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Chapter 1

Introduction

This work concerns some problems in the area of survival analysis that arise in real

clinical or epidemiological studies. In particular, we approach the problem of estimating

the survival function based on interval-censored data or doubly-censored data. We will

start defining these concepts and presenting a brief review of different methodologies to

deal with this kind of censoring patterns.

Survival analysis is the term used to describe the analysis of data that correspond to

the time from a well defined origin time until the occurrence of some particular event of

interest. This event need not necessarily be death, but could, for example, be the response

to a treatment, remission from a disease, or the occurrence of a symptom.

The reason why standard statistical methods are not appropriate in this setting is

that the exact survival times of some subjects are sometimes not observed. The most

common instance of such incomplete observation is right censoring. An individual is

said to have a right-censored survival time when it is only known that his/her survival

time exceeds some specific value. This is usually the case when the data from a study are

to be analyzed at a point in time when some of the subjects have not yet experienced the

event of interest. For example, in the context of a medical research where the end point

is the death of a patient, the variable of interest is literally a survival time; data may be

right-censored because some of the patients are alive at the end of the study period or

because some of them have been lost during the follow-up.

Another form of censoring is left censoring, which is encountered when the actual

survival time of an individual is less than what has been observed. For example, in a study

of children’s ability to perform some task, at the time of recruitment some children may

already know how to perform that task and, therefore, the time from birth to performance
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6 1. Introduction

of the task is, for these children, left-censored. Methods for analyzing right-censored data

can be adapted to deal with left censoring (Csörgo [14], Gmez et alt. [34] and [35]).

In our work we are mainly interested in another type of censoring, the so-called in-

terval censoring. Interval censoring arises when the time variable of interest cannot

be directly observed and it is only known to have occurred during a particular interval

of time. This situation is quite usual in many longitudinal studies where the event of

interest, for example the occurrence of a symptom, can only be observed at the time of a

medical examination. In this case, the time until occurrence of a symptom is only known

to lie in the time interval between the last examination without symptoms and the first

examination with symptoms. Right censoring can be viewed as a special case of interval

censoring. Indeed, when data are right-censored the survival time is either known exactly

or it is known to exceed the follow-up time. In the first case, the censoring interval is

degenerated into a point and in the second case the censoring interval is the time interval

from the end of follow-up to infinity. An example of interval censoring appears in Finkel-

stein and Wolfe [21]. They analyze the data from a breast cancer study where the variable

of interest is time until cosmetic deterioration for a cohort of breast cancer patients who

were treated with two different therapies. This variable is interval-censored because the

status of the patients could only be established when the patient is examined at a medical

visit. Then, the time until cosmetic deterioration is known to be some value between the

time of the last examination without evidence of cosmetic deterioration and the time of

the first examination where the deterioration was observed.

Right censoring has been widely studied and there are several methodologies for dealing

with this kind of data, from completely parametric approaches to completely nonpara-

metric ones. However, the techniques for analyzing interval-censored data have not been

developed to the same extent.

Parametric approaches are often based on the maximum likelihood method. Under

this scenario, a specific parametric model for the survival times is assumed and the esti-

mation of the vector of parameters of the distribution based on a right-censored sample

becomes straightforward. Indeed, after deriving the form of the likelihood function for the

censored sample, the maximization of this function through an iterative procedure, such

as Newton-Raphson method, provides the maximum likelihood estimators of the parame-

ters. Under interval censoring the expression of the likelihood may be more complicated

and, therefore, its maximization more annoying. In this case an alternative approach to

obtain the maximum likelihood estimator of the vector of parameters is the expectation-

maximization (E-M) algorithm [17]. The advantage of this method is that it only requires
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computations involving the likelihood function of an uncensored sample that is usually

simpler than the likelihood function based on censored data. However, the parametric

methods require the specification of the functional form that the survival function would

have had in the absence of censoring.

The product-limit estimator developed by Kaplan and Meier [40] in 1958 is the pion-

eer work for estimating a survival curve nonparametrically. This first work, and most

of the papers that followed it, considered the right-censored case. Twenty years later

Turnbull, [56] and [57], proposes an extension of the product-limit estimator to deal with

interval-censored data, among other censoring patterns. The main idea of Turnbull’s new

methodology is to establish the self-consistent equations and to solve them iteratively.

Twenty more years have had to pass since the first proposal of these techniques for the

practical implementation of them, presently fueled by the general availability of powerful

computers.

Most of finite sample and large sample properties of the survival estimators have been

established using a counting process framework. A counting process is a stochastic pro-

cess adapted to a filtration and whose paths are, with probability one, right continuous,

piecewise constant and have only jump discontinuities, with jumps of size +1. The term

counting process suggests their more frequent application, that is, it will almost always

denote the number of events of a certain type occurring in a given interval. Counting

process methodology follows conditional arguments from where the corresponding com-

pensators and subsequent martingales are derived. Martingale theory, mainly the large

sample central limit theorem, provides the tools to derive the asymptotic properties of

our survival estimates (Fleming and Harrington [24]). It is then relevant to be able to

define such a filtration, that is an increasing family of sub-σ−algebras. When we are

under a right censoring scheme the most natural filtration is the history of the stochastic

process, and in this case the filtration at time t contains the information generated by

the process on the interval [0, t]. However, if the random variable is interval-censored, at

a given point in time we might not known whether the event of interest has occurred or

not, and therefore a filtration cannot be defined. Therefore, this powerful methodology

cannot be applied to the interval censoring situation.

In particular, large-sample properties such as weak convergence or strong consistency

have been established for the Kaplan-Meier estimator while the asymptotic behaviour of

Turnbull’s estimator has only been established in special situations. In particular, we

don’t have consistent estimates for the variances of the survival estimates for continuous

data because neither standard maximum likelihood methodology nor counting processes
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theory are directly applicable for interval-censored data. However, if we assume a discrete

time scale, i.e., if data are measured at a fixed number of points, standard maximum

likelihood theory yields a consistent estimate of the variance of the estimator for the

corresponding discrete distribution.

The advantages of these two approaches, parametric and nonparametric, are in gen-

eral difficult to determine. On one hand, the nonparametric approach may represent an

important loss of efficiency versus the use of a parametric method, if there is a scientific

or empirical knowledge of the problem that justifies a model, specially if the variable is

heavily censored. On the other hand, the parametric assumptions are in general difficult

to assess based on a censored sample and, therefore, the use of completely parametric

methodologies involves the risk of obtaining an inconsistent estimator if the parametric

model does not fit suitably the data. An alternative to those opposed points of view is pro-

vided by the nonparametric Bayesian methodology. Susarla and Van Ryzin [51] derived

a nonparametric Bayes estimator of the survival function for right-censored data. Their

estimator is based on the class of Dirichlet processes a priori introduced by Ferguson [19].

They proved that the Bayes estimator includes the nonparametric Kaplan-Meier estima-

tor as a special case and that both estimators are asymptotically equivalent. Furthermore,

they proved that the nonparametric Bayes estimator has better small sample properties

than the Kaplan-Meier estimator. Unfortunately, the extension of this theory to more

complex censoring schemes is in general not straightforward because the corresponding

nonparametric Bayes estimators are not obtainable in an explicit form. In particular, there

is no generalization of the Susarla and Van Ryzin nonparametric Bayes estimator under

interval censoring. For that reason, part of this work will be devoted to the derivation of

a new methodology that provides a solution to this problem. This methodology is imple-

mented by an iterative simulation procedure, the Gibbs sampler. The Gibbs sampler or, in

general, the so-called Markov Chain Monte Carlo methods, provide algorithms to obtain

random samples from a target distribution by simulating iteratively from conditional den-

sity functions. These methods have made a significant impact in practical statistics, since

they provide numerical solution to otherwise intractable problems, specially in Bayesian

analysis.

A special kind of interval censoring is found when the interval-censored variable is

the origin time, and the final time is right-censored. This kind of data is called doubly-

censored since both the initiating and the final times that define the survival or duration

time of interest are censored. The case where the final event is as well interval-censored

follows straightforwardly. This is typically a bivariate problem because the estimation

of the duration time also involves the estimation of the initiating time and, therefore,
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standard univariate survival analysis techniques cannot be applied.

The early examples of this kind of censoring are found in the context of the AIDS

epidemic studies. One of the most important aspects to understand the nature of the

epidemic is the knowledge of the latency period distribution of AIDS. The estimation of

this distribution is, however, particularly difficult, in part due to the length of the latency

period but specially because the time of infection is usually unknown. Several studies

to estimate this distribution are based on data provided by cohorts of haemophiliacs

infected with HIV. The peculiarity of these cohorts is that, since blood samples were

randomly stored in the hospitals, it is known for each individual the interval of time where

the infection occurred, that is, the interval between the last negative and first positive

antibody test. Therefore, the latency time is doubly-censored since its origin time is

interval-censored and the final time, the time of onset of AIDS, may be right-censored.

In some studies double censoring is forced into a univariate problem by estimating

the initiating time for each subject by the mid-point of the censoring interval. However,

this approach is invalid unless the density of the initiating time is uniform within the

censoring intervals. Other studies, Chiarotti et alt. [9] and [10], obtain a point estimate

of the initiating time for each subject based on different parametric forms of the initiating

time density. This might be a reasonable approach if the lengths of the censoring intervals

are reasonably short, but, if this is not the case, and if the model is inadequate, the

parametric assumption may introduce a significative bias.

A completely nonparametric methodology for analyzing doubly-censored data were

first derived by De Gruttola and Lagakos [16]. They proposed an iterative algorithm

to maximize the joint likelihood function for the origin time and the final time. Some

practical problems related to the bivariate nature of the data were observed. To overcome

these problems Gmez and Lagakos [36] proposed an alternative methodology based on

maximizing two univariate likelihood functions. The method consists of two steps, in

the first step they maximize the marginal likelihood function of the origin time and in

the second step they maximize the conditional likelihood of the duration time given the

estimated distribution of the origin time. Both methodologies are restricted to the case of

a discrete time scale for the origin and the final times and, for this reason, in both cases

nonidentifiability problems could arise, specially with small data sets.

The outline of my Ph.D. Thesis is the following:

Part I concerns the nonparametric approach for estimating a survival function based

on doubly-censored data. In this context we propose a new algorithm for obtaining

the maximum likelihood estimator of the survival function under double censoring that
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extends Gmez and Lagakos methodology to continuous time distributions.

In chapter 2 we first introduce the nonparametric methodologies of De Gruttola and

Lagakos and the alternative two-step algorithm proposed by Gmez and Lagakos. In

section 2.5 we derive the extension of Gmez and Lagakos (GL) algorithm that does not

require a prior discretization of the data. This is done by adapting the self-consistent

methodology for interval-censored data introduced by Turnbull [57] to the case of double

censoring. The first step of the GL algorithm is easily extended to the continuous case.

Indeed, this step corresponds to Turnbull’s algorithm for the marginal likelihood of the

interval-censored origin time. However, Turnbull’s algorithm is not directly applicable for

the estimation of the doubly-censored latency time distribution and, therefore, a specific

procedure for maximizing the conditional likelihood is derived. In section 2.5.4 we prove

that this algorithm includes the Kaplan-Meier estimator when the origin time is exactly

observed for each individual. The methodology is illustrated with a cohort study of

haemophiliacs that were at risk of infection with HIV in France in the early 80’s. In

chapter 3 we present the results of a simulation study that compares the local and global

behaviour for small and moderate sample size of the algorithms studied in chapter 2.

Part II concerns the nonparametric Bayesian approaches for estimating a survival

function. A new method for obtaining iteratively a nonparametric Bayes estimator of the

survival function under interval censoring is proposed.

In chapters 4 and 5 we review the existing nonparametric Bayesian theory and the

Markov Chain Monte Carlo methods, respectively. In particular, we describe in chapter

4 the works of Ferguson [19] and Susarla and Van Ryzin [51] for the nonparametric esti-

mation of the survival function from complete and right-censored data, respectively, from

a bayesian point of view. In chapter 5 we review the Metropolis-Hastings algorithm and

the Gibbs sampler, and explain some practical techniques of inference and convergence

diagnostic. In chapter 6 we propose a methodology, based on the iterative simulation

method of Gibbs sampling, for obtaining the nonparametric Bayes estimator of the sur-

vival function for the case of interval censoring based on a Dirichlet process prior. The

methodology is illustrated with the analysis of the data corresponding to a breast cancer

study. The results of a simulation study to compare Turnbull’s nonparametric method

and the nonparametric Bayesian method are presented in chapter 7. On the basis of this

simulation study, it appears that the use of the Bayes methodology is preferable, and spe-

cially, when the prior distribution is close to the theoretical distribution. This advantage

is more important as the lenght of the censoring intervals increases. We conclude with a

discussion of the results obtained and considerations on further areas of research.
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All the computations have been carried out on a personal computer with a PENTIUM-

S CPU at 90 MHz. The algorithms have been programmed using the C-program language.

An appendix is included at the end with the programs to compute the estimators proposed

in this work.
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Chapter 2

Nonparametric Estimation of the
Survival Function from
Doubly–Censored Data

2.1 Introduction

In many longitudinal studies the interest relies on the so–called duration time, that is,

the elapsed time between an originating event and a final event. Most statistical methods

in survival analysis assume that the time to the originating event is known and allow the

final time to be censored. We present here a situation where both the origin time and

the final time are not directly observable. More precisely, we consider a sampling scheme

where the origin time is interval-censored and the final time is right-censored. We refer to

such data as doubly–censored data. This sampling scheme should not be confused with a

different one, also referred to as doubly–censored data, where the final event is observed

within a window for some subjects and left- or right-censored for others. (Turnbull [56],

Chang and Yang [8]).

Doubly–censored data is found in the analysis of survival data which arise when a

disease process is observed at several points in time, in general different for each patient.

This scheme typically occurs in clinical trials or longitudinal studies in which there is

periodic follow–up and the interest is based on both the time when a patient enters a first

stage of a disease and on the elapsed time since this first stage to a second or final stage.

The protocols of many clinical trials require that each patient visits the clinical center at

specified successive times. At each visit, the status of the patient is examined and the

occurrence of either one of two events, for instance, stage 1 and stage 2 of a given disease,

15



16 2. Nonparametric Estimation from Doubly–Censored Data

is recorded. The actual visits, although scheduled in advance, are random because the

patients often miss some of the appointments. As a consequence, the observation for each

patient consist of the two random intervals where the first and second event have occurred.

Thus, the elapsed time between the first and the second event is doubly–censored.

This sampling scheme can also be encountered in some studies of disease progres-

sion, where the only information about the initial event is obtained retrospectively, after

periodical screening, providing for every individual a time–interval where the disease

originated. In the context of the AIDS epidemic, several studies to estimate the latency

distribution of AIDS have been based on data provided by cohorts of haemophiliacs in-

fected with HIV. The retrospective inspection of their HIV infection status was possible

because blood samples had been randomly stored in the hospitals. It was possible, then,

to determine for each individual the interval where the infection had occurred, that is, the

interval between the patient’s last negative and first positive antibody test. Moreover, the

time to AIDS was right–censored because many of the patients had not developed AIDS

at the end of the study. Consequently, the latency time is doubly–censored. Note here

that since the infection times may be censored into overlapping and nondisjoint intervals,

methods for grouped data cannot be applied. This situation may be described, as in

Frydman [25], by a three-state model :

1 HIV− → 2 HIV+ → 3 AIDS

where state 1 denotes non-infected, state 2 stands for infected and state 3 corresponds to

clinical AIDS. The aim is the joint estimation of both, the distribution of time in state 1

and the distribution of time in state 2.

Nonparametric approaches to this problem have been considered by De Gruttola and

Lagakos [16] and by Gómez and Lagakos [36]. De Gruttola and Lagakos propose a method

(DGL in the sequel) for analyzing doubly–censored survival data in the context of the

study of the progression from HIV infection to AIDS. They jointly estimate the infection

time and the latency period between infection and onset of AIDS, by treating the data as

a special type of bivariate survival data. Gómez and Lagakos approach this problem by

developing a two-step estimation procedure (GL in the sequel). In the first step, they es-

timate the infection time distribution based on the marginal likelihood using the intervals

where the infection is observed. Once a set of estimators for the infection probabilities is

derived, they treat the interval–censored infection times as weighted exact infection times

and estimate the latency distribution based on the corresponding conditional likelihood.
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Other approaches to the problem have been taken by Baccheti [2] who estimates the

latency time of AIDS by using an EM algorithm to maximize a penalized likelihood, by

Frydman [25] who considers a three-state Markov process and develops a nonparametric

maximum likelihood procedure for the estimation of the transition probabilities and the

distribution functions of the times in every state. Brookmeyer and Goedert [4] and Kim,

De Gruttola and Lagakos [41] propose semi–parametric procedures which allow the in-

corporation of covariates. Darby et al [15] adapt Brookmeyer and Goedert’s model to fit

data on the development of AIDS in haemophiliacs in the UK. Chiarotti et alt. [9],[10]

estimates the median incubation time between HIV infection and AIDS, in a cohort of

haemophiliacs in Italy, using different parametric models for the infection time and for

the latency time.

We will focus our attention on the nonparametric approaches derived by De Gruttola

and Lagakos [16] and by Gmez and Lagakos [36]. Gmez and Lagakos present a new

algorithm as an alternative univariate methodology to overcome some of the practical

problems observed with DGL algorithm. The difficulties with DGL method range from

problems of convergence and speed of convergence to nonidentifiability problems. Gmez

and Lagakos state that the two-step univariate methodology, GL algorithm, is more stable

and converges faster than DGL algorithm. However, if the scale on which the origin and

the final time are measured is too fine, problems of unstability and nonidentifiability might

still remain. When this is the case, the standard approach discretizes the data into larger

blocks, although this strategy may produce the lost of part of the initial information,

specially with small data sets. The goal of this chapter is to extend Gmez and Lagakos

methodology to overcome these difficulties. We propose a modification of the GL method

in section 2.5 that makes the dimension of the problem as small as possible and avoids

possible situations of nonidentifiability.

2.2 Data and Statistical Model

Following the notation in Gómez and Lagakos [36], let X and Z denote the chronological

times of the originating and final events. Define the duration time to be T = Z − X.

We wish to estimate the distribution functions, W (x) and F (t), of X and T under the

assumption that X and T are independent random variables.

We assume that the time, X, of the originating event is interval–censored and the

time, Z, of the final event is right–censored. That is, we observe the origin time X

in an interval [XL, XR] and V , the minimum between the final time Z and the time
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corresponding to the end of the study or the corresponding follow-up. Thus, for each

subject i of a random sample of size n of a given population the observable data are of

the form (X i
L, X i

R, di, V i, ci) where di and ci are the censoring indicators of the origin and

final times, respectively. That is, di = 1{X i
R < ∞} and ci = 1 if Zi = V i and ci = 0

if Zi > V i. We divide the observed data into three groups according to their censoring

patterns:

1. The first group corresponds to those individuals with a right-censored origin time.

In this case, di = 0 and X i
R = +∞ and this indicates that the first event had not

yet occurred at the end of the study or at the time of the last follow-up. Thus, we

only know that X i ≥ X i
L and have no information about the final time Zi.

2. The second group corresponds to those individuals with an interval-censored origin

time and an observed final event, that is, di = 1 and ci = 1. For those individuals

we know that X i
L ≤ X i ≤ X i

R and Zi = V i.

3. The last group corresponds to those individuals with an interval-censored origin

time and a right-censored final time, that is di = 1 and ci = 0. For those individuals

we know that X i
L ≤ X i ≤ X i

R and that at the end of the study, V i, the final event

had not occurred, that is, Zi > V i.

These censoring schemes are outlined in the following diagram:

X i
L X i

R V i

X i Zi

X i
L X i

R V i

X i Zi

X i
L

X i

1)

2)

3) + + +

+ + +

+
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Thus, under the following assumptions

1. The origin time X and the latency time T are independent random variables,

2. the censoring scheme is noninformative in the sense that the censoring times XL,

XR and V do not alter the following probabilities:

Pr(xl ≤ X ≤ xr|XL = xl, XR = xr) = Pr(xl ≤ X ≤ xr) = W (xr)−W (x−l ) ,

P r(Z > z|V = z, c = 0, XL, XR) = Pr(Z > z) = 1− F (z) ,

the overall likelihood based on the joint bivariate distribution of (X, T ) is proportional

to:

Lo(W,F ) =
n∏

i=1

{[
1−W (X i

L

−
)

]1−di

·
[ ∫ Xi

R

Xi
L

dW (x) · dF (V i − x) dx

]dici

·

·
[ ∫ Xi

R

Xi
L

dW (x) ·
(
1− F (V i − x)

)
dx

]di(1−ci)}

where dW (x) = W (x)−W (x−) and dF (t) = F (t)− F (t−).

2.3 DGL Estimator

In De Gruttola and Lagakos [16] a discrete time scale for the origin time, say 0 < x1 < x2 <

. . . < xr, and a possible different scale for the latency time, say 0 < t1 < t2 < . . . < ts,

are assumed. This set of times will essentially induce a parametrization of the underlying

distributions. Define wj = Prob(X = xj), fk = Prob(T = tk), w = (w1, . . . , wr) and

f = (f1, . . . , fs).

Under the above assumptions the overall likelihood based on the joint bivariate dis-

tribution of (X,T ) is proportional to:

Lo = Lo(w, f) =
n∏

i=1




r∑

j=1

s∑

k=1

αi
jkwjfk


 (2.1)

where αi
jk equal 1 if X i

L ≤ xj ≤ X i
R and V i = xj + tk when ci = 1 or

if X i
L ≤ xj ≤ X i

R tk > V i − xj when ci = 0.

