Modelo SETAR aplicado a la volatilidad de la rentabilidad de las acciones: algoritmos para su identi...cación.

por

MaDolores Márquez Cebrián

Departament d'Estadística i Investigació Operativa para optar al título de Doctora en Ciencias (Matemáticas)

por la

UNIVERSIDAD POLITÈCNICA DE CATALUNYA

Director: César Villazón Hervás

Tutor: Tomàs Aluja i Banet

Modelo SETAR aplicado a la volatilidad de la rentabilidad de las acciones: algoritmos para su identi...cación.

por

M^a Dolores Márquez Cebrián para optar al título de Doctora en Ciencias (Matemàticas)

Departament d'Estadística i Investigació Operativa Universidad Politècnica de Catalunya

Resumen

Esta tesis se centra en el estudio de la serie temporal de volatilidades asociada a la rentabilidad de las acciones a partir de un modelo no lineal, el modelo SETAR "Self-Exciting Threshold AutoRegressive model".

El modelo SETAR, a pesar de presentar buenas propiedades y resultados plausibles, ha sido poco utilizado debido a que no se ha realizado una implementación algorítmica completa de los procesos de identi...cación y estimación. Por este motivo uno de los principales objetivos de la investigación es conseguir la automatización de estos procesos. En esta tesis se propone una nueva metodología que hemos denominado MIEC "Metodología para la Identi...cación y Estimación de Coe...cientes" en la que se realiza la estimación automática del parámetro de retardo (gracias a la inclusión del test Tar-F de Tsay), y en la que se implementa un nuevo algoritmo AIEC "Algoritmo para la Identi...cación y Estimación de Coe...cientes" que permite la estimación y selección automática de los regresores de cada uno de los procesos autoregresivos que conforman el proceso SETAR; dicho algoritmo se fundamenta en un resultado teórico obtenido en nuestra investigación. Finalmente se ha conseguido diseñar e implementar un proceso que permite la estimación automática del umbral cuando se consideran modelos SETAR con dos regímenes.

La volatilidad no es una serie directamente observable, por tanto es necesario estimarla previamente para poder construirla a partir de dichas estimaciones. En la tesis hemos elegido como estimador de la volatilidad mensual la desviación absoluta respecto a la media del exceso de rentabilidad. Las características de la serie de volatilidades justi...can la elección de un modelo SETAR y, en consecuencia, aplicamos la metodología MIEC para identi...car y estimar los parámetros que caracterizan el modelo. El resultado es un SETAR (2; 2,8) con el que se explica el comportamiento histórico de la serie, así como se pueden realizar acertadas predicciones sobre los cambios de tendencia de la volatilidad.

Índice General

1	Intr	oducc	ión.	1
	1.1	Inicio	de la investigación.	1
	1.2	Model	lo SETAR y volatilidad	2
	1.3	Diseño	o de la investigación	6
		1.3.1	Denición de objetivos.	6
		1.3.2	Estructura	8
2	Vola	atilida	d.	11
	2.1	Deni	ción de Volatilidad.	12
	2.2	EI IBE	EX 35, evolución de la rentabilidad asociada a los precios de cierre	13
		2.2.1	Deniciones de rentabilidad	14
		2.2.2	Exceso de rentabilidad	17
	2.3	Medid	las de volatilidad	19
		2.3.1	Volatilidad puntual o serial	20
		2.3.2	Estimación no paramétrica o paramétrica	20
		2.3.3	Modelos estadísticos o medidas basadas en medias móviles	21
		2.3.4	Volatilidad implícita	30
		2.3.5	Elección de la medida de volatilidad	32
	2.4	Model	los aplicados a la volatilidad	33
	2.5	Model	lo propuesto	37
3	Esti	ructur	a no lineal de una serie temporal	41
	3.1	Clasi	.cación de los modelos no lineales.	43

	3.2	Tests	para estructuras no lineales	. 50
4	Mo	delizad	ción de un proceso SETAR.	57
	4.1	Criter	io de Información de Akaike (AIC).	. 58
		4.1.1	El AIC como medida de información: Verosimilitud y entropía	. 59
		4.1.2	El AIC como función de pérdida: Verosimilitud del modelo	. 62
		4.1.3	Observaciones	. 65
		4.1.4	Formulación del AIC para un modelo SETAR	. 67
	4.2	Otros	criterios	. 69
5	Met	todolo	gías para la modelización de un proceso SETAR.	75
	5.1	Metoc	dología de Tong y Lim (1980)	. 76
	5.2	Metoc	dología de Tsay (1989)	. 80
	5.3	Metoc	dología de Thanoon (1990)	. 82
	5.4	Otras	metodologías	. 87
		5.4.1	Métodos que realizan de forma completa la identicación y estimación	
			del modelo	. 87
		5.4.2	Métodos de estimación de parámetros	. 90
6	Pro	puesta	a metodológica MIEC para la identicación y estimación del model	lo
	SET	ΓAR.		91
	6.1	Estru	ctura del proceso de identicación y estimación	. 92
	6.2	Carac	terísticas del proceso algorítmico AIEC	. 95
		6.2.1	Estimación de los coecientes	. 97
		6.2.2	Análisis de todas las posibles autoregresiones	. 98
	6.3	Mejor	as obtenidas	. 111
7	Imp	olemen	itación algorítmica de la propuesta.	115
	7.1	Estru	ctura del proceso algorítmico AIEC	. 115
		7.1.1	Estimación de los órdenes y coecientes de los procesos autoregresivos de	
			un madala CETAD	11/

