hamiltonian be time-independent (that is, dH/dt = 0), then the sys-

tem would have been also conservative and the Hamiltonian itself or, more precisely,

the energy of the system would have been a conserved quantity:

Ė =
dH(x, y)

dt
=
∂H(x, y)

∂x
ẋ+

∂H(x, y)

∂y
ẏ = 0. (3.10)

In our case, the system is hamiltonian, but not conservative (dH/dt 6= 0):

dH(x, y; t)

dt
= ε(1 + αω−2/3 cosωt) sin[ω(t− x+ αω−2/3 cosωt)]. (3.11)
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It is a well known result of the theory of dynamic systems that in order to do a

hamiltonian description of a system, no dissipative processes should be involved in

the dynamics. The consequence of this fact is that attractors or repellers do not exist

for hamiltonian systems, and therefore one is left with the task of understanding the

dynamics of the whole phase space instead of a reduced one. A way to ease this work

is to associate a map to the hamiltonianH(x, y, t) and to simplify the visualization of

the dynamics. The best choice is the mapM represented as (xi+1, yi+1) = M(xi, yi),
with i = 1, n, where the index i is identified with intervals of t separated by the pe-

riod of the perturbation, in our case P = 2π/ω. This particular stroboscopic map is

called the Poincaré map — see Guckenheimer & Holmes (1993) — and constitutes

our main analysis tool for this system. It is as well a classical result of the theory

of dynamic systems that the Poincaré map of a time periodic hamiltonian system is

an area preserving map of the plane (Meiss 1992). In fact, this result is the direct

consequence of the non-dissipative character of the system. Unfortunately, the fact

that the unperturbed motion is linear in nature means that most of the familiar the-

orems and simplifying tools of the theory of dynamic systems are inapplicable (see

Appendix A). This fact gives rise to a rich variety of bifurcations, but it also means

that these cases of dynamics are poorly understood. The study of these bifurcations

has led us into concluding that the Poincaré map of this system belongs to the family

of the so-called nontwist maps (del Castillo Negrete et al. 1997). Thus, the transition

to the nontwist property as well as to chaos in this area preserving map make the

object of this chapter.

3.2 Characterization of the oscillator

For the integration of Eq.(3.6), Icke et al. (1992) used a fourth-order predictor-

corrector scheme. Their study was restricted to the following values of the physical

parameters: ε = 0.5, 0.75, 1.0, and α = 0.1, 0.2, 0.4 for a small set of values of

ω around ω ' 20, which is characteristic of regular asymptotic giant branch stars

(M ≤ 3M¯). Their main results and conclusions are that small values of ω produce

chaotic pulsations and that for large values of α stable orbits in some definite regions

of the phase space are obtained. Our aim is to extend their previous study to SAGB

stars, which have, hence, a different value of ω. For the physical conditions found in

these stars, 8M¯ ≤ M ≤ 11M¯ and R∗ ∼ 450R¯, it turns out that ω ' 3. The

exact values for these parameters were obtained from Garcia-Berro et al. (1997). We

also intend to further explore the possible range of physical parameters investigated

by Icke et al. (1992). For such a purpose we numerically integrate Eq.(3.6) using

a fifth order Runge-Kutta integrator with step-size control and dense output (DO-

PRI5) as described in Hairer et al. (1993). We have used several other integrators,

as those described in Shampine & Gordon (1975), which are specifically designed

for stiff problems, and we have obtained the same results for a given set of initial

conditions (see Appendix B for more details). Thus we conclude that our numerical
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Figure 3.2: Illustration of the quasiperiodic character of the orbit for ω = 3.0146, α = 0.4,

ε = 0.5 and the nondimensional initial condition (x0, y0) = (−0.4, 0.0): (a) 840 points, (b)

1680 points, (c) 2520 points, (d) Poincaré map of the orbit.

integrator is appropriate for the kind of problem we are dealing with.

