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... Since all our measurements and observations are nothing more than
approximations to the truth, the same must be true of all calculations resting upon
them, and the highest aim of all computations made concerning concrete
phenomenon must be to approximate, as nearly as practicable, to the truth. But this
can be accomplished in no other way than by a suitable combination of more
observations than the number absolutely requisite for the determination of the
unknown quantities...

From Theory of the Motion of the Heavenly Bodies Moving about the Sun in
Conic Sections, Gauss, 1809.
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Summary

This thesis presents, discusses and compares a set of methodologies and several ap-
propriate combinations of them, to provide accurate estimation of process variables,
either for steady-state or dynamic systems.

Firstly, the accuracy of estimated measurements is improved through the proposal
of novel Data Reconciliation techniques. The proposal combines data-based and
model-based filtering and also consider the presence of time-delays between sampled
data.

Secondly, measuring network design and its optimal use are addressed. Thus, the
measuring device number, their type and their location for optimum reliability and
accuracy of measurement at lowest possible cost are determined.

The first part of this thesis provides procedures for accuracy estimation in dy-
namic evolving processes. These procedures rely on combining data-based filtering
and model-based filtering. One technique combines a Moving Average filter and
a steady-state Data Reconciliation technique sequentially. The resulting estimator
presents the important statistic feature of being unbiased. Additionally, this estimator
provides high accuracy estimation and good tracking for dramatic dynamic changes
of process variables, when compared with other techniques. The other technique
performs a wavelet analysis as a former step for reconciling dynamic systems. The
wavelet technique catches or extracts the process measurement trends that are later
made consistent with the dynamic process model. As a consequence of this technique
high estimation accuracy is provided. Additional advantages of applying this tech-
nique over the current techniques are the easy handling of distinct sample times and
evaluating the variance of dynamic variables. Furthermore, this thesis addresses an
important aspect regarding dynamic Data Reconciliation: how to improve the accu-
racy estimation when the process is faced with the presence of time-delay. This prob-
lem was overcome in a simple and efficient way by proposing a time-delay estimation
method that works in conjunction with the Measurement Model adopted within the
Data Reconciliation technique. The presented time-delay estimation method deter-
mines the existing delay by maximizing the correlation of the process variables using
genetic algorithms.
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Summary

The second part of this thesis addresses the design of sensor networks, the pro-
posed strategy allows the optimal selection and placement of measuring devices. The
proposal deal with different sensor placement aspects: variation in design, retrofit,
hardware redundancy and available sensor type.

The sensor placement procedure was extended to deal with dynamic systems by
taking advantages of dynamic variable classification and dynamic Data Reconcilia-
tion. The procedure to locate sensors in dynamic systems aims at maximizing the
performance of Kalman filtering using accuracy as its main performance index. To
accomplish this, both the measurement noise and the observation matrices are manip-
ulated. The solution strategy has been implemented in academic and in the Tennessee
Eastman challenge problems showing promising results. The resulting optimization
problem was solved satisfactorily either by exhaustive search or using genetic algo-
rithms based optimization. The profile of the relative increase of the system perfor-
mance along the sensor network and the associate investment cost gives the designer
all the alternatives for making an adequate decision.

Additionally, reliability is considered by combining quantitative process knowl-
edge and fault tree analysis, providing an efficient way to improve its evaluation. It is
important to state that the possibility to use inferential sensors based in an Artificial
Neural Network model instead of physical sensors, and their incorporation within
reliability and reconciliation procedures was a paramount consideration throughout
this work.

Finally, this thesis also provides two frameworks, one for sensor placement and
the second for Data Reconciliation. Both proposed frameworks have been designed,
specified and validated following the guidelines of the new standards and trends in de-
veloping component-based application (e.g. UML™ CAPE-OPEN). These frame-
works can include the above mentioned algorithms and can be extended to include
other existing or futures approaches efficiently.

Chouaib BENQLILOU
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Chapter 1

| ntroduction

1.1 General overview

Reliable and accurate process measurements are crucial for the improvement of chem-
ical, petrochemical and other material processing industries. In general, the decision-
making for the accomplishment of the planned objectives based on Process Modeling,
Parameter Estimation and/or Process Optimization performance depends strongly on
the data collected from the plant instrumentation and laboratory analyzers.

Unfortunately, data inherently contains inaccurate information since measure-
ments are obtained with imperfect instruments. Additionally, the arduous conditions
of the real industrial environment where measurement devices are installed added
to the maintenance/calibration and quality of sensors accumulate those measurement
errors.

In general, the errors that affect the measured data could be categorized into two
main classes:

1. Random errors: this type of errors could be arising from fluctuations and/or
disturbances in non-controlled conditions that imply an irreproducibility of
measurements. These errors are usually considered independent and normally
distributed with zero means. Measurements with such errors will be statisti-
cally inconsistent with the process model constraints.

2. Non-random errors or gross errors: this type of error is generated from non-
random events and could be subdivided into measurement-related errors (e.g.
malfunctioning instruments) and process-related errors (e.g. process leaks, un-
counted losses, modeling errors).

Using these data without any filtering technique may affect the achievement of op-
timal plant performance (e.g. quality, yield or due-date) and even could drive the

1
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plant to an unsafe situation. The objective then is to tight up the instrument con-
fidence region to a level where the resulting information can be accepted for valid
decision-making. Therefore, conditioning process measurements must be a common
practice, so that random and gross errors affecting data accuracy and reliability are
compensated or even eliminated.

1.1.1 Filtering techniques

Filtering of data refers to finding an estimate of the true value of the measured vari-
ables based upon some additional information (e.g. process model). Generally, fil-
tering the measurements obtained from a process is mainly based on two main ap-
proaches: statistic-based filtering and model-based filtering.

Processes that lack an accurate model might rectify data by using analog or digital
filters. Inadequate sampling frequency converts a high frequency signal into an arti-
ficial low-frequency signal. This phenomenon is known as signal aliasing. Analog
filters are used to pre-filter process data before sampling and prevent aliasing. Digital
filters are used afterward to further attenuate random errors (high-frequency noise) in
process values. These filters (e.g. Exponential, Moving average) are basically used
in the pre-processing task as a data conditioning and they are usually incorporated in
many Distributed Control Systems (DCS). Furthermore, in the pre-processing pro-
cedure the larger outlier measurements can be eliminated by setting the permissible
lower and upper bounds of process variables.

In the model-based filtering approach, commonly called data reconciliation or
data rectification, the process model could be either based on first principles (such
as energy balances, chemical equilibrium relationships, etc), on an empirical model
(such as artificial neural network models) or on a combination of both. The estima-
tion of process variables is obtained by adjusting process measurements to satisfy
the process model constraints. By this way, the knowledge on the process model is
exploited in terms of redundancy, which restricts the filtering of the interconnected
process variables.

Depending on the process model constraints, Data Reconciliation can be classi-
fied as steady-state or dynamic and also as linear or nonlinear.

It is important to note that the data pre-processing task should be performed be-
fore Data Reconciliation (e.g. it is better to not send any measured value to the Data
Reconciliation step instead of sending a negative value of a flow). Thus, data pre-
processing and reconciliation should not be considered as competitive procedures
but as complementary see Figure 1.1.

2
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Figure 1.1: Data Reconciliation and plant optimization hierarchy.

1.1.2 Data Reconciliation system

The information obtained from the statistical model of process measurements and the
process model generates redundancy that is the basis of the improvement of process
measurements accuracy when a technique such as Data Reconciliation is applied.

Therefore, a fundamental task related with Data Reconciliation is assessing the
redundancy of the process under consideration to see whether there is a need for
additional instrumentation or any upgrade of the existing sensor network is required.

In the Data Reconciliation (DR) system presented in Figure 1.2 it is shown that
the system allows to increase the confidence of the measurements and also provides
the most probable value of unmeasured variables (coaptation) including model pa-
rameters.

Following the reconciliation calculation, all the reconciled measurements and the
estimated values of the non-measured variables strictly obey to a pre-determined pro-
cess model. Additionally, DR also calculates the accuracy of its own results through
the computation of the standard deviation of each reconciled or estimated value.

Furthermore, DR system can detect faulty sensors or process leaks and also al-
lows to determine the optimal placement of measuring devices.

Moreover, it is evident that we get better understanding of the process, which
allows an operation closer to specification and an estimation of the equipment effi-
ciency, reducing modeling error. These aspects permit an increase in the plant ben-
efits, and justify maintenance tasks for both instruments (calibration) and equipment
(cleaning, follow up).
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Figure 1.2: Data Reconciliation system.

Mathematically, the associated optimization problem to be solved can be stated
as a weighted optimization problem. Data are adjusted to be as similar as possible to
the raw measurements but statistically consistent with a set of equality and inequality
constraints involving measured, unmeasured and fixed variables.

The equality constraints are in general the mass, composition and energy bal-
ances, however, equilibrium or reactions equations could also be used if they are
considerably “accurate”. The inequality constraints are the variable bounds (e.g. non-
negativity constraints imposed on the flow rates and concentrations).

The high dimension of system equations, nonlinearity, bias and missing key vari-
ables value complicate the task of matching the process data with the process model.
To overcome this, the procedure should start with a reduced process model of the
whole plant (e.g. mass balance of steady-state process and after matching this basic
balance model, model complexity can be enhanced). Thus, it is wisdom to increase
the model complexity gradually since modeling error could affect seriously the rec-
onciliation results.

Data Reconciliation technique is widely applied now days in various chemical,
petrochemical, power plant and other material processing industries, it is applied
off-line or in connection with on-line applications, such as process optimization, or
advanced process control as presented by Abu-el zeet et al. (2002).

When plant managers realized the benefit of using a Data Reconciliation tech-
niques and commercial software for Data Reconciliation being available (e.g. DA-
TREC from EIf Central Research, DATACON™ from Simulation Sciences, RtOpt
form Aspentech, VALI from Belsim S.A., Sigmafine from OSlI, etc) the number of
Data Reconciliation applications increased considerably in a wide range of material
processing industries focusing different areas as shown in Figure 1.1.

4
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The analysis of the industrial applications presented in Figure 1.1 is supplied
according to the major industrial types of applications for Data Reconciliation tech-
niques (Narasimhan and Jordache (2000); Romagnoli and Sanchez (2000)). Mainly
it can be possible to distinguish two major types of applications as follows:

e Process unit reconciliation (material and energy balancing for process units)
especially distillation or separation columns such as naphtha cracker. Appli-
cation of Data Reconciliation to reactors such as a catalytic reformer, catalytic
cracker unit or pyrolysis reactors has been also reported in the literature.

e Plant-wide reconciliation production and utilities accounting by the process
(e.g. energy consumed). Many refineries are already saving a significant
amount of money by this plant-wide reconciliation. Currently, most integrated
systems for process simulation, optimization and control include Data Recon-
ciliation system that precedes all applications that make use of process data.

1.2 Background

1.2.1 Data Reconciliation
1.2.1.1 Linear steady-state data reconciliation

Steady-State Data Reconciliation (SSDR) was first addressed in the pioneer work of
Kuehn and Davidson (1961). The authors adjust process data to satisfy mass balance.
Therefore, they formulated the SSDR as a Weighted Least-Square (WLS) optimiza-
tion problem (Eqg. (1.1)) subject to mass balances (Eq. (1.2)).

. T Liv_\) — min(aTO1a) — mi S/\i_yiz
mvm((y y) Q (y y)) mym(aQ a) mym(z( 5 )) (1.1)

subject to:
Ay =0 (1.2)

where A is the incidence matrix representing steady-state mass balance, it is consid-
ered that all process variables involved in the mass balance were measured (i.e. A
has a full row rank) and the measurement do not contain gross errors. The term a
is the adjustment vector that is the difference between the measurement vector y and
estimated vector ¥ and Q is the variance-covariance matrix. The measurement errors
follow a normal distribution with zero-mean and a known variance Q;; = o?.

The square of standard deviation o7 is the weight on the measurement adjustment
i. Variables known with a high certainty (low variability) are given a large weight

5
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and variables with high variability implies that the measurement is less accurate and
received less weight in Data Reconciliation procedure.

The effect of random errors on measurement is modeled as additive contribu-
tions. The relation between the measured value, true value and random error in the
measurement es expressed by Eq. (1.3).

y=y'+e (1.3)

where y* is the vector of true value (noise free) and ¢ is the vector of random error.
The random error € usually oscillates around zero. Its characteristics can be described
using statistical properties of random variables. Its mean or expected value is zero
and its variance is given by:

var(g) = E[¢7] = of (1.4)

where ¢; is the standard deviation of the measurement error &;.
The problem above described can be solved analytically by using Lagrange mul-
tipliers as shown in Eq. (1.5).

~ -1
y=y—QAT (AQAT) "Ay (1.5)
The variance-covariance matrix 6 of the reconciled variables ¥ is given by:

Q=Q—QAT (AQAT) ‘AQ (1.6)

Inspired from this work the researchers in this area focused their work in two
major investigation lines. Extension of the steady-state linear Data Reconciliation to
nonlinear and dynamic systems and secondly to deal with the presence of gross error,
which alters the hypothesis of normal error distribution.