DGL method maximizes the overall likelihood Lo by a generalization of the Turnbull’s

[57] self–consistency algorithm to bivariate data. They define αi = {αi
jk : 1 ≤ j ≤ r, 1 ≤
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k ≤ s} and set I i
jk equal to 1 if the true value of (X,T ) for the ith individual is (xj, tk)

and 0 otherwise. Then, the conditional expectation of I i
jk, given αi, is:

µi
jk =

αi
jkwjfk∑

l,m αi
lmwlfm

, (2.2)

and the corresponding marginal probabilities are

w∗
j =

∑

i,k

µi
jk/n and f ∗k =

∑

i,j

µi
jk/n . (2.3)

A maximum likelihood solution, say (ŵ, f̂), can be obtained following the iterative algo-

rithm:

A. Choose starting values for w and f .

B. Compute µi
jk from equation (2.2).

C. Compute refined estimates of w and f from (2.3).

D. Repeat steps (B) and (C) until convergence.

The maximum likelihood estimators of the distribution functions, W and F , are de-

fined as:

Ŵ (x) =
∑

xj≤x

ŵj, F̂ (t) =
∑

tk≤t

f̂k .

Furthermore, if we define the largest admissible mass points,

x∗ = max
1≤i≤n

{X i
R : X i

R < ∞} and t∗ = max
1≤i≤n

{V i −X i
L when di = 1 and ci = 1} ,

then, Ŵ (x) puts all of its mass at values of x no greater than x∗ provided that

x∗ ≥ max
1≤i≤n

{X i
L};

otherwise, Ŵ (x∗) < 1 and Ŵ (x) is not uniquely defined for x > x∗.
Similarly, F̂ (t) puts all of its mass at t ≤ t∗ provided that

t∗ ≥ max
1≤i≤n

{V i −X i
L when ci = 0 and di = 1};

otherwise, F̂ (t∗) < 1 and F̂ (t) is not uniquely defined for t > t∗.
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2.4 GL Estimator

As in 2.3, a discrete time scale for the origin time and for the latency time are assumed.

The approach of Gmez and Lagakos [36] follows a two step procedure. In the first

step, the infection time distribution based on the marginal likelihood is estimated. Once

a set of estimators for the infection probabilities is derived, the latency distribution based

on the corresponding conditional likelihood is estimated.

The marginal likelihood for w, corresponding to the data (X i
L, X i

R), i = 1, . . . , n, is

proportional to:

Lmarg(w) =
n∏

i=1

{[ Xi
R∑

xj=Xi
L

wj

]di

·
[
1−W (X i

L−)
]1−di}

, (2.4)

and the conditional likelihood for f , given w, is proportional to:

Lc(f) =
n∏

i=1

{[ Xi
R∑

xj=Xi
L

wj · dF (V i − xj)

]dici

·
[ Xi

R∑

xj=Xi
L

wj ·
(
1− F (V i − xj)

)]di(1−ci)}
. (2.5)

FIRST STEP: Define the indicator variables αi
j = 1{xj ∈ [X i

L, X i
R]}. A self-consistent

equation for the infection time xj, is given by

wj =
1

n

n∑

i=1

αi
jwj∑r

l=1 αi
lwl

for j = 1, . . . , r (2.6)

and a maximum likelihood solution, say ŵ, can be obtained adapting Turnbull’s univariate

iterative algorithm:

A. Choose starting values for w: w(0) = (w
(0)
1 , . . . , w(0)

r ).

B. Obtain improved estimates for w(1) from equation (2.6).

C. Stop if the required accuracy has been achieved. Otherwise, return to step B with

w(1) replacing w(0).

SECOND STEP: A self-consistent equation for the latency time fk is given by

fk =
1

n− n0

(N1(k) + N2(k)) for k = 1, 2, . . . , s, where (2.7)
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N1(k) =
n∑

i=1

di · ci · αi
V i−tk

ŵV i−tkfk∑r
j=1 αi

jŵjdF (V i − xj)
,

N2(k) =
n∑

i=1

di · (1− ci) ·
∑r

j=1 αi
j1{V i < xj + tk}ŵjfk∑r

j=1 αi
jŵj{1− F (V i − xj)}

and n0 =
∑n

i=1(1 − di) is the number of individuals with a right-censored origin time.

N1(k) and N2(k) represent the expected number of individuals that have developed the

final event at time tk among those uncensored and censored individuals, respectively. A

maximum likelihood solution, say f̂ = (f̂1, . . . , f̂s), to the self-consistency equation (2.7)

can be obtained via an iterative method analogous to the one developed in the first step.

The maximum likelihood estimators of the distribution functions, W and F , are de-

fined as in section 2.3.

2.5 Modified GL Estimator

As mentioned in the introduction, the strategy of most nonparametric methods to prevent

from problems of unstability is to discretize the time scale. However, this yields to the lost

of valuable information provided by the data. Even more, two different discretizations of

the time scale may produce significative differences in the conclusions of a study. For this

reason, we propose a modification of GL algorithm (ModGL in the sequel) that provides

more stable nonparametric estimates without the need to make a priori discretization of

the data. The new method makes the dimension of the problem as small as possible and

avoids possible situations of unidentifiability.

ModGL estimator is obtained as the solution of a two step procedure similar to GL

method. The difference between both methods is that in ModGL it is not necessary to

make a priori discretization of the data. The first step of the algorithm corresponds to

the nonparametric estimation of a distribution function when data are interval-censored

based on the self-consistency method proposed by Turnbull [57]. In this step the marginal

likelihood for W based on the censoring intervals [XL, XR] is maximized by an iterative

algorithm. The estimator obtained is denoted by Ŵ . In the second step we maximize

the conditional likelihood for F , given Ŵ , based on solving the self-consistency equations.

Turnbull’s results are not directly applicable to this conditional likelihood because now

we have doubly-censored and not interval-censored data.
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Definition

The modified GL estimator Ŵ for the distribution function W of the origin time X is

given by

Ŵ (x) =





0 if x < q1

ŝ1 + · · ·+ ŝk if pk < x < qk+1

1 if x > pm

and is undefined for x ∈ [qj, pj], for 1 ≤ j ≤ m ; where ŝ satisfies the self-consistent

equations (2.10) and the intervals [qj, pj], j = 1, . . . , m are defined below.

The modified GL estimator F̂ for the distribution function F of the duration time T is

given by

F̂ (t) =





0 if t < q′1
f̂1 + · · ·+ f̂k if p′k < t < q′k+1

1 if t > p′r

and is undefined for t ∈ [q′j, p
′
j], for 1 ≤ j ≤ r ; where f̂ satisfies the self-consistent

equations (2.18) and the intervals [q′j, p
′
j], j = 1, . . . , r are defined below.

2.5.1 FIRST STEP: Estimation of W based on the marginal
likelihood

The marginal likelihood for W , given the observed data (X i
L, X i

R) is proportional to

Lmarg(W ) =
n∏

i=1

[
W (X i

R)−W (X i
L

−
)
]
. (2.8)

We will prove that the maximum likelihood estimator of W only puts mass in a set of

intervals C = ∪m
i=1[qi, pi]:

Construction of the set C

The set C is constructed from the data {(X i
L, X i

R), i = 1, · · · , n} as the union of

disjoint closed intervals [qj, pj], j = 1, · · · ,m satisfying the following conditions:

1. The left end point qj lies in the set {X i
L, i = 1, · · · , n} ,

2. the right end point pj lies in the set {X i
R, i = 1, · · · , n} ,

3. there is no members of {X i
L} or {X i

R} in the intervals [qj, pj], j = 1, · · · ,m except

at their end points,
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4. the intervals [qj, pj], j = 1, · · · ,m are disjoint and ordered: q1 ≤ p1 < q2 ≤ · · · <

qm ≤ pm. (Note that some of the intervals [qj, pj] may be degenerated to a point).

The algorithm for obtaining this set of intervals is detailed at the end of this chapter.

We define sj = W (pj)−W (q−j ) , the probability assigned to the intervals [qj, pj] and

define the vector s = (s1, · · · , sm), where
∑m

j=1 sj = 1.

Ŵ is the maximum likelihood estimator of W

Applying Turnbull’s results [57] to our special case it can be proved that:

Lemma 2.5.1 Any distribution function W that maximizes the marginal likelihood

Lmarg(W ) has to be flat outside the set C.

Lemma 2.5.2 For fixed values of W (pj) and W (q−j ), 1 ≤ j ≤ m, the likelihood Lmarg(W )

is independent of the behaviour of W within each interval [qj, pj].

From these lemmas one concludes that two distributions functions that are flat outside

C and with the same vector of masses s have the same likelihood. Therefore,

Theorem 2.5.3 The maximization of Lmarg(W ) reduces to the maximization of the func-

tion:

LX(s1, . . . , sm) =
n∏

i=1

(
m∑

j=1

αi
jsj) (2.9)

where sj = W (pj)−W (q−j ) and the indicator αi
j is defined as αi

j = 1{[qj, pj] ⊆ [X i
L, X i

R]}.

Self-consistent estimation

The maximization of LX(s) is based on the equivalence between maximum likelihood

estimation and self-consistent estimation:

Theorem 2.5.4 (Turnbull) If ŝ defines a maximum likelihood estimator for W , then ŝ

satisfies the self-consistent equations given by

nsj =
n∑

i=1

αi
jsj∑m

l=1 αi
lsl

for j = 1, . . . , m. (2.10)

And, conversely, any solution of the self-consistent equations maximizes LX(s).
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The left-hand side of expression (2.10) represents the expected number of events that

have occurred in the interval [qj, pj] while the right-hand side corresponds to the expected

number of events occurred in the same interval conditioned to the observed data.

The solution ŝ of the self-consistent equations ( 2.10) is obtained by the iterative

procedure detailed in section 2.7.

2.5.2 SECOND STEP: Estimation of F based on the conditional
likelihood

In the second step we maximize the conditional likelihood for F assuming that the cumu-

lative distribution function for the origin time X is Ŵ .

Conditional likelihood for F given Ŵ

Up to a proportionality constant, the conditional likelihood of F given ŝ is:

Lc(F ) =
n∏

i=1





m∑

j=1

αi
j ŝj

(
F (V i − qj)− F ((V i − pj)

−)
)




dici

·




m∑

j=1

αi
j ŝj

(
1− F (V i − pj + qj

2
)−

)



di(1−ci)

(2.11)

This likelihood contains two types of factors corresponding to those individuals with

an observed final time and those with a right-censored final time:

• Contribution of an exact observation (ci = 1) given that X i ∈ [X i
L, X i

R]

P (T i = V i −X i | X i ∈ [X i
L, X i

R]) =

= P (T i = V i −X i, X i ∈ [X i
L, X i

R])/P (X i ∈ [X i
L, X i

R]) =

=
m∑

j=1

αi
j P (T i = V i −X i, X i ∈ [qj, pj])/

m∑

l=1

αi
l P (X i ∈ [ql, pl])

=
m∑

j=1

αi
j P (T i = V i −X i | X i ∈ [qj, pj]) · P (X i ∈ [qj, pj])/

m∑

l=1

αi
l P (X i ∈ [ql, pl]) =

=
m∑

j=1

αi
j P (T i ∈ [V i − pj, V

i − qj] | X i ∈ [qj, pj]) · P (X i ∈ [qj, pj])/
m∑

l=1

αi
l P (X i ∈ [ql, pl])
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Using that X i and T i are independent random variables and that P (X i ∈ [qj, pj]) = ŝj,

this expression becomes:

m∑

j=1

αi
j P (T i ∈ [V i − pj, V

i − qj]) · ŝj/
m∑

l=1

αi
l ŝl =

=
m∑

j=1

αi
j ŝj∑m

l=1 αi
l ŝl

[F (V i − qj)− F ((V i − pj)
−)]

• Contribution of a right-censored observation (ci = 0) given that X i ∈ [X i
L, X i

R]

P (T i > V i −X i | X i ∈ [X i
L, X i

R]) =

= P (T i > V i −X i, X i ∈ [X i
L, X i

R])/P (X i ∈ [X i
L, X i

R]) =

=
m∑

j=1

αi
jP (T i > V i −X i, X i ∈ [qj, pj])/

m∑

l=1

αi
lP (X i ∈ [ql, pl]) =

=
m∑

j=1

αi
jP (T i > V i −X i, X i ∈ [qj, pj])/

m∑

l=1

αi
l ŝl (2.12)

We decompose the probability in (2.12) as the sum of two parts:

P (T i > V i −X i, X i ∈ [qj, pj]) =

= P (T i > V i − qj, X i ∈ [qj, pj]) +

+ P (V i −X i < T i < V i − qj, X i ∈ [qj, pj]) =

= ŝj(1− F (V i − qj)) +
∫ pj

qj

∫ V i−qj

V i−x
dF (t) dŴ (x) dt dx (2.13)

and approximate the integral in (2.13) by

ŝj · (F (V i − qj)− F (V i − pj + qj

2
)−) (2.14)

(see justification below). Hence, the contribution to the conditional likelihood of a right-

censored observation is given by:

m∑

j=1

αi
j ŝj∑m

l=1 αi
l ŝl

(
1− F

(
V i − pj + qj

2

)−)
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Justification of the approximation (2.14):

The integral in (2.13) can only be computed if the joint distribution of X i and T i is

known explicitly, at least, in the rectangle {(x, t) : qj ≤ x ≤ pj, V i − pj ≤ t ≤ V i − qj}.
Since X i and T i are assumed to be independent, it is only necessary to know their marginal

distribution. We assume for simplicity that both X i and T i are uniformly distributed in

[qj, pj] and [V i− pj, V
i− qj], respectively. With this assumption, it is easy to see that the

integral in (2.13) is equal to the integral obtained substituting x by the middle point of

the interval [qj, pj] (see the following figure):

y = V i − x

V i − qj

V i − pj+qj

2

V i − pj

qj pj

Figure 2.1: Justification of the approximation

Thus, expression (2.13) becomes

ŝj(1− F (V i − qj)) +
∫ pj

qj

∫ V i−qj

V i−x
dF (t) dŴ (x) dt dx =

= ŝj(1− F (V i − qj)) +
∫ pj

qj

∫ V i−qj

V i− pj+qj
2

dF (t) dŴ (x) dt dx =

= ŝj(1− F (V i − qj)) + ŝj(F (V i − qj)− F (V i − pj + qj

2
)−) =

= ŝj · (1− F (V i − pj + qj

2
)−)

This parametric assumption could seem a bit restrictive but it is important to note that

the assumption is only made for the right-censored observations. Furthermore, the inter-
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vals [qj, pj] and [V i− pj, V
i− qj] tend to be small and in many situations are degenerated

into a point. In the rest of the admissible region, {(x, t) : x ∈ [qj, pj], t ∈ [V i − qj, +∞)},
there is no parametric assumption.

Construction of the set C’

We now define the set of intervals C ′ = ∪r
i=1[q

′
i, p

′
i] where the maximum likelihood

estimator of F gives positive mass.

It is useful first to unify the notation of the two factors of the conditional likelihood

Fc(t). With this purpose, we define for each individual the regions of its admissible latency

times; that is, we define Lij and Rij, for 1 ≤ i ≤ n and 1 ≤ j ≤ m, in the following way:

1. If αi
j = 1 and the ith observation is exact, ci = 1, define Lij = V i − pj and

Rij = V i − qj.

2. If αi
j = 1 and the ith observation is right-censored, ci = 0, define Lij = V i − pj+qj

2

and Rij = +∞.

3. If αi
j = 0, Rij and Lij are arbitrarily defined equal to 0.

Thus, the contribution of the ith observation to the conditional likelihood of F can be

expressed as
m∑

j=1

αi
j ŝj∑m

l=1 αi
l ŝl

[
F (Rij)− F (L−ij)

]
,

that is , the duration time T i lies in [Lij, Rij] with probability αi
j ŝj/(

∑m
l=1 αi

l ŝl) of having

the origin X i in the interval [qj, pj]. Therefore, the conditional likelihood of F is

equivalently given by

Lc(F ) =
n∏

i=1




m∑

j=1

αi
j ŝj

[
F (Rij)− F (L−ij)

]



di

. (2.15)

We define C ′ as the union of disjoint intervals [q′1, p
′
1], [q′2, p

′
2], . . . , [q

′
r, p

′
r] defined from

{Rij} and {Lij} following similar steps to those used in the construction of C in the first

step:

1. The left end point q′k lies in the set {Lij, i = 1, · · · , n and j = 1, · · · ,m} ,

2. the right end point p′k lies in the set {Rij, i = 1, · · · , n and j = 1, · · · ,m} ,
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3. there is no members of {Lij} or {Rij} in the intervals [q′k, p
′
k], k = 1, · · · , r except

at their end points,

4. the intervals [q′k, p
′
k], k = 1, · · · , r are disjoint and ordered:

q′1 ≤ p′1 < q′2 ≤ · · · < q′r ≤ p′r.

F̂ is the maximum likelihood estimator for F

Let fj = F (p′j)−F ((q′j)
−) be the probability of the interval [q′j, p

′
j] and define αi

jk, the

indicator of an origin time in [qj, pj] and a duration time in [q′k, p
′
k]. That is,

αi
jk = 1{ci = 1} · 1

{
[qj, pj] ⊆ [X i

L, X i
R] and [q′k, p

′
k] ⊆ [V i − pj, V

i − qj]
}

+

+ 1{ci = 0} · 1
{
[qj, pj] ⊆ [X i

L, X i
R] and [q′k, p

′
k] ⊆ [V i − pj + qj

2
, +∞)

}
.

(2.16)

Theorem 2.5.5 The maximization of the conditional likelihood Lc(F ) reduces to the max-

imization of the function

LT (f1, . . . , fr) =
n∏

i=1




r∑

k=1

m∑

j=1

αi
jkŝjfk




di

. (2.17)

This result follows from the following two lemmas.

Lemma 2.5.6 Any distribution function F that maximizes the conditional likelihood

Lc(F ) has to be flat outside the set C ′.

Proof.

Let F be a distribution function that increases outside C ′ = ∪r
i=1[q

′
i, p

′
i]. In particular,

suppose that F increases in the interval [p′l, q
′
l+1]. For construction of C ′, any Rij in

[p′l, q
′
l+1] is smaller than any Lij in this interval. Thus, there exist a real number rl ∈

[p′l, q
′
l+1] that separates the numbers Rij and Lij contained in [p′l, q

′
l+1]. We consider now

the distribution function F ∗ defined equal to F outside the interval [p′l, q
′
l+1] and constant

inside it, that is:

F ∗(t) = F (rl), ∀t ∈ [p′l, q
′
l+1]

F ∗(t) = F (t), ∀t /∈ [p′l, q
′
l+1]
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Then, for any Rij ∈ [p′l, q
′
l+1], Rij < rl and since F increases in this interval, F ∗(Rij) =

F (rl) > F (Rij). And, for any Li′j′ ∈ [p′l, q
′
l+1], Li′j′ > rl and then F ∗(Li′j′) = F (rl) <

F (Li′j′). Therefore,

Lc(F
∗) =

n∏

i=1




m∑

j=1

αi
j ŝj

[
F ∗(Rij)− F ∗(L−ij)

]

 >

n∏

i=1




m∑

j=1

αi
j ŝj

[
F (Rij)− F (L−ij)

]

 = Lc(F )

and the function F cannot be a maximum of the conditional likelihood Lc(F ). 2

Lemma 2.5.7 For fixed values of F (p′j) and F ((q′j)
−), 1 ≤ j ≤ r, the likelihood Lc(F ) is

independent of the behaviour of F within each interval [q′j, p
′
j].

Proof. The proof of this lemma is straightforward from the expression of Lc(F ).

2

Self-consistent estimation

As in the first step, the maximum solution of (2.17) is obtained through the self-

consistent equations. The self-consistent equations for f are given by equating the ex-

pected number of observations with a duration time lying in [q′k, p
′
k] and the expected

number of observations with a duration time in the same interval, conditioned to the

observed data; that is

(n− n0)fk =
n∑

i=1

[ ∑m
j=1 αi

jkŝjfk∑r
l=1

∑m
j=1 αi

jlŝjfl

]di

for k = 1, . . . , r (2.18)

with n0 =
∑n

i=1(1− di) the number of observations with a right-censored origin time.

Now we prove the equivalence between maximum likelihood estimation and self-consistent

estimation:

Theorem 2.5.8 If f̂ is a maximum of the likelihood function LT (f) then f̂ satisfies the

self-consistent equations (2.18). And, conversely, any solution f̂ of the self-consistent

equations (2.18) maximizes LT (f).

Proof.

The conditional likelihood LT (f) can also be expressed as

LT (f) =
∏

i∈I0

[
r∑

k=1

αi
k(ŝ)fk

]
,
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where I0 = {i : di = 1} and αi
k(ŝ) =

∑m
j=1 αi

jkŝj. Then, the log-likelihood is given by

l(f) =
∑

i∈I0

[
log

(
r∑

k=1

αi
k(ŝ)fk

)]
.

Consider the function

H(u) = l(f)− λ(f1 + · · ·+ fr − 1)

where λ is a Lagrange multiplier and u = (f1, · · · , fr, λ).

We prove that the self-consistent equations (2.18) can be expressed equivalenty as

fk =

(
dk(H)

n− n0

+ 1

)
fk; k = 1, · · · , r, (2.19)

where dk(H) =
∂

∂fk

(H) and therefore a vector f̂ = (f̂1, · · · , f̂r), with f̂1 + · · ·+ f̂r = 1, is

a solution of the self-consistent equations (2.18) if and only if dk(H) = 0, ∀k = 1, · · · , r,
which is a necessary and sufficient condition to be a stationary point of l(f).

