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treballant junts, ja saps que mai no deixarem de veure’ns. Persones com tu són les que realment



v

fan que la paraula AMIC tingui sentit i no sigui més que una definició al diccionari. Espero que
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A pesar que sólo llevo unos pocos meses trabajando en el Centro de Regulación Genómica, también
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Abstract

Survival analysis arises when we are interested in studying statistical properties of a variable

which describes the time to a single event. This type of analysis occurs commonly in two areas:

biomedicine and engineering. In biomedicine research it is known as survival analysis and refers

often to the time from the beginning of the treatment to the occurrence of a particular condition

or death. In some situations, we may observe that the event of interest occurs repeatedly in the

same individual, such as when a patient diagnosed with cancer tends to relapse over time or when

a person is repeatedly readmitted in a hospital. In this case we speak about survival analysis

with recurrent events.

Recurrent nature of events makes necessary to use other techniques from those used when

we analyze survival times from one single event. In this dissertation we deal with this type

of analysis mainly motivated by two studies on cancer research that were created specially for

this research. One of them belongs to a study on hospital readmissions in patients diagnosed

with colorectal cancer, while the other one deals with patients diagnosed with non-Hodgkin’s

lymphoma. This last study is mainly relevant since we include information about the effect of

treatment after relapses and some authors have stated the needed of developing an specific model

for relapsing patients in cancer settings (Montoto et al., 2002). These two data sets together with

two other existing examples and that have been extensively analyzed, have been used to illustrate

the statistical methodology proposed in this work.

In this dissertation, we address two different types of statistical analysis similar to those

one may carry out when we deal with survival analysis for a single event. This two types of

analysis are known in the biomedical literature as univariate or multivariate analysis. Univariate

analysis studies how one variable may modify the probability of observing a new recurrence.

Our contribution to this problem is to propose a method to construct confidence intervals for
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the median survival time in the case of recurrent event settings. Two different approaches are

developed. One of them is based on asymptotic variances derived from two existing estimators

of survival function (Peña et al., 2001 and Wang and Chang, 1999) while the other one uses

bootstrap techniques. This last approach is useful since one of the estimators proposed by Peña

et al. (2001) does not have any closed form for its variance yet. The new contribution to this work

is the examination of the question of how to do bootstrapping in the presence of recurrent event

data arising from a sum-quota accrual scheme and informativeness of right-censoring mechanism.

Weak convergence is proved and asymptotic confidence intervals are built to according this result.

On the other hand, multivariate analysis addresses the problem of how incorporate more than

one covariate in the analysis. In recurrent event settings, we also need to take into account

that apart from covariates, the heterogeneity, the number of occurrences or specially, the effect

of interventions after re-occurrences may modify the probability of observing a new event in a

patient. This last point is a very important one since it has not been taken into consideration in

biomedical studies yet. To address this problem, we base our work on this new model for recurrent

events. Our contribution to this topic is to accommodate the situation of cancer relapses adopting

the Peña and Hollander’s model in which the effect of interventions is represented by an effective

age process acting on the baseline hazard function. We call this model dynamic cancer model.

We also address the problem of estimating parameters of the general class of models for recur-

rent events proposed by Peña and Hollander (2004), where the dynamic cancer model may be seen

as an special case of this general model. Two general approaches are developed. First approach is

based on semiparametric inference, where a baseline hazard function is nonparametrically speci-

fied. The second one is a penalized likelihood approach. For the semiparametric inference we take

two different strategies, depending on whether a frailty model is fitted or not. When frailties are

included in the model, an EM algorithm is developed. Regarding penalized likelihood approach,

two different strategies are also adopted. One of them was proposed in the shared frailty model

context by Therneau et al. (2003). Their idea is based on penalizing the partial likelihood where

the penalization bears on a regression coefficient. The second penalized approach, also applied

in the shared frailty model, was proposed by Rondeau et al. (2003). Their method of estimation

is based on the penalized full likelihood, and it gives a non-parametric estimation of the baseline

hazard function using a continuous estimator. The solution is then approximated using splines.

The main advantage of this method is that we can easily obtain smooth estimates of the hazard



ix

function and an estimation of the variance of frailty variance, while in the other approaches this

is not possible. In addition, this last approach has a quite less computational cost than the other

ones. Simulations performed under different scenarios and sample sizes show the good properties

of the proposed estimator. In addition, the results obtained using dynamic cancer model in real

data sets, indicate that the flexibility of this method provides a safeguard for analyzing data

where patients relapse over time and interventions are performed after tumoral reoccurrences.

Computational issue is another important contributions of this work to recurrent event set-

tings. We have developed three R packages called survrec, gcmrec, and frailtypack that are

available at CRAN, http://www.r-project.org/. These packages allow users to compute me-

dian survival time and their confidence intervals, to estimate the parameters involved in the Peña

and Hollander’s model (in particular in the dynamic cancer model) using EM algorithm, and to

estimate this parameters using penalized approach, respectively.





Resumen

La necesidad del análisis de supervivencia aparece cuando necesitamos estudiar las propiedades

estad́ısticas de una variable que describe el tiempo hasta que ocurre un evento único. Este tipo

de análisis suele plantearse normalmente en dos áreas: biomedicina e ingenieŕıa. En investigación

biomédica, se conoce como análisis de supervivencia, y usualmente hace referencia, al tiempo

desde el inicio del tratamiento hasta la ocurrencia de una condición en particular o la muerte. En

algunas ocasiones, podemos observar que el evento de interes ocurre repetidamente en un mismo

individuo, como puede ser el caso de un paciente diagnosticado de cáncer que recae a lo largo

del tiempo o cuando una persona es reingresada repetidas veces en un hospital. En este caso

hablamos de análisis de supervivencia con eventos recurrentes.

La naturaleza recurrente de los eventos hace necesario el uso de otras técnicas distintas a

aquellas que utilizamos cuando analizamos tiempos de supervivencia para un evento único. En

esta tesis, tratamos este tipo de ánalisis principalmente motivados por dos estudios en investi-

gación en cáncer que fueron creados especialmente para este trabajo. Uno de ellos hace referencia

a un estudio sobre readmisiones hospitalarias en pacientes diagnosticados con cáncer colorectal,

mientras que el otro hace referencia a pacientes diagnosticados con linfomas no Hodgkinianos.

Este último estudio es especialmente relevante ya que inclúımos informacion sobre el efecto del

tratamiento después de las recáıdas y algunos autores han mostrado la necesidad de desarrollar

un modelo espećıfico para pacientes que presentan este tipo de enfermedades (Montoto et al.,

2002). Estos dos conjuntos de datos, junto a otros dos existentes en la literatura biomédica y que

han sido ampliamente analizados, han sido utilizados para ilustrar la metodoloǵıa estad́ıstica que

se propone en este trabajo.

En esta tesis, tratamos dos tipos diferentes de análisis estad́ısticos similares a los que se llevan

a cabo cuando tratamos datos de supervivencia simples. Estos dos tipos de análisis son conocidos
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en la literatura biomédica como análisis univariante y multivariante. El análisis univariante estu-

dia cómo una variable puede modificar la probabilidad de observar una nueva ocurrencia. Nuestra

contribución a este problema es proponer un método para construir intervalos de confianza para

la mediana de supervivencia en el caso de eventos recurrentes. Para ello, hemos utilizado dos

aproximaciones. Una de ellas se basa en las varianzas asintóticas derivadas de dos estimadores

de la función de supervivencia (Peña et al., 2001 y Wang y Chang, 1999), mientras que el otro

utiliza técnicas de remuestreo. Esta última aproximación es útil ya que uno de los estimadores

propuestos por Peña et al. (2001) todav́ıa no tiene una forma cerrada para su varianza. La nueva

contribución de este trabajo es el estudio de cómo hacer remuestreo en la presencia de datos

con eventos recurrentes que aparecen de un esquema conocido como “sum-quota accrual” y la

informatividad del mecanismo de censura por la derecha que presentan este tipo de datos. De-

mostramos la convergencia débil y los intervalos de confianza asintóticos se construyen utilizando

dicho resultado.

Por otro lado, el análisis multivariante trata el problema de cómo incorporar más de una co-

variable en el análisis. En problemas con eventos recurrentes, también necesitamos tener en cuenta

que además de las covariables, la hetereogeneidad, el número de ocurrencias, o especialmente, el

efecto de las intervenciones después de las reocurrencias pueden modificar la probabilidad de ob-

servar un nuevo evento en un paciente. Este último punto es muy importante ya que todav́ıa no

se ha tenido en cuenta en estudios biomédicos. Para tratar este problema, hemos basado nuestro

trabajo en un modelo propuesto por Peña y Hollander (2004). Nuestra contribución a este punto

es la adaptación de las recáıdas en cáncer utilizando este nuevo modelo para eventos recurrentes

en el que el efecto de las intervenciones se representa mediante un proceso llamado“edad efectiva”

que actua sobre la función de riesgo basal. Hemos llamado a este modelo modelo dinámico de

cáncer (“dynamic cancer model”).

Tamb́ıén tratamos el problema de la estimación de parámetros de la clase general de modelos

para enventos recurrentes propuesta por Peña y Hollander (2004) donde el modelo dinámico de

cáncer se puede ver como un caso especial de este modelo general. Hemos desarrollado dos aprox-

imaciones. La primera se basa en inferencia semiparamétrica, donde la función de riesgo basal

se especifica de forma no paramétrica. La segunda es una aproximación basada en verosimilitud

penalizada. Para la inferencia semiparamétrica adoptamos dos estrategias diferentes dependiendo

si ajustamos un modelo con fragilidad (“frailty”) o no. El algoritmo EM se utiliza cuando la frag-
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ilidad se incluye en el modelo. En cuanto a la aproximación mediante verosimilitud penalizada,

de nuevo adoptamos dos estrategias diferentes. Una de ellas fue porpuesta por Therneau et al.

(2003) en el contexto de un modelo de fragilidad compartida (“shared frailty model”). Su idea

se basa en penalizar la verosimilitud parcial donde la penalización recae en los coeficientes de

regresión. La segunda aproximación basada en penalización, también aplicada en este mismo

modelo, fue propuesta por Rondeau et al. (2003). Su método de estimación se basa en penalizar

la verosimilitud completa y da una estimación no paramétrica de la función de riesgo basal uti-

lizando un estimador continuo. La solución se aproxima utilizando splines. La principal ventaja

de este método es que podemos obtener fácilmente una estimación suave de la función de riesgo

aśı como una estimación de la varianza de la varianza de la fragilidad, mientras que con las otras

aproximaciones esto no es posible. Además este último método presenta un coste computacional

bastante más bajo que los otros. Las simulaciones llevadas a cabo bajo diferentes escenarios y

tamaños muestrales, han mostrado buenas propiedades de los estimadores propuestos. Además,

los resultados obtenidos con datos reales, indican que la flexibilidad de este modelo es una garant́ıa

para analizar datos de pacientes que recaen a lo largo del tiempo y que son intervenidos depués

de las recáıdas tumorales.

El aspecto computacional es otra de las contribuciones importantes de esta tesis al campo

de los eventos recurrentes. Hemos desarrollado tres paquete de R llamados survrec, gcmrec

y frailtypack que están accesibles en CRAN, http://www.r-project.org/. Estos paquetes

permiten al usuario calcular la mediana de supervivencia y sus intervalos de confianza, estimar

los parámetros del modelo de Peña y Hollander (en particular el modelo dinámico de cáncer)

utilizando el algoritmo EM y la verosimilitud penalizada, respectivamente.





Resum

La necessitat de l’anàlisi de supervivència apareix quan ens cal estudiar propietats estad́ıstiques

d’una variable que descriu el temps fins que succeeix un esdeveniment únic. Aquest tipus

d’anàlisi se sol plantejar normalment en dues àrees: la biomedicina i l’enginyeria. En investi-

gació biomèdica, es coneix com a anàlisi de supervivència, i usualment fa esment, al temps des de

l’inici del tractament fins a l’esdeveniment d’una condició particular o la mort. En algunes oca-

sions, podem observar que l’esdeveniment d’interès se succeeix de manera recurrent en un mateix

individu, com pot ser el cas d’un pacient diagnosticat de càncer que recau al llarg del temps

o quan una persona és reingressada repetides vegades en un hospital. En aquest cas, parlem

d’anàlisi de supervivència amb esdeveniments recurrents.

La naturalesa recurrent dels esdeveniments fa necessària la utilització de tècniques estad́ıs-

tiques distintes a les que emprem quan analitzem temps de supervivència en el cas d’un esdeveni-

ment únic. En aquesta tesi, tractem aquest tipus d’anàlisi motivats per dos estudis de recerca

en càncer que varen ser dissenyats per dur a terme aquest treball. Un d’ells gira en torn de

readmissions hospitalàries en pacients diagnosticats amb càncer colorectal, per bé que l’altre fa

referència a pacients diagnosticats amb limfomes no Hogkinians. Aquest darrer estudi és espe-

cialment rellevant ja que vàrem incloure informació sobre l’efecte del tractament després de les

recaigudes, i alguns autors han mostrat la necessitat de desenvolupar un model espećıfic per pa-

cients que presenten aquest tipus de malalties (Montoto et al., 2002). Aquest dos conjunts de

dades, juntament amb d’altres existents a la literatura biomèdica i que han estat àmpliament

analitzats, han estat emprats per il̊ulustrar la metodologia estad́ıstica que es proposa en aquest

treball.

En aquesta tesi, hem tractat dos tipus diferents d’anàlisi estad́ıstic similars als que es duen a

terme quan es tracten dades de supervivència simples. Aquests dos tipus d’anàlisi són coneguts

xv
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en la literatura biomèdica com anàlisi univariant i multivariant. L’anàlisi univariant estudia com

una variable pot modificar la probabilitat d’observar una nova ocurrència. La nostra contribució

a aquest problema ha estat proposar un mètode per construir intervals de confiança per a la

mediana de supervivència en el cas d’esdeveniments recurrents. És per això que hem utilitzat

dues aproximacions. Una d’elles es basa en les variànces asimptòtiques derivades de dos estimadors

de la funció de supervivència (Peña et al., 2001 y Wang y Chang, 1999), per bé que l’altre utilitza

tècniques de remostratge. Aquesta darrera aproximació es útil ja que un dels estimadors proposats

per Peña et al. (2001) encara no té una forma tancada per la seva variància. L’originalitat

d’aquest treball rau en el disseny del remostratge quan es tracten dades amb events recurrents,

que apareixen amb un esquema conegut com ”sum-quota accrual”i la informativitat del mecanisme

de censura per la dreta que presenten aquest tipus de dades. Demostrem la convergència dèbil i

constrüım els intervals de confiança assimptòtics utilitzant aquest resultat.

D’altra banda, l’anàlisi multivariant fa esment al problema de com incorporar més d’una

covariable en l’anàlisi. En problemes amb esdeveniments recurrents també necessitem tenir en

compte que, a més de les covariables, l’heterogenëıtat, el nombre d’ocurrències, o especialment,

l’efecte de les intervencions després de les reocurrències poden modificar la probabilitat d’observar

un nou esdeveniment en un pacient. Per abordar aquest problema, hem basat el nostre treball

en un model proposat per Peña i Hollander (2004). La nostra contribució a aquest punt ha estat

l’adaptació de les recaigudes en càncer utilitzant aquest nou model per a esdeveniments recurrents

en què l’efecte de les intervencions es presenta mitjançant un procés anomenat ”edat efectiva”,

que actua sobre la funció de risc basal. Hem anomenat a aquest model model dinàmic de càncer

(“dynamic cancer model”).

També tractem el problema de l’estimació de paràmetres de la classe general de models per

esdeveniments recurrents proposat per Peña i Hollander (2004), on el model dinàmic de càncer

es pot veure com un cas especial d’aquest model general. Hem desenvolupat dues aproximacions:

la primera es basa en inferència semiparamètrica, on la funció de risc basal s’especifica de forma

no paramètrica; la segona és una aproximació basada en versemblança penalitzada. En el cas

d’inferència semiparamètrica adoptem dues estratègies diferents depenent de si ajustem un model

amb fragilitat (”frailty”) o de si no ho fem. L’algoritme EM és utilitzat quan la fragilitat és inclosa

en el model. Pel que fa a l’aproximació mitjançant versemblança penalitzada, també adoptem

dues estratègies diferents. Una d’elles va ser proposada per Therneau et al. (2003) en el context
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d’un model de fragilitat compartida (”shared frailty model”). La seva idea es basa en penalitzar

la versemblança parcial en què la penalització recau en els coeficients de regressió. La segona

aproximació basada en penalització, també aplicada en aquest mateix model, va ser proposada

per Rondeau et al. (2003). El seu mètode d’estimació es basa en penalitzar la versemblança

completa i proporciona una estimació no paramètrica de la funció de risc basal utilitzant un

estimador continu. La solució s’aproxima mitjançant splines. L’avantatge més important d’aquest

mètode és que podem obtenir fàcilment una estimació suau de la funció de risc, aix́ı com una

estimació de la variància de la variància de la fragilitat, ja que amb les altres aproximacions això

no és possible. A més, aquest darrer mètode té un cost computacional bastant més baix que els

altres. Les simulacions dutes a terme sota diferents escenaris i mides mostrals, han mostrat bones

propietats dels estimadors proposats. A més, els resultats obtinguts amb dades reals indiquen

que la flexibilitat d’aquest model es una garantia per analitzar dades de pacients que recauen al

llarg del temps i que són intervinguts després de les recaigudes tumorals.

L’aspecte computacional és una altra de les contribucions importants d’aquesta tesi al camp

dels esdeveniments recurrents. Hem desenvolupat tres paquets de R anomenats survrec, gcmrec

y frailtypack que són accessibles a través de CRAN, http://www.r-project.org/. Aquest

paquets permeten a l’usuari calcular la mediana de supervivència i els seus intervals de confiança,

estimar els paràmetres del model de Peña i Hollander (en particular el model dinàmic de càncer)

mitjançant l’algoritme EM y la versemblança penalitzada, respectivament.
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Chapter 1

Introduction: State-of-the-art

1.1 Goals

The present thesis was primarily motivated by a study on hospital readmissions in patients di-

agnosed with colorectal cancer. Our aim was to examine whether there were differences between

some clinical variables in the time until rehospitalization from the date of cancer surgery. We

used a nonparametric estimation of survival function for this purpose including all observed times

of hospital readmission related to the disease. Given the fact that the time between patients can

be correlated it was necessary to use models more sophisticated than those normally employed

in medical literature such as Kaplan-Meier or Cox model. We realized that we could not com-

pute confidence intervals for median survival time when some of the existing estimators are used.

Thus, our aim was to investigate bootstrapping schemes for estimating the sampling distribution

of estimators of median survival time distribution in the presence of recurrent event data. An-

other important goal was to determine how to compute pointwise confidence intervals for median

survival using asymptotic results from these estimators.

After dealing with these kind of data, we continued working on models for recurrent event data

trying to extend some existing models to cancer settings. Thus, we deal with lymphoma data set

which is mainly relevant since we include information about the effect of treatment after relapses.

So far, this particular information has not been addressed in scientific publications and cannot

be handled in a straightforward manner by statistical packages. In fact, some doctors asked

for the needed to create “a model designed specifically for relapsing patients”, as MacLaughlin

1
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(2002) argued. For this reason, one of the main aims of this dissertation has been to investigate

how to incorporate information about interventions in patients who relapse over time. To do

so, we used a very flexible model designed for analyzing recurrent event data proposed by Peña

and Hollander (2004). In particular, we used the response to the treatment after cancer relapses

to model the effect of interventions after reoccurrences. We called this model dynamic cancer

model. After that, another important goal was to develop statistical procedures for estimating

model parameters involved in this new model such as penalized likelihood methods. Finally, we

focused on implementing these methods in a widely used statistical software such as R, to help

physicians to carry out their data analysis.

In the following sections we outline a survey on statistical methods for the analysis of re-

current event data. In particular, we discuss two important aspects in this type of studies: the

heterogeneity and the event dependence. Finally, we illustrate how some models, mainly used in

reliability settings, are useful to take into account another important topic which appears in these

data: the effect of interventions after re-occurrences. The very flexible model proposed by Peña

and Hollander (2004) which is the basis of our work is described at the end of this chapter.

1.2 Survival Analysis with Recurrent Events

Survival analysis arises when we are interested in studying statistical properties of the variable

T , which describes the time to a single event. This type of analysis occurs commonly in two

areas. In medical research it is known as survival analysis and refers often to the time from the

beginning of the treatment to the occurrence of a particular condition or death. In engineering it

is concerned with reliability and the analysis of failure times. That is, how long a component can

be used until it fails. Counting process formulation and martingale theory have become the most

used tool in the modern theory of these type of data. In the Appendix A we outline the main

points in the use of counting processes as applied in survival analysis. Therneau and Grambsch

(2000) can also be looked up for an overview from a very intuitive point of view.

However, in many other situations, we observe that the event of interest occurs repeatedly in

the same subject such as when a patient diagnosed with cancer tend to relapse over time or when

a person is repeatedly readmitted in a hospital. In that case we speak about survival analysis

for recurrent events. Repeated events are prevalent in a vast variety of disciplines. These include
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biomedicine, psychiatry, engineering, or sociology among others. Recurrent nature of events

makes necessary to use other techniques from those used when we analyze survival times from

one single event. In this case, random observation periods for each subject were allowed. Then,

we observe the event of interest (always the same) at different times during the follow-up time.

Finally, the last event is not observed since it would be observed after the end of study. Thus,

censored data appears. This type of scheme which generates the data is known as sum-quota

accrual scheme in the literature. This chapter starts by giving a representation of the sum-quota

accrual scheme and introducing some notation of this scheme induced by the multiple occurrences

and the randomness of follow-up period. The special nature of the data invalidates the direct

use of martingales methods. To solve this problem, Section 1.2.2 illustrates another formulation,

called doubly-indexed process that was first proposed by Gill (1981) and Sellke (1988) and extended

by Peña et al. (2001). This technique will be useful to derive some theory for recurrent events.

In Section 1.3 we give a survey of the statistical methodology for recurrent event data, focusing

on nonparametric methods. Section 1.4 deals with two important topics which appear in studies

with repeated measures: the heterogeneity and the event dependence. Both problems arise when

the independent assumption is violated. This section also describes two methods to solve these

problems: variance-corrected and frailty models. Finally, Section 1.4.3 describes conditional and

marginal models which allow us to incorporate the effect of concomitant covariates, to control

the event dependence, and the heterogeneity.

1.2.1 Sum-quota accrual scheme

Figure 1.1 illustrates a pictorial representation of our setting, known as sum-quota accrual scheme.

We consider a patient diagnosed with cancer (e.g., an observational unit) which is being monitored

for the occurrence of a recurrent event over a study period [0, τ ] , where τ may represent an

administrative time, time of study termination, or some other right-censoring variable (see τ in

Figure 1.1). The time τ could be a random time governed by an unknown probability distribution

function G(t) = Pr(τ ≤ t). In recurrent event data, times are indexed in two scales, calendar and

interoccurrence or gap times. Calendar times are defined by the sequence S0 ≡ 0 < S1 < S2 <

S3 < . . . and correspond to the successive calendar times of event recurrences (see S in Figure

1.1). Interoccurrence times will be denoted by T1, T2, T3, . . . and correspond to the time between

successive event occurrences (see T in Figure 1.1). Thus, for i = 1, 2, 3, . . ., Ti = Si − Si−1 and
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Figure 1.1: Graphical representation of the sum-quota accrual scheme for an individual.

Si = T1 + T2 + . . . + Ti. Over the observation period [0, τ ], the number of event occurrences is

K = max{k ∈ {0, 1, 2, . . .} : Sk ≤ τ}, which is a random variable whose distribution depends

on the distributional properties of the inter-occurrence times Tis and the distribution G(w) =

P{τi ≤ w} of τ . As such, K is informative with regards to the distributional properties of event

occurrences (in the example, K = 2). The fact of following-up patient for a fixed time, can lead

to some event not being completely observed. Thus, Figure 1.1 illustrates that third event is

not observed since it will appear after the end of study. So, T3 is not observed completely: we

only observe the censored time τ − S2. We notice that the interocurrence times are affected by

unobserved variable called frailty (see Z in Figure 1.1). These frailties might make some patients

have more recurrences than others depending on their values.

In the Appendix A we show that the risk indicator is one of the main components to use in

counting processes and martingale theory. We illustrate that, in recurrent event situations, two

different time scale are possible. Thus, we have two possible formulations for risk intervals: gap

time or total time. Figure 1.2 shows the two types of risk intervals for two hypothetical subjects.

For the first patient the interoccurrence times are 5 and 20 months and the third event is not

observed after a follow-up of 15 months from the last event (15 is the censored time). These

interoccurrence times correspond to calendar times 5, 25 and 40 respectively. For the second

patient no events are observed after 30 months. Gap time represents the time from the prior

event, e.g. the interoccurrence time. Thus, the gap time formulation (right bottom panel Figure

1.2) for our example indicates that the first subject is at risk of the first event during the interval

(0, 5], and for the second and third events during (0, 20] and (0, 15] respectively. On the other

hand, total time is the time from a selected point. There exist several examples for this point,

among others the date of diagnosis, the time of start of treatment, or the date of birth. In the
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Figure 1.2: Illustrations of the risk interval formulation using an hypothetical data, where ¥
corresponds to and event and • is censoring

example (bottom left panel Figure 1.2) , the first subject is at risk for the first, second and third

events during the intervals (0, 5], (0, 25], and (0, 40], respectively. Second subject is at risk during

(0, 30].

1.2.2 Doubly-indexed processes

Counting processes is a powerful tool in survival analysis. However, as Sellke (1988) observed,

when dealing with recurrent event data, one should not only consider a calendar time formulation.

We also need to consider gap time formulation. These idea originated from Gill (1981) and has

been extended in Peña et al. (2001).

We begin by defining the following processes, which consider calendar time only. For i =

1, . . . , n and s ≥ 0 let

N †
i (s) =

∞∑

j=1

I(Sij ≤ s, Sij ≤ τi) (1.1)

be processes which count the number of failures for unit i at time s which have not been censored,

and

Y †
i (s) = I(τi ≥ s), (1.2)

which indicates if unit i has been censored at time s. Now, we define a filtration G = {Gs : s ≥ 0}
such that {(N †

i (s), Y †
i (s)) : s ≥ 0} is G-adapted. Moreover, let A†i (s) =

∫ s
0 Y †

i (v)λ(v−S
iN†

i (v−)
)dv
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Figure 1.3: Doubly-indexed processes illustration for an hypothetical case

which makes M †
i (s) = N †

i (s) − A†i (s), s ≥ 0 to be a local square-integrable G-martingale with

predictable quadratic covariation process 〈M †
i , N †

i 〉(s) = A†i (s)I{i = i′} (an introduction to these

counting processes can be found in Peña et al., 2001).

Now, we have the main ingredients to define similar processes to those defined for single event

case (see Appendix A) but for recurrent event situations. We introduce appropriate processes

that are indexed by calendar time s and gap time t (doubly indexed processes) as follows. This

processes are the basic ones considered in Peña et al. (2001) and Sellke (1988) and they provide the

connection between the gap time formulation and that based on calendar time. For i = 1, 2, . . . , n,

let Zi(s, t) = I{s − S
iN†

i (s−)
≤ t} be the indicator that for calendar time s at most t time units

have elapsed since the time of the last event. For s, t ≥ 0 we define

Ni(s, t) =
∫ s

0
Zi(v, t)dN †

i (v);

Ai(s, t) =
∫ s

0
Zi(v, t)dA†i (v); (1.3)

Mi(s, t) =
∫ s

0
Zi(v, t)M †

i (dv) = Ni(s, t)−Ai(s, t);

Yi(s, t) =
N†

i ((s∧τi)−)∑

j=1

I{Tij ≥ t}+ I{(s ∧ τi)− S
iN†

i ((s∧τi)−)
≥ t}, i = 1, 2, . . . , n.

We notice that N(s, t) counts the number of observed events occurring over the calendar period

[0, s] whose interoccurrence times were at most t. On the other hand, Yi(s, t) counts the number
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of observed events on calendar period [0, s] whose interoccurrence times were at least t. Figure 1.3

shows a hypothetical case followed during 310 months. This patient presents three recurrences

at months 110, 185, and 280 from the beginning of study. This fact implies that interoccurrence

times are 110, 75, 55, and the censored time correspond to 30 months. Let us assume that we are

interested in computing the single processes, N(t) and Y (t) for a selected interoccurrence time

t = 100. In this case N(t = 100) = 1 and Y (t = 100) = 2. For the calendar time scale, s = 200,

we have N(s = 200) = 2 and Y (t = 200) = 1. Now, let us assume that we would like to know

double-indexed processes for both selected interoccurrence and calendar times. Using both time

scales we observe that N(s = 200, t = 100) = 1 and Y (s = 200, t = 100) = 1.

1.3 Estimation of the survival function

The aim of this section is to give a survey of the statistical methodology for recurrent event

data, focusing on nonparametric methods. We will also show how existing reliability models can

be applied in biomedical or public health settings. Previously, we need to define a new process

called effective age which is outlined in Section 1.3.1. Two estimators for the case of correlated

interoccurrence times are described in Sections 1.3.3 and 1.3.4. The methodology described for

nonparametric methods in reliability can be found in Hollander and Sethuraman (2002). The

estimators for the correlated case are also described and compared in Peña et al. (2001) or in

González and Peña (2004).

Statistical inference in the presence of recurrent event data has been considered by several

authors such as Gill (1981), Vardi (1982a,b), McClean and Devine (1995), Soon and Woodroofe

(1996), Wang and Chang (1999) (WC), and Peña, Strawderman, and Hollander (2001) (PSH). A

main aspect with this type of data is the sum-quota accrual scheme which leads to an informative

stopping rule as well as an informative censoring mechanism (see Section 1.2). Except in PSH

(2001), most papers have used restrictive data accrual and censoring schemes for recurrent event

data. In PSH (2001) it is assumed that the interoccurrence times represent independent and

identically distributed (i.i.d.) observations from an unknown continuous distribution F , and that

each subject is observed for a possibly random period of time. As a consequence, the number of

event occurrences for a subject or unit is a random variable whose distribution depends on F ,

hence is informative about it. Moreover, the last observation for each subject is always right-
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censored, with the censoring variable depending on the length of the observation period and on

the previous interoccurrence times for that subject, rendering the censoring mechanism to become

informative.

1.3.1 Effective age process

Reliability works with models which deal with repairable systems. These models incorporate

the idea of effective age, also called virtual age, which describes the effect of repair. Kijima

et al. (1988) introduce the notion of the virtual age as an improvement to minimal repair models.

Maybe these models are more easily introduced in reliability settings than in biomedical problems

due to the ability to monitor the effective age. Perhaps the main reason is that, upon failure, we

can decide if the system is replaced by a new identical (perfectly repaired) or if it is restored to its

state just before failure (minimally repaired). However, when we are dealing with patients, firstly,

we cannot decide the degree of their “repair”: we always want to eliminate all manifestation of

the disease (e.g., “perfect” repair); and secondly, we always do not achieve the same response: we

can obtain a complete remission of the disease, partial remissions or no response.

Although it seems natural to take into account the performed interventions, none of models

which are mostly used in biomedical settings, described in Section 1.4.3, incorporate this effect.

Before starting to describe how to adopt some existing reliability models in cancer data we focus

more on the effect of interventions. For example, people with coronary heart disease are advised to

alter their lifestyle by reducing stress level, quitting smoking habit, or doing regular and moderate

physical activity. These advises try to modify the probability of presenting a new heart attack.

Another example arises from patients with epileptic seizures, where recommendations in order to

reduce the number of new seizures include sleeping 8 hours daily, avoiding exposition to flickering

lights or reducing alcohol use. Considering cancer settings, in particular some indolent tumors,

medical doctors may perform some prophylactic or curative interventions such as chemotherapy,

radiotherapy or bone marrow transplantation to improve patient’s disease status. Finally, in

reliability the types of interventions are in general simplest since after having a break in the

system the piece is repaired or replaced by a new one. There exist several reliability models

which incorporate the effect of performed interventions. However, as we have pointed out above,

these models have not been applied neither in biomedical nor in public health settings. Next

sections give an overview of these models.
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Another justification to use effective age based models is that most of repeated events survival

models studied in medicine and public health problems are based on extensions of Cox model

(see Section 1.4.3) which assumes that the effect after each intervention is always the same. For

example, models which employ total time formulation assumes that all interventions produce a

minimal improvement in the patient, e.g. disease continues in a stable manner. Models based

on gap time formulation assume that all interventions lead to perfect recovery of the patient,

e.g. disease disappears or a complete remission is achieved. However, it is not the case that the

effect of treatment intervention will always be the same. For example, patients with a recurrent

tumor usually are treated after each relapse and they may obtain a different response after

each treatment. Patients sometimes achieve a complete remission, others minimal and others

between none and complete remission, e.g. patients suffer a little improvement but the disease

still remains (in reliability terms an intervention between perfect and minimal repair). Thus, as

we will illustrate in Chapter 5, it can be very important to monitor the effective age process when

we are dealing with some biomedical data. Although obtaining information about the effective

age in health problems may be complicated, in cancer settings there exist the possibility to get

this information using oncological terminology. The adoption of effective age to biomedical data,

and in particular to some indolent cancers such as some lymphomas, has been an important part

of this thesis.

The effective age for the i-th unit is defined as an observable processes {Ei(s) : 0 ≤ s ≤
s∗}, i = 1, 2, . . . , n, satisfying the following conditions: (I) Ei(0) = ei0, almost surely (a.s.), where

ei0, i = 1, 2, . . . , n, are nonnegative real numbers; (II) Ei(s) ≥ 0, i = 1, 2, . . . , n; and (III) On

[Sik−1, Sik), Ei(s) is monotone and almost surely differentiable with a positive derivative E ′i(s).

To demonstrate it, Figure 1.3.1 shows the effective age for a unit. This process between 0

(or S0) and S2 is E(s) = s. At the first event S1, the unit is “minimally repaired”. Thus, in

this case patients have no improvement after first occurrence. Repair concept can be translated

to biomedical context as “effect of treatment” because we cannot decide if a patient will receive

either a “perfect” or a “minimal” repair. Physicians try to do the best for the patient and after

the treatment we can observe if the intervention was “perfect” (e.g, patient achieves a complete

remission) or “minimal” (e.g., disease is still active). A “perfect repair” occurs to the unit at

the second failure time S2. For medical people the treatment is also ”perfect” since the disease

disappears, although it is still in the patient but not active. After that, the effective age may be
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Figure 1.4: Effective age process, E(s), for an hypothetical case.

represented, in general, by a nonlinear function between S2 and S3 and also between S3 and S4.

The unit is repaired after the third event between a minimal and perfect repair. In medicine we

can say that the patient after third relapse suffers a little improvement produced by the treatment.

The fourth failure, S4, is not observed since the observational period for this unit is less than the

calendar time. In consequence T4 is censored at τ .

1.3.2 Reliability models

Next, we describe different existing models which take into account the effect of performed inter-

ventions. Most of them are models from reliability or engineering settings. We try to illustrate,

using some real examples, how these models can be applied in biomedical or public health prob-

lems.

Minimal Repair Model

In this model, the repair restores the system to its state just before failure. Under this model,

the hazard of event occurrence is identical to the intensity just prior to the event occurrence.

In this case the effective age corresponds to calendar time, e.g., E(s) = s (in biomedical setting
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this model is called total time model). Thus, in reliability terms one says that the subject is

”minimally repaired” through the intervention. This model has been considered in Brown and

Proschan (1983) and Lawless (1987).

In biomedical or public health settings we can say that treatment (intervention) is not effective,

e.g. patient suffers a minimal or null disease improvement and the disease continues in a stable

manner. Some examples can be found involving medical data. For example, let us suppose that

patients are involved in a clinical trial. Let us also suppose that we are interested in estimating

the time until a headache and that patients are treated with a new drug or placebo after each

occurrence. The effective age for patients who received placebo must be calendar time (or total

time) since the time until next headache will have the same probability distribution than the last

headache occurrence. This is true because patients in the placebo arm are not intervened upon

relapse since they do not receive any drug (of course, we omit placebo effect).

Perfect Repair Model

Upon failure, the failed system is replaced by a new one stochastically identical to the original

so that T1, T2, . . . are i.i.d. according to F . These model can be seen as a gap time model where

E(s) = s− SN†(s) (where s− SN†(s) represents the elapsed time since the last event occurrence).

In medicine one can find some examples when intervention completely treats the disease. A good

example is recurrence in some cancers. For example, patients diagnosed to superficial bladder

cancer can obtain a complete remission of their disease by means of a surgery intervention after

each relapse. It is possible to get a complete remission upon each relapse because we are dealing

with an indolent disease which can be controlled easily by means of the surgery. In this case, the

perfect repair can be understood as some markers for the disease disappearance. At this moment

the disease is not active, but disease is still in the patient since probably disease appears again

as a new relapse or recurrence.

Brown and Proschan (1983) (BP) generalized the minimal repair model by allowing two types

of repairs. After each failure, the system can be perfectly repaired with probability p and, with

probability 1− p, a minimal repair is performed. If the success probability p is made to depend

on the time of event occurrence, the Block et al. (1985) (BBS) model is obtained. Hollander et al.

(1992) and Presnell, Hollander, and Sethuraman (1994) gives more details of this model. It is

difficult to find a biomedical example where the effective age follows this model.



12 Chapter 1 Introduction: State-of-the-art

Kijima’s Models

Models previously outlined are very useful when we deal with reliability data since we can easily

control when a perfect or minimal repair is made. However, dealing with humans to assess

the result of performed treatment interventions is often more complicated than if we deal with

repairable systems. Thus, in biomedicine or public health setting, it is possible that interventions

produce an improvement but not sufficient to say that the disease disappear completely. In

reliability terms, one says that the degree of repair is between minimal and perfect.

Under this model, in medical terms, the improvement observed in patient can be classified

according to a “degree-of-improvement”. Kijima (1989) introduced models that allow improve-

ments better than minimal but not necessarily as good as perfect in the reliability case. Kijima’s

reliability model restores the repaired item to an effective age that depends on its age just before

failure as well as on “degree-of-repair” random variables. We let Aj+1 denote the effective age of

the system after the jth repair with A1 = 0 (by definition). Let Dj , j ≥ 1 denote the degree of

repair random variables. They are assumed to be independently distributed on [0, 1] and inde-

pendent of other processes. Let F̄ = 1− F be the distribution function of interoccurrence times,

T , then:

In Kijima’s model I

P (Tj > x | T1, . . . , Tj−1, D1, . . . , Dj−1) =
F̄ (x + Aj)

F̄ (Aj)
, (1.4)

where

Aj =
j−1∑

i=1

DiTi, j > 1

In Kijima’s model II, P (Tj > x | T1, . . . , Tj−1, D1, . . . , Dj−1) is the same than in (1.4) but

with the specification

Aj =
j−1∑

k=1

(
j−1∏

i=k

Di

)
Tk, j > 1.

The effective age for this model is E(s) = AN†(s−) + s− SN†(s−).

Kijima’s model I assumes that repairs served only to remove damage created in the last failure.

However, model II assumes that the repair could remove all damage accumulated up to that point

in time. Thus, if we are thinking on applying this model to cancer data, maybe model II is more

appropriate than model I. For example, a patient diagnosed with a tumor relapses twice and
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at each relapse chemotherapy just improves slightly the disease (e.g., patient achieves a partial

remission). Then, the patient relapses again and is treated. In this case the chemotherapy makes

that patient achieves a complete remission. Obviously, this complete remission means that the

disease disappears completely (all damage accumulated) and not only the damage produced by

the last recurrence. This model is used to connect reliability and biomedical models. It will be

further discussed in Chapter 5.

Other reliability models

There exists other reliability models such a those proposed by Dorado et al. (1997), Last and Szekli

(1998), or Kvam and Peña (2003). These models allows for other characteristics in reliability

problems that in our opinion are difficult to be applied in health settings. In particular, Dorado

et al. (1997) define a general repair model that contains many models previously mentioned and

introduces new models as well. To do so, the authors introduce the term“life supplements”which

could be viewed as improvement effects attributable to the performed interventions.

All previous reliability models are useful when independent assumption can be assumed.