3.2.1 AGB stars vs. SAGB stars: the role of ω

We expect that for the physical conditions of SAGB stars these time series should

show either a periodic behavior, or quasi-periodic oscillations or even they could

show chaotic variability as is the case of regular AGB stars. Generally speaking, a

quasiperiodic orbit can be better visualized on the surface of a torus or in a section-

cut of this torus, that is in the Poincaré map. However, sometimes a direct image of

the orbits given by the numerical integration can help in visualizing how the orbits

fold due to the quasi-periodicities. In order to better understand this concept, both
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Figure 3.3: Poincaré map for Eq.(3.6) with ε = 1 and several initial conditions for ω = 20.1:

(a) α = 0.1; (b) α = 0.4, and for ω ' 3: (c) α = 0.1; (d) α = 0.4. Note the difference in

the scales of the axes.

a real orbit and its Poincaré map are shown in Figure 3.2, for ω ' 3. In particular,

considering a time interval equal to an arbitrary integer multiplier, m, of the main

period, P = 2π/ω, panels (a), (b) and (c) of Figure 3.2 show an orbit for the time

intervals [0,mP ], [0, 2mP ] and [0, 3mP ], respectively, with a time interval of P/30
between successive points whereas panel (d) shows its corresponding Poincaré map

(that is, with P ).

In order to compare the behavior for two different values of ω (and, thus, the dif-

ference between the behavior of the pulsations of Asymptotic and Super-Asymptotic

Giant Branch stars), in panels (a) and (b) of Figure 3.3 we show two Poincaré maps,

obtained with different initial conditions and ω ' 20, typical of regular AGB stars,

whereas in panels (c) and (d) of Figure 3.3 the corresponding Poincaré maps for

ω ' 3 (typical of SAGB stars) and the same initial conditions are shown. As it can

be seen in this figure, as ω increases the behavior is more irregular, and the islands

and the structure of panels (a) and (b) quickly disappear, leading to a more chaotic

behavior. Consequently we expect to find a more chaotic behavior for the pulsations

of SAGB stars. As time-series are the main object of study in astronomy, we illustrate

in Figure 3.4 the time series for the velocity variations of some initial conditions

(x0, y0) of the Poincaré map of panel (b) of Figure 3.3, while the corresponding time
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Figure 3.4: Velocity variations corresponding to ε = 1, α = 0.4, ω ' 20 and several initial

combinations of (x0, y0): (a): (−0.35,−0.05), (b): (−0.1,−0.2), (c): (0.2,−0.15), and

(d): (−0.25,−0.05).

series for the case of panel (d) are shown in Figure 3.5. Note however, the different

scales involved in Figure 3.3, which translate into larger periods for Figure 3.5, when

compared to Figure 3.4.

As we have seen so far, the Poincaré map of our system looks quite bizarre, and

consists in domains of chaotic orbits, in islands (i.e. closed curves) filled with peri-

odic and quasiperiodic orbits and in smaller domains where chaos exists. In fact, this

system shows several good examples of the topological zoo typical of hamiltonian

systems. The existence of islands was generally regarded as irrelevant in determining

the origin and character of chaos in hamiltonian systems (Zaslavsky 1999). However,

thorough analysis of this issue has shown that the behavior near the boundaries of

such islands is very interesting. In particular, crossing an island boundary means

jumping from a regular (periodic or quasiperiodic) behavior to an irregular one that

lies in the chaotic region (or stochastic sea, as it is generally called). One of the partic-

ularities of this singular zone is illustrated in Figure 3.3a. One can see a central island

embedded in the domain of chaotic motion with an interesting boundary separating

the area of chaos from the one of the regular motion. By changing a control param-

eter of the system, numerous bifurcations are born and thus influence the topology
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Figure 3.5: Velocity variations corresponding to ε = 1, α = 0.4, ω ' 3 and several initial

combinations of (x0, y0): (a): (−0.35,−0.05), (b): (−0.1,−0.2), (c): (0.2,−0.15), and

(d): (−0.25,−0.05).

of the boundary zone leading to the appearance and disappearance of smaller and

smaller islands. It may result in self-similar hierarchical structures of islands which

is crucial for understanding long-term behavior and interpreting the spectrum anal-

ysis of the time-series as these structures represent high-order resonances.