		7.1.2	Estimación del umbral, de los órdenes y coecientes de los procesos au-	
			toregresivos para un modelo SETAR de sólo dos regímenes	124
	7.2	Impler	nentación del algoritmo AIEC	125
		7.2.1	Aspectos del código desarrollado	127
		7.2.2	Ejemplos numéricos	134
		7.2.3	Alternativas computacionales	143
8	Mod	delo SE	ETAR para la volatilidad de la rentabilidad de las acciones: Apli-	-
	caci	ón de	la propuesta metodológica.	147
	8.1	Volatil	idad estimada a partir de la desviación absoluta f $w_t g$:	150
		8.1.1	$\mbox{Modelo SETAR para la serie } fy_tg = f \ \mbox{\diamondsuitI(w_t)g$.} \ \dots $	158
	8.2	Volatil	idad estimada a partir de la desviación típica histórica f $v_t g.$	171
		8.2.1	Modelo SETAR para la serie $fx_tg = f \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	174
9	Vali	dación	del modelo.	185
	9.1	Anális	is de los parámetros.	186
	9.2	Anális	is de los residuos.	188
		9.2.1	No normalidad de los residuos	189
		9.2.2	Los residuos como ruido blanco	189
		9.2.3	Dependencia serial de los residuos	189
		9.2.4	Función de autocorrelación estimada y Función de autocorrelación parcial	
			estimada	190
	9.3	Robus	tez de los parámetros estructurales	190
		9.3.1	Extensión a tres regímenes	194
	9.4	Compo	ortamiento predictivo en muestra y fuera de muestra	195
		9.4.1	Ajuste del modelo en muestra	197
		9.4.2	Ajuste del modelo fuera de muestra	200
		9.4.3	Skeleton.	202
10	Con	clusior	nes.	205
	10.1	Result	ados obtenidos a nivel teórico:	206
	10.2	Result	ados obtenidos a nivel empírico:	208

	10.3	Nueva	s líneas de investigación.	214
Α	Car	acteriz	zación de X [®] X y X [®] uX _u .	217
	A .1	Deni	ción del problema	217
		A.1.1	Deniciones previas	220
	A.2	Result	ados:	220
		A.2.1	X [®] X es simétrica y semide…nida positiva	220
		A.2.2	$X_{IJ}^{\parallel}X_{IJ}$ es simétrica y semidenida positiva	222

Índice de Figuras

1.1	Principales aportaciones de la investigación (esquema)	6
2.1	Precios de cierre mensual del IBEX 35 (01/90-12/00)	15
2.2	Rentabilidad mensual del IBEX 35 (01/90-12/00)	17
2.3	Histograma de la serie de rentabilidades mensuales asociadas al IBEX 35 (01/90-	
	12/00)	18
2.4	Tipo LIBOR sobre el Euro a 1 mes (01/90-12/00)	18
2.5	Exceso de rentabilidad mensual del IBEX 35 (01/90-12/00)	19
2.6	Histograma de la serie exceso de rentabilidad del IBEX 35 (01/90-12/00)	20
2.7	Clasicación de las medidas de volatilidad	21
2.8	Comparativa de la evolución de la desviación absoluta respecto a la media y la	
	desviación típica histórica	30
3.1	Tests de linealidad e hipótesis implicadas	55
3.2	Tests de reversibilidad	56
3.3	Tests de diagnóstico e hipótesis implicadas	56
4.1	Interacciones entre el AIC y otros conceptos estadísticos	65
5.1	Esquematización del algoritmo de Tong (1983)	79
5.2	Esquematización del algoritmo de Tsay (1989)	81
5.3	Esquematización del algoritmo de Thanoon	85
5.4	Clasicación de otras metodologías para la modelización de un SETAR:	88
6.1	Estructura de la metodología MIEC para un SETAR(I; $k_1; k_2; \$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$	94
6.2	Estructura de la metodología MIEC para un SETAR(2; k ₁ ;k ₂):	96