However, in the biomedical context it is somewhat restrictive because in biomedical settings the

interoccurrence times may be correlated. To solve this problem, Wang and Chang (1999) and

Peña et al. (2001) (PSH) propose two estimators under the case where the within-subject inte-

roccurrence times are not independent. In particular, PSH describe an estimator which assumes

that the interoccurrence times follow a gamma frailty model. We next describe these estimators.

1.3.3 Peña-Strawderman-Hollander estimator

Before going through the estimator for the correlated case we first outline the one proposed for the

independent case. Peña et al. (2001) developed a nonparametric maximum likelihood estimator

of the inter-event time survivor function under the assumption of i.i.d. model. This generalizes

the product-limit estimator to the situation where the event is recurrent. This also generalizes

Gill’s estimator by allowing each process to be observed over a random time where the times are

i.i.d. according to a distribution G. To describe this estimator, we first need to introduce some

notation. For a given calendar time s and a gap time t, we define

Ki(s) =
∑∞

j=1 I{Sij ≤ s},
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and N(s, t) and Y (s, t) as in Section 1.2.2. The PSH (2001) generalized product-limit estimator

of the common survivor function F̄ of the event interoccurrence times is given by

ˆ̄F (s, t) =
∏

w≤t

[
1− N(s,∆w)

Y (s, w)

]
. (1.5)

The authors showed that the variance of this estimator is given by

V{ ˆ̄F (s, t)} = F̄ (s, t)2σ2
PSH(s, t) (1.6)

where σ2
PSH(s, t) is defined in Peña et al. (2001). An estimate of the variance is

̂
V{ ˆ̄F (s, t)} = ˆ̄F (s, t)2σ̂2

PSH(s, t)

where

σ̂2
PSH(s, t) =

∫ t

0

N(s, dw)
Y (s, w)[Y (s, w)−N(s,∆w)]

(1.7)

This estimator is identical in form to the variance for the usual product-limit estimators for right-

censored data. However, it is important to recognize that the at-risk processes are necessarily more

complex. In this case, the computational form of σ̂2(s, t) when there are no tied interoccurrence

times is

σ̂2(s, t) =
n∑

i=1

N†
i (s−)∑

j=1

I{Tij ≤ t}
Y (s, Tij)[Y (s, Tij)− 1]

,

where Y (s, Tij) =
∑n

i=1{
∑N†

i (s−)
k=1 I{Tik ≥ Tij}+ I{(s ∧ τi)− S

iN†
i (s−)

≥ Tij}}.
Following Peña et al. (2001) and their results from Section 2.2, an estimator indexed in the

gap times, t, may be defined as follows:

ˆ̄F (t) = lim
s→∞

ˆ̄F (s, t) =
∏

w≤t

[
1− N(∆w)

Y (w)

]
. (1.8)

This estimator has variance given by

V{ ˆ̄F (t)} = F̄ (t)2σ2
PSH(t), (1.9)

where σ2
PSH(t) = lims→∞ σ2

PSH(s, t) and may be estimated by

σ̂2
PSH(t) =

∫ t

0

N(dw)
Y (w)[Y (w)−N(∆w)]

(1.10)

Peña et al. (2001) also propose an estimator referred to as FRMLE (FRailty Maximum Likeli-

hood Estimator) in their paper, of the common marginal distribution of the interoccurrence time

distribution in the case of correlated interoccurrence times induced by a gamma frailty model.

That model will be discussed later.
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1.3.4 Wang-Chang estimator

Wang and Chang (1999) (WC) propose an estimator of the common marginal survivor function in

the case where the within-unit interoccurrence times are correlated. They consider a correlation

structure which is quite general, and includes as special cases both the i.i.d. and gamma frailty

models. Setting all their weights to be equal to 1, their estimator is described below. For the ith

unit, define

K∗
i = I{Ki = 0}+ KiI{Ki > 0}

and define the processes

d∗(t) =
∑n

i=1
1

K∗
i

∑Ki
j=1 I{Tij = t};

R∗(t) =
∑n

i=1
1

K∗
i

[∑Ki
j=1 I{Tij ≥ t}+ I{τi − SiKi ≥ t}I{Ki = 0}

]
,

and with T denoting the set of distinct observed complete interoccurrence times for the n units.

The WC estimator of F̄ is given by

Ŝ(t) =
∏

{Tk∈T ; Tk≤t}

[
1− d∗(Tk)

R∗(Tk)

]
. (1.11)

This estimator possesses less bias than the generalized product-limit estimator when interoccur-

rence times are correlated within subjects. For more discussions concerning these estimators and

the comparisons of their properties, refer to PSH (2001). The variance of WC estimator is given

by

V{Ŝ(t)} = S(t)2σ2
WC(t), (1.12)

where σ2
WC(t) is defined in Wang and Chang (1999) (see φ in their paper). This variance may be

estimated by

V̂{Ŝ(t)} = Ŝ(t)2σ̂2
WC(t)

where

σ̂2
WC(t) =

n∑

i=1

1
K∗

i

n∑

j=1

d∗(Tj)
R∗2(Tj)

. (1.13)

1.4 Within-subject correlation

The Cox model is a widely used model for survival analysis. However, this semi-parametric model

assumes that events occur independently, i.e., that the timing and occurrence of repeated events
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is unrelated to the initial and subsequent occurrences. In particular, two features of repeated

events processes violate the independence assumption: heterogeneity across individuals and event

dependence.

Heterogeneity is produced because some subjects have a higher (or lower) event rate than

other subjects due to unknown, unmeasured, or unmeasurable effects. For example, some patients

have a genetic susceptibility to develop some disease, experiencing their first, second, third, etc.,

relapse more quickly than the rest of population. Perhaps, investigators do not know how to

measure this susceptibility that are believed to be relevant for relapses. On the other hand,

once again in biomedical setting, the occurrence of one event may make further relapses more

or less likely. This event dependence may be produced by a learning process or by biologically

weakening/strengthening the body and implies that the occurrence of a relapse itself may raise

(or lower) the subsequent event rate. This dependence violates the independence assumption of

the Cox model.

Any correlation among events (produced by heterogeneity, event dependence or jointly) has

two important consequences. First, estimates are inefficient leading to incorrect estimates of

standard errors. Kelly and Lim (2000) point out that under heterogeneity, the standard errors

are too small. These problems may lead to incorrect conclusions regarding statistical significance

in treatment effects. Second, violation of the independence assumption may induce biases in esti-

mated effects. Aalen (1988) shows that unobserved heterogeneity produces attenuated estimated

of treatment effects. Further, event dependence implies an event dependent baseline hazard rate,

and possibly event dependence covariate effects.

Thus, variations of the Cox model have been proposed for estimation under recurrent events.

In particular, many of variance-corrected and frailty/random effects models have been developed

to account for correlations in event times that result from unknown sources of heterogeneity.

Some of these models also attempt to control for event dependence by allowing baseline hazard

rates to vary by event number (stratified models).

1.4.1 Variance-corrected models

Robust variance models are used to account for unobserved heterogeneity or event dependence.

They are fit as though the data consist of independent observations, and then the variance is

“fixed”. Robust standard errors are based on the idea that observations are independent across
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groups or clusters but not necessarily within groups. The robust variance estimator is then based

on a “sandwich” estimate:

V = I−1BI−1

where I−1 is the usual variance estimate of a Cox model (the inverse of the information matrix I)

and B is a correction factor. Therneau and Hamilton (1997) suggests that a natural correction, in

survival settings, is to use the jackknife estimate of variance. We notice that the estimates of the

variance-corrected standard errors are almost always larger than those from a “naive” estimates

based on I−1 due to the unobserved intra-case correlations that are generally positive.

1.4.2 Frailty models

As we have mentioned previously, in the analysis of survival data it is frequently assumed that

the history for the subjects under study are all statistically independent (at least conditionally

on observed time-fixed covariates). In other words, the interoccurrence times appear in an in-

dependent manner. However, in many occasions, some patients are intrinsically more or less

susceptible to experiencing the event of interest than are others. We may describe this fact as

follows. Let us assume that an event occurs in a subject through a hazard function λ(s), then

another subject with frailty Z has hazard Zλ(s). Thus, if the frailty is less than 1, then the sub-

ject tends to experience the event of interest at an later time, whereas the opposite occurs if Z is

greater than 1. Other authors such as Vaupel et al. (1979), Hougaard (1984), Vaupel and Yashin

(1985a,b), Hougaard (1987) interpret the frailty as modelling the effect of unobserved covariates

which leads to some patients having more events than others. Frailty models assume that the

distribution of these individual effects can be known, or at least approximated as Clayton (1978),

Oakes (1982), Clayton and Cuzick (1985), (Hougaard, 1986a,b), Andersen et al. (1993, Chapter

IX), and Hougaard (2000) suggest.

A specific type of model that results in correlated within-subject interoccurrence times is a

multiplicative shared frailty model (see Andersen et al., 1993, Chapter IX; or Murphy, 1995 for the

shared frailty model without covariates). A shared frailty model can be considered as a random

effect model. In this model it is postulated that there exists for each subject an unobservable

positive-valued frailty Zi such that, conditionally on Zi = zi, the interoccurrence times Ti1, Ti2, . . .
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are i.i.d. with common conditional survivor function

F̄ (t | Zi = z) = [F̄0(t)]z = exp
(
−z

∫ t

0
λ0(u)du

)
,

where λ0(·) is the hazard function associated with a baseline survivor function F̄0(·). The frailties

Z1, Z2, . . ., Zn are assumed to be i.i.d. from an unknown distribution function H. In general, the

Z’s are not observed, so we are interested in estimating the marginal survivor of Tij , which under

this model is given by

F̄ (t) = E {exp(−Z1Λ0(t))} (1.14)

where Λ0(t) = − log[F̄0(t)] is the cumulative hazard function of F̄0.

A common choice of the unknown frailty distribution H is a gamma distribution with shape

and scale parameters both equal to an unknown parameter α in order to guarantee identifiability.

In this case, the common marginal survivor function F̄ in (1.14) becomes

F̄ (t) =
[

α

α + Λ0(t)

]α

. (1.15)

The parameter α controls the degree of association between interoccurrence times within subject.

In particular, as α increases (decreases), association between interoccurrence times decreases

(increases). Letting α −→ ∞, we obtain a model with independent interoccurrence times in

which the Tij has a common survivor function of F̄0.

Peña et al. (2001) showed that the estimation of α and Λ0 of (1.15) can be obtained via the

maximization of the marginal likelihood function of α and Λ0(·) and with an implementation of

the expectation-maximization (EM) algorithm (see, for details, Peña et al., 2001). This estimator

of (1.15) is of form

˜̄F (s, t) =

[
α̂

α̂ + Λ̂0(s, t)

]α̂

where Λ̂0(s, t) is an estimator of the marginal cumulative hazard function Λ0(t).

As pointed out in Peña et al. (2001), model parameter estimation can be carried out using

the ideas in Nielsen et al. (1992) who suggest that the EM algorithm proposed by Dempster et al.

(1977) can be used to obtain the maximizing values (further details in how to apply the EM

algorithm when we deal with frailty models may be found in subsection 1.4.2).

The shared frailty model can be extended to a model with covariates by means of a multi-

plicative regression in which frailties act multiplicatively on hazard like in the Cox model. Thus,
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proportional hazard model for subject i is written as:

λi(s | Zi, Xi) = Ziλ0(s) exp{β′Xi(s)} (1.16)

where Zi is the frailty for the ith subject.

In applied work, the most widely parametric distribution assumed for frailties is the gamma

distribution (Vaupel et al., 1979; Clayton and Cuzick, 1985; Klein, 1992; and Andersen et al.,

1993). However, another distributions have been employed (see for instance Hougaard, 1994).

Maximum likelihood estimation in the semiparametric frailty model (with gamma-distributed

frailties) may be performed using EM algorithm (Dempster et al., 1977) as suggested Gill (1985).

This method was further discussed by Nielsen et al. (1992), Klein (1992), and Guo and Rodriguez

(1992). Assuming a parametric model, another possibility is to make direct use of the observed

data (partial) likelihood (Aalen, 1988). McGilchrist and Aisbett (1991) and McGilchrist (1993)

use partial likelihood procedures assuming that frailties follow a log-normal distribution. Pe-

nalized likelihood methods has also been studied by several authors: Verwerj and Houwelingen

(1994), Therneau et al. (2003), Therneau and Grambsch (2000, section 9.6), Ripatti and Palmgren

(2000). Next sections illustrate EM and penalized approaches to make inference for the frailty

model.

EM algorithm for frailty models

We assume that the Z’s are i.i.d. from a distribution H(· | ξ). A common choice of H is the

gamma distribution with mean 1 and variance 1/ξ, e.g. H = Γ(ξ, ξ). Imposing this restriction is

needed to have identifiability as we have pointed out in Subsection 1.4.2. Thus, if Zi are known,

the complete log-likelihood is given by
n∑

i=1

(∫ ∞

0
Yi(t)[log(λ0(t)) + log(Zi) + β′Xi(t)]dNi(t)−

∫ ∞

0
Yi(t)Zi exp{β′Xi(t)}λ0(t)dt + log f(Z; θ)

)
.

As Z can be viewed as missing data, the problem can be approached using the EM algorithm

implemented by Nielsen et al. (1992) in counting process frailty models. The main ingredients

of this algorithm are two steps: E (expectation) and M (maximization). We outline briefly both

steps, see Andersen et al. (1993) or Nielsen et al. (1992) for further details. Given (Λ0(·), β), the

observed times, and the covariates, the conditional expectation of Zi is

E-step: E{Zi | Λ0(·), β)} =
ξ + Ni(s∗)

ξ +
∫ s∗
0 Yi(v) exp{β′Xi(v)}λ0(v)dv

,
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where s∗ denotes an upper limit of observation times. In the M-step Λ0(·), α, β can be estimated

using procedures describe in Appendix A because after the E-step Z’s are set to Ẑi. Thus, for

example,

M-step: Λ̂(t) =
∫ t

0

dN(u)∑n
i=1 ẐiYi(u) exp{β′Xi(u)} .

To estimate ξ Andersen et al. (1993, Subsection IX.4.2) propose to maximize the marginal profile

likelihood for ξ.

Penalized likelihood estimation

The penalized regression formulation for the frailty model is easily developed by making the

change Zj = exp(zj). Thus, equation (1.16) converts to

λi(s | z,Xi) = λ0(s) exp{β′Xi(s) + z′Mi},

where z′ is a vector of frailties and M is a matrix of n indicator variables such that Mij = 1 when

observation i is a reoccurrence of individual j and 0 otherwise.

The penalized likelihood method was introduced by Good and Gaskins (1971) in the context

of nonparametric probability density estimation. Its use in Cox regression model estimation was

proposed by several authors: Zucker and Karr (1990), McGilchrist and Aisbett (1991), Verwerj

and Houwelingen (1994), Therneau et al. (2003), and Ripatti and Palmgren (2000). The idea of

this method is to maximize penalized partial likelihood equation

PPL = l(β, z)− g(z | θ) (1.17)

over both β and z. In this equation l(β, z) is the log of the Cox partial likelihood given by

l(β, z) =
n∑

i=1

∫ ∞

0


Yi(t)(β′Xi(t) + z′Mi)− log




n∑

j=1

Yj(t) exp{β′Xj(t) + z′Mj}




 dNi(t),

and g is a penalty function chosen by the investigator to restrict the values of z. The parameter

θ is a tuning constant which may be pre-specified or adapted to the data to control the amount

of shrinkage. Typically, we are interested in choosing the penalty function to “shrink” z toward

zero.

Using Newton-Raphson method we can estimate β and z solving the score equations. The

penalty function does not involve β, so we can compute ∂PPL/∂β using ∂PL/∂β which is the
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usual partial likelihood for the Cox model. Therefore, the score equation for β are the same as

those for Cox model but incorporating z as an offset term (see Therneau and Grambsch, 2000 for

further details).

In addition to the score vectors, the maximization algorithm requires the Hessian of the

penalized partial log-likelihood which is given by

H = I +


0 0

0 g′′




where I = I(β, z) is the second derivative matrix of partial likelihood, also called information

matrix, and g′′ denote the second derivative of g.

1.4.3 Cox extension models

Many survival models based on Cox proportional hazards have been proposed that handle multiple

event data (see Therneau and Grambsch, 2000, Chapter 8; Therneau and Hamilton, 1997; Kelly

and Lim, 2000; or Barai and Teoh, 1997 for excellent reviews of these models; Barceló, 2002 has

a review published in a Spanish journal). In general, there exists two different approaches that

extend the Cox model: Wei, Lin, and Weissfeld (1989) (WLW) and Lee, Wei, and Amato (1992)

(LWA) marginal, and Prentice, Williams, and Petersen (1981) (PWP) conditional models. On

the other hand, frailty models can also be seen as a Cox-based model.

Before starting to illustrate both models we mention that there exists another approximation

known as the AG model (Andersen and Gill, 1982). The coefficient estimates using AG apporach

are exactly the same as those obtained using Cox model, only the standard errors are different.

The AG model is the most simple variance corrected model, incorporating robust variance estima-

tors. However, this model requires the strongest assumptions. The main hypothesis of AG model

is that repeated events within-subject are independent (given the covariates). This assumption is

called “independent increment”, e.g., one event is not affected by previous events. This restriction

means that event dependence cannot be estimated with this model, e.g, the model assumes that

events do not change the subject and that the subject does not “learn” from previous events. In

addition, AG model does not allow one to investigate effects that might change based on event

specific covariate effects. However, we have noticed that there exists the possibility to incorporate

event dependence via time-dependent covariates. Given these limitations, AG model is recom-

mended when there is no event dependence and no covariate/event effects. The hazard function
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of an individual i for the k event is given by

λik(s | Xik) = λ0(s) exp{β′Xik(s)}.

In this case the set of subjects at risk, (e.g. the risk indicator) is given by

Yik(s) = I{Si,k−1 < s ≤ Sik}. (1.18)

Marginal models

Wei, Lin, and Weissfeld (1989) (WLW) illustrated the marginal model with bladder cancer data

set with multiple relapses per patient (see Chapter 2 for a more detailed description of these data).

Their method model the marginal distribution of each failure time and no particular structure of

dependence among distinct failure times on each subject is imposed. Each recurrence is modelled

as a different strata. Data are used in each strata as marginal data, and as Therneau and Hamilton

(1997) pointed out, “what would result if the data recorder ignored all information except the given

event (type)”. This model is marginal with respect to the risk set since each patient is at risk

from the beginning of study and can be at risk for several events simultaneously. The intensity

or hazard function for the kth event for the ith subject is

λik(s | Xik) = λ0k(s) exp{β′Xik(s)},

For this model, the set of subjects at risk just prior to time s is with respect to the kth event.

So, Yik(s) can be given by

Yik(s) = I{Sik ≥ s},

which corresponds to total time formulation. The estimates of WLW can be either event-specific

or overall. The overall estimate proposed by WLW is the weighted average of the event-specific

estimates, β̂1, . . . , β̂k, such that the corresponding weighted average of the robust variance is the

smallest possible (Wei et al., 1989).

The WLW model presents important disadvantages. Cook and Lawless (1997) pointed out

that WLW model is valid only under independent censoring. This disadvantage, however, does

not have problems in practice, except if a recurrence is terminal. That is, if the end of study is

related to interoccurence times. This model also requires that the data has a maximum number

of events. This is a limitation if event-specific estimates become unreliable.
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Conditional models

The WLW limitations can be solved using a conditional approach. In contrast to AG model,

Prentice, Williams, and Petersen (1981) (PWP) propose a conditional model which allow for

event dependence via stratification by event number; different events can have different baseline

hazards. The main difference with marginal models is that in conditional models a subject

cannot be at risk for the n-th event until the (n− 1)-th event occurs, hence the name conditional

model. Oakes (1991) argues for the conditional approach, and states that the marginal method is

inefficient. The conditional model is another variance corrected model and as we have illustrated,

it has intuitive appeal because it preserves the order of sequential events in the creation of the

risk set and therefore incorporates events dependence.

PWP models can be estimated with the data organized in elapsed time (PWP-TT) (i.e., total

time risk set or time from each unit’s entry into the observation set) or interocurrence/gap time

(PWP-GT) (i.e., gap time risk set or time since the previous event). Thus, the hazard function

only differs in the risk intervals formulation. For PWP-TP model the hazard function is given

by:

λik(s | Xik) = λ0k(s) exp{β′Xik(s)},

and for PWP-GT model by

λik(s | Xik) = λ0k(s− sk−1) exp{β′Xik(s)}.

In consequence, Yik(s) is different for each formulation. In the PWP-TT model Yik(s) corresponds

to Yik(s) = I{Sik ≥ s}, and for PWP-GT model it is given by

Yik(s) = I{Tik > s}.

The choice between PWP-TT or PWP-GT depends on whether we are interested in the time that

has elapsed since the patient entered the study or since the last recurrence. We notice that PWP

model is a stratified AG model.

Some of these previous models have been compared using real and simulated data, giving

different results as it is illustrated in Wei and Glidden (1997), Gao and Zhou (1997), Clayton

(1994), Lin (1994), Therneau and Hamilton (1997), Barai and Teoh (1997), and Therneau and

Grambsch (2000). The AG model is maybe the most used because of its efficiency as Therneau

and Grambsch (2000, pag 229) conclude from their hidden covariate Monte Carlo simulation. In
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addition, in the case of variance corrected models, the AG model gives the most reliable estimates

of the overall effect. However, as Kelly and Lim (2000) pointed out, it remains unclear which

models are suitable for recurrent event data, as well as the differences between existing models.

They do not recommend LWA model because it allows a subject to be at risk several times for

the same event. The WLW model overestimates treatment effect and they do not recommend

it. Finally, the authors propose to use PWP-GT for analyzing recurrent event data. However,

when there exists within-subject correlation, they recommend to use methods different from those

which are based on a robust variance estimation, like random effects models.

Software

All Cox extension models, outlined previously, can be fitted using both S-plus (MathSoft, 1997)

and R (R Development Core Team, 2005, Ihaka and Gentleman, 1996) functions creating an

appropriate data set. After obtaining these data sets, we can fit the models mentioned above

using coxph function to fit Cox models and the functions strata, cluster, or frailty. Therneau

and Grambsch (2000, Chapter 8) or Therneau and Hamilton (1997) explain how to fit any of the

models described in the previous sections. An excellent review of the different software packages

used for analyzing correlated survival data has been recently written by Kelly (2004).

1.5 General class of models

As we have previously illustrated, there are currently several models and methods of analysis

used for recurrent event data (see for instance Hougaard, 2000; or Therneau and Grambsch,

2000, Chapter 8). However, as Peña and Hollander (2004) point out, there is still a need for

a general and flexible class of models that simultaneously incorporates the effects of covariates

or concomitant variables, the impact on the unit of accumulating event occurrences, the effect

of latent or unobserved variables which, for each unit, endow correlation among the inter-event

times, as well as the effect of performed interventions after each event occurrence.

Most existing extensions of the Cox model deal with the majority of these effects. However, as

we have pointed out in Section 1.3.1 these models assume that the effect after each intervention is

always the same (minimal or perfect intervention if risk interval is total or gap time, respectively).

As we have also illustrated, in many biomedical settings not always the effect of intervention is
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the same. So, we need to use a more general model that allow us to incorporate different effects

that affect to event occurrences. Peña and Hollander (2004) proposed a new class of models

which generalize most of existing reliability and Cox-based models. This new model will allow us

to connect reliability models, which models the effect of intervention via the effective age, with

biomedical models, which incorporates the effect of concomitant covariates and the correlation

among interoccurrence times. This model is briefly described in the next section.

1.5.1 Peña and Hollander model

Let Z = (Z1, Z2, . . . , Zn) be a vector of independent and identically distributed (i.i.d.) positive-

valued random variables from a parametric distribution H(z; ξ) = Pr(Z ≤ z|ξ) where ξ is a finite-

dimensional parameter taking values in Ξ ⊆ <r. These variables are unobservable random factors

affecting the event occurrences for the subjects. Also, let F = {Fs : 0 ≤ s ≤ s∗} be a filtration or

history on some probability space (Ω,F ,P) such that Xis and Y †
i s are predictable and such that

N †
i s are counting processes with respect to F. Finally, let {Ei(s) : 0 ≤ s ≤ s∗}, i = 1, 2, . . . , n,

the effective age processes satisfying the conditions described in Section 1.3.1.

The class of models is obtained as follows. Conditionally on Z, the F-compensator of N †
i is

{A†i (s|Z,Xi) : 0 ≤ s ≤ s∗} with

A†i (s|Z,Xi) =
∫ s

0
Y †

i (v) λi(v|Z,Xi) dv, (1.19)

where

λi(s|Z,Xi) = Zi λ0[Ei(s)] ρ[N †
i (s−);α]ψ[β′Xi(s)]. (1.20)

This means that the process M †
i (s|Z,Xi) = N †

i (s)−A†i (s|Z,Xi) is a square-integrable F-martingale.

In (1.20), λ0(·) is an unknown baseline hazard rate function. The effects of accumulating event

occurrences are encoded in ρ(·; α) : Z+ ≡ {0, 1, 2, . . .} → <+ which has a known functional form

with ρ(0;α) = 1 and with α ∈ A ⊆ <p. The effect of covariates are considered in ψ(·) which is a

nonnegative link function of known functional form with β ∈ B ⊆ <q. The dependence between

interoccurrence times is modelled with Zi which are unobserved frailties. The model also incor-

porates the effect of performed interventions, Ei(s), via the baseline hazard function. Thus, the

unknown model parameters are (λ0(·), α, β, ξ), where λ0(·) is non-parametrically specified, and

α, β, and ξ are finite-dimensional parameters.
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The statistical identifiability of this class of models without frailties has been established in

Theorem 1 of Peña and Hollander (2004). The authors also showed that this class of models

subsumes many existing models in the literature (see Peña and Hollander, 2004). In particular,

some of models used in biomedical settings are special cases of this general model as we will

illustrate in Chapter 5.

1.6 Thesis Overview

In the following chapters, we present the work that we have been developing during last few years.

In the Chapter 2 we describe four data sets analyzed for the elaboration of this dissertation. We

would like to emphasize that two of them were obtained from the Institution where I was working

until July 2005. These data sets were created specially for this PhD thesis. The other two come

from medical literature and have been widely used when researchers propose new methods to

analyze recurrent event data. I must say that my motivation was to find real examples, which

were suitable to be analyzed with the statistical methods I was working on. Perhaps the most

relevant analysis was the one about lymphoma relapses, in which we included the information

about the treatment after each relapse by means of the effective age, which had never been done

before.

Then, in Chapter 3, we develop some procedures for estimating confidence intervals for median

survival time or, in general, for some quantile. There, we propose some asymptotic confidence

intervals which are based on asymptotic variances from existing estimators for survival function

when we deal with recurrent events. We also propose how to estimate these confidence intervals

using bootstrap techniques. The main contribution of this chapter has been the examination of

the question of how to do bootstrapping in the presence of recurrent event data arising from a

sum-quota data accrual scheme and informativeness of right-censoring mechanism. We show how

to get bootstrap samples from the observed data, as many people normally do, is not correct

when data are correlated.

Chapter 4 deals with procedures for estimating the parameters for the general model for

recurrent events proposed by Peña and Hollander (2004). One possibility is to use the EM

algorithm as in a joint work with Professors Edsel A. Peña and Elizabeth E. Slate showed (paper

currently in first revision in Journal of Statistical Planning and Inference and published as a
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technical report in Peña, Slate, and González, 2003). This work is presented in the Appendix B

since my contribution was the programming of all the procedures exposed, as well as proposing

alternative maximization methods. A result of that is the gcmrec package and this is why it is

include in the thesis. These functions allowed us to perform simulation studies, and analyze the

examples shown on the publication where I also participated. We have included this work in the

appendix of the thesis because Chapter 4 is based on the notation and the results we get in it.

It is well-known that the EM algorith method have general drawbacks such as neither estimates

of the variance of parameter nor frailty are directly estimated. Thus, still in Chapter 4, we

proposed two alternative approaches, based on penalizing the likelihood, to fit Peña and Hollander

model. One of them follows Therneau et al.’s 2003 work. They proposed to penalize regression

coefficients. This approach still continues to have problems because the convergence can be slow

and the variance of frailty cannot be directly estimated. Then, we propose to adopt another

method of penalization described in Rondeau et al. (2003). Their idea is to penalize the full

likelihood, instead of the partial likelihood as Therneau et al. (2003) proposed, and to obtain

smooth estimates of the hazard function. This method has the main advantage of giving an

estimate of variance of the frailty variance.

Finally, Chapter 5 address the problem of how to incorporate the effective age process in

biomedical settings. So far, this concept has only be used in reliability problems. Our main

contribution in this chapter has been to illustrate how to use the information regarding the effects

of treatments or interventions after cancer relapses for modelling the effective age. Our motivation

was firstly due to the fact that by analyzing some data sets, and carrying-out some simulations,

we showed that one can obtain different results by using different effective age formulations. In

addition, as some physicians pointed out“it is necessary a model designed specifically for relapsing

patients” (MacLaughlin, 2002).

A section reproducing the on-line documentation of R packages developed for this dissertation

that also can be obtained at http://www.r-project.org/ are described in the Appendix D. We

end the chapters by showing how to analyze the data presented in each chapter using these R

functions.





Chapter 2

Studies with Recurrent Event Data

Herein, we present three studies dealing with recurrent events data which belong to cancer set-

tings. In addition, we have also included another example from a study concerning small bowel

motility that analyze the time of the migrating motor complex during fasting. This data set is an

interesting example for illustrating how to analyze data when the interoccurrence times are inde-

pendent within patients. We notice that the first two data sets are obtained from the institution

where I was working until July 2005. The first one, concerning hospital readmission, appeared

when we were evaluating the consume of medical resources in patients with cancer. On the other

hand, the second data set, which is about cancer relapses, was created in order to illustrate the

importance of monitoring the effective age in biomedical problems.

2.1 Hospital Readmission Times in Colorectal Cancer

The study took place in the Hospital de Bellvitge, a 960-bed public Universitary hospital in the

metropolitan area of Barcelona, Spain. Between January of 1996 and December 1998, a total of

523 patients with incident colorectal cancer were identified. This study is based on 403 patients

who were operated and gave written informed consent to participate. Other 120 (23%) patients

were excluded because they died or were released before they were approached (n=74), refused

to participate in the study (n=13), had incomplete information or interviews (n=27), or lived at

100 Km. or more from the hospital (n=6).

The outcome variable in this study was readmission, considering it as a potential recurrent

event (colorectal cancer patients may have several readmissions after discharge). The date of

29
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surgery was taken as the beginning of the observational period. Patients were actively followed

up until June 2002. Consequently, the length of follow up can differ for each patient, depending

on its surgery date. Some premature censoring might also occur due to death, migration or

change of hospital. The first readmission time has been considered as the time between the date

of the surgical procedure and the first re-hospitalization related to colorectal cancer. Following

readmission times were considered as the difference between the last discharge date and the current

hospitalization date. Totally, 1125 readmission events were recorded. Since co-morbidity may

influence the likelihood of hospital readmission, only readmissions related to colorectal cancer have

been considered. This information was obtained from the discharge diagnosis registered in the

minimum basic data set maintained by the Department of Clinical Documentation (see Gonzalez

et al. (2005) for further details). Two hundred sixty four re-hospitalizations were excluded because

the main diagnostic or procedures were not related to colorectal cancer. Thus, the final data set

consisted on 861 re-hospitalizations recorded on the 403 patients included in the study.

2.1.1 Variables of the data set

The main independent variable was sex, and other variables considered as potential confounders

were age (< 60, 60-74, 75 years), tumor site (rectum, colon), tumor stage (Dukes classification:

A-B, C, or D), type of treatment (chemotherapy, radiotherapy), distance from living place to

hospital ( 30 km, >30 km.), educational level (less than primary, primary, secondary, university).

Given that radiotherapy is an exclusive treatment for patients with rectal cancer, to analyze both

variables in multivariate models we have created a variable that combines both radiotherapy and

tumor site (colon, rectum treated with radiotherapy and rectum treated without radiotherapy).

In addition, to adjust the risk of readmissions for comorbidity, we have calculated Charlson index

modified by Librero et al. (1999) that incorporates the information from the ICD-9-CM.

2.1.2 Descriptive analysis of the data set

González et al. (2005) analyzed these data both in frequency and time elapse between the read-

missions. They used a graphical method to confirm the correlation between the times of re-

hospitalization for each patient. After confirming that, they decided to model the data using a

proportional hazard model including a random effect (frailty) to account for the within subject

correlation between events. The main aim of the investigators was to study social-demographic
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Figure 2.1: Probability of hospital readmission depending on Dukes stage estimated using frailty
model (FRMLE). Blue lines represents males, while red lines are for females.

and clinical inequalities in hospital readmission among patients. The authors’ main finding was

that women with colorectal cancer are less likely than men to be readmitted to the hospital, after

controlling for well-established predictors, such as tumor characteristics and comorbidity. Thus,

authors compared patients’ characteristics by sex which can be shown in table 2.1. No significant

differences between males and females were observed in any of the variables analysed, though

males tend to be older, with less advanced tumour stage, received less often chemotherapy and

had a lower Charlson co-morbidity index.

The distribution of hospital readmissions is shown in Table 2.2. Most of the patients (70.7%

of men and 82.3% of women) had none or one readmission and only about 5% of subjects had

more than 5 readmissions. Male patients had, on average, more readmissions than women did

(2.3 vs. 1.9, p=0.06). A higher number of hospitalizations was associated with more advanced

tumor stages and treatment with chemotherapy (p< 0.001). However, patients with rectal cancer

receiving radiotherapy have less readmissions (p=0.02). The number of hospitalization is greater

for patients with university educational level and decreases with age, though the associations

of these two variables were not significant. Figure 2.1 shows that the estimated probability of

readmission is always higher for men than for women independently of Dukes tumor stage.
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Males Females
n (%) n (%) p-value

Age (years)
Average 65.4 63.8 0.123
<60 63 (26.4) 48 (29.3)
60-74 119 (49.8) 75 (45.7)
≥75 57 (23.8) 41 (25.0) 0.710

Tumour site
Rectum 84 (35.1) 67 (40.9)
Colon 155 (64.9) 97 (59.1) 0.290

Dukes stage
A-B 115 (48.1) 65 (39.6)
C 81 (33.9) 67 (40.9)
D 43 (18.0) 32 (19.5) 0.226

Chemotherapy
Yes 102 (42.7) 84 (51.2)
No 137 (57.3) 80 (48.8) 0.112

Radiotherapya

Yes 45 (18.8) 34 (20.7)
No 194 (81.2) 130 (79.3) 0.730

Distance
Average (Km) 21.6 26.1 0.601
≤30 Km. 211 (88.3) 146 (89.6)
>30 Km. 28 (11.7) 17 (10.4) 0.810

Hospitalisation
Days 12.35 12.27 0.904

Educational Level
Less than primary 104 (43.5) 72 (43.9)
Primary 102 (42.7) 75 (45.7)
Secondary 23 (9.6) 13 (7.9)
University 10 (4.2) 4 (2.4) 0.711

Charlson Indexb

0 375 (68.3) 202 (64.7)
1-2 36 (6.6) 10 (3.2)
≥ 3 138 (25.1) 100 (32.1) 0.018

Follow-up
Days 1393 1382 0.795

Table 2.1: Sex distribution of variables included in the hospital readmission for patients with
colorectal cancer data set. Comparison uses a χ2test with Yates’ correction for categorical variables
and t-test for continuous

aResults only for rectal cancer.
bDistribution for all readmission (time-dependent covariate).
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Number of hospital readmission
0 1 2 3 4 ≥5 mean p-valuea

Sex
Females 87 (53.0) 48 (29.3) 11 (6.7) 8 (4.9) 5 (3.0) 5 (3.0) 1.9
Males 112 (46.9) 57 (23.8) 34 (14.2) 13 (5.4) 10 (4.2) 13 (5.4) 2.3 0.060

Age
<60 47 (42.3) 32 (28.8) 11 (9.9) 7 (6.3) 8 (7.2) 6 (5.4) 2.4
60-74 98 (50.5) 44 (22.7) 27 (13.9) 12 (6.2) 7 (3.6) 6 (3.1) 2.1
≥ 75 54 (55.1) 29 (29.6) 7 (7.1) 2 (2.0) 0 (0.0) 6 (6.1) 1.8 0.072

Tumor site
Colon 129 (51.2) 66 (26.2) 27 (10.7) 15 (6.0) 7 (2.8) 8 (3.2) 2.0
Rectum 70 (46.4) 39 (25.8) 18 (11.9) 6 (4.0) 8 (5.3) 10 (6.6) 2.3 0.200

Dukes stage
A-B 103 (57.2) 43 (23.9) 16 (8.9) 8 (4.4) 7 (3.9) 3 (1.7) 1.8
C 67 (45.3) 40 (27.0) 20 (13.5) 7 (4.7) 6 (4.1) 8 (5.4) 2.2
D 29 (38.7) 22 (29.3) 9 (12.0) 6 (8.0) 2 (2.7) 7 (9.3) 2.7 < 0.001

Chemotherapy
Non 125 (57.6) 51 (23.5) 22 (10.1) 7 (3.2) 4 (1.8) 8 (3.7) 1.8
Yes 74 (39.8) 54 (29.0) 23 (12.4) 14 (7.5) 11 (5.9) 10 (5.4) 2.5 < 0.001

Radiotherapyb

Non 31 (40.3) 20 (26.0) 12 (15.6) 4 (5.2) 6 (7.8) 4 (5.2) 2.3
Yes 39 (52.7) 19 (25.7) 6 (8.1) 2 (2.7) 2 (2.7) 6 (8.1) 2.0 0.022

Distance
≤30 Km. 174 (48.7) 96 (26.9) 43 (12.0) 16 (4.5) 14 (3.9) 14 (3.9) 2.1
>30 Km. 24 (53.3) 9 (20.0) 2 (4.4) 5 (11.1) 1 (2.2) 4 (8.9) 2.2 0.818

Education
Less than
primary 83 (47.2) 49 (27.8) 24 (13.6) 9 (5.1) 6 (3.4) 5 (2.8) 2.0
Primary 91 (51.4) 45 (25.4) 16 (9.0) 8 (4.5) 7 (4.0) 10 (5.6) 2.2
Secondary 21 (58.3) 8 (22.2) 2 (5.6) 1 (2.8) 2 (5.6) 2 (5.6) 2.0
University 4 (28.6) 3 (21.4) 3 (21.4) 3 (21.4) 0 (0.0) 1 (7.1) 3.4 0.175

Table 2.2: Number (%) and mean of hospital readmission for variables analyzed in colorectal cancer
data set.

ap value for Mann-Whitney U test or Kruskal-Wallis test
bResults only for rectal cancer
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2.2 Non-Hodgkin’s Lymphoma Cancer Relapses

The indolent non-Hodgkin’s lymphomas (NHL) constitute a heterogeneous group of lymphoprolif-

erative disorders. They encompass what were called low grade and some categories of intermediate

grade NHL in the Working Formulation (Cheson et al., 1999). They are categorized based on

pathologic and cytologic features. The indolent lymphomas include different subtypes of lym-

phomas such as Follicular Lymphomas, Small Lymphocytic Lymphoma, Lymphoma Marginal

Zone, or Sezary Syndrome among others. Low grade lymphomas are associated with relatively

prolonged survival. Because it is considered an indolent, but not curable, type of cancer, patients

tend to relapse over time. Thus, patients are treated after each recurrence with intensive thera-

peutic approaches in an attempt to increase the time until next relapse (that is, to increase the

disease-free survival). The treatments may produce different responses (e.g., complete response,

CR, partial response PR, or null response NR) depending on disease status after therapy. It is

well known that these responses may modify the probability of a subsequent relapse, and hence

this intervention effect should be taken into account when modelling this type of data.

The data consist of the times to relapse, in months, for 63 patients with clinical, histopathologi-

cal, and immunophenotypes of primary cutaneous marginal zone B-cell lymphoma

(PCMZCL) as a particular subtype of indolent lymphoma. An analysis of a subset of these

data based on 22 patients with a specific subtype of cutaneous lymphoma was presented in a

recent paper Servitje et al. (2002). We use the date of first treatment as the beginning of the

study. Relapsing times were considered as the difference between last relapse and the current

one. Figure 2.2 shows a graphical representation of recurrences for this data set.