Indeed, a necessary and sufficient condition for a vector f = (f1, · · · , fr), with

f1 + · · ·+ fr = 1, to be an stationary point of l(f) is that f is a solution of the following

system:
∂

∂u
(H) =

∂

∂u
{l(f)− λ(f1 + · · ·+ fr − 1)} = 0 . (2.20)

Expression (2.20) is a system of r + 1 equations of the form:

dl(H) =
∂

∂fl





∑

i∈I0

log(
r∑

k=1

αi
k(ŝ)fk)− λ(f1 + · · ·+ fr − 1)



 = 0; l = 1, · · · , r

dλ(H) =
∂

∂λ





∑

i∈I0

log(
r∑

k=1

αi
k(ŝ)fk)− λ(f1 + · · ·+ fr − 1)



 = 0.

Computing the partial derivatives, one obtains the following equivalent system:

dl(H) =
∑

i∈I0

αi
l(ŝ)∑r

k=1 αi
k(ŝ)fk

− λ = 0; l = 1, · · · , r (2.21)

f1 + · · ·+ fr = 1 (2.22)

Multiplying each of the m equations in (2.21) by fl, l = 1, · · · , r and adding them up

we have
r∑

l=1

fl · dl(H) =
r∑

l=1

∑

i∈I0

αi
l(ŝ)fl∑r

k=1 αi
k(ŝ)fk

− λ(
r∑

l=1

fl) = 0. (2.23)
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and after exchanging the order of sumation one obtains

∑

i∈I0

∑r
l=1 αi

l(ŝ)fl∑r
k=1 αi

k(ŝ)fk

− λ(
r∑

l=1

fl) = 0

and, since both the first term in the left expression and the sum of all f ’s are equal to 1,

we obtain that λ =
∑

i∈I0 1 = n− n0.

Now, to prove that the solution of the self-consistent equations is a stationary point

of the likelihood function we express the self-consistent equations in terms of the partial

derivative of H with respect to fk, dk(H). The right hand side of (2.18) is

∑

i∈I0

{
αi

k(ŝ)∑r
l=1 αi

l(ŝ)fl

fk

}
= (dk(H) + n− n0) fk; k = 1, · · · , r. (2.24)

The solution of the self-consistent equations will be obtained by the iterative algorithm

f
(1)
k =

(
dk(H)

n− n0

+ 1

)
f

(0)
k ; k = 1, · · · , r.

It can be proved, as in Turnbull [57], that the above algorithm increases the log-likelihood

l(f) = logLT f in each step and thus, the algorithm converges to a maximum or a saddle-

point:

l(f (1))− l(f (0)) =
r∑

k=1

(f
(1)
k − f

(0)
k )

∂l

∂fk

+ O(‖f (1) − f (0)‖2) '

' 1

n− n0

r∑

k=1

dk(H)f
(0)
k

∂l

∂fk

=

=
1

n− n0

r∑

k=1

dk(H)f
(0)
k (dk(H) + n− n0) =

=
1

n− n0

r∑

k=1

d2
k(H)f

(0)
k +

r∑

k=1

dk(H)f
(0)
k =

=
1

n− n0

r∑

k=1

d2
k(H)f

(0)
k ≥ 0

where the terms of second and higher order have been neglected.

2

2.5.3 Estimation of the variance of Ŵ and F̂

When data arise from a continuous time distribution the theoretical study of the asymp-

totic behaviour of the nonparametric estimators becomes very difficult. As a matter of
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fact, distributional theory for the Turnbull’s estimator has only been established in the

case where data consist of left-censored, right-censored and exactly known observations

(Turnbull [56], Samuelsen [48], Chang [8], Groeneboom [37]) while in the general case of

interval censoring there are no results for the asymptotic distribution of the estimator.

To overcome this difficulty Turnbull [57] proposes to use instead, the asymptotic results

for the discrete case. That is, he considers the discretization given by the set of inter-

vals {[qj, pj]; j = 1, . . . ,m}. We will follow the same approach, that is, we estimate the

covariance matrix of the vectors ŝ and f̂ using the results obtained by Gmez and La-

gakos [36] in the discrete case; that is, we assume that X only puts mass on the intervals

[q1, p1], . . . , [qm, pm] and that T only puts mass on the intervals [q′1, p
′
1], . . . , [q

′
r, p

′
r].

Covariance matrix of the vector ŝ

The asymptotic covariance matrix of the vector ŝ is approximated by the inverse of

the observed information matrix B(ŝ), where the jk term is given by

B(j, k) = − ∂

∂sk

(
∂

∂sj

log LX(s)

) ∣∣∣
s=ŝ

=
n∑

i=1

(αi
j − αi

m)(αi
k − αi

m)
(∑m

j=1 αi
j ŝj

)2

for j, k = 1, . . . ,m− 1, and LX(s) is given in (2.9).

Covariance matrix of the vector f̂

In order to take into account the variability due to the estimation of s we consider the

conditional likelihood LT (f) as a function of both s and f :

LT (s, f) =
n∏

i=1




r∑

k=1

m∑

j=1

αi
jksjfk




di

where αi
jk is defined in (2.16).

Let Z(s) = ∂
∂s

logLX be the score vector for LX and

U(s, f)) = [U1(s, f), U2(s, f)]
′ = [

∂

∂s
logLT ,

∂

∂f
logLT ]′

the score vector for LT . Let B(s) and I(s, f) be the corresponding information matrices

and I11 = Iss(s, f), I12 = Isf (s, f), I21 = Ifs(s, f) and I22 = Iff (s, f) the submatri-

ces of the information matrix I. Define B(ŝ) and I(ŝ, f̂) as the corresponding observed

information matrices.



34 2. Nonparametric Estimation from Doubly–Censored Data

Gmez and Lagakos [36] proved in the discrete case that
√

n(f̂ − f) is asymptotically

normal with mean zero and covariance matrix

V = I−1
22 + I−1

22

(
I21 − 2

n
E(U2Z

′)
)

B−1I12I
−1
22 ,

and they estimate V by substituting the information matrices by their corresponding

observed matrices, B, I12, I21 and I22, and replacing E(U2Z
′) by its empirical counterpart,

E , that is the matrix with a jk term equal to Ejk = (1/n)
∑n

i=1 Ei
jk where Ei

jk is the

contribution of the i-th individual to the matrix U2Z
′.

We propose to estimate the variance of f̂ by

V̂ = I−1
22 + I−1

22

(
I21 − 2

n
E

)
B−1I12I−1

22 ,

where the jk term of E is given by

E(j, k) =
1

n

n∑

i=1








∑m
j=1(α

i
jk − αi

jr)ŝj
∑r

k=1

∑m
j=1 αi

jkŝj f̂k




[
αi

j − αi
m∑m

j=1 αi
j ŝj

]



for j = 1, . . . , m− 1 and k = 1, . . . , r − 1

and the jk term of the observed information matrices are

B(j, k) =
n∑

i=1

(αi
j − αi

m)(αi
k − αi

m)
(∑m

j=1 αi
j ŝj

)2 , for j, k = 1, . . . , m− 1

I12(j, k) = I21(k, j) = −
n∑

i=1

di P
i
12(j, k) · P i − P i

1(j) · P i
2(k)

(P i)2
,

for j = 1, . . . ,m− 1 and k = 1, . . . , r − 1 and

I22(j, k) =
n∑

i=1

di P
i
2(j) · P i

2(k)

(P i)2
for j, k = 1, . . . , r − 1

where

P i =
r∑

k=1

m∑

j=1

αi
jkŝj f̂k ,

P i
1(j) =

∂

∂sj

(P i) =
r∑

k=1

(αi
jk − αi

mk)fk , for j = 1, . . . ,m− 1 ,

P i
2(k) =

∂

∂fk

(P i) =
m∑

j=1

(αi
jk − αi

jr)sj for k = 1, . . . , r − 1

and, for j = 1, . . . , m− 1 and k = 1, . . . , r − 1,

P i
12(j, k) =

∂

∂sj

(
∂

∂fk

(P i)

)
= (αi

jk − αi
jr)− (αi

mk − αi
mr) .
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2.5.4 Relation with the Kaplan-Meier estimator

It is interesting to note that the maximum likelihood estimator F̂ includes the Kaplan-

Meier estimator [40] as a special case:

Proposition 2.5.9 ModGL estimator for the latency distribution reduces to the usual

product–limit estimator when the origin time is exactly known.

Proof.

If the origin time is known exactly for each individual, then X i
L = X i

R, ∀i and therefore

the intervals [qj, pj], j = 1, · · ·m and [q′k, p
′
k], k = 1, · · · , r are, all of them, degenerated to

a point. Say [qj, pj] = xj, j = 1, · · · , m and [q′k, p
′
k] = tk, k = 1, · · · , r.

Denoting by N1(k) the number of individuals with a latency time equal to tk and R(k)

the number of individuals at risk of failure at time tk, we will prove that the product-limit

estimator

f̂k = λ̂k

k−1∏

l=1

(
1− λ̂l

)
,

where λ̂l = N1(l)/R(l) if R(i) > 0 and λ̂l = 0 if R(i) = 0 is the hazard at time tl, is a

solution of the self-consistent equations (2.18) for f

(n− n0)fk =
n∑

i=1

[ ∑m
j=1 αi

jkŝjfk∑r
l=1

∑m
j=1 αi

jlŝjfl

]di

for k = 1, . . . , r.

These equations can be expressed as the sum of two factors corresponding to those indi-

viduals with known final time and to those individuals with a right-censored final time,

that is,

(n− n0)fk = N1(k) + N2(k) , k = 1, · · · , r (2.25)

where the process N1(k) is defined as above and the process N2(k) represents the expected

number of individuals with latency times equal to tk who have not experienced a final

event by the end of the study.

If the origin time is observed for each individual i, then n0 = 0 and αi
jk indicates an origin

time equal to xj and a latency time equal to tk. That is, if ci = 1,

αi
jk = 1{X i = xj}1{V i − xj = tk} and, if ci = 0, αi

jk = 1{X i = xj}1{V i − xj < tk}.
Then, the process N1(k) reduces to

N1(k) =
n∑

i=1

ci
m∑

j=1

1{X i = xj}1{V i − xj = tk} ,
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and N2(k) becomes

N2(k) =
n∑

i=1

(1− ci)
m∑

j=1

1{X i = xj}
k−1∑

l=1

1{V i − xj = tl} fk

1− F (tl)
.

If we define M(l) =
∑n

i=1(1−ci)
∑m

j=1 1{X i = xj}1{V i−xj = tl} the number of individuals

censored at time tl, then N2(k) can be expressed as

N2(k) =
∑

l<k

M(l)
fk

1− F (tl)

and the self-consistent equations become

nfk = N1(k) +
∑

l<k

M(l)
fk

1− F (tl)
, (2.26)

or equivalently

N1(k) =


n−∑

l<k

M(l)

1− F (tl)


 fk . (2.27)

We have to prove that f̂k satisfies equation (2.27). Using that 1−F̂ (tk) =
∏k−1

l=1 (1−λ̂l),

the above equation becomes

N1(k) =
n

∏k−1
l=1 (1− λ̂l)−M(1)

∏k−1
l=2 (1− λ̂l)− . . .−M(k − 1)

∏k−1
l=1 (1− λ̂l)

· f̂k. (2.28)

Now, from the fact that R(k) = R(k − 1)−N1(k − 1)−M(k − 1), it is easy to prove by

induction that:

R(k) = n
k−1∏

l=1

(1− λ̂l)−M(1)
k−1∏

l=2

(1− λ̂l)− . . .−M(k − 1)

and hence, equation (2.28) reduces to

N1(k) =
R(k)

∏k−1
l=1 (1− λ̂l)

· f̂k.

or, equivalently

f̂k = λ̂k

k−1∏

l=1

(
1− λ̂l

)

as we wanted to prove.

2
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2.6 Application to a Cohort Study of Haemophiliacs

To illustrate the methodologies considered in this chapter, we analyze the data given in

De Gruttola and Lagakos [16] of a cohort of haemophiliacs that were at risk of infection

with the human inmunodeficiency virus, HIV. The cohort corresponds to 262 patients

that were treated at the Hpital Kremlin Bictre and the Hpital Coeur des Yvelines in

France since 1978 and were at risk of infection from the contaminated blood factor they

received for their disease. Serum samples were routinely stored and subsequently they

could be tested for presence of HIV antibodies. The data was divided in two subsets:

105 patients in the heavily-treated group, that is in the group of patients who received

at least 1,000 µg/kg of blood factor for at least one year between 1982 and 1985, and

157 patients in the lightly-treated group, corresponding to those patients who received

less than 1,000 µg/kg in each year. By August 1988, 197 patients had become infected

( 97 in the heavily-treated group and 100 in the lightly-treated group) and 43 of these

had developed clinical symptoms of AIDS ( 29 in the heavily-treated group and 14 in

the lightly-treated group). The comparison of the two treatment groups could allow an

indirect evaluation of the effects of different viral doses on the risk of infection and on the

risk of AIDS once infected.

The observations, based on a discretization of the time axis into 6-month intervals, are

of the form (X i
L, X i

R, di, V i, ci). X i
L and X i

R are the chronologic times of the patient’s last

negative and first positive antibody test, respectively, di stands for the infection indicator,

V i denotes the chronologic time of first clinical symptom of AIDS when ci = 1 and, for

those individuals who had not developed AIDS at the end of the study (ci = 0), V i is the

time of the last blood sample tested.

In this example, it is difficult to appreciate the advantages of the modified GL estimator

because the data in this study were reported after a discretization of the time scale.

The estimators for the infection times of seroconversion obtained by the three methods,

DGL, GL and ModGL, are displayed in figures 2.2 and 2.3, corresponding to the heavily-

treated group and the lightly-treated group, respectively. The three estimators for W (x)

are very similar. Comparing these two figures we see that there is a difference between

the distribution of infection times in the two treatment groups. The heavily-treated group

presents shorter times of infection than the lightly-treated group. For instance, while in

the heavily-treated group half of the patients were infected before 1985, in the lightly-

treated group the median is obtained one year later.

Figures 2.4 and 2.5 give the estimated cumulative distribution function of the latency
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Figure 2.2: Estimated cumulative distribution function of time of HIV seroconversion for
heavily-treated group.
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Figure 2.3: Estimated cumulative distribution function of time of HIV seroconversion for
lightly-treated group.
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Figure 2.4: Estimated cumulative distribution function of latency time between HIV
seroconversion and onset of symptoms for heavily-treated group.
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Figure 2.5: Estimated cumulative distribution function of latency time between HIV
seroconversion and onset of symptoms for lightly-treated group.
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times for the two groups. The estimators are very similar for the first 5 years and differ

thereafter. We find here again differences between the two treatment groups. The heavily-

treated group seems to have shorter latency times than the other group of patients.

However, the interpretation of these results must be done carefully because of the small

number of patients who developed AIDS. The data, as reported in De Gruttola and

Lagakos [16], and the numerical results obtained with ModGL estimator are presented at

the end of this section.
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Data

Observations for 262 hemophilia patients by amount of blood factor received. Numbers

in parentheses denote multiplicities. Censored times of disease denoted by +.

XL XR V XL XR V XL XR V

Heavily treated
15 ∞ (2) 16 ∞ (3) 17 ∞ (3)
10 11 21+ 1 16 21+ 12 13 21+
13 15 21+ 14 16 21+ 12 14 21+
14 15 21+ 13 16 21+ 14 15 21+
13 15 21+ 9 12 21+ 14 15 21+
1 11 21+ 12 14 21+ 11 12 21+
15 16 21+ 15 16 21+ 1 13 21+
10 11 21+ 5 7 21+ 5 7 21+
15 15 21+ 14 15 21+ 12 13 21+
12 13 21+ 1 14 21+ 14 15 21+
10 11 21+ 10 11 21+ 8 10 21+
15 16 21+ 9 10 21+ 10 12 21+
1 14 21+ 1 15 21+ 1 13 21+
14 15 21+ 3 15 21+ 12 13 21+
14 15 21+ 9 10 21+ 14 15 21+
15 16 21+ 1 15 21+ 1 14 21+
11 13 21+ 10 11 20+ 1 7 21+
9 12 21+ 1 11 21+ 12 13 21+
13 14 21+ 10 15 21+ 13 15 21+
1 12 21+ 7 10 21+ 1 15 21+
9 12 21+ 7 15 21+ 14 16 21+
11 13 21+ 11 13 21+ 11 13 21+
1 6 21+ 8 15 21+ 10 11 21+
12 13 21+ 7 9 21+ 12 13 16
9 13 18 13 14 18 9 12 18
3 14 17 10 11 15 14 15 16
7 9 21 12 13 20 13 14 16
1 7 13 3 7 17 10 11 16
13 15 18 10 12 19 5 7 12
9 11 18 1 10 11 9 13 15
5 8 13 10 11 16 13 15 18
1 7 16 10 12 16 10 12 17
8 10 15 9 12 21 10 12 17
10 14 16
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XL XR V XL XR V XL XR V

Lightly treated
1 ∞ 15 ∞ (19) 16 ∞ (31)
17 ∞ (10) 18 ∞
10 15 21+ 12 14 21+ 1 15 21+
1 15 21+ 1 15 21+ 10 12 21+
1 16 21+ 15 16 21+ 3 10 21+
8 15 21+ 8 13 21+ 1 12 21+
13 14 21+ 5 11 21+ 14 16 21+
1 11 21+ 9 14 21+ 8 16 21+
11 12 21+ 1 17 21+ 1 18 21+
1 15 21+ 11 16 21+ 8 12 21+
9 13 21+ 1 15 21+ 13 14 21+
9 14 21+ 1 5 21+ 1 16 21+
12 15 21+ 9 12 21+ 13 15 21+
4 11 21+ 1 16 21+ 1 15 21+
14 15 21+ 1 12 21+ 14 15 21+
1 14 21+ 6 13 21+ 13 14 21+
15 16 21+ 7 12 21+ 12 14 21+
12 14 21+ 1 13 21+ 12 13 21+
13 15 21+ 15 16 21+ 1 15 21+
13 15 21+ 8 16 21+ 10 12 21+
14 15 21+ 11 15 21+ 13 15 21+
3 16 21+ 6 8 21+ 15 16 21+
11 14 21+ 13 14 21+ 12 14 21+
7 10 21+ 1 12 21+ 1 15 21+
12 13 21+ 1 15 21+ 10 16 21+
11 14 21+ 1 14 21+ 12 13 21+
9 14 21+ 12 14 21+ 11 12 20+
1 11 21+ 1 16 21+ 12 13 21+
14 15 21+ 1 15 21+ 15 16 21+
11 12 13 13 13 21 13 14 20
10 12 20 6 12 16 1 12 15
1 3 8 11 14 21 1 5 6
10 11 20 7 13 17 12 13 17
6 13 21 11 14 16
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Results for the heavily-treated group

Estimated survival function of time of HIV seroconversion of heavily-treated group using

ModGL estimator and 95% confidence intervals

k pk qk+1 1− Ŵ (x) (s.d.) Lower Upper

1 0 5.00 1 – –
2 6.00 7.00 0.9591 (0.0035) 0.952 0.965
3 7.00 8.00 0.8624 (0.0037) 0.855 0.869
4 8.00 9.00 0.8624 (0.0037) 0.855 0.869
5 9.00 10.00 0.8623 (0.0037) 0.855 0.869
6 10.00 11.00 0.6052 (0.0085) 0.588 0.621
7 11.00 12.00 0.5497 (0.0070) 0.535 0.563
8 12.00 13.00 0.4424 (0.0073) 0.428 0.456
9 13.00 14.00 0.2930 (0.0058) 0.281 0.304
10 14.00 15.00 0.2595 (0.0066) 0.246 0.272
11 15.00 16.00 0.0618 (0.0024) 0.057 0.066
12 16.00 17.00 0.0615 (0.0024) 0.056 0.066

Estimated survival function of latency time between HIV seroconversion and onset of

AIDS for heavily-treated group and 95% confidence intervals

k p′k q′k+1 1− F̂ (t) (s.d.) Lower Upper

1 0 1.00 1 – –
2 1.00 2.00 0.9858 (0.0013) 0.983 0.988
3 2.00 3.00 0.9858 (0.0013) 0.983 0.988
4 3.00 4.00 0.9553 (0.0024) 0.950 0.960
5 4.00 5.00 0.9553 (0.0024) 0.950 0.960
6 5.00 6.00 0.8637 (0.0042) 0.855 0.871
7 6.00 7.00 0.8090 (0.0046) 0.800 0.818
8 7.00 8.00 0.7605 (0.0061) 0.748 0.772
9 8.00 9.00 0.7277 (0.0050) 0.718 0.737
10 9.00 10.00 0.7115 (0.0064) 0.699 0.724
11 10.00 11.00 0.7097 (0.0366) 0.638 0.781
12 11.00 12.00 0.6546 (0.0221) 0.611 0.698
13 12.00 13.00 0.6017 (0.0531) 0.497 0.706
14 13.00 14.00 0.5995 (0.0531) 0.495 0.703
15 14.00 15.50 0.5099 (0.0491) 0.414 0.606
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Results for the lightly-treated group

Estimated survival function of time of HIV seroconversion of lightly-treated group using

ModGL estimator and 95% confidence intervals

k pk qk+1 1− Ŵ (x) (s.d.) Lower Upper

1 0 3.00 1 – –
2 3.00 5.00 0.9666 (0.0015) 0.963 0.969
3 5.00 8.00 0.9666 (0.0015) 0.963 0.969
4 8.00 10.00 0.9389 (0.0025) 0.934 0.944
5 10.00 11.00 0.9031 (0.0040) 0.895 0.911
6 11.00 12.00 0.8246 (0.0045) 0.816 0.833
7 12.00 13.00 0.6700 (0.0044) 0.661 0.678
8 13.00 14.00 0.5307 (0.0049) 0.521 0.540
9 14.00 15.00 0.4862 (0.0045) 0.477 0.495
10 15.00 16.00 0.4135 (0.0043) 0.405 0.422
11 16.00 17.00 0.2688 (0.0051) 0.259 0.279
12 17.00 18.00 0.2625 (0.0197) 0.224 0.301

Estimated survival function of latency time between HIV seroconversion and onset of

AIDS for lightly-treated group and 95% confidence intervals

k p′k q′k+1 1− F̂ (t) (s.d.) Lower Upper

1 0 1.00 1 – –
2 1.00 2.00 0.9895 (0.0008) 0.988 0.991
3 2.00 3.00 0.9895 (0.0008) 0.988 0.991
4 3.00 4.00 0.9704 (0.0017) 0.967 0.974
5 4.00 5.00 0.9592 (0.0043) 0.950 0.967
6 5.00 6.00 0.9221 (0.0053) 0.912 0.932
7 6.00 7.00 0.9221 (0.0053) 0.912 0.932
8 7.00 8.00 0.9072 (0.0057) 0.896 0.918
9 8.00 9.00 0.8747 (0.0057) 0.863 0.886
10 9.00 10.00 0.8122 (0.1474) 0.523 1
11 10.00 11.00 0.8115 (0.1841) 0.450 1
12 11.00 12.00 0.8115 (0.1841) 0.450 1
13 12.00 13.00 0.7821 (0.1666) 0.455 1
14 13.00 18.00 0.7820 (0.0493) 0.685 0.878
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2.7 ModGL Algorithm

The purpose of ModGL algorithm is to compute the proposed Modified Gmez and La-

gakos’s estimators for doubly-censored data. That is, the algorithm provides both, a

nonparametric estimator of the survival function for the interval-censored origin time and

an estimator of the survival function for the doubly-censored latency time.