1.2.1.2 Precision versus accuracy

Standard deviation is a measure of the measurement precision. The smaller the g,
the more precise is the measurement and the higher the probability that the random
error will be close to zero. Accuracy describes the correctness of a measured value,
that is, how close is the instrument reading to the “true” value.

Mean-Square Error (MSE) is defined as the expected value of the square of the devi-
ation between the estimate and the true value. MSE can be considered as a measure
of accuracy. If no bias is present the MSE is equal to the variance of the estimate.
Therefore, in such situations precision and accuracy can be interchangeable.

6
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1.2.1.3 Lagrange multipliers

Since the constrained least-squares estimation will be encountered many times in
this thesis, it is worthwhile to explain the minimization through Lagrange multipliers
(Mah (1990)). The Lagrangian for the estimation problem is:

L=a'Q la—2AT(Ay+Aa) (1.7)
since Q is positive definite and the constraints are linear, the necessary and sufficient

conditions for minimization are obtained by setting the partial derivatives of Eq. (1.7)
with respect to variable A and a to zero:

dL
and
dL
4 =" (1.9)

The differentiation is readily carried out considering that for any vectors x, y, and
any matrix A, the product yT Ax is a scalar. The differentiation of a product obeys the
usual product rule:

dyTAx  oay" oxT 1
X~ ox Ax+ 0xA y (1.10)

In the special case for which A is symmetric and y = x:

:
’9)(0 )’(A‘X — 2AX (L11)

Applying these relations to Egs. (1.8) and (1.9) it is possible to obtain:
Aa = —Ay (1.12)

and
a=QATA (1.13)

Substituting Eq. (1.13) in Eqg.(1.12) it is possible to get:
A =—(AQAT)1ay (1.14)

Finally, the substitution of Eq. (1.14) in Eq. (1.13) yields the solution in Eq. (1.5).
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1.2.2 Redundancy and observability classification

In the case of linear steady-state processes, the presence of unmeasured process vari-
ables implies that matrix A is not full row rank, which may complicate the inverse
calculation during the procedure of reconciliation or coaptation since a singular ma-
trix is generated as it can be seen in Eq. (1.5).

This numerical computation arises also for nonlinear cases: the measured (re-
spectively unmeasured) process variables may not have a unique value through Data
Reconciliation (respectively coaptation) thus, the optimization algorithm assigns them
whatever values (i.e. possibly meaningless and erroneous).

Then, it is important to classify unmeasured variables as observable and unob-
servable so that any calculated values of the unobservable quantities will be dis-
carded. Similarly, measured variables are classified as redundant and non-redundant
since the non-redundant (just measured) process variables involve that the optimiza-
tion algorithm might fail.

It is clear that the performance and formulation of the Data Reconciliation opti-
mization problem and statistical interpretation are strongly linked to the uniqueness
of the estimated process variables. Thus, this must be analyzed by a careful variable
classification procedure.

Two main variables classification approaches for linear as well as nonlinear prob-
lems were reported in the literature: (i) graph-theory and (ii) quantitative process
model.

Defining or classifying variables into non-redundant, redundant, observable and
unobservable was first addressed for the steady-state linear processes by Vaclaveck
(1969) and defined as:

e An unmeasured variable is defined as unobservable if it cannot be uniquely
determined through the measured variables. Thus, its resulting estimated value
is meaningless.

e A measured variable is defined as non-redundant if deletion of its measure-
ments makes this variable unobservable, that is in order to be able to estimate
a non-redundant variable, its measurement is absolutely necessary since this
variable is not related to other measured variables through the process model
(e.g. matrix A in the linear case).

The classification problem has been also addressed by many other authors applying
different mathematical based approaches. In this sense it is worth mentioning the
work of Vaclaveck (1969) where a graph-theory approach is provided to generate a
reduced balance scheme containing only redundant measurements. Kretsovalis and

8
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Mah (1988) reported the application of graph-theory to the identification of observ-
able and unobservable process variables. Crowe et al. (1983) propose for the same
class of processes a projection matrix for classifying the variables. Madron and Vev-
erka (1992) use successfully the Gauss-Jordan rearrangement to classify variables for
linear systems.

In many industrial applications Data Reconciliation technique is just based in
mass balances, but in practice it can also consider energy and component balances,
since it is common for temperature and concentration to measure them along with
flows. Product of these variables will make these constraints bilinear.

The extension of the matrix projection presented earlier by Crowe et al. (1983) to
deal with bilinear processes was addressed by Crowe (1986), where they attempted
to transform the bilinear problem to a linear one by process variable substitution (i.e.
the product of two variables is substituted by a unique new variable).

A completely different approach was proposed by Simpson et al. (1991) to solve
the bilinear Data Reconciliation problem. Instead of obtaining a reduced set of con-
straints involving only measured variables, their approach completely eliminate all
constraints. This is accomplished by dividing the set of variables into dependent
and independent variables, similar to the approach used by constrained nonlinear op-
timization techniques. The constraints are utilized to obtain explicit relationships
between the dependent and independent variables, which are used to eliminate all de-
pendent variables from the objective function and to obtain a reduced unconstrained
problem in the space of independent variables.

Sanchez and Romagnoli (1996) determined the matrix projection for linear and
bilinear Data Reconciliation by using orthogonal factorization namely Q-R decompo-
sition approach. Sanchez and Romagnoli (1996) argued that the Q-R decomposition
method for constructing the projection matrix is more efficient than the Crowe et al.
(1983) approach. Hodouin and Everell (1980) analyzed redundancy and observability
of nonlinear processes based on linearization method.

Albuquerque and Biegler (1996) extend the variable classification procedure to
dynamic systems by using efficient sparse linear algebra methods and introduce the
concept of collective redundancy. First they linearize and discretize the dynamic
nonlinear model, then they apply the properties of observability and redundancy and
derive tools necessary to classify variables.

1.2.3 Probabilistic formulation of the Data Reconciliation problem
1.2.3.1 Maximum Likelihood Estimation

If the measurement error distribution follows a normal distribution, the Data Recon-
ciliation problem can be posed as a Maximum Likelihood Estimation (MLE) prob-

9
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lem, where the probability of the estimated (reconciled) process variables (y) is max-
imized given the measurement set (y) as shown in Eq. (1.15).

mglx P{Vly} (1.15)

According to Bayes’ theorem, the probability of the process variables given the mea-
surements can be written in terms of the probability of the measurements given the
reconciled process variables, the probability density function of the process variables
P{y} and the probability density function of the measurements P {y}.

P{y[y}P{y}
Piv] (1.16)

The denominator term (independent of y) acts as normalizing constant and does not
need to be further considered for optimization. The first term in the numerator repre-
sents the probability density of the measurements given the reconciled process vari-
ables, ¥, which is the distribution of the measurements errors P (Y —y). Finally, P{y}
is a binary assumption, that is equal to 1 if the constraints are satisfied (under this as-
sumption the P {y} term is converted to a set of constraints and the original problem
is converted to a constrained optimization) and equal to 0 otherwise.

P(y—y)=P(e) =N (0,Q) (1.17)
If sensor errors are independents the product of this probability over all sensors yields

to:
P{yly} = mexp{—% (%)2} :exp{—% .Z (%)2} (1.18)

Taking the negative logarithm of the maximization of the objective function repre-
sented in Eq. (1.18) results in the minimization of the conventional WLS formulation
as is shown in Eq. (1.1). The symmetric and positive definite matrix Q contains
the variance-covariance elements of the measurement errors and thus quantifies the
uncertainty in each measured value.

Then the success of Data Reconciliation technique relies on the hypothesis that
the error is normally distributed and on the evaluation of matrix Q.

maxP{gly} = max
y y

1.2.3.2 Variance-covariance calculation

The standard deviation of a measurement error plays an important role in DR. As-
suming the process is truly at steady-state, the mean and the covariance matrix can
be estimated by:

Vi:

Sl

n
Z Yik (1.19)
k=1

10
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cov (yi,yj) = nTllél (yi,k_7i> (yjyk_yj> (1.20)

where n is the width of the window in which the process is truly at steady-state.
This procedure based on Egs. (1.19) and (1.20) is referred as the direct method of
estimation of the variance-covariance matrix of the measurements error.

When the system is not steady or the steady-state assumption could not be con-
sidered, the use of the so-called direct method adopting leads to errors in estimating
y, and so Q, which reduces the performance of Data Reconciliation.

The so-called Indirect method presented by Almasy and Mah (1984) tries to over-
come this limitation by incorporating additional information of the process, namely
linear balance equations. Ideally, measurements have to produce residuals of the
balance (r) that are randomly distributed with an expected value of zero.

0
N
r=Ay= Ay" +Ac=A¢ (1.21)

The covariance matrix of the residuals is given by Eq. (1.22) and can be used to
estimate matrix Q.

> =cov(r) =E[rr"] = E[Aee"AT) = AE[ec"]AT = AQAT (1.22)

Using additional process information in the indirect methods is limited to linear con-
straints, since Eq. (1.22) may present high computational effort if nonlinear con-
straints are considered.

The presence of gross errors render the direct as well as indirect methods inefficient,
then a more robust method should be considered (see section 1.2.6.3).

Despite the effort done in the calculation of variance-covariance matrix the pre-
vious methods are often oriented to steady-state process and little has been done for
dynamic processes. In principle the authors assume that the process variable vari-
ability is constant and known along the time. This assumption may be seriously af-
fected in a real industrial environment where the variance is continuously undergoing
changes. The difficulty of calculating this matrix is associated with the analysis of
the different causes affecting the process variables variability (i.e. process dynamics,
measurement error, etc).

1.2.4 Nonlinear Data Reconciliation

Commonly, plant processes are represented by mass and energy balances and may
also include thermodynamic and physical property correlation and equilibrium re-
lationships. Thus, the process plant is modeled by means of a nonlinear system of
equations and nonlinear Data Reconciliation techniques must be used.

11
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These nonlinearities present several difficulties (e.g. solution of the correspond-
ing nonlinear optimization problem) which are not encountered in the linear case.

min®[y(t),y(t); o] (1.23)
()
subject to:
h (y(t),a(t), §(t)) —0 (1.24)
9 (9(0),0(),0()) <0 (1.25)

where h() set of algebraic equation and g() set of inequality equations (imposing
bounds on the variables, commonly used to limit the effect of gross errors to be
spread over all estimates or to impose operation and logical limits).

The nonlinear Data Reconciliation problem is similar to the Error-in-all-Variables
Method (EVM) estimation as reported by Kim et al. (1990, 1991). EVM is applied
to regress model parameters when there are measurement errors in all process vari-
ables. Then, Data Reconciliation is a special case of the EVM estimation where no
parameters are to be estimated but the optimization is subject to constraints.

To deal with this problem, two rigorous approaches stand out (1) successive lin-
earization proposed by Knepper and Gorman (1980) and (2) direct use of a nonlinear
programming method to solve th NLP problem (Liebman et al. (1992)).

1.2.4.1 Successive linearization methods

The successive linearization relies on the idea that the nonlinear constraints can be
linearized as a first-order Taylors series expansion around the current estimate. The
analytical solution to the linearly constrained Data Reconciliation problem is then
applied.

This approach has the advantage of being relatively simple and fast. However,
Liebman and Edgard (1988) demonstrate that the Data Reconciliation using nonlinear
programming provides better estimation accuracy than the successive linearization
approach.

1.2.4.2 NLP methods

Various methods have been proposed to solve the nonlinear optimization problem
(NLP). These include gradient-based methods such as Gauss Newton, Gauss Mar-
quardt or Generalized Reduced Gradient. Nevertheless, the Successive Quadratic
Programming (SQP) is in general the most accurate since the objective function in
DR is generally a quadratic function.

12
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The NLP methods allow for a general nonlinear objective function not just a
WLS and can explicitly handle nonlinear, inequality constrains and variable bounds.
The disadvantage of these NLP algorithms is the large amount of computation time
required compared to the linearization approach.

1.2.,5 Dynamic Data Reconciliation

All the works addressed in previous sections are oriented to steady-state systems
described by linear, bilinear and nonlinear constraints, involving in some cases model
parameters estimation.

In many practical situations the chemical processes are intrinsically dynamic,
although in some significant case they are operated to maintain a nominal steady-state
conditions. Even in such cases they are continuously undergoing variations around
these desired conditions. Therefore, the model representing the process is a dynamic
model and the resulting problem is called Dynamic Data Reconciliation (DDR).

The most widely adopted approaches for solving DDR problems are: (1) stochas-
tic filtering (such as Kalman filtering) and (2) mathematical programming.