2.2.1 Summary of the data set

We have also obtained information about the response achieved after treatment upon relapses

(CR, PR, or NR), depending on the disease status, for each relapse for each of the 63 patients.

The total number of relapses among all patients is 112. The fraction of patients with no relapse is

57%, and only 7% have 3 or more events. The median follow-up time is 2.9 years (range 1 month

to 13.5 years). Thirty eight of 49 (77.8%) responses to treatments administered after relapses are

CRs, 9 (14.3%) are PRs, and 2 (4.5%) NRs. This information will be useful to model the effective

age as we will illustrate along this thesis. As we can see in the Figure 2.3 the type of response to
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Figure 2.2: Graphical representation of the lymphoma data set. The graphic shows the times (◦)
and censoring (×) of PCMZCL cancer recurrence for 63 patients.
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Figure 2.3: Graphical representation of the lymphoma data set including information about
the response to treatment after relapses. The graphic shows the times (◦: complete remission,
M: partial response, ¤: no response) and censoring (×) of non-Hodgkin’s Lymphoma cancer
recurrence only for 45 selected patients for for improving the presentation of the graphic.
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the treatment is related to the time to next relapse.

We will also include in the analyses the covariates X1: gender of patient (0=Male, 1=Female);

X2: delay between first symptom and date of first treatment as a continuous variable (in years);

and X3: lesions involved at diagnosis (0=Single, 1=Localized, 2=More than one nodal site,

3=Generalized), encoded as three indicator variables. The distribution of these covariates is as

follows: 73 patients are males (65.2%) and 39 females (34.8%); the median time of the delay

between first symptom and first treatment is 29.7 months (range 1 to 144 months); 28 patients

(25.0%) presented single lesions at diagnosis, 43 localized lesions (38.4%), 35 more than one nodal

site (31.2%), and 6 (5.4%) patients had generalized lesions.

2.3 Bladder Cancer Relapses

Last data set related to cancer is on recurrences of bladder tumor. These data have been used

by many people to demonstrate methodology for recurrent event modelling and they can can

be obtained from the survival package (Lumley and Therneau, 2003) in the R Library. Wei,

Lin, and Weissfeld (1989) analyzed these data using marginal approach. These data provide the

times to recurrence of bladder cancer for n = 85 subjects with superficial bladder tumors, which

were removed when they entered the study. Forty seven of these patients were randomized into

the placebo group, and 38 into the thiotepa group. Many patients have multiple recurrences of

tumors in the study, and new tumors were removed at each visit. The data set contains the first

four recurrences of the tumor for each patient, and each recurrence time was measured from the

patient’s entry time into the study. The total number of recurrences was 112. The covariates

are X1, the treatment indicator (1 = placebo; 2 = thiotepa); X2, the size (in cm) of the largest

initial tumor; and X3, the number of initial tumors. Figure 2.4 shows a graphical representation

of recurrences for this data set. No information about effective age is available for these data.

2.4 MMC data set

This data set belong to data from a study concerning small bowel motility (Husebye et al. (1990)).

The aim of their analysis is to estimate the mean length of the Migratory Motor Complex (MMC)

period (i.e., the mean interoccurrence time between two contractions in the small bowel during the
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Figure 2.4: Graphical representation of the bladder data set used by Wei et al. (1989). The
graphic shows the times (×) and censoring (◦) of bladder cancer recurrence for 85 subjects. The
38 top subjects are treated with thiotepa and the upper 47 subjects are from placebo group.

interdigestive cycle). This data set was analyzed in Aalen and Husebye (1991) using a variance

component model and an intensity-based formulation with a gamma frailty component using

a parametric Weibull model. Then Peña et al. (2001) also analyze this data using two new

estimators which are described in Sections 1.3.3 and 1.4.2 respectively. Aalen and Husebye (1991)

stated that“the consecutive MMC periods for each individual appear (to be) approximate renewal

process” but we need to verify this assumption. To do so, Peña et al. (2001) suggested that since

formal statistical methods for checking this i.i.d. assumption are not yet available, a graphical

method may be employed. We will illustrate it in Chapter 3.





Chapter 3

Confidence Intervals for Median

Survival

This chapter addresses the problem about how to construct confidence intervals for the median

survival time of a recurrent event. Two different approaches have been employed. One of them is

based on asymptotic variance of Peña et al. (2001) and Wang and Chang (1999) estimators (see

Sections 1.3.3 and 1.3.4 respectively) and some transformations. The other one uses bootstrap

techniques. Two types of recurrent event models are considered: first is a model where the inter-

event times are independent and identically distributed (see Section 1.3.3), and second is a model

where the inter-event times are associated, with the association arising from a gamma frailty

model (Section 1.4.2). Both bootstrap and asymptotic confidence intervals are studied through

simulation. Weak convergence is proved and asymptotic confidence intervals are built according

to these results. On the other hand, one of the major goals of this chapter is to study bootstrap-

ping schemes for estimating the sampling distribution of estimators of the median survival time

distribution in the presence of recurrent event data. Another important goal is to determine how

to compute pointwise confidence intervals for median survival time using asymptotic theory for

PSH and WC estimators.

We now discuss the motivations for the present Chapter. Peña et al. (2001) (under i.i.d.

model) and Wang and Chang (1999) give asymptotic properties of their estimators. This fact

allows us to approximate analytically the variance of survival function. Thus, we can use their

estimators to compute confidence intervals for some quantile, ζp, in particular for median survival

39
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time, ζ1/2. However, the estimator proposed by Peña et al. (2001) under correlated case does not

have a closed form for its variance. If we can assume that our data have been generate under a

gamma frailty model, we need an alternative method to estimate the variance of median survival

time. As we have previously mentioned, we can use resampling techniques. Bootstrap procedures

allow us to construct some confidence intervals for bootstrapped percentiles of ζ∗p . However,

before computing this variance, we need to determine how to obtain bootstrap samples by taking

into account the true nature of this kind of data. We need to recognize that the informativeness

of right-censoring mechanism, and the impact of the sum-quota accrual scheme, may influence

the estimation of survival function, and consequently must be considered in generating bootstrap

samples.

Section 3.1 provides some procedures to obtain asymptotic confidence intervals for median

survival time (and other quantiles) using asymptotic results for PSH and WC estimators. Different

bootstrapping schemes are described in section 3.2 for the i.i.d. model and for the correlated

interoccurrence times model. In Section 3.3 a simulation is used to compare and discuss the

statistical properties of median survival time estimated using these different bootstrap plans. In

this section, we also compare the results obtained using improved bootstrap plans with those

obtained using asymptotic theory. In Section 3.4 we apply these procedures to three real data

sets described in Chapter 2. We illustrate the problems that one can have when analyze these

kind of data. The first example belongs to data from small bowel motility study. This is a good

example when interoccurrence times follow an i.i.d. model. The second example involves hospital

readmissions in patients diagnosed with colorectal cancer. This example is an excellent example

when interoccurrence times are correlated. The third example analyzes tumor recurrences in

bladder cancer. This example shows how the results can be different depending on the model

selection. Finally, Section 3.5 shows how to analyze data with recurrent events using survrec

package.

3.1 Estimation of median survival time and other quantiles

After estimating the survival function of the interoccurrence times, we are usually interested

in estimating some quantile of this function, ζp(x). For example, in biomedical settings, one

may want to estimate the median survival interoccurrence time, ζ1/2(x). After that, the main
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concern is assessing the variability of the estimator, ζ̂p, by estimating its standard deviation, and

constructing confidence intervals for ζp based on ζ̂p. Different approaches can be used to do so.

Firstly, we can use asymptotic methods (see Burr and Doss, 1993 or Dabrowska and Doksum,

1987) taking into account that it is more difficult to apply this methodology in the case of ζp(x)

than in other situations. Secondly, as several authors have stated, we can estimate the sampling

variability of ζ̂p more accurately using resampling techniques (see for instance Efron, 1982; Efron,

1985b; Efron, 1985a; Bickel and Frieedman, 1981; Beran, 1982; and Singh, 1981). In particular,

some authors have shown that these techniques are useful in the case of survival analysis under

the Cox’s model (see Burr, 1994, Hjort; 1985).

Let 0 < p < 1, define

ζp = F−1(p) = inf{t : F (t) ≥ p} = inf{t : F̄ (t) ≤ 1− p} (3.1)

as the pth quantile of the interoccurrence distribution function, F . The quantiles can be estimated

by taking the right-continuous inverse of the nonparametric estimated survival function ˆ̄F or Ŝ.

Let ˆ̄F (n) be the nonparametric estimation of the interoccurrence times survival function using

either ˆ̄F , or Ŝ, estimators defined in (1.8) and (1.11) respectively. Thus,

ζ̂p = inf{t : ˆ̄F (n)(t) ≤ 1− p}. (3.2)

Proposition 1 Let ζp and ζ̂p be defined in (3.1) and (3.2) respectively and let us assume the

conditions stated in Theorem 1 from Peña et al. (2001) and in Theorem 1 from Wang and Chang

(1999). For the PSH estimator, let also assume the condition y(∞, t∗) > 0, for any t∗ > ζp where

y(∞, t∗) = lims→∞E{Y (s, t)}. Then

√
n(ζ̂p − ζp)

d−→N

(
0,

p2σ2(ζp)
f2(ζp)

)

where f = −F̄ ′, and σ2 corresponds to σ2
PSH or σ2

WC (defined in equations 1.9 and 1.12 respec-

tively) depending on whether we estimate ˆ̄F (n) using either ˆ̄F or Ŝ (respectively).

Proof : We demonstrate this proposition using the delta-method illustrated in Andersen et al.

(1993, section IV.3.4). We write ζp = φ(F̄ ) and ζ̂p = φ( ˆ̄F (n)), where φ is the function defined by

φ(G) = G−1(p) = inf{x : G(x) ≤ 1− p} (3.3)
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Using Proposition II.8.4 from Andersen et al. (1993) and f(ζp) > 0, we have that φ is (tangentially)

compactly differentiable at F̄ with the derivative given by

(
dφ(F̄ )

)
(p) · h =

h(F̄−1(p))
f(F̄−1(p))

, (3.4)

where h is continuous at F̄−1(p).

Using functional delta-method we can approximate
√

n(φ( ˆ̄F (n))− φ(F̄ )) by dφ(F̄ )
√

n( ˆ̄F (n) −
F̄ ), where dφ(F̄ ) is the derivative of φ at F̄ and it acts on

√
n( ˆ̄F (n)(t)−F̄ (t)) in a linear way. Now,

using this approximation, and the Theorem IV.3.2 of Andersen et al. (1993), if we demonstrate

that as n −→∞
√

n( ˆ̄F (n) − F̄ ) d−→Z (3.5)

where Z = F̄U , with U being a Gaussian martingale with U(0) = 0 and cov(U(s1), U(s2)) =

σ2(s1 ∧ s2), we will be able to conclude that

√
n(φ( ˆ̄F (n))− φ(F̄ )) d−→ dφ(F̄ ) · Z

and then,
√

n(ζ̂p − ζp)
d−→ pU(F̄−1(p))

f(F̄−1(p))
∼ N

(
0,

p2σ2(ζp)
f2(ζp)

)

Thus, to demonstrate (3.5) we need to prove that

(i)
√

n( ˆ̄F − F̄ ) d−→Z1

(ii)
√

n(Ŝ − F̄ ) d−→Z2

where Z1 and Z2 must be a Gaussian martingale with U(0) = 0 and cov(U(s1), U(s2)) = σ2(s1∧s2)

as we have previously mentioned. The point (ii) is proved in Theorem 1 from Wang and Chang

(1999) while point (i) may be proved using Theorem 2b from Peña et al. (2001) as follows. This

Theorem states that for all fixed s ∈ [0,∞]

√
n( ˆ̄F (s, t)− F̄ (t)) d−→Z.

Taking s = ∞ we have ˆ̄F (∞, t) ≡ ˆ̄F (t), and adding the condition y(∞, t∗) > 0, where y(∞, t∗) =

lims→∞E{Y (s, t∗)},
√

n( ˆ̄F (t)− F̄ (t)) d−→Z. (3.6)

¤



3.1 Estimation of median survival time and other quantiles 43

Let us notice that the condition that y(∞, t∗) > 0 limits the interval in which we have convergence

to be [0, t∗] (see conditions of Theorem 1 from Peña et al., 2001). Let us also note that it will not

work out if t∗ = ∞. However this is an assumable situation at least in biomedical settings.

Using this Proposition, it is easy to estimate the asymptotic variance of the quantile inserting

σ̂2
PSH (1.7) or σ̂2

WC (1.13) for σ2(ζp) and ζ̂p (3.2) for ζp in the expression of Proposition 1. In

order to estimate the density f = −F̄ ′ we can use the kernel function estimator. Using an uniform

kernel function, we can estimate f by

f̂(t) =
1
2b

(F̄ (n)(t− b)− F̄ (n)(t + b)))

The problem, here, is to give some value for b (bandwidth parameter). A conservative choice is

to take b to have 50% of observed times in the interval (t− b, t + b). This criteria will be used in

the examples.

It is well known that bandwidth selection is a difficult problem. For this reason, it is better to

apply Brookmeyer and Crowley’s 1982 procedure that do not need to estimate f (see Brookmeyer

and Crowley, 1982). Thus, we take as an approximate 100(1-κ)% confidence interval for ζp all

values ζ0
p which satisfies

| g(F̄ (n)(ζ0
p ))− g(1− p) |

| g′(F̄ (n)(ζ0
p )) | g(F̄ (n)(ζ0

p ))σ̂(ζ0
p)
≤ cκ/2, (3.7)

where cκ/2 is the upper κ/2 quantile of the standard normal distribution. Brookmeyer and

Crowley (1982) considered g(x) = x, but we can also consider some other transformations like

g(x) = log(− log(x)) or g(x) = arcsin
√

n (see for instance, Kalbfleisch and Prentice, 1980 or

Thomas and Grunkemeier, 1975). We may also estimate a confidence interval for ζp as follows:

Step 0. For a given p, estimate the pth quantile, ζ̂p using (3.2).

Step 1. Estimate the confidence interval of the survival function, ˆ̄F (n), at t = ζ̂p as follows:

1.1. If g(x) = x, take

ˆ̄F (n)(t)± cκ/2σ̂(t) ˆ̄F (n)(t) (3.8)

1.2. If g(x) = log(−log(x)), take

ˆ̄F (n)(t)exp{±cκ/2σ̂(t)/log( ˆ̄F (n)(t))} (3.9)
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1.3. If g(x) = arcsin
√

x, take

sin2



max


0, arcsin( ˆ̄F (n)(t)1/2)− 1

2
cκ/2σ̂(t)

{
ˆ̄F (n)(t)

1− ˆ̄F (n)(t)

}1/2





 ≤

≤ F̄ (n)(t) ≤

≤ sin2



min


π

2
, arcsin( ˆ̄F (n)(t)1/2) +

1
2
cκ/2σ̂(t)

{
ˆ̄F (n)(t)

1− ˆ̄F (n)(t)

}1/2





 (3.10)

Step 2. Obtain the confidence interval for ζ̂p using the survival times corresponding to the

confidence values obtained in the step 1 from the lower, ζ̂L, and upper, ζ̂U , pointwise confidence

limits from F̄ (n)(t), e.g. we need to compute F̄ (n)−1
(ζ̂L) and F̄ (n)−1

(ζ̂U ), respectively.

3.2 Bootstrapping ζp

In this section we will describe several plans to estimate the sampling distribution of estimators

of the median survival, ζ∗1/2. If we are interested in obtaining a confidence interval for another

quantile we can use the same schemes replacing ζ̂∗1/2 by ζ̂∗p in the last step of each method.

The new contribution of the present section is the examination of the question of how to do

bootstrapping in the presence of recurrent event data arising from a sum-quota data accrual

scheme and informativeness of right-censoring mechanism. In the schemes below, the number of

bootstrap replications is denoted by B.

Method 1: (Bootstrapping the observed data)

Obtain B i.i.d. samples of form

{(K∗
i , τ∗i , T ∗i1, T

∗
i2, . . . , T

∗
iKi

, τ∗i − S∗iKi
), i = 1, . . . , n},

with replacement, from the observed sample

{(Ki, τi, Ti1, Ti2, . . . , TiKi , τi − SiKi), i = 1, . . . , n}.

For each sample, compute PSH estimator ˆ̄F of F̄ , and compute the resulting estimator of the

median, i.e., ζ1/2 replacing ˆ̄F (n) by ˆ̄F in (3.2).

Method 2: (Nonparametric bootstrap)
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For i = 1, . . . , n, a bootstrap sample is generated as follows:

Step 1. Take τ∗i = τi;

Step 2. From the distribution ˆ̄F (n), continue generating an i.i.d sequence of T ∗ij ’s until K∗
i

where
K∗

i∑

j=1

T ∗ij ≤ τ∗i <

K∗
i +1∑

j=1

T ∗ij .

Step 3. The bootstrap sample for the ith unit is

(K∗
i , τ∗i , T ∗i1, T

∗
i2, . . . , T

∗
iK∗

i
, τ∗i − S∗iK∗

i
) (3.11)

where S∗ij =
∑K∗

i
l=1 T ∗il.

Step 4. For this bootstrap sample, compute ˆ̄F (n) and estimate the associated median esti-

mate, ζ̂∗1/2 using (3.2).

Method 3: (Semiparametric bootstrap)

Let ˜̄F be the frailty estimator (FRMLE in Section 1.4.2) estimator of F̄ .

Step 1. Given the data, estimate α̂, the frailty parameter, and Λ̂0, the cumulative hazard

function associated with F̄0(t). Then, estimate the F̄0 distribution using

ˆ̄F0(t) =
∏

{j: tj≤t}

[
1−∆Λ̂0(tj)

]
. (3.12)

Step 2. Generate Z∗1 , . . . , Z∗n according to a Gamma(α̂, α̂)

For i = 1, . . . , n, a bootstrap sample is generated as follows:

Step 3. Take τ∗i = τi;

Step 4. From ˆ̄FZ∗i
0 , continue generating an i.i.d sequence of T ∗ij ’s until K∗

i where

K∗
i∑

j=1

T ∗ij ≤ τ∗i <

K∗
i +1∑

j=1

T ∗ij .

Step 5. The bootstrap sample for the ith unit is

(K∗
i , τ∗i , T ∗i1, T

∗
i2, . . . , T

∗
iK∗

i
, τ∗i − S∗iK∗

i
)

where S∗ij =
∑K∗

i
l=1 T ∗il.

Step 6. For this bootstrap sample, compute FRMLE ˜̄F of F̄ , and compute ζ̂∗1/2 using (3.2).
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We notice that Method 2 provide two different sampling distributions for the median survival

time depending on the estimator selected in the Step 2. One of them is obtained replacing ˆ̄F (n)

by ˆ̄F and another one is obtained using Ŝ instead of ˆ̄F . In each case, in the Step 4 we have to

compute ζ̂∗1/2 replacing ˆ̄F (n) by ˆ̄F or by Ŝ in (3.2) respectively.

There is another important question to investigate: how do we take into account the censoring

mechanism? Except in Method 1, we generate times until their sum is bigger than the length

of the period observed for this unit. Another way of obtaining τ∗i is bootstrapping from the

estimated empirical distribution of τi, Ĝn. As we need that τ∗i and T ∗ij be mutually independent,

we can generate first τ∗i from Gn and then obtain T ∗ij using Method 2 or Method 3. In the case

that G depends on some covariates, we can extend this algorithm to that case easily.

Definitely, we have seven plans to compare. Plan I is Method 1. Plan II is nonparametric

bootstrap (Method 2) when we estimate F̄ using ˆ̄F . Plan III is the same as Plan II, except that

for each bootstrap sample τ∗i , i = 1, 2, . . . , n, is an i.i.d. sample from the empirical distribution

Gn. Plan IV is a parametric bootstrap when we estimate F̄ using Ŝ. Plan V is the same as Plan

IV, except that for each bootstrap sample τ∗i , i = 1, 2, . . . , n, is an i.i.d. sample from the empirical

distribution Gn. Plan VI is semiparametric plan, and finally, Plan VII is the same as plan VI,

except that for each bootstrap sample τ∗i , i = 1, 2, . . . , n, is an i.i.d. sample from the empirical

distribution Gn.

After obtaining bootstrap samples of ζp we have to decide the method to form the bootstrap

confidence interval because this may affect the results. There exists a vast number of ways to con-

struct bootstrap confidence intervals such as that based on normality, the percentile, and Efron’s

BCa among others (see for instance Martin, 1990). We consider the percentile method because

even though the theoretical justification for this method is weakest (see Efron and Tibshirani,

1993, or Singh, 1988), these intervals are the simplest to use, explain, and are the most frequently

used in practice.

3.3 Simulation Study

3.3.1 Simulation Design

To assess the finite-sample performance of the proposed bootstrap schemes, and asymptotic point-

wise confidence intervals, a simulation was performed. The data were generated under two sce-
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narios: i.i.d. and gamma frailty models. To simulate the samples under the i.i.d. model, we first

generate the monitoring time of each subject, τi, using G(t|ν) = 1 − exp(−t/ν), and then we

simulate the interoccurrence times, Tij , through F (t|θ) = 1−exp(−t/θ). To simulate the samples

under a gamma frailty model we also generate the monitoring times using the same G distribution

and F0(t|θ) = 1− exp(−t/θ).

For each sample, median survival time has been estimated as we have described for each of the

bootstrap plans. The true median survival time under the i.i.d. model is −θ log(0.5) and under

the gamma frailty model is
θα(1− 0.51/α)

0.51/α
.

We have simulated 2,000 samples and 500 bootstrap replicates (B=500). For each sample, the

mean square error (MSE) and the 95% bootstrap percentile confidence interval (BPCI) have been

calculated. In addition, for each BPCI the empirical coverage percentage was estimated by the

proportion of times the BPCI covered the true median survival time in the 2,000 samples. Mean,

median, and variance of the length of the BPCI bootstrap intervals have also been calculated. In

order to compare asymptotic confidence intervals (AsyCI), we have also computed their empirical

coverage, mean, median and variance of the length using different procedures mentioned in section

3.1. For the i.i.d. case we have also compared these results with those obtained from the best

bootstrap method that has been found in the independent case (Method 2 or non parametric

boostrap).

Samples were generated using n ∈ {15, 50, 80}, θ ∈ {1/3, 1/6} and ν = 1, and for the correlated

case α ∈ {6, 2}. The simulation was carried out with a Fortran90 code. DRNUN subroutine from

numerical libraries has been used as a random number generator.

3.3.2 Simulation Results

The results of the simulation for bootstrap methods are summarized in Tables 3.1 and 3.2 and

in Tables 3.3 and 3.4 and in Figure 3.1. Tables 3.1 and 3.2 give the results for the i.i.d. model

except for the plans VI and VII, because the results for these schemes showed poor coverages

(less than 80%) and large biases (around 30% of the MSE). Tables 3.3 and 3.4 show the results

for the correlated case except for the plans I, II and III, since these plans also present large biases

(around 20%) and poor coverages (less than 80%). Figure 3.1 shows the observed distribution of

the median survival time under an i.i.d. model and under a gamma frailty model, respectively.
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In all simulations, as the sample size increases we obtain better coverage, less bias and less

MSE, as is intuitively expected. From Tables 3.1 and 3.2 we see that, in terms of MSE, the best

schemes for the i.i.d. case are plans I, II and III. However, plan I has a poorer coverage than both

plans II and III. Regarding the length of the BPCI, the three plans show similar average size, but

both plans II and III have the smallest variance. These conclusions are the same for all sample

sizes and for both values of θ. When we examine the observed distribution of the median survival

under the i.i.d. model (Figure 3.1, bottom panels), we immediately notice that plans I and III

have less variance than plan V. We can also see that the three plans obtain a sample distribution

centered at the true median survival. Similar results are obtained for sample sizes set equal to

15 and 80.

From Tables 3.3 and 3.4 we see that the best schemes for the correlated case in terms of

MSE are both semiparametric bootstrap schemes (plans VI and VII). These plans have also the

shortest BPCIs and smallest variances. Evidently, the performance of all plans degrades as the

level of association among the within-unit interoccurrence times increases. These conclusions are

the same for all sample sizes and for both values of θ. Figure 3.1 (top panels) shows the observed

distribution of the median survival under a gamma frailty model. Examining these graphs, we

see that resampling plan III outperforms plan V in in the i.i.d. model, whereas plan VII is best

under the gamma frailty model. The performance of the resampling plan using the WC estimator

seems intermediate between those based on the PSH and the FRMLE under the i.i.d. and the

gamma frailty model, so in a sense this scheme may provide a robust procedure when uncertain

about the model that generated the data. And this robustness property was the intent of Wang

and Chang’s (1999) proposing this estimator.

Tables 3.5 and 3.6 show the comparison among the different AsyCI with the most adequate

bootstrap method under i.i.d. model. We can observe that the results are comparable with

varying sample size, except for n=15 that AsyCI based on log-log transformation outperforms

BCPI. Anyway, this comparison help us to determine that bootstrap procedures are correct and

it will allow us to use them for the correlated case (gamma frailty model) in which asymptotic

variances are not yet available.
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i.i.d. model (alpha=∞)

gamma frailty model gamma frailty model

gamma frailty model gamma frailty model

i.i.d. model (alpha=∞)

Figure 3.1: Observed distribution of the median survival estimator for an i.i.d. model and a
gamma frailty model in 1,000,000 replications, for selected bootstrap plans. Each panel shows
the observed distribution for all combinations of θ and α that we have simulated. Vertical lines
represent the true median survival time.
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95% BPCI
MSE (bias) EC µ̂ µ̃ σ̂2

n=15
Plan I 283 (8.1) 88.4 0.19 0.17 1,034
Plan II 291 (11.3) 94.3 0.21 0.19 1,024
Plan III 291 (11.9) 95.2 0.22 0.20 1,119
Plan IV 703 (10.3) 93.6 0.32 0.28 3,291
Plan V 687 (10.4) 94.2 0.32 0.28 3,421
n=50
Plan I 66 (3.1) 93.3 0.10 0.10 75
Plan II 66 (3.7) 94.6 0.10 0.10 63
Plan III 66 (3.7) 94.8 0.10 0.10 65
Plan IV 141 (3.2) 94.9 0.15 0.15 202
Plan V 142 (3.2) 94.5 0.15 0.15 198
n=80
Plan I 39(2.1) 94.1 0.08 0.08 34
Plan II 38(2.5) 95.4 0.08 0.08 28
Plan III 38(2.6) 95.2 0.08 0.08 28
Plan IV 84(1.9) 95.3 0.12 0.12 88
Plan V 84(1.9) 95.4 0.12 0.12 91

Table 3.1: Simulation results for 2,000 samples and 500 bootstrap replicates under the i.i.d. model.
Mean square error (MSE) (×105) and proportion of MSE due to bias. Empirical Coverage (EC)
and mean (µ̂), median (µ̃) and variance (σ̂2) of the length (×105) of 95% bootstrap percentile
confidence intervals (BPCI). Results for the first five bootstrap schemes, varying sample sizes,
θ = 1/3 and ν=1.
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95% BPCI
MSE (bias) EC µ̂ µ̃ σ̂2

n=15
Plan I 140 (6.2) 90.4 0.16 0.15 926
Plan II 155 (9.8) 95.3 0.19 0.17 915
Plan III 156 (9.9) 95.1 0.20 0.18 965
Plan IV 321 (8.9) 94.6 0.25 0.24 1,562
Plan V 335 (9.1) 95.1 0.25 0.24 1,635
n=50
Plan I 42 (2.8) 94.3 0.07 0.07 52
Plan II 43 (3.0) 95.6 0.07 0.07 50
Plan III 40 (3.0) 94.9 0.07 0.07 52
Plan IV 111 (2.9) 94.3 0.11 0.11 128
Plan V 115 (3.0) 94.7 0.11 0.11 135
n=80
Plan I 25(2.0) 94.5 0.05 0.05 26
Plan II 26(2.1) 95.4 0.05 0.05 20
Plan III 28(2.2) 95.6 0.05 0.05 21
Plan IV 44(2.0) 95.1 0.10 0.10 56
Plan V 45(2.0) 94.8 0.10 0.10 59

Table 3.2: Simulation results for 2,000 samples and 500 bootstrap replicates under the i.i.d. model.
Mean square error (MSE) (×105) and proportion of MSE due to bias. Empirical Coverage (EC)
and mean (µ̂), median (µ̃) and variance (σ̂2) of the length (×105) of 95% bootstrap percentile
confidence intervals (BPCI). Results for the first five bootstrap schemes, varying sample sizes,
θ = 1/6 and ν=1.
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95% BPCI
MSE (bias) EC µ̂ µ̃ σ̂2

α=2
n=15 Plan IV 2,576 (15.2) 93.4 0.57 0.45 16,985

Plan V 2,362 (15.6) 93.8 0.58 0.46 16,935
Plan VI 1,876 (7.2) 92.1 0.45 0.34 13,115
Plan VII 1,885 (7.3) 92.3 0.45 0.34 13,506

n=50 Plan IV 456 (5.4) 94.2 0.26 0.24 15,422
Plan V 456 (5.5) 94.2 0.26 0.23 16,195
Plan VI 258 (0.1) 93.8 0.20 0.19 518
Plan VII 256 (0.1) 94.1 0.20 0.19 526

n=80 Plan IV 265 (5.6) 94.8 0.20 0.19 426
Plan V 267 (5.8) 95.1 0.20 0.19 434
Plan VI 167 (0.2) 94.4 0.16 0.15 206
Plan VII 168 (0.2) 94.8 0.16 0.15 200

α=6
n=15 Plan IV 1,203 (12.7) 92.9 0.40 0.33 7,160

Plan V 1,154 (12.9) 93.1 0.41 0.33 7,085
Plan VI 927 (16.7) 92.2 0.31 0.26 3,831
Plan VII 921 (16.9) 92.7 0.31 0.26 4,667

n=50 Plan IV 209 (4.0) 93.7 0.18 0.17 319
Plan V 208 (4.1) 93.9 0.18 0.17 352
Plan VI 127 (2.0) 93.7 0.14 0.13 153
Plan VII 127 (2.0) 93.5 0.14 0.13 151

n=80 Plan IV 120 (3.7) 95.3 0.14 0.14 157
Plan V 121 (3.9) 95.4 0.14 0.14 158
Plan VI 72 (1.0) 95.3 0.11 0.10 78
Plan VII 72 (1.0) 95.2 0.11 0.10 77

Table 3.3: Simulation results for 2,000 samples and 500 bootstrap replicates under a gamma frailty
model with shape and scale parameter set equal to α=2 and α=6. Mean square error (MSE)
(×105) and proportion of MSE due to bias. Empirical Coverage (EC) and mean (µ̂), median (µ̃),
and variance (σ̂2) of the length (×105) of 95% bootstrap percentile confidence intervals (BPCI).
Results for the last four bootstrap plans, varying sample sizes, θ = 1/3 and ν=1.
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95% BPCI
MSE (bias) EC µ̂ µ̃ σ̂2

α=2
n=15 Plan IV 1,562 (12.2) 94.4 0.30 0.20 8,965

Plan V 1,234 (12.1) 93.8 0.32 0.21 8,435
Plan VI 976 (6.4) 93.1 0.25 0.24 7,215
Plan VII 985 (6.3) 93.3 0.25 0.24 7,560

n=50 Plan IV 206 (4.6) 94.4 0.14 0.14 7,922
Plan V 207 (4.2) 94.5 0.24 0.13 7,690
Plan VI 152 (1.4) 94.6 0.10 0.09 218
Plan VII 153 (1.1) 94.5 0.10 0.09 261

n=80 Plan IV 151 (4.7) 94.5 0.10 0.09 261
Plan V 157 (5.0) 94.8 0.10 0.09 243
Plan VI 107 (1.2) 95.2 0.08 0.07 106
Plan VII 108 (0.9) 95.1 0.08 0.07 101

α=6
n=15 Plan IV 842 (9.7) 93.9 0.22 0.19 3,262

Plan V 758 (9.5) 93.8 0.23 0.20 3,381
Plan VI 469 (10.2) 93.1 0.16 0.11 1,831
Plan VII 450 (10.8) 93.4 0.17 0.11 2,005

n=50 Plan IV 112 (3.1) 94.7 0.08 0.07 157
Plan V 111 (3.2) 94.2 0.08 0.07 145
Plan VI 75 (1.6) 94.5 0.06 0.06 79
Plan VII 77 (1.5) 94.0 0.06 0.05 65

n=80 Plan IV 70 (3.1) 95.1 0.06 0.06 89
Plan V 69 (2.9) 95.2 0.06 0.06 82
Plan VI 38 (1.0) 94.8 0.04 0.04 35
Plan VII 38 (1.1) 94.3 0.04 0.04 26

Table 3.4: Simulation results for 2,000 samples and 500 bootstrap replicates under a gamma frailty
model with shape and scale parameter set equal to α=2 and α=6. Mean square error (MSE)
(×105) and proportion of MSE due to bias. Empirical Coverage (EC) and mean (µ̂), median (µ̃),
and variance (σ̂2) of the length (×105) of 95% bootstrap percentile confidence intervals (BPCI).
Results for the last four bootstrap plans, varying sample sizes, θ = 1/6 and ν=1.
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PSH estimator WC estimator
EC µ̂ µ̃ σ̂2 EC µ̂ µ̃ σ̂2

n=15
Estimating f(t)a 93.6 0.19 0.17 479 88.5 0.27 0.23 2,458
B&C no-trans. 99.9 0.40 0.38 1,685 99.8 0.63 0.58 6,922
B&C log-log-trans. 94.9 0.18 0.17 427 90.5 0.26 0.24 1,282
B&C arcsin-trans. 94.8 0.18 0.17 408 90.8 0.25 0.23 1,255
Bootstrap (Method 2) 94.3 0.21 0.19 1,024 93.6 0.32 0.28 3,291
n=50
Estimating f(t) 93.7 0.10 0.10 28 94.2 0.15 0.14 123
B&C no-trans. 99.9 0.20 0.20 146 99.9 0.32 0.31 574
B&C log-log-trans. 94.6 0.10 0.10 54 94.0 0.15 0.14 186
B&C arcsin-trans. 94.4 0.10 0.10 53 94.3 0.15 0.14 183
Bootstrap (Method 2) 94.6 0.10 0.10 63 94.9 0.15 0.15 202
n=80
Estimating f(t) 94.2 0.08 0.08 11 93.2 0.11 0.11 48
B&C no-trans. 99.9 0.16 0.16 65 99.9 0.24 0.24 245
B&C log-log-trans. 95.1 0.08 0.08 25 94.0 0.12 0.11 81
B&C arcsin-trans. 94.8 0.08 0.08 25 94.0 0.12 0.11 79
Bootstrap (Method 2) 95.4 0.08 0.08 28 95.3 0.12 0.12 88

aestimating f(t) in the expression of asymptotic variance given in Proposition 1

Table 3.5: Simulation results for 2,000 samples under the i.i.d. model. Empirical Coverage (EC)
and mean (µ̂), median (µ̃) and variance (σ̂2) of the length (×105) of 95% different pointwise
Brookmeyer and Crowley’s (B&C) confidence intervals based on asymptotic variance of both
PSH and WC estimators. Results for selected sample sizes, θ = 1/3 and ν=1.
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PSH estimator WC estimator
EC µ̂ µ̃ σ̂2 EC µ̂ µ̃ σ̂2

n=15
Estimating f(t)a 93.6 0.19 0.17 479 88.5 0.27 0.23 2,458
B&C no-trans. 99.9 0.40 0.38 1,685 99.8 0.63 0.58 6,922
B&C log-log-trans. 94.9 0.18 0.17 427 90.5 0.26 0.24 1,282
B&C arcsin-trans. 94.8 0.18 0.17 408 90.8 0.25 0.23 1,255
Bootstrap (Method 2) 95.3 0.19 0.17 915 94.6 0.25 0.24 1,562
n=50
Estimating f(t) 93.7 0.10 0.10 28 94.2 0.15 0.14 123
B&C no-trans. 99.9 0.20 0.20 146 99.9 0.32 0.31 574
B&C log-log-trans. 94.6 0.10 0.10 54 94.0 0.15 0.14 186
B&C arcsin-trans. 94.4 0.10 0.10 53 94.3 0.15 0.14 183
Bootstrap (Method 2) 95.3 0.19 0.17 63 94.3 0.11 0.11 128
n=80
Estimating f(t) 94.2 0.08 0.08 11 93.2 0.11 0.11 48
B&C no-trans. 99.9 0.16 0.16 65 99.9 0.24 0.24 245
B&C log-log-trans. 95.1 0.08 0.08 25 94.0 0.12 0.11 81
B&C arcsin-trans. 94.8 0.08 0.08 25 94.0 0.12 0.11 79
Bootstrap (Method 2) 95.4 0.08 0.08 28 95.1 0.10 0.10 56

aestimating f(t) in the expression of asymptotic variance given in Proposition 1

Table 3.6: Simulation results for 2,000 samples under the i.i.d. model. Empirical Coverage (EC)
and mean (µ̂), median (µ̃) and variance (σ̂2) of the length (×105) of 95% different pointwise
Brookmeyer and Crowley’s (B&C) confidence intervals based on asymptotic variance of both
PSH and WC estimators. Results for selected sample sizes, θ = 1/6 and ν=1.
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3.4 Examples

In this section we will compute the confidence intervals for median survival time and its confidence

interval using MMC, readmission and bladder data sets. We illustrate how to estimate PSH and

WC using the survrec package for fitting these data in the Section 3.5.

3.4.1 MMC data set

The first data set pertains to data from the study concerning small bowel motility studied in

Husebye et al. (1990) (see Section 2.4 for further description). The aim of their analysis is

to estimate the mean length of the Migratory Motor Complex (MMC) period (i.e., the mean

interoccurrence time). This data set was also analyzed in Aalen and Husebye (1991) using a

variance component model and an intensity-based formulation with a gamma frailty component

using a parametric Weibull model. Then Peña et al. (2001) analyze this data using the estimators

described in section 1.3. Although Aalen and Husebye (1991) stated that “the consecutive MMC

periods for each individual appear (to be) approximate renewal process” we need to verify this

assumption. To do so, Peña et al. (2001) suggested that since formal statistical methods for

checking this i.i.d. assumption are not yet available, a graphical method may be employed to

assess the viability of the i.i.d. model by comparing the agreement among the PSH, WC, and

FRMLE estimators in Peña et al. (2001). The resulting estimates of the interoccurrence time

survivor function are presented in Figure 3.2. A close agreement among these three estimates

is evident. Thus, this agrement provides support for Aalen and Husebye’s assumption that the

independence assumption is true.

After showing that we can assume that the data follow an IID model, we then estimate survival

function using either PSH, WC or FRMLE estimators. We can also estimate pointwise confidence

intervals of the survival function which can be seen in the Figure 3.3.
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Figure 3.2: Survival function of interoccurrence times estimated using PSH, WC and FRMLE
estimators for the MMC data set. This example corresponds to the IID model.
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Figure 3.3: Survival function of interoccurrence times estimated using PSH estimators and their
pointwise 95% confidence interval for MMC data set using log-log transformation.
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Figure 3.4: Probability distribution function of interoccurrence times estimated using PSH, WC
and FRMLE estimators for the hospital readmission in colorectal cancer data set. This example
corresponds to a frailty model with frailties following a gamma distribution.

3.4.2 Colorectal cancer rehospitalizations

The next data set concerns rehospitalization of patients diagnosed with colorectal cancer analyzed

in González et al. (2005). A description of this data set can be found in Section 2.1. As in the

previous example we need to determine if the i.i.d. model is viable. The resulting estimates of

the readmission time distribution are presented in Figure 3.4. We have displayed the estimates of

the distribution function instead of the survival function because in this study, the investigator

is interested in analyzing the probability of readmission instead of the probability of not visiting

the hospital.

A considerable difference between these three estimates is evident. The difference is clear

between PSH and both WC and FRMLE estimators. Thus, basing on Peña, Strawderman and

Hollander’s argument, we may conclude that the i.i.d. model is not appropriate for this readmis-

sion data set. In making practical conclusions, it behooves therefore to use the inference obtained

from the gamma frailty model. In addition, the estimate of the frailty parameter, α, is near 0
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indicating a high correlation in the interoccurrence times. Thus, following these results, it was

decided to analyze data using a Cox gamma shared frailty model (see González et al., 2005).