The algorithm implements the two step procedure given in section 2.5. In the first

step the estimator of the survival function of the origin time is obtained by solving iter-

atively the self-consistent equations (2.10). Using the estimators obtained in step 1, the

second step computes the estimator of the survival function of the latency time by solving

iteratively the self-consistent equations (2.18).

ALGORITHM

FIRST STEP:

A. Construct the set of identifiable intervals [q1, p1], . . . , [qm, pm], defined in section

2.5.1, using the subroutine INTERVQP.

B. Choose starting values for s: s(0) = (s
(0)
1 , . . . , s(0)

m ).

C. Obtain improved estimates for s(1) from the self-consistent equations:

ns
(1)
j =

n∑

i=1

αi
js

(0)
j

∑m
l=1 αi

ls
(0)
l

for j = 1, . . . , m.

D. Stop if the required accuracy has been achieved.

Otherwise, return to step C with s(1) replacing s(0).

SECOND STEP:

A. Construct the set of identifiable intervals [q′1, p
′
1], . . . , [q

′
r, p

′
r], defined in section 2.5.2,

using the subroutine INTERVQP.

B. Choose starting values for f : f (0) = (f
(0)
1 , . . . , f (0)

r ).



46 2. Nonparametric Estimation from Doubly–Censored Data

C. Obtain improved estimates for f (1) from the self-consistent equations:

(n− n0)f
(1)
k =

n∑

i=1




∑m
j=1 αi

jkŝjf
(0)
k∑r

l=1

∑m
j=1 αi

jlŝjf
(0)
l




di

for k = 1, . . . , r.

D. Stop if the required accuracy has been achieved.

Otherwise, return to step C with f (1) replacing f (0).

Subroutine INTERVQP:

The purpose of this subroutine is to construct the set C = ∪m
j=1[qj, pj] of identifiable

intervals. It takes as input the maximum number of intervals in C, and the observed

vectors XL and XR. The output are the vectors qj and pj that define the identifiable

intervals [qj, pj], j = 1, . . . ,m.

ALGORITHM

1. Construction of the partition of IR+, 0 ≤ a1 < · · · < ak+1 ≤ +∞, generated by the

observed data (X i
L, X i

R), i = 1, . . . , n.

2. Each al, l = 1 . . . , k is classified into one of the following three categories by an

indicator, ind:

ind(al) = 1 if al is a right end-point of a censoring interval and, at the same

time, it is the left end-point of another censoring interval.

ind(al) = 2 if al is a left end-point of a censoring interval.

ind(al) = 3 if al is a right end-point of a censoring interval.

That is,

if al ∈ {X i
L, i = 1 . . . , n} ∩ {X i

R, i = 1 . . . , n} then ind(al) = 1

if al ∈ {X i
L, i = 1 . . . , n} ∩ {X i

R, i = 1 . . . , n}c then ind(al) = 2

if al ∈ {X i
L, i = 1 . . . , n}c ∩ {X i

R, i = 1 . . . , n} then ind(al) = 3

3. Then, the intervals [qj, pj] are constructed as follows:

For l = 1, · · · , k
if ind(al) = 1 then qj = pj = al

if ind(al) = 2 and ind(al+1) = 3 then qj = al and pj = al+1
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Auxiliary Subroutines

We have used the subroutines crear vector, crear intvector and crear matriu to

allocate memory to a vector, to a vector with integer components and to a matrix, re-

spectively.

Subroutines lliberar vector, lliberar intvector and lliberar matriu leave up the mem-

ory allocated to a vector, to a vector with integer components and to a matrix, respectively.
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Chapter 3

Comparison of Nonparametric
Methodologies for Double Censoring.
A simulation Study

3.1 Introduction

The two-step estimation procedure of Gmez and Lagakos (GL) [36] was proposed as

an alternative to those problems observed with the method derived by DeGruttola and

Lagakos (DGL) [16]. To improve the behaviour of GL method and to avoid some problems

of unstability we have proposed in section 2.5 an extension of it that allows continuous

time distributions, the ModGL method. From a theoretical point of view the two-step

estimation procedures, both GL and ModGL algorithms, lead to estimators not as efficient

as those obtained from DGL because while DGL maximizes the joint likelihood, GL and

ModGL maximize the marginal and the conditional likelihoods separately. Our goal now

is to show that despite of these considerations, for small and moderate sample sizes,

both approaches, DGL and ModGL, behave similarly , while ModGL is computationally

more efficient and therefore should be preferred. A simulation study is carried out to

compare ModGL estimator to DGL estimator for the latency distribution when data are

doubly–censored. First results of this simulation study are given in [6].

49
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3.2 Design and Implementation of the Simulation Study

Simulations are performed for a large variety of scenarios. Several options are considered

for the sample size, for the distribution of X and T and for the percentage of right

censoring.

Random variables. Two parametric models are assumed for the origin time X, namely,

a uniform distribution in the interval [1, 16] and a Weibull distribution with scale and

shape parameters equal to 10 and to 3, respectively. The latency time T is assumed

to follow a Weibull distribution with scale parameter equal to 10 and shape parameter

b equal to 0.5, 1 and 4, corresponding to a decreasing, constant and increasing hazard

function, respectively.

Generation of observations. After X i and T i have been randomly generated from one

of the models considered above, the observable data (X i
L, X i

R, di, V i, ci), i = 1, . . . , n are

constructed in two independent steps for samples of size equal to 30, 50 and 100.

In the first step, the random intervals [X i
L, X i

R] are constructed containing X i via a

mechanism that mimics those longitudinal studies where there is periodical follow–up.

The intervals arise from regularly scheduled visits but patients might miss some of the

appointments. In particular, we consider a situation in which 30% of the patients attend

all the visits, having each of them a censoring interval of length 1 unit (1 month, 6 months,

1 year, ...), 30% of the patients miss 1 visit in the interval of interest and have therefore

a censoring interval of length 2 units, 20% miss 2 visits and have censoring intervals of

length 3 units, 10% of the patients miss 3 visits and their intervals are of length 4 units

and the remainder 10% have an interval of length 5 units.

In the second step (V i, ci) are generated in the following way: First, we compute the

final time Zi as the sum of the origin time X i and the latency time T i: Zi = X i + T i.

Then, we construct the observed values V i as the minimum between Zi and a constant

C and define the censoring indicator ci = 1{Zi ≤ C}. For every run, the constant C is

computed so that the given percentage of censoring, p, is achieved. This percentage p is

taken to be equal to 10%, 30%, 50% and 70%.

Design of the experiment. 500 replications of the process are carried out for each

possible scenario. Based on the observable data the maximum likelihood estimators Ŵ and

F̂ are computed following DGL and ModGL procedures. Convergence of the algorithms

is declared for a tolerance equal to 0.0001.
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Evaluation. The overall performance of the estimator F̂ (t) is studied by means of two

statistics:

D1 =

(∫ t∗

0
(F̂ (t)− F (t))2 dt

)(1/2)

, D2 = sup0≤t≤t∗ |F̂ (t)− F (t)|

that measure the distance between the estimator F̂ (t) and the theoretical distribution

F (t) for values of t between 0 and the maximum admissible time t∗. The mean and the

standard deviation of D1 and D2 are computed for each run. As a measure of the local

performance of the estimator F̂ , we compute its deciles for each run. Then, the bias and

mean squared error (MSE) for each method are compared.

3.3 Results and discussion

The comparison of both methods has not been done for a percentage of censoring equal

to 70% because DGL algorithm has given many problems of convergence at this level of

censoring.

We first consider the results concerning the global performance of both estimators,

that is, comparisons of the L2 distance and the supremum norm distance for the two

estimators. These results are reported in tables 3.1 to 3.4. In each table we provide the

mean and the standard error (in parentheses) of the corresponding measures based on

500 replications. Those situations where ModGL method has a larger mean distance have

been printed in boldface. Tables 3.1 and 3.2 corresponds to a uniform origin time and

tables 3.3 and 3.4 to a Weibull origin time.

By examining these tables we observe that:

• When the origin time is uniform, if the latency time has increasing hazard (b = 4)

the mean L2 distance of ModGL estimator is in every case slightly smaller than the

distance of DGL estimator. In this case, the advantage of ModGL method is clear,

especially for small sample sizes (n = 30, n = 50). If a constant or decreasing hazard

are considered the advantage of ModGL is still observed. Only in one situation

ModGL behaves worse that DGL with respect to the mean L2 distance (table 3.1).

Similar results are obtained when the supremum norm distance is considered, while

in this case there are 5 instances where DGL performs slightly better that ModGL

(table 3.2).
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• An analogous behaviour is found when the origin time is Weibull. We don’t have

reasons to prefer DGL algorithm when the hazard is increasing. Although in 12 out

of 18 possibilities DGL has smaller mean distance when a constant or decreasing

hazard are considered, the difference between them remains not significative.

The local behaviour of the estimators is shown in figures 3.1 to 3.6 where the ratio

between the mean squared errors of the deciles of DGL and the deciles of ModGL have

been graphically displayed. If this ratio is greater than 1, ModGL estimator should be

preferred to DGL estimator. The figures have been restricted to a sample size equal 30.

Sample sizes equal 50 and 100 yield analogous results. As the illustrations show, ModGL

method performs better for every decile if the hazard is increasing, achieving ratios near 2

(Figures 3.1 and 3.4). For an exponential latency time the ratio is approximately equal to

1.2 and quite homogeneous over the entire distribution and for the three levels of censoring

(Figures 3.2 and 3.5). Finally, when b = 0.5 there is no evidence of the superiority of one

method (Figures 3.3 and 3.6). From a bias point of view both methods behave similarly.

Both estimators slightly underestimate the deciles of the Weibull distribution when a non–

decreasing hazard is considered and they slightly overestimate them when the hazard is

decreasing.

We have observed also with this simulation study that ModGL algorithm is computa-

tionally more efficient. In particular, ModGL algorithm is three times faster than DGL

and it converges even for a 70% of right censoring.

We conclude that both estimators perform very similarly with small and moderate

sample sizes and therefore the two-step algorithm of ModGL can be considered a good

computational alternative to the DGL method.
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Table 3.1

Mean L2 distance between the estimator and the theoretical distribution when it is
assumed a Uniform origin time and a Weibull latency time with shape parameter b

DGL: DeGruttola & Lagakos estimator ModGL: Modified Gomez & Lagakos estimator

n=30
Method % cens b=4 b=1 b=0.5

DGL 10 0.3653(0.11) 0.4426(0.14) 0.6010(0.22)
ModGL 10 0.3157(0.11) 0.4195(0.14) 0.5695(0.24)
DGL 30 0.4212(0.13) 0.4855(0.16) 0.5618(0.18)
ModGL 30 0.3450(0.12) 0.4399(0.14) 0.5117(0.17)
DGL 50 0.4772(0.15) 0.5536(0.16) 0.5286(0.17)
ModGL 50 0.3759(0.13) 0.5048(0.12) 0.5438(0.12)

n=50
Method % cens b=4 b=1 b=0.5

DGL 10 0.3191(0.09) 0.3552(0.11) 0.4956(0.15)
ModGL 10 0.2836(0.09) 0.3324(0.11) 0.4523(0.16)
DGL 30 0.3758(0.10) 0.4160(0.13) 0.4874(0.15)
ModGL 30 0.3034(0.10) 0.3745(0.11) 0.4409(0.13)
DGL 50 0.4270(0.12) 0.4963(0.14) 0.4924(0.14)
ModGL 50 0.3300(0.11) 0.4360(0.11) 0.4849(0.09)

n=100
Method % cens b=4 b=1 b=0.5

DGL 10 0.2707(0.07) 0.2654(0.08) 0.4034(0.11)
ModGL 10 0.2500(0.07) 0.2474(0.08) 0.3506(0.12)
DGL 30 0.3252(0.08) 0.3408(0.10) 0.4029(0.11)
ModGL 30 0.2603(0.08) 0.3014(0.08) 0.3621(0.07)
DGL 50 0.3694(0.09) 0.4429(0.13) 0.4581(0.14)
ModGL 50 0.2793(0.08) 0.3634(0.08) 0.4309(0.06)
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Table 3.2

Mean suprem norm between the estimator and the theoretical distribution when it is
assumed a Uniform origin time and a Weibull latency time with shape parameter b

DGL: DeGruttola & Lagakos estimator ModGL: Modified Gomez & Lagakos estimator

n=30
Method % cens b=4 b=1 b=0.5

DGL 10 0.2776(0.07) 0.2029(0.05) 0.2549(0.02)
ModGL 10 0.2310(0.07) 0.1851(0.05) 0.2104(0.05)
DGL 30 0.3175(0.09) 0.2304(0.06) 0.2666(0.03)
ModGL 30 0.2547(0.08) 0.2198(0.05) 0.2690(0.05)
DGL 50 0.3553(0.10) 0.2879(0.07) 0.2941(0.04)
ModGL 50 0.2732(0.08) 0.3070(0.06) 0.3638(0.04)

n=50
Method % cens b=4 b=1 b=0.5

DGL 10 0.2483(0.06) 0.1675(0.04) 0.2482(0.00)
ModGL 10 0.2132(0.06) 0.1516(0.04) 0.1912(0.04)
DGL 30 0.2847(0.07) 0.1952(0.05) 0.2565(0.02)
ModGL 30 0.2284(0.06) 0.1890(0.04) 0.2498(0.04)
DGL 50 0.3186(0.08) 0.2555(0.06) 0.2818(0.03)
ModGL 50 0.2460(0.07) 0.2709(0.04) 0.3416(0.04)

n=100
Method % cens b=4 b=1 b=0.5

DGL 10 0.2111(0.04) 0.1320(0.03) 0.2466(0.00)
ModGL 10 0.1915(0.04) 0.1209(0.03) 0.1731(0.03)
DGL 30 0.2494(0.05) 0.1594(0.04) 0.2486(0.00)
ModGL 30 0.1988(0.05) 0.1579(0.03) 0.2342(0.03)
DGL 50 0.2801(0.06) 0.2300(0.05) 0.2753(0.03)
ModGL 50 0.2129(0.06) 0.2428(0.03) 0.3233(0.02)
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Table 3.3

Mean L2 distance between the estimator and the theoretical distribution when it is
assumed a Weibull origin time and a Weibull latency time with shape parameter b.

DGL: DeGruttola & Lagakos estimator ModGL: Modified Gomez & Lagakos estimator

n=30
Method % cens b=4 b=1 b=0.5

DGL 10 0.3473(0.10) 0.4336(0.14) 0.5767(0.23)
ModGL 10 0.3102(0.10) 0.4139(0.14) 0.5667(0.24)
DGL 30 0.3679(0.11) 0.4443(0.15) 0.4848(0.18)
ModGL 30 0.3353(0.11) 0.4442(0.13) 0.5075(0.15)
DGL 50 0.4061(0.13) 0.4752(0.17) 0.4595(0.19)
ModGL 50 0.3696(0.13) 0.5187(0.12) 0.5532(0.11)

n=50
Method % cens b=4 b=1 b=0.5

DGL 10 0.3028(0.08) 0.3454(0.11) 0.4529(0.16)
ModGL 10 0.2779(0.09) 0.3309(0.11) 0.4463(0.16)
DGL 30 0.3200(0.09) 0.3768(0.12) 0.4076(0.16)
ModGL 30 0.2960(0.09) 0.3800(0.10) 0.4468(0.12)
DGL 50 0.3586(0.11) 0.4083(0.15) 0.3892(0.16)
ModGL 50 0.3301(0.11) 0.4596(0.10) 0.5014(0.08)

n=100
Method % cens b=4 b=1 b=0.5

DGL 10 0.2551(0.07) 0.2573(0.08) 0.3469(0.12)
ModGL 10 0.2454(0.07) 0.2495(0.08) 0.3475(0.12)
DGL 30 0.2643(0.07) 0.2995(0.10) 0.3122(0.12)
ModGL 30 0.2519(0.07) 0.3156(0.08) 0.3729(0.07)
DGL 50 0.2855(0.08) 0.3249(0.13) 0.3093(0.14)
ModGL 50 0.2707(0.08) 0.3904(0.08) 0.4531(0.06)
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Table 3.4

Mean suprem norm between the estimator and the theoretical distribution when it is
assumed a Weibull origin time and a Weibull latency time with shape parameter b.

DGL: DeGruttola & Lagakos estimator ModGL: Modified Gomez & Lagakos estimator

n=30
Method % cens b=4 b=1 b=0.5

DGL 10 0.2634(0.07) 0.2010(0.05) 0.2501(0.07)
ModGL 10 0.2282(0.06) 0.1849(0.05) 0.2166(0.05)
DGL 30 0.2782(0.07) 0.2229(0.06) 0.2685(0.07)
ModGL 30 0.2483(0.07) 0.2364(0.06) 0.2794(0.05)
DGL 50 0.3075(0.09) 0.2728(0.08) 0.3089(0.08)
ModGL 50 0.2751(0.09) 0.3436(0.06) 0.3843(0.04)

n=50
Method % cens b=4 b=1 b=0.5

DGL 10 0.2339(0.06) 0.1648(0.04) 0.2206(0.06)
ModGL 10 0.2091(0.05) 0.1522(0.04) 0.1986(0.04)
DGL 30 0.2486(0.06) 0.1912(0.04) 0.2432(0.06)
ModGL 30 0.2228(0.06) 0.2054(0.04) 0.2643(0.05)
DGL 50 0.2751(0.08) 0.2343(0.07) 0.2777(0.07)
ModGL 50 0.2488(0.07) 0.3084(0.05) 0.3663(0.04)

n=100
Method % cens b=4 b=1 b=0.5

DGL 10 0.2000(0.04) 0.1285(0.03) 0.1960(0.05)
ModGL 10 0.1889(0.04) 0.1206(0.03) 0.1806(0.04)
DGL 30 0.2071(0.05) 0.1538(0.04) 0.2171(0.05)
ModGL 30 0.1935(0.05) 0.1784(0.03) 0.2488(0.03)
DGL 50 0.2225(0.06) 0.1912(0.06) 0.2473(0.06)
ModGL 50 0.2077(0.05) 0.2778(0.03) 0.3479(0.03)
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Figure 3.1: Relative MSE of percentiles of two estimators of the latency distribution
(DGL/ModGL) (Origin time Uniform and Latency time Weibull with b = 4)
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Figure 3.2: Relative MSE of percentiles of two estimators of the latency distribution
(DGL/ModGL) (Origin time Uniform and Latency time Weibull with b = 1)
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Figure 3.3: Relative MSE of percentiles of two estimators of the latency distribution
(DGL/ModGL) (Origin time Uniform and Latency time Weibull with b = 0.5)
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Figure 3.4: Relative MSE of percentiles of two estimators of the latency distribution
(DGL/ModGL) (Origin time Weibull(10,3) and Latency time Weibull with b = 4)
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Figure 3.5: Relative MSE of percentiles of two estimators of the latency distribution
(DGL/ModGL) (Origin time Weibull(10,3) and Latency time Weibull with b = 1)
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Figure 3.6: Relative MSE of percentiles of two estimators of the latency distribution
(DGL/ModGL) (Origin time Weibull(10,3) and Latency time Weibull with b = 0.5)
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Chapter 4

Nonparametric Bayesian Estimation
of a Survival Function

4.1 Introduction

We consider the problem of estimating an unknown survival function based on censored

data. When there are no reasons that indicate any specific parametric model to hold, the

nonparametric approach may be appropriate. In the presence of right censoring, the most

widely used nonparametric estimator of a survival curve is the Kaplan and Meier estimator

[40]. Kaplan and Meier consider several nonparametric estimators of the survival function

and show that one of them, the product limit estimator, is in fact a maximum likelihood

estimator. There are other nonparametric methodologies for more complex censoring

schemes, such as, Turnbull’s algorithm [57] when there is interval-censored data or DGL

[16] and GL [36] in the presence of double censoring.