3.2.2 The role of the fractional driving amplitude, α

In order to characterize in depth the behavior of our system, we have performed

a thorough parametric study by varying α and ε, while keeping ω constant at the

value typical of SAGB stars. Reasonable values of the fractional amplitude, α are

in the interval 0.1–0.4, whereas the total driving amplitude, ε varies between 0.1

and 1.0. Since α is the ratio between the amplitude of the internal driving and the

radius of the star, the upper limit considered in this study is 40%, which is physically

sound. In general, a star is characterized by its compactness (ω) and the interior-

mantle coupling strength (Q). Accordingly, we have investigated the dynamics of the

solution of Eq.(3.6) rewritten below in the form of a perturbed oscillator,
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Figure 3.6: The effect on the Poincaré map of increasing α: (a) α = 0.2; (b) α = 0.3 and (c)

α = 0.4.

ẍ+ x = ε sin[ω(t− x+ b sinωt)], (3.12)

where b = αω−2/3, maintaining a constant value of ω ' 3 and varying ε (and im-

plicitly Q). The Poincaré map was used to study the general behavior of the system

in Eq.(3.6).

In a first step, we have studied the qualitative changes in the dynamics (that is, the

bifurcations) as the parameters ε and α are varied. We have considered the case α ∈
(0.1, 0.4) and ε = 0.5, and we have obtained, starting from several initial conditions,

the Poincaré maps of our system corresponding to these parameters (Figure 3.6). The

Poincaré maps are characterized by the same geometric structure: a region, centered
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Figure 3.7: The behavior of the central elliptic fixed point for our area preserving map for

ω = 3.0146 and ε = 0.07. (a): α = −0.3; (b): α = −0.05; (c): α = 0.2

around (x, y) = (0, 0), of closed orbits, surrounded by a region of chaotic orbits.

As it can be seen in Figure 3.6, as α increases, the central region of regular behavior

expands to the detriment of the stochastic sea.

We also have paid some attention to the behavior of the system for negative values

of the parameter α. A quick look at Eq.(3.1) allows one to see that negative values

of α correspond to a mere change of phase in the driving and, therefore, they also

correspond to physically meaningful cases. However, and for the sake of clarity and

conciseness, along this study we will concentrate our efforts on the positive domain

of this parameter. However, we would like to remark at this point that the phase

portrait of the Poincaré map changes drastically depending on whether α is positive,

negative or almost zero (Figure 3.7).

3.2.3 The role of the total driving amplitude, ε

Next we have focused on values of ε ¿ 1 in order to observe in detail the departure

of our equation from the harmonic oscillator as this parameter is increased. We

restricted the study of the Poincaré map to a rectangle limited by initial conditions

close to reasonable values of the radius and velocity of the mantle. The restriction is

also due to the approximations involved in reaching Eq.(3.6). For ε = 0 we get an

integrable hamiltonian system, whose integrals of motion are the tori given by the

condition x2+ y2 = C, t = [0, 2π/ω). The Poincaré map has the elliptic fixed point

(0, 0), which corresponds to a periodic orbit of period P = 2π/ω of the perturbed

hamiltonian system.

We have chosen the range of ε ∈ (0, 0.12) and α = 0.3 and obtained a cascade

of bifurcations in the form of chains of alternating elliptic and hyperbolic points,

with regular curves encircling the elliptic fixed points and a separatrix connecting the

hyperbolic points (Figure 3.8). From the general theory of nontwist maps, it results

that for a given ε, there exists a critical value of α, which depends on ε, for which the

elliptic fixed point undergoes a type of bifurcation called triplication (Dullin et al.,

2000). Figure 3.8 illustrates the route to triplication. The upper panels correspond
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Figure 3.8: Poincaré maps for Eq.(3.12) for α = 0.3 and different values of ε: (a) ε = 0.01—

an “almost” harmonic oscillator; (b) ε = 0.03 — the phase portrait just before the saddle-

center bifurcation; (c) ε = 0.04 — the creation of the first dimerized island chain; (d) ε =
0.07— the pair of period–3 dimerized island chain is complete. The separatrices responsible

for the creation of chaotic behavior appear in light-grey.

to values of ε for which α = 0.3 is smaller than the critical value. For these cases the

elliptic point has not yet undergone a triplication, but it is at the threshold of creation

of a three-periodic island (one can see an invariant circle with three cusps). This is

a stage in the typical scenario of creation of new type of orbits in nontwist maps.