Median survival times and probabilities to be readmitted at one and three years using FRMLE

model can be found in Table 3.7. We realize that the one-year probability of rehospitalisation

was 0.26 in Dukes stages A-B, 0.38 for patients with stage C, and 0.64 for those with stage D.

This indicates that the probability of being readmitted strongly depends on advanced tumor

stages. The three-year probability shows a similar difference. Males, chemotherapy use, high ed-

ucational level, mortality, and high co-morbidity were also associated with smaller times between

readmissions.

After that, in order to verify if these observed differences in Dukes stage are statistically sig-

nificant we compute their confidence intervals. Table 3.8 shows the confidence interval obtained

using asymptotic variance and bootstrap procedures described in Section 3.1. As a general com-

ment we can say that, and as we expected, that median survival time differs depending on the

model. Under i.i.d assumption median survival is underestimated. Regarding Dukes stage, we

can conclude that there are differences between median survival time for patients with stage D

and both patients with stages A-B and C. These differences are statistically significant since their

confidence intervals does not overlap. This conclusion is the same assuming both independent

and correlated model. We also observe that the α estimates are very small in all cases (Table 3.8).

So, it seems reasonable to use a frailty model for making these comparisons.

Regarding differences in confidence intervals and their width, we should mention that these

results agree with those observed in the simulation study. We first consider the confidence intervals

computed using asymptotic variances. Table 3.8 shows that the narrowest confidence intervals

are those obtained using the log-log transformation (joint with arcsinus in some occasions) as

simulation studies showed (Tables 3.5 and 3.6). On the other hand, when bootstrap method is

used, confidence intervals are close to those obtained using log-log transformation although they

are slightly wider, as the simulations also indicated.
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Readmission Probability Median
At one At three readmission

n (%) year years time (days)
Sex

Females 164 (40.7) 0.32 0.46 1427
Males 239 (59.3) 0.39 0.53 799

Age
<60 111 (27.5) 0.39 0.54 799
60-74 194 (48.1) 0.36 0.48 1230
≥75 98 (24.3) 0.33 0.49 1188

Tumor site
Colon 252 (62.5) 0.34 0.49 1116
Rectum 151 (37.5) 0.39 0.51 1022

Dukes stage
A-B 180 (44.7) 0.26 0.41 2175
C 148 (36.7) 0.38 0.50 1073
D 75 (18.6) 0.64 0.89 199

Chemotherapy
No 217 (53.8) 0.31 0.45 1427
Yes 186 (46.2) 0.41 0.55 734

Radiotherapy1

No 77 (51.0) 0.34 0.48 1188
Yes 74 (49.0) 0.41 0.58 589

Distance
≤30 Km. 381 (94.8) 0.35 0.50 1073
>30 Km. 21 (5.2) 0.37 0.43 1128

Educational Level
Less than primary 176 (43.7) 0.36 0.53 819
Primary 177 (43.9) 0.36 0.49 1188
Secondary 36 (8.9) 0.31 0.44 NA
University 14 (3.5) 0.55 0.67 227

Table 3.7: Readmission probability at one and three years and median survival time for variables
included in the analysis of readmissions of colorectal cancer data set using FRMLE estimator.
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Dukes stage
A-B C D

Asymptotic CI (PSH)
Estimating f(t)a 1157 (741.7,1572.3) 398(257.5,538.4) 107 (65.2,148.8)
B&C no-trans. 1157 (521.0,1736.0) 398 (202.0,1104.0) 107 (40.0,223.0)
B&C log-log-trans. 1157 (710.0,1547.0) 398 (285.0,654.0) 107 (67.0,165.0)
B&C arcsin-trans. 1157 (521.0,1736.0) 398 (280.0,654.0) 107 (67.0,165.0)

Asymptotic CI (WC)
Estimating f(t) 1736 (1446.1,2025.8) 1028(589.3,1466.7) 199 (116.9,281.1)
B&C no-trans. 1736 (655.0,∞) 1028 (276.0,1483.0) 199 (79.0,474.0)
B&C log-log-trans. 1736 (1157.0,∞) 1028 (489.0,1291.0) 199 (158.0,297.0)
B&C arcsin-trans. 1736 (1157.0,∞) 1028 (462.0,1291.0) 199 (158.0,297.0)

Bootstrap CI
Plan II (PSH) 1157 (718.0,1736.0) 398 (290.0,733.0) 107 (70.0,176.0)
Plan IV (WC) 1736 (1188.0,∞) 1028 (489.0,1325.0) 199 (161.0,350.0)
Semiparametric 2175 (1188.0,∞) 1073 (450.0,1288.0) 199 (109.0,297.0)

α̂ 1.11 1.46 2.19

aestimating f(t) in the expression of asymptotic variance given in Proposition 1

Table 3.8: Median survival time and confidence intervals (CI) for hospital readmission data set,
using PSH or WC asymptotic variance with Brookmeyer and Crowley (B&C) procedure with
no transformation, log-log-transformation and arcsin-transformation. Table also shows bootstrap
percentile confidence intervals for selected plans.
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Figure 3.5: Survival function of interoccurrence times estimated using PSH, WC and FRMLE
estimators for the bladder cancer data set. This example corresponds to a frailty model when the
frailties does not follow a gamma distribution.

3.4.3 Bladder cancer data

Finally, the last example is an application to recurrences on bladder cancer analyzed in Wei et al.

(1989). A description of this data set can be found in Section 2.3. Using again a graphical test

based on Peña et al. (2001), although both FRMLE and PSH estimators agree (the estimation

of α parameter also confirms this assumption), we cannot assume that interoccurrence times are

i.i.d. because WC clearly differs from PSH estimator (see Figure 3.5). This indicates the need of

using WC estimator or FRMLE with another distribution for the frailties.

Table 3.9 shows median survival time and their asymptotic and bootstrap confidence inter-

vals depending on treatment. As in the previous example, regarding the width of the confidence

intervals, we may also state that these results completely agree with those obtained in the simula-

tion studies. The log-log and arcsinus transformations showed the narrower confidence intervals.

Similar confidence intervals are obtained using the bootstrap method. Regarding the biomedical

interpretation, we can see that patients who receive thiotepa have greater survival than those
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Treatment
placebo thiotepa

Asymptotic CI (PSH)
Estimating f(t)a 10 (6.9,13.1) 20(8.8,31.2)
B&C no-trans. 10 (5.0,29.0) 20 (3.0,∞)
B&C log-log-trans. 10 (7.0,15.0) 20 (7.0,24.0)
B&C arcsin-trans. 10 (7.0,15.0) 20 (7.0,24.0)

Asymptotic CI (WC)
Estimating f(t) 13 (4.3,21.7) 26(-3.0,55.0)
B&C no-trans. 13 (4.0,35.0) 26 (2.0,∞)
B&C log-log-trans. 13 (7.0,28.0) 26 (12.0,∞)
B&C arcsin-trans. 13 (7.0,28.0) 26 (12.0,∞)

Bootstrap CI
Plan II (PSH) 10 (8.0,16.0) 20 (11.0,∞)
Plan IV (WC) 13 (8.0,29.0) 26 (12.0,∞)
Semiparametric 10 (9.0,18.0) 24 (12.0,∞)

α̂ ∞ 2.99

aestimating f(t) in the expression of asymptotic variance given in Proposition 1

Table 3.9: Median survival time and confidence intervals (CI) for bladder data set, using PSH
or WC asymptotic variance with Brookmeyer and Crowley (B&C) procedure with no transfor-
mation, log-log-transformation and arcsin-transformation. Table also shows bootstrap percentile
confidence intervals for selected plans.

who did not receive any drug. However, looking at confidence intervals we cannot say that this

difference was statistically significant. The same conclusions are obtained using another approach

such as AG model. We observe that patients who received thiotepa have a 19.2% less probability

to relapse than those who only received placebo. As we concluded by comparing median survival

time, this difference was not statistically significant (p-value for Likelihood ratio test 0.277).
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3.5 R instructions for survrec package

MMC example

The resulting estimates of the interoccurrence time survivor function for MMC data set showed

in Figure 3.2 can be obtained by executing

> fit.PSH<-survfitr(Survr(id,time,event)~1,data=MMC,type="p")
> plot(fit.PSH,conf.int=FALSE,cex.lab=2)
> fit.WC<-survfitr(Survr(id,time,event)~1,data=MMC,type="w")
> lines(fit.WC,lty=2)
> fit.FRMLE<-survfitr(Survr(id,time,event)~1,data=MMC,type="M")

Needs to Determine a Seed Value for Alpha
Seed Alpha: 20.02853

Alpha estimate= 10.17623

> lines(fit.FRMLE,lty=3)
>
> legend(160,0.9,expression(paste("PSH (i.i.d.)"),paste("WC"),
+ paste("FRMLE (",alpha==10.17,")")),lty=c(1:3),cex=1.2)
> text(25,0.1,"a) i.i.d. case",cex=1.8,adj=0)

# produces Figure 3.2

Note that when we fit FRMLE estimator using survfitr function, appears a message indi-

cating that the algorithm needs a seed value for α. Then, the program calls to another subroutine

which computes an initial value for α in order to obtain good convergence in the EM algorithm. It

is carried out by the maximization of the profile likelihood for alpha using golden search method.

The pointwise confidence intervals of the survival function can be fitted by writing

> fit.PSH<-survfitr(Survr(id,time,event)~1,data=MMC,type="p")
> plot(fit.PSH,conf.int=TRUE) # Figure 3.3

In order to compute mean (and median) survival time we can use generic print function. We

obtain the following results

> print(fit.PSH,digits=c(4,2))
Survival for recurrent event data

n events mean se(mean) median recurrences: min max median
19 80 104.1 5.869 98 1 9 4

> print(fit.WC,digits=c(4,2))
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Survival for recurrent event data
n events mean se(mean) median recurrences: min max median
19 99 106.0 12.7 95 2 10 5

> print(fit.FRMLE,digits=c(4,2))
Survival for recurrent event data

n events mean se(mean) median recurrences: min max median
19 80 108.1 6.697 100 1 9 4

As we expect, we observe agrement between the three estimators due to the independence

between interoccurrence times.

Hospital Readmission example

The resulting estimates of the probability distribution function for hospital readmission data set

showed in Figure 3.4 can be obtained as previously but modifying the prob argument.

> fit.PSH<-survfitr(Survr(id,time,event)~1,data=readmission,type="p")
> fit.WC<-survfitr(Survr(id,time,event)~1,data=readmission,type="w")
> fit.FRMLE<-survfitr(Survr(id,time,event)~1,data=readmission,type="M")

Needs to Determine a Seed Value for Alpha
Seed Alpha: 0.5

Alpha estimate= 1.046656
> plot(fit.PSH,xlim=c(0,2000),prob=TRUE,conf.int = FALSE)
> lines(fit.WC,prob=TRUE,lty=2)
> lines(fit.FRMLE,prob=TRUE,lty=3)
>
> legend(1000,0.3,expression(paste("PSH (i.i.d.)"),paste("WC"),
+ paste("FRMLE (",alpha==1.04,")")),lty=c(1:3),cex=1.2)
> text(250,0.1,"b) correlated case",cex=1.8,adj=0)

# Figure 3.4

Median survival times and probabilities of being readmitted showed in Table 3.7 can be

obtained by writing

> fit.FRMLE<-survfitr(Survr(id,time,event)~as.factor(dukes),
+ data=readmission,type="M")

Needs to Determine a Seed Value for Alpha
Seed Alpha: 18.18003

Alpha estimate= 1.113895
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Needs to Determine a Seed Value for Alpha
Seed Alpha: 12.55364

Alpha estimate= 1.460141

Needs to Determine a Seed Value for Alpha
Seed Alpha: 9.342046

Alpha estimate= 2.193977

# Median survival estimates
> print(fit.FRMLE,digits=c(4,2))
Survival for recurrent event data. Group= as.factor(dukes)

n events mean se(mean) median recurrences: min max median
1 180 144 1350.0 67.50 2175 0 6 0
2 148 183 841.5 46.82 1073 0 16 1
3 75 131 363.2 45.96 199 0 22 1

# Probability at one and three years
> for (i in 1:length(fit.FRMLE))
+ { + cat(i,"\n") + cat("at one year:
",1-fit.FRMLE[[i]]$surv[sum(fit.FRMLE[[i]]$time<365)],"\n")
+ cat("at three years:
",1-fit.FRMLE[[i]]$surv[sum(fit.FRMLE[[i]]$time<1095)],"\n")
+ }

1
at one year: 0.2604853
at three years: 0.4072520
2
at one year: 0.3814841
at three years: 0.5045216
3
at one year:0.6418163
at three years: 0.8867255

Asymptotic confidence intervals, for WC estimator, described in Section 3.1 can be obtained

in R as follows:

> fit.WC<-survfitr(Survr(id,time,event)~as.factor(dukes),data=readmission,t="w")
> cat("dukes=1 \n")
dukes=1
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> print(Brook.Crowley(fit.WC$"1",0.5))
$percentile [1] 1736

$ci95.asymptotic $ci95.asymptotic$bandwith [1] 1148
$ci95.asymptotic$ci95 [1] 1446.15 2025.85

$ci95.id [1] 655 1736 # formula 3.8
$ci95.log.log [1] 1157 1736 # formula 3.9
$ci95.arcsin [1] 1157 1736 # formula 3.1

> cat("dukes=2 \n")
dukes=2
> print(Brook.Crowley(fit.WC$"2",0.5))
$percentile [1] 1028

$ci95.asymptotic $ci95.asymptotic$bandwith [1] 735
$ci95.asymptotic$ci95 [1] 589.27 1466.73

$ci95.id [1] 276 1483 # formula 3.8
$ci95.log.log [1] 489 1291 # formula 3.9
$ci95.arcsin [1] 462 1291 # formula 3.1

> cat("dukes=3 \n")
dukes=3
> print(Brook.Crowley(fit.WC$"3",0.5))
$percentile [1] 199

$ci95.asymptotic $ci95.asymptotic$bandwith [1] 132

$ci95.asymptotic$ci95 [1] 116.87 281.13

$ci95.id [1] 79 474 # formula 3.8
$ci95.log.log [1] 158 297 # formula 3.9
$ci95.arcsin [1] 158 297 # formula 3.1

where Brook.Crowley function has been created because it is not included in the survrec package

(see Appendix E)

On the other hand, the same confidence intervals using bootstrap procedures described in

Section 3.2 can be fitted using survdiffr function. Let us compute bootstrap Plan II, that is,

nonparametric bootstrap estimating F̂ using WC estimator, and simulating G from its empirical

distribution.
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> fit<-survdiffr(Survr(id,time,event)~as.factor(dukes),data=readmission,
+ q=0.5,boot.F="WC",boot.G="empirical",B=999)
> print(fit)
$"1" CASE RESAMPLING BOOTSTRAP FOR CENSORED DATA

Call: survdiffr(formula = Survr(id, time, event) ~
as.factor(dukes),

data = readmission, q = 0.5, B = 999, boot.F = "WC", boot.G = "empirical")

Bootstrap Statistics :
original bias std. error

t1* 1736 -459.972 810.8057

$"2" CASE RESAMPLING BOOTSTRAP FOR CENSORED DATA

Call: survdiffr(formula = Survr(id, time, event) ~
as.factor(dukes),

data = readmission, q = 0.5, B = 999, boot.F = "WC", boot.G = "empirical")

Bootstrap Statistics :
original bias std. error

t1* 1028 -54.57057 251.8067

$"3" CASE RESAMPLING BOOTSTRAP FOR CENSORED DATA

Call: survdiffr(formula = Survr(id, time, event) ~
as.factor(dukes),

data = readmission, q = 0.5, B = 999, boot.F = "WC", boot.G = "empirical")

Bootstrap Statistics :
original bias std. error

t1* 199 14.52452 46.15239

We notice that survdiffr function returns an object of class "boot". Thus, we can use boot

package for summarizing the object fit using generic print function. Then, bootstrap confidence

intervals showed in Table 3.8 can be fitted using boot.ci. This function is also included in boot

package.

> # Dukes stage A-B
> boot.ci(fit$"1")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 999 bootstrap
replicates
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CALL : boot.ci(boot.out = fit$"1")

Intervals : Level Normal Basic
95% (1148, 2347 ) (1297, 2315 )

Level Percentile BCa
95% (1157, 2175 ) (1188, 2175 )
Calculations and Intervals on Original Scale

> # Dukes stage C
> boot.ci(fit$"2")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 999 bootstrap
replicates

CALL : boot.ci(boot.out = fit$"2")

Intervals : Level Normal Basic
95% ( 608, 1566 ) ( 731, 1567 )

Level Percentile BCa
95% ( 489, 1325 ) ( 453, 1325 )
Calculations and Intervals on Original Scale

> # Dukes stage D
> boot.ci(fit$"3")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 999 bootstrap
replicates

CALL : boot.ci(boot.out = fit$"3")

Intervals : Level Normal Basic
95% ( 95.3, 275.3 ) ( 48.0, 240.0 )

Level Percentile BCa
95% (158, 350 ) (113, 247 )
Calculations and Intervals on Original Scale Some BCa intervals
may be unstable





Chapter 4

Inference for the General Class of

Models

This chapter gives procedures for estimating the parameters of the general class of models for

recurrent events proposed by Peña and Hollander (2004). An approach based on semiparametric

inference (Peña, Slate, and González, 2003) has been developed. When model without frailties

is estimated, a generalization of the partial likelihood for the Cox model is obtained. On the

other hand, when frailties are included in the model, an EM algorithm is developed. As we have

mentioned in Section 1.6, this work was not only carried out by myself, so we have included it in

the Appendix B. We encourage the reading of this appendix before going through this chapter

because the present chapter is based on the notation and the results we get in it.

Herein, we present another methodology based on a penalized likelihood approach. Two

different strategies are adopted. One of them was developed in the shared frailty model context

by Therneau et al. (2003). Their idea is based on penalizing the partial likelihood where the

penalization bears on a regression coefficient (see Section 1.4.2 for further details). The second

penalized approach, also applied in the shared frailty model, was proposed by Rondeau et al.

(2003). Their method of estimation is based on the penalized full likelihood, and it gives a non-

parametric estimation of the baseline hazard function using a continuous estimator. The solution

is then approximated using splines.

The motivations for the present chapter are mainly due to general drawbacks which appears

when EM algorithm is used. In particular, direct estimates of the variance of parameters are

71
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not provided. Thus, to solve this problem, we first propose to estimate parameters involved in

Peña and Hollander’s model using the ideas described in Therneau et al. (2003). However, this

approach still continue having problems such as the convergence can be slow and the variance of

frailty variance cannot be estimated directly. To improve this approach, an alternative method of

penalization proposed by Rondeau et al. (2003) is adopted. The main advantage of this method

is that we can easily obtain smooth estimates of the hazard function and an estimation of the

variance of frailty variance parameter.

In Section 4.1 we begin by giving how to fit Peña and Hollander model using EM algorithm.

We also compare the resulting estimates using this approach with those obtained using existing

methods such as AG, WLW and PWP models described in Section 1.4.3. Section 4.2 deals with

both methods of estimation based on penalization above outlined. In Section 4.3, based on Nielsen

et al.’s Nielsen et al. work, we give some procedures to test whether the frailty is necessary. Some

computational issues are discussed in Section 4.4. In Section 4.5 the estimation procedures are

illustrated using both readmission and bladder cancer data sets. This last example is also used

to compare the results obtained using Peña and Hollander’s model to those obtained using three

methods of analyzing recurrent event data mentioned in Chapter 1. Bladder cancer data set is

also used to illustrate which is the impact of miss-specifying effective age process. Finally, Section

4.6 shows how to fit the general class of models using gcmrec and frailtypack packages.

4.1 Semiparametric inference: EM algorithm

Before going through the penalized likelihood inference we focus on presenting how to fit Peña

and Hollander model using EM algorithm described in Appendix B. To do this, we consider the

data set belonging to patients with colorectal cancer described in Section 2.1. In this analysis

we consider only the variables tumor stage (Dukes classification: A-B, C or D) and gender. This

example will also be useful to describe how to fit and interpret the results obtained using the

general class of models as well as compare them to the typical Cox models for recurrent event

data described in Section 1.4.3.

This data set was first analyzed in Gonzalez et al. (2005) using a shared gamma frailty model

since interoccurrence times were correlated. Thus, instead of using a marginal models such as

those described in 1.4.3 we have fitted both AG and PWP models including a frailty term. Table
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4.1 shows the resulting estimates using these approaches together with those obtained using the

general class of models. First of all, we observe that there is a significant random effect since ξ

(frailty precision, see Appendix B) is quite small in all cases. When the effective age corresponds

to perfect repair, the resulting estimates from Peña and Hollander model are close to those

obtained with the PWP conditional method. On the other hand, when a minimal repair effective

age formulation is used, the results are close to those obtained using the AG model although the

hazard risk are little different.

The differences in hazard estimates are probably due to the impact of accumulating event

readmissions. This effect is incorporated in the Peña and Hollander model via the ρ function.

Using, ρ(k;α) = αk we model different scenarios. As an example, if α is less than unity, the

increasing number of rehospitalization has a beneficial effect. In our case, the probability of being

rehospitalized would decrease with the number of hospitalization. Looking at our results (Table

4.1) we observe that α is greater than unity, indicating that each hospitalization increases the

risk of further hospitalization. Using other words, α parameter greater than one suggests that

there is different risk of being hospitalized depending on the number of rehospitalizations. We

may further analyze this fact looking at the cumulative hazard functions for the time since last

event estimated using the PWP stratified model. The resulting plot, shown in Figure 4.1, shows

that the probability of being readmitted increases as the number of hospitalization increases (red

lines). On the other hand, the cumulative hazard estimates using Peña and Hollander model is

common for all events, and approximates to the average of all marginal cumulative hazards. For

this model, the alpha parameter allows changing the baseline hazard and it play the same role

as the stratification in the PWP model.

Regarding risk estimate, as PWP model is an stratified model, we can fit separate coefficients

for both sex and dukes variables to each stratum. Table 4.2 contains these coefficients where the

rehospitalizations greater than fourth are combined. We can observe that the differences between

males and females are only statistically significant in the probability of being readmitted for the

second rehospitalization. This fact is difficult to be explained as the differences observed between

males and females using a simple fit model (Table 4.1) as Gonzalez et al. (2005) pointed out. On

the other hand, patients with advanced tumoral stage (dukes D) have and approximately 4.5-fold

first recurrence rate as compared to those with early tumoral stage (dukes A-B). This difference

decrease when posterior rehospitalizations are analyzed to be approximately 2-fold risk. Patients
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Peña and Hollander model Shared Gamma Frailty model
perfect repairsa minimal repairsb PWP model AG model

Covariate HR (CI95%) HR (CI95%) HR (CI95%) HR (CI95%)
Gender

Female 1 1 1 1
Male 1.56 (1.20-2.03) 1.69 (1.19-2.40) 1.47 (1.15-1.88) 1.85 (1.34-2.54)

Dukes stage
A-B 1 1 1 1
C 1.49 (1.08-2.05) 1.57 (1.04-2.36) 1.46 (1.12-1.91) 1.63 (1.15-2.31)
D 3.06 (2.04-4.58) 4.05 (2.25-7.29) 3.45 (2.47-4.81) 5.03 (3.35-7.56)

Frailty ξ 2.50 1.03 3.09 0.73
log N(s−) α 1.08 (0.97-1.19) 1.11 (0.61-1.60)

aEffective Age is backward recurrence time (E(s) = s− SN†(s−))
bEffective Age is calendar time (E(s) = s).

Table 4.1: Hazard ratios and 95% confidence intervals for the probability of rehospitalization
to the readmission data set. Estimates using Andersen-Gill (AG) and Prentice, Williams and
Peterson (PWP) methods with a frailty term, together the estimates obtained using Peña and
Hollander model using two different effective age formulations.

with dukes C only differ from patients with early tumoral stages (dukes A-B) in the probability

of having the first hospitalization (HR:1.66, CI95%: 1.19-2.75).

4.2 Penalized Likelihood Inference

Herein, we propose a different method of parameter estimation that solves problems which appear

when EM algorithm is used. In Section 4.2.1, we begin by showing how to adapt Therneau et al.’s

2003 approach in our case while in Section 4.2.2 we develop another different penalized approach

that is able to give an estimation of the variance of frailty variance parameter. This gives us a

possibility making a formal test to see whether data are correlated or not.

Let us assume that Xi is time-independent, an increasing number of event occurrences is of

form ρ(N †
i (s−);α) = αN†

i (s−) (that is, αk, where k is the number of occurrence), and ψ(x) =

exp(x). Assuming this situation, the Peña and Hollander model (1.20) can be also written as

follows:

λi(s|Zi,Xi) = Zi λ0[Ei(s)]αN†
i (s−) exp[β′Xi], (4.1)

As in Peña et al. (2003), we also assume that the frailties Z1, . . . , Zn are i.i.d. from a gamma

distribution. However, in our case we consider the parameterization ν = 1/ξ. Therefore, we
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Covariate HR (CI95%) p value
Male

1st event 1.26 (0.93-1.70) 0.130
2nd event 1.80 (1.16-2.79) 0.009
3rd event 0.92 (0.49-1.72) 0.790
≥ 4 1.60 (0.78-3.28) 0.200

Dukes C
1st event 1.66 (1.19-2.31) 0.003
2nd event 1.36 (0.83-2.24) 0.220
3rd event 0.82 (0.39-1.72) 0.600
≥ 4 1.20 (0.53-2.75) 0.660

Dukes D
1st event 4.54 (3.12-6.59) <0.001
2nd event 2.15 (1.22-3.78) 0.008
3rd event 2.16 (1.02-4.56) 0.043
≥ 4 2.03 (0.82-5.03) 0.130

Table 4.2: Hazard ratios and 95% confidence intervals per event for the probability of rehospital-
ization to the readmission data set. Estimates using stratified Prentice, Williams and Peterson
(PWP) model.
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Figure 4.1: Baseline cumulative hazards for each event number using Prentice, Williams and
Peterson (PWP) conditional method and Peña and Hollander model to readmission data set.
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estimate frailty variance instead of frailty precision. This will be discussed later in Section 4.3.

Using previous notation, the complete log-likelihood process, which is obtained from (B.15),

is:

n∑

i=1

{∫ s∗

0
log

[
ZiY

†
i (v)λ0[Ei(v)]αN†

i (v−) exp(β′Xi)
]
N †

i (dv)

−
∫ s∗

0
ZiY

†
i (v)λ0[E(v)]αN†

i (s−) exp(β′Xi)dv + log f(Zi; ν)

}
, (4.2)

where f(Zi; ν) is the density function of a Gamma distribution. We notice that the frailties,

Z, can be viewed as missing data, so expectation-maximization (EM) algorithm can be used for

solving the problem of parameters estimation as we have illustrated in Section B.2.

Let Âi ≡ Âi(s; λ0, α, β) =
∑n

i=1 Yi(s; α, β)λ0(s)ds, where the sum is over the distinct jump

times. Then, the log-likelihood for the observed data (i.e., full log-likelihood process which is just

the logarithm of equation B.16)

lF (s|λ0, α, β, ν) =
n∑

i=1

{
log

[
Γ(ν + N †

i (s∗))
Γ(ν)

]
− (ν + N †

i (s∗)) (ν + Âi)

+νlog(ν) +
N†

i (s∗)∑

j=1

log[λ0(Ei(s))αN†
i (s−) exp(β′Xi)]



 , (4.3)

is found by integrating the distribution of Z. Thus, the estimation of ν can be done by maximizing

the profile log-likelihood of this function.

lF (s∗|ν) = lF (s∗|α̂, β̂, λ̂0; ν) (4.4)

as we have previously mentioned.

4.2.1 Penalized partial likelihood

The general class of models for recurrent event data (4.1) can be written as a penalized partial

likelihood formulation following the approach proposed by Therneau et al. (2003) in the case of

the shared frailty model. The idea is to introduce the reparametrization Zj = exp(zj) and to

consider them as additional regression coefficients which are constrained by a penalty function.

The equation (4.1) can be written as

λi(s|zi,Xi) = λ0[Ei(s)]αN†
i (s−) exp[β′Xi + z′Mi]. (4.5)
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where M is a matrix of n indicator variables such that Mij = 1 when observation i is a reoccurrence

of individual j and 0 otherwise. Therneau et al. (2003) proposed to estimate the parameters

involved in this model by maximizing a penalized partial log-likelihood

plP (s|α, β, z) = lP (s|α, β, z)− g(z; ν) (4.6)

over α, β, and z. In this equation, g is a penalty function chosen to restrict the values of z. The

parameter ν is a constant which can be given by the user or adapted to the data. For example,

one possibility is to choose the penalty function to ”shrink“ z toward 0 and use ν to control the

amount of shrinkage. The function lP denotes the logarithm of the profile likelihood

lP (s|α, β, w) =
n∑

i=1

∫ s

0

{
N †

i (v−) log(α) + β′Xi + z′Mi

− log S̃0(s, Ei(v)|α, β, w)
}

N †
i (dv),

where, S̃0 is a similar process to that described in the Appendix B but including z as an another

parameter. That is, S̃0(s, Ei(v)|α, β, z) =
∑n

i=1 Yi(s, t|α, β, z) and Y (·, ·|α, β, w) corresponds to

the at-risk process defined in Proposition 2 from Peña et al. (2003) by considering that in this

case the equation (B.11) becomes:

ϕ̃ij(s|α, β, z) ≡ αN†
i (s−)eβ′Xi+z′Mi

E ′ij(s)
. (4.7)

To estimate α, β, and z, we solve the score equations. Because the penalty function does not

involve neither α, nor β, then ∂plP /∂α = ∂lP /∂α, and ∂plP /∂β = ∂lP /∂β. That is,

∂plP
∂α

=
n∑

i=1

∫ s∗

0

[
∂

∂ααN†
i (v−)

αN†
i (v−)

−
∂

∂α S̃0(s, Ei(v)|α, β, z)

S̃0(s, Ei(v)|α, β, z)

]
N †

i (dv) = 0; (4.8)

∂plP
∂β

=
n∑

i=1

∫ s∗

0

[
∂
∂β eβ′Xi+z′Zi

eβ′Xi+z′Mi
−

∂
∂β S̃0(s, Ei(v)|α, β, z)

S̃0(s, Ei(v)|α, β, z)

]
N †

i (dv) = 0. (4.9)

Therefore, the score equations for α, and β are the same to those for general class of models

treating z′M as an offset term. On the other hand, the score equation for z is

∂plP
∂z

=
n∑

i=1

∫ s∗

0

[
∂

∂zi
eβ′Xi+z′Mi

eβ′Xi+z′Mi
−

∂
∂zi

S̃0(s, Ei(v)|α, β, z)

S̃0(s, Ei(v)|α, β, z)
− ∂g(z; ν)

∂zi

]
N †

i (dv) = 0. (4.10)

We also recall that since N †
i (·) is a step process with a finite number of jumps, then previous

estimating equations can be written as finite sums with respect to the event interoccurrence
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times Sijs. As in the case without frailties described in Section B.2, we may better understand

the estimation equations (4.8), (4.9), and (4.10) using similar notation. For i = 1, 2, . . . , n,

j = 1, 2, . . . , N †
i (s), and using (4.7), define

Q̃ij(s, t|α, β, z) = I[Eij−1(Sij−1), Eij−1(Sij)](t) ϕ̃ij−1

(
E−1

ij−1(w);α, β, z
)

, (4.11)

and

R̃i(s, t|α, β, z) = I[E
iN
†
i
(s−)

(S
iN
†
i
(s−)

), E
iN
†
i
(s−)

(min(s,τi))](t) ϕ̃
iN†

i (s−)

(
E−1

iN†
i (s−)

(t);α, β, z

)
.(4.12)

Some algebra (see Section B.1) shows that the estimating equations (4.8), (4.9), and (4.10) become

n∑

i=1

N†
i (s∗)∑

j=1

[
j − 1

α
− Ã(s∗, Eij−1(Sij)|α, β, z)

]
∆N †

i (Sij) = 0,

n∑

i=1

N†
i (s∗)∑

j=1

[
Xi − B̃(s∗, Eij−1(Sij)|α, β, z)

]
∆N †

i (Sij) = 0,

n∑

i=1

N†
i (s∗)∑

j=1

[
Mijδi − C̃(s∗, Eij−1(Sij)|α, β, z)− ∂g(w; ν)

∂wi

]
∆N †

i (Sij) = 0,

where

Ã(s, t|α, β, z) =
1
α

∑n
i=1

{∑N†
i (s)

j=1 (j − 1) Q̃ij(s, t|α, β, z) + N †
i (s−) R̃i(s, t|α, β, z)

}

∑n
i=1

{∑N†
i (s)

j=1 Q̃ij(s, t|α, β, z) + R̃i(s, t|α, β, z)
} ,

B̃(s, t|α, β, z) =

∑n
i=1 Xi

{∑N†
i (s)

j=1 Q̃ij(s, t|α, β, z) + R̃i(s, t|α, β, z)
}

∑n
i=1

{∑N†
i (s)

j=1 Q̃ij(s, t|α, β, z) + R̃i(s, t|α, β, z)
} ,

and

C̃(s, t|α, β, z) =

∑n
i=1 Mi

{∑N†
i (s)

j=1 Q̃ij(s, t|α, β, z) + R̃i(s, t|α, β, z)
}

∑n
i=1

{∑N†
i (s)

j=1 Q̃ij(s, t|α, β, z) + R̃i(s, t|α, β, z)
} .

Upon obtaining the estimators α̂, β̂, and ẑ, the estimator of underlying cumulative hazard based

on the realizations over [0, s∗] is

Λ̂0(s∗, t) =
∫ t

0

{
I{S̃0(s∗, u|α̂, β̂, ẑ) > 0}

S̃0(s∗, u|α̂, β̂, ẑ)

} {
n∑

i=1

Ni(s∗, du)

}
. (4.13)
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which is just the equation (B.18) of M-step with different notation.

Thus, after having defined analytic forms of estimating equations for α, β and z, we may

estimate them using a Newton-Raphson procedure, where the Hessian of penalized likelihood can

be written as follows:

H = H(α, β,w) = I +


0 0

0 g′′


 ,

were I = I(α, β,w) is the information matrix of general class of models. That is, the second

derivative matrix of 4.7 with respect to α, β, and w.

The algorithm for fitting parameters consists of an inner and outer loop. For a fixed ν,

Newton-Raphson iteration is used to solve the penalized model in a few steps (usually 5-6), and

return the corresponding value of the plP . This first step have some computational problems

since the information matrix may have many parameters. Section 4.4 deals with this problem.

The outer loop chooses ν to maximize the profile likelihood showed in equation (4.2) that can be

easily done using one dimensional procedures.

4.2.2 Penalized full likelihood

Another possibility of penalizing the likelihood is to penalize the full log-likelihood as Rondeau

et al. (2003) proposed for the shared frailty model. Now, the idea is to penalize the baseline hazard

by a term which takes large values for rough estimations of the function. Thus, the penalized

log-likelihood can be defined as follows:

plF (α, β,Λ0(·), z) = lF (α, β,Λ0(·), z)− κ

∫ ∞

0
(λ

′′
0)2(t)dt (4.14)

where lF (α, β, Λ0(·), z) is the full log-likelihood for the general class of models defined in (4.3),

and κ ≥ 0, is a positive smoothing parameter which controls the trade-off between the data fit

and the smoothness of the functions. Next, we briefly outline the main aspects of their approach

developed for the shared frailty model that may easily accommodate to our case. Further details

can be found in Rondeau et al. (2003) or in Rondeau and Gonzalez (2005).

The main problem in estimating parameter involved in (4.14) arise from the method of maxi-

mization because we estimate λ̂(·) approximating it by a linear combination of m cubic M-splines

λ̃(.) =
∑m

i=1 ηjMj(.) (see Ramsay, 1988 for further details). Thus, we need to estimate η as well as

α and β parameters. In that case, neither the score nor the Hessian of log-likelihood have a simple
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analytical form. One possibility, used in Rondeau et al. (2003), is to compute numerically these

quantities by using finite differences. That procedure is integrated out in the Marquardt algorithm

which is useful for high-dimensional problems such as our case. This algorithm is a combination

between a Newton-Raphson algorithm and a steepest descent algorithm (see Section 4.4 for fur-

ther details). After estimating both η, we use this vector to get the cumulative hazard function

with I-splines (integrated M-splines). After that, we may obtain approximate Bayesian pointwise

95% confidence bands for the hazard function by using : λ̃0(t)± 1.96
√

M′(t)[v̂ar(η̂)]M(t) where

M′(t) = (M1(t), ..., Mm(t)) is the spline vector in t. As we have mentioned previously, further

details of these procedures can be found in Rondeau et al. (2003).

Another important point which has been taken into account when we are dealing with non-

parametric methods, is how to chose the smoothing parameter, κ. In practice, it is sometimes

sufficient to choose it heuristically, by plotting several curves and choosing that which seems more

realistic. Furthermore, Rondeau et al. (2003) also proposed two other approaches to determine

the smoothing parameter. One of them is based on an approximate cross-validation score as in

Joly et al. (1999) (see also O’Sullivan, 1988). While another one introduces a priori knowledge by

fixing the number of degrees of freedom to estimate the hazard function as Gray (1987) proposed.

In some cases, the search for the smoothing parameter may not be reliable because of local

extrema. Thus the estimate of the smoothing parameter is not optimal. This can be examined

by taking different starting points. Moreover, it seems that the cross-validation score tends to

undersmooth, especially for small samples, so in this case the smoothing parameter may be fixed

a priori. We have to mention that we implemented the cross-validation procedure for model (4.1)

when Z = 1 and Ei(s) = s − S
N†

i (s−)
and that a method for other models will be part of our

future research.

4.3 Statistical Inference

As Nielsen et al. (1992) stated, a very important point when we are dealing with frailty models, is

to test whether the frailty is necessary. In our case and using Peña et al.’s (2003) parameterization,

when ξ → ∞ the frailty variance tends to zero and the model becomes frailtyless (all Z’s are

identically equal to one). Using the parameterization ν = 1/ξ we may also check the need of

frailty by testing the null hypothesis H0 : ν = 0 (e.g., H0 : ξ = ∞). Let us notice that using this



4.3 Statistical Inference 81

parameterization we directly estimate frailty variance instead of frailty precision as Peña et al.

(2003) propose. Nielsen et al. (1992), in the context of shared frailty model, showed that the

value ν = 0 of frailty variance is not on the parameter boundary, so standard likelihood inference

methods can be used to test the null hypothesis. Here, using a similar argument, we show that

this argument may also be used in the Peña and Hollander model.

Peña et al. (2003) stated that conditional on the data from the time interval [0, s∗), the expectation

of Zi is (see Appendix B)

ξ + N †
i (s∗)

ξ +
∫ s∗
0 Zi Y

†
i (v) λ0[Ei(v)]αN†

i (v−) exp[β′Xi(v)] dv
.

They also showed that conditionally on Z, the F-compensator of N †
i is {A†i (s|Z,Xi) : 0 ≤ s ≤ s∗}

with components

ξ + N †
i (s∗)

ξ +
∫ s∗
0 Zi Y

†
i (v) λ0[Ei(v)]αN†

i (v−) exp[β′Xi(v)] dv
Y †

i (v) λ0[Ei(v)]αN†
i (v−) exp[β′Xi(v)].

Now, dividing the numerator and the denominator of the first term by ξ and using the parame-

terization ν = 1/ξ, previous equation my be written as follows:

1 + νN †
i (s∗)

1 + ν
∫ s∗
0 Zi Y

†
i (v) λ0[Ei(v)]αN†

i (v−) exp[β′Xi(v)] dv
Y †

i (v) λ0[Ei(v)]αN†
i (v−) exp[β′Xi(v)]

We notice that the general class of models makes sense for all ν (including ν = 0) when the

first term is non-negative. This happens for all ν larger than ν∗, the maximum of the quantities

−1/N †
i (s∗) and −1/

∫ s∗
0 Zi Y

†
i (v) λ0[Ei(v)]αN†

i (v−) exp[β′Xi(v)] dv.