6.3	Comprobación empirica de los resultados de los teoremas 24 y 25
7.1	Estructura del algoritmo AIEC
7.2	Estructura del algoritmo que permite la estimación del umbral para modelos
	SET AR(2; k ₁ ; k ₂)
7.3	Organigrama del algoritmo de Tsay
7.4	Organigrama del algoritmo AIEC
7.5	Relación entre el código PIEC y la estructura del algoritmo AIEC
7.6	Relación entre la estructura del proceso algorítmico AIEC y su organigrama 132
7.7	Relación entre el código PIECU y la estructura del algoritmo para la identi
	cación y estimación de un SETAR(2; k_1 ; k_2):
8.1	Comparativa de la evolución de las dos medidas de volatilidad elegidas:fwtg
	desviación absoluta respecto a la media y f $v_t g$ desviación típica histórica 149
8.2	Evolución de la volatilidad (desviación absoluta respecto a la media, f $w_t g$)
	asociada a la rentabilidad del IBEX 35
8.3	Serie fwtg: (a) Histograma, (b) diagrama de caja, (c) histograma suavizado y
	(d) grá…co de cuantiles
8.4	Función de autocorrelación estimada (ACF) y función autocorrelación parcial
	estimada (PACF) de la serie f w_tg :
8.5	Diagramas de dispersión retardados, serie f w_tg :
8.6	Evolución de la serie f $\phi w_t g$ asociada a la rentabilidad del IBEX 35 164
8.7	Serie f¢wtg: (a) Histograma, (b) diagrama de caja, (c) histograma suavizado y
	(d) gráco de cuantiles
8.8	Evolución de la serie fy_tg ; tasa de variación natural de la volatilidad 165
8.9	Reversión temporal de la serie fy_tg :
8.10	Serie fy_tg : (a) Histograma, (b) diagrama de caja, (c) histograma suavizado y
	(d) grá…co de cuantiles
8.11	Función de autocorrelación estimada (ACF) y función autocorrelación parcial
	estimada (PACF) de la serie fy_tg :
8 12	Diagramas de dispersión retardados, serie fy _t g:

8.13	Comparativa de la evolución de la serie fw _t g volatilidad asociada a la rentabilidad
	del IBEX 35 y la serie fy_tg tasa de variación natural de la volatilidad 167
8.14	Evolución de la serie fy $_t$ g, detalle período y_t < $_i$ 1;5
8.15	Evolución de la serie f $w_t g$, detalle período correspondiente a valores $y_t < i 1; 5$. 168
8.16	Evolución de la serie fy_tg , detalle período i 1; $5 < y_t < 0$
8.17	Evolución de la serie f $w_t g$, detalle período correspondiente a valores $_i$ 1;5 < y_t < 0.169
8.18	Evolución de la serie fy $_t$ g, detalle período 0 < y_t < 1; 5
8.19	Evolución de la serie f $w_t g$, detalle período correspondiente a valores $0 < y_t < 1; 5.170$
8.20	Evolución de la serie fy $_t$ g, detalle período $y_t > 1; 5. \dots 172$
8.21	Evolución de la serie f $w_t g$, detalle período correspondiente a valores $y_t > 1$; 5 172
8.22	Evolución de la volatilidad (desviación típica histórica, fvtg) asociada a la
	rentabilidad del IBEX 35
8.23	Serie fvtg: (a) Histograma, (b) diagrama de caja, (c) histograma suavizado y
	(d) gráco de cuantiles
8.24	Función de autocorrelación estimada (ACF) y función autocorrelación parcial
	estimada (PACF) de la serie f v_tg :
8.25	Diagramas de dispersión retardados, serie fv_tg :
8.26	Evolución de la serie f $ extstyle v_t g$ asociada a la rentabilidad del IBEX 35 181
8.27	Serie f¢vtg: (a) Histograma, (b) diagrama de caja, (c) histograma suavizado y
	(d) grá…co de cuantiles
8.28	Función de autocorrelación estimada (ACF) y función autocorrelación parcial
	estimada (PACF) de la serie f $4v_tg$:
8.29	Evolución de la serie fx_tg asociada a la rentabilidad del IBEX 35 182
8.30	Serie fx_tg : (a) Histograma, (b) diagrama de caja, (c) histograma suavizado y
	(d) grá…co de cuantiles
8.31	Función de autocorrelación estimada (ACF) y función autocorrelación parcial
	estimada (PACF) de la serie fx_tg :
8.32	Diagramas de dispersión retardados, serie $fx_tg:\ldots\ldots$ 184
8.33	Función de autocorrelación estimada (ACF) y función autocorrelación parcial
	estimada (PACE) de la serie de residuos tipi, cados 184

9.1	Serie de residuos tipicados: (a) Histograma, (b) diagrama de caja, (c) aproxi-
	mación por continuidad y (d) grá…co de cuantiles
9.2	Función de autocorrelación estimada (ACF) y función autocorrelación parcial
	estimada (PACF) de la serie de residuos tipicados modelo SETAR(2; 2; 8) 191
9.3	Comparativa del comportamiento predictivo en muestra de los modelos SETAR (2; 2; 8)
	(modelo 9.1) y SETAR (3; 2; 5; 8) (modelo 9.5)
9.4	Comparativa del comportamiento predictivo fuera de muestra de los modelos
	SET AR (2; 2; 8) (modelo 9.1) y SETAR (3; 2; 5; 8) (modelo 9.5)
9.5	Función de autocorrelación estimada (ACF) y función autocorrelación parcial
	estimada (PACF) de la serie de los residuos tipicados, modelo SETAR(2; 3; 8) : 198 $$
9.6	Comportamiento predictivo en muestra del modelo SETAR (2; 3; 8) 199
9.7	Comportamiento predictivo fuera de muestra del modelo SETAR (2; 3; 8): 200
9.8	Skeleton del modelo SETAR(2; 3; 8)