1.2.5.1 DDR based on Kalman filtering

Kalman filtering (KF) is a state-space based filtering technique used for the recon-
ciliation of linear dynamic processes as reported by Gelb (1974); Muske and Edgar
(1998). KF has been extended to deal with nonlinear systems by linearizing the
nonlinear part of the model with a first-order Taylor expansion around the current es-
timate leading to an Extended Kalman Filter (EKF) (Karjala and Himmelblau (1996);
Islam et al. (1994); Chiari et al. (1997)). Nevertheless, Kalman filtering presents a
serious drawback due to its limitation to handle inequality constraints such as bounds
on process variables or process operation.

Since the Kalman filtering will be encountered many times in this thesis, it is
worthwhile to explain the concepts of this estimator. The Kalman Filter is a recursive
technique for estimating state variables and their associated error variances. The
algorithm uses the following discrete state-space dynamic model:

yk = Hka+Vk (127)

where k represents a sample time t = KT, being T the sampling period; x, is the ny
dimensional vector of state variables; u, is the n, dimensional vector of manipulated
input variables (if no control inputs are considered, then u, = 0, Vk) and y, is the ny
dimensional vector of measured variables.

13
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The state transition matrix A,, the control gain matrix B, and the observation matrix
H, are matrices of appropriate dimension. If the coefficients of A, B, and H, are
assumed time-independent the subscript k can be dropped. This is possible if the
model structure and the control strategy are maintained through the time. The Kalman
filter assumes error in the process model and in measured data. The process-noise
W, represents errors in the state transition model. This noise has zero means, and
has a variance of Q,. A random error v, representing the measurements noise, which
has zero means and a variance R,, is also added to the measurement model. If the
model noise error and measurement errors are constant throughout time, k can also
be dropped in Q, and R,.

So there are two ways to estimate x,: from the model and x,_, through Eq. (1.26)
and from the measurement y, through Eq. (1.27). The Kalman filtering balance both
ways taking into account the errors (variance) associated to each one in order to
asymptotically reduce the error (variance) in the variable estimation along the time.

Assuming an initial estimate of the state variables X, and the associated error
covariance matrix Py These initials value do not affect the final estimation of x,
and its corresponding variance Pk/k.

%o =E [Xo] (1.28)
Po=cov [X,] (1.29)

the state variables vector and the associated error covariance matrix P for the next
step in time is given by:

X, o= AKX P (1.30)
Pijie = AP AT +Qy (1.31)

Using process measurements, these predictions are updated as follows:
Zigke = Tigne + Ko (Y~ i) (1.32)
Py = Pie = KiHiPyie (1.33)

where K, is the Kalman filter gain given by:

K, =P, HI (HP, HT+R) 1.34
k = Prsie Tk { PP P+ Ry (1.34)

The estimator gain matrix K, take into account the observation matrix Hy, is pro-
portional to the uncertainty in the estimation P and inversely proportional to the un-
certainty in the measurement R,. If the measurement is very uncertain and the state
estimate is relatively precise, then the residual is mainly composed by the noise and

14
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a small change in the state estimates should be made. Whereas, if the uncertainty in
the measurement is small and that of the state estimate is high, then the residual indi-
cates considerable errors in the state estimate exists and correspondingly a significant
correction should be made.

1.2.5.2 DDR based on mathematical programming

Using a mathematical programming approach, DDR can be formulated as a dynamic
optimization problem where the objective is to minimize the deviation between the
measured y and the estimated ¥ values, weighted by the variance of measurement
errors subject to the dynamic model (Eq. (1.36)) and/or nonlinear algebraic model
(Eq. (1.37)) and/or inequality constraints (Eq.(1.38)) as follows:

n)in d[y(t),Y(t); o] (1.35)
subject to: R "
dﬁ—?) —f (y(t),a(t), §(t)) —0 (1.36)
h (y(t),a(t), §(t)) ~0 (1.37)
9 (30,0(1),8(1)) <0 (1.38)

Despite that DDR can provide accurate estimates to redundant variables as well as
to unmeasured observable variables, it is faced with two main difficulties: (1) han-
dling the differential equations and (2) evaluating dynamic evolving process variables
variance.
Handling differential equations

1 - The differential equations are approximated by a set of algebraic equations
using a weighted residual method. Table 1.1 summarizes some of the more relevant
discretization methods adopted within the Data Reconciliation techniques.

Table 1.1: Relevant ODEs discretization methods used by DDR

\ Orthogonal Collocation | Liebman et al. (1992) |
| First-Order Euler approximation || Rollins and Devanathan (1993) |
\ Implicit Runge-Kutta | Albuguerque and Biegler (1996) |

Using this discretization the differential equations are treated in the same manner
as the other constraints The model equations are then solved simultaneously within
an infeasible path optimization algorithm.
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The performance of these discretization-based methods relies on selecting as
small as possible the integration time. In practice the sampling time of getting mea-
surements data is relatively higher than the integration time, which limits the use of
these discretization techniques for DDR purposes. Even if it can be assumed that the
sampling time is equal to the integration time the above mentioned techniques re-
quire that all process measurements are obtained at a regular discrete time; otherwise
redundancy is lost.

Additionally, this discretization increases the number of variables and equations
in the optimization problem. Therefore, the resolution of the resulting DDR problem
involves a large computation effort, which especially complicates the on-line appli-
cation of these approaches. In practice despite the loose of estimation accuracy the
adoption of a moving window horizon strategy that catches only a part of system’s
dynamic is motivating for reducing the computational effort.

2 - Bagajewicz and Jiang (1997) went on this topic by approximating all the pro-
cess variables involved in the ODESs system through a polynomial in time with a pre-
defined specific degree; the polynomial coefficients substitute the original variables
in the off-line Data Reconciliation formulation. The resulting reconciled coefficients
are used to recover the original variables. However, the estimator provides less accu-
racy since some not reconciled coefficients are used to reconstruct the “reconciled”
original variables. Furthermore, this proposal assumes that all the process variables
are represented by a polynomial in time with a degree p, and all the polynomials
representing the derivative terms have a degree p + 1 independently of the dynamic
behavior of each process variable. Thus, their proposal represents a particular situ-
ation where all the variables are represented by the same degree. Additionally, their
proposal presents the drawback that a degree higher than the required for a specified
variable is assigned, which will undoubtedly increase the number of inflection points,
thus involving worse estimations.

Dynamic variance-covariance calculation

In general, variance-covariance matrix is a pre-requisite for performing Data Rec-
onciliation since the objective function in DDR formulation is weighted by its inverse
as its shown in Eq. (1.39).

For most applications, the objective function (Eg. (1.39)) is simply a weighted
least-squares as follows:

C

PO.I00)= 3 [F1)-y] QI -yw] (@39

where ¥(t,) represents the values of the estimate variables at discrete time t, and Q is
the variance-covariance matrix with Q;; = g2. Variables t, and t. represent the initial
and current times, respectively.
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Evaluating variance-covariance matrix for dynamic systems is relatively compli-
cated. This complication is due to the combined variability of process and measure-
ment errors. In general, it is assumed constant. However, this matrix is not known
or known only approximately since measurement errors change frequently. When
the measurement error variance is related to the magnitude of the measurement or
the statistical distribution having different variances, which is the case of dynamic
systems, a heteroscedastic or recursive estimation might be appropriate.

1.2.5.3 DDR regularization

The combination of the DDR problem formulation and its associated numerical so-
lution has recently been focused as the new challenge in the DDR problem (Binder
et al. (2002)).

Although several approaches have been proposed for the problem of DDR for-
mulation, the numerical strategy adopted for solving the DDR does not present good
performance in terms of stability and converged results (regularization). Kelly (1998)
addressed the regularization in the context of steady-state Data Reconciliation.

1.2.6  Gross Error Detection

The validity of the results of the estimation algorithm rests on the assumption that
the inconsistency is caused by measurement noise and assumption uncertainty. The
presence of undetected gross errors invalidates this assumption and introduces bias
into the resulting estimates. Typical gross errors include miscalibrated sensors, failed
sensors, process leaks.

1.2.6.1 Statistical tests approaches

Gross errors significantly affect the accuracy of any industrial application using pro-
cess data. The problem of identifying gross error in data and its importance in Data
Reconciliation was pointed early by Ripps (1965). As in Data Reconciliation, Gross
Error Detection (GED) can be performed only if process model is present, the avail-
ability of process model acts as a counter check of the measurements. There are three
steps in gross error handling:

e detection of gross errors, have been adopted
e identification of the sources of those errors (measurements/processes), and

e compensation/elimination of those errors.
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If a gross error exists in a measured value, the measurement equation Eq. (1.3)
changes to Eq. (1.40).

where d is the vector of gross error.

The constraint residual r, Eq. (1.21), is required for GED. If no gross errors are
present the expected value of this residual E [r] is equal to zero, otherwise a gross
error is presents. Therefore, the hypothesis of GED can be formulated as:

Hy:E[r]=0
{ ez aa)

where H is the null hypothesis that no gross error is presents and H; is the alterna-
tive hypothesis that either a process leak or a measurement error is presents. H; is
accepted if the statistic test calculated exceeds a pre-specified threshold value. This
threshold is associated to a significance “degree of confidence”. These statistical tests
are based on the analysis of the constraint residual distribution, Eq. (1.42).

y=r="1r (1.42)

The Global Test (GT) presented in Reilly and Carpani (1963) is based on the fact
that the value of the objective function of DR expressed in Eq. (1.1) at the minimum
is distributed as a chi-square variable x? statistic if the measurements are normally
distributed about their true values. The magnitude of the DR objective function is
then compared to the tabulated chi-square value for a chosen confidence level (e.g.
95%) and for the degrees of freedom equal to the number of independent equations
(rank of matrix A).

The vector r can also be used to derive test statistics one for each constraint j
given by:

il

rj =
2

z (1.43)

The Nodal Test (NT) presented by Mah et al. (1976) evaluates if z, j follows a stan-
dard normal distribution under H, and decides which equations might contain a gross
error. These methods require that the constraints are linear and that all process vari-
ables must be measured. The unmeasured variables must be removed from con-
straints by some classification techniques see section 1.2.2.

The statistical test can also be based on the adjustment distribution by which
first process data are reconciled. Then the reconciled data are used to examine if a
measurement contains a gross error. These tests allow unmeasured variables in the
plant model as presented in Mah and Tamhane (1982). The authors termed this test
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Measurement Test (MT). The MT looks at the adjustment of each measurement to
identify and rank measurement that may be faulty.

While the NT avoids the computational cost of the reconciliation step, it does
require further processing to identify the actual measurement error. The drawback of
the MT is that it assumes that the erroneous measurement will have the largest nor-
malized adjustment. However, the measurement adjustment often smears the impact
of gross errors across several measurements or to one particular measurement.

If the covariance matrix of constraint residuals or measurement adjustments is
not diagonal, the assumption that measurement errors are independent of each other
is not satisfied, and this affects the power of the statistical tests. The methods of Maxi-
mum Power (MP) (Mah and Tamhane (1982)), Principal Component Analysis (PCA)
(Tong and Crowe (1995)) and Generalized Likelihood Ratio (GLR) (Narasimhan and
Mah (1987)) were developed to overcome this weakness.

In general, the current statistical tests for GED are applied only to linear systems.
To address nonlinear systems a suitable linearization of the process constrains has to
be done. However, by forcing measurements to conform to the linearized (approxi-
mated) model new errors may be introduced.

1.2.6.2 Multiple GED

The tests described in the last section are suitable for the detection/identification of
one gross error at a time. When more gross errors exist, multiple GED strategies are
needed.

These methods are based on combining some of the statistical tests presented
above with a serial or collective elimination or compensation strategy. In the serial
elimination strategy presented in Ripps (1965), measurement suspected of containing
a gross error is selected on a trial basis. Then, the statistical test is computed and if
its value is below the critical value, then the suspected value is declared in gross error
and thus eliminated. The measurement elimination is done one at a time recomputing
a new statistical test based on the reduced measurement set.

Serial elimination has the drawback of loosing redundancy (since measured vari-
able with gross error are eliminated) and is not applicable to gross error that are not
directly associated with measurements (for instance leaks). However, this strategy
has now become a standard in multiple GED and is the approach implemented in
most commercial software. In the serial compensation strategy illustrated in Serth
and Heenan (1986) an estimate of the gross error size is performed using error size
estimation “formula” developed by Madron (1985). In this strategy, gross errors are
estimated and measurements are compensated one by one, rather than eliminated,
thus the redundancy is kept during the procedure. This strategy is applicable to all
gross error type (measurement-related error or process-related error). To improve
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these methods, Rollins and Davis (1992) propose the estimation of all gross errors
simultaneously using UnBiased Estimation Technique (UBET).

Since statistical tests are probabilistic based approaches, two type of errors in
GED procedure may potentially rise:

e Error Type | : gross error is repaired when actually not present (false alarm).

e Error Type Il : gross error is not repaired when actually is present (resilience).