Let us observe that ν∗ < 0, and then ν = 0, is not in the boundary of the parameter space

[ν∗,∞). Thus, the null hypothesis H0 : ν = 0 of independence between re-occurrences may be

tested using either likelihood ratio test statistic or the Wald test. In the first case, the test for the

frailty is twice the difference between the log partial-likelihood with the frailty term integrated

out, and the loglikelihood of a no frailty model. We can test this hypothesis at α-level using

the χ2 on one degree of freedom. On the other hand, as in the case of penalized full likelihood

approach we obtain an estimation of variance of frailty variance a Wald test type statistic (i.e.,

ν̂/SE(ν̂)) may also be used to test H0 : ν = 0. In this case we refer to a standard normal.



82 Chapter 4 Inference for the General Class of Models

4.4 Computational Issues

The estimation procedures for the general class of models proposed by Peña and Hollander (2004)

have been implemented in an R package which is available at the CRAN project (Ihaka and

Gentleman, 1996, R Development Core Team, 2005, URL:http://www.R-project.org). The

function gcmrec performs estimation for model (1.20) with or without frailties, with ρ(j; α) = 1 or

ρ(j; α) = αj , and with ψ(·) = exp(·). These procedures are implemented using the combination

of R (flexible, high-level statistical language) with Fortran (high execution speed of iterative

procedures). Thus, we have implemented a dynamic link library (dll) in Fortran 77 that is

called by gcmrec R function. For efficiency, the numerically intensive steps of the algorithm are

coded in Fortran 77, loaded as a dynamic linked library into R, and invoked from the top-level

R routine (also named gcmrec).

A major problem in the parameter estimation is the maximization procedures of the likeli-

hood. We comment briefly on some aspects of methods used in the programming. Estimation

of α and β requires maximizing the logarithm of the profile likelihood in the model without

frailty, and, additionally in the model with frailty, obtaining the conditional expectation of {Zi}.
Newton-Raphson (N-R) algorithm can be used to obtain solutions as well as to obtain the inverse

of the approximate Hessian. The algorithm continues until convergence, or until a pre-set maxi-

mum number of iterations is reached. This algorithm may diverge if the Hessian is not positive

definite. To circumvent this, we can modify the Hessian by adding a large enough constant to its

diagonal, making the matrix positive definite but perturbing the Hessian as little as possible. This

modification requires computing the Choleski factorization in some steps of the N-R procedure.

Both the N-R and modified Hessian procedures are implemented in gcmrec function.

When we perform estimation with frailty models by penalizing partial likelihood, memory and

time-consuming considerations may become an important issue. For instance, let us assume that

we have 403 patients such as in the hospital readmissions data set and that we fit the model with

frailties. Let us also assume that we are including 6 other variables. Then, the full information

matrix has 4092 = 167281 elements. One possible solution to this problem is to use quasi-Newton

methods that can be used when the Hessian matrix is difficult or time-consuming to evaluate. In

this case, instead of obtaining an estimate of the Hessian matrix at a single point, these methods

gradually build up an approximate Hessian matrix by using gradient information from some or
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all of the previous iterations. BFGS algorithm is one of the widely used quasi-Newton methods.

Another possibility is to use a modification of this algorithm, which is known as L-BFGS-B

that is a limited-memory quasi-Newton code for large-scale bound-constrained or unconstrained

optimization (see Byrd and Nocedal, 1995 for further details). The main disadvantage of these

algorithms is that as the inverse Hessian is estimated at each step, we cannot use it for estimating

the variance of the parameters. Thus, in our programs, we adopted another approach that was

proposed by Therneau et al. (2003) in the case of shared frailty model. Their idea was to partition

the inverse of the Hessian according to the rows of X and M (that makes reference to covariates

and frailties, respectively) as follows:

I =


IMM IMX

IXM IXX


 .

Then, they propose to use a sparse computation option, where only the diagonal of IMM is

retained. They indicate that this method has not a large impact on the estimation procedure

because neither the score vector nor the likelihood are changed. Thus, the solution is identical to

the one obtained in the non-sparse case, but the speed of the algorithm increased dramatically

(see Therneau et al., 2003 for further details).

Finally, when penalized full likelihood approach is used, both the first derivative (the score)

and the second derivative (the Hessian) of the log-likelihood themselves do not have a simple

analytical form, so another different method from N-R must be used. To solve this problem, we

have chosen the Marquardt algorithm which computes numerically these quantities using finite

differences. This algorithm was first published by Levenberg (1944). Then, it was rediscovered by

Marquardt (1963) who applied it to statistical problems. The Levenberg-Marquardt algorithm

(LMA) provides a numerical solution to the problem of maximizing a sum of square of several,

generally nonlinear functions that depend on a common set of parameters. This method is applied

in our case by maximizing the sum of squares of the partial derivatives to find their solutions.

The LMA is a combination between the N-R algorithm and the method of gradient descent and

is more robust than the N-R, which means that in many cases it finds a solution even if it starts

very far off the final minimum.

In our problem, to be sure of having a positive function at all stages of the algorithm, we

restrict all the spline coefficients ηj to be positive for all j. We imposed a constraint of positivity

for the parameter ν, so we did not consider a negative dependence in the model, which obviously
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do not have a frailty interpretation (although negative values make sense in the intensity as we

have illustrated in Section 4.3).

In our approach we use a modified Marquardt algorithm like the Newton-Raphson procedure.

Here, we outline the main points of this algorithm also used in Rondeau et al. (2003). Let θ be

the parameters to be estimated (in our case (η, α, β, ν)). If necessary the diagonal of the Hessian

at iteration k, H(k), is inflated to obtain a positive definite matrix H∗(k) = H
∗(k)
ij with

H
∗(k)
ii = H

(k)
ii + % [(1− δ) |Hk

ii|+ δ trace(H)]

where % and δ are parameters with initial values set equal to 0.01. They are reduced when H∗ is

positive definite and increased if not, and

H
∗(k)
ij = H

(k)
ij .

The estimates θ(k) are then updated to θ(k+1) using both the current modified hessian, H∗(k),

and the current gradient of the parameters according to the formula:

θ(k+1) = θ(k) − φ
∇(θ(k))
H∗(k)

where ∇ denotes the gradient and if necessary, φ is modified to ensure that the log likelihood is

improved at each iteration.

One-dimensional maximization

In the model with frailties, we further need to maximize the marginal likelihood with respect to

only one parameter, ν. The gcmrec package provides for two options here: the Newton-Raphson

method, and Brent’s algorithm (Brent, 1973) which has a faster linear rate of convergence than

golden section search. This method is as a one-dimensional maximization without derivatives.

First we bracket the maximizing value, and then we obtain it using Brent’s method in one

dimension (see Brent, 1973 for further details). In both cases, optimization is performed using

the reparameterization to log(ν). Another possibility is to use ν1/2 as Therneau and Grambsch

(2000) used in the context of shared frailty model.

Test of R functions

Therneau and Grambsch (2000, Appendix E) gave a set of test data with known answers. These

data sets were mainly created to illustrate the computations of statistical algorithms and to ensure



4.5 Hospital Readmission and Bladder Cancer Data Sets Revisited 85

the accuracy and quality of software programs (applied in the survival analysis settings). As the

Cox model and shared frailty model are particular cases of the Peña and Hollander model, we

have used these data sets to test gcmrec function. Using our function, we reproduce the exact

results that are obtained using survival library (that used in Therneau and Grambsch, 2000).

For the Cox model we set up Z = 1, ρN†
i =1 and Ei(s) = s− S

iN†
i (s−)

in the gcmrec function and

we obtain the same results as using coxph function. Similarly, the shared frailty model (using

coxph and frailty functions in survival package) showed the same results as using gcmrec

function when ρN†
i =1 and Ei(s) = s− S

iN†
i (s−)

.

4.5 Hospital Readmission and Bladder Cancer Data Sets Revis-

ited

In this section we apply the estimation procedures developed in preceding sections to two real

data sets previously analyzed in Chapter 3 using a more complex model.

4.5.1 Hospital Readmission Study

In this example we consider only the variables tumor stage (Dukes classification: A-B, C or D)

and gender corresponding to the data about rehospitalization in patients with colorectal cancer

described in Section 2.1. Since in this example we do not have information about the effective

age, we assume the backward recurrence time, E(s) = s − SN†(s−). We fitted the general model

(with frailties), taking s∗ = 2060, the maximum follow-up time.

After 31 iterations in the EM algorithm (see Section 4.6), the estimate of the frailty precision

is ξ = 1/ν is quite small (ξ̂ = 2.50), so we may conclude that the frailty component of the

model is important for these data. We also saw this fact in Section 3.4.2 by using a graphical

method. However, we cannot conclude its statistical signification since the EM algorithm does not

provide any estimation of frailty variance. On the other hand, we may also say that among these

covariates, the advanced tumor stages (C or D) and males are associated with an elevated risk of

rehospitalization. Furthermore, since the estimate of α is larger than unity, there is an indication

that each hospitalization increases the risk of further hospitalization, as one could expect.

We may use another method of estimation such as penalized likelihood from the two different

points of view we have outlined in Section 4.2. Table 4.3 shows the hazard ratios and its confidence
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Penalized approach EM approach
Partial Likelihood Full Likelihood Jackknife

Covariate HR (95%CI) HR (95%CI) HR (95%CI95)
Gender

Female 1 1 1
Male 1.56 (1.17-2.09) 1.63 (1.25-2.13) 1.56 (1.20-2.03)

Dukes stage
A-B 1 1 1
C 1.49 (1.11-2.00) 1.51 (1.14-2.01) 1.49 (1.08-2.05)
D 3.06 (2.14-4.39) 3.41 (2.39-4.86) 3.06 (2.04-4.58)

log N(s-) α 1.08 (0.97-1.19) 1.14 (1.03-1.24) 1.08 (0.81-1.35)

Frailty ν 0.40 0.58 0.40
(SE ν) (NA) (0.15) (NA)

ξ 2.50 1.72 2.50

κ 3.36× 1011

Table 4.3: Hazard ratios (HR) and 95% confidence intervals for the probability of rehospitalization
for the colorectal data set. Estimates using both penalized and EM approach assuming effective
age gap time formulation, E(s) = s−SN†(s−). Standard errors are computed using H−1IH−1 for
penalized approach and using Jackknife for the EM approach.
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intervals using the EM approach and both methods of penalization. First of all we deal with the

importance of frailty. As we have previously mention, we have used a graphical method to

check independence assumption. Now, using the penalized full likelihood approach, standard

error of the frailty variance can be estimated. So, we can then verify independence assumption

using one-side Wald statistic (see Nielsen et al., 1992 or Self and Liang, 1987 and also Section

4.3). In the model ν̂/SE(ν̂) = 0.58/0.15 = 3.87 and 1-pnorm(3.87)=5.441768e-05. Another

possibility to test the null hypothesis H0 : ν = 0 is to use a likelihood ratio test as Therneau and

Grambsch (2000) or Nielsen et al. (1992) indicated. As we have mentioned in Section 4.3, this

likelihood ratio test may be performed as twice the difference between the log-partial-likelihood

with the frailty terms integrated out, and the log-likelihood of a model without frailties. In our

case, the test for significance of the frailty is −2751.2 vs. −2719.7, which gives a chi-square

statistic of 31.5 on one degree of freedom for a p-value of 2.11e-15. So, one can conclude

that there is heterogeneity among the interoccurrence times. We notice that that EM algorithm

and penalized partial likelihood approach should be identical as Therneau and Grambsch (2000)

proved in the case of shared frailty model. The prove of this results for the Peña and Hollander

model is beyond the scope. We also realize that there is some little differences between the risks

estimates using EM algorithm and penalized full likelihood, probably due to differences in the

maximization procedures and the selection of number of knots and bandwidth. However, in all

case we can conclude that males and patients with advance tumoral stage have more probability

to be readmitted and that these risks are statistically significant. On the other hand, we also

can see as the width of confidence intervals for hazard ratios are very different depending on the

method of estimation used.

Having observed these differences, it is of interest to compare the estimates of variance of α

and β parameters using the three different approaches. To do so, we have carried out a little

simulation study following Peña et al.’s 2003 procedure (this simulation study is also described

in Section 5.3). Table 4.4 summarizes the standard deviation estimates using EM algorithm and

both penalized likelihood approaches: partial (PPL) and full (PFL). From this table we note that

EM algorithm and PPL approach overestimate the empirical standard deviation of parameters

associated with the covariates, β, while the variance of α estimates is quite well estimated. On the

other hand, PPL approach clearly underestimates the empirical standard deviations, specially for

the α parameter. Thus, after our results, we can say that the conclusions obtained after analyzing
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γ ξ σ̂α̂ σ̂JACK
α̂ σ̂PPL

α̂ σ̂PFL
α̂ σ̂β̂1

σ̂JACK
β̂1

σ̂PPL
β̂1

σ̂PFL
β̂1

σ̂β̂2
σ̂JACK

β̂2
σ̂PPL

β̂2
σ̂PFL

β̂2

0.9 2 0.007 0.008 0.007 0.003 0.387 0.562 0.483 0.331 0.228 0.312 0.293 0.196
2 2 0.006 0.007 0.007 0.002 0.352 0.498 0.475 0.326 0.180 0.271 0.261 0.166

0.9 6 0.007 0.007 0.006 0.002 0.262 0.403 0.382 0.244 0.162 0.241 0.238 0.149
2 6 0.006 0.007 0.008 0.002 0.221 0.331 0.341 0.204 0.129 0.196 0.185 0.101

0.9 ∞ 0.007 0.007 0.008 0.002 0.163 0.221 0.214 0.159 0.108 0.183 0.168 0.081
2 ∞ 0.005 0.006 0.006 0.001 0.128 0.202 0.196 0.131 0.074 0.158 0.146 0.056

Table 4.4: Summary of empirical standard deviations of the estimators of α (σ̂α̂), and β (σ̂β̂1
and

σ̂β̂2
) using EM algorithm and penalized likelihood approaches (JACK: jackniffe estimates, PPL:

penalized partial likelihood, PFL: penalized full likelihood). This corresponds to the simulation
study performed in Peña et al. (2003) for the case where the α parameter is 1.05 and the sample
size n = 30. The true value of β is (1,−1), and 1000 replications were run for each parameter
combination. The other parameter are: γ the Weibull shape and ξ the frailty precision.

readmission data set (Table 4.1) are in general correct, except for the statistically significance of

α parameter stem from PFL approach.

The last analysis performed in this data set was to compare the baseline survivor function

estimates using EM algorithm and PFL approach. Figure 4.2 shows a graphical comparison

between the estimation of baseline survivor function using both approaches. We can see that the

curve provided by PFL method is completely smooth, while EM algorithm gives a function which

jumps at each observed readmission time.

4.5.2 Bladder Cancer Study

We analyze the covariates: X1, the treatment indicator (1 = placebo; 2 = thiotepa); X2, the

size (in cm) of the largest initial tumor; and X3, the number of initial tumors. First, we fit the

Peña and Hollander model using the gap time formulation, E(s) = s − SN†(s−), as effective age.

With s∗ = 64, the maximum observation period, the general model without frailties estimates:

α̂ = 0.9826 and (β̂1, β̂2, β̂3) = (−0.3188,−0.0154, 0.1353). Same results are also obtained using

model with frailties since in that case ξ̂ = 5432999 (ν̂ ≈ 0). Thus, using the approximate inverse

of the partial likelihood information matrix from fitting the model without frailties, the associated

estimated standard errors are .0736 for α̂ and (0.2051, 0.0695, 0.0511) for β̂ (Table 4.5).

The effective age for these data is not known, so we also fitted the general model with frailties

assuming a calendar time for effective age, E(s) = s. For this case, the estimates are α̂ = .789,

(β̂1, β̂2, β̂3) = (−.5743,−.0315, .2220), and ξ̂ = .974 (ν̂ = 1.03). Here we could say that the frailty
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Figure 4.2: Baseline survivor function estimated using both EM algorithm and penalized full
likelihood approach for time until next rehospitalization corresponding to readmission data set.

parameter is important. In order to compare both models, the estimates of the survivor functions

for the two effective age specifications are presented in Figure 4.3. The lower curves (blue lines),

corresponding to the placebo group, are obtained by setting X1 = 1 in the expression given by

{ ˆ̄F0(t)}exp{β̂1X1+β̂2X̄2+β̂3X̄3},

while the upper curves (dark green lines) are for the thiotepa group obtained by setting X1 = 2.

The observed means were X̄2 = 2.01 and X̄3 = 2.11. The solid curves are for the backward

recurrence time effective age, while the dashed curves are for E(s) = s. We observe that thiotepa

group shows a higher survival rate than the placebo group, although the statistical significance

of this difference depends on which effective age process was used.

Then, we compare these results with those obtained using the three existing methods of

analysis described in Therneau and Hamilton (1997) and Therneau and Grambsch (2000). Table

4.5 summarizes the estimates from, AG, WLW, and PWP methods, together with the estimates

obtained from the Peña and Hollander model using two specifications of the effective age process,

E(s) = s−SN†(s−) and E(s) = s. The authors analyzed the data set by using models described in

Section 1.4.3 (AG,PWP and WLW). These models are marginal models, while the general class



90 Chapter 4 Inference for the General Class of Models

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

S
ur

vi
vo

r 
F

un
ct

io
n

Perfect repair (gap time)
Minimal repair (calendar time)

Figure 4.3: Estimates of the survivor function for bladder data set when the Peña and Hollander
model is fitted. The blue curve corresponds to the placebo group, while the dark green curve
is for the thiotepa group, both evaluated at the mean values of size of initial tumor and mean
number of initial tumors. The solid curves show effective age E(s) = s−SN†(s−) (perfect repair),
while the dashed curves are when E(s) = s (minimal repair).
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of models is a frailty model. As we have mentioned in Section 1.4.2, the estimates from a frailty

model have a subject-specific interpretation, while marginal models have a population-average

interpretation. Hence, the estimates are not directly comparable to those presented in Therneau

and Hamilton (1997) or in Therneau and Grambsch (2000). To make the results comparable we

fitted both AG and PWP models including a frailty term (Table 4.5).

First of all, we highlight the role that the effective age process plays in data analysis. We also

note that the results obtained using some of existing models are similar to those obtained using

the general model. As an example, when ‘perfect repairs’ is assumed, the results obtained are

close to those obtained using PWP model. In both cases the frailty term was not important. On

the other hand, the results obtained using ‘minimal repairs’ are close to those obtained from both

AG with frailties and WLW method. We see that in this case it is necessary to include a frailty

term to model the association among the inter-event times for each patient. This similitude is

what one would expect since the time scale acting in the hazard for the PWP model is gap time,

E(s) = s − SN†(s−), while in the case of WLW method is time scale formulation, E(s) = s. We

realize that the parameter estimates using the AG model without covariates lie between WLW

and Peña and Hollander model (estimates from Therneau and Grambsch, 2000) indicating the

need of using a frailty model.

The observed differences between models indicate the importance of the effective age and the

need to monitor this information. This example along with the results we are showing in the next

section, are the basis to further study how to incorporate the notion of effective age in biomedical

setting. This was our goal in Chapter 5 where we illustrate how to incorporate information about

intervention after relapses in patients with cancer.

4.5.3 Miss-specification of effective age

Because of the importance of the effective age process as demonstrated by previous application

to the bladder cancer data, we examined further through a simulation study the impact of miss-

specifying the effective age process. We again consider the simulation study carried out in Peña

et al. (2003). We examine the impact of two types of effective age process miss-specification: that

the interventions following event occurrences are all minimal repair, or that they are all perfect

repair. Tables 4.6 and 4.7 show the results for a given simulation (when α = .9).

The results indicate an interesting interplay between the nature of the baseline survivor func-
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Covariate Parameter WLW AG PWP Peña and Hollander Model
Marginal Frailty Frailty Perfecta Minimalb

log N(s−) α - - - 0.98 (.07) 0.79
Frailty ξ - 0.92 ∞ ∞ 0.97

ν - 1.08 5× 10−7 5× 10−7 1.03
rx β1 −0.58 (.20) −0.61 (.22) −0.33 (.22) −0.32 (.21) −0.57

Size β2 −0.05 (.07) −0.02 (.07) −0.01 (.07) −0.02 (.07) −0.03
Number β3 0.21 (.05) 0.24 (.06) 0.12 (.05) 0.14 (.05) 0.22

aEffective Age is backward recurrence time (E(s) = s− SN†(s−)).
bEffective Age is calendar time (E(s) = s).

Table 4.5: Summary of estimates for the bladder data set from the Wei, Lin and Weissfeld (WLW),
and both Andersen-Gill (AG), and Prentice, Williams and Peterson (PWP) methods including a
frailty term to bladder cancer data set, together with the estimates obtained from the Peña and
Hollander model using two effective ages corresponding to ‘perfect repairs’ and ‘minimal repairs.’

α γ ξ n NC µ̂α̂ σ̂α̂ µ̂β̂1
σ̂β̂1

µ̂β̂2
σ̂β̂2

0.90 0.9 2 10 18 0.915 0.207 0.590 6.786 -1.044 0.669
0.90 0.9 2 30 0 0.909 0.059 1.036 0.414 -1.034 0.270
0.90 0.9 6 10 10 0.877 0.180 1.001 3.418 -1.084 0.482
0.90 0.9 6 30 0 0.907 0.051 1.043 0.327 -1.042 0.220
0.90 0.9 Inf 10 11 0.864 0.145 1.015 4.627 -1.226 0.450
0.90 0.9 Inf 30 0 0.900 0.039 1.057 0.235 -1.060 0.166
0.90 2.0 2 10 34 0.847 0.140 0.777 0.928 -0.802 0.712
0.90 2.0 2 30 0 0.881 0.054 0.721 0.283 -0.716 0.179
0.90 2.0 6 10 22 0.825 0.122 0.856 0.685 -0.820 0.483
0.90 2.0 6 30 0 0.869 0.051 0.740 0.228 -0.741 0.142
0.90 2.0 Inf 10 5 0.805 0.099 0.597 5.694 -0.906 0.280
0.90 2.0 Inf 30 0 0.852 0.038 0.799 0.172 -0.801 0.120

Table 4.6: Results of simulation runs when minimal repair is always assumed after each event
occurrence when the actual effective age process is a general minimal repair with perfect repair
probability of 0.6.
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α γ ξ n NC µ̂α̂ σ̂α̂ µ̂β̂1
σ̂β̂1

µ̂β̂2
σ̂β̂2

0.90 0.9 2 10 30 0.876 0.127 1.958 31.850 -1.033 0.628
0.90 0.9 2 30 0 0.894 0.030 1.016 0.390 -1.016 0.247
0.90 0.9 6 10 11 0.861 0.129 1.661 22.382 -1.080 0.449
0.90 0.9 6 30 0 0.893 0.028 1.032 0.305 -1.030 0.192
0.90 0.9 Inf 10 14 0.868 0.067 0.941 4.588 -1.156 0.367
0.90 0.9 Inf 30 0 0.889 0.026 1.045 0.219 -1.053 0.145
0.90 2.0 2 10 2 0.934 0.084 0.433 5.692 -0.761 0.345
0.90 2.0 2 30 0 0.939 0.015 0.755 0.274 -0.748 0.151
0.90 2.0 6 10 3 0.931 0.051 0.802 0.419 -0.771 0.255
0.90 2.0 6 30 0 0.938 0.014 0.736 0.194 -0.744 0.116
0.90 2.0 Inf 10 1 0.929 0.025 0.805 0.297 -0.798 0.186
0.90 2.0 Inf 30 0 0.932 0.013 0.767 0.145 -0.765 0.083

Table 4.7: Results of simulation runs when perfect repair is always assumed after each event
occurrence when the actual effective age process is a general minimal repair with perfect repair
probability of 0.6.

tion, F̄0, (Decreasing Failure Rate (DFR), γ = 0.9 or Increase Failure Rate (IFR), γ = 2) and the

behavior of α̂. We observed that under the minimal repair miss-specification (Table 4.6) , when

F̄0 is DFR, α̂ is positively biased. Additionally for this miss-specification, when F̄0 is IFR, α̂ is

negatively biased. On the other hand, when the miss-specification is perfect repair, an underlying

baseline DFR (IFR) is associated with negative (positive) bias in α̂. Peña et al. (2003) explain

this interplay between ρ(·; ·) and ε(·) functions as follows: “When the model mistakenly assumes

minimal repair after each reoccurrence, it tends to overestimate the effective age of subjects.

Hence, in the case of DFR, the model anticipates longer interoccurrence times than are realized

in the data, creating the negative bias, especially for larger interoccurrence times, in the estimates

of the baseline survivor function (where the effective age acts). In the case of IFR, the minimal

repair miss-specification leads to longer interoccurrence times in the data than are anticipated

by the model, creating a positive bias in the estimated baseline survivor function.” We can also

explain the behavior observed in the case of perfect repair using a similar reasoning. We notice

that this behavior induces biases in both α̂, and β estimates. As we have previously mentioned,

these simulation results further indicate the importance of monitoring the effective age process

and it was one of the basis of our research in the next Chapter.
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4.6 R instructions for gcmrec package

Hospital readmission example

The resulting estimates of the parameters can be obtained using gcmrec package as follows:

> mod.per<-gcmrec(Survr(id,time,event)~as.factor(dukes)+sex,data=readmission,
+ s=2060,typeEffage="perfect",Frailty=TRUE,rhoFunc="alpha to k")
> print(mod.per)
Call: gcmrec(formula = Survr(id, time, event) ~ as.factor(dukes) +

sex, data = readmission, s = 2060, Frailty = TRUE)

coef exp(coef) se(coef) z p
as.factor(dukes)2 0.400 1.49 NA NA NA
as.factor(dukes)3 1.119 3.06 NA NA NA
sex 0.446 1.56 NA NA NA

General class model parameter estimates
rho function: Alpha to k
alpha (s.e.): 1.08 (NA)

Frailty parameter, Xi (s.e. Jacknife): 2.51 ( NA )

Marginal log-likelihood= -2747.06
n= 403
n times= 861
number of iterations: 31 EM steps

The typeEffage argument indicates which type of effective age is used. Backward recurrence

time or gap time formulation corresponds to "perfect" and calendar time to "minimal". Many of

the labels in this output are self-explanatory. Some may need some clarification as Marginal log-

likelihood. This value corresponds to marginal likelihood in Equation (B.16) or (4.3), evaluated

at maximum likelihood estimators of α̂, β̂, and Λ̂. We also can see that, when model with frailties

is fitted, the output does not provide any estimation for the variances. One possibility, before

using other approaches such as penalized likelihood inference, is to provide the jackknife estimates

of variance parameters. This procedure is very time consuming. After 56 minutes (Pentium III)

and adding se="Jack" we obtain

> mod.per.Jack<-gcmrec(Survr(id,time,event)~as.factor(dukes)+sex,data=readmission,
+ s=2060,typeEffage="perfect",Frailty=TRUE,rhoFunc="alpha to
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k",se="Jack")
> print(mod.per.Jack)
Call: gcmrec(formula = Survr(id, time, event) ~ as.factor(dukes) +

sex, data = readmission, s = 2060, Frailty = TRUE, rhoFunc = "alpha to k",
typeEffage = "perfect", se = "Jack")

coef exp(coef) se(coef) Jacknife z p
as.factor(dukes)2 0.400 1.49 0.163 2.44 1.5e-02
as.factor(dukes)3 1.119 3.06 0.206 5.42 5.9e-08
sex 0.446 1.56 0.133 3.36 7.8e-04

General class model parameter estimates
rho function: Alpha to k
alpha (s.e. Jacknife): 1.08 (0.139)

Frailty parameter, Xi (s.e. Jacknife): 2.51

Marginal log-likelihood= -2747.06
n= 403
n times= 861
number of iterations: 31 EM steps

Next, we will adopt another method of estimation such as penalized full likelihood. The case

of penalizing full likelihood can be obtained using gcmrecPenal function with typePen="full".

# # Penalized full likelihood #
>fit.PenFull<-gcmrecPenal(Survr(id,time,event)~as.factor(dukes)+as.factor(sex),
+ data=readmission,typeEffage="perfect",typePen="full",n.knots=4,
+ kappa1=100000,cross.validation=TRUE,rhoFunc = "alpha to k", +
s=2060)
>print(fitPenFull)
Call:
gcmrecPenal(Survr(id,time,event)~as.factor(dukes)+as.factor(sex),
+ data=readmission,typeEffage="perfect",typePen="full",n.knots=4,
+ kappa1=100000,cross.validation=TRUE,rhoFunc = "alpha to k", +
s=2060)

General class model parameter estimates using a Penalized
Likelihood on the hazard function

coef exp(coef) SE coef (H) SE coef (HIH) z p
as.factor(dukes)2 0.415 1.51 0.1447 0.1447 2.867 4.1e-03
as.factor(dukes)3 1.226 3.40 0.1809 0.1809 6.777 1.2e-11
sex 0.490 1.63 0.1353 0.1353 3.617 3.0e-04

rho function: Alpha to k
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alpha (s.e.): 1.14 (0.052)
Frailty parameter, Xi: 1.72 (SE (H): 0.153 ) (SE (HIH): 0.153 )
penalized marginal log-likelihood = -3272.98
n=861
n groups=403
number of iterations: 8
Exact number of knots used: 4
Best smoothing parameter estimated by
an approximated Cross validation: 3.36E+11

This output is also self-explanatory but again we need to clarify some labels. In that case

"Number of iterations" makes reference to the Marquardt algorithm. The smoothing param-

eter is estimated assuming a Cox model where the seed is kappa1=100000. On the other hand, if

we are interesting in penalizing partial likelihood we can fit

# # Penalized full likelihood #
>fit.PenPart<-gcmrecPenal(Survr(id,time,event)~as.factor(dukes)+as.factor(sex),
+
data=readmission,typeEffage="perfect",typePen="part",rhoFunc="alpha
to k",s=2060)
>print(fitPenPart)
Call:
fit.PenPart<-gcmrecPenal(Survr(id,time,event)~as.factor(dukes)+as.factor(sex),
+
data=readmission,typeEffage="perfect",typePen="part",rhoFunc="alpha
to k",s=2060)

General class model parameter estimates using Penalized Partial
Likelihood

coef exp(coef) SE coef (H) SE coef (HIH) z p
as.factor(dukes)2 0.400 1.49 0.1497 0.1501 2.665 7.7e-03
as.factor(dukes)3 1.119 3.06 0.1838 0.1837 6.091 1.1e-03
sex 0.446 1.56 0.1425 0.1492 2.989 2.7e-03

rho function: Alpha to k
alpha (s.e.): 1.08 (0.054)

Frailty parameter, Xi: 0.475
penalized marginal log-likelihood = -2747.06
n=861
n groups=403
number of iterations: 12



Chapter 5

Dynamic Cancer Model for Tumor

Relapses

In this chapter, we address the problem of how to monitor the effective age process for some

biomedical problems such as cancer relapses. We illustrate how to use the information regarding

the effects of treatments or interventions for this purpose. Thus, we adopt the general model for

recurrent events proposed by Peña and Hollander (2004), in which the effect of interventions is

represented by an effective age process acting on the baseline hazard rate function. To accom-

modate the situation of cancer relapses, we propose an effective age function that encodes three

possible therapeutic responses: complete remission, partial remission, and null response.

The motivation of this chapter is mainly due to the importance of the effective age process

in biomedical settings as we have demonstrated by analyzing bladder data set and simulations

under mis-specification in previous chapter. In addition, and regarding some indolent tumors,

MacLaughlin (2002) points out that “it is necessary [that] a model designed specifically for re-

lapsing patients” be utilized. The author justifies this by arguing that it is well-known that the

impact of therapy after each relapse is a significant prognostic factor for the occurrence of the

next one (see Montoto et al., 2002 or Spinolo et al., 1992).

The specification, and consequent analysis, of cancer prognostic models either for overall

(time until death) or for disease-free survival (time until relapse or progression) are very useful

in making adequate patient management. In particular, there are some indolent type of cancers

(e.g. patients with long survival but that tend to relapse over time) where the study of factors

97
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related to the time until progression is important because most patients die from causes related

to the disease (see Lister, 1991 or Romaguera et al., 1991). Thus, the estimation of the risk of

recurrence would allow for better planning of follow-up after diagnosis or first treatment, and

would permit clinicians to consider new therapeutic approaches depending on the patient’s risk

of relapse.

In Chapter 1 we have shown that there exists many survival models that handle recurrent

event data. However, several prognostic studies in major cancer and epidemiologic journals

estimate the risk of relapse only using information about the time until first occurrence (follicular

lymphomas Lombardo et al. 2002, Lopez-Guillermo et al., 2000, acute leukemias Godder et al.,

2004, colorectal cancer Schwandner et al., 2000, or breast cancer Fredriksson et al., 2002, among

others). This approach ignores the information of subsequent relapses, hence statistical inference

will tend to be inefficient. To avoid this problem, other cancer studies, such us mammary tumors

for rats (see Gail et al., 1980) or patients with superficial bladder cancer (see Cheuvart, 1988 or

Byar, 1980) rely on the Cox’s proportional hazards models and its variants which handle both

intra-subject correlation and event dependence.

As we have illustrated in Section 1.3.1, another aspect that may modify the event occurrence

intensity arises from the interventions performed on the subject after each event occurrence. In

cancer settings, patients with the disease are treated after observing a progression of the tumor.

In the particular case of indolent lymphomas, as we are dealing with non-curable disease, the

therapy aims to increase as much as possible the time until the next relapse. After giving some

therapy, the patient is monitored and then we observe if cancer or some disease-related symptoms

disappear. Thus, patients whose disease completely disappears will have less probability to relapse

than those where little or no response is observed. Hence such interventions can be viewed as

improving the patient. In the reliability literature this is referred to as adjusting the effective age

of the system. This is the basis of work we developed in present chapter.

We briefly outline the contents of this chapter. We begin by providing some additional notation

for the general class of models in Section 5.1. This section also outlines how this class of models

subsumes some existing models for recurrent event data which have been used in biomedical

settings. Section 5.2 presents a description of the effective age process in cancer settings. A

simulation study is performed to study the model behavior under effective age mis-specification.

The simulation results and design are discussed in Section 5.3. Section 5.4 illustrates the use of
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the model with a real data set from low grade lymphomas. Finally, Section 5.5 shows how to fit

the dynamic cancer model using gcmrec package.

5.1 The Peña and Hollander Model Revisited

For a patient, as in the general case, in cancer settings we can observe a, possibly time-varying,

q-dimensional vector of covariates such as gender, age, race, disease status, beta-2 microglobulin

level, treatment regimen, etc. We denote this covariate process by

{X(s) = (X1(s), X2(s), . . . , Xq(s))′ : 0 ≤ s ≤ τ}.

In addition, in our case, after treatments or interventions are administered upon relapses, in-

formation about patient status may be obtained. Examples of interventions are chemotherapy,

radiotherapy, and bone marrow transplant, among others. We denote this information by a vector

ψ = (ψ1, ψ2, . . . , ψK)′,

where ψj signifies a certain type of response to the intervention after the jth relapse. This will be

explained in more detail later. Consequently, if in the study there are n patients, over the period

[0, τ∗] where τ∗ ≡ maxi≤n τi, we will have the following data:

D(τ∗) ≡ {[(Xi(s) : 0 ≤ s ≤ τ), ψi,Ki, τ, Si1, Si2, . . . , SiKi , τi − SiKi ] , i = 1, 2, . . . , n} .

We recall that the conditional intensity function given in 4.1 is

λi(s|Z,Xi) = Zi λ0[Ei(s)]αN†
i (s−) exp[βtXi(s)].

This model incorporates the effect of performed interventions through the effective age, Ei(s),

which serves as the argument to the baseline hazard rate function Peña and Hollander (2004).

Here, we briefly show as some of existing models that have been used in recurrent events problems

are particular cases of this general class of models. The simplest model regarding the effective

age is when Z = 1, ρ[N †
i (s−);α] = 1, and the effective age is always the same type and is either

of the following possibilities: First, a patient can achieve a perfect response to the treatment.

This means that the patient recovers perfectly and the status is the same as at the beginning of

the study (if there is no time-dependent covariate). This model has been considered by Prentice
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et al. (1981), Lawless (1987), and Aalen and Husebye (1991). Second, the therapy does not have

an effect on the patient, so the state of the patient is the same as just before the relapse. This is

known in reliability literature as “minimal repair” and it has been studied Prentice et al. (1981),

Brown and Proschan (1983), and Lawless (1987).

We realize that some of the models mentioned above can be formulated using two different

expressions for effective age function. As an example, some of the conditional models examined

Prentice et al. (1981) (also called PWP in the introduction) can be formulated by organizing the

data in calendar time (PWP-TT) (i.e., total time risk set or time from each unit’s entry into

the observation set) or interoccurrence/gap time (PWP-GT) (i.e., gap time risk set or time since

the previous event). Thus, the hazard function only differs in the at-risk process formulation. In

the case of PWP-TT the effective age corresponds to Ei(s) = s and in the PWP-GP formulation

to Ei(s) = s − S
iN†

i (s−)
. The choice between PWP-TT or PWP-GT depends on whether we are

interested in the time that has elapsed since a patient entered the study or since the last relapse.

Models which employ calendar time formulation assume that all interventions produce a minimal

or no improvement in the patient. In medical terms, the disease is continuing in a stable manner.

Models based on gap-time formulation assume that all interventions lead to perfect recovery for

the patient, e.g. disease disappears, which is known as complete remission in the cancer literature.

Other models that have been used in biomedical problems where neither ρ[·; α] nor Z are

both identically unity are the following. Gail et al. (1980) cancer occurrence model is obtained

if we take, Z = 1, ρ[N †
i (s−);α] = max{α − N †

i (s−), 0}, where α is some real number, and

λ0(s) = λ0, where λ0 is some positive constant. In this model α can be interpreted as an

initial measure of the patient’s susceptibility to events, which is becoming weaker as the relapses

accumulate. Shared frailty model (see Oakes, 1991) arises from Peña and Hollander’s model by

taking ρ[N †
i (s−);α] = 1, Ei(s) = s − S

N†
i (s−)

, and putting some parametric distribution to the

frailty component Z, such as a gamma or a lognormal distribution.

In all examples previously mentioned, the expressions of Ei(s) do not depend on the number

of relapses. In other words, the effect of treatment after each occurrence is always the same.

However, we know that the effect of intervention after each relapse is not always the same. So,

we need to define how to incorporate the effect of intervention upon relapses via a more general

effective age. To do so, response to therapy will become crucial. The next section deals with this

aspect.
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5.2 Effective Age Process for Cancer Data

In Section 1.3.1 some examples about effective age in biomedical settings were discussed. Now, we

will focus on cancer problem. Patients with indolent lymphomas, and in general with cancer, are

monitored from the date of diagnosis to the time of death or loss to follow-up. At any evaluation,

complete remission (CR) is defined as the disappearance of tumor masses and disease-related

symptoms, as well as the normalization of the previous test and/or biopsies, lasting for at least

one month. Partial remission (PR) is said to occur when measurable lesions have decreased by at

least 50%. Patients not included in these categories are called non-responders (NR) (see Cheson

et al., 1999). It is well-known that the response to the treatment is related to the time until the

next relapse (see for instance Montoto et al., 2002, Weisdorf et al., 1992, or Davidge-Pitts et al.,

1996), so it is reasonable to have a model which incorporates this information. However, neither

AG, PWP, WLW, GSB, nor frailty models, which are mostly used in biomedical settings, have

incorporated the effect of performed interventions upon event reoccurrences, though some of these

methods could accommodate such information through the use of time-dependent covariates as

will be illustrated in the example presented in Section 5.4.

We propose using the response to therapy, defined as CR, PR, or NR, to define a model for

the effective age for relapsing patients as follows. Consider a single patient and let {Aj : j =

0, 1, 2, . . .} be a sequence satisfying

A0 = 0, Aj = Aj−1 +

(
j∏

k=1

[1− ψk]

)
Tj , j ≥ 1, (5.1)

where ψ = (ψ1, ψ2, . . . , ψK)′, with ψj ∈ {0, .5, 1} and with the interpretation that ψj = 0 means

that an NR (non-response) has occurred after the jth relapse, ψj = 1 means that a CR (perfect

intervention) has occurred, while ψj = .5 means that a PR (partial remission) has transpired.