The bottom panels of Figure 3.8 correspond to configurations typical of a parameter

α greater than the threshold of bifurcation. The transition from the phase-space

of the top-left panel to the one in the bottom-left panel through the cusp phase

of the top-right panel is a typical case of saddle-center (cusp) bifurcation (Iooss &

Joseph, 1990). Each cusp from Figure 3.8b is a point of a new periodic orbit created

through a saddle-center bifurcation for ε ≈ 0.04: a stable (elliptic) and an unstable

(hyperbolic) fixed point emanate from each cusp (see Appendix A). The homoclinic

loop of every hyperbolic point surrounds the corresponding elliptic one. Between

two successive hyperbolic points (in cyclic order) there is a heteroclinic connection.

These separatrices that appear in grey in Figure 3.8c,d are called dimerized island

chains (del Castillo Negrete et al., 1996). With the formation of the second dimerized

chain, the scenario is said to be complete, in the sense that two chains of the same
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Figure 3.9: The global bifurcation: creation by saddle-center bifurcations of a pair of period–

3 orbits for α = 0.3 and increasing values of ε. The particular orbits involved in the bi-

furcations appear in light-grey. (a) ε = 0.0875 — the phase portrait at the threshold of a

saddle-center bifurcation. It presents an invariant curve with six cusps; (b) ε = 0.095 —

two interwined orbits of period–3 have been created. Inside each new-born loop there is

a period–3 elliptic point; (c) ε = 0.11725 — the threshold of the global bifurcation. The

topology of the separatrices has changed.
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Figure 3.10: Formation of the stochastic sea(α = 0.3): (a) ε = 0.3 — as the second dimer-

ized island chain is destroyed, it is clothed in a stochastic layer; (b) ε = 0.4 — the stronger

the perturbation, the wider the stochastic layers; (c) ε = 0.5 — merging of the stochastic

layers forming the stochastic sea.
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Figure 3.11: A zoom of Figure 3.10c illustrating the islands-around-islands hierarchy.

type appear in stages, forming a sequence of vortices (Van der Weele & Valkering

1990).

Around the configuration typical for a step of the triplication, a sequence of local

and global bifurcations occurs. This is illustrated in Figure 3.9, where it can be seen

that two independent orbits of the same period three are created by cusp bifurcation.

They evolve in such a way that, finally, they interact with the orbits which belong to

the first dimerized island chain. As ε increases the newly born elliptic points ap-

proaches the hyperbolic points of the dimerized chain. When ε reaches a value of

about 0.11725 a global bifurcation occurs: the newly created orbits interfere, and the

hyperbolic points of the dimerized island become homoclinic eight-like orbits encir-

cling the new created elliptic points. If we enlarge the region of study of the Poincaré

map we can observe that as ε increases the process of creation of vortices repeats.

In § 2.6, dedicated to the mathematical details of the model, we shall argue that this

behavior is due to the oscillating character of the nontwist property of perturbation.

In a second step we have paid attention to larger values of ε. In particular we

have studied the range ε ∈ (0.2, 0.5). The increase in strength of the external per-

turbation destroys these separatrices (Figure 3.10a) by clothing every one of them

in a stochastic layer (Figure 3.10b). As the thickness of the layers increases with the

perturbation, depending on the positions of the separatrices in the phase space, they

can merge forming the stochastic sea (Figure 3.10c). Any trajectory whose initial

condition belongs to the stochastic sea passes through every point of the sea. Thus,

the entire sea can be explored with the help of a single trajectory.