Regardless of the power of the statistical tests, there is no guarantee that they can
always detect gross errors. Rosenberg et al. (1987) proposes two measures repre-
sented by Egs. (1.44) and (1.45) that may be used to evaluate the performance of
GED scheme:

1. The Overall Power (OP) defines the ratio of number of gross errors that are
correctly detected to the total number of gross errors in measurements as fol-

lows:

number of grosserrorscorrectlyidentified
oP= g Y (1.44)
number of grosserrorssimulated

2. The Average Number of Type | (AVTI) error, which defines the number of
misidentification made by the method, is represented by Eq. (1.45). This mea-
sures gives the average numbers of gross error misidentify per application of
the method.

number o f gross errorswrongly identified

ATI = - . .
number of simulationtrial made

(1.45)

1.2.6.3 Simultaneous Data Reconciliation and GED

A promising alternative is to combine data reconciliation and gross error detection.
Two main approaches can be adopted for such purpose: the Bayesian Approach and
the Robust Approach:

1 - The Bayesian Approach (Tjoa and Biegler (1991)) takes into account the
presence and distribution of gross errors in the error distribution function. Thus, the
objective function (Eq. (1.46)) contains two terms: one representing the random
errors and the second the gross errors, each one multiplied by its probability to occur
as follows:

P(&) = (1- )N (0,0%) + N (0,b7.07) (1.46)

where n); is the known probability of the occurrence of gross error in sensor i and
b; (> 1) is the ratio of the standard deviation of the gross error distribution of sensor
i to the standard deviation of the random-error distribution.
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However, the gross error distribution is usually a posteriori information which,
may lead to a biased estimation. If the gross error term is higher than the random
term for a particular measurement a gross error is identified. In consequence, this
approach can only be used if the gross error distribution is known a priori.

2 - The Robust Approach (Huber (1981); Romagnoli and Sanchez (2000)) at-
tempts to make the estimation insensitive in front of the presence of gross errors. The
weighted squared residual of the DR formulation is replaced by another function of
the residual as shown in Eq. (1.47).

mian(rj> (1.47)

where p() is usually selected as a convex function in order to ensure that the solution
is unique, the influence function is the derivative of p() with respect to the process
variable measurements. This Robust Estimator will give an unbiased estimate when
the gross error follows a previously known distribution and still behaves well if they
are deviations from ideal situation. Thus, this influence function compensates for the
effects that have the residuals on the estimations, given a weight of zero to high value
residuals. The crucial step in the Robust Estimation is the choice of these influence
functions: different pre-selected choices of the influence function deals to estimations
with different robustness.

1.2.6.4 Multivariate Statistical Process Control

The use of statistical tests is the most widely and efficiently procedure for GED but
it presents serious limitations when it is difficult to obtain complete and accurate
process models or when the process presents high dimensionality and complexity.

In such situations other techniques such as Multivariate Statistical Process Con-
trol (MSPC) can be used. The MSPC aim to reduce the number of process variables
required to describe significant process variations. The recorded data are thereby
compressed into an alternative set containing fewer variables that are more manage-
able and interpretable. One such MSPC is the Principal Component Analysis (PCA)
or the Partial Least Square (PLS).

In the case of nonlinear process an Auto-Associative Neural Network (AANN)
could acts as a nonlinear PCA. Nonlinear methods for fault detection are usually
based on identifying clusters for normal and faulty operation by methods such as k-
means clustering. Although MSPC techniques are very powerful for fault detection
their main limitation lies in their ability to identify the faults. Yoon and MacGre-
gor (2000) present the fundamental differences between statistical and causal model
based approaches to fault detection and isolation via several simulation studies.
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1.2.7 Sensor placement

The principal objective of data reconciliation and gross error detection is to improve
the accuracy and consistency of process variables estimated. These techniques cer-
tainly reduce the error content in measurements if redundancy exists in the measure-
ments. The improvement that can be achieved depends crucially on: the accuracy of
the sensors which is specified by the variance in the measurement errors and number
of variables and their type which are measured.

Different sensors may be available for measuring a variable with widely varying
capabilities such as the range over which it can measure reliability, and accuracy.
The cost of the sensor will be a function of its capabilities. This information must
typically be obtained from instrumentation manufacturers or suppliers.

Considering all the different variables such as flow rates, temperature, pressures
and compositions of the streams in a process, these could be of the order of several
thousands in number. Clearly, from the viewpoint of cost, complexity or technical
feasibility it is not possible to measure each and every variable. Only a subset of
these variables is usually measured.

The design of sensor networks should provides, the decision regarding which
variable should be measured by which instrument and according to which criteria.
Although this problem is an important one in design of new plants, it can be used
to retrofit the measurement structure of existing plants by identifying new variables
that need to be measured for improving monitoring and control of the process for
instance.

The problem of sensor networks design for processes has been addressed by sev-
eral research groups covering different criteria:

e Observability = ability to estimate variables using measurement.

e Estimation accuracy = ability to obtain accurate estimation through data rec-
onciliation.

o Reliability = ability to estimate variables under sensor failures.

Vaclaveck and Loucka (1976) were the first to develop a sensor placement strategy for
the steady-state system so as to ensure the observability of a specified set of important
variables in a pure mass-flow or multi-component process by using graph-theory. To
obtain number of measuring devices is straightforward once known the number of
process variables and the number of equations that relates them, from here the sensor
placement problem is addressed. Ragot et al. (1992) gave a procedure, which ensured
observability of all variables in a bilinear process.

Kretsovalis and Mah (1987) quantified the effect of sensor placement on the ac-
curacy of estimated variables for mass-flow processes, and use the results to develop
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a combinatorial search algorithm for sensor network design. Madron and Veverka
(1992) extend the work presented in Vaclaveck and Loucka (1976) including the over-
all cost of sensors. Their method makes use of Gauss-Jordan elimination to identify
a minimum set of variables that need to be measured in order to observe all required
process variables while simultaneously minimizing the overall cost of sensors. Along
this line, Meyer et al. (1994) also developed an algorithm for minimum cost design
of sensors for linear processes based on a graph oriented approach. They used a
branch-and-bound type strategy to solve the optimization problem formulated.

Ali and Narasimahan (1993) addressed the issue of sensor failure and its effect
on observability variables, and took it into account in sensor placement strategies.
They went on to tackle the problem of sensor placement strategy for steady-state
linear processes when sensors are likely to fail. They also proposed the concept of
reliability of estimation of a variable, which gives the probability of being able of
estimating a variable value for any given sensor network and specified sensor failure
probability. Ali and Narasimhan (1995) extend their work for the optimal design of
redundant sensor networks for linear processes.

Bagajewicz (1997) posed the sensor network problem as an optimization prob-
lem with minimization of cost as the objective function and requirements of error
detectability, resilience and residual precision as the constraints of the optimization
problem. Sen et al. (1998) integrated genetic algorithms with graph-theory concepts
to solve the problem of optimal design of a sensor network for linear processes. Us-
ing genetic algorithms they could solve the problem to optimize different objectives
simultaneously such as cost, estimation accuracy and systems reliability. Addition-
ally, the encoding procedure they propose is quite intuitive, that is, in the string the
bit represents the characteristics of the solution.

Later, Bagajewicz and Sanchez (1999) merged the concept of degree of redun-
dancy and degree of observability for variable measurements into a single concept:
degree of estimability of a variable. They presented a formulation for the design of
a sensor network to achieve a required degree of estimability. A minimum overall
cost model and a generalized model for the design of a reliable sensor network has
been demonstrated to be equivalent as shown in Bagajewicz and Sanchez (2000b).
Reallocation and upgrading the existing instruments to achieve maximum precision
of selected variables has been dealt with by Benglilou et al. (2001b); Bagajewicz and
Sanchez (2000b).

The methods just cited above do not address the issue of sensor placement for
dynamic systems. Chmielewski et al. (2002) extended the static sensor placement
problem to linear dynamic processes. They gave a procedure to make the NLP prob-
lem independent of the decision variables. Additionally in their contribution they
transform the NLP problem into a convex program through the linear matrix inequal-
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ity.

Furthermore, a software tool for sensor placement decision-making is still miss-
ing, although that some authors have attempted to develop a tool for sensor placement
design (Sanchez et al. (1992); Jaroslav and Perris (1992)).

Recently, Heyen et al. (2002) propose a general mathematical formulation of the
sensor selection and location problem, in order to reduce the cost of the measurement
system while providing estimates of all specified key process parameters within a
prescribed accuracy. Narasimhan and Rengaswamy (2003) in a recent work also
recognize the need for developing an integrated approach to sensor network design.

1.2.8 The CAPE-OPEN standards

Industrial users of CAPE tools are no longer developing their own proprietary soft-
ware but the present trends is to use modular and customized programs provided and
maintained by specialized vendors. In a similar way, the software engineering has
undergone a significant transformation during the last decade.

While the hardware standard has moved from large supercomputers to networked
PCs, software developers have given up huge monolithic programs to fully exploit
the benefits of distributed computing, such as modularity, maintainability and code
re-usability.

These converging changes motivated the CAPE-OPEN and Global CAPE-OPEN
(GCO) EU-funded projects, which have provided the mechanisms for ensuring CAPE
modules inter-operability across the network. Thus, CAPE-OPEN standards for com-
munication interfaces were produced and published. Hence the term CO-compliant
was coined to designate the software modules that correctly implement the CO inter-
faces, allowing them to interact with other CO-compliant software. Such compliance
and the current status of the standard were recently reviewed by Belaud and Pons
(2002).

The CO and GCO legacy includes a state-of-the-art monograph on software archi-
tectures and tools for CAPE (Braunschweig and Gani (2002)) and the CAPE-OPEN
Laboratories Network (CO-LaN) the internationally recognized user-driven organi-
zation for the testing and management of the CAPE-OPEN standard (CAPE-OPEN
Standard 1.1 (2002)).

The development of the CO standards was carried out on the basis of a technical
decision made for the formal description of the interfaces Belaud et al. (2002). The
Unified Modeling Language ™ (UML™) already developed, published and main-
tained by the Object Management Group ™ (OMG (2003)) was adopted as a conve-
nient tool for such purpose since it allows specifying, visualizing, and documenting
models of software systems. This work also uses UML’s standard diagram types for
defining the architecture and interfaces proposed.

24



“ThesisChouaibBengliloul2March” — 2004/3/26 — 13:00 — page 25 — #49

1.3. Objectives and thesis contributions

Among the different CO standard interfaces, it is worth noting those related to the
architecture presented in this thesis, which allowed incorporating some already de-
veloped modules such as mathematical models (CO-ESO, Equation Set Object) and
solvers (CO-MINLP). Particularly, the architecture requirements for Parameter Esti-
mation and Data Reconciliation system (PEDR) were addressed by the GCO project
and summarized in Arora et al. (2002) and the prototype implementation was also
presented in Benglilou et al. (2002e). However, the sensor placement problem and
the architecture of a standardized sensor placement tool, despite being strongly con-
nected to the previous aspects, were not addressed by the GCO project. This thesis is
also intended to cover this gap.

1.3 Objectives and thesis contributions

From the concepts and results described in the previous sections, and due to the
requirements and potential applications of Sensor Placement, Data Reconciliation,
and Gross Error Detection systems and their combinations this thesis is focused in
the evaluation and improvement of the afro-mentioned techniques having as main
goals:

e Investigating novel approaches for dynamic Data Reconciliation based on mov-
ing average filter and SSDR.

e Developing a system for combining wavelets analysis and Dynamic Data Rec-
onciliation.

e Combining Time-Delay Estimation and Dynamic Data Reconciliation.

e Proposing a distributed open architecture for Data Reconciliation able to ex-
ploit the new trends of Data Reconciliation techniques.

e Investigating the relationship between Data Reconciliation and sensor place-
ment in the case of dynamic processes.

e Proposing a more precise way to determine the sensor network reliability.

e Incorporating inferential sensors application within the framework of Data
Reconciliation and comparing their performance with such of physical sensors.

e Proposing generic design/retrofit framework for placing and selecting sensors
for steady-state and dynamic processes.

25



“ThesisChouaibBengliloul2March” — 2004/3/26 — 13:00 — page 26 — #50

Chapter 1. Introduction

The most significant contributions of this thesis are highlighted as follows:

In Part | of this thesis the combination of filtering and reconciliation techniques
are addressed. A proposal is presented in Chapter 2 to combine a moving average
filter and a steady-state Data Reconciliation for dynamic cases. The estimator pro-
posed is unbiased and provides competitive results compared with Kalman filter in
terms of estimation accuracy and tracking of dramatic dynamic changes of process
variables (e.g. step in a set point) as well as variance reduction. This proposal breaks
down the traditional view that steady-state Data Reconciliation is used when consid-
ering steady-state models and dynamic Data Reconciliation is used when the dynamic
model is considered. The advantage of the proposed approach becomes more rele-
vant for on-line industrial application, since this approach requires less computational
effort.

Along this line a rigorous Dynamic Data Reconciliation technique is provided in
Chapter 3. A wavelet analysis technique is used to catch the deterministic features
of the process variables. These trends are then represented by a polynomial in time.
The coefficients of the resulting polynomial are made consistent with the dynamic
process model. An important feature of the proposal is its capability to handle differ-
ent measuring sampling times and to reduce the problem of estimating the variance
of dynamic variables. A promising alternative for estimating state variable of a non-
linear process is also presented in Chapter 3. This method is efficient and competes
with the current approaches in terms of accuracy and required computational effort.