The values of the ψjs can be assessed by the clinician(s) monitoring the patient. Our proposed

effective age process for cancer relapse is

E(s) = AN†(s−) +
(
s− SN†(s−)

)
. (5.2)

The effective age (5.2) is a particular case of Kijima’s 1989 model II (Section 1.3.2), where

in his model the ψjs are assumed to take any values in [0, 1], whereas in our model we assume

that they only take three possible values. Kijima’s aim was to model the situation where after
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each failure some repair is performed and the effectiveness of this repair could be quantified by

a number that is between zero and one. We note that in cancer problems, we may also assess

this “degree” of response according to a number in [0, 1]; however, in realistic settings clinicians

only need to know if a CR, PR, or NR was achieved to make a good therapy determination,

hence our restriction of the possible values of the ψjs to the set {0, .5, 1}. Dorado et al. (1997)

also studied effective age functions that encompass the form (5.2). Note that if all responses

are CR, i.e. ψi = 1, i = 1, 2, . . ., then the effective age corresponds to gap time formulation,

E(s) = s−SN†(s−) since all Ajs in (5.1) become 0. Similarly, if all responses are NR, the effective

age corresponds to a calendar time formulation, E(s) = s.

To demonstrate the notion of an effective age in biomedical settings, Figure 5.1 shows the

effective age for a patient in a cancer study. This process between 0 (or S0) and S2 corresponds

to E(s) = s (calendar or elapsed time formulation). At the first event S1, treatment or intervention

did not improve the disease status. In medical parlance, the patient did not respond to treatment,

i.e., NR is achieved. After the second event, which occurred at S2, the patient responds perfectly

to treatment, achieving a complete resolution of all clinical manifestation of the disease. It

is considered a CR. In this case the effective age corresponds to E(s) = s − SN†(s−) (backward

recurrence time). However, after the third event at time S3, the patient reverts to a state between

a CR and a NR, that is, the patient experiences a little improvement or a PR to treatment. Finally,

a progressive disease is observed for the fourth relapse at S4, possibly due to some complications.

We have decided to show a progressive possibility despite we do not include it in our analysis

because physicians may observe this types of responses. Thus, we indicate how this information

should be incorporated in the model. Finally, the fifth failure which would have happened at S5

is not observed since the end of observational period τ for this hypothetical patient is less than

S5. Consequently, the gap time for the fifth event is right-censored by τ − S4. .

Next, we illustrate the effective age with a numerical example. Let us suppose that we

observe a patient who receives an initial treatment at time 0, and this patient relapses four times

at calendar times 30, 55, 100, and 150, and gets censored at calendar time 175. Thus, the gap

times are 30, 25, 45, and 50, respectively. If we assume perfect repair model, e.g. the patient

achieves CR after each intervention, the effective age at each recurrence will be 0, 30, 25, 45, and

50. On the other hand, if we assume minimal repair model, e.g. treatment is not effective at each

recurrence or NR after each treatment, the effective age at each relapse will be 0, 30, 55, 100, and
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Figure 5.1: Pictorial representation of effective age vs. calendar time for a hypothetical unit in
cancer settings.

150 (the same as calendar times). But the effect of the intervention at each recurrence need not

be always the same. For example, let us suppose that the treatment after the first relapse does

not improve the patient’s health at all, so we observe an NR. Then after the second relapse the

patient achieves a CR. A PR is observed after third recurrence, and finally an NR is achieved at

the fourth occurrence. Thus, if the patient has no improvement after the first intervention, the

effective age will be the same as if the patient had a minimal repair. After the second relapse

the patient has a perfect intervention. In that case the effective age corresponds to gap time or

backward recurrence time. After the third recurrence the patient acquires some, but not total,

improvement, so the effective age will be between those observed in the perfect and the minimal

repair situations, say halfway. Finally, in the last relapse patient does not get better, so the

effective age will start at a higher value and proceed possibly in a linear fashion. Under this

hypothetical situation, the effective age would take the values 0, 30, 55, 45, and 72.5, with the

effective age at the time of censoring (calendar time 175) being higher than 97.5.

We will refer to Peña and Hollander model with effective age in 5.1 as a dynamic cancer

model. Because this model is just a special case of the general recurrent event model considered

in Chapter 4, the procedures for estimating the parameters of this general class of models therefore

applies to this cancer model.
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5.3 Simulation Study

5.3.1 Simulation Design

We have carried out simulation studies to examine empirically the properties of the parameter

estimators described in Sections 5.1 and 5.2. In particular we study in the simulation:

• the effect of sample size (n)

• bias and variance of the estimators

• the performance of the estimator of the baseline survival function F̄0(t) = exp{− ∫ t
0 λ0(w)dw},

in terms of its bias function and root-mean-square-error (RMSE) function at specified time

points

• the consequences of miss-specifying the effective age function

In the last item we consider the situation where the data have been generated by the model

allowing for different responses after each intervention, but with the resulting data analyzed by

assuming that the patients always achieve the same response (that is, either always CR or always

NR) after each tumor reoccurrence.

We mimicked the simulation study performed by Peña et al. (2003). We point out that because

the simulation was meant to cover general biomedical settings, some of the parameter values we

considered may not be realistic for cancer settings, for instance, the mean number of events per

patient, and effective age function.

For the simulation, we considered an effective age function corresponding to the cancer model.

That is, a patient can achieve a complete, a partial, or a null response depending on the vector ψ.

We have assumed three different scenarios according to the following probability functions for ψ

which takes values in the set {1=CR, 0.5=PR, 0=NR}: {(.8, .1, .1), (.3, .5, .2), (.1, .2, .7)}. Thus,

in the first case, we assume that patients achieve CR with a probability of 80%, and PR or NR

10% of the time, respectively. These three sets of distributions allow us to cover three different

scenarios: the first assumes that in a large majority of cases, perfect response is achieved after

each relapse; the third has minimal response predominating; and the second distribution is an

in-between scenario. For notation in the sequel, when we write p(ψ) = (p1, p2, p3) to indicate that
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the ψ values are chosen such that 1 (= CR) occurs with probability p1, .5 (= PR) occurs with

probability p2, and 0 (= NR) occurs with probability p3.

To examine the impact of sample size, we select two values of n : n ∈ {30, 50}. These values

are sufficient to study the limitations of the model in cancer settings since it is usual to have at

least these sample sizes in this context. The censoring variables τi, i = 1, . . . , n, are generated

according to same scheme as in previous simulation study. That is, a uniform distribution over

[0, B], where B is chosen such that under the assumption that patients always achieve a complete

remission after relapses (i.e., E(s) = s − SN†(s−)) and with no accumulating events effect (i.e.,

α = 1). On average, there are approximately 5 events per patient since in cancer problems, it is

difficult to find situations with more than this number of reoccurrences. For the baseline hazard

function λ0, we choose a Weibull distribution, with unit scale parameter and shape parameter,

γ, taking values in {.9, 2}. Thus, we are able to study two different situations: one for an

increasing baseline hazard rate function and the other one for a decreasing case. The impact

of the accumulating number of relapses is assumed to be of form ρ(k, α) = αk form. We have

selected α ∈ {0.9, 1, 1.05}. Thus, we are able to study the case where an increasing number of

relapses increases the time of the next relapse (that is, beneficial effect) which is the case when

α = .9, as well as the case where there is no effect which is for α = 1, and the case where there is

an adverse effect which is when α = 1.05, respectively. In order to take into account the effect of

covariates, we have simulated a two-dimensional covariate vector (X1, X2). Then, to have both

categorical and continuous covariates, X1 has been simulated to have a Bernoulli distribution with

success probability of .5 and X2 was set to have a standard normal distribution. These covariates

were generated to be stochastically independent. The regression coefficient vector (β1, β2) was

set to (1,−1). Finally, the frailty component was generated under a gamma distribution with

unit mean and variance 1/ξ. The parameter ξ took values in {2, 6,∞}, with ∞ corresponding to

the absence of frailties.

We performed 1,000 replications for each combination of simulation parameters. To create

the bias and RMSE curves of the estimator of the baseline survivor function, we chose the time

values that corresponded to the [0 : (.01) : .99] quantiles of the true baseline distribution func-

tion. In order to study the miss-specification of effective age function, we have also estimated

the parameters for the dynamic cancer model assuming a model with an effective age function

that considers that patients always achieve a perfect response (CR) and another where patients
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always achieve a minimal response (NR). Through these simulations we are able to highlight the

importance of the effective age function in relation to either under- or over-estimation of the base-

line survivor function. Given that we wanted to compare three different effective age functions

(minimal, perfect, and cancer model) and given the three discrete distributions that specified the

effective age process, two sample sizes, two hazard shapes, tree levels of event dependence, and

three degrees of correlation, we conducted a total of 324 simulation experiments.

5.3.2 Simulation Results

In the discussion of the simulation results, we will focus on the consequences of analyzing data

from the cancer model when analyzed using models which always assume the same response,

either always perfect or always minimal. Regarding distributional properties of the estimators of

α, β, and η ≡ ξ/(1 + ξ), and the estimator of the baseline survivor function when the correct

model is utilized, we only focus on the results presented in the tables and figures. Further details

of this simulation are described in Peña et al. (2003).

Results of the simulations are shown in the following tables. Table 5.1 summarizes the mean

values and standard deviations of the sampling distributions of the estimators of α, β1, β2, and

η for α, n, and ξ varying in the sets mentioned above and for p(ψ) = (0.8, 0.1, 0.1). Figure

5.2 shows plots of the bias and RMSE curves for the non-parametric estimator of F̄0, where

α = 0.9, p(ψ) = (0.8, 0.1, 0.1), and n ∈ {30, 50}. The lines of each plot represent the three

different values of ξ: 2, 6, and ∞. Each plot frame contains the figure for two Weibull shape

parameters, γ = 0.9, and γ = 2.0. Tables 5.2 and 5.3 present the summary of simulation results

belonging to the effective age mis-specification analysis. Figure 5.3 shows the estimated baseline

survivor function, the bias, and the RMSE curves calculated under effective age miss-specification,

showing the effect of different effective age function chosen (always minimal or perfect response),

the impact of different ξ values, and for the three different cancer models analyzed. The results

are for α = 0.9 and n = 30.

As one may expect, when there is no miss-specification and when the sample size increases,

the performance of the estimators of the finite-dimensional parameters and the baseline survivor

function improved, as can be seen by noting that both bias and standard error decrease. We also

notice that when the sample size is small, there is considerable over-estimation of η (Table 5.1).

Examining the curves in Figure 5.2 we observe that the estimator of baseline survivor function is
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α γ ξ η n NC µ̂Ev µ̂α̂ σ̂α̂ µ̂β̂1
σ̂β̂1

µ̂β̂2
σ̂β̂2

η̂

0.9 0.9 2 0.67 30 0 2.87 0.896 0.035 1.033 0.415 −1.012 0.241 0.714
0.9 0.9 2 0.67 50 0 3.98 0.896 0.022 1.021 0.325 −1.024 0.174 0.69
0.9 0.9 6 0.86 30 0 6.13 0.895 0.032 1.02 0.327 −1.027 0.198 0.895
0.9 0.9 6 0.86 50 0 4.5 0.897 0.022 1.005 0.23 −1.015 0.141 0.877
0.9 0.9 ∞ 30 0 5.4 0.894 0.026 1.022 0.237 −1.022 0.152
0.9 0.9 ∞ 50 0 4.1 0.896 0.019 1.03 0.169 −1.022 0.1
0.9 2 2 0.67 30 0 7.13 0.905 0.019 0.981 0.302 −0.994 0.168 0.763
0.9 2 2 0.67 50 0 8.32 0.904 0.014 1.014 0.222 −0.985 0.121 0.731
0.9 2 6 0.86 30 0 6.8 0.903 0.017 0.983 0.206 −0.987 0.127 0.896
0.9 2 6 0.86 50 0 7.9 0.903 0.013 0.997 0.154 −1.001 0.09 0.883
0.9 2 ∞ 30 0 7.5 0.899 0.017 1.036 0.161 −1.02 0.099
0.9 2 ∞ 50 0 8.2 0.898 0.012 1.014 0.113 −1.016 0.067
1 0.9 2 0.67 30 10 2.87 0.994 0.032 1.003 0.444 −1.001 0.251 0.728
1 0.9 2 0.67 50 1 4 0.999 0.015 1.006 0.321 −0.99 0.192 0.713
1 0.9 6 0.86 30 5 5.2 0.995 0.029 1.033 0.353 −1.019 0.199 0.903
1 0.9 6 0.86 50 0 4.72 0.998 0.014 1.015 0.264 −1.009 0.155 0.884
1 0.9 ∞ 30 0 2.3 0.995 0.024 1.006 0.254 −1.031 0.165
1 0.9 ∞ 50 0 4.8 0.997 0.014 1.025 0.198 −1.019 0.121
1 2 2 0.67 30 0 5.07 1.009 0.027 0.988 0.327 −0.973 0.183 0.744
1 2 2 0.67 50 0 4.86 1.008 0.019 0.99 0.25 −0.981 0.137 0.73
1 2 6 0.86 30 1 4.97 1.006 0.026 1 0.262 −0.988 0.144 0.889
1 2 6 0.86 50 0 4.06 1.007 0.017 0.993 0.19 −0.991 0.11 0.867
1 2 ∞ 30 0 7.23 0.997 0.023 1.031 0.202 −1.023 0.118
1 2 ∞ 50 0 3.92 0.999 0.016 1.024 0.149 −1.014 0.094
1.05 0.9 2 0.67 30 5 6.53 1.05 0.017 1.021 0.421 −0.997 0.239 0.742
1.05 0.9 2 0.67 50 0 6.42 1.051 0.008 0.984 0.315 −0.991 0.184 0.707
1.05 0.9 6 0.86 30 6 2.03 1.051 0.016 0.989 0.317 −1.003 0.205 0.894
1.05 0.9 6 0.86 50 3 4.96 1.051 0.008 1.002 0.231 −0.994 0.154 0.889
1.05 0.9 ∞ 30 0 6.2 1.05 0.014 1.029 0.229 −1.036 0.155
1.05 0.9 ∞ 50 0 7.34 1.051 0.008 1.022 0.166 −1.01 0.106
1.05 2 2 0.67 30 1 5.77 1.055 0.022 0.988 0.334 −0.98 0.187 0.758
1.05 2 2 0.67 50 0 7.26 1.051 0.012 1.01 0.237 −1.006 0.138 0.72
1.05 2 6 0.86 30 0 8.63 1.053 0.02 1.008 0.246 −1.011 0.145 0.889
1.05 2 6 0.86 50 0 7.54 1.052 0.013 1.005 0.192 −1.008 0.105 0.872
1.05 2 ∞ 30 0 6.57 1.049 0.018 1.034 0.187 −1.012 0.119
1.05 2 ∞ 50 0 7.2 1.048 0.013 1.03 0.141 −1.023 0.082

Table 5.1: Summary of simulated means and standard deviations of the estimators of α, β, and η =
ξ/(ξ + 1). The true value of β is (1,−1). Results correspond to the case of p(ψ) = (0.8, 0.1, 0.1),
and 1000 replications were done for each parameter combination. The others columns are: γ
Weibull shape parameter, n sample size, NC number of replicates in which there was no model
convergence; µ̂Ev mean number per patient in all the simulation replications.
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Figure 5.2: Bias and root mean squared error curves for the estimator of the baseline survivor
function as the frailty parameter ξ varies (ξ = 2 red line; ξ = 6 blue line; ξ = ∞ green line) for
the two sample sizes. This is for the case where α = .90 and p(ψ) = (0.8, 0.1, 0.1). The upper
plot frame in each cell is for Weibull shape parameter of 0.90, while the lower plot frame is for
shape parameter of 2.0.
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α γ ξ η n NC µ̂Ev µ̂α̂ σ̂α̂ µ̂β̂1
σ̂β̂1

µ̂β̂2
σ̂β̂2

η̂

0.9 0.9 2 0.67 30 0 2.43 0.911 0.105 1.02 0.516 −1.017 0.301 0.737
0.9 0.9 2 0.67 50 0 2.82 0.907 0.075 1.004 0.36 −1.024 0.225 0.697
0.9 0.9 6 0.86 30 2 3.53 0.905 0.093 1.03 0.415 −1.031 0.252 0.965
0.9 0.9 6 0.86 50 1 2.8 0.911 0.065 1.021 0.289 −1.016 0.183 0.912
0.9 0.9 ∞ 30 0 3.07 0.882 0.07 1.082 0.301 −1.068 0.196
0.9 0.9 ∞ 50 0 2.2 0.897 0.046 1.022 0.216 −1.033 0.146
0.9 2 2 0.67 30 1 5.43 0.886 0.057 0.808 0.358 −0.808 0.209 0.797
0.9 2 2 0.67 50 0 5.26 0.885 0.038 0.809 0.255 −0.806 0.151 0.777
0.9 2 6 0.86 30 1 5.97 0.879 0.054 0.803 0.252 −0.82 0.177 0.931
0.9 2 6 0.86 50 0 4.66 0.884 0.037 0.819 0.193 −0.812 0.131 0.917
0.9 2 ∞ 30 0 6.53 0.878 0.042 0.828 0.212 −0.828 0.142
0.9 2 ∞ 50 0 6.08 0.883 0.032 0.798 0.154 −0.811 0.103

Table 5.2: Summary of simulated means and standard deviations of the estimators of α, β,
η = ξ/(ξ + 1) when minimal response is always assumed after each event relapse when the true
effective age is a cancer model with probability of complete response 0.3, partial response 0.5, and
minimal response 0.2, p(ψ) = (0.3, 0.5, 0.2). The true value of β is (1,−1), and 1000 replications
were done for each parameter combination. The others columns are: γ Weibull shape parameter,
n sample size, NC number of replicates in which there was no model convergence; µ̂Ev mean
number per patient in all the simulation replications.

positively biased, with larger bias and RMSE in the middle portion of the survivor function.

On the other hand, under effective age mis-specification, the estimators of the finite-dimensional

model parameters and the baseline survivor function are highly biased (see Tables 5.2 and 5.3 and

Figure 5.3). The parameter that controls event dependence, as well as the parameters associated

with the covariates are more biased than when the correct model is used. In particular, this

observed bias is highly evident when the baseline hazard function is increasing, that is, when

γ = 2.

Regarding the survivor curves in Figure 5.3 we observe that under a cancer model with

probabilities p(ψ) = (0.8, 0.1, 0.1), if we consider a model where always minimal response is

achieved, we get an extremely negatively biased estimator of survival function. In contrast, to

consider a perfect response after each relapse produces a less biased estimator. Obviously, this

happens because the data were generated assuming that most of the interventions after relapses

achieve a complete remission (p1 = 0.8), so a model which assumes that always a CR is achieved is

closer to this scenario than one that always assumes NR. In the case where p(ψ) = (0.1, 0.2, 0.7),

the preceding statement remains valid when we change perfect to minimal. That is, in that

case the minimal model is better than the perfect one because the data are generated assuming
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α γ ξ η n NC µ̂Ev µ̂α̂ σ̂α̂ µ̂β̂1
σ̂β̂1

µ̂β̂2
σ̂β̂2

η̂

0.9 0.9 2 0.67 30 1 3.23 0.876 0.058 1.039 0.49 −1.033 0.283 0.732
0.9 0.9 2 0.67 50 0 3 0.882 0.039 1.012 0.369 −1.031 0.2 0.681
0.9 0.9 6 0.86 30 0 1.6 0.876 0.06 1.037 0.395 −1.042 0.249 0.961
0.9 0.9 6 0.86 50 0 2.62 0.879 0.04 1.047 0.292 −1.043 0.16 0.885
0.9 0.9 ∞ 30 0 2.87 0.868 0.049 1.08 0.298 −1.07 0.184
0.9 0.9 ∞ 50 0 2.88 0.879 0.032 1.038 0.216 −1.049 0.135
0.9 2 2 0.67 30 0 5.57 0.996 0.025 0.605 0.257 −0.599 0.147 0.917
0.9 2 2 0.67 50 0 5.52 0.992 0.018 0.604 0.189 −0.604 0.119 0.895
0.9 2 6 0.86 30 0 7.3 0.991 0.022 0.598 0.199 −0.609 0.113 0.964
0.9 2 6 0.86 50 1 4.96 0.988 0.014 0.609 0.155 −0.6 0.092 0.935
0.9 2 ∞ 30 0 7.47 0.984 0.019 0.635 0.166 −0.634 0.098
0.9 2 ∞ 50 0 5.24 0.983 0.014 0.62 0.128 −0.618 0.069

Table 5.3: Summary of simulated means and standard deviations of the estimators of α, β,
η = ξ/(ξ + 1) when minimal response is always assumed after each event relapse when the true
effective age is a cancer model with probability of complete response 0.3, partial response 0.5, and
minimal response 0.2, p(ψ) = (0.3, 0.5, 0.2). The true value of β is (1,−1), and 1000 replications
were done for each parameter combination. The others columns are: γ Weibull shape parameter,
n sample size, NC number of replicates in which there was no model convergence; µ̂Ev mean
number per patient in all the simulation replications.

that most of interventions have none response (p3 = 0.7). However, under a non-extreme case,

e.g., p(ψ) = (0.3, 0.5, 0.2) using a minimal response as well as perfect response model lead to

unacceptable results as the estimators become highly biased.
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Figure 5.3: Estimated baseline survivor function, bias and root mean squared error curves for
the estimator of the baseline survivor function as both the effective age Ei(s) (always minimal
response, Ei(s) = s, and always perfect response, Ei(s) = s− S

N†
i (s−)

) and the frailty parameter
ξ varies (ξ = 2 and ξ = ∞). This case corresponds to α = 0.9 and n = 30.
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5.4 The non-Hodgkin’s lymphoma study

Herein, we analyze the data belonging to the times to relapse for patients diagnosed with non-

Hodgkin’s lymphoma (see Section 2.2 for a description). The main importance of this data set

is that it has recorded information about the effective age by using the disease status after each

reoccurrence. We first examine the effect of assumptions concerning the effective age function.

To do so, we fit some simple models that include only the lesion at diagnosis (X3) as a covari-

ate. We compare the results obtained using the cancer model with those obtained from Peña

and Hollander’s model assuming always NR or always CR for the effective age. Then, we also

compare these results with the AG model including response to treatment as a time-dependent

covariate. We denote by β the length-three coefficient associated with X3 coded as a dummy

variable. Figure 5.4 gives the estimated disease-free survival curves for three different effective

age specifications (always NR, always CR, and cancer model) for patients with single and with

more than 1 site affected. When CR is assumed at each relapse, the survival probability tends to

be underestimated for short times and overestimated for longer times, relative to using the cancer

model incorporating information about the intervention effect. But when NR is assumed at each

relapse, the survival probability tends to be overestimated for short times and underestimated for

longer times. Intuitively, the assumption of a constant intervention effect, when in fact it varies,

leads to an incorrect time scale in the hazard rate function, thus inducing bias in the estimators.

Regarding the parameter estimates, the three assumed forms of the effective age give rise

to differences mainly in the frailty parameter, as shown in Table 5.4. If we use the minimal

repair effective age E(s) = s (always NR), we obtain a small value of frailty precision, ξ̂ = 2.24

(ν = 0.45), indicating the need to include a frailty component. On the other hand, if we assume

E(s) = s − SN†(s−) as effective age (always CR) we obtain ξ̂ = 11145048 (ν =8.97e-8), a very

large value that indicates that there is no need for the frailty component. Finally, if we use the

cancer model formulation E(s) = AN†(s−)+
(
s− SN†(s−)

)
as effective age (different responses can

be achieved) the resulting estimates again indicate the importance of the frailty with ξ̂ = 1.36

(ν = 0.73). We can test the significance of the frailty to verify these statements. A likelihood

ratio test for the frailty can be computed as twice the difference between the log-partial-likelihood

with the frailty terms integrated out, and the log-likelihood of a model without frailties (Section

4.3. These values for cancer model are −181.46 and −176.27, respectively. That is, the likelihood
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Figure 5.4: Estimates of survivor function (with frailties set to one) for multiple events for non-
Hodgkin’s lymphoma data set by lesions involved at diagnosis using three different formulation
for effective age function.

ratio test can be computed as chi-square statistic of 2(181.46− 176.27) on one degree of freedom

leading a p-value = 0.0013. The same procedure for the minimal and perfect repair models yields

p-values of 0.999 and 0.0201, respectively. These results partly confirm that the need for the

frailty term depends on the form of the effective age function.

The hazard ratios (HR) for the risk of relapse associated with X3 vary little for the three

forms of effective age. In all models, patients with localized lesions and with generalized lesions

at diagnosis have a higher risk of relapse compared to those with single lesions, showing a similar

HR for each model (Table 5.4). This risk is also high for patients with more than one nodal

site being statistically significant in all models. However, we observe some differences in their

magnitude. Finally, we notice that none of models provide a confidence interval for α (based on

approximate normality) that excludes 1.

Now, continuing to use only the lesions at diagnosis, X3, as covariate, we compare the esti-

mates resulting from the cancer model with other approaches. A simple way to incorporate the

response to treatment in the AG model is by considering the disease status after relapses as a

time-dependent covariate (see Therneau and Grambsch, 2000 or Therneau and Hamilton, 1997
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Minimala Perfectb Cancerc

α 0.72 (.37) 0.90 (.15) 0.68 (0.21)
Frailty ξ 2.24 ∞ 1.36

ν 0.45 8.97×10−8 0.73
Lesions

Single 1 1 1
Localized 2.48 (0.93-6.60) 2.42 (0.90-6.50) 2.59 (0.88-7.62)
>1 nodal site 4.47 (1.64-12.15) 3.26 (1.20-8.87) 4.55 (1.22-16.93)
Generalized 3.24 (0.70-14.95) 2.69 (0.59-12.31) 3.09 (1.01-9.37)

aEffective Age is E(s) = s.
bEffective Age is E(s) = s− SN†(s−).
cEffective Age is AN†(s−) +

(
s− SN†(s−)

)
.

Table 5.4: Hazard ratios and confidence intervals at 95% (in parenthesis) for the probability of
relapse depending on lesions involved at diagnosis for the non-Hodgkin’s lymphoma data set.
Estimates obtained from the general model using three different effective ages processes.

for further details). After preparing the data and including the treatment response as a dummy

variable, the HR for variable lesions at diagnosis are: 2.46 (CI95% 1.06 to 5.77), 3.25 (CI95%

1.25 to 8.47), and 2.77 (CI95% 0.83 to 9.22), respectively. These results are similar to those

obtained using the perfect repair model. Considering that the cancer model reveals that a frailty

component is important, perhaps the AG model is not adequate since this model assumes that

there is no heterogeneity among patients. Finally, we compare our results to those obtained using

only time to first relapse in a Cox model. In that case, the HR are: 1.40 (CI95% 0.48 to 4.03),

2.76 (CI95% 0.95 to 8.03), and 3.24 (CI95% 0.28 to 37.50). Here, we ignore the information in

the subsequent relapse times and we observe that this fact substantially affects the estimate of

the coefficients and their statistical significance, especially in patients with localized lesions.

The heterogeneity of the risk of relapse may be explained by subject-specific factors other than

lesions involved at diagnosis, such as gender or delay between first treatment and first symptom.

Thus, we now include all three covariates and compare the estimates of the regression coefficients

from the cancer model with those obtained using some of the currently-used models (AG, AG

with time-dependent covariates, WLW, and shared gamma frailty model). Table 5.5 shows these

resulting HRs for the PCMZCL data. After adjusting for gender and delay, the variance of

frailty decreased to 0.11 (1/8.85) indicating that the frailty is not necessary (likelihood ratio test

2(180.07 − 179.40) = 1.34, p = 0.2476). Similarly, although the estimate of α differs from 1,

it is not statistically significant (based on assumed asymptotic normality), so it seems that the
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prior number of event occurrences does not have an impact. The results also indicate that shared

frailty model gives lower risk estimates than those obtained using cancer model, while WLW

method gives higher risk estimates than cancer model. Only models based on AG approach show

similar results to those obtained using cancer model. In that case gender differences is statistically

significant only if the AG model is chosen, while cancer model is the only one that indicates an

statistically significant increased risk for those patients with generalized lesions as compared to

patients with single lesions.

The estimates of the cumulative hazard functions for the multiple event data for cancer model

and for AG model with treatment response as a time-dependent covariate are shown in Figure

5.5. The solid lines correspond to hazard of relapse for patients with single lesions at diagnosis,

obtained via

Λ̂0(s) exp(β̂2X̄2) and Λ̂0(s) exp(β̂1 + β̂2X̄2)

for males and females, respectively, where Λ̂0(·) is the estimated cumulative baseline hazard. The

dotted lines in this figure are for patients with generalized lesions which correspond to

Λ̂0(s) exp(β̂2X̄2 + β̂5) and Λ̂0(s) exp(β̂1 + β̂2X̄2 + β̂5)

for males and females, respectively. The observed means are X̄2 = 2.4 for males, and X̄2 = 2.7

for females. These plots indicate that different risks are associated with the number of lesions

involved at diagnosis, as is clear from their associated HRs. The AG and cancer model estimates

of the hazard rate functions differ more for patients with generalized lesions than with single

lesions.
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AG AG2 Shared
Covariate Frailty Frailty WLW Frailty Cancera

α - - - - .88 (.40)
Frailty ξ 24.51 ∞ - ∞ 8.85

ν 0.04 5× 10−7 - 5× 10−7 0.11
Gender

Males 1 1 1 1 1
Females 2.01 2.01 1.83 1.73 1.84

(1.01-4.00) (1.02-3.92) (0.81-4.14) (0.88-3.40) (0.82-4.10)
delay

in years 0.99 1.01 1.02 1.04 0.99
(0.89-1.12) (0.89-1.12) (0.88-1.18) (0.77-1.40) (0.80-1.23)

Lesions
Single 1 1 1 1 1
Localized 3.70 3.83 5.23 3.24 3.57

(1.18-1.16) (1.23-11.9) (1.71-15.96) (1.05-9.96) (1.17-10.89)
>1 nodal site 4.71 4.77 6.45 3.99 4.67

(1.62-13.7) (1.62-14.0) (2.37-17.56) (1.41-11.28) (1.25-17.4)
Generalized 4.75 4.60 23.16 3.44 4.60

(0.92-24.4) (0.86-21.5) (5.02-106.9) (0.69-16.97) (1.30-16.3)

aEffective Age is AN†(s−) +
(
s− SN†(s−)

)
.

Table 5.5: Hazard ratios and confidence intervals at 95% (in parenthesis) for the probability of
relapse for the PCMZCL data set. Estimates from the Andersen-Gill (AG), and Andersen-Gill
with response to treatment after relapse as time-dependent covariate (AG2) including a frailty
term, together with the estimates obtained form Wei, Lin and Weissfeld (WLW), Shared Gamma
Frailty model, and dynamic cancer model.
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Figure 5.5: Estimates of cumulative hazard function for multiple events for non-Hodgkin’s lym-
phoma data set by sex and lesions involved at diagnosis, all cases evaluated at the mean value of
delay between first treatment and first symptom. The blue line shows the hazard assuming the
cancer model and red lines correspond to AG model which includes the response to treatment as
a time-dependent covariate. Solid lines are patients with single lesions and dotted lines are for
patients with generalized lesions at diagnosis.
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5.5 R instructions for gcmrec package

Parameter estimates for the dynamic cancer model can be obtained using gcmrec function and

indicating where it is the information about effective age. In our case cancer=lymphoma$effage.

> mod.can<-gcmrec(Survr(id,time,event)~as.factor(distrib),
+ data=lymphoma, s=1000, Frailty=TRUE , se="Jacknife", +
cancer=lymphoma$effage)
> mod.can
Call: gcmrec(formula = Survr(id, time, event) ~
as.factor(distrib),

data = lymphoma, s = 1000, Frailty = TRUE, se = "Jacknife",
cancer = lymphoma$effage)

coef exp(coef) se(coef) Jacknife z p
as.factor(distrib)1 0.953 2.59 0.556 1.7146 0.086
as.factor(distrib)2 1.516 4.55 0.667 2.2738 0.023
as.factor(distrib)3 1.129 3.09 0.569 1.9842 0.047

General class model parameter estimates
rho function: Alpha to k
alpha (s.e. Jacknife): 0.683 (0.214)

Frailty parameter, Xi (s.e. Jacknife): 1.36

Marginal log-likelihood= -176.27
n= 63
n times= 112
number of iterations: 74 EM steps



Chapter 6

Concluding Remarks and Future

Research

6.1 Conclusions

The general class of model proposed by Peña and Hollander (2004) have been demonstrated

to be very useful to deal with recurrent event data. In particular, the dynamic cancer model

developed in this PhD thesis has demonstrate to be very useful in analyzing indolent diseases in

which a relapsing pattern is observed. We have to mention that although some physicians are

interested in analyzing this type of data (see MacLaughlin, 2002), these models have received no

attention, so far. The model we propose for analyzing cancer data, which includes as special cases

many well-known models in survival analysis, is also important because it takes into account the

effect of interventions which are performed after each event occurrence through the notion of an

effective age, the possible weakening (or strengthening) effect of accumulating event occurrences,

the possible presence of unobserved frailties that could be inducing correlations among the inter-

event times per unit, and the effect of observable covariates.

Regarding procedures for estimating the parameters of this model, three different approaches

have been described. One of them is based on the EM algorithm, while the other two used penal-

ized likelihood inference. Regarding the general behavior of the model proposed, our simulations

suggested that an under-specification of the model, in the sense of analyzing a data generated

from the model with frailties using procedures developed from the model without frailties, could

119
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have unacceptable consequences in that the resulting estimators will have non-negligible system-

atic biases. On the other hand, it was found that over-specification of the model may provide a

robust method of analysis with an acceptable loss in efficiency. The application of the procedures

to the bladder cancer data set highlights the importance of monitoring the effective age process.

The simulations for the miss-specification of effective age by not incorporating information about

the intervention effect in cancer settings, but instead assuming that always a complete or null

response is achieved, has undesirable consequences because the resulting estimators of the finite-

dimensional parameters and the baseline survivor function are highly biased. Our application

of the cancer model to an indolent lymphoma data set also highlights the need to incorporate

information about the effect of intervention after each relapse.

The main advantage of using the general class of models proposed by Peña and Hollander

(2004) with respect to analyze recurrent event data using other existing models, is the ability of

incorporating information about the performed interventions after reoccurrences. In particular,

we have shown that this model may be useful to analyze data set arising form cancer settings,

in which the response to the treatment after each relapse is an important factor to predict new

relapses. The dynamic cancer model may be used in a variety of applications when information

about the response to intervention upon relapses can be obtained. The bladder cancer data set is

an example. This data set, however, does not contain information about the effective age function

and this leads to be the main limitation of this model. One possibility to solve this drawback is to

use simple forms of the effective age, such as perfect or minimal repair formulations as it has been

illustrated through this thesis. In this sense, the cancer model tries to model more complicated

forms for the effective age function in which the response to the treatment after relapses are

included in the model acting in the baseline hazard function.

On the other hand, this PhD thesis has also addressed the problem of how to calculate

confidence intervals for median survival time. We have proposed two different methods. One of

them is based on asymptotic variances in the case that interoccurrence times are i.i.d. and another

used bootstrap techniques. We have also studied several bootstrapping schemes to estimate

the sampling distribution of median survival time estimators in the presence of recurrent event

data and in consideration of the sum-quota data accrual which induces informative stopping

and censoring. We proposed several resampling plans under the i.i.d. model and a correlated

interoccurrence times model. From the simulations studies we carried out, we may conclude that
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the best bootstrapping scheme to estimate the median survival sample distribution under an i.i.d.

model are just bootstrapping from observed data and non-parametric bootstraps (plans I, and

II or III, respectively). For a correlated interoccurrence times (under a gamma frailty model),

both semiparametric plans (VI and VII) are the best ones. Plan IV, which is anchored in using

the WC (1999) estimator of the inter-event survivor function appears to offer a robust procedure

when uncertain about the model that generated the data. Based on the simulation studies, it

appears that bootstrapping from the empirical distribution of the monitoring times do not provide

improvements.

6.2 Future Research

Maybe the main important future work regarding confidence interval for median survival time

is to prove asymptotic convergence of bootstrap procedures. There are still many important

questions that need to be examined with regards to the general model proposed by Peña and

Hollander (2004). The first is the ascertainment of asymptotic properties of the estimators,

such as their asymptotic normality or the weak convergence to a Gaussian process of a properly

normed estimator of the baseline survivor function. The resolution of this asymptotic problem

may require methods utilized in Murphy (1994, 1995) and Parner (1998). Some asymptotic results

for the general class of models when baseline hazard function is parametrically specified can be

found in Kvam and Peña (2003). Through such asymptotic analysis we will be able to obtain

expressions for approximating analytically the standard errors of the estimators and compare

them with those obtained using penalized approaches. Another issue of importance is whether

bootstrapping methods could be utilized to obtain standard errors of estimators for the purpose

of constructing confidence intervals and/or bands for the parameters. The problem of how to

validate this class of models after it has been fitted to a specific data set is another open problem,

and calls for suitable goodness-of-fit and model validation procedures.

Regarding the dynamic cancer model, new applications for the cancer model may require

modifications of our formulation. One important consideration is the value of A0 in the effective

age (see equation (5.2)). Because all our lymphoma patients achieved CR at first treatment, we

were able to use this date as study origin, assured that all patients had the same initial status

with A0 = 0. In other situations, however, CR may not be achievable at first treatment for all
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subjects. In this case, A0 is not uniformly zero for all subjects, and disease status after first

treatment may be assessed to assign a positive value for A0.

Another aspect of our work that requires consideration in future research is that the time

between treatment and assessment of the response to treatment (the ψjs) following each relapse

may not be negligible, contrary to our context and earlier developments in reliability. The delay

between application of treatment and evaluation of patient response is widely recognized. How-

ever, in cancer studies, at least in hematological diseases, this may not be a problem since all

patients are routinely monitored for one month following administration of therapy.
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Appendix A

Counting Processes in Survival

Analysis

Survival analysis arises when we are interested in studying statistical properties of the variable

T , which describes the time to a single event. This type of analysis occurs commonly in two

areas. In medical research it is known as survival analysis and refers often to the time from the

beginning of the treatment to the occurrence of a particular condition or death. In engineering

it is concerned with reliability and the analysis of failure times. That is, how long a component

can be used until it fails.

We can use some functions to describe T . Let f(t) be the probability density function of the

failure time. The survivor function, F̄ (t) (also called S(t)), which is the probability of surviving

to at least until time t, is given by

F̄ (t) =
∫ ∞

t
f(τ)dτ = 1− F (t), (A.1)

where F (t) is the cumulative distribution function. The hazard function, λ(t), is the instantaneous

probability that the event occurs a time t given that the individual survived up to time t, and is

given by

λ(t) =
f(t)
F̄ (t)

(A.2)

Finally, the cumulative hazard rate is defined as

Λ(t) =
∫ t

0
λ(τ)dτ, (A.3)
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hence F̄ (t) = exp(−Λ(t)).

If we are interested in estimating the previous functions we have to take into account an

important aspect which makes survival analysis different from traditional statistical analysis.

Let us assume that a researcher is studying the effectiveness of a new treatment for a generally

terminal disease. The major variable of interest is the number of days that patients survive. In

principle, one could use the standard parametric and nonparametric statistics to describe the

average survival, and to compare the new treatment to traditional methods. However, at the end

of the study there will be patients who survived over the entire study period, in particular those

patients who entered the study in its final stage. Surely, one would not want to exclude all those

patients from the study by declaring them to be missing data (since most of them are “survivors”

and, therefore, they reflect the success of the new treatment method). Those observations, which

contain only partial information are called censored observations (e.g., “patient A survived at

least 5 months before he moved away and we lost touch”). Thus, the presence of censored data

leads to complications in the analysis.

To denote that times can be censored (e.g., not observed completely) we use the following no-

tation. We assume that for n individuals in a sample, we have Y1, ..., Yn independent, identically

distributed nonnegative random variables (“lifetimes”) with common continuous distribution F .

Suppose C1, ..., Cn are independent, identically distributed nonnegative random variables (”cen-

soring sequence”) with a common distribution function G. Assume also that both sets of variables

are independent. Thus, in the setting of survival analysis data with random right censorship, we

observe (T1, δ1), ..., (Tn, δn), where

Ti = min{Yi, Ci},

δi = I{Yi ≤ Ci}.

This notation is known as the “traditional” description of time to event data. However,

counting process notation has been established as the theoretical basis for analyzing survival

data. In the next two sections we will outline this alternative notation and the procedures to

estimate F̄ (t) as well as Λ(t) using it.
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A.1 Counting processes approach

Counting processes formulation and martingale theory play a fundamental role in modern theory

of survival analysis. Andersen et al. (1993) is an excellent book to understand this approach.