Another essential phenomenon typical of some hamiltonian systems is linked to

the existence of a very complex phase space topology in the neighborhood of some

islands: a trajectory can spend an indefinitely long time in the boundary layer of the

island. Therefore, these regions are called dynamical traps (Zaslavsky, 2002). This

trapping phenomenon was observed already in Contopoulos (1971) and was later

called stickiness (Shirts & Reinhardt, 1982). The main uncertainty in characterizing

this phenomenon concerns the level of stickiness (that is, its characteristic trapping

time) which depends on the parameters of the system in a still unknown manner. In
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Figure 3.12: The evolution in time of the initial condition (x0, y0) = (0.0, 0.2) as ε is in-

creased for α = 0.3: (a) ε = 0.190175: (b) ε = 0.190185, and (c) ε = 0.190192. The initial

condition is (x0, y0) = (0.0, 0.2).

general, close to the islands there is a hierarchical structure of islands-around-islands

whose presence is believed to explain the origin of the stickiness of the trajectory

within this region, and is the reason why this behavior is called hierarchical-islands
trap (Figure 3.11). The reason why so much attention is generally paid to under-

standing the structure of these islands is because different islands may correspond

to different physical processes responsible for their origin. An island in the stochas-

tic sea refers to the domain of initial conditions that generate stable trajectories. Its

boundary layer may include higher-order resonant islands. A more important rea-

son is that the topology of the islands could be an indicator for the vicinity of bifur-
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cations. However, no general description for the birth and collapse of hierarchical

islands exists yet.

A zoom of the region near one of the hyperbolic points reveals that the seed of

chaos already exists (Figure 3.12) even before the destabilization of the separatrix

followed by the creation of the stochastic layer — see also Lieberman & Lichtenberg

(1992). There are numerous islands which the chaotic trajectory cannot penetrate.

Within an island there are regions of quasiperiodic motion (invariant tori) and re-

gions of trapped chaos. The stronger the chaos is, the smaller the islands are and the

larger is the fraction of phase space occupied by the stochastic sea. The coexistence of

regions of regular dynamics (closed orbits) and regions of chaos in the phase space is

a wonderful example of the property which differentiates chaotic systems from ordi-

nary random processes, where no stability islands are present. This property makes

possible the analysis of the onset of chaos and the appearance of minimal regions of

chaos. To summarize the dynamic behavior as it results from Figure 3.8 and Figure

3.9:

(a) For ε ∈ [0, 0.03), the Poincaré map is similar to that of the harmonic oscillator,

with the elliptic fixed point in (x, y) = (0, 0) surrounded by almost circular

closed orbits.
(b) For ε ∈ [0.03, 0.04), in addition to the central elliptic point, three elliptic

and three hyperbolic fixed points appear, all of period 3, together with the

associated heteroclinic orbit that connects them.
(c) For ε ∈ [0.04, 0.07), appear new fixed points, three of them are elliptic and

three are hyperbolic of period 3 connected by a second heteroclinic orbit (in-

side the first heteroclinic orbit).
(d) For ε ∈ [0.07, 0.2), the first heteroclinic orbit disappears and three homoclinic

orbits of period 3 are created, each of them implying the existence of two el-

liptic fixed points and a hyperbolic one. The elliptic fixed points are created at

this step while the hyperbolic ones were those created at step (c).
(e) For ε ∈ [0.2, 0.3), we notice a more definite chaotic behavior created by the

instability of the remaining of the first heteroclinic orbit engulfing the fixed

points of case (c).
(f) For ε ∈ [0.3, 0.5], we notice the extension of the chaotic orbits in the central

region (without altering the Poincaré map), together with the continuous gen-

eration of pairs of three elliptic fixed points in the outer region as ε increases.

Another important feature of the phase portrait characteristic of nontwist maps

is the existence of meanders, i.e. invariant circles which fold exactly as a meander

(Simó, 1998). Meanders are created between two successively born dimerized island

chains or between two chains of vortices. Panel a of Figure 3.13 illustrates a meander

near a pair of dimerized island chains containing periodic orbits of period 35. Me-

anders appear to be robust invariant circles, even when the nearby orbits are chaotic

(Figure 3.13b). This behavior was observed in nontwist standard-like maps, but until

now there is no explanation for this robustness.
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Figure 3.13: (a): A meander near an invariant circle with 35 cusps for ε = 0.4 and α =
0.3; (b): two orbits, one filling the meander and the second, a chaotic orbit. The meander

confines the chaotic orbit.