A frequent problem that operating plants are faced with is the presence of delay
between the sampled process variables. Therefore a mismatch between the process
model and process measurements is raised. In this thesis, concretely, in Chapter 4 a
simple but efficient approach is proposed to deal with the presence of such delay. The
approach is based on maximizing the correlation between the correlated variables,
thus, a time-delay vector is obtained. This vector is used to update the measurement
model, which is included in the DR. The resulting approach shows acceptable results
and promising application of the proposal in on-line applications.

The use of a simulator-based model within the Data Reconciliation problem is
also addressed in this thesis in Chapter 5. By using a simulator-based model the
construction and the resolution of the process model is performed within the simula-
tor and the optimization problem size is reduced since the simulator does not accept
an over-specified system. The synergy between the simulator and the optimizer is
the basis for proposing a distributed modular and standard compliant Data Reconcil-
iation application. This approach provides a framework for successful achievement
of a simultaneous estimation of the measurements, unmeasured variables and model
parameters.
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In part Il of this thesis the accurate and reliable design/retrofit of sensor networks
is addressed. For reasons of cost and technical feasibility not all variables are mea-
sured in a given process plant. During the sensor network design phase it is not only
important to determine the number of sensors that satisfy some criteria (e.g. accu-
racy, reliability, etc) but also their types and position in the plant. In Chapter 6 a
novel methodology is proposed to obtain the network with the minimum number of
sensors that ensures the required system accuracy in a dynamic process. In this line
the synergy between sensor placement and a dynamic Data Reconciliation technique
is investigated. This approach deals with the observability procedure by manipulat-
ing the measurements noise matrix in the state-space formulation. The above results
present the strong relationship between Data Reconciliation and sensor placement.
However, it is also important to appreciate that not all the Data Reconciliation tech-
niques give the same results. In this sense another point addressed in this thesis is the
comparison of the different dynamic Data Reconciliation techniques.

Within these contributions an efficient technique is presented in Chapter 7 for
evaluating the reliability of process variables. With the objective of increasing the
system reliability an approach combining quantitative modeling process and fault
tree analysis is proposed and validated. The resulting sensor optimization problem is
solved by means of genetic algorithms showing good results. With the objective of
increasing the system redundancy in order to improve the data quality by means of
Data Reconciliation some instrumentation network design has to be realized. The use
of inferential sensor as an alternative within Data Reconciliation in a real industrial
case is presented demonstrating good performance. A comparison with the other ap-
proaches that utilize physical sensors show that inferential sensors present acceptable
results.

The decision to update the sensor network in order to reach the new plant per-
formance goals in the case of operating plants is quite difficult. This decision leads
to two possibilities: the purchase of new instrumentation or the reallocation of the
existing measurement devices. A generic sensor placement formulation extending
the current sensor placement paradigm to address the design and retrofit problem as
well as to consider dynamic processes by introducing a general framework following
the guidelines presented by Benglilou et al. (2003). Additionally, the framework con-
templates hardware redundancy and measuring device selection. Therefore, a tool is
provided following the CAPE-OPEN standard and exploiting the current and future
trends of sensor placement (Chapter 8). The general framework proposed allows
addressing these problems from a general decision-making point of view by integrat-
ing tools to deal with the necessary cost-performance trade-off as has been recently
proposed by Bagajewicz and Cabrera (2000).
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Nomenclature
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incidence matrix with rows corresponding to nodes and columns to streams
state transition matrix at sampling time k
measurement adjustment vector
control gain matrix at sampling time k
differential equation constraints either linear and/or nonlinear
inequality constraints including simple upper and lower bounds
algebraic equation constraints either linear and/or nonlinear
null hypothesis
alternative hypothesis
observation matrix at sampling time k
estimating at sample time k.T using the past k’.T samples
Kalman filter gain matrix at sampling time k
Lagrange function
width window
covariance matrix of initial estimates of state variable X,
variance-covariance matrix of measurement errors
covariance matrix of random variable w,
covariance matrix of random variable v,
vector of constraint residuals
constraint residual at unit j
time
sampling period
vector of input variables
vector of control input variable at sampling time k
vector of measurement noise
vector of process noise model
vector of state variable at sampling time k
vector of measured variable at sampling time k

y vector of process variable measurement

Vi

arithmetic average of i at a certain number of observations

y vector of reconciled (estimated) process variable

y*

vector of true value of process variable

Operators

Ef

expected value operator

cov() variance-covariance matrix calculation
N(0,Q) normal distribution with mean 0 and covariance matrix Q
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P probability density function

Greek letters

y distribution of residual (r)

o0 vector of gross errors

€ vector of random measurement errors

n hypothesized gross error probability occurrence

6 vector of model parameters

A Lagrange multiplier

p() convex function whose derivative is the influence function
o; standard deviation of the

> covariance matrix of constraint residuals, r

®() objective function of the formulated Data Reconciliation problem
X2 chi-square distribution

Subscripts

i process variable
j process unit
k sampling time
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Part |

Dynamic Data Reconciliation
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Chapter 2

Data Reconciliation and dynamic
systems

Abstract

This chapter presents a novel technique for reconciling data of linear dynamic sys-
tems. The technique is based on adapting SSDR techniques previously discussed, in
section 1.2.1 of Chapter 1 of this thesis.

An estimator is constructed using the reconciled averages (or means) of the pro-
cess variables measurements. Using the averages, the process dynamics are absorbed
and then a SSDR can be carried out to reconcile these averages. Finally, the “recon-
ciled” process variables are recovered from the reconciled averages. An interesting
feature of this technique is its low computational effort which renders it a potential al-
ternative for on-line reconciliation applications. Additionally, the proposed estimator
presents the important statistical feature of being unbiased. The proposal is competi-
tive with the Kalman filter technique in terms of variance reduction. Furthermore, it
is able to deal with steady, pseudo-steady and dynamic linear processes without any
important changes.

Thus, the main aim of this work on dynamic Data Reconciliation is to minimize
the effort of reconciling dynamic measurements from chemical processes while mak-
ing the estimations more accurate, precise and faster.

2.1 Introduction

Data Reconciliation is a model-based filtering technique. If the considered process
is approximated by a steady-state model, the technique applied should be the SSDR;
if the process is represented by a dynamic model DDR techniques are used. Given
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that steady-state operation is almost never fulfilled it is better to think of applying
DDR even for “steady-state” processes (Narasimhan and Jordache (2000)). Similarly,
from the perspective of minimizing the computational effort of reconciling dynamic
measurements using DDR techniques it is also reasonable to extend in some cases
the range of application of SSDR to deal with dynamic situations. The DR tech-
niques and their range of application are summarized in Figure 2.1; the continuous
lines represent the current interconnections whereas the discontinuous line reflects
the connection that is addressed in this study.

— — A
Process
I "

Dynamic Model . Steady-state model
"Dynamic process" . "Steady-state process"
: - -

—_
— "
DDR : SSDR
High Computation . Low Computation

Figure 2.1: Range of application of SSDR and DDR techniques.

Mathematically, a linear dynamic process model can be represented by a set of
differential algebraic equations (Egs. (2.2) and (2.3)). When the process is at steady-
state algebraic equations are sufficient to model the correlations between process
variables (Eg. (2.3)).

k

m?ini:k_znﬂ(x(ti) —X(t)" Qi (X(t) —X(t)) (2.1)

subject to:
f(%,i(t),ﬁ(t)) —0 (2.2)
h(R(t),T(t)) =0 2.3)

In general both SSDR and DDR have the same objective function (Eq. (2.1)), a
weighted least-squares equation, where the weights are the variance-covariance ma-
trix of redundant measured process variables. The data reconciliation problem given
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by Eqgs (2.1), (2.2) and (2.3) can be seen as a dynamic optimization problem. The res-
olution of these types of problems not only involves an optimization problem but also
the solution of the differential equations. However, the DR problem involving only
Egs (2.1) and (2.3) can be seen as a quadratic optimization which presents less com-
plication for its resolution than the former problem and does not present the difficulty
of solving the differential equations.

The proposed technique aims to find a way of adapting a SSDR in the case of
dynamic processes. This makes the dynamic Data Reconciliation more practical by
reducing the computational effort inherently elevated in DDR techniques.

2.2 SSDR approach for dynamic systems

Assuming that the derivative terms are simple process variable, the ordinary differen-
tial equation can be transformed to an equivalent set of algebraic equations. There-
fore, steady-state data reconciliation techniques can be used rather than DDR tech-
niques.

It is worth mentioning that for a linear dynamic system the balance equations of
process variables are also satisfied by the process variable means. Therefore, recon-
ciling the measured variable at each sample time is similar to reconcile the mean of
these measured variables.

However, by performing a previous average a data filtering is also achieved which
undoubtedly improve the DR performance. Filtering the previously measured data
improves the estimation accuracy of DR without increasing the computational effort,
making it more appropriate for its use in on-line applications. This approach has been
also argued by Kong et al. (2000).

Nevertheless, a difficulty is added for recovery the current reconciled variable
from the reconciled averages. Equaling the average of the reconciled variable at each
sample time to the reconciliation of the average of the measured variable throughout
the sampling time-horizon is one of the points on which is based the proposed Data
Reconciliation technique. The proposed approach is shown in Figure 2.2 where the
sequential combination of averaging, reconciling and recovering is illustrated. The
corresponding DDR is represented by the outer square as is shown in Figure 2.2.
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Current and past
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SSDR
Averaging Recovering

DDR

Figure 2.2: MA/SSDR approach for dynamic systems.

2.3 Moving average and SSDR methodology

2.3.1 Averaging step
2.3.1.1 Handling derivative terms

In the proposal it is assumed that no distinction is made among the existing process

variables, in the sense that states x, their derivatives M&tg and control input variables

u are all included in a unique variable F = [x, dﬁ—?),u] :
Taking into account that the considered systems are linear and assuming a small

sampling time, the derivative terms can be approximated as follows:

dx(t)  Ax

i z (2.4)

By integrating (e.g. cumulative sum) z over the whole time-horizon allows the re-
covering of x. This variable substitution (Eq. (2.4)) permits to convert the set of
differential equations given by means of Eq. (2.2) to an equivalent set of algebraic
ones. Thus, a transformation of the dynamic Data Reconciliation problem to steady-
state one is achieved. This is the essence of applying a SSDR to a dynamic system.
Therefore, the corresponding canonical form of Egs. (2.2) and (2.3) can be repre-
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sented as follows:
AF=0 (2.5)

where A is the incidence matrix encompassing both f() and g() functions.

2.3.1.2 Advantage of averaging

The averaging step is performed over the variable F = [x,z,u]. That is at each sample
time k, the average of the latest n samples of measured variable F is performed as
follows:

1 X _
— z F, =F, (2.6)
Nt
In real systems especially dynamics the most current values tend to better reflect the
state of the process. Therefore, the number of sampling points over which the average
calculation is done needs to be chosen with care.

In principal Eg. (2.6) can be seen as a moving average filter where the filter
weight are all equal to 1/n. A filter that places most emphasis on the most recent data
would be more useful and present better tracking of dynamically changing behavior.
From this perspective it is more easy the tuning of n. Too large value of this constant
will result in a filtering that does not follow trends quickly enough, whereas small
value will lead a poor smoothing. One important advantage of applying the average
is that the current measurements are not used directly but are previously de-noised.

Another alternative is to smooth using moving median rather than moving aver-
age. The median presents less sensitivity to the presence of outliers as reported by
Chen and Romagnoli (1998).

2.3.1.3 Steady-state data reconciliation

SSDR can be formulated as follows:

~ _\NT__1/2 _
min{(Fk—Fk) le<Fk—Fk>} @.7)
tk
subject to:

AF, =0 (2.8)
where Qk is the variance matrix of the averaged measurement error variables at the
current sample time k.

An estimator (F,) can be obtained by solving the above quadratic optimization prob-
lem given by Egs. (2.7) and (2.8) using the Lagrange multiplies see section 1.2.1.3.
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The analytical solution is given by the following expression:
Fo=(1-0AT (AQAT) A F = wF, (2.9)
and the estimator variance is:

var (ﬁk) —wQ, (2.10)

2.3.1.4 Variance-covariance matrix calculation

Assuming that the distribution of measurements is multivariate normal the central
limit theorem states that given a distribution with a mean 0 and variance Q,, the
sampling distribution of the mean approaches a normal distribution with a mean 0
and a variance Q,/n. Note that the spread of the sampling distribution of the mean
decreases as the sample size increases.

The variance of the mean, Gk, can be determined using the measured variable’s
variance and the time-horizon, n, producing?:

Q, =var(F,) =var (1 i Fi> = %var( i Fi> (2.11)

L =K1
assuming the variance of F,; are constant throughout the time it is possible to get:

—_ n Q
Qu=svar (F) = Tk (2.12)
where Q, is the variance matrix of the measurement error variables at sample time k.