Sometimes, however, there are clear reasons that indicates that a certain parametric

family is adequate. In those cases, a nonparametric approach may represent a loss of

efficiency versus a parametric estimator. The problem with the parametric methodology

is that the models only hold approximately and with complex censoring schemes the

parametric assumptions are difficult to assess. Then, with the parametric methodology

one runs the risk of obtaining an inconsistent estimator if the model is not correctly

specified.

In most situations it is difficult to decide in favour of one of those opposed points of

view, parametric or nonparametric methods. We consider as an alternative the nonpara-

metric Bayesian approach that allows the incorporation of prior information about the

modelization of the problem but, at the same time, reduces the unfortunate consequences

63
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of an incorrect parametric assumption. Ferguson’s paper [19] pioneers the approach fol-

lowed in this chapter when the sample data is complete. He introduces a class of prior

distributions, the so-called Dirichlet processes, that are an important tool for the treat-

ment of nonparametric statistical problems from a Bayesian point of view. Using this

class of prior distributions Ferguson finds the Bayesian estimator for the survival function

under the squared error loss. This estimator is a mixture of the prior guess and of the

empirical survival function.

Susarla and Van Ryzin [51] use the class of Dirichlet processes to obtain a nonpara-

metric Bayesian estimator of the survival function when data are right-censored. The

resulting estimator includes, as a limiting case, the Kaplan-Meier estimator and it is

shown to be preferable in many situations, specially with heavy censoring. Ferguson and

Phadia [20] extend the results of Susarla and Van Ryzin to a more general class of prior

distributions, namely, the processes that are neutral to the right. This class of processes

includes among others the Dirichlet process and the gamma process.

The incorporation of covariates in the estimation of the survival function is approached

in the papers of Kalbfleisch [39] and Burridge [5]. They propose a Bayesian method

to analyze the Cox proportional hazards model [13] by treating the cumulative hazard

function as a gamma process.

In this chapter we describe the works of Ferguson [19] and Susarla and Van Ryzin

[51] [52] for complete and right-censored data, respectively, and prove some asymptotical

results of the nonparametric Bayes estimator when the data are completely observed.

4.2 The Dirichlet Distribution

The Dirichlet is a well known distribution because it is the conjugate prior for the param-

eters of the multinomial distribution.

Definition 4.2.1 The random vector (X1, · · · , Xk) is said to have a Dirichlet distri-

bution with parameters (α1, · · · , αk), and is denoted by D(α1, · · · , αk), with αj positive

numbers for all j, if the joint distribution of the first (k − 1) components has density

f(x1, · · · , xk−1) =
Γ(α1 + · · ·+ αk)

Γ(α1) · · ·Γ(αk)




k−1∏

j=1

x
αj−1
j





1−

k−1∏

j=1

xj




αk−1
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over the (k − 1)-dimensional simplex S defined by

S = {(x1, · · · , xk−1) : xj ≥ 0,
k−1∑

j=1

xj ≤ 1}

and xk = 1−∑k−1
j=1 xj .

Properties:

Assume that (X1, · · · , Xk) ∼ D(α1, · · · , αk) and let α =
∑k

i=1 αi.

1. When k = 2, the Dirichlet distribution reduces to the Beta distribution Be(α1, α2).

2. Let Y1, · · · , Yk be independent gamma random variables with parameters αi > 0 and

β = 1, for i = 1, . . . , k, respectively and define

Xi = Yi/
k∑

j=1

Yj for i = 1, · · · , k − 1

and Xk = 1−
k−1∑

i=1

Xi,

then (X1, · · · , Xk) ∼ D(α1, · · · , αk).

This important property provides an efficient method for sampling from the Dirichlet

distribution.

3. If k1, · · · , kl are integers such that 0 < k1 < k2 < · · · < kl = k, then

(
k1∑

i=1

Xi,
k2∑

i=k1+1

Xi, · · · ,
kl∑

i=kl−1+1

Xi) ∼ D(
k1∑

i=1

αi,
k2∑

i=k1+1

αi, · · · ,
kl∑

i=kl−1+1

αi).

This result follows form the additivity property of the gamma distribution.

4. The marginal distributions of each (X1, . . . , Xk) are Beta, that is,

Xj ∼ Be(αj, α− αj) for every j = 1, . . . , k.
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4.3 Dirichlet Processes

Nonparametric models are characterized by the specification of a probability distribu-

tion on an infinite-dimensional space. The random probability measures in this infinite-

dimensional space can be thought as a stochastic processes with index set A, a σ-field of

subsets of the sample space X. In this context the distribution of a random probability

measure P is determined by the specification of the joint distribution of (P (A1), . . . , P (Ak))

for all k and for all partition (A1, . . . , Ak) of X, provided that some consistent properties

are satisfied.

Definition 4.3.1 Let X be the sample space and A a σ-field of subsets.

A random probability measure on the measurable space (Ω,A) is a stochastic process

{P (A), A ∈ A} such that:

1. P (A) is a random variable with values in [0, 1], A ∈ A,

2. P (Ω) is degenerate at 1,

and

3. P is finitely additive in distribution, i.e.,

if (B′
1, · · · , B′

j) and (B1, · · · , Bk) are measurable partitions, and if (B′
1, · · · , B′

j) is

a refinement of (B1, · · · , Bk) with B1 = ∪r1
1 B′

i, B2 = ∪r2
r1+1B

′
i, · · · , Bk = ∪j

rk−1+1B
′
i,

then the distribution of

(
r1∑

1

P (B′
i),

r2∑

r1+1

P (B′
i), · · · ,

j∑

rk−1+1

P (B′
i))

is identical to the distribution of (P (B1), · · · , P (Bk)):

The notion of a Dirichlet process is introduced by Ferguson [19] who constructs a

random probability measure, P , by defining the joint distribution of the random variables

(P (A1), · · · , P (Ak)) for every k and for any sequence of measurable sets (A1, · · · , Ak).

Definition 4.3.2 Let α be a finite non-null measure on (Ω,A). A stochastic process in-

dexed by elements of A, {P (A), A ∈ A} is said to be a Dirichlet process on (Ω,A) with

parameter α, denoted by D(α), if for every k = 1, 2, · · · and for any measurable partition

(A1, · · · , Ak) of X, the random vector (P (A1), · · · , P (Ak)) has a Dirichlet distribution with

parameter (α(A1), · · · , α(Ak)).
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Ferguson proved that a Dirichlet process is a random probability measure, that is,

P verifies the conditions in definition 4.3.1. The distribution of P is a probability on

([0, 1]A, σ(BA), where [0, 1]A represents the space of all functions from A into [0, 1] and

σ(BA) represents the σ-field generated by the field of cylinder sets in [0, 1]A. The main

result in Ferguson [19], restricted to the measurable space (IR,B), where IR denotes the

real line and B the σ-field of Borel sets, is that, if the prior process is a Dirichlet process

then the posterior process given a random sample is also a Dirichlet process, with an

updated parameter measure.

Theorem 4.3.3 (Ferguson) If P is a Dirichlet process on (Ω,A) with parameter α, and

if (X1, · · · , Xn) is a sample of size n from P , then the posterior distribution of P given

(X1, · · · , Xn) is also a Dirichlet process on (Ω,A) with parameter α +
∑n

1 δXi
, where δx

denotes the measure giving mass one to the point x.

4.4 Elements of decision theory

In decision theory a game (Ω, A, L) has the following elements: Ω is the set of the possible

states of nature θ, A is the set of actions available to the statistician and L is a loss function

which defines the loss L(θ, a) ∈ IR which a statistician suffers if he takes action a when

the true state of nature is θ.

A statistical decision problem is a game (Ω, A, L) whose result x lies in a sample

space X and is randomly distributed with a density p(x|θ) which depends on the state

θ ∈ Ω. On the basis of the result x, the statistician chooses an action d(x) ∈ A, resulting

in a random loss L(θ, d(x)). The risk function is the expectation of the loss over all

possible outcomes of the experiment:

R(θ, d) = E{L(θ, d(x))} =
∫

L(θ, d(x))p(x|θ) dx.

A decision rule is any function d for which R(θ, d) exists and is finite for all θ ∈ Ω. If

there are prior beliefs about θ which can be expressed in terms of a prior density p(θ), the

Bayes risk of the decision rule d is defined as the expectation of R(θ, d) over all possible

values of θ, that is,

r(d) = E{R(θ, d)} =
∫

R(θ, d)p(θ) dθ.

A Bayes decision rule d is defined as the decision rule which minimizes the Bayes risk

r(d). It is easy to prove that this happens when the decision rule d is chosen so that the
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posterior expected loss of d(x), E{L(θ, d(x))|x} is minimum for all x:

r(d) =
∫

R(θ, d)p(θ) dθ =
∫ ∫

L(θ, d(x))p(x|θ)p(θ) dx dθ =

=
∫ ∫

L(θ, d(x))p(x, θ) dx dθ =
∫ (∫

L(θ, d(x))p(θ|x) dθ
)

p(x) dx =

=
∫

(E{L(θ, d(x))|x}) p(x) dx

then, r(d) is minimized if E{L(θ, d(x))|x} is minimum for all x.

A Bayes estimator of the state θ is the Bayes decision rule d(x) for a given result x.

4.5 Bayesian Inference From Complete Data

In this section we derive the Bayes estimator Ŝ(t) of the random survival function

S(t) = 1− F (t) = P (t, +∞) that minimizes the squared error loss:

L(Ŝ, S) =
∫ +∞

0
(Ŝ(t)− S(t))2 dw(t),

where w is a nonnegative and nondecreasing function on (0, +∞)

Proposition 4.5.1 The Bayes estimator Ŝ of the survival function S under a prior pro-

cess P is the posterior mean of S with respect to the posterior distribution of P given a

sample x = (x1, · · · , xn); that is, Ŝ(t) = E {S(t)|x}.

Proof. We find the decision rule Ŝ that minimizes the posterior expected loss over all

possible samples denoted by x:

E
{
L(Ŝ, S)|x

}
=

∫ +∞

0
E

{(
Ŝ(t)− S(t)

)2 |x
}

dw(t)

where E denotes expectation with respect to the posterior distribution of P . This expres-

sion is minimized when the mean-squared error is minimum:

E
{(

Ŝ(t)− S(t)
)2 |x

}
= E

{(
Ŝ(t)− E {S(t)|x}+ E {S(t)|x} − S(t)

)2 |x
}

=

= E
{(

Ŝ(t)− E {S(t)|x}
)2 |x

}
+ (4.1)

+2E
{(

(Ŝ(t)− E {S(t)|x})(E {S(t)|x} − S(t))
)
|x

}
+ (4.2)

+E
{
(E {S(t)|x} − S(t))2 |x

}
. (4.3)
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Expression (4.2) becomes equivalent to 2(Ŝ(t) − E {S(t)|x})E {(E {S(t)|x} − S(t)) |x}
which is obviously equal to 0, and expression ( 4.3) is the posterior variance of S(t),

V ar{S(t)|x}. Therefore, the minimum is achieved if expression (4.1) is zero, hence when

Ŝ(t) = E {S(t)|x}. 2

Now we use the above result to get the Bayes estimator of S when the prior process

P is Dirichlet.

Bayes estimator of the survival function S(t) under a Dirichlet process prior

Let X1, · · · , Xn be a random sample of size n from a Dirichlet process P of parame-

ter measure α. Then, the posterior distribution of P given the observations is again a

Dirichlet process, D(α+
∑n

1 δXi
). Therefore, the posterior distribution of S(t) = P (t, +∞)

is a beta distribution, Be((α +
∑n

1 δXi
)(t, +∞), (α +

∑n
1 δXi

)(−∞, t]), for each t. Thus,

from proposition 4.5.1, the Bayes estimator Ŝα(t) of the survival function is the first

moment of this beta distribution:

Ŝα(t) = E {S(t)|X1, · · · , Xn} =
α(t, +∞) +

∑n
1 δXi

(t, +∞)

α(IR) + n
(4.4)

Interpretation of the parameter measure of the Dirichlet process

To get an interesting interpretation of the parameter measure α we derive now the

special case in which there is no data available. If P is a Dirichlet process of parameter

measure α, the posterior distribution of P is also D(α). The random variable S(t) =

P (t, +∞) is therefore distributed as a beta distribution Be(α(t, +∞), α(−∞, t]), for each

t. Thus, from proposition 4.5.1, the Bayes estimator Ŝ0(t) of the survival function in

the no-sample problem is the first moment of this distribution. That is

Ŝ0(t) = E {S(t)} = α(t, +∞)/α(IR) .

In this case the Bayes estimator Ŝ0(t) can be interpreted as the prior guess of the unknown

survival function S(t), since it has been obtained in the absence of any observation.

Therefore, if we denote by β = α(IR) the measure of the real line, the parameter measure

α can be expressed as α(t, +∞) = β · Ŝ0(t). That is, the measure α is the prior survival

function Ŝ0(t) weighted by a measure of faith in this prior guess, β.

With this notation, the Bayes estimator (4.4) can be expressed as a linear combination

of the prior guess at S and of the empirical survival function, with respective weights
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β/(β + n) and n/(β + n):

Ŝα(t) =

(
β

β + n

)
Ŝ0(t) +

(
n

β + n

)
Sn(t|X1, · · · , Xn) (4.5)

where

Sn(t|X1, · · · , Xn) =
1

n

n∑

i=1

δXi
(t, +∞)

is the empirical survival function. The ratio β/n represents the relative weight of the prior

guess to the empirical distribution. If β is large compared to n, little weight is given to

the observations. If β is small compared to n, little weight is given to the prior guess at S.

As β tends to zero (the ”noninformative” Dirichlet prior), the Bayes estimator converges

to the empirical survival function.

4.5.1 Asymptotic behaviour of the Bayes estimator

We now study the asymptotic behaviour of Ŝα(t) as an estimator of S(t) in a nonde-

cision theoretic setup. We first examine the mean-squared error consistency and weak

convergence of the nonparametric Bayes estimator.

Theorem 4.5.2 The Bayes estimator Ŝα(t) is mean-squared consistent, that is

E
{(

Ŝα(t)− S(t)
)2

}
tends to zero as n →∞.

Proof. Mean-squared consistency can be proved by expressing the Bayes estimator as a

linear combination of the prior guess Ŝ0(t) and the empirical survival function Sn(t) as in

equation (4.5). Indeed,

E
{(

Ŝα(t)− S(t)
)2

}
= E





((
β

β + n

)
Ŝ0(t) +

(
n

β + n

)
Sn(t)− S(t)

)2


 =

E





((
β

β + n

)
(Ŝ0(t)− S(t)) +

(
n

β + n

)
(Sn(t)− S(t))

)2


 =

(
β

β + n

)2

E
{(

Ŝ0(t)− S(t)
)2

}
+

+

(
n

β + n

)2

E
{
(Sn(t)− S(t))2

}
+ (4.6)

+2
βn

(β + n)2
(Ŝ0(t)− S(t))E {(Sn(t)− S(t))} = (4.7)

=

(
β

β + n

)2

(Ŝ0(t)− S(t))2 +
n2

(β + n)2

1

n
S(t)(1− S(t))
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where (4.6) is the variance of the empirical survival curve Sn(t) and expression (4.7) is

zero because E {Sn(t)} = S(t).

2

Theorem 4.5.3
√

n(Ŝα(t)− S(t)) follows, asymptotically, a mean zero normal distribu-

tion with variance S(t)(1− S(t)).

Proof. The proof is straightforward from the expression of Ŝα(t) as a linear combination

of the prior survival Ŝ0(t) and the empirical survival function Sn(t) as in (4.5):

√
n(Ŝα(t)− S(t)) =

√
nβ

β + n
(Ŝ0(t)− S(t)) +

n

β + n

√
n(Sn(t)− S(t))

and from the asymptotical properties of the empirical distribution Sn(t). 2

4.6 Bayesian Inference From Right-Censored Data

When data is right-censored, Susarla and Van Ryzin [51] propose a nonparametric Bayesian

estimator of the survival function S(t) based on a Dirichlet process prior.

Let X1, · · · , Xn be a random sample with distribution function F and let Y1, · · · , Yn,

be independent and identically distributed random variables from a distribution function

G. Assume that Xi is right-censored by Yi. The observed data are then of the form:

(Zi, di), i = 1, · · · , n, where

Zi = min {Xi, Yi} and di = 1 {Xi ≤ Yi} .

For simplicity, and without loss of generality, data are rearranged so that the first k

pairs (Zi, δi), i = 1, · · · , k, are the exact observations, while the rest n−k pairs correspond

to the censored observations.

The estimator of the survival function S(t) = 1−F (t) is obtained by Susarla and Van

Ryzin in two steps. Assuming a Dirichlet process a priori on IR+ of parameter measure

α, they first show that the conditional distribution of F given the exact observations

(Z1, 1), · · · (Zk, 1) is a Dirichlet process of parameter α∗ = α +
∑k

1 δZi
. Secondly, they

consider Xk+1, · · · , Xn a random sample from the process D(α∗) and find the conditional

moments of S(t) given the censored data (Zi, 0), i = k + 1, · · · , n.

The results can be stated in the following theorem:
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Theorem 4.6.1 (Susarla and Van Ryzin) The conditional moments of S(t) given a

right-censored sample are of the form:

E[(S(t))p|(δ,Z)] =
p−1∏

s=0





α(t,∞) + s + N+(t)

α(IR+) + s + n

∏

i∈I

{
α[Zi,∞) + s + N+(Zi) + λi

α[Zi,∞) + s + N+(Zi)

}1−di




where I = {i : Zi ≤ t and i is the first subscript among tied censored Z’s} and λi = num-

ber of observations at Zi, i = 1, · · · , n, and N+(t) = number of observations (censored or

not) > t.

Bayes estimator of the survival function under right censoring

Taking p = 1, one obtains the Bayes estimator for the survival function S(t) based

on right-censored data:

Ŝα(t) =
α(t,∞) + N+(t)

β + n

∏

i∈I

{
α[Zi,∞) + N+(Zi) + λi

α[Zi,∞) + N+(Zi)

}1−di

(4.8)

In the censored data case the Bayes estimator Ŝα(t) cannot be expressed as a linear

combination of the prior distribution and the maximum likelihood estimator, but the

interpretation of β/n as the relative weight of those distributions is still useful. It is clear

from (4.8) that if no weight is given to the data, that is if n → 0 and β > 0, Ŝα(t) reduces

to the prior survival Ŝ0(t) = α(t, +∞)/β. On the other hand, if no weight is given to the

prior distribution the Bayes estimator reduces to the Kaplan-Meier estimator:

Proposition 4.6.2 If β = α(IR+) → 0 and n > 0, the Bayes estimator reduces to the

Kaplan-Meier estimator.

Proof. As α(IR) → 0, the Bayes estimator Ŝα(t) tends to

L =
N+(t)

n

∏

i∈I

{
N+(Zi) + λi

N+(Zi)

}1−di

.

The first term N+(t)/n can be expressed as a product where the consecutive terms sim-

plify:
N+(t)

n
=

∏

i∈I

N+(Zi)

N+(Zi) + λi

.

Then

L =
N+(t)

n

∏

i∈I

{
N+(Zi) + λi

N+(Zi)

}1−di

=

=
∏

i∈I

{
N+(Zi)

N+(Zi) + λi

}
·
{

N+(Zi) + λi

N+(Zi)

}1−di
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The terms corresponding to censored observations (di = 0) simplify and therefore the

product have to be computed only for the uncensored observations:

L =
∏

i∈I

{
N+(Zi)

N+(Zi) + λi

}di

=

=
∏

i∈I

{
1− λi

N+(Zi) + λi

}di

and this corresponds to the Kaplan-Meier estimator in the presence of ties. 2

It is interesting to note here that the explicit derivation of the Bayes estimator (4.8)

has been possible only because in the presence of right censoring we know for each t the

exact number of observations that have failed until that time, and therefore, it is possible

to define the counting process N+(t). However, this interesting property does not hold

for other censoring schemes. In an interval censoring scheme we may not know how many

observations have failed in a given interval. For that reason, in general it is difficult to

obtain an explicit form for the Bayes estimator of a survival function.

Next theorems state the asymptotic behaviour of the Susarla and Van Ryzin [52] Bayes

estimator.

Theorem 4.6.3

1. For a fixed t such that S(t) > 0, the Bayes estimator Ŝα(t) is mean-squared consis-

tent with

E[Ŝα(t)− S(t)]2 = O(n−1)

2. The asymptotic distribution of
√

n(Ŝα(t) − S(t)) is normal with mean zero and

variance

(S(t))2
∫ t

0
[S2(u)(1−G(u))]−1 dF (u) .

4.6.1 Comparison with the Kaplan-Meier estimator

An important consequence of the above results is that the Bayes estimator Ŝα(t) and

the Kaplan-Meier estimator are asymptotically equivalent, having the same consistency

properties and identical asymptotical variance. Hence, why do we need to constructthe

nonparametric Bayes estimator if the Kaplan-Meier estimator is easier to compute and

provides equivalent answers ? There are at least two advantages of the Bayes estimator

over the Kaplan-Meier estimator. The first is that the Bayes estimator makes more use of
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the censored data; that is, one needs all the observations to calculate the Bayes estimator,

while to calculate the Kaplan-Meier estimator one only needs the number of censored ob-

servations between two uncensored observations. In fact, it is possible to recover from the

estimated survival curve, the actual observations pairs {(Zi, di), i = 1, · · · , n}. More pre-

cisely, the Bayes estimator is a function of the full sufficient statistic {(Zi, di), i = 1, · · · , n},
while the Kaplan-Meier estimator is not. A second advantage of the Bayes estimator is

that it smoothes the nonparametric estimator by shrinking it toward a smooth survival

curve. In fact, if α(.) is continuous, strictly decreasing and differentiable, the Bayes esti-

mator pieces together strictly decreasing, differentiable curves which join in a continuous

but nondifferentiable manner at each censored observation. One disadvantage in smooth-

ing is the possible introduction of bias in the estimator by the prior parametric family

that has been chosen.