3.3 Astrophysical interpretation of the results

In order to give an idea of the physical ranges for the stellar fluctuations in radius

and velocity and for an ulterior comparison with light curves obtained from ob-

servational data, we discuss below some time series obtained with the model pre-

sented above that we consider to be of interest. Also, and for physical purposes, the

variations of radius and of the velocity as functions of time are represented both in

physical units (years, solar radii and km/s, respectively) and in nondimensional units

— as we have been doing so far. For instance, in Figure 3.14 we show the time se-

ries (R(τ), V (τ)) corresponding to the quasiperiodic Poincaré map of Figure 3.2 in

physical coordinates.

Generally speaking, the primary information that one can derive from a generic

computed or observed time series is the spectral distribution of energies (or ampli-

tudes) of the light curve, that is the amplitudes and periods present in its Fourier

spectrum. Very frequently, these time series do not show a single frequency or a

small set of frequencies but, in addition, linear combinations of these primary fre-

quencies may also appear in the spectra. A good example of this — among many

others — is the Cepheid TU Cassiopeia (Kolláth & Buchler, 2001) for which 29 fre-

quencies have been identified. Even terms like 4f0 + 3f1 or 5f0 + 2f1 are inferred

from the Fourier transform of the light curve. In sharp contrast, in the spectra of

RR Lyrae typically only the f0 ± f1 terms can be identified in addition to f0 and f1.

The Fourier spectrum of the velocity variation of Figure 3.14 is shown in Figure 3.15

together with the representation of linear combinations of the two basic frequencies

f0 = 0.5227 yr−1 with A0=0.32 km/s and f1 = 0.8501 yr−1 with A1=11.95 km/s.

As it can be seen in this figure there are several linear combinations of the two basic

frequencies. In particular the most characteristic combinations are f0+ f1, f0+2f1,

f0 + 3f1 and f0 + 4f1, but other linear combinations are already quite apparent.

In any calculation of a time-varying phenomenon, like the one we are studying
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Figure 3.14: Time series for the quasiperiodic orbit previously shown in Figure 3.2. The

variations of the radius (top) and of the velocity (bottom) are shown as a function of time

(τ in years and t nondimensional), expressed both in nondimensional units and in physical

units (solar radii for the radius, km/s for the velocity).

Figure 3.15: Fourier spectra for the velocity variation of Figure 3.14.
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Figure 3.16: Variations of radius (top) and velocity (bottom) as a function of time for ω ' 3,

α = 0.3, ε = 0.5 and the initial condition (x0, y0) = (0.0, 0.02). The escape velocity of the

model star (vesc ' 86 km/s) is represented as a dashed line.

here, there is always the very important practical question of when the simulations

should be terminated. For full nonlinear hydrodynamic simulations, even in the

case in which a stable limit cycle seems to have set in, one often is worried about

the fact that thermal changes, which take place on a longer timescales, could still be

occurring. For instance, Ya’ari & Tuchman (1996) have carried the calculations of

Mira variable pulsations much further than in previous investigations and, to their

surprise, they have found that the actual behavior was significantly different from

what it was previously thought. To be precise, they obtained a new modified “true”

limit cycle which is quite different from the earlier, “false”, limit cycle. In agreement

with these results, the numerical integration of our system, despite the very crude

approach adopted here which results in an extreme simplicity of the model, presents

a similar behavior. This is shown in Figure 3.16 for a particular orbit. As it can

be seen in this figure during the first ∼ 1400 yr the star oscillates quite regularly,

and with small amplitudes. After this period of time the quiet phase suddenly stops

and the pulsations become more violent and irregular. Moreover, at late times the

velocity of the outer layers reaches values which are in excess of the escape velocity

(which is represented in the bottom panel of Figure 3.16 by a dashed line) and, hence,

mass loss is very likely to occur, in accordance with the observations of LPVs, which

are the observational counterparts of SAGB stars.

This behavior — a quiet phase, followed by an extremely violent phase — is a

typical case of a dynamic trap discussed in §3.2. The Poincaré map associated to the

radius and velocity variations in Figure 3.16 is shown in Figure 3.17. Neither Figure

3.16 nor Figure 3.17 include the oscillations previous to 1000 years because the be-

havior is similar to the one of the time interval between 1000 and 1400 years and,

thus, was excluded from the figures in order to have a better view of the time series.