However, it is necessary for the reader to assimilate some mathematical concepts that can be

difficult for applied statisticians. Fortunately, Therneau and Grambsch (2000, Chapter 1) gives a

very intuitive explanation to counting processes and martingales using practical examples. The

martingale processes provide direct ways of studying large sample properties of estimators and

significance tests for right censored failure time data, and provide tools for analyzing event history

data more complicated than censored data as we illustrate in the next chapter. Next sections give

a short overview of the mathematical details of counting processes from an applied statisticians

point of view.

We begin by giving some notation. We define f(t−) as shorthand for limδ↓0f(t − δt). I{}
denotes the indicator function so I{A} = 1 if A is true and I{A} = 0 otherwise. P{. . .} is

probability, E{. . .} is expectation, and V{. . .} denotes variance.

There are three key variables which are functions of time in the counting process approach:

the counting process variable, the risk indicator, and the intensity process. The random variable

N(t) represents a counting process on [0,∞) if

1. N(t) is a non-negative integer

2. N(s) ≤ N(t) for s < t

3. dN(t) = N(t)−N(t−) is either 0 or 1

4. E{N(t)} < ∞

The risk indicator is a dummy variable indicating whether observation i is “at risk” for the event

of interest at time t,

Yi(t) = I{Ti ≥ t}

To define the intensity, first we need to introduce some nomenclature. The filtration Ft (often

called history) of a counting process is all that is known at time t. In particular, the history

includes the values of random variables known up to and including the time t. Ft− represents what

is known up to but not including time t, i.e.: vital status, age, treatment received, hemoglobin
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level, blood preasure, etc. Thus, a filtration is defined as an increasing family of σ-algebras defined

in the sample space. Using data description mentioned in previous section we take Ft to mean

the values of Ti and δi for all i such that Ti ≤ t, otherwise just the filtration that Ti > t. For Ft−

we have to change ≤ by < and > by ≥. A formal definition of filtration notion can be found in

Andersen et al. (1993, Section II.2).

The probability (conditional on the filtration) of dN(t) = 1 at any time can be written in

terms of an intensity α(t):

P{N(t + dt)−N(t−) = 1 | Ft−} ' α(t)dt.

or, equivalently:

P{dN(t) = 1 | Ft−} = dA(t)

where

A(t) =
∫ t

0
α(w)dw

is the integrated intensity. We notice that A(t) is required to be predictable with respect to Ft.

That is, A(t) is known given Ft. In practice, this means that A(t) has to be continuous. Finally,

we say that the processes N is adapted (to the filtration) if N(t) is Ft measurable for each t. The

process N is called cadlag if its sample paths (N(t) : t ∈ F), are right-continuous with left-hand

limits.

Now we can show some elementary martingale theory. First of all we give the definition of a

martingale. A martingale is a cadlag adapted process M which is integrable, i.e.,

E{| M(t) |} < ∞ for all t ∈

and satisfies the martingale property:

E{M(t) | Fs} = M(s) for all s ≤ t.

The process is a submartingale replacing previous equation by the inequality

E{M(t) | Fs} ≥ M(s) for all s ≤ t. (A.4)

When we have (A.4) with the inequality reversed, M is called a supermartingale. A martingale

is called square integrable if

sup
t∈T

E{M(t)2} < ∞,
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where T = [0, τ) where τ may be finite or infinite.

Thus, a martingale is a process without drift. Conditional on its past, the best prediction of

any future value is its current value.

We also can define M(t), a counting processes martingale, as

M(t) = N(t)−A(t)

and its expectation becomes

E{dM(t) | Ft−} = 0

Equivalently, for any 0 ≤ s < t,

E{M(t) | Fs} = M(s)

which implies,

E{M(t) | M(u); 0 ≤ u ≤ s} = M(s).

Finally, the counting process N(t) can be written using the Doob-Meyer decomposition theorem,

as a unique sum of a predictable, right continuous process, called compensator, and a martingale:

N(t) = A(t) + M(t).

As it is mentioned in Therneau and Grambsch (2000), “The decomposition: counting process =

compensator + martingale is analogous to the statistical decomposition: data = model + noise

or, more to the point since we are dealing with counts, observed count = expected count + error”.

A.2 Nonparametric methods

In survival analysis the counting process formulation replaces the pair of variables (Ti, δi) with

the pair of counting processes (Ni(t), Yi(t)), where Ni(t) represents whether or not the event has

happened by or at t for unit i, and Yi(t) is an indicator for being at risk:

Ni(t) = I{Ti ≤ t, δi = 1},

Yi(t) = I{Ti ≥ t}.

Note that Yi(t) = 1 − Ni(t−) for an uncensored individual and that Yi(t) is an example of a

predictable process, since its value at time t is known infinitesimally before t (in other words, at

time t−).
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Now, we only need to define the third ingredient of counting process approach: the intensity.

In survival analysis, the intensity, α(t), is equal to the hazard function, λ(t), when the individual

is at risk of the event and equal to zero when the event has happened. We express this by writing

the intensity as

Y (t)λ(t)

A major focus of survival methods is the hazard function. It turns out to be much easier to

estimate the cumulative or integrated hazard (A.3), than the hazard function (A.2). For the no-

covariate case, the most common estimate of Λ(t) is the Nelson-Aalen estimate. This estimator

is based on the aggregated processes Y+ =
∑n

i=1 Yi(t), N+ =
∑n

i=1 Ni(t), M+ =
∑n

i=1 Mi(t), and

Λ+(t). Thus, N+(t) is a counting process, A+(t) its compensator and M+(t) its martingale:

N+(t) = A+(t) + M+(t). (A.5)

The compensator can be written in terms of the individual hazards, λi(t), as

A+(t) =
∫ t

0

n∑

i=1

Yi(u)λi(u)du. (A.6)

However, if all individuals are exposed to the same hazard then the expression for the overall

compensator reduces to

A+(t) =
∫ t

0
Y+(u)λ(u)du =

∫ t

0
Y+(u)dΛ(u). (A.7)

The idea of estimation of the integrated hazard is as follows. The decomposition (A.5) expressed

in differentials and the formula (A.7) becomes

dN+(t) = Y+(t)dΛ(t) + dM+(t),

where N+(t) and Y+(t) are the data. Conditional on the filtration Ft−, dM+(t) has zero expec-

tation. So an estimate of Λ can be obtained by setting dM+(t) equal to zero. Using previous

formula we have that

dΛ̂(t) =
dN+(t)
Y+(t)

. (A.8)

Hence, the estimated integrated hazard from (A.8) is

Λ̂(t) =
∫ t

0

dN+(u)
Y+(u)

.
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An equivalent representation of the Nelson-Aalen estimate is the sum

Λ̂(t) =
∑

j:tj≤t

dN+(tj)
Y+(tj)

. (A.9)

Now, let the n distinct, uncensored, event times from a set of n individuals be a1, . . . , aj , . . . , an

with aj−1 < aj . Thus, we notice that the numerator of the integrand is zero unless t = aj for

some j and the denominator is the number in the risk set at aj , conventionally written as rj .

Using this notation, and if there are no ties, the Nelson-Aalen estimator is therefore:

Λ̂(t) =
∑

j:aj≤t

1
rj

.

If we have censored data between two failures aj−1 and aj then the individual is counted in the

risk sets up to and including the set at aj−1 but not in any subsequent ones. On the other hand,

if an individual is censored at a failure time aj then that individual is included in the risk set for

aj but not in any later ones.

Now, we can estimate the survival function, S(t) = exp[−Λ(t)] using two methods. The first

one was proposed by Kaplan and Meier (1958). The second one was proposed by Breslow (1972)

who suggested that ŜB(t) = exp[−Λ̂(t)]. Both estimators can be written as

ŜKM (t) =
∏

j:aj≤t

[1− dΛ̂(aj)], (A.10)

and

ŜB(t) =
∏

j:aj≤t

e−dΛ̂(aj), (A.11)

respectively.

A.3 Cox proportional hazards model

The Cox proportional hazards model Cox (1972) has become the most used method for modelling

the relationship of covariates to a survival data. Let Xij(t) be the jth covariate of the ith person.

We use Xi to denote the covariate vector for subject i, e.g. the ith row of the matrix. We notice

that we use the notation Xi(t) to emphasize that the covariates can be time-dependent ones.

Using this notation the Cox model relates the hazard function λi(t) with the ith individual to

the vector of explanatory covariates Xi(t) by

λi(t | Xi) = λ0(t) exp{β′Xi(t)}, (A.12)
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where “′” denotes vector transpose, β is a vector of parameters, and λ0 is the baseline hazard

function. The essence of proportional hazards modelling is that β can be estimated without

needing to estimate λ0(t) using the partial likelihood function introduced by Cox (1972). For

untied failure time data we have

PL(β) =
n∏

i=1

∏

t≥0

(
Yi(t) exp{β′Xi(t)}∑n

j=1 Yj(t) exp{β′Xj(t)}

)dNi(t)

. (A.13)

The log partial likelihood is given by

l(β) = log PL(β) =
n∑

i=1

∫ ∞

0


β′Xi(t)− log




n∑

j=1

Yj(t) exp{β′Xj(t)}




 dNi(t). (A.14)

The score for β, U(β) = ∂
∂β log PL(β), is

U(β) =
n∑

i=1

∫ ∞

0

[
Xi(t)−

∑n
j=1 Yj(t)Xj(t) exp{β′Xj(t)}∑n

j=1 Yj(t) exp{β′Xj(t)}

]
dNi(t). (A.15)

Maximum partial likelihood estimates β are found by solving the p simultaneous equations U(β) =

0, where p is the number of covariates. We notice that when data contain tied observation times

the partial likelihood need to be changed (see Fleming and Harrington, 1991, Chapter 4, for

further details).

There are occasions when an estimate of baseline cumulative hazard function Λ0(t) =
∫ t
0 λ0(u)du

is necessary. We can use a method very similar to that used to derive the Nelson-Aalen estimator.

The compensator (A.6) in the proportional hazards formulation becomes

A+(t) =
∫ t

0

n∑

i=1

Yi(u)λ0(u) exp{β′Xi(u)}du.

As in the derivation of the Nelson-Aalen estimator, we estimate dA+(t) by dN+(t), so we have

dÂ+(t) =
n∑

i=1

Yi(u) exp{β̂′Xi(u)}dΛ(t) = dN+(t),

where we have replaced β by its estimate, β̂, obtained maximizing (A.14). Finally, rearranging

previous equality and integrating, we obtain

Λ̂(t) =
∫ t

0

dN+(t)∑n
i=1 Yi(u) exp{β̂′Xi(u)} (A.16)

called Aalen-Breslow estimator.
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A.3.1 Stratified Cox model

An extension of the Cox model allows for multiple strata. This model assumes that the strata

divide the subjects in disjoint groups, each of which has a distinct baseline hazard function but

common values for β. The hazard for an individual i, who belongs to stratum k is

λk(t) exp{β′Xi(t)}

This model is very useful when we analyze multicenter studies because patients from different

centers tend to have populations, with different patterns. The overall log-likelihood becomes the

sum
K∑

k=1

lk(β)

where lk(β) is the equation (A.14), but we only sum the subjects in stratum k. This model is also

useful when we deal with recurrent event data. In that case, each recurrence can be modelled

using a different baseline hazard to control the event dependence.





Appendix B

Semiparametric Inference for Peña

and Hollander model

B.1 Case without Frailties

Chapter 1 introduces the model proposed by Peña and Hollander (2004) to deal with recurrent

events data (see section 1.5). Now, we address the problem of estimating the model parameters

Λ0(s) =
∫ s
0 λ0(w)dw, α and β for the model without frailties. That is, equation (1.20) where it is

assumed that Zi ≡ 1. Thus, the model has intensity process

λi(s|Xi) = λ0[Ei(s)] ρ[N †
i (s−);α] ψ(β′Xi(s)). (B.1)

The observables for the n subjects including the effective age processes are
{(

Xi(s), N
†
i (s), Y †

i (s), Ei(s)
)

: 0 ≤ s ≤ s∗
}

, i = 1, 2, . . . , n,

where N †
i (s) and Y †

i (s) are defined in (1.1) and (1.2), respectively.

By letting

A†i (s) =
∫ s

0
Y †

i (v)λ0[Ei(v)] ρ[N †
i (v−);α] ψ(β′Xi(v)) dv,

then with respect to the filtration F, the vector of processes

M† = (M †
1 , . . . ,M †

n) = N† −A† = (N †
1 −A†1, . . . , N

†
n −A†n)

consists of orthogonal square-integrable martingales with predictable quadratic covariation pro-

cesses 〈M †
i1

,M †
i2
〉(s) = A†i1(s) I{i1 = i2}. Peña et al. (2003) stated that the usual martingale

145
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theory does not apply directly for the purpose of estimating Λ0(·). They argued that that the

λ0(·) appearing in A†i (·) is time-transformed by the observable predictable process Ei(·). The

authors propose to use the techniques used in Peña et al. (2001) which are based on defining the

double-indexed processes, Ni(s, t), Yi(s, t), Ai(s, t), and Mi(s, t) described in Section 1.2.2.

Using Proposition 1 from Peña et al. (2003) which gives an expression for Ai(s, t) which in-

volves λ0(t) directly, we have Mi(s, t) = Ni(s, t) −
∫ t
0 Yi(s, w)Λ0(dw), i = 1, 2, . . . , n, so that

∑n
i=1 Mi(s, dw) =

∑n
i=1 Ni(s, dw)− S0(s, w)Λ0(dw), where

S0(s, t) ≡ S0(s, t|α, β) =
n∑

i=1

Yi(s, t|α, β). (B.2)

Since the mean of
∑n

i=1 Mi(s, dw) is zero, a method-of-moments ‘estimator’ of Λ0(t), given (α, β)

is therefore

Λ̂0(s, t;α, β) =
∫ t

0

{
J(s, w|α, β)
S0(s, w|α, β)

} {
n∑

i=1

Ni(s, dw)

}
, (B.3)

with J(s, w|α, β) = I{S0(s, w|α, β) > 0} and with the convention that 0/0 = 0.

After that Peña et al. (2003) develop the profile likelihood for (α, β) following Jacod (1975)

as follows. Assuming that the distribution G of τ does not involve the model parameters, the

likelihood process associated with the observables for the Peña and Hollander model without

frailties is

L†(s|λ0(·), α, β) =

{
n∏

i=1

s∏

v=0

[
Y †

i (v) ρ[N †
i (v−);α]ψ(β′Xi(v))λ0[Ei(v)]

]N†
i (∆v)

}
×

{
exp

[
−

n∑

i=1

∫ s

0
Y †

i (v) ρ[N †
i (v−);α] ψ(β′Xi(v))λ0[Ei(v)] dv

]}
. (B.4)

Using (B.3), we can estimate the cumulative hazard function using the expression

Λ̂0(s, dw|α, β) =
∑n

i=1 Ni(s, dw)
S0(s, w|α, β)

.

On the other hand, substituting Λ̂0(s, w|α, β) for Λ0(w) in the first term of (B.4), we obtain

the relevant portion of the profile likelihood of (α, β) to be

Lp(s|α, β) =
n∏

i=1

N†
i (s)∏

j=1

[
ρ(j − 1; α) ψ[β′Xi(Sij)]

S0[s, Ei(Sij)|α, β]

]∆N†
i (Sij)

. (B.5)

The logarithm of the profile likelihood may also be expressed as

lP (s|α, β) =
n∑

i=1

∫ s

0

[
log ρ[N †

i (v−);α] + log ψ(β′Xi(v))− log S0(s, Ei(v)|α, β)
]
N †

i (dv).(B.6)
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Finally, the estimators of α and β may be computed using the next estimating equations:
n∑

i=1

∫ s∗

0

[
∂

∂αρ[N †
i (v−);α]

ρ[N †
i (v−);α]

−
∂

∂αS0(s, Ei(v)|α, β)
S0(s, Ei(v)|α, β)

]
N †

i (dv) = 0; (B.7)

n∑

i=1

∫ s∗

0

[
∂
∂β ψ(β′Xi(v))

ψ(β′Xi(v))
−

∂
∂β S0(s, Ei(v)|α, β)

S0(s, Ei(v)|α, β)

]
N †

i (dv) = 0. (B.8)

After that, Newton-Raphson algorithm may be employed to obtain the estimates α̂ and β̂ as we

have described in Section 4.4.

Peña et al. (2003) proposed and alternative notation to better understand equations (B.7)

and (B.8). For i = 1, 2, . . . , n and j = 1, 2, . . . , N †
i (s), and recalling the definition of the function

ϕij(·; α, β) in (B.11), the authors define

Qij(s, w|α, β) = I(Eij−1(Sij−1), Eij−1(Sij)](w) ϕij−1

(
E−1

ij−1(w);α, β
)

(B.9)

Ri(s, w|α, β) = I(E
iN
†
i
(s−)

(S
iN
†
i
(s−)

), E
iN
†
i
(s−)

(min(s,τi))](w) ϕ
iN†

i (s−)

(
E−1

iN†
i (s−)

(w);α, β

)
.(B.10)

where

ϕij(s;α, β) ≡ ρ[N †
i (s−);α]ψ[β′Xi(s)]

E ′ij(s)
. (B.11)

and E ′ij(s) = d
dsEij(s).

Using these processes, S0(s, w|α, β) could be re-expressed via

S0(s, w|α, β) =
n∑

i=1





N†
i (s)∑

j=1

Qij(s, w|α, β) + Ri(s, w|α, β)



 . (B.12)

The authors noticed that the Qijs can be interpreted as the contributions of the uncensored

values, while the Ris are the contributions of the right-censored values. Introducing new notation:

ρ(α)(·; α) = ∂ρ(·; α)/∂α, ψ′(·) be the derivative of ψ(·), and

V(j; α) =
ρ(α)(j;α)
ρ(j;α)

and W(x; β) =
xψ′(β′x)
ψ(β′x)

.

the authors showed that, assuming ρ(k;α) = αk, ψ(w) = exp(w), and that the covariate vector

process is time-independent, the estimating equations in (B.7) and (B.8) become

n∑

i=1

N†
i (s∗)∑

j=1

[
j − 1

α
−A(s∗, Eij−1(Sij)|α, β)

]
∆N †

i (Sij) = 0;

n∑

i=1

N†
i (s∗)∑

j=1

[Xi −B(s∗, Eij−1(Sij)|α, β)]∆N †
i (Sij) = 0.



148 Chapter B Semiparametric Inference for Peña and Hollander model

where

A(s, w|α, β) =
1
α

∑n
i=1

{∑N†
i (s)

j=1 (j − 1)Qij(s, w|α, β) + N †
i (s−) Ri(s, w|α, β)

}

∑n
i=1

{∑N†
i (s)

j=1 Qij(s, w|α, β) + Ri(s, w|α, β)
} ;

B(s, w|α, β) =

∑n
i=1 Xi

{∑N†
i (s)

j=1 Qij(s, w|α, β) + Ri(s, w|α, β)
}

∑n
i=1

{∑N†
i (s)

j=1 Qij(s, w|α, β) + Ri(s, w|α, β)
} ,

After obtaining the estimators α̂ and β̂, the authors also showed that the estimator of Λ0(t)

based on the realizations of the observables over [0, s∗] is obtained by substituting (α̂, β̂) for (α, β)

in the expression of Λ̂0(s∗, t|α, β) given in (B.3). That is,

Λ̂0(s∗, t) =
∫ t

0

{
J(s∗, w|α̂, β̂)

S0(s∗, w|α̂, β̂)

}{
n∑

i=1

Ni(s∗, dw)

}
. (B.13)

Finally, for an estimator of the baseline survivor function associated with Λ0(·) defined via F̄0(t) =

exp {−Λ0(t)}, by the product-integral representation and the substitution principle, we obtain

ˆ̄F0(s∗, t) =
t∏

w=0

[
1− Λ̂0(s∗, dw)

]
=

t∏

w=0

[
1−

∑n
i=1 Ni(s∗, dw)

S0(s∗, w|α̂, β̂)

]
. (B.14)

B.2 Case with Frailties

In this section we consider the estimation of the parameters when the class of models includes

frailties. It will be assumed that the frailties Z1, Z2, . . . , Zn are IID from a distribution H(·|ξ)
where ξ ∈ Ξ ⊆ <r. A common choice for this H is the gamma distribution with unit mean and

variance 1/ξ, H = Gamma(ξ, ξ) (see Section 1.4.2). The restriction that the gamma shape and

scale parameters are identical is needed to have model identifiability. The intensity function given

in (1.20) is:

λi(s|Zi,Xi) = Zi λ0[Ei(s)] ρ[N †
i (s−);α] ψ(β′Xi(s)).

The complete likelihood process for the model parameters (λ0, α, β, ξ) is

L†C(s∗|λ0(·), α, β, ξ, Z) =
n∏

i=1

[
ξξ

Γ(ξ)
Zξ−1

i exp−ξZi×
{

s∗∏

v=0

[
ZiY

†
i (v) λ0(Ei(v)) ρ[N †

i (v−);α] ψ(β′Xi(v))
]N†

i (∆v)
}
×

exp

{
−

∫ s∗

0
ZiY

†
i (v) λ0(Ei(v)) ρ[N †

i (v−);α] ψ(β′Xi(v)) dv

}]
. (B.15)
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By integrating out Z according to its joint (gamma) distribution in the previous equation, the

full likelihood process is obtained as follows:

LF (s∗|λ0(·), α, β, ξ) =
n∏

i=1

{[
Γ(ξ + N †

i (s∗))
Γ(ξ)

]
×

[
ξ

ξ +
∫ s∗
0 Y †

i (v) ρ[N †
i (v−);α] ψ(β′Xi(v))λ0[Ei(v)] dv

]ξ+N†
i (s∗)

×



s∗∏

v=0

[
Y †

i (v) ρ[N †
i (v−);α] ψ(β′Xi(v))λ0[Ei(v)]

ξ

]N†
i (∆v)






 . (B.16)

To estimate the model parameters ξ, Λ0(·), α, and β, the authors generalize and extend the

approach implemented in Peña, et al. (2001). They used the expectation-maximization (EM)

algorithm introduced by Dempster, et al. (1977), and implemented in counting process frailty

models by Nielsen, et al. (1992).

The two steps of the EM algorithm for obtaining the maximum likelihood estimator of α, β,

and Λ0 are:

1. E-step. Compute the frailties estimates, Z, as the expected value given the current

values α, β, Λ0, and the data using the formula

Ẑi =
ξ̂ + N †

i (s∗)

ξ̂ +
∫ s∗
0 Y †

i (v) ρ[N †
i (v−); α̂] ψ(β̂′Xi(v)) λ̂0[Ei(v)] dv

(B.17)

2. M-step. Treating the estimates of Z as a fixed offset, we update α, β, and λ0 as in the

case without frailties. That is, solving the score functions for the profile likelihood. Given

Z, α, β, and the data

Λ̂0(s∗, t|Z, α, β) =
∫ t

0

{
J(s∗, u|w,α, β)
S0(s∗, u|w,α, β)

}{
n∑

i=1

Ni(s∗, du)

}
, (B.18)

where J(s, u|w, α, β) = I{S0(s, u|w, α, β) > 0} with

S0(s, u|w, α, β) =
∑n

i=1 ZiYi(s, u|α, β).

For a given (Λ0(·), α, β), we can obtain an estimation of frailty parameter ξ maximizing the

marginal profile likelihood for ξ from (B.16). Since we are dealing with an one-dimensional

problem other algorithms different from Newton-Raphson can be used (see Section 4.4).
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Having obtained an estimator of the baseline hazard function Λ0(·) given by Λ̂0(s∗, ·), the

semiparametric estimator of the baseline survivor function F̄0(·) for this model with frailty is

obtained via
ˆ̄F0(s∗, t) =

∏

{w: w≤t}

[
1− Λ̂0(s∗, dw)

]
. (B.19)
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Published work related to present

thesis

C.1 Papers

I Juan R González, Edsel A Peña, Elizabeth H Slate. Modelling Interven-

tion Effects after Cancer Relapses. (Statistics in Medicine, 2005;24:3959-75. DOI:

10.1002/sim.2394). This article addresses the problem of incorporating information regard-

ing the effects of treatments or interventions into models for repeated cancer relapses. In

contrast to many existing models, our approach permits the impact of interventions to

differ after each relapse. We adopt the general model for recurrent events proposed by

Peña and Hollander, in which the effect of interventions is represented by an effective age

process acting on the baseline hazard rate function. To accommodate the situation of can-

cer relapse, we propose an effective age function that encodes three possible therapeutic

responses: complete remission, partial remission, and null response. The proposed model

also incorporates the effect of covariates, the impact of previous relapses, and heterogeneity

among individuals. We use our model to analyze the times to relapse for 63 patients with a

particular subtype of indolent lymphoma and compare the results to those obtained using

existing methods.

II Edsel A Peña, Elizabeth H Slate, Juan R González. Semiparametric Inference

for a General Class of Models for Recurrent Events. (in first revision in Journal of
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Statistical Planning and Inference). Procedures for estimating the parameters of the gen-

eral class of semiparametric models for recurrent events proposed by Peña and Hollander

(2004) are developed. This class of models incorporates an effective age function which

encodes the changes that occur after each event occurrence such as the impact of an inter-

vention, it al- lows for the modeling of the impact of accumulating event occurrences on

the unit, it admits a link function in which the effect of possibly time-dependent covariates

are incorporated, and it allows the incorporation of unobservable frailty components which

induce dependencies among the inter-event times for each unit. The estimation procedures

are semiparametric in that a baseline hazard function is non-parametrically specified. The

sampling distribution properties of the estimators are examined through a simulation study,

and the consequences of miss-specifying the model are analyzed. The results indicate that

the flexibility of this general class of models provides a safeguard for analyzing recurrent

event data, even data possibly arising from a frailty-less mechanism. The estimation proce-

dures are applied to real data sets arising in the biomedical and public health settings, as

well as from reliability and engineering situations. In particular, the procedures are applied

to a data set pertaining to times to recurrence of bladder cancer and the results of the

analysis are compared to those obtained using three methods of analyzing recurrent event

data.

III Virginie Rondeau, Juan R González. frailtypack: a computer program for the

analysis of correlated failure time data using penalized likelihood estimation.

(Computer Methods and Programs in Biomedicine, 2005;80: 154-164. DOI:10.1016/j.cmpb.2005.06.010).

Correlated survival outcomes occur quite frequently in the biomedical research. Available

softwares are limited, and especially if we want to obtain a smooth curve for the baseline

hazard function and a random effects model for correlated data.

The main objective of this paper is to describe an R package, frailtypack that can be used to

estimate the parameters in a shared gamma frailty model with potentially right censored,

left truncated and stratified survival data, using maximum penalized likelihood estimation.

Time-dependent structure for the explanatory variables and/or extension of the Cox regres-

sion model to recurrent events are also allowed. This program can also be used simply to

obtain directly a smooth estimates of the baseline hazard function.

To illustrate the program we used two data sets, one with clustered survival times, the
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other one with recurrent events, ie the rehospitalizations of patients diagnosed with colorec-

tal cancer. With this example we show how to fit the recurrent events, with time-dependent

variables using the Andersen-Gill approach.

IV Juan R González, Edsel A Peña. Nonparametric Estimation of Survival Func-

tion with Recurrent Event Data. (Rev. Española de Salud Pública, 78, 211-220,

2004. In Spanish). Recurrent events when we deal with survival studies demand a different

methodology from what is used in standard survival analysis. The main problem that we

found when we make inference in these kind of studies is that the observations may not

be independent. Thus, biased and inefficient estimators can be obtained if we do not take

into account this fact. In the independent case, the interoccurrence survival function can be

estimated by the generalization of the limit product estimator (Peña et al., 2001). However,

if data are correlated, other models should be used such as frailty models or an estimator

proposed by Wang and Chang (1999), that take into account the fact that interocurrence

times were or not correlated. The aim of this paper has been the illustration of these

approaches by using two real data sets.

V Juan R González, Esteve Fernández, Victor Moreno, et al.. Gender differences

in hospital readmission among colorectal cancer patients (Journal or Epidemiology

and Community Health, 59, 506-11, 2005. DOI:10.1136/jech.2004.028902).

Background: While several studies have analyzed gender and socioeconomic differences

in cancer incidence and mortality, gender differences in oncological health care have been

seldom considered.

Objective: The aim of this study was to investigate gender-based inequalities in hospital

readmission among patients diagnosed with colorectal cancer.

Design: Prospective cohort study. Setting: Hospital Universitary in L’Hospitalet (Barcelona,

Spain).

Participants: Four hundred and three patients diagnosed with colorectal between January

1996 and December 1998 were actively followed up until 2002.

Main outcome measurements and methods: Hospital readmission times related to col-

orectal cancer after surgical procedure. Cox proportional model with random effect (frailty)

was used to estimate hazard rate ratios and 95% confidence intervals of readmission time
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for covariates analyzed.

Results: Crude hazard rate ratio of hospital readmission in males was 1.61 (95% confidence

interval: 1.21-2.15). When other significant determinants of readmission were controlled for

(Dukes’ stage, mortality, and Charlson’s index) a significant risk of readmission was still

present for males (hazard rate ratio: 1.51, 95% confidence interval: 1.17-1.96).

Conclusions: In the case of colorectal cancer, women are less likely than men to be

readmitted to the hospital, even after controlling for tumor characteristics, mortality, and

comorbidity. New studies should investigate the role of other non-clinical variable such as

differences in help-seeking behaviors or structural or personal gender bias in the attention

given to patients.

C.2 R packages

VI Juan R González, Edsel A Peña, Robert L Strawderman, (2005). survrec: Sur-

vival analysis for recurrent event data. R package version 1.1-3. http://www.r-

project.org. Estimation of survival function for recurrent event data using Peña-Strawderman-

Hollander, Whang-Chang estimators and MLE estimation under a Gamma Frailty model.

VII Juan R González, Elizabeth H. Slate, Edsel A Peña, (2005). gcmrec: General

class of models for recurrent event data. R package version 0.9-1. http://www.r-

project.org. Parameters estimation of the general semiparametric model for recurrent

events data proposed by Peña and Hollander.

VIII Juan R González, Virginie Rondeau, (2005). frailtypack: Frailty models using

maximum penalized likelihood estimation. R package version 2.0-0. http://www.r-

project.org. Fit a shared gamma frailty model and Cox proportional hazards model using

a Penalized Likelihood on the hazard function. Left truncated, censored data and strata

(max=2) are allowed. Clustered and recurrent survival times can be studied (the Andersen-

Gill (1982) approach has been implemented for recurrent events). An automatic choice of

the smoothing parameter is possible using an approximated cross-validation procedure.
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C.3 Oral Contributions in Meetings

IX Juan R González, Edsel A Peña. Modelling treatment effect after cancer re-

lapses. 25th Annual Conference of the International Society for Clinical Biostatistics Lei-

den, the Netherlands, August 15-19, 2004.

X Juan R González, Edsel A Peña. Bootstrapping median survival with recurrent

event data. 9th Spanish Conference on Biometrics A Corunha, Spain, May 28-30th, 2003

(In Spanish). This oral contribution was awarded with the Young Biometric Researchers

Award.

XI Juan R González, J Ribes, E Fernández, et al. Non-parametric estimation

with recurrent events. Application to hospital readmission in patients with

colorectal cancer. XX Scientific Meeting of Spanish Society of Epidemiology Barcelona,

Spain, September 12-14, 2002 (In Spanish).





Appendix D

R Functions and Classes

In this appendix we reproduce the on-line documentation for function and classes that are used

in the examples in the text. The documentation is also available at CRAN http://www.r-

project.org/.

D.1 The survrec Package

This package deals with the estimation of survival function for recurrent event data using Peña-

Strawderman-Hollander, Whang-Chang estimators and maximum likelihood estimation under a

Gamma Frailty model. In addition, this package also estimates median survival time and their

confidence intervals using both asymptotic or bootstrap variance as we have described in this

chapter.

MMC Migratory Motor Complex

Description

This contains the Migratoty Motor Complex data

Usage

data(MMC)

157
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Format

This data frame contains the following columns:

id ID of each subject. Repeated for each recurrence

time recurrence o censoring time

event censoring status. All event are 1 for each subject excepting last one that it is 0

group a factor with levels

Note: The group have been created (at random) to illustrate a group comparison

Source

Husebye E, Skar V, Aalen O and Osnes M (1990), Digestive Diseases and Sciences, p1057

Survr Create a Survival recurrent object

Description

Create a survival recurrent object, usually used as a response variable in a model formula

Usage

Survr(id, time, event)
is.Survr(x)

Arguments

id Identifier of each subject. This value is the same for all recurrent times of

each subject.

time time of reccurence. For each subject the last time are censored.

event The status indicator, 0=no recurrence 1=recurrence. Only these values are

accepted.

x any R object.
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Value

An object of class Survr. Survr objects are implemented as a matrix of 3 colummns. No

method for print.

In the case of is.Survr, a logical value T if x inherits from class ”Survr”, otherwise an F.

See Also

survfitr,psh.fit,wc.fit,mlefrailty.fit

Examples

data(MMC)
Survr(MMC$id,MMC$time,MMC$event)

surv.search Calculate the survival in selected times

Description

Auxiliary function called from pshPLE, wcPLE and MLEFrailty.

The estimation using PLE (e.g. Kaplan-Meier) is a decreasing constant piecewise function

with jumps in the times with events. Thus, to estimate the survival at any time we take the

time of the precious event.

Usage

surv.search(tvals,time,surv)

Arguments

tvals vector of times where the survival function has to be estimated

time vector of failures times (distinct)

surv vector of survival of each time
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Value

Returns the survival in each selected time (tvals) from a vector of survival values

Examples

# we have the times 4,7,9,15,21,67
time<-c(4,7,9,15,21,67)

# and its survival (note: in this example there may be more
# than one event in some times)
surv<-c(0.8,0.7,0.65,0.55,0.43,0.22)

# We want to calculated the survival at times 1, 10, 32,64
surv.search(c(1,10,32,74),time,surv)

colon Rehospitalization colorectal cancer

Description

This contains rehospitalization times after surgery in patients with colorectal cancer

Usage

data(colon)

Format

This data frame contains the following columns:

hc identificator of each subject. Repeated for each recurrence

time rehospitalization o censoring time

event censoring status. All event are 1 for each subject excepting last one that it is 0

chemoter Did patient receive chemotherapy? 1: No 2:Yes

dukes Dukes’ tumoral stage: 1:A-B 2:C 3:D

distance distance from living place to hospital 1:<=30 Km. 2:>30 Km.



mlefrailty.fit 161

Source

González, JR., Fernandez, E., Moreno, V. et al. Gender differences in hospital readmission

among colorectal cancer patients. J Epidem Community Health, 2005

mlefrailty.fit Survival function estimator for correlated recurrence time data under

a Gamma Frailty Model

Description

Estimation of survival function for correlated recurrence time data under a Gamma Frailty

model using the maximum likelihood criterion. The resulting object of class ”survfitr” is

plotted by ‘plot.survfitr’, before it is returned.

Usage

mlefrailty.fit(x,tvals, lambda=NULL, alpha=NULL, alpha.min, alpha.max,
tol=1e-07, maxiter=500,alpha.console=TRUE)

Arguments

x a survival recurrent event object.

tvals vector of times where the survival function can be estimated.

lambda optional vector of baseline hazard probabilities at t (see details). Default is

numdeaths/apply(AtRisk,2,sum).

alpha optional parameter of shape and scale for the frailty distribution. If this

parameter is unknown it is estimated via EM algorithm. In order to obtain

the convergence of this algorithm a seed is calculated (see details).

alpha.min optional left bound of the alpha parameter in order to obtain a seed to esti-

mate alpha parameter. Default value is 0.5.

alpha.max optional right bound of the alpha parameter in order to obtain a seed to

estimate alpha parameter. Default value is the maximum of distinct times of

events.
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tol

maxiter optional maximum number of iterations of the EM algorithm used to estimate

the alpha parameter. Default is 500.

alpha.console

if TRUE prints in the console the estimates initial value for alpha and the

alpha estimate via the EM algorithm, if FALSE not.

Details

The product limit estimator developed by Peña, Strawderman and Hollander (2001) are valid

when the interoccurrence times are assumed to represent an IID sample from some underlying

distribution F. This assumption is clearly restrictive in biomedical applications, and one

obvious generalization that allows association between interocurrence times is a frailty model.

A common and convenient choice of frailty distribution is a gamma distribution with shape

and scale parameters set equal to an unknown parameter α. The common marginal survival

function can be written as follows

F̄ (t) =
[

α

α + Λ0 (t)

]α

.

The parameter α controls the degree of association between interoccurrence times within a

unit. Peña, Strawderman and Hollander (2001) showed that the estimation of α and Λ0 can

be obtained via the maximisation of the marginal likelihood function and the expectation-

maximisation (EM) algorithm. For details and the theory behind this estimator, please refer

to Peña, Strawderman and Hollander (2001, JASA).

In order to obtain a good convergence, α is estimated previously. This estimation is used

as initial value in the EM procedure and it carried out by the maximisation of the profile

likelihood for α. In this case the arguments of mlefrailty.fit function called alpha.min and

alpha.max are the boundaries of this maximisation. The maximum is obtained using the

golden section search method.
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Value

If the convergence of EM algorithm is not obtained, the initial value of alpha can be used as

a alpha.min argument and recalculate.

n number of unit or subjects observed.

m vector of number of recurrences in each subject (length n).

failed vector of number of recurrences in each subject (length n*m). Vector ordered

(e.g. times of first unit, times of second unit , ..., times of n-unit).

censored vector of times of censorship for each subject (length n).

numdistinct number of distinct failures times.

distinct vector of distinct failures times.

status 0 if the estimation is can be provided and 1 if not depending if alpha could

be estimate or not.

alpha parameter of Gamma Frailty Model.

lambda Estimates of the hazard probabilities at distinct failures times.

survfunc vector of survival estimated in distinct times.

tvals copy of argument.

MLEAttvals vector of survival estimated in tvals times.

References

Peña, E.A., Strawderman, R. and Hollander, M. (2001). Nonparametric Estimation with

Recurrent Event Data. J. Amer. Statist. Assoc, 96, 1299-1315.

See Also

survfitr Survr

Examples

data(MMC)
fit<-mlefrailty.fit(Survr(MMC$id,MMC$time,MMC$event))
fit
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plot(fit)

# compare with pena-straderman-hollander

fit<-psh.fit(Survr(MMC$id,MMC$time,MMC$event))
fit
lines(fit,lty=2)

# and with wang-chang

fit<-wc.fit(Survr(MMC$id,MMC$time,MMC$event))
fit
lines(fit,lty=3)

plot.survfitr Plots estimated survival function from an object of class ‘survrec’.

Description

Additional plots can be added to the same of axes using ‘lines.survrec’.

Usage

plot.survfitr(x, conf.int=TRUE, prob = FALSE, ...)

Arguments

x Object of class survrec (output from calling survrec function).

conf.int Print the pointwise confidence intervals of the probability or survival function

if its value is TRUE or FALSE.

prob Print of the probability or survival function if its value is TRUE or FALSE

respectively.

...

additional arguments passed to the plot function.

Value

Print a plot of class survrec
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See Also

psh.fit mlefrailty.fit wc.fit

print.survfitr Print a Short Summary of a Survival Recurrent Curve

Description

Print number of observations, number of events, the restricted mean survival and its standard

error, the median survial and the minimum, maximum and median number of recurrences for

each subject.

Usage

print.survfitr(x, scale=1, digits=max(options()$digits - 4, 3), ...)

Arguments

x the result of a call to the survfit, psh.fit, wc.fil or mlefrailty.fit functions

scale a numeric value to rescale the survival time, e.g., if the input data to survfit

were in days, scale=365 would scale the printout to years

digits number of digits to print

... other unusued arguments

Details

The restricted mean and its standard error are based on a truncated estimator. If the last

observation(s) is not a death, then the survival curve estimate does not got to zero and

the mean survival time cannot be estimated. Instead, the quantity reported is the mean of

survival restricted to the time before the last censoring. When the last censoring time is not

random this quantity is occasionally of interest.

Any randomness in the last censoring time is not taken into account in computing the standard

error of the restricted mean. The restricted mean is shown mainly for compatibility with S.