To study this question thoroughly, Rai, Susarla and Van Ryzin [47] carry out a simula-

tion study to compare the performance of these estimators for small sample sizes. In this

study the prior survival Ŝ0(t) and the weight β are chosen using the following empirical

Bayes approach:

The prior survival is specified from a certain parametric family of survival curves, Ŝ0(t; θ),

and the vector of parameters θ is estimated from the data by the maximum likelihood

estimator θ̂.

After having chosen a prior survival Ŝ0(t; θ̂), they argue that the weight β should increase

as the sample size in order to keep constant the relative weight β/n between the prior

survival function and the empirical survival function. That is, they suggest taking β(n) =

O(nk). However, with such a choice of β, the consistency of the Bayes estimator is

not ensured. To obtain a consistent estimator it is necessary to take β(n) = O(nk)

with 0 < k < 1. In particular, the suggested choice of Rai, Susarla and Van Ryzin

[47] is to take k = 1/2, that is β(n) = c · √n, to give enough weight to smoothing

the nonparametric estimator toward the parametric family but without loosing the good

asymptotical properties.

In this simulation study, four estimators of the survival function are compared. The

first estimator is totally parametric, is the maximum likelihood estimator obtained as-

suming an exponential survival function. The second and third are the consistent and

unconsistent Bayes estimators, β =
√

n and β = n, respectively, with an exponential prior

survival curve. The final estimator is the Kaplan-Meier product limit estimator. These

estimators are compared by means of three different norms, considering four percentages

of censoring, and for the case where the true survival curve is exponential and when the
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true survival curve is not exponential, but gamma.

The results of this simulation study show that:

• The consistent mean-squared Bayes estimator with β =
√

n appears to have defi-

nitely better small sample properties than the Kaplan-Meier estimator with no loss

in large sample properties.

• The large sample advantages of the Kaplan-Meier estimator over the biased in-

consistent Bayes estimator with β = n may not show up, particularly with heavy

censoring, until fairly large samples are taken.
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Chapter 5

Markov Chain Monte Carlo Methods

5.1 Introduction

Markov Chain Monte Carlo (MCMC) methods includes a variety of iterative simulation

methods to generate values from a sequence of distributions that converge to a desired

target distribution. Such computational algorithms have made a significative impact in

practical statistics, specially in bayesian analysis, since they provide numerical solutions

to otherwise intractable problems. With the classical Monte Carlo methods one generates

independent samples directly from the target distribution in such a way that the em-

pirical distribution of the sample approximates it. However, it is rare that independent

samples from an arbitrary distribution can be obtained directly. The usual strategy is

then to sample from a distribution that is close, in some sense, to the target distribu-

tion and that is easy to sample. Then, the distribution of interest is approximated by

an appropriately weighted empirical distribution from this sample. Importance Sampling

and Rejection-Acceptance are typically the methods used to obtain independent samples

from a distribution similar to the distribution of interest. This has been the usual way of

exploring distributions from a sampling approach. However, for many complex models,

such as hierarchical models in Bayesian analysis or models involving missing or censored

data, such direct strategies are not feasible. In those cases where one is unable to obtain

independent samples it may be appropriate to use dependent samples generated using it-

erative simulation methods. The idea behind such iterative simulation methods (MCMC

methods) is to obtain a Markov Chain of simulated values from a Markov process whose

invariant distribution is the target distribution. If the simulation process is iterated a

large number of times, the simulated values can be used to summarize features of the dis-

tribution of interest. Iterative simulation procedures are typically less efficient and require
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larger samples than direct simulation methods, however MCMC methods are applicable

in a wider range of problems.

There exist different algorithms to construct Markov chains with an specific invariant

distribution. We consider here the most widely used Markov Chain simulation methods,

namely, the Metropolis-Hastings algorithm and the Gibbs sampler. The Gibbs sampler

was first developed by Geman and Geman [31] in the context of image-processing. The

models used in that paper were Markov random fields involving Gibbs distributions,

from where the Gibbs sampler takes its name. The roots of the MCMC methods can

be found earlier in the works of Metropolis et alt. [44] and Hastings [38] who derived

similar algorithms from Markov processes. However, these methodologies do not become

a widely used technique until 1990 when Gelfand and Smith [27] extend the theory of

Geman and Geman [31] to continuous distributions and show how to use their method in

a wide range of statistical problems. There is already an extensive literature concerning

MCMC methods. Among them, Chib, S. and Greenberg, E. [11] and Casella, G. and

George, E.I. [7] are good introductory papers of the Metropolis-Hastings algorithm and

of the Gibbs sampler, respectively. For a more rigorous mathematical discussion of the

MCMC methods Tierney’s paper [55] is appropriate.

In section 5.2 we present some definitions and results on Markov chains that are

useful to understand how the iterative simulation methods work. The Metropolis-Hastings

algorithm and the Gibbs Sampler are introduced in sections 5.3 and 5.4, respectively. In

the last section we make some comments about some techniques for making inference and

monitoring convergence from iterative simulation methods.

5.2 Some definitions and theoretical results on

Markov Chains

We present here some basic concepts and results on Markov chains that are useful to

understand how the iterative simulation methods work.

Suppose that we are observing random variables X0, X1, · · · which are the successive

states of a system. We call this system a Markov chain if the probabilities for passing

into the next state are completely determined by the present state of the system. More

precisely,

Definition 5.2.1 The random variables X0, X1, · · · are a Markov chain if for all
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x0, x1, · · · , xn and any measurable event A

P (Xn+1 ∈ A|Xn = xn, · · ·X0 = x0) = P (Xn+1 ∈ A|Xn = xn),

or equivalently, if the conditional densities satisfy

f(xn+1|xn, · · · , x0) = fn(xn+1|xn).

In this case,

P (Xn+1 ∈ A|Xn = x) = P (x,A)

are called the transition probabilities and represent the probability of moving from x

to a point in A.

Definition 5.2.2 Any probability distribution π is a limiting or equilibrium distribu-

tion of a chain if

lim
n→∞P (Xn ∈ A|X0 = x) = π(A).

Definition 5.2.3 Any probability distribution π satisfying

π(A) =
∫

Ω
P (x,A)π(dx)

for all measurable set A is called an invariant distribution of the chain.

Definition 5.2.4 A Markov chain with invariant distribution π is irreducible if, for

any initial state, the probability of entering any set to which π assigns positive probability

is positive.

Definition 5.2.5 A Markov chain is periodic if there are portions of the state space it

can only visit at certain regularly spaced times; otherwise, the chain is aperiodic.

The goal of the MCMC methods is to create a Markov chain whose equilibrium distri-

bution is the distribution of interest. The following result ensures that this objective can

be achieved by constructing an irreducible and aperiodic Markov chain with the target

distribution as its invariant distribution.
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Theorem 5.2.6 If a chain has a proper invariant distribution π and it is irreducible and

aperiodic, then

1) π is the unique invariant distribution and is also the equilibrium distribution of the

chain, that is, limn→∞ P (Xn ∈ A|X0 = x) = π(A).

2) (Ergodic theorem) If f(.) is a real valued function such that Eπ{|f(X)|} < ∞,

then
1

n

n∑

t=1

f(Xt) → Eπ{f(X)}, almost surely, as n → ∞, where Eπ{f(X)} is the

expectation of f(X) with respect to π.

This result is important in practice since most output from the iterative simulation

methods will be summarized in terms of the statistic
1

n

n∑

t=1

f(Xt).

Proposition 5.2.7 A sufficient condition for a given distribution π to be the invariant

distribution of a chain is that the transition probabilities of the chain satisfy

the reversibility condition:

π(x)P (x, y) = π(y)P (y, x).

Proof. Indeed, for any measurable set A, the transition probabilities with respect to

Lebesgue measure on IRd can be expressed as

P (x, A) =
∫

A
P (x, y) dy + r(x)1{x ∈ A}

where the first term is the probability of passing from x to a different state in A and

r(x) = 1− ∫
Ω P (x, y) dy is the probability that the chain remains at x. Then,

∫

Ω
P (x,A)π(dx) =

=
∫

Ω

[∫

A
P (x, y) dy

]
π(x) dx +

∫

Ω
r(x)1{x ∈ A}π(x) dx =

=
∫

A

[∫

Ω
P (x, y)π(x) dx

]
dy +

∫

A
r(x)π(x) dx = (5.1)

=
∫

A

[∫

Ω
P (y, x)π(y) dx

]
dy +

∫

A
r(x)π(x) dx =

=
∫

A
(1− r(y))π(y) dy +

∫

A
r(x)π(x) dx =

=
∫

A
π(y) dy = π(A)

where in (5.1) we have used the reversibility condition. 2
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5.3 The Metropolis-Hastings Algorithm

Let π(θ) be the distribution of interest with θ = (θ1, . . . , θd) ∈ Ω the vector of parameters,

where the components of θ could be themselves vectors. The Metropolis-Hastings algo-

rithm constructs a Markov chain θ1,θ2, · · · ,θt, · · · whose invariant distribution is π(θ).

The algorithm is similar to the acceptance-rejection method in the sense that a new

candidate is accepted or rejected according to a given probability α.

If the chain is currently at θt−1 at time t − 1, the next state θt is chosen by first

sampling a candidate value θ′ from an arbitrary transition probability function q(θt−1, ·)
and this candidate is accepted with probability α(θt−1, θ′), that is, the algorithm can be

summarized as

Given a starting point θ0, for t = 1, 2, · · · :

• Sample θ′ from the distribution q(θt−1, ·).

• Set

θt =

{
θ′ with probability α(θt−1, θ′)
θt−1 otherwise.

The probability α is determined in such a way that the chain satisfies the reversibility

condition:

Theorem 5.3.1 The transition probability from θ to θ′, given by:

P (θ, θ′) =

{
q(θ,θ′) · α(θ,θ′) if θ 6= θ′

0 if θ = θ′

where

α(θ, θ′) =





min

{
π(θ′)q(θ′,θ)

π(θ)q(θ,θ′)
, 1

}
if π(θ)q(θ,θ′) > 0

1 if π(θ)q(θ,θ′) = 0 .

satisfies the reversibility condition and therefore the target distribution is an invariant

distribution of the chain.

Proof.

Indeed, if the transition probability q(θ,θ′) satisfies the reversibility condition, then

the chain obtained from q has π(θ) as its invariant distribution. Nevertheless, it is most
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likely that for an arbitrary q the reversibility condition is not fulfilled and, therefore, we

find values θ and θ′ for which, for example,

π(θ)q(θ,θ′) > π(θ′)q(θ′,θ).

Intuitively this means that it is more likely to go from θ to θ′ than from θ′ to θ. To

balance this situation the moves from θ to θ′ will be reduced by introducing a probability

α(θ,θ′) < 1 of accepting the move and, conversely, the moves from θ′ to θ will be accepted

with probability α(θ′,θ) = 1.

Then, the reversibility condition of the transition probability

π(θ)P (θ,θ′) = π(θ′)P (θ′, θ)

becomes

π(θ)q(θ,θ′)α(θ,θ′) = π(θ′)q(θ′, θ).

Therefore, the probability of move is defined as

α(θ,θ′) =





min

{
π(θ′)q(θ′,θ)

π(θ)q(θ,θ′)
, 1

}
if π(θ)q(θ,θ′) > 0

1 if π(θ)q(θ,θ′) = 0 .

2

If, in addition, the transition probability function q is selected in such a way that the

Markov chain is irreducible and aperiodic, the chain converges to the target distribution

π. Tierney [55] suggests different choices of the transition probability q that may be useful

in practical simulation studies.

5.4 The Gibbs Sampler

The Gibbs Sampler algorithm is a special case of the Metropolis-Hastings algorithm where

the components of θ are updated one by one. Indeed, the Gibbs sampler consists in sam-

pling iteratively from the full conditional distributions, where the kth full conditional

distribution, denoted by

π(θk|θ−k) = π(θk|θ1, . . . , θk−1, θk+1, . . . , θd) ,

is the distribution of the k-th component of θ conditioned on all the remaining compo-

nents.
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Then, given an arbitrary set of starting values θ0 = (θ0
1, · · · , θ0

d) the Gibbs sampler

algorithm proceeds making successively random draws from the full conditional distribu-

tions as follows:

ALGORITHM:

Sample θ
(i)
1 from π(θ1|θ(i−1)

2 , · · · , θ(i−1)
d )

Sample θ
(i)
2 from π(θ2|θ(i)

1 , θ
(i−1)
3 , · · · , θ(i−1)

d )

Sample θ
(i)
3 from π(θ3|θ(i)

1 , θ
(i)
2 , θ

(i−1)
4 , · · · , θ(i−1)

d )

· · ·
Sample θ

(i)
d from π(θd|θ(i)

1 , · · · , θ(i)
d−1)

This loop completes the ith iteration of the Gibbs sampler generating the vector θi =

(θi
1, · · · , θi

d). Repeating this process we get the sequence θ0,θ1, · · · ,θt, · · · which is a

realization of a Markov chain with transition probability from θt to θt+1 given by the

product of the full conditional distributions.

P (θt, θt+1) =
d∏

l=1

π(θ
(t+1)
l |θ(t+1)

1 , · · · , θ(t+1)
l−1 , θ

(t)
l+1, · · · , θ(t)

d ).

Under mild regularity conditions, Geman and Geman [31] showed that the following

results hold:

Theorem 5.4.1 The joint distribution of (θi
1, · · · , θi

d) converges geometrically to π(θ1, · · · , θd),

as i →∞.

Theorem 5.4.2 (ergodic theorem) For any measurable function f of (θ1, · · · , θd) whose

expectation exists,

1

k

k∑

i=1

f(θi
1, · · · , θi

d) → E(f(θ1, · · · , θd)), almost surely, as k →∞ .

As mentioned before, the Gibbs sampler is a special case of the Metropolis-Hastings

algorithm. For each iteration of the Metropolis-Hastings algorithm, it is necessary to

perform d steps of the Gibbs sampler, corresponding to the d components of θ. In each

step the jth component of θ is updated. The function q(θt−1,θ∗) of the Metropolis-

Hastings algorithm is defined as the conditional density of θj given the other components.
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That is

q(θt−1, θ∗) =

{
π(θ∗j |θt−1

−j ) if θ∗−j = θt−1
−j

0 otherwise.

where θt−1
−j represents the (d−1) dimensional vector whose components are the components

of θ, except for θj, at their current values:

θt−1
−j = (θt

1, · · · , θt
j−1, θ

t−1
j+1, · · · , θt−1

d ).

In the Gibbs sampler, the value obtained for θj in each step is always accepted because

the probability α(θt−1,θ∗) of accepting a new candidate for θj is always 1. Indeed,

α(θt−1,θ∗) =
π(θ∗)q(θ∗,θt−1)

π(θt−1)q(θt−1,θ∗)
=

π(θ∗)π(θt−1
j |θt−1

−j )

π(θt−1)π(θ∗j |θt−1
−j )

=
π(θt−1

−j )

π(θt−1
−j )

= 1.

5.5 Inference and Convergence diagnostics

The values obtained by iterative simulation methods will be used to make inferences

about some aspects of the target distribution. However there are two main difficulties in

making such inferences. The first problem is to know how long has to be the simulated

sequence. The second problem is the possible correlation between draws that may cause

inefficiencies in simulations.

One possibility is to base all inference on one long run of the Markov chain and use

time-series results to monitor convergence. The first k values of the sequence have to be

discarded to assure that the effect of the starting value can be ignored. The number k

is usually called the burn-in of warm-up. This strategy is followed by different authors

such as Geyer [32] or Raftery and Lewis [46]. The basic difficulty of this approach is that

the sequence may remain for a long time in a small subset of the sample space heavily

influenced by the starting distribution.

As an alternative, Gelman and Rubin [30] propose the use of m independent sequences

and the burn-in k to be the first point at which the densities appear to be the same.

The main reasons for using multiple chains are to allow variance estimation from the

independent chains, to reduce correlations in the total sample and to aid in detecting

problems in the simulation. Cowles and Carlin [12] present a thorough comparative

review of convergence diagnostics. The strategy proposed by Gelman and Rubin to make

inference from multiple sequences can be summarized as:

Simulating multiple sequences from an overdispersed distribution
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In order to avoid that the chain remains for a long time in a small region of the sample

space, they suggest to simulate independent sequences with starting values drawn from

an overdispersed distribution. Such starting distribution may be obtained for instance by

importance resampling from an approximate distribution.

Then, simulate independently m sequences (m ≥ 2) of length 2n, with starting points

drawn from the starting distribution. To diminish the effect of the starting values they

propose to discard the first n iterations of each sequence and use only the last n.

Monitoring convergence

A first approach for detecting lack of convergence of the chains is to plot the sample

trace of the different sequences in the same graphic and see if they can be distinguished

or, on the contrary, they appear to be the same.

A more quantitative method, inspired in the analysis of variance, is to form an overes-

timate and an underestimate of the variance of the target distribution, with the property

that the estimates will be roughly equal at convergence but not before. Since it is a

method based on the normal-theory, it is best to transform the scalar estimands to be

approximately normal (for example, take logarithms of all-positive quantities and logits

of quantities that lie between 0 and 1).

For each scalar of interest x we have nm simulated values xij, i = 1, · · · , n; j =

1, · · · ,m corresponding to the n valid iterations of the m independent sequences. From

these values, we calculate the variance between the m sequence means, x̄.j

B/n =
m∑

j=1

(x̄.j − x̄..)
2/(m− 1) where x̄.j =

n∑

i=1

xij/n and x̄.. =
m∑

j=1

x̄.j/m

and the average of the m within-sequence variances

W =
m∑

j=1

s2
j/m where s2

j =
n∑

i=1

(xij − x̄.j)
2/(n− 1).

The target mean, E(x), might be estimated by the sample mean x̄.., and the posterior

target variance var(x) might be estimated by a weighted average of W and B,

v̂ar(x) =
n− 1

n
W +

1

n
B

which overestimates the target variance var(x) if the starting distribution is overdispersed

but E{v̂ar(x)} = var(x) if n →∞ or if the starting distribution equals the target distribu-

tion. On the other hand, the within variance W based on finite sequences underestimates
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the target variance and, as n → ∞, the expectation of W approaches var(x). Then,

convergence of the iterative simulation can be studied by the ratio of the current variance

estimate and the within-sequence estimate

R̂ =
v̂ar(x)

W

which tends to 1 in the limit n →∞. If R̂ is not near 1 for all scalar estimands of interest

the simulations should be continued.

A very useful software for analysing the output from the Gibbs sampler is the program

CODA [3] ”Convergence Diagnosis and Output Analysis Software for Gibbs Sampling

Output”. This program implements different graphical analysis, and convergence diag-

nostic tests. In particular, it provides the Gelman and Rubin’s convergence diagnostics

mentioned before, that is:

– Plots of the sample trace for each variable.

– Plots of Gelman and Rubin’s factor R̂.



Chapter 6

Nonparametric Bayesian Estimation
from Interval-Censored Data

6.1 Introduction

In chapter 4 we presented the nonparametric Bayesian analysis as an appropriate alter-

native to the estimation of a survival function in the presence of censoring. With this

approach it is possible to incorporate prior believes about the survival function without

the need of assuming restrictive parametric models. However, the extension of this theory

to complex censoring schemes requires complicated computations that are in general not

affordable in an explicit way. Our goal is to obtain the nonparametric Bayes estimator of

the survival function when there is interval censoring by means of an iterative simulation

method.

As suggested in Smith and Roberts [50], the Gibbs sampler is a very useful method in

problems involving incomplete data. If the missing data are reintroduced in the model as

further unknowns, the implementation of the algorithm leads in general to more tractable

situations. In fact, we will use a version of the Gibbs sampler, the Data Augmentation

algorithm [54]. The basic idea behind this algorithm is to augment the observed data y by

a quantity z, which will be referred to as latent data. It is assumed that given both y and z

one can calculate or sample from the augmented data posterior π(θ|y, z). Then, to obtain

the distribution of interest, π(θ|y), the algorithm proceeds by generating iteratively values

z from the predictive distribution π(z|y) and values of θ from the augmented posterior

π(θ|y, z).

87
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In the case of censoring, this strategy would correspond to introduce the censored

data as additional parameters. In each iteration of the Gibbs sampler the censored data

are updated analogously for the other parameters. More precisely, let us assume that Y is

the random variable of interest and assume a parametric model with vector parameter θ

for Y . In the presence of censoring a sample of Y can be expressed as y = (yobs, ycens) where

yobs = (y1, . . . , ys) are exactly observed, and the remaining data ycens = (ys+1, . . . , yn) are

censored, and are only known to lie in some regions defined by the sampling data. If we

define ycens as further unknowns, with θ and ycens together constituting the augmented

unknowns, the distribution of interest, that is, the observed posterior π(θ|yobs) is obtained

by generating successively from the corresponding full conditional distributions:

π(ycens|θ, yobs, Data) = π(ycens|θ, Data)

π(θ|yobs, ycens, Data) = π(θ|y)

The first conditional is the joint distribution of the censored observations given θ and

the data. This is typically a truncated distribution in the regions specified by the data.

With the introduction of the censored data ycens in the model, the second conditional

distribution is simply the joint posterior of θ if there is no censoring. Thus, the Gibbs

sampler here proceeds in two steps: a first step where each censored value is imputed by

an uncensored one, obtaining as a result a complete data set, and a second step where the

original parameters are updated in the usual way, conditioning on the imputed values.