For determining the variance of the derivative terms z, it is taking into account
that x are cumulative sum of the last k value of z, thus, var (x) = k.var(z) and it is
possible to get:

var(z) = % (2.13)

2.3.2 Recovering step

Once the steady-state Data Reconciliation is performed, it is necessary to recover the
“reconciled” process variables values from the reconciled variables mean. Equaling
the average of the reconciled variable at each sample time to the reconciliation of the
average of the measured variable throughout the sampling time-horizon n (Eq. (2.14))

1Elemental variance's properties: var(a.x) = a.var(x), if a is a constant and var(3 ;%) =
Yimgvar(x).
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is used to recover the reconciled value at the current time k, ﬁk from the reconciled

1 Ko 1 D ~
1 el (1 F=F (2.14)
n i:k—zn+l I ni:an+l I

This recovery can also be achieved through Eq. (2.15), as follows:

average, F,.

~ k—1

i=k—n+1
Using Egs. (2.6), (2.9) and (2.14) it can be proved that the estimator is unbiased:
k k
F=¥ Y F (2.17)
i=k—n+1 i=k—n+1

or

R k k-1

F=¥ > Fi- Fi (2.18)

i=k—n+1 i=k—n+1

If F, = F+=,,Vi, and assuming A.F* = 0, Eq. (2.19) is obtained:

k k k k
< S Fi>: S Fi*+w< S Ei>: S R (2.19)
i=k—n+1 i=k—n+1 i=k—n+1 i=k—n+1

Therefore, under deterministic conditions, the proposed estimator does not introduce
any bias and possess the desirable statistical property of being unbiased.

2.4 Casestudy: resultsand discussion

The Kalman filter is selected as the dynamic Data Reconciliation technique refer-
ence for evaluating the performance of the proposed “dynamic” Data Reconcilia-
tion MA/SSDR (Moving Average/Steady-State Data Reconciliation) technique. A
Kalman filter has been designed to estimate the output based on the noisy measure-
ments.

The process represented in Figure 2.3 is taking from Darouach and Zasadzinski
(1991) and selected for evaluating and comparing the proposed technique, where a
random error following a normal distribution is added to the measured variables.
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Q7

Figure 2.3: Process network.

First the process is considered at steady-state. Then, a sudden but lasting change
is introduced when time = 100 by means of a step in Q;. Since the dominant time
constant of the dynamic response is much slower than the period with which distur-
bances enter to the system, the system displays quasi-steady-state behavior. Later a
ramp with a slop of 0.02 is added to the input variable Q, leading to some changes in
the system dynamics.

As is explained in previous sections, the width of moving time-window directly
affects the estimation accuracy as well as the tracking of the dynamic drastic behavior.
In Figure 2.4 the estimation of the flow-rate (Q5) is represented for a moving-horizon
(MH) of 5 and 25 time units. It can be seen from the curves that the MA/SSDR
estimation accuracy is improved when increasing the moving horizon length however,
the tracking of the steps presents an unacceptable behavior, a delay response of almost
20 time unit is observed.

Tables 2.1 and 2.2 represent the variance of the measurement by means of KF
and MAJ/SSDR estimators for input/output variables and states respectively. Since
both estimators are unbiased the variance is equal to the Mean-Square Error (MSE).
The MSE is often used for evaluating the estimators performance. The second row
of both Tables 2.1 and 2.2 represent the variance of the raw measurements.

Table 2.1: MSE of MA/SSDR and KF for input/output variables.

| [ Q Q Q Q Q Q Q]
Measurements 2 2 2 2 5 2 2 2

KF 0.32 0.33 0.66 0.53 0.31 0.13 0.26 0.16

MA/SSDR 0.37 0.28 0.30 0.26 0.61 0.20 0.30 0.32

By analysis of the results presented in Tables 2.1 and 2.2 it can be concluded
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Figure 2.4: Effects of increasing the MH width on the MA/SSDR estimation.

Table 2.2: MSE of MA/SSDR and KF for state variables.

| LW, W, W, W, |
Measurements 2 5 2 6

KF 0.45 1.17 0.68 1.35

MA/SSDR 0.44 191 0.70 1.63

that the variance reduction using the MA/SSDR approach is very attractive and even
better in some cases than the KF. These results are confirmed in Figures. 2.5 and 2.6
representing respectively the behavior of variables Q, and W,. Additionally, from
Figure 2.6 it can be seen that the proposal of reconciling and recovering dynamic
variables is considerably accurate.

Demonstrating and validating the application of the SSDR for dynamic behav-
ior process variables. Also the tracking of changes in dynamical behavior is better
tackled by the proposed method than KF. Finally, Table 2.3 summarizes an average
time of the required time for performing the MA/SSDR and KF, from this results
it can be noted a slight fastness of the MA/SSDR. This could be crucial for on-line
applications.
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Table 2.3: Fastness of the MA/SSDR compared with KF.

MA/SSDR  2.19 CPU time
KF 4.15 CPU time

60

—— MA/SSDR
55 === Kalman filter
* Observed
— True

40+

351

30

Time

Figure 2.5: Estimation of the input flow-rate Q, using MA/SSDR and KF.

2.5 Conclusions

In this chapter a Data Reconciliation technique for dynamically evolving processes is
considered from a steady-state point of view. The technique uses previous informa-
tion by means of the variables averages to generate the current estimates. Thus, not
only the temporal redundancy is taken into account but also the quality of estimation
is improved by combining a filtering technique and DR in a sequential way. Further-
more, a way for processing the average values to recover the “reconciled” variable
is presented and validated. The proposed unbiased estimator is compared with the
Kalman filter technique to evaluate its performance in terms of variance reduction
and fast dynamical changes tracking.
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Figure 2.6: Estimation of hold-up W, using MA/SSDR and KF.

Nomenclature

A incidence matrix
F  vector containing both x, z and u respectively
F*  vector of unknown true value of F
vector of the mean of F
f() differential equations set
h() algebraic equations set
I identity matrix
n width of the moving time-horizon
Q,  variance covariance matrix of F,
Q, Variance covariance matrix of F, at the sample time k
Q. Vvariance covariance matrix of x at sample time k

t time

u vector of input variables

X vector of state variables

z vector representing the derivative with time of x

Greek letters

o standard deviation
@ objective function of the DR optimization problem
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vector of random error with mean zero and known variance

W matrix obtained by combining A and Q, as shown in Eg. (2.9)
Subscripts

i sample time within n
k current sample time

Operators

var() variance function
() expected value
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Dynamic Data Reconciliation
based on wavelet analysis

Abstract

In this proposal wavelet trend analysis is performed as a former step for reconciling
dynamic systems. That is the deterministic trends of measured data along a specified
time-horizon are identified by means of wavelet analysis and then they are made
consistent with the dynamic process model.

Looking for the trend of measurements, a de-noising is carried out. This pre-
processing of data leads to an increase in the Data Reconciliation performance. Ad-
ditionally, the variance estimation of dynamic variables is undertaken considering
that the trends contains only the inherent process variability, since the measurement
error variability is considerably compensated through wavelet transform. The perfor-
mance of the proposed strategy is compared with Kalman filtering and discretization
techniques for a linear dynamic case. Further extensions to contemplate nonlinear
cases show promising results.t

3.1 Introduction

Considering that the general DDR optimization problem as discussed in Chapter 1
section 1.2.5 can be expressed as follows:

Cc

min 3 [9(t) —y(t)]" QL [9(t,) — y(t)] (3.1)

¥t k=

LA part of this work was proposed in the REALISSTICO project under contracts QUI-99-1091,
CICYT.
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subject to: R
P _ ¢ (90.00).60)) (32

0=h (y(t),a(t), §(t)) (3.3)

0<g(9(1),a0),001)) (3.4)

The solution of this dynamic optimization problem involves three sub-problems: (1)
the solution of the differential equations (2) the estimation of the variance of the
process variables and (3) the proper optimization problem. If the process model
presents some nonlinearity the solution of the problem presented above is even more
complicated.

In this chapter a novel nonlinear dynamic data reconciliation approach is pro-
posed. It is based on reconciling the trends of measured variables along a specified
time-horizon. Before making these trends consistent with the dynamic process model
they have to be identified. For such purpose a trend extraction analysis with wavelets
has been adopted. Applying a trend analysis technique previously to DDR provides
important benefits:

1. Firstly, the complication of evaluating the dynamic process variable variance-
covariance matrix is reduced since the variability of the trend is mainly due to
the process itself. Wavelets analysis can de-noise measured variable taking
into account the magnitude of the noise’s variance.

2. Secondly, pre-processing raw measured data by means of trend analysis in-
volves a de-noising of data and elimination of abnormal data in measurements
which in turn leads to a better estimation accuracy as discussed in Chapter 2.

3. Finally, the proposal can perform reconciliation independently of the variables
sampling times.

The proposed approach has been compared with Kalman filter technique in a simu-
lated continuous stirred tank reactor (CSTR) in order to highlight its performance.

3.2 Extended Polynomial Approach (EPA)

3.2.1 Reformulation of DDR optimization problem
3.2.1.1 Nonlinear handling

Mainly the nonlinear optimization problem can be solved directly using nonlinear
programming solvers (e.g. GAMS/MINQS). Although these methods provide accu-
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rate variable estimation they require large computational time, this might represents
a drawback for on-line applications.

An alternative approach is to linearize the nonlinear optimization problem and
then linear techniques for solving the linear optimization problem can be applied.
However, this approximated linearized model will undoubtedly decrease the accuracy
of variable estimation through DR.

This work addresses the NLP problem in a efficient and easy way. The essence
of the proposal relies on representing the nonlinear equations as a linear combination
of new variables z;(t). The new variables z;(t) are obtained from variables y(t), u(t)
and parameters 8(t) through a well defined functions f,(.) as follows:

dy; () ey e B NP .
-7ﬁ—=n(woua»mw)=;;&woma»mw)=;;ﬁ) (3.5)

The same can be performed for algebraic equations:

ozh(wmmmém)=;;J(wmmm§®)=;;3a> (3.6)

The values of the variables z(t) and their variances are straightforward obtained by
applying the corresponding functions f; () on the measured variables y(t) and u(t)
and parameters O(t). The reconciliation is carried out both on state and variables
z(t), nevertheless, only state variables are focused since some of the variables Z(t)
are meaningless.

3.2.1.2 Differential equation handling

By combining Egs. (3.5) and (3.6) and assuming that the derivative terms % are
represent by the process variables X(t) (see Chapter 2 section 2.3.1.1) it is possible
to get a linearized model, Eq. (3.7). This linearized model substitutes Egs. (3.2) and
(3.3) in DDR formulation.

() = AZ(t) (3.7)

where A is the incidence matrix of the process under consideration.
The ith process variable, Z;(t) and the jt" variable ij (t) can be fitted by p-degree
polynomials in time over a specified time-horizon as follows:

b

()= (aiyktk)  Vi=1o--1 (3.8)

k=0
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P
X;(t) = kZO(katk), Vi=1---J (3.9)
By substituting Eq. (3.8) into Eqg. (3.7) and equaling it to Eqg. (3.9), the functional
and temporal redundancy are combined. Then, it is possible to get for each time t,
the following constraint instead of Eq. (3.7).

|
W= _Z(Aj,iai,k)a Vv, vk (3.10)
I=

or in a matrix form:
QI = A AP (3.11)

where each row j in Q contains the coefficients in time descending order of the vari-
able x;(t), while each row i in A contains the coefficients in time descending order
of the process variables z, (t).

The polynomials degree p; and p; can be set to a value of two if the moving time
window selected is considerably small. That is the dynamic of each involved process
variable, z;(t) and x;(t) might be represented by a polynomial of degree two. The
largest polynomial degree of the involved variables (p™) is used to determine the
number of columns of Q and A matrices.

This variable substitution Egs (3.8) and (3.9) affects also the objective function
of the DDR formulation presented in Eq. (3.1).

Given an “accurate” process model an ideal data reconciliation scheme would
use all information (process measurements) from, the start-up t, of the process un-
til the current time tc. Unfortunately, such a scheme would necessarily result in an
optimization problem of ever-increasing dimension. For practical and on-line imple-
mentation as focused in this work a moving time window should be used. This will
undoubtedly reduce the optimization problem to manageable dimension. The mov-
ing time window approach was earlier presented by Jang et al. (1986) and extended
by Liebman et al. (1992).

3.2.1.3 Variance-covariance calculation

Calculation of the measurement error’s covariance matrix Q presents more difficulty
for dynamic systems, since the intrinsic variability of the process is combined with
measurement errors variability and both variability are continuously changing.
Some important issues are considered to adapt the traditional form of variance
estimation (Eq. (1.20)) for dynamic cases.
Firstly, it is assumed that an error is often the sum of a large number of single,
elementary errors. According to the central limit theorem, under certain generally
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acceptable conditions, the distribution of such a sum approaches the normal distri-
bution. Thus, in this work the measurement error variability is assumed to follow a
normal distribution.

Secondly, the spread of measured data is calculated over the estimated values
since neither the expected values nor the sample mean of measured variables are
known.

Finally, it is assumed that the measurements are independent, thus, the off-diagonal
elements of Q are equal to zero.

It is possible to use all the past estimations and measurements, however, if the
variance is not constant throughout the time, this might introduce some errors in
estimating Q. That is, the current measurement should have more similarity to the
most recent one in terms of variance. Therefore, a moving time-window approach is
also favorable for calculating the measurement error’s covariance matrix of dynamic
systems.

Based on these assumptions a recursive estimation of matrix Q is constructed and
continuously updated using past n measured and estimated values according to Eq.
(3.12).

_ Ll i (t))° (3.12)

k=c—n

where n is the width of the moving time-window.

3.2.2 On-line solving of the reformulated DDR

The reformulated DDR optimization problem expressed by Egs. (3.13) and (3.14) is
solved numerically.

c [omy 2 S 2
min > [Lk) y(tk)} +[L‘) Z(tk)] (3.13)
kel 9y Ot
subject to:
Pl I P -
W = _Z(Aj,iai,k)a Vj, vk (3.14)
=

The solution permits the easy introduction of inequality constraints Eq. (3.4) and
the over-specified polynomial degree of some process variables can be bounded.

To solve the optimization problem a projective pre-conditioned conjugate gradi-
ent algorithm available in the MATLAB optimization Toolbox can be used.
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The optimized coefficients @, , and a; , serve for reconstructing the “reconciled”
process variables using Egs. (3. 15) and (3 16).

pla\) tk+l , Vj=1---J 3.15
O+ 3 S vimL- @19

~<

where the integration constant y;(0) corresponds to initial conditions. This constant
value has to be calculated accurately by an off-line analysis of state variables other-
wise the estimation quality may be affected.

P
=5 G A V=1 (3.16)
K=o

The Extended Polynomial Approach (EPA) presented in this study is an extension of
the work presented by Bagajewicz and Jiang (1997) to deal with different important
features of DDR problems. The EPA procedure can deal with nonlinearity, and can
be applied on-line. Furthermore, the calculation of measurement error variance is
focused along with the determination of the adequate polynomial degree of process
variables. This EPA approach has been applied satisfactorily in a polymerization
reactor as reported in Benglilou et al. (2001c).

3.3 Integrating waveletsanalysisin the EPA procedure

The steps involved in the proposed approach start by extracting the de-noised trends
of measured data. For such purpose wavelet de-noising utilize the temporally redun-
dant information of measurements so that random errors are reduced and de-noise
trends are extracted. Although these trends might be more accurate than the mea-
surements they might be inconsistent with process model constraints. So, the Data
Reconciliation is needed along with the de-noising. Thus, the de-noised trend ob-
tained by wavelet transform is assumed as measured data obtained by more accurate
instruments. The polynomial degree determination step allows the determination of
the polynomial degree of each trend that is the coefficients to be adjusted through
Data Reconciliation.

3.3.1 De-noised trend extraction by wavelet transforms

Wavelets transform technology is capable of decomposing any signal into its contri-
butions in different regions of the time-frequency or time-scale? space by projection
on the corresponding wavelet basis function.

2scale means frequency band.
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Wavelets transform have been extensively used in chemical engineering during
the last ten years (Bakshi (1998); Doymaz et al. (2001); Addison (2002)). In all the
existing applications, this capability of wavelets to decompose the raw signal and to
extract a filtered approximation of it, is commonly exploited.

Particularly, this has been proved as very useful to signal de-noising and signal
trend extraction applications (Doymaz et al. (2001)) where any measured variable
signal, y(t), is assumed as the result of:

y(t) =y (t) +&(t) (3.17)

where, y*(t) vector of true process variables and £(t) is its measurement error (noise).
This basic idea is also exploited in this work to obtain an estimate of the trend signal.

Different strategies for de-noising and signal estimation have been proposed based
on Donoho and Johnstone (1995) proposal:

1. decompose the raw signal taking of the Wavelet Transform (WT). Depending
on the signal nature (continuous or discrete) the wavelet transform must be
applied continuously (CWT) or discretely (DWT).

2. remove wavelets coefficient below a certain threshold value S, this step is com-
monly called thresholding.

3. reconstruct processed signal using the inverse of the DWT.

Nevertheless, some difficulties are encountered to define the depth of wavelet’s de-
composition, to determine the threshold value 3 or to select the wavelet family.

Firstly, the optimum depth of the decomposition of the wavelets is related to
the thresholding as reported by Nounou and Bakshi (1999). Thresholding wavelet
coefficients at very coarse scales may result in the elimination of important features,
whereas thresholding only at very fine scales may not eliminate enough noise.

Secondly, most used wavelet filter for de-noising and trend extraction are the
Daubechies wavelets filters (dbN). This is based on their high capability at repre-
senting polynomial behaviors within the signal (Rowe and Abbott (1995); Flehmig
et al. (1998)). Nevertheless, the N order (or vanishing moment), associated to the
different dbN (N = 1...,20,...), to be selected can affect the quality of the rectifica-
tion of the signal (Nounou and Bakshi (1999)). Different subjective criteria or rules
of thumb are mentioned by some authors to select the db, while other works do not
consider this issue. In the next sections a proposal is presented to overcomes these
issues.
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3.3.1.1 Optimal depth of wavelet’s decomposition

The de-noising performance of the wavelet transform can be assessed by calculating
the mean-square error (or power) between the raw and the processed signal. The
processed signal can be the one obtained by applying the inverse DWT over the ap-
proximated coefficients. Therefore, as the scale is increased the MSE will be re-
duced, showing the de-noising capability of wavelets. However, at a certain scale the
wavelet will not only remove the noise but also will eliminate deterministic features
of the signal, this will undoubtedly make the MSE higher. Therefore, the optimal
decomposition scale is the one corresponding to the first minimum MSE reached.

Mathematically, the different steps required for this optimal depth (dyadic scale)
determination are as follow:

1. The scaling and wavelet coefficients, u, ,, and w, , respectively, at various scales
| and dilation v are obtained by taking of the DWT over y(t).

2. The approximation component, A, at each scale | is reconstructed through:
L
A= u,a, ) (3.18)
I=1

3. The power P, contained in the difference between y(t) and A, at each scale |
(da,) is calculated through, Eq. (3.19).

M~

L
P(da) =S |y(t) A" = Izl\daI ) (3.19)

=1

4. The variation of power, Eq. (3.19), between successive scales is computed
using Eqg. (3.20). As the dyadic scale increases the power due to the noise
calculated in Eq. (3.19), decreases rapidly until it reaches a first minimum.
The optimal scale L, corresponds to the first minimum encountered

AP =P, (da) —P,_,(da) (3.20)

5. At this scale Ly, a first thresholding based on setting to zero all the w, ,, greater
than L, is performed. Then, a second thresholding over the remai’ning co-
efficients is performed through Visushrink methods reported by Nounou and
Bakshi (1999).

6. The de-noised signal is obtained by taking the inverse of DWT as shown in Eq.
(3.22).

0 Lm o
TO= 3 U A0+ Y WO G2

|=1v=—00
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An additional consideration made about the selection of the wavelets family is the
determination of its order or vanishing moment N. An comparative study (Tona et al.
(2003)) shows that Daubechies of order 6 — 7 (and the combination of its signals) are
appropriate to deal with a wide range of signals. Then, Daubechies wavelets of order
6 and 7 have been used in the proposal presented above.

3.3.1.2 lllustrative example

The heavisine signal is used to illustrate the procedure presented in the previous sec-
tion. As it can be seen in Figure 3.1, the filtering of the reconstructed heavisine signal
(Nounou and Bakshi (1999)) using dbg is optimum by comparing it with the true sig-
nal. Therefore, the decomposition of the signal, until the power of the da, component
reaches its first minimum with subsequent shrinkage, provides optimum level L, and
coefficients ¢, , as it can be seen in Figure 3.2.

T T T T T T T T
measured data
= = wavelet de-noising
3r AR — true data 5

6 L L L L L L L L
600 650 700 750 800 850 900 950 1000 1050
Time

Figure 3.1: The heavisine function filtered by means of wavelet dbg at scale 4.

3.3.1.3 Moving time-window handling

When a moving time window approach is used in Data Reconciliation each process
variable will be reconciled n times, due to the fact that each sample will intervene in
n DR runs.

Mingfang et al. (2003) propose to reconcile each time the already reconciled mea-
sured variables by taking advantage of the current reconciliations. This approach can
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Figure 3.2: Determining the optimal dyadic scale L.

undoubtedly improves the estimation as they argued. However, it is not appropriate
for on-line applications due to the computation requirements. Furthermore, avoid-
ing to use the previous adjustment in the current estimation is also important from
the trend analysis perspective, since, appending window with reconciled values may
lead to a distortion of the process variable trend extraction through DWT.

3.3.2 Polynomial degree of the de-noised trend

Using the de-noised trend of measurements obtained in section 3.3.1.1, polynomial
degree determination for each process variable can be carried out. This task is repeat-
edly performed starting by a null degree and increasing it each time by one until the
fitting error between polynomial output and trend is less than a specified threshold
value.

The resulting polynomial degree for each process variable is introduced in Eq.
(3.11) and the values of these coefficients are adopted as the initial solution in the
numerical optimization of the DDR problem.

3.3.3 Handling different sampling times

In a real operating plant it is possible to find out that all measurements are not ac-
quired at the same sampling time (e.g. composition analyzer and flow-meters). To
deal with this situation the presented proposal performs a reconciliation at the sam-
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pling time of the least frequently measured variable or the maximum sample time
(Td"). The estimation accuracy of these measured data is mainly based on the func-
tional redundancy. Whereas the estimation accuracy of process variables with a fre-
quency measurement greater than TJ"™ is achieved by means of both temporal and
function redundancy.

The process variables with a sampling time less than TJ™ have an intermediate
value which do not present a functional redundancy. Nevertheless, by taking into
account all the intermediate samples in the trend extraction procedure the temporal
redundancy is taking into account. Moreover, by using the reconciled value at TJ™
the accuracy of the extracted trend is improved.

3.4 Casestudy: resultsand discussion

3.4.1 Case study - CSTR reactor

A simulated continuous stirred tank reactor with external heat exchange and in which
a first-order exothermic reaction (decomposition of a reactant A) occurs (Liebman
et al. (1992)) is considered for demonstrating the performance in terms of accuracy
at transient times of the proposed DDR techniques.

The equations (3.22-3.25) governing this process are differential equations de-
scribing the change in reactor hold-up V, the change in concentration of reactant A,
change in temperature of reactor T, and the Arrenhius equation respectively.

(31_\: =0p—0 (3.22)

‘3—? - %AO— (\% + K) A (3.23)

‘Z—I = \% (To-Op—T.0) + _adbA'gﬁ KA ;LépA\;* (T-To) (3.24)
K = K,.exp (;i’:) (3.25)

where A, and T, are the feed concentration and temperature; g, and q are the feed
flow and output flow. K is the rate constant that can be computed according to the
Arrhenius expression, E, is activation energy, Ay, is heat transfer area, p is density,
Cp is heat capacity, AH is the heat of reaction, U is the heat transfer coefficient, and
T is the coolant temperature.

In the following calculation, concentrations and temperatures were scaled by us-
ing a nominal reference concentration A, and nominal reference temperature T,. The
physical constants and parameters value are given in Table 3.1.
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Table 3.1: Physical constants and parameters value for the CSTR reactor.

Parameter Value Unit ProcessVariable
q 10.0 cm3s—1 Output flow
Y, 1000.0 cm® Hold-up
AH; —27000.0 calgmol—1 Heat of reaction
P 0.001 gem—3 Density
Cp 1.0 cal(gK) =1 Heat capacity
U 5.010~*  cal(cm?sK)~t Heat transfer coefficient
Ag 10.0 cm? Heat transfer area
Te 340.0 K Coolant temperature
To K Feed temperature
T K Tank temperature
Ko 7.8610%2 s Arrhenius constant
K st Arrhenius rate expression
En 14090 K Activation energy
ay 1.0 — Catalyst deactivation parameter
A, gmolcm 3 Feed concentration
A gmolcm—3 Tank concentration

Measurements for state variables A, T, V, and input variables A, Ty, V,, y and
g were simulated at time step 2.5 during a time-horizon of 60. A Gaussian noise
with standard deviation of 5% was added to these simulated values obtained through
numerical integration.

3.4.2 Linear case - CSTR reactor

Focusing the mass balance Eq. (3.22) an open-loop response of the CSTR process
is simulated. In Figures 3.3, 3.4, and 3.5 it can be seen the behavior of q,, V and q
respectively when a ramp in the feed g, with a slope of 0.02 is added at the sampling
time 30. The true value of g is equal to 10 in the first 30 time units then is increased
by a slope of 0.02 whereas g is control to maintain a value of 9. The estimation
accuracy of the proposal is highlighted. It can be also seen that the EPA/wavelet
provides a very high estimation of the signal.