The median are defined by drawing a horizontal line at 0.5 on the plot of the survival curve.
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Value

x, with the invisible flag set

See Also

summary.survfitr, survfitr

Examples

data(MMC)
fit<-survfitr(Survr(id,time,event)~group,data=MMC)
print(fit)

psh.fit Survival function estimator for recurrence time data using the esti-

mator developed by Peña, Strawderman and Hollander

Description

Estimation of survival function for recurrence time data by means the generalized product

limit estimator (PLE) method developed by Pe a, Strawderman and Hollander. The resulting

object of class ”survfitr” is plotted by ‘plot.survfitr’, before it is returned.

Usage

psh.fit(x,tvals)

Arguments

x a survival recurrent event object

tvals vector of times where the survival function can be estimated.

Details

The estimator computed by this object is the nonparametric estimator of the inter-event

time survivor function under the assumption of a renewal or IID model. This generalizes

the product-limit estimator to the situation where the event is recurrent. For details and the

theory behind this estimator, please refer to Peña, Strawderman and Hollander (2001, JASA).
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Value

n number of unit or subjects observed.

m vector of number of recurrences in each subject (length n).

failed vector of number of recurrences in each subject (length n*m). Vector ordered

(e.g. times of first unit, times of second unit, ..., times of n-unit)

censored vector of times of censorship for each subject (length n).

numdistinct number of distinct failures times

distinct vector of distinct failures times

AtRisk matrix of number of persons-at-risk at each distinct time and for each subject

survfunc vector of survival estimated in distinct times

tvals copy of argument
PSHpleAttvals

vector of survival estimated in tvals times

References

Peña, E.A., Strawderman, R. and Hollander, M. (2001). Nonparametric Estimation with

Recurrent Event Data. J. Amer. Statist. Assoc, 96, 1299-1315.

See Also

survfitr Survr

Examples

data(MMC)
fit<-psh.fit(Survr(MMC$id,MMC$time,MMC$event))
fit
plot(fit,conf.int=FALSE)

# compare with MLE Frailty

fit<-mlefrailty.fit(Survr(MMC$id,MMC$time,MMC$event))
fit
lines(fit,lty=2)

# and with wang-chang
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fit<-wc.fit(Survr(MMC$id,MMC$time,MMC$event))
fit
lines(fit,lty=3)

q.search Calculate the survival time of a selected quantile

Description

Auxiliary function called from survdiffr function. Given a survfitr object we obtain the quan-

tile from a survival function

Usage

q.search(f, q = 0.5)

Arguments

f survdifr object

q quantile. Default is 0.5

Value

Returns the time in a selected quantile

Examples

data(MMC)
fit<-survfitr(Survr(id,time,event)~1,data=MMC)

# 75th percentile from the survival function
q.search(fit,q=0.75)
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summary.survfitr Summary of a Survival of Recurrences Curve

Description

Returns a matrix containing the survival curve and other information. If there are multiple

curves, returns a list that contains the previous matrix for each curve.

Usage

summary.survfitr(object,...)

Arguments

object output from a call to survfitr, psh.fit, wc.fit or mlefrailty.fit.

... other unused arguments.

Value

For one survival curve returns a matrix, and for multiple curves a list with the same matrix

for each curve. This matrix contains the distinct failure times, and the number of events, at

risk subjects, survival and standard error for each distinct time

See Also

survfitr

Examples

data(MMC)
summary(survfitr(Survr(id,time,event)~group,data=MMC))
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survdiffr Test median survival differences (or other quantile)

Description

Obtain bootstrap replicates of the median survival time for different groups of subjects. We

can compute confidence intervals using boot package.

Usage

survdiffr(formula, data, q, B = 500, boot.F = "WC", boot.G = "none", ...)

Arguments

formula A formula object. If a formula object is supplied it must have a Survr object

as the response on the left of the operator and a term on the right. For a

single bootstrap median survival the ” 1” part of the formula is required.

data A data frame in which to interpret the variables named in the formula.

q Quantile that we are interested in to obtain a bootstrap sample from survival

function

B Number of boostrap samples

boot.F a character string specifying the boostrap procedure. Possible value are either

”PSH” or ”WC” for nonparametric bootstrap or ”semiparametric” for semi-

parametric boostrap. The default is ”WC”. Only the first words are required,

e.g ”P”,”W”,”se”

boot.G a character string specifying if we also resample form censored empirical dis-

tribution. Possible value are either ”none” or ”empirical”. The default is

”none”. Only the first words are required, e.g ”n”,”e”

... additional arguments passed to the type of estimator.

Details

See reference. Some procedures can be slow
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Value

A boot object. Bootstrap confidence intervals can be computed using boot.ci function from

boot package

References

Gonzalez JR, Peña EA. Bootstraping median survival with recurrent event data. IX Confer-

encia Española de Biometŕıa; 2003 May 28-30; A Coruña, España.

Paper available upon request to the mantainer

See Also

survfitr,boot.ci

Examples

data(colon)

#We will compare the median survival time for three dukes stages
fit<-survdiffr(Survr(hc,time,event)~as.factor(dukes),data=colon,q=0.5)
boot.ci(fit$"1")
boot.ci(fit$"2")
boot.ci(fit$"3")

# 75th quantile of survival function
fit<-survdiffr(Survr(hc,time,event)~as.factor(dukes),data=colon,q=0.75)
# bootstrap percentile confidence interval
quantile(fit$"1"$t,c(0.025,0.975))
quantile(fit$"2"$t,c(0.025,0.975))
quantile(fit$"3"$t,c(0.025,0.975))

# We can execute this if there is none Inf value
# boot.ci(fit$"1")
# boot.ci(fit$"2")
# boot.ci(fit$"3")

#We can modify the bootstrap procedure modifiying boot.F parameter
fit<-survdiffr(Survr(hc,time,event)~as.factor(dukes),data=colon,q=0.5,boot.F="PSH")
# bootstrap percentile confidence interval
quantile(fit$"1"$t,c(0.025,0.975))
quantile(fit$"2"$t,c(0.025,0.975))
quantile(fit$"3"$t,c(0.025,0.975))
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survfitr Compute a Survival Curve for Recurrent Event Data given a covari-

ate

Description

Computes an estimate of a survival curve for recurrent event data using either the Peña-

Strawderman-Hollander, Wang-Chang or MLE Frailty estimators. It also computes the

asymptotic standard errors. The resulting object of class ”survfitr” is plotted by ‘plot.survfitr’,

before it is returned.

Usage

survfitr(formula, data, type="MLEfrailty",...)

Arguments

formula A formula object. If a formula object is supplied it must have a Survr object

as the response on the left of the operator and a term on the right. For a

single survival curve the ” 1” part of the formula is required.

data a data frame in wich to interpret the variables named in the formula.

type a character string specifying the type of survival curve. Possible value are

”pena-strawderman-hollander”, ”wang-chang”or ”MLEfrailty”. The default is

”MLEfrailty”. Only the first words are required, e.g ”pe”,”wa”,”ML”

...

additional arguments passed to the type of estimator.

Details

See the help details of psh.fit, wc.fit or mlefrailty depending on the type chosen

Value

a survfitr object. Methods defined for survfitr objects are provided for print,plot,lines and

summary.
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Note

The mantainer wishes to thank Professors Chiung-Yu Huang and Shu-Hui Chang for their

help for providing us with the Fortran code which computes standard errors of Wang and

Chang’s estimator.

References

1. Peña, E.A., Strawderman, R. and Hollander, M. (2001). Nonparametric Estimation with

Recurrent Event Data. J. Amer. Statist. Assoc, 96, 1299-1315.

2. Wang, M.-C. and Chang, S.-H. (1999). Nonparametric Estimation of a Recurrent Survival

Function. J. Amer. Statist. Assoc, 94, 146-153.

See Also

print.survfitr,plot.survfitr, lines.survfitr, summary.survfitr, Survr,psh.fit,wc.fit,

mlefrailty.fit

Examples

data(colon)
# fit a pena-strawderman-hollander and plot it
fit<-survfitr(Survr(hc,time,event)~as.factor(dukes),data=colon,type="pena")
plot(fit,ylim=c(0,1),xlim=c(0,2000))
# print the survival estimators
fit
summary(fit)

# fit a MLE Frailty and plot it (in this case do not show s.e.)
fit<-survfitr(Survr(hc,time,event)~as.factor(dukes),data=colon,type="MLE")
plot(fit)
# print the survival estimators
fit
summary(fit)

wc.fit Survival function estimator for recurrence time data using the esti-

mator developed by Wang and Chang.



174 wc.fit

Description

Estimation of survival function for correlated or i.i.d. recurrence time data by means of the

product limit estimator (PLE) method developed by Wang and Chang. The resulting object

of class ”survfitr” is plotted by ‘plot.survfitr’, before it is returned.

Usage

wc.fit(x,tvals)

Arguments

x a survival recurrent event object.

tvals vector of times where the survival function can be estimated.

Details

Wang and Chang (1999) proposed an estimator of the common marginal survivor function

in the case where within-unit interrocurence times are correlated. The correlation structure

considered by Wang and Chang (1999) is quite general and contains, in particular, both the

i.i.d. and multiplicative (hence gamma) frailty model as special cases.

This estimator removes the bias noted for the produc-limit estimator developed by Pena,

Strawderman and Hollander (PSH, 2001) when interrocurence times are correlated within

units. However, when applied to i.i.d. interocurrence times, this estimator is not expected to

perform as well as the PSH estimator, especially with regard to efficiency.

Value

n number of unit or subjects observed.

m vector of number of recurrences in each subject (length n).

failed vector of number of recurrences in each subject (length n*m). Vector ordered

(e.g. times of first unit, times of second unit, ..., times of n-unit)

censored vector of times of censorship for each subject (length n).

numdistinct number of distinct failures times.

distinct vector of distinct failures times.
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AtRisk matrix of number of persons-at-risk at each distinct time and for each subject.

survfunc vector of survival estimated in distinct times.

tvals copy of argument.
PSHpleAttvals

vector of survival estimated in tvals times.

Note

The mantainer wishes to thank Professors Chiung-Yu Huang and Shu-Hui Chang for their

help for providing us with the Fortran code which computes standard errors of Wang and

Chang’s estimator.

References

Wang, M.-C. and Chang, S.-H. (1999). Nonparametric Estimation of a Recurrent Survival

Function. J. Amer. Statist. Assoc, 94, 146-153.

See Also

survfitr Survr

Examples

data(MMC)

fit<-wc.fit(Survr(MMC$id,MMC$time,MMC$event))
fit
plot(fit,conf.int=FALSE)

# compare with pena-straderman-hollander

fit<-psh.fit(Survr(MMC$id,MMC$time,MMC$event))
fit
lines(fit,lty=2)

# and with MLE frailty

fit<-mlefrailty.fit(Survr(MMC$id,MMC$time,MMC$event))
fit
lines(fit,lty=3)
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D.2 The gcmrec Package

This package is a computational implementation of the procedures and algorithms to estimate

parameters involved in the general class of models proposed by Peña and Hollander (2004).

GeneratedData Simulated data set generated under the minimal repair model

Description

This contains recurrent times under minimal repair model with probability of perfect repair

equal to 0.6. Data are as a list (see gcmrec help).

Usage

data(GeneratedData)

addCenTime Add censored time equal to 0

Description

Add a new line to the dataframe with a censored time equal to 0 when the end of follow-up

coincides to the last occurrence

Usage

addCenTime(datin)

Arguments

datin Dataframe containing id, time and event variables. Another covariates are

allowed

Value

A data frame with an added line (censored time equal to 0) for those subjects where the end

of follow-up coincides to the last occurrence
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Examples

library(survival)
data(bladder2)

# we compute the interocurrence time
bladder2$time<-bladder2$stop-bladder2$start

# If we execute:
# gcmrec(Survr(id,time,event)~rx+size+number,data=bladder2,s=2060)

# We will obtain the following error message:
# Error in Survr(id, time, event) : Data doesn,t match...

# This means that we have some patients without right-censoring time. So,
# we understand that the last event coincides with the end of study.
# Consequently,we need to add a line with time 0 and status value equal
# to 0, too. To do so, we can use the function "addCenTime" as follows:

# for example:
# bladder2[bladder2$id==12,]

# id rx number size start stop event enum time
# 45 12 1 1 1 0 3 1 1 3
# 46 12 1 1 1 3 16 1 2 13
# 47 12 1 1 1 16 23 1 3 7

# there is no censored time for 12th patient. So, if we execute

bladderOK<-addCenTime(bladder2)

# we get

# id rx number size start stop event enum time
# 45 12 1 1 1 0 3 1 1 3
# 46 12 1 1 1 3 16 1 2 13
# 47 12 1 1 1 16 23 1 3 7
# 471 12 1 1 1 16 23 0 3 0

gcmrec-internal Internal gcmrec functions

Description

Internal gcmrec functions
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Usage

formatData(id, time, event, covariates, parameffage, cancer)
formatData.effage(id, time, status, covariates, effageData)
formatData.i(id, time, event, covariates, parameffage, cancer = NULL)
generlmi(perrep)
List.to.Dataframe(data)

Details

These are not to be called by the user

gcmrec General Class of Models for recurrent event data

Description

Fits the parameters for the general semiparametric model for recurrent events proposed by

Peña and Hollander (2004). This class of models incorporates an effective age function which

encodes the changes that occur after each event occurrence such as the impact of an inter-

vention, it allows for the modeling of the impact of accumulating event occurrences on the

unit, it admits a link function in which the effect of possibly time-dependent covariates are

incorporated, and it allows the incorporation of unobservable frailty components which induce

dependencies among the inter-event times for each unit.

Usage

gcmrec(formula, data, effageData = NULL, s, Frailty = FALSE,
alphaSeed, betaSeed, xiSeed, tol = 10^(-6), maxit = 100,
rhoFunc = "alpha to k", typeEffage = "perfect",
maxXi = "Newton-Raphson", se = "Information matrix",
cancer = NULL)

Arguments

formula A formula object. If a formula object is supplied it must have a Survr object as

the response on the left of the ’ ’ operator and a term on the right. Covariates

are needed.
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data A data frame in which to interpret the variables named in the formula.

This data frame must contain the variables called ”id”,”time” and ”event” for

subject identification, time of interocurrence, and censored status (coded 1:

event, 0:censored), respectively. Furthermore, we can have some covariates.

Alternatively, it can also be a list containing the elements ”n” and ”subjects”.

Number of subjects must be recorded in ”n”. The element ”subject” must

have the following elements: subj, k, tau, caltimes, gaptimes, intercepts,

slopes, lastperrep, perrepind, effage, effagebegin, and covariate including this

information:

subj: Subject number or identificator.

k: Number of recurrences (time 0 must be included).

tau: Administrative time, time of study termination.

caltimes: Calendar times at each recurrence (time 0 must be included).

gaptimes: Gap times at each recurrence (time 0 must be included).

intercepts: Intercept value for the effect after each recurrence.

slopes: Slope value for the effect after each each recurrence.

lastperrep: Element from Brown and Proschan minimal repair model.

perrepind: Element from Brown and Proschan minimal repair model.

effagebegin: Initial value for effective age.

effage: Effective age after each recurrence.

covariate: covariate value at each recurrence.

See either GeneratedData or hydraulic data sets as an example.

effageData List containing the information about effective age. The list must have the

elements described in the option 2 of data argument. If NULL we generate

these elements under perfect repair model or minimal repair one depending

on the ’typeEffage’ argument (see below).

s A selected calendar time.

Frailty Logical value. Is model with frailties fitted? If so parameters for General

Class of Models with frailty component are estimated.
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alphaSeed Seed value for α.

betaSeed Seed value for β.

xiSeed Seed value for ξ.

tol Tolerance for maximization procedures.

maxit Maximum number of iterations in maximization procedures.

rhoFunc A character string specifying the effects attributable to the accumulating

event occurrences, ρ(k; α). Possible values are ”Identity” for ρ(k; α) = 1 or

”alpha to k” for ρ(k; α) = αk. The default is ”alpha to k”. Only the first

words are required, e.g ”Id”,”a”. Future versions will include other functions

such as Markovian model for tumor occurrences, ρ(k; α) = α−k+1 proposed

by Gail et al. (1980).

typeEffage Effective age function. Possible value are ”perfect” or ”minimal” for perfect

repair model or minimal repair model, respectively. The default is ”perfect”.

Only the first words are required, e.g ”p”,”m”

maxXi Maximization method for marginal likelihood with respect to ξ. Possible

values are ”Newton-Raphson” for Newton-Raphson maximization procedure

or ”Brent” for Brent’s method maximization in one dimension. The default

value is ”Newton-Raphson”. Only the first words are required, e.g. ”N”,”B”

se Standard errors of parameters. Possible values are ’Information matrix’ or

’Jacknife’ for inverse of the partial likelihood information matrix or jacnife

estimates, respectively.

cancer Effective age for fitting a cancer model proposed by Gonzalez et al (2005).

This variable contains the information of the effect of treatments administred

after cancer relapses coded as ”CR”, ”PR” or ”SD” depending on if complete,

partial, or null response (stable disease) is achieved. See lymphoma data set

as an example.

Details

Estimation with frailties are implemented using expectation-maximization (EM) algorithm.

In this procedure, we need to maximize the marginal likelihood with respect to ξ. This
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maximization is a one-dimensional maximization without derivarives. First we bracket the

maximizing value, and the we obtain it using Brent’s method in one dimension. When we

implement this algorithm, we re-parameterize ξ using ξ∗ = log(ξ) to alleviate the problem of

getting negative estimates for ξ. Iteration is terminated when successive values of ξ/(1 + ξ)

differ by no more than the ”tol” parameter. Maybe estimation under frailty model can be not

too fast.

Value

a gcmrec object. Methods defined for gcmrec objects are provided for print and plot.

References

Peña, E. and M. Hollander (2004). Mathematical Reliability: An Expository Perspective,

Chapter 6. Models for Recurrent Events in Reliability and Survival Analysis, pp. 105-123.

Kluwer Academic Publishers.

M. Gail, T Santner, and C Brown (1980). An analysis of comparative carfinogenesis experi-

ments based on multiple times to tumor. Biometrics, 36, 255-266.

JR Gonzalez, E Peña, E Slate (2005). Modelling treatment effect after cancer relapses, with

application to recurrences in indolent non-Hodgkin’s lymphomas. Stat Med, 2005.

R. Brent. Algorithms for Minimization Without Derivatives. Prentice-Hall, New York, 1973.

Examples

###################################
## Models using different data formats
###################################

#
# Data input as a data frame
#

# We use the well-known bladder cancer data set from survival package

library(survival)
data(bladder2)

# we compute the interocurrence time
bladder2$time<-bladder2$stop-bladder2$start
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# If we execute:
# gcmrec(Survr(id,time,event)~rx+size+number,data=bladder2,s=2060)

# We will obtain the following error message:
# Error in Survr(id, time, event) : Data doesn,t match...

# This means that we have some patients without right-censoring time. So,
# we understand that the last event coincides with the end of study.
# Consequently,we need to add a line with time 0 and status value equal
# to 0, too. To do so, we can use the function "addCenTime" as follows:

bladderOK<-addCenTime(bladder2)

# Now, we can fit the model using this new data set:

gcmrec(Survr(id,time,event)~rx+size+number,data=bladderOK,s=2060)

#
# Data as a list. See either GeneratedData or hydraulic data
# sets as an example.
#

#
# We can fit the model by transforming our data in a data frame
# using "List.to.Dataframe" function:
#

data(hydraulic)
hydraulicOK<-List.to.Dataframe(hydraulic)
gcmrec(Survr(id,time,event)~covar.1+covar.2,data=hydraulicOK,s=4753)

#
# Our model allows us to incorporate effective age information
#
# To illustrate this example, we will use a simulated data set generated
# under the minimal repair model with probability of perfect repair equal to 0.6
#
# As we have the data in a list, first we need to obtain a data frame containing
# the time, event, and covariates information:
#

data(GeneratedData)
temp<-List.to.Dataframe(GeneratedData)

# then, we can fit the model incorporating the information about the effective
# age in the effageData argument:

gcmrec(Survr(id,time,event)~covar.1+covar.2, data=temp,
effageData=GeneratedData, s=100)
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#####################################################################
## How to fit minimal or perfect repair models, with and without frailties
#####################################################################

# Model with frailties

mod.Fra<-gcmrec(Survr(id,time,event)~rx+size+number,data=bladderOK,s=2060,Frailty=TRUE)
print(mod.Fra)

# effective age function: perfect repair and minimal repair models
# (models without frailties)

data(readmission)

# perfect
mod.per<-gcmrec(Survr(id,time,event)~as.factor(dukes),data=readmission,

s=3000,typeEffage="per")
print(mod.per)

# minimal
mod.min<-gcmrec(Survr(id,time,event)~as.factor(dukes),data=readmission,

s=3000,typeEffage="min")
print(mod.min)

#####################################################################
## How to fit models with \rho function equal to identity
#####################################################################

data(lymphoma)

gcmrec(Survr(id, time, event) ~ as.factor(distrib),
data = lymphoma, s = 1000, Frailty = TRUE, rhoFunc = "Ident")

#####################################################################
## How to fit cancer model
#####################################################################

mod.can<-gcmrec(Survr(id,time,event)~as.factor(distrib), data=lymphoma,
s=1000, Frailty=TRUE, cancer=lymphoma$effage)

# standard errors can be obtained by adding se="Jacknife".
# This procedure can be very time consuming

graph.caltimes Plot of recurrent events
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Description

Plots calendar times at succesive recurrences from a data set. Information about effective age

and categories of covariates are allowed.

Usage

graph.caltimes(data, var = NULL, effageData = NULL, width = 2,
lines = TRUE, sortevents = TRUE, ...)

Arguments

data data frame containing id, time, event variables and some other covariates

var categorical variable

effageData effective age function information

width point width

lines Are horizontal lines printed? The default is TRUE

sortevents Are events sorted? The default is TRUE

... other graphical parameters

Examples

# with data in a data frame
library(survival)
data(bladder2)
bladder2$time<-bladder2$stop-bladder2$start

graph.caltimes(bladder2)

# or data in a list

data(hydraulic)
graph.caltimes(hydraulic)

# We can print some covariate as follows:
graph.caltimes(bladder2,bladder2$rx)
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hydraulic hydraulic load-haul-dump (LHD) subsystems

Description

Hydraulic load-haul-dump (LHD) subsystems used in moving ore and rock in underground

mines in Sweden. The data set provides the calendar times (in hours), excluding repair or

down times, of the successive failures of n = 6 such systems during the two-year development

phase.

Usage

data(hydraulic)

Source

Kumar, D. and B. Klefsjo (1992). Reliability analysis of hydraulic systems of lhd machines

using the power law process model. Reliability Engineering and System Safety 35, 217- 224.

lymphoma Indolent non-Hodgkin’s lymphomas

Description

This contains cancer relapses times after first treatment in patients diagnosed with low grade

lymphoma

Usage

data(lymphoma)
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Format

This data frame contains the following columns:

id identificator of each subject. Repeated for each recurrence

time interocurrence or censoring time

event censoring status. All event are 1 for each subject excepting last one that it is 0

enum which lymphoma

delay delay between first symptom and date of first treatment as a continuous variable

age age at diagnosis

sex gender: 1:Males 2:Females

distrib lesions involved at diagnosis (0=Single, 1=Localized, 2=More than one nodal site,

3=Generalized

effage response achieved after treatment upon relapses, coded as CR: Complete remission,

PR: Partial remission or SD: stable disease or null response.

Source

JR Gonzalez, E Peña, E Slate (2005). Modelling treatment effect after cancer relapses, with

application to recurrences in indolent non-Hodgkin’s lymphomas. Stat Med, 2005.

O. Servitje, F. Gallardo, T. Estrach, et al. (2002). Primary cutaneous marginal zone B-cell

lymphoma: a clinical, histopathological, immunophenotypic and molecular genetic study of

22 cases. Br J Dermatol, 147:1147-1158.

plot.gcmrec Plot Method for an object of class ‘gcmrec’.

Description

Plots estimated baseline survival and hazard functions from an object of class ‘gcmrec’.

Usage

plot.gcmrec(x, type.plot = "surv", ...)
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Arguments

x Object of class gcmrec (output from calling gcmrec function).

type.plot a character string specifying the type of curve. Possible value are ”hazard”,

or ”survival”. The default is ”hazard”. Only the first words are required, e.g

”haz”, ”su”

... Other graphical parameters

Value

Print a plot of class gcmrec

See Also

print.gcmrec

Examples

data(lymphoma)

mod<-gcmrec(Survr(id,time,event)~as.factor(distrib),data=lymphoma,s=1000)

# baseline survivor function

plot(mod)

# baseline hazard function

plot(mod,type="haz")

print.gcmrec Print a Short Summary of parameter estimates of a general class of

models for reccurrent event data

Description

Prints a short summary of ’gcmrec’ object
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Usage

print.gcmrec(x, digits = max(options()$digits - 4, 3), ...)

Arguments

x the result of a call to the gcmrec function

digits number of digits to print

... other unusued arguments

Value

x, with the invisible flag set

See Also

summary.gcmrec, gcmrec

Examples

data(lymphoma)
mod<-gcmrec(Survr(id,time,event)~as.factor(distrib),data=lymphoma,s=1000)
print(mod)

readmission Rehospitalization colorectal cancer

Description

This contains rehospitalization times after surgery in patients diagnosed with colorectal cancer

Usage

data(readmission)
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Format

This data frame contains the following columns:

id identificator of each subject. Repeated for each recurrence

enum which readmission

t.start start of interval (0 or previous recurrence time)

t.stop recurrence or censoring time

time interocurrence or censoring time

event censoring status. All event are 1 for each subject excepting last one that it is 0

chemo Did patient receive chemotherapy? 1: No; 2:Yes

sex gender: 1:Males 2:Females

dukes Dukes’ tumoral stage: 1:A-B; 2:C 3:D

charlson Comorbidity Charlson’s index. Time-dependent covariate. 0: Index 0; 1: Index

1-2; 3: Index >=3

Source

González, JR., Fernandez, E., Moreno, V. et al. Gender differences in hospital readmission

among colorectal cancer patients. J Epidem Community Health, 2005.

summary.gcmrec summary of ’gcmrec’

Description

This function returns hazard rations (HR) and its confidence intervals

Usage

summary.gcmrec(object, level = 0.95, len = 6, d = 2, lab="hr", ...)
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Arguments

object output from a call to gcmrec.

level significance level of confidence interval. Default is 95%.

len the desired number of digits after the decimal point. Default of 6 digits is

used.

d the total field width. Default is 6.

lab label of printed results.

... other unusued arguments.

Details

This function calls to intervals.gcmrec

Value

Prints HR and its confidence intervals. Confidence level is allowed (level argument)

See Also

intervals.gcmrec

Examples

data(lymphoma)
mod<-gcmrec(Survr(id,time,event)~as.factor(distrib),data=lymphoma,s=1000)
summary(mod)

# confidence interval at 99

summary(mod,level=0.99)
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D.3 The frailtypack Package

This package fits a shared gamma frailty model and Cox proportional hazards model using a

Penalized Likelihood on the hazard function. Left truncated, censored data and strata (max=2)

are allowed. Clustered and recurrent survival times can be studied (the Andersen-Gill (1982)

approach has been implemented for recurrent events). An automatic choice of the smoothing

parameter is possible using an approximated cross-validation procedure.

This package also fits the general class of models proposed by Peña and Hollander (2004)

using penalized likelihood as it is described in Chapter 4.

frailtyPenal Fit Shared Gamma Frailty model using penalized likelihood estima-

tion

Description

Fit a shared gamma frailty model using a Penalized Likelihood on the hazard function. Left

truncated and censored data and strata (max=2) are allowed. It allows to obtain a non-

parametric smooth hazard of survival function. This approach is different from the partial

penalized likelihood approach of Therneau et al.

Usage

frailtyPenal(formula, data, Frailty = TRUE, recurrentAG=FALSE,
cross.validation=FALSE, n.knots, kappa1, kappa2, maxit=350)

Arguments

formula a formula object, with the response on the left of a ’ ’ operator, and the

terms on the right. The response must be a survival object as returned by

the ’Surv’ function like in survival package.

data a data.frame in which to interpret the variables named in the ’formula’.

Frailty Logical value. Is model with frailties fitted? If so variance of frailty parameter

is estimated. If not, Cox proportional hazards model is estimated using

Penalized Likelihood on the hazard function
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recurrentAG Logical value. Is Andersen-Gill model fitted? If so indicates that recurrent

event times with the counting process approach of Andersen and Gill is used.

This formulation can be used for dealing with time-dependent covariates.

The default is FALSE.
cross.validation

Logical value. Is cross validation procedure used for estimating smoothing

parameter? If so a search of the smoothing parameter using cross validation

is done, with kappa1 as the seed. The cross validation is not implemented for

two strata. The cross validation has been implemented for a Cox proportional

hazard model, with no covariates. The default is FALSE.

n.knots integer giving the number of knots to use. Value required. It corresponds to

the (n.knots+2) splines functions for the approximation of the hazard or the

survival functions. Number of knots must be between 4 and 20.

kappa1 positive smoothing parameter. The coefficient kappa of the integral of the

squared second derivative of hazard function in the fit (penalized log like-

lihood). We advise the user to identify several possible tuning parameters,

note their defaults and look at the sensitivity of the results to varying them.

Value required.

kappa2 positive smoothing parameter for the second stratum, when data are strati-

fied. See kappa1.

maxit maximum number of iterations for the Marquardt algorithm. Default is 350

Details

The estimated parameter are obtained using the robust Marquardt algorithm (Marquardt,

1963) which is a combination between a Newton-Raphson algorithm and a steepest descent

algorithm. When frailty parameter is small, numerical problems may arise. To solve this

problem, an alternative formula of the penalized log-likelihood is used (see Rondeau, 2003 for

further details). Cubic M-splines of order 4 are used for the hazard function, and I-splines

(integrated M-splines) are used for the cumulative hazard function.

PARAMETERS
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As frailtypack is written in Fortran 77 some parameters had to be hard coded in. The default

values of these parameters are

maximum number of observations: 60000

maximum number of groups: 5000

maximum number of subjects: 30000

If these parameters are not large enough (an error message will let you know this), you need

to reset them in frailtypack.f and recompile. In particular, the statements defining these pa-

rameters are PARAMETER (ndatemax = 60000)

PARAMETER (ngmax = 5000)

PARAMETER (nsujetmax = 30000)

Value

an object of class ’”frailtyPenal”’. Methods defined for ’frailtyPenal’ objects are provided for

print and plot. The following components are included in a ’frailtyPenal’object.

n the number of observations used in the fit.

groups the maximum number of groups used in the fit

n.events the number of events observed in the fit
logVerComPenal

the complete marginal penalized log-likelihood

theta variance of frailty parameter

coef the coefficients of the linear predictor, which multiply the columns of the

model matrix.

varH the variance matrix of theta and of the coefficients.

varHIH the robust estimation of the variance matrix of theta and of the coefficients.

x1 vector of times where both survival and hazard function are estimated. By de-

fault seq(0,max(time),length=99), where time is the vector of survival times.

lam matrix of hazard estimates at x1 times and confidence bands.
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surv matrix of baseline survival estimates at x1 times and confidence bands.

x2 see x1 value for the second stratum

lam2 the same value as lam for the second stratum

surv2 the same value as surv for the second stratum

References

D. Marquardt (1963). An algorithm for least-squares estimation of nonlinear parameters.

SIAM Journal of Applied Mathematics, 431-441.

V. Rondeau, D Commenges, and P. Joly (2003). Maximum penalized likelihood estimation

in a gamma-frailty model. Lifetime Data Analysis, 9, 139-153.

McGilchrist CA and Aisbett CW (1991). Regression with frailty in survival analysis. Bio-

metrics, 47, 461-466.

See Also

print.frailtyPenal, summary.frailtyPenal

Examples

data(kidney)
#Shared frailty model
frailtyPenal(Surv(time,status)~sex+age+cluster(id),

n.knots=12,kappa1=1000,data=kidney)

#model without frailties (e.g., Cox proportional hazards
# estimated via penalized likelihood)
frailtyPenal(Surv(time,status)~sex+age+cluster(id),

n.knots=12,kappa1=1000,data=kidney,Frailty=FALSE)

# truncated data

# first, we create a hypothetical truncated data
kidney$tt0<-rep(0,nrow(kidney))
kidney$tt0[1:3]<-c(2,9,13)

# then, we fit the model
frailtyPenal(Surv(tt0,time,status)~sex+age+cluster(id),

n.knots=12,kappa1=1000,data=kidney)

#stratified data. Let,s use another dataset
data(readmission)
frailtyPenal(Surv(time,event)~as.factor(dukes)+cluster(id)+strata(sex),
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n.knots=10,kappa1=10000,kappa2=10000,data=readmission)

#Andersen-Gill counting-process approach with time-dependent covariate
frailtyPenal(Surv(t.start,t.stop,event)~as.factor(sex)+as.factor(dukes)+

as.factor(charlson)+cluster(id),data=readmission, Frail=TRUE,
n.knots=6,kappa1=100000,recurrentAG=TRUE)

# with the use of the cross validation approach, to find the smoothing parameter
frailtyPenal(Surv(t.start,t.stop,event)~as.factor(sex)+as.factor(dukes)+

as.factor(charlson)+cluster(id),data=readmission, Frail=TRUE,
n.knots=6,kappa1=5000,recurrentAG=TRUE,cross.validation=TRUE)

plot.frailtyPenal Plot Method for an object of class ‘frailtyPenal’.

Description

Plots estimated baseline survival and hazard functions from an object of class ‘frailtyPenal’.

Confidence bands are allowed.

Usage

plot.frailtyPenal(x, type.plot = "hazard", conf.bands=TRUE, ...)

Arguments

x Object of class frailtyPenal (output from calling frailtyPenal function).

type.plot a character string specifying the type of curve. Possible value are ”hazard”,

or ”survival”. The default is ”hazard”. Only the first words are required, e.g

”haz”, ”su”

conf.bands logical value. Determines whether confidence bands will be plotted. The

default is to do so.

... Other graphical parameters

Value

Print a plot of class frailtyPenal
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See Also

print.frailtyPenal

Examples

data(readmission)

# Let,s compare shared frailty model with Cox proportional hazards model
mod.sha<-frailtyPenal(Surv(time,event)~as.factor(dukes)+cluster(id),

n.knots=10,kappa1=10000,data=readmission)
plot(mod.sha,type="surv",conf=FALSE)
mod.cox<-frailtyPenal(Surv(time,event)~as.factor(dukes)+cluster(id),

n.knots=10,kappa1=10000,data=readmission,Frailty=FALSE)
lines(mod.cox,type="surv",conf=FALSE,col=2)

# Stratified model
mod<-frailtyPenal(Surv(time,event)~as.factor(dukes)+cluster(id)+strata(sex),

n.knots=10,kappa1=10000,kappa2=10000,data=readmission)
plot(mod)

# no confidence bands
plot(mod,conf.bands=FALSE)

print.frailtyPenal Print a Short Summary of parameter estimates of a shared gamma

frailty model

Description

Prints a short summary of ’frailtyPenal’ object

Usage

print.frailtyPenal(x, digits = max(options()$digits - 4, 3), ...)

Arguments

x the result of a call to the frailtyPenal function

digits number of digits to print

... other unusued arguments
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Value

x, with the invisible flag set

See Also

summary.frailtyPenal, frailtyPenal

Examples

data(kidney)
mod<-frailtyPenal(Surv(time,status)~sex+age+cluster(id),

n.knots=8,kappa1=10000,data=kidney)
print(mod)

readmission Rehospitalization colorectal cancer

Description

This contains rehospitalization times after surgery in patients diagnosed with colorectal cancer

Usage

data(readmission)

Format

This data frame contains the following columns:

id identificator of each subject. Repeated for each recurrence

enum which readmission

t.start start of interval (0 or previous recurrence time)

t.stop recurrence or censoring time

time interocurrence or censoring time

event censoring status. All event are 1 for each subject excepting last one that it is 0

chemo Did patient receive chemotherapy? 1: No; 2:Yes
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sex gender: 1:Males 2:Females

dukes Dukes’ tumoral stage: 1:A-B; 2:C 3:D

charlson Comorbidity Charlson’s index. Time-dependent covariate. 0: Index 0; 1: Index

1-2; 3: Index >=3

Source

González, JR., Fernandez, E., Moreno, V. et al. Gender differences in hospital readmission

among colorectal cancer patients. Journal of Epidemiology and Community Health. In press,

2005.

summary.frailtyPenal

summary of ’frailtyPenal’

Description

This function returns hazard rations (HR) and its confidence intervals

Usage

summary.frailtyPenal(object, level = 0.95, len = 6, d = 2, lab="hr", ...)

Arguments

object output from a call to frailtyPenal.

level significance level of confidence interval. Default is 95%.

len the desired number of digits after the decimal point. Default of 6 digits is

used.

d the total field width. Default is 6.

lab label of printed results.

... other unusued arguments.



summary.frailtyPenal 199

Details

This function calls to intervals.frailtyPenal

Value

Prints HR and its confidence intervals. Confidence level is allowed (level argument)

See Also

intervals.frailtyPenal

Examples

data(kidney)
mod<-frailtyPenal(Surv(time,status)~age+sex+cluster(id),

data=kidney,n.knots=8,kappa1=1000)
summary(mod)

# confidence interval at 99

summary(mod,level=0.99)





Appendix E

Additional R functions

"Brook.Crowley" <-
function (x,p)
{

# x must be a survival object
# x must contain: time, survival and std.error
# p is the quantile

#
# Asymptotic. Formula (4.3.24 Andersen et. al, 1993)
#
xi<-search.survObject(x,1-p,"time")
se.hat.hat<-search.survObject(x,xi,"se")
num<-(1-p*se.hat.hat)

n.OK<-ceiling(ceiling(length(x$time)/2)/2)
pos.OK<-sum(x$time<=xi)
bn<-x$time[pos.OK]-x$time[pos.OK-n.OK]

den<-(search.survObject(x,xi-bn,"surv")-search.survObject(x,xi+bn,"surv"))/(2*bn)
se.asy<-num/den
ci.asy<-c(xi-1.96*se.asy,xi+1.96*se.asy)

#
# Brookmeyer-Crowley CI (formula page 227 Andersen et. al, 1993)
#

xi.surv<-search.survObject(x,xi,"surv")
#

201
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# log-log
#
inv.inf<-xi.surv^(exp((1.96*se.hat.hat)/log(xi.surv)))
inv.sup<-xi.surv^(exp((-1.96*se.hat.hat)/log(xi.surv)))
ci.log.log<-c(search.survObject(x,inv.inf,"inv.se"),

search.survObject(x,inv.sup,"inv.se"))
#
# Identity
#
inv.inf<-xi.surv+1.96*se.hat.hat
inv.sup<-xi.surv-1.96*se.hat.hat
ci.id<-c(search.survObject(x,inv.inf,"inv.se"),

search.survObject(x,inv.sup,"inv.se"))

temp<-min(3.1415/2,asin(xi.surv^.5)+(0.5*1.96*se.hat.hat*(xi.surv/(1-xi.surv))^.5))
inv.inf<-sin(temp)^2
temp<-max(0,asin(xi.surv^.5)-(0.5*1.96*se.hat.hat*(xi.surv/(1-xi.surv))^.5))
inv.sup<-sin(temp)^2

ci.arcsin<-c(search.survObject(x,inv.inf,"inv.se"),search.survObject(x,inv.sup,"inv.se"))

list(percentile=xi,ci95.asymptotic=list(bandwith=bn,ci95=round(ci.asy,2)),
ci95.id=round(c(ci.id),2),ci95.log.log=round(c(ci.log.log),2),
ci95.arcsin=round(c(ci.arcsin),2))

}

"search.survObject" <-
function(x,t,f="surv")
{
if(f=="surv")
{
pos<-max(length(x$surv[x$time<=t]),1)
ans<-x$surv[pos]
}
if(f=="se")
{
pos<-max(length(x$surv[x$time<=t]),1)
ss<-x$surv[pos]
se<-x$std[pos]
ans<-se/ss
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}
if(f=="time")
{
ans<-x$time[x$surv<=t][1]
if(is.na(ans)) ans<-x$time[length(x$time)]
}

if(f=="inv.se")
{
pos<-length(x$time[x$surv>=t])
ans<-x$time[pos]
if(pos==0) ans<-0
}
return(ans)
}