6.2 Inference from Interval-Censored Data using the

Gibbs Sampler

Let X be the random variable of interest with distribution function W . Let us assume

that the variable X is subject to an interval censoring mechanism. In this situation

the observable data for each individual i are of the form (X i
L, X i

R), denoting that X i ∈
[X i

L, X i
R].

Our goal is to obtain the nonparametric Bayes estimator Ŝ(t) of the random survival

function S(t) = 1 − W (t) = P (X > t) based on the interval-censored data, under the

squared error loss

L(Ŝ, S) =
∫ +∞

0
(Ŝ(t)− S(t))2 dw(t) ,

where w is a weight function, and assuming a Dirichlet process of parameter measure α

as a prior distribution for W .
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In proposition 4.5.1, the Bayes estimator of the survival function under the squared

error loss was shown to be its posterior expectation, that is, Ŝ(t) = E {S(t)|x}, where

now x denotes the observed data {(X i
L, X i

R), i = 1, . . . , n} and E denotes expectation

with respect to the posterior distribution of the process P .

Our approach consists on obtaining, iteratively, a random sample from the posterior

distribution of S(t) and estimate its posterior expectation E {S(t)|x} by the sample mean.

In order to do that we use the Data Augmentation strategy. This process is carried out

in a finite number of times, say 0 = t0 < t1 < . . . < tr = +∞ that are fixed in advance.

6.2.1 Nonparametric Bayes Estimator

Let the vector of probabilities w = (w1, . . . , wr) where wj = P (X ∈ (tj−1, tj]),

j = 1, . . . , r and let δi
j = 1{X i ∈ (tj−1, tj]} that indicates in which time interval has

occurred the event of interest.

We propose Ŝ(tj) = 1 − ∑
s≤j ŵs the nonparametric Bayes estimator of the survival

function at time tj, where ŵj, j = 1, . . . , r are the sample means of the simulated vectors

from a Dirichlet distribution, that are obtained iteratively from the following algorithm,

that will be referred as NPBE algorithm:

0) Define starting values for w: w0 = (w0
1, . . . , w

0
r)

1) For each individual i = 1, . . . , n, generate the random vector (δi
1, . . . , δ

i
r) from a

truncated multinomial of sample size 1 and parameters (w0
1, . . . , w

0
r). Compute

nj =
∑n

i=1 δi
j, the number of X’s in each interval (tj−1, tj].

2) Generate w1 = (w1
1, . . . , w

1
r) from a Dirichlet distribution of parameters

(α1 + n1, . . . , αr + nr), where αj = α((tj−1, tj]).

3) Replace w0 by w1 and return to (1).

Note that ŵ estimates the mean of the posterior distribution of w given the data, but

other quantities such as the median or other percentiles could be also empirical estimated

from the simulated sample.

We now proceed to justify this choice.
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Gibbs algorithm. First approach

A natural way of implementing the Gibbs algorithm for obtaining a sample from the

posterior distribution of S(tj), j = 1, . . . , r, given the censored data, would be to perform

successively a two steps algorithm where the first step would correspond to the imputation

of uncensored values for each individual and the second step would correspond to sampling

from the known posterior distribution of S(tj) given the complete data obtained in the

first step. Since, if the prior distribution is a Dirichlet process, the posterior distribution

of S(t) given the complete data is a beta distribution, the algorithm would be:

1. Sample X1, · · · , Xn from a Dirichlet process W = 1 − S with the restriction of

X i ∈ [X i
L, X i

R] , i = 1, . . . , n.

2. For j = 1, · · · , r, sample S(tj) from a beta distribution Be(α∗(tj, +∞), α∗(−∞, tj])

where α∗(A) = α(A) +
∑n

1 δXi(A) for any subset A of the real line.

Although the algorithm is intuitive and straightforward, it involves the generation of

a sample from a Dirichlet process which is not an easy step. Doss [18] uses the results of

Sethuraman [49] to provide an algorithm for approximately simulate a Dirichlet process.

However, this approach introduces an unnecessary difficulty to the problem. Since our

goal is to obtain the posterior distribution of S(tj), we are mainly interested in getting into

step (2). Step (1) is only an auxiliary step that is necessary because with the imputation

of values for each censored observation step (2) can be carried out conditionally to a

complete data set. For this reason we propose an alternative algorithm based on the

introduction of new auxiliary variables.

Modification of the initial algorithm

Consider the partition of the real line given by 0 = t0 < t1 < . . . < tr = +∞ and

define the vector of probabilities for each interval (tj−1, tj], say w = (w1, . . . , wr), where

wj = P (X ∈ (tj−1, tj]).

With the introduction of the variable of probabilities w in the model, the r simulations

in step (2) can be reduced to only one draw from a Dirichlet distribution. Indeed, the

random variable S(tj) can be expressed as S(tj) = 1−∑
l≤j wl and the r simulations from

a beta distribution reduce to sampling a vector w = (w1, . . . , wr), with
∑

wj = 1, from a

Dirichlet distribution.

Aside from that, we can use an important property of the Dirichlet processes:



6.2. Inference from Interval-Censored Data 91

Result 6.2.1 If P is a Dirichlet process, for each measurable set A, the posterior distri-

bution of P (A) given a sample X1, · · · , Xn from P , only depends on the number of X’s

that fall in A and not on where they fall within or outside of A.

Then, to obtain the posterior distribution of S(tj), j = 1, · · · , r, or equivalently, the

posterior distribution of the vector w = (w1, . . . , wr), it is only necessary to know the

number nj of X’s falling in each interval (tj−1, tj], for j = 1, . . . , r. Thus, instead of

working with the sample X1, · · · , Xn we introduce as a new auxiliary variable the vector

n = (n1, · · · , nr).

Full conditionals of the proposed NPBE algorithm

The parameters of interest are the components of vector w = (w1, . . . , wr) that define

S(tj) = 1 − ∑
l≤j wl. To obtain its posterior distribution under a censored sample, we

introduce the vector n = (n1, . . . , nr) as further unknowns, where nj is the number of

X’s falling into (tj−1, tj]. With w and n together as the augmented unknowns, the full

conditionals are:

1. The posterior distribution of n given w and the data

f(n1, . . . , nr|w, [X i
L, X i

R], i = 1, . . . , n) .

2. The posterior distribution of w given n and the data

f(w1, . . . , wr|n, [X i
L, X i

R], i = 1, . . . , n) .

Thus, the proposed NPBE algorithm is obtained through iterative simulation from

these conditional distributions. Now we proceed to obtain the form of these distributions:

(1) The posterior distribution of n given w and the data.

For each individual i, we consider the vector δi = (δi
1, . . . , δ

i
r) where

δi
j = 1{X i ∈ (tj−1, tj]} indicates in which time interval has occurred the event of interest.

δi is a vector such that every component equals zero, except one. We assume that the

prior distribution of δi = (δi
1, . . . , δ

i
r) conditioned to w is a multinomial distribution of

sample size 1

f(δi
1, . . . , δ

i
r|w) =

r∏

j=1

w
δi
j

j where
r∑

j=1

δi
j = 1 ,
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that is the natural distribution in the nonparametric context.

Then, for each observation i = 1, . . . , n, the conditional distribution of (δi
1, . . . , δ

i
r) given

the data [X i
L, X i

R], and given the vector w, is:

f(δi
1, . . . , δ

i
r|[X i

L, X i
R],w) = f(δi

1, . . . , δ
i
r, [X

i
L, X i

R]|w)/f([X i
L, X i

R]|w). (6.1)

The numerator in (6.1) is

f(δi
1, . . . , δ

i
r, [X

i
L, X i

R]|w) =

{
f(δi

1, . . . , δ
i
r|w) if

∑r
j=1 βi

j · δi
j = 1,

0, otherwise

where βi
j = 1{(tj−1, tj] ⊂ [X i

L, X i
R]}.

The denominator in (6.1) is

f([X i
L, X i

R]|w) = P (X i
L ≤ X i ≤ X i

R|w) =

=
r∑

j=1

βi
jP (X i ∈ (tj−1, tj]|w) =

r∑

j=1

βi
jwj

Therefore, the posterior distribution of (δi
1, . . . , δ

i
r) has the following expression

f(δi
1, . . . , δ

i
r|[X i

L, X i
R],w) =





w
δi
1

1 · · ·wδi
r

r∑r
j=1 βi

jwj

if
∑r

j=1 βi
j · δi

j = 1,

0, otherwise

(6.2)

which corresponds to a truncated multinomial of sample size 1 and parameters (w1, . . . , wr).

After sampling independently for each individual i = 1, · · · , n the vector δi = (δi
1, . . . , δ

i
r)

from n truncated multinomials, the vector n is obtained by computing the sum of them,

that is, nj =
∑n

i=1 δi
j.

(2) The posterior distribution of w given n and the data.

Under the assumption of a Dirichlet process prior D(α), the prior distribution of w is a

Dirichlet distribution D(α1, . . . , αr):

p(w) = p(w1, . . . , wr) = C
r∏

j=1

w
αj−1
j

where C is the normalized constant and αj is the mass given to the interval (tj−1, tj] by

the measure α. If α is expressed as α(t) = β · S0(t), where S0 represents the prior guess
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of the survival function and β represents the degree of concentration of the true survival

function around S0, the parameters of the Dirichlet distribution have the form

αj = β(S0(tj−1)− S0(tj)) .

Note that, given the number of X’s falling into each interval, the distribution of w is

independent of the data. That is,

f(w|n1, . . . , nr, [X
i
L, X i

R]) = f(w|n1, . . . , nr) =
f(n1, . . . , nr,w)

f(n1, . . . , nr)

and this is proportional to the numerator:

f(n1, . . . , nr,w) = f(n1, . . . , nr|w) · p(w) =

=
(∏r

j=1 w
nj

j

)
·
(
C ·∏r

j=1 w
αj−1
j

)
= C ·∏r

j=1 w
nj+αj−1
j

with wr = 1−w1− . . .−wr−1. Thus, the posterior distribution of w given n and the data

is a Dirichlet distribution of parameters αj + nj, j = 1, . . . , r.

2

6.2.2 Implementation of the NPBE algorithm

To implement the proposed algorithm it is necessary to specify the parameter measure of

the Dirichlet process prior. The parameter measure α can be expressed as α(t, +∞) =

β · Ŝ0(t), where Ŝ0(t) is the prior guess of the survival function S(t) and β is a measure of

faith in the prior guess. Thus, it is necessary to choose a parametric model for Ŝ0(t) and

a constant β. This election may be done by modelling the prior knowledge of the problem

or following an empirical Bayes approach. It is also necessary to specify the grid of times

t0 ≤ t1 ≤ . . . ≤ tr where the survival function is going to be estimated. Our proposal to

consider the partition of the real line given by the different end-points of the censoring

intervals [X i
L, X i

R], i = 1, . . . , n.

After that, the proposed NPBE algorithm proceeds as follows: We construct M in-

dependent sequences consisting on 2k successive simulations from the corresponding full

conditional distributions (section 6.2.1).



94 6. Nonparametric Bayesian Estimation from Interval-Censored Data

ALGORITHM

• For each sequence m = 1, . . . ,M :

0) Define starting values for w: wm
0 = (w0

m1, . . . , w
0
mr)

• For each iteration l = 1, . . . , 2k:

1) For each individual i = 1, . . . , n

Generate (δi
1, . . . , δ

i
r) from a truncated multinomial of sample size 1

and parameters (w0
m1, . . . , w

0
mr).

Compute nj =
∑n

i=1 δi
j, the number of X’s in each interval (tj−1, tj].

2) Generate wm
1 = (w1

m1, . . . , w
1
mr) from a Dirichlet distribution (α1 +n1, . . . , αr +nr).

3) Replace w0 by w1 and return to (1).

As mention in chapter 5, after all the process has been performed, we discard the

first half iterations of each sequence in order to diminish the effect of the starting values.

Therefore, we have k ·M vectors wl
m = (wl

m1, . . . , w
l
mr) where l = 1, . . . , k is the iteration

index and m = 1, . . . , M is the sequence index. We estimate the vector of probabilities w

by the sample mean of these k ·M vectors:

ŵj =
1

kM

k∑

l=1

M∑

m=1

wl
jm , j = 1, . . . , r

and the survival function at time tj by

Ŝ(tj) = 1−∑

s≤j

ŵs .

Steps (1) and (2) of this algorithm are detailed below:

6.2.3 Sampling from a Product of Truncated Multinomials

For each individual i, the probability of its censoring interval [X i
L, X i

R] is

pi = P (X ∈ [X i
L, X i

R]) =
∑r

j=1 βi
jwj, where βi

j = 1{(tj−1, tj] ⊂ [X i
L, X i

R]}.
We consider the interval of lenght Ai = [0, pi] and divided it into a partition of intervals

of length equal to each positive mass: βi
1w1, β

i
2w2, . . . , β

i
rwr.
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We generate a random number from a uniform [0, pi] distribution and observe to which

subinterval belongs. If, the number generated belongs to the subinterval of length equal

to wk, this would mean that the event of interest has occurred in (tk−1, tk], and therefore

we define δi
k = 1 and δi

j = 0, ∀j 6= k.

ALGORITHM

For each individual i:

• Generate x from a Uniform[0, pi] where pi =
∑r

j=1 βi
jwj:

Generate u from a Uniform[0,1].

Compute x = u · (βi
1w1 + · · ·+ βi

rwr)

• Locate the position of x and define the components of δi:

tsup = βi
1w1;

k = 0;

while (x > tsup){
k = k + 1;

tsup = tsup + βi
kwk;

}
δi
k = 1;

• Compute the number of events in each interval (tj−1, tj]:

nj =
∑n

i=1 δi
j, j = 1, · · · , r

6.2.4 Sampling from a Dirichlet Distribution

There are different methods for sampling from a Dirichlet distribution. The different

approaches basically fall into four categories:

1. The multivariate extension of Jhnk’s Method,

2. a transformation based on the gamma distribution,

3. a transformation based on the beta distribution and
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4. the acceptance-rejection method.

A simulation study [45] comparing the performance of these methods showed that: Jhnk’s

method is not efficient for large values of the parameters of the Dirichlet distribution, the

acceptance-rejection method is not applicable to the entire permissible range of param-

eter values, and the efficiency, in terms of computational time, of the methods based on

the transformation of the gamma and the beta distributions are very similar. We have

therefore used the approach based on the gamma distribution.

Transformation Based on Gamma Variables

This method is based on the relationship between the Dirichlet and the gamma dis-

tribution:

Result 6.2.2 If Z1 ∼ Gamma (α1, 1) Z2 ∼ Gamma (α2, 1), · · · , Zk ∼ Gamma (αk, 1)

then the random vector (Y1, . . . , Yk) follows a Dirichlet distribution with parameters

(α1, · · · , αk) where

Y1 = Z1/(Z1 + · · ·+ Zk), Y2 = Z2/(Z1 + · · ·+ Zk), · · · , Yk−1 = Zk−1/(Z1 + · · ·+ Zk) .

In particular, to generate a vector w = (w1, . . . , wr) from a Dirichlet distribution

of parameters nj + αj, we generate r values y1, . . . , yr from r Gamma distributions of

parameters n1 + α1, . . . , nr + αr, respectively if nj + αj > 0, and we assign yj = 0

otherwise. Then, the components of the vector w are defined as

wj =
yj∑r
i=1 yi

, for j = 1, . . . , r − 1

and wr = 1− w1 − · · · − wr−1.
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6.3 Illustration

To illustrate the methodology proposed, we analyze the data that appeared in Finkelstein

and Wolfe [21] corresponding to a breast cancer retrospective study. The objective of the

study was to compare the long-term cosmetic effect in early breast cancer patients who

were treated with primary radiation therapy and adjuvant chemotherapy to those treated

with radiotherapy alone. It was known that adjuvant chemotherapy improved the overall

survival but there was clinical evidence that it affected negatively the rate of deterioration

of the cosmetic state. This study was carried out to verify this fact. For this analysis,

the indicator of a negative overall cosmetic appearance was breast retraction since it was

one of the least subjective possible measures of cosmetic deterioration. The visits for

each patients were arranged every 4 to 6 months. The observed data for an individual i

in this study is of the form (Li, Ri] meaning that at time Li the patient had shown no

deterioration, but in the next visit, at time Ri, breast retraction was present. Since some

patients did not keep all the appointments, the data became interval-censored and the

methods for grouped data could not be applied.

The data for n = 95 patients, n1 = 49 in the radiotherapy and chemotherapy group

and n2 = 47 in the radiotherapy group, are presented below.

Data

Observed data of the breast cancer study

Li Ri Li Ri Li Ri Li Ri

radiotherapy and chemotherapy
48 60 8 12 0 22 24 31
17 27 17 23 24 30 16 24
13 +∞ 11 13 16 20 18 25
17 26 32 +∞ 23 +∞ 44 48
14 17 0 5 5 8 12 20
11 +∞ 33 40 31 +∞ 13 39
19 32 34 +∞ 13 +∞ 16 24
35 +∞ 15 22 11 17 22 32
10 35 30 34 13 +∞ 10 17
8 21 4 9 11 +∞ 14 19
4 8 34 +∞ 30 36 18 24

16 60 35 39 21 +∞ 11 20
48 +∞
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Li Ri Li Ri Li Ri Li Ri

radiotherapy alone
46 50 45 +∞ 6 10 0 7
46 +∞ 46 +∞ 7 16 17 +∞
7 14 37 44 0 8 4 11

15 +∞ 11 15 22 +∞ 46 +∞
46 +∞ 25 37 46 +∞ 26 40
46 +∞ 27 34 36 44 46 +∞
36 48 37 +∞ 40 +∞ 17 25
46 +∞ 11 18 38 +∞ 5 12
37 +∞ 0 5 18 +∞ 24 +∞
36 +∞ 5 11 19 35 17 25
24 +∞ 32 +∞ 33 +∞ 19 26
37 +∞ 34 +∞ 36 +∞

We start analyzing the data corresponding to those patients who were treated with

adjuvant chemotherapy. For this group of patients we consider four different estimators

of the survival function for the time to breast retraction. The four estimators we compare

are:

1. the maximum likelihood estimator assuming an exponential survival curve,

2. the nonparametric estimator obtained with Turnbull’s algorithm,

3. the nonparametric Bayes estimator with a prior survival Ŝ0(t) exponentially dis-

tributed and with β = n =number of patients=49, and

4. the nonparametric Bayes estimator with a prior survival Ŝ0(t) exponentially dis-

tributed and with β =
√

n = 7.

The Bayes estimators were obtained through the implementation of the Gibbs sampling

scheme described in section 6.2 taking M = 5 independent sequences and i = 2000

iterations in each sequence. These estimators were computed in a grid 0 = t0 < t1 <

. . . < tr = +∞ corresponding to the partition of the real line induced by the different left

and right end-points, Li and Ri, for i = 1, . . . , n, of the censoring intervals.

The goal of this first analysis is mainly to illustrate the behaviour of the different

approaches, parametric, nonparametric and Bayesian. For that reason we have considered

an exponential survival function ’a priori’ because, though it is clear that this parametric
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Figure 6.1: Four estimators of the survival time to cosmetic deterioration for breast cancer
patients treated with chemotherapy.

model does not fit suitably the data, it allows us to emphasize the differences between

the three methodologies.

The four estimators of the survival function are plotted in figure 6.1. In this figure

we can see how the Bayes estimators lie between the parametric estimator and the non-

parametric Turnbull’s estimator. Indeed, the Bayes estimator can be interpreted as the

result of ’shrinking’ the nonparametric estimator towards the parametric family assumed

’a priori’. For that reason, as β increases, the resulting Bayes estimator is closer to

the parametric model and, conversely, it approaches the nonparametric estimator as we

diminish the parameter β, that is, as we diminish the faith on the prior guess.

For a more realistic analysis of the data we have considered ’a priori’ a more flexible

parametric model, the Weibull model, and a parameter β =
√

n to ensure a consistent

estimator. The parameters of the Weibull distribution have been obtained through max-

imum likelihood based on the censored data. The results for the chemotherapy group are

shown in figure 6.2 while, in figure 6.3 are the resulting estimators for the radiotherapy

group. The Bayes estimator identifies smaller intervals of time while the Turnbull’s esti-

mator leaves large intervals of time where the form of the survival function is completely

unknown. For instance, in the radiotherapy group, in figure 6.3, the survival function
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Figure 6.2: Time to cosmetic deterioration for breast cancer patients. Chemotherapy
group.
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Figure 6.3: Time to cosmetic deterioration for breast cancer patients. Radiotherapy
group.
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from month 11 to month 25, more than one year, is completely unidentified.

Another practical advantage of the nonparametric Bayes estimators is shown in figure

6.4 where the two treatment groups are compared. The difference between these two

groups becomes more evident when smoother curves are drawn. However, both, nonpara-

metric and Bayes approaches yield to similar conclusions, that is, the chemotherapy in

addition to previous radiotherapy increases the hazard of breast retraction.
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Figure 6.4: Time to cosmetic deterioration for breast cancer patients by treatment group

6.3.1 Convergence diagnostic

Convergence of the Gibbs sampler has been stablished both graphically and numerically

using the program CODA [3] ”Convergence Diagnosis and Output Analysis Software for

Gibbs Sampling Output”.

We present the results of the analysis of convergence for the chemotherapy group.

Similar results were obtained for the other group of patients.