If the behavior of process variables is smooth the proposed approach provides the
most accurate estimations of the compared techniques as shown in Tables 3.2 and
3.3. Kalman filtering has been adopted as the DDR reference technique because
of its superior performance over the linear dynamic Data Reconciliation techniques
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|
Figure 3.3: Reconciling the feed flow-rate using the EPA/wavelet.
based on first-order either discretization (Rollins and Devanathan (1993)) and the
polynomial approach (Bagajewicz and Jiang (1997)) as presented in Benglilou et al.
(2002a).
Figure 3.4: Reconciling the hold-up using the EPA/wavelet.
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Figure 3.5: Reconciling the output flow-rate using the EPA/wavelet.

Table 3.2: Resulting variance of the different DDR techniques.

\ EPA  KF  EPA/wavelet |
g 0.0053 0.0021 0.0002
gy 0.0111 0.0086  0.0024

The performance of Kalman filter applied for the CSTR case study can be seen
in Figure 3.6.

If the process variable presents a fast changing dynamics (step change in a set
point), the polynomial degree of that variable may be considerably high. Addition-
ally, the process variables related to that variable, by means of some correlations,
have not necessarily a step behavior thus a more reduced degree is required for their
representation. In such situation the proposed approach is faced with a serious draw-

Table 3.3: Percentage deviation of reconciled variables of the DDR techniques.

\ EPA KF EPA/wavelet |

q 066 042 0.17
g, 0.22 017 0.05
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* Measured values
=+ Kalman Filter values

Figure 3.6: Reconciliation of q,, V and g using Kalman filter.

back: many coefficients are not redundant which leads their to inaccurate estimation.
A first proposal to overcome this shortcoming is to use uniquely the wavelet when
the step occurs. This approach has proved accurate estimations as seen in Figure 3.7.
Once there is sufficient data (6 or 8 samples), the combination approach presented
before can be applied.

Additionally, and for on-line Data Reconciliation, the CPU time in an Intel Pen-
tium IV at 2.8 GHz has been 0.6 seconds.

3.4.3 Nonlinear case - CSTR reactor

The nonlinear approximation presented earlier in section 3.2.1.1 is illustrated in this
case study. From the right hand side of Egs. (3.22), (3.23) and (3.24) it is possible to
get the new variables z(t) adopting the following substitutions.

2(0) =0y, 2,(0) =0, 2(0) = Ay 2(0) =~ ( +K)A  (326)

Vv Vv
1 —a,.AH.AL KA
25(t) = (To-o—T-0), Zg(t) = dp. cp.Tr, (3.27)

59



“ThesisChouaibBengliloul2March” — 2004/3/26 — 13:00 — page 60 — #84

Chapter 3. Dynamic Data Reconciliation based on wavelet analysis
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Figure 3.7: Performance of the EPA/wavelet for a step changes.

and
_ _U .AR
-~ pCpV’

z,(t) (T—Te) (3.28)

Therfore it is possible to convert the CSTR model governed by Egs. (3.22-3.24) to
Eqg. (3.29) which is similar to the required form (Eg. (3.7)).

& X4 (t) 1100000
S =[xt |=[0011000 |zt (3.29)
s X3(t) 00007111

It is important to note that a simultaneous reconciliation of hold-up, flow-rates,
compositions and temperatures provides better estimation that a sequential applica-
tion of DR technique. This result is supported by the fact that more is the functional
redundancy better is the DR performance.

Considering the overall model described in Eg. (3.29) an open-loop response of
the CSTR process is simulated. The behavior of reactant A decomposition is pre-
sented in Figure 3.8, for a ramp in the feed concentration A, with a slope of 0.05. In
Figure 3.9 the estimation of reactor temperature is presented.

The approach presented for the nonlinear case provides promising results in a

simple way showing a direct advantage over the other approaches mainly in terms of
computation requirements.
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|
Figure 3.8: Reconciling the decomposition of reactant A in the CSTR reactor.
|
Figure 3.9: Reconciling the temperature T of the CSTR reactor.
3.4.4 Sampling time - CSTR reactor
For the approach proposed for handling the situations where different sampling time
are present, it has been assumed that the sampling time of the level-meters is five
times greater than the flow-meters used for sensing the flows in the CSTR case pre-
sented above.
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Additionally, the time-horizon is increased until 112 and the moving time win-
dow selected is equal to 8 time intervals. The behavior of the flow-rates and the
reactor hold-up are shown in Figures 3.10, 3.11 and 3.12. It can be seen that the data
reconciliation estimation is highly acceptable.

145
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Figure 3.10: Reconciled g, with distinct sampling times using EPA/wavelet.

9.3

921

9.1r- @
x

8.9

qlem®Y
©

8.8

— reconciled
—#*— measured value

I I I I I
20 40 60 80 100 120
time

8.7
0

Figure 3.11: Reconciled q with distinct sampling times using EPA/wavelet.

Additionally, in Figure 3.12, it can be seen that the reconstruction of the hold-up
is well performed, demonstrating the applicability of the proposal.
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Figure 3.12: Reconciled V with distinct sampling times using EPA/wavelet.

3.5 Conclusions

This chapter presents a dynamic Data Reconciliation technique based on wavelet
analysis. Firstly, wavelet is used to catch the deterministic trend of sensor data. Then,
these trends are rendered consistent with the process model by optimizing the polyno-
mial coefficients that fit these trends. Therefore, estimations take advantage of both
temporal and functional redundancies. The approach proposed in this chapter can be
applied on-line as well as off-line in an efficient way, presenting an accurate estima-
tion. Another feature of the proposal is its capability to deal with measurements with
different sampling frequency in contrast to the current DDR techniques.

The extension of the proposal to deal with the nonlinear cases has also been
presented demonstrating promising results. That is, the way the nonlinearity is un-
dertaken in this chapter is relatively efficient, useful and involves simple and fast
calculations.
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Nomenclature

A incidence matrix with rows corresponding to nodes and columns to variables

A approximation signal component at scale |

da, difference between raw and reconstructed signal at scale |

f() linear differential equation constraints set

h() linear algebraic equality constraints set

a() inequality constraints set including simple upper and lower limits

L a certain scale

Lm optimal dyadic scale for wavelet decomposition

N (0,Q) normal distribution with mean 0 and covariance matrix Q

n width of moving time-window

N vanishing moment

P, (da) power contained in the da, component at scale |

p; polynomial degree of variable z;(t)

Pj polynomial degree of variable x;(t)

Q covariance matrix of measurement errors

Qy(tk) covariance matrix of measurement errors y(t, )

(AQ covariance matrix of reconciled process variables

t time

T Jeast frequency of measured variables

u,  scaling coefficient at dyadic scale | and dilation v

w,,  Wavelet coefficient at dyadic scale | and dilation v

wy,  wavelet coefficient at scale | and dilation v that remain after the de-noising

y vector of process variable measurement

y vector of reconciled (estimated) process variable

y* vector of true process variables

z new variable obtained by handling the right hand side of process model equations
Greek letters

Qi k™" polynomial coefficient of process variable z,

a,  catalyst deactivation parameter

B thresholding value

€ error or noise associated to the measured signal

@, scaling coefficient at dyadic scale | and dilated index v

Y, wavelet coefficient at dyadic scale | and dilated index v
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o standard deviation

standard deviation of variable y(t)

standard deviation of variable z(t)

W kth polynomial coefficient of derivative terms x j
Q  matrix of o

A matrix of o;

Subscripts

current time
process variable
derivative term
sampling time
dyadic scale
dilated coefficient

< —Xe— — 0
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Chapter 4

Data Reconciliation and
time-delay estimation

Abstract

The presence of time-delay among measured process variables is frequent in operat-
ing plant data due to several causes (e.g. sensor response delay). Thus, reconciling
these measurements leads to poor estimation due to the mismatch between the pro-
cess model and these measurements. Precisely, the problem is that the process model
is not adequate since it does not consider the time-delay effects. Therefore, it is
essential for a correct performance of data reconciliation to estimate the time-delay
parameters. These time-delays parameters can be estimated by searching the maxi-
mum correlation among the process variables. The resulting Time-Delay Vector (TD)
is then integrated with the DDR technique through the measurements model.

In this chapter an efficient Time-Delay Estimation (TDE) procedure based on
GA optimization is presented for determining all the existing delays with respect
to a reference process signal. That is all the delays are identified in terms of their
location, and time-delay parameter value. Additionally, the maximum correlation is
tackled from an eigenanalysis perspective. By this way it is possible to determine
also the direction of process variability.

It has been found that DDR and TDE are combined in a straightforward way that
allows to overcome data/model delay mismatch, this leads to an better estimation.

This novel approach® can be applied off-line and on-line as well as for a time-
varying or constant time-delay parameter, leading to accurate estimation in the pres-
ence of systematic errors. The proposal has been validated using a process operating

LA part of this work was proposed in a work-package of the GICASA-D Catalan project number
10353, fi nanced by "Generalitat de Catalunya'.
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at dynamic mode with recycles.

4.1 Introduction

As discussed in previous chapters Data Reconciliation is a model-based filtering tech-
nique that attempts to reduce the inconsistency between measured process variables
and the corresponding process model. The measurement error, model inaccuracy and
S0 on generate a pseudo-random noise; this noise is superimposed to the real vari-
able values. Thus, by decreasing this inconsistency, more precise variable estimation
values are obtained and then they can be used satisfactorily in process control and
optimization systems.

Nevertheless, the performance of DR can be seriously affected in the presence
of any event (gross error) that increases this inconsistency such as: modeling errors
and/or the presence of delays in sampling data. In such situations an error in the DR
can be generated by forcing a matching of the process model and data that are in
principal incompatible.

To deal with the presence of gross-error(s) several approaches have been pre-
sented as discussed in the introduction of this thesis covering steady and dynamic
systems as well as different kinds of errors (e.g. bias, process leak). However, less
has been developed to handle situations in which delays are present.

There are many applications where several variables are measured and it is known
or suspected that they are related with an unknown time lag. The presence of these
lags makes highly inconsistent the measurement and their corresponding model. A
good estimate of this lag is then essential to match the process model and process
data.

Most traditional methods for extracting the delay between variables are based on
cross-correlation in the time and frequency domains. This correlation measures can
be used to determine delays by applying relative shifts between signals within a pro-
cess data matrix. Thus, it is possible to find out the position in which the correlation
among variables is maximal as proposed in Wachs and Lewin (1999). The optimal
shifts are those that minimize the determinant of the associated correlation matrix.

When the number of measured variables is large and/or the maximum relative
shift among all variables dyax is high in terms of sampling time, exhaustive search of
the maximum correlation by direct data matrix manipulation is infeasible due to the
high combinatorial size. Wachs and Lewin (1999) realized this problem and proposed
an algorithm that reduces the problem size by assuming that:

1. adistinction between input and output variables is possible,

2. output variables are correlated among themselves with no delays present, and
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3. inputs variables are independent.

However, these assumptions are not realistic or at least can only deal with a very
reduced number of situations, since it is not evident to separate between input and
output variables mainly if recycles are present in the process. Furthermore, delays
can be present even in output variables. For instance the response of a composition
analyzer sensor and a flow-meter both placed in an output variable may be delayed.

4.2 Data Reconciliation

DR is a technique that takes advantage of the redundancy present between the pro-
cess model and the measurements model. Therefore, the existence of both models
is a pre-requisite to reconcile redundant measured data. The measurements model is
constructed by assigning to each one of the m redundant measured process variables
a normal probability distribution around its true value.

y(t) =y (t) +e (tk) , Y(t) €R™ (4.1)

where y is the m x 1 discrete measurements vector, y* is the m x 1 vector of unknown
true values, and € stands for the m x 1 vector of random measurement errors whose
expected value is the null vector and has a certain variance matrix (measurements
are assumed as independent). Additional information must be introduced through
the process model equations (constraint equations). The process model is in general
represented by a set of differential, algebraic and inequality constraints see Egs. (3.2),
(3.3) and (3.4).

Different approaches have been proposed to solve this dynamic optimization
problem however Kalman filter technique can be efficiently used since this technique
it provides robustness against modeling errors by assuming uncertainties in the pro-
cess model see Eq. (1.26).

4.3 TheRole of time-delaysin Data Reconciliation

4.3.1 Time-delay estimation

Time-delays are present in almost all the industrial processes. They affect the per-
formance of control, monitoring and DR systems. Nevertheless, most of these tech-
niques do not take into account delays or simply consider them as known and constant
throughout the time.

Two types of time-delays can be distinguished: Process-Related Delays (PRD)
are caused by the intrinsic process dynamics, the control algorithm, etc. Generally
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these delays are propagated to the subsequent part of the process under consideration.
These situation causes a decrease in the DR performance. Whereas Sensor-