We have studied the convergence of five components of the 36-dimensional vector

(w1, . . . , wr), where wj = S(tj−1)−S(tj), in such a way that with this analysis the tails of

the distribution as well as the center are covered. The components considered are those
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corresponding to the intervals of time I1 = (5, 8], I2 = (15, 16], I3 = (21, 22], I4 = (33, 34]

and I5 = (48, 60], because these intervals contain the 5th, 25th, 50th, 75th and 95th quantiles

of the distribution, respectively. For these components, we have used the diagnostic

methods proposed by Gelman and Rubin (see section 5):

1. Plots of the sample trace for each variable.

2. Plots of Gelman and Rubin’s factor R̂.

These diagnostic methods are efficient when the initial values are overdispersed with

respect to the target distribution. For that reason we have considered the following 5

initial situations:

1. w(I1) = 0.6, w(I2) = 0.0001 and w(I3) = 0.1

2. w(I2) = 0.6, w(I3) = 0.0001 and w(I4) = 0.1

3. w(I3) = 0.6, w(I4) = 0.0001 and w(I5) = 0.1

4. w(I4) = 0.6, w(I5) = 0.0001 and w(I1) = 0.1

5. w(I5) = 0.6, w(I1) = 0.0001 and w(I2) = 0.1

and the rest of the mass equally distributed between the other 33 components. For each

component of interest w(Ik), k = 1, . . . , 5, we have plotted in the left column of figure 6.5

the traces of its first 100 values of the 5 independent sequences obtained iteratively with

the Gibbs sampler. In the right column of the same figure there are the corresponding

traces but for the last 100 iterations. It seems clear from these pictures that convergence

is achieved almost inmediately and the behaviour of the first 100 iterations is identical to

the behaviour of the last 100, both, in central tendency and variability.

Convergence is confirmed numerically with the computation of the Gelman and Ru-

bin’s shrink factor, that compares an overestimate of the variance, v̂ar(x), with the within-

sequence variance, W :

R̂ =
v̂ar(x)

W
.

In figure 6.6 there are the plots of the shrink factors computed at every iteration for

each component in study. These plots have been produced by splitting the chain for each

variable into a number of segments, in this case, each chain has been divided into 50

segments as follows: the first segment contains the first 20 iterations, the second segment
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contains the first 40 iterations, . . ., the kth segment contains the first k ·20 iterations. The

median and 97.5% quantile of the shrink factors in each segment are plotted against the

maximum iteration number for the segment. The plots in figure 6.6 show that for every

component, the shrink factor stabilizes around 1 very quickly, what again indicates that

convergence has been achieved.
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Figure 6.5: Plots of the sample trace for each variable
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Figure 6.6: Plots of Gelman and Rubin’s factor
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Chapter 7

The Nonparametric Perspective
versus the Bayesian Approach. A
Simulation Study

7.1 Introduction

The goal of this chapter is the comparison of the estimators of the survival function when

data are interval-censored under the following three methodologies:

1. The nonparametric Bayesian estimation,

2. the nonparametric Turnbull’s estimation and

3. the parametric maximum likelihood estimation.

The first approach has been developed in chapter 6, the second approach has been

developed in section 2.5 of chapter 2 and the third approach corresponds to the standard

maximum likelihood methodology. The first qualitative advantage of the first approach

over the classical nonparametric methodology is the possibility of incorporate prior knowl-

edge about the problem in study. Furthermore, the Bayesian approach builds an smoother

estimator that facilitates the analysis and further interpretation of the results. However,

the derivation of finite and large sample properties for the proposed nonparametric Bayes

estimator is difficult. For this reason we have carried out a simulation study to compare

the overall performance of the three estimators.

107
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7.2 Design and implementation of the Monte Carlo

study

Two series of Monte Carlo experiments have been conducted. 500 samples of size 30,

50 or 100 from one of five parametric models have been simulated. The two series of

simulations correspond to two different mechanism to construct the censoring intervals.

7.2.1 Random variables

The data were simulated from the following distributions:

a) Exp(10): An exponential distribution with mean equal to 10 and with density

function and cumulative distribution function given by

f(x) =
1

10
e−x/10, x > 0 and F (x) = 1− e−x/10 .

b) Weib(10,2): A Weibull distribution with scale and shape parameter equal to 10 and

to 2, respectively, and with density function and cumulative distribution function

given by

f(x) =
2x

102
e−(x/10)2 , x > 0 and F (x) = 1− e−(x/10)2 .

c) Gam(5,2): A Gamma distribution with shape and scale parameter equal to 5 and

to 2, respectively, and with density function given by

f(x) =
1

Γ(5)25
x4e−x/2, x > 0 .

The cumulative distribution function F (x) does not admit a closed form expression.

d) Weib(10,8): A Weibull distribution with scale and shape parameter equal to 10 and

to 8, respectively, and with density function and cumulative distribution function

given by

f(x) =
8x

108
e−(x/10)8 x > 0 and F (x) = 1− e−(x/10)8 .

e) Gam(20,0.5): A Gamma distribution with shape and scale parameter equal to 20

and to 1/2, respectively, and with density function given by

f(x) =
220

Γ(20)
x19e−2x, x > 0 .

The cumulative distribution function F (x) does not admit a closed form expression.
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The choice of the Weibull and Gamma models is by no means exhaustive but it

represents the most common models in the context of survival analysis studies. The

parameters were chosen to obtain a mean value near 10 and a range between 0 and 20,

aproximately.

In our simulation study we have always considered the exponential distribution for

both the prior distribution in the Bayesian approach and the parametric model in the

parametric estimation. Thus, in every situation we deal with three distributions, namely,

the theoretical distribution, the prior distribution and the so-called parametric distribu-

tion.

Case (a) corresponds to the situation where the theoretical distribution, the prior

distribution and the parametric distribution are all exponential. On the other hand, an

opossite situation is considered in cases (d) and (e) where the choice of the parameters

of the Weibull and Gamma distributions implies cumulative distributions that are very

far from exponentiality. Cases (b) and (c) are taken as an intermediate step between

the other situations. In these two last cases, the corresponding cumulative distribution

functions are not very far from the exponential curve.

7.2.2 Sampling mechanisms

The random samples from the exponential and Weibull distributions were generated from

the Inverse Probability Method. This method cannot be used to generate the Gamma

distribution because there is no closed expression for its distribution function. For this

reason, the random samples have been generated as follows (Fishman [23]):

X = −β log




α∏

j=1

Uj


 ,

where Uj, j = 1, . . . , α are uniform [0,1] variates.

(This algorithm provides samples from a Gamma distribution with integer shape param-

eter).

7.2.3 Generation of the censoring intervals

To construct the censoring intervals [X i
L, X i

R] we have proceed as in 3.2. After generating

X i, i = 1, . . . , n from one of the models considered for X, the random intervals [X i
L, X i

R]

are constructed containing X i via a mechanism that mimics those longitudinal studies
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where there is periodical follow–up. The intervals arise from regularly scheduled visits

and patients might miss some of the appointments.

To study the effect of censoring, we have consider two different situations. In the first case

the censoring intervals have a mean lenght of approximately 2.5 units. The second case

corresponds to a heavy censoring situation with censoring intervals with a mean length

of approximately 7 units.

First censoring mechanism

30% of the patients attend all the visits, having each of them a censoring interval of length

1 unit (1 month, 6 months, 1 year, ...), 30% of the patients miss 1 visit in the interval

of interest and have therefore a censoring interval of length 2 units, 20% miss 2 visits

and have censoring intervals of length 3 units, 10% of the patients miss 3 visits and their

intervals are of length 4 units and the remainder, 10%, have an interval of length 5 units.

Second censoring mechanism

35% of the patients miss 4 visits, having each of them a censoring interval of length 5

units, 35% of the patients miss 7 visits in the interval of interest and have therefore a

censoring interval of length 8 units and the remainder, 30%, have an interval of length 10

units.

7.2.4 Performance of the estimators

To compare the overall performance of the estimators we have computed the L2 distance

between the estimator F̂ (x) and the correct distribution of X, F (x), for each run. We

have approximate the L2 distance by:
(∫ p0.95

0
(F̂ (x)− F (x))2 dx

)(1/2)

where the integral has been computed numerically. The mean and standard deviation of

these distances for the 500 runs are reported in tables 7.1 to 7.5.

Computation of the Gamma distribution function

The theoretical distribution function of the Gamma variable X with and integer shape

parameter α and scale parameter β has been approximated by the distribution of a Poisson

process with mean 1/β. Then, the distribution function of X is given by

F (x) = 1−
α−1∑

k=0

(x/β)ke−x/β

k
.
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Computation of the estimators of the distribution function

The estimator F̂ (x) was computed from one of the following methods:

1. The nonparametric Bayes estimator has been computed using the Gibbs sampler al-

gorithm implemented in the C-language program called GIBBSIC.C. As explained

in chapter 6, the estimator is computed for a finite number of times 0 = t0 < t1 <

. . . < tr = +∞. For values of t ∈ (tj−1, tj) the estimator has been computed by

exponential interpolation.

To obtain a simple estimate of the parameter of the prior exponential distribution

we have first transformed the data into right-censored by taking the middle point of

the finite censoring intervals as the exact of observation. Then the parameter of the

exponential is obtained by the maximum likelihood estimator of these right-censored

data:

θ̂ =
r∑n

i=1 di(Li + Ri)/2 +
∑n

i=1(1− di)Li

,

where di = 1{Ri < ∞} and r =
n∑

i=1

di .

2. The nonparametric Turnbull’s estimator has been computed using the C-program

language ICTURNB.C. In those intervals were the estimator is not defined we

have performed a linear interpolation.

3. The maximum likelihood estimator of the parameter of the exponential distribution

has been computed with the E-M algorithm [17] as follows:

E-M algorithm for computing the maximum likelihood estimator of an expo-

nential distribution based on interval censored data.

We assume that Xi is exponentially distributed with mean equal to 1/θ, that is, its density

function is f(x) = θe−θx and its survival function is S(x) = e−θx. We assume also that Xi

is interval-censored and, therefore, the observed data are of the form (Li, Ri), meaning

that Li ≤ Xi ≤ Ri. The log likelihood function based on an uncensored exponential

sample X = (X1, . . . , Xn) is

l0(θ, X) = log
n∏

i=1

θe−θXi = n log θ − θ
n∑

i=1

Xi .

The two steps of the E-M algorithm for obtaining the maximum likelihood estimator of

θ are:
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Expectation step. Given the current estimate θk of θ, calculate the conditional

expectation of the complete data log-likelihood given the observed data:

Q(θ, θk) = E[l0(θ; X)|Xobs, θk]

In the case of the exponential distribution and interval-censored data this conditional

expectation becomes

Q(θ, θk) = E[l0(θ; X)|Li ≤ Xi ≤ Ri, θk] =

= n log θ − θ
n∑

i=1

E[Xi|Li ≤ Xi ≤ Ri, θk] =

= n log θ − θ
n∑

i=1

(Li + 1/θk)e
−θkLi − (Ri + 1/θk)e

−θkRi

e−θkLi − e−θkRi

where the last expression is obtained by computing the expectation of a truncated

exponential in the interval [Li, Ri].

Maximization step. Determine a new estimate θk+1 as the value of θ that maxi-

mizes Q(θ, θk).

The maximization step is done by deriving Q(θ, θk) with respect to θ and equating

to zero. This gives the following iterative procedure for obtaining the MLE of θ:

θk+1 = n/
n∑

i=1

(Li + 1/θk)e
−θkLi − (Ri + 1/θk)e

−θkRi

e−θkLi − e−θkRi

7.3 Results and discussion

The results of the simulation study are displayed in tables 7.1 to 7.5. Each entry in these

tables corresponds to the mean of the L2 distance between the estimator and the survival

function of the 500 iterations. The standard error is given in parenthesis.

The analysis of the results may be divided into two cases:

a) The case in which the theoretical distribution is exponential and, therefore, the

parametric distribution and the prior guess of the Bayes estimator coincide with the

true distribution.

In this case, reported in table 7.1, we can see that the minimum distance L2 is

achieved by the parametric estimator. This result was to be expected because

the parametric assumption was true. It is not surprising either that the Bayes
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estimator performs better than the nonparametric Turnbull’s estimator, because

the Bayes estimator ’shrinks’ the nonparametric estimator towards the true survival

curve. This relative advantage of the Bayes estimator over Turnbull’s one increases

considerably with the second censoring mechanism, that is, when the censoring

intervals have a larger lenght. In this case, the lost of efficiency of the Turnbull’s

estimator is significative, while the nonparametric Bayes estimator reduces this lost

of efficiency.

b) The second set of simulations corresponds to the case in which the true distribution

is not exponential and, therefore, the distribution of the parametric estimator and

the prior guess of the Bayes estimator differ from the theoretical distribution. (This

situation is reported in tables 7.2 to 7.5).

In this case, the Bayes estimator performs always better than both the maximum

likelihood estimator assuming exponentiality and the nonparametric Turnbull’s esti-

mator. Indeed, the parametric estimator performs now clearly worse than the others

because it only uses the observed data to estimatethe mean of the distribution.

With the first censoring mechanism, that is, when the censoring intervals are short,

the advantage of the Bayes estimator over the Turnbull’s estimator is more impor-

tant in those cases where the prior distribution is not far from the true survival

curve, as it happens when the true distribution is Weibull(10,2) (Table 7.2) or

Gamma(5,2) (Table 7.3). In the other cases, Table 7.4 and Table 7.5, where there is

an important discrepancy between the prior distribution and the true distributions,

both estimators perform similarly, with a small advantage of the Bayes estimator

that is very likely to arise from the fact that the Bayes estimator is smoother than

Turnbull’s estimator.

When we consider larger censoring intervals, as in the second censoring mechanism,

the advantage of the Bayes estimator increases significatively, specially with small

sample sizes (30 or 50). For a larger sample size, n = 100, the performance of

the Bayes estimator is still better than that of the Turnbull’s estimator when the

prior survival curve is relatively close to the true survival curve (the Weibull(10,2)

distribution in Table 7.2 and the Gamma(5,2) distribution in Table 7.3).

With an illustrative purpose we present graphics 7.1, 7.2 and 7.3 corresponding to

the estimated distribution function following the maximum likelihood, Turnbull’s and

nonparametric Bayes method for the cases a, b and d (section7.2.1). These three examples

have been based on the results of an arbitrary simulated run. It is inmediate to apreciate
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that the nonparametric Bayes estimator always provides smoother and more treatable

curves, even when the prior is far from the theoretical distribution.

Based on these simulations, we believe that the gain of using the proposed nonpara-

metric Bayes estimator instead of the nonparametric Turnbull’s estimator when data are

interval-censored is very important. This is specially true when the lenght of the cen-

soring intervals is large, as it will be the case in most of the real examples involving

interval-censored data.
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Table 7.1

Mean L2 distance between the following three estimators and
an exponential survival function of mean 10

1) Nonparametric Bayes estimator with exponential prior.
2) Nonparametric Turnbull’s estimator.
3) Parametric maximum likelihood estimator assuming exponentiality.

(µ is the mean lenght of the censoring intervals)

Exp(10) sample size

n = 30 n = 50 n = 100

1rst. censoring Bayes est. 0.3268(0.13) 0.2827(0.11) 0.2250(0.09)

mechanism Turnbull’s est. 0.4432(0.11) 0.3690(0.10) 0.2900(0.08)

µ ∼ 2.5 Parametric est. 0.2586(0.18) 0.2010(0.14) 0.1517(0.11)

2nd. censoring Bayes est. 0.3409(0.20) 0.3346(0.05) 0.3141(0.02)

mechanism Turnbull’s est. 0.6817(0.10) 0.5981(0.04) 0.5232(0.04)

µ ∼ 7 Parametric est. 0.1920(0.14) 0.1527(0.11) 0.1189(0.08)
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Table 7.2

Mean L2 distance between the following three estimators and
a Weibull survival function of parameters 10 and 2

1) Nonparametric Bayes estimator with exponential prior.
2) Nonparametric Turnbull’s estimator.
3) Parametric maximum likelihood estimator assuming exponentiality.

(µ is the mean lenght of the censoring intervals)

Weib(10,2) sample size

n = 30 n = 50 n = 100

1rst. censoring Bayes est. 0.2256(0.11) 0.1990(0.06) 0.1649(0.09)

mechanism Turnbull’s est. 0.3764(0.10) 0.3180(0.11) 0.2695(0.09)

µ ∼ 2.5 Parametric est. 0.6074(0.06) 0.6147(0.05) 0.6045(0.04)

2nd. censoring Bayes est. 0.2925(0.12) 0.2713(0.12) 0.2390(0.10)

mechanism Turnbull’s est. 0.5117(0.11) 0.4510(0.06) 0.3585(0.08)

µ ∼ 7 Parametric est. 0.5928(0.07) 0.5974(0.05) 0.5816(0.04)
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Table 7.3

Mean L2 distance between the following three estimators and
a Gamma survival function of parameters 5 and 2

1) Nonparametric Bayes estimator with exponential prior.
2) Nonparametric Turnbull’s estimator.
3) Parametric maximum likelihood estimator assuming exponentiality.

(µ is the mean lenght of the censoring intervals)

Gam(5,2) sample size

n = 30 n = 50 n = 100

1rst. censoring Bayes est. 0.3230(0.13) 0.2853(0.11) 0.2521(0.08)

mechanism Turnbull’s est. 0.3768(0.11) 0.3189(0.10) 0.2692(0.07)

µ ∼ 2.5 Parametric est. 0.7618(0.06) 0.7564(0.05) 0.7506(0.04)

2nd. censoring Bayes est. 0.3496(0.10) 0.2371(0.05) 0.2222(0.05)

mechanism Turnbull’s est. 0.6646(0.13) 0.5370(0.10) 0.3411(0.05)

µ ∼ 7 Parametric est. 0.7662(0.07) 0.7579(0.05) 0.7467(0.04)
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Table 7.4

Mean L2 distance between the following three estimators and
a Weibull survival function of parameters 10 and 8

1) Nonparametric Bayes estimator with exponential prior.
2) Nonparametric Turnbull’s estimator.
3) Parametric maximum likelihood estimator assuming exponentiality.

(µ is the mean lenght of the censoring intervals)

Weib(10,8) sample size

n = 30 n = 50 n = 100

1rst. censoring Bayes est. 0.4092(0.03) 0.3333(0.06) 0.3038(0.04)

mechanism Turnbull’s est. 0.4806(0.05) 0.3402(0.07) 0.3200(0.05)

µ ∼ 2.5 Parametric est. 1.1450(0.01) 1.1280(0.01) 1.1270(0.00)

2nd. censoring Bayes est. 0.5479(0.11) 0.5198(0.05) 0.3046(0.08)

mechanism Turnbull’s est. 0.5970(0.13) 0.5506(0.06) 0.3222(0.07)

µ ∼ 7 Parametric est. 1.1376(0.04) 1.1498(0.03) 1.1482(0.02)
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Table 7.5

Mean L2 distance between the following three estimators and
a Gamma survival function of parameters 20 and 0.5

1) Nonparametric Bayes estimator with exponential prior.
2) Nonparametric Turnbull’s estimator.
3) Parametric maximum likelihood estimator assuming exponentiality.

(µ is the mean lenght of the censoring intervals)

Gam(20,5) sample size

n = 30 n = 50 n = 100

1rst. censoring Bayes est. 0.3530(0.10) 0.3180(0.08) 0.2839(0.01)

mechanism Turnbull’s est. 0.3626(0.10) 0.3198(0.08) 0.2935(0.01)

µ ∼ 2.5 Parametric est. 1.0675(0.03) 1.0671(0.02) 1.0658(0.02)

2nd. censoring Bayes est. 0.5693(0.14) 0.4127(0.05) 0.2848(0.07)

mechanism Turnbull’s est. 0.6386(0.17) 0.5069(0.06) 0.3104(0.07)

µ ∼ 7 Parametric est. 1.0841(0.05) 1.0824(0.04) 1.0793(0.03)



Chapter 8

Discussion and Future Areas of
Research

In this work we have approached two alternative nonparametric methodologies for dealing

with interval censoring. The first is the classical nonparametric maximum likelihood anal-

ysis and the second is the nonparametric Bayesian methodology. The first methodology

has been extended to deal with the case of double censoring.

The main feature of the nonparametric maximum likelihood methodology, that make

it so appealing, is its robustness, due to the weak set of assumptions required for its va-

lidity. This approach is appropriate when either very little is known about the underlying

distribution, or alternatively, when the problem is extremely complex to be modelled.

Apart from that, this analysis is interesting because it provides the maximum likelihood

estimator of the distribution, and therefore maximum likelihood theory can be used to

derive its large sample properties. Therefore, for large samples and when the censoring

intervals are not very wide, this approach provides an excellent approximation of the

theoretical distribution.

However, with small samples and under heavy censoring, the classical nonparametric

methods are known to be very inefficient since all the estimation about the form of the

underlying distribution is built from the poor information provided by the data. In this

case, the alternative nonparametric Bayesian methodology represents an important gain

in efficiency since it allows the inclusion in the analysis of prior knowledge of the problem.

This prior knowledge can arise from medical, biological or any other experimental study.

This intuitive improvement of the Bayes approach has been established empirically by a

simulation study.
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The first inmediate future research is the development of the nonparametric Bayesian

methodology for a doubly-censored pattern. We believe that these new results will be

quite straightforward from the current work.

So far we have only approached univariate problems without considering other vari-

ables. However, these methodologies would be of more aplicability if they were extended

to deal with multivariate problems. Indeed, the objective of most of the survival studies is

to obtain predictors for the survival time based on a set of covariables. So the next step in

our research will be towards the comparison of two survival curves and the derivation, if

possible, of a quantitative way of assessing their difference. Furthermore, the possibility

of fitting a Cox’s proportional hazard model when data are interval-censored is a very

attractive goal. The extension of Kalbfleisch’s work [39] to the interval-censored situation

together with the extension of Finkelstein’s nonparametric proposal [22] and Frydman’s

semiparametric estimation [26] is another area of future research.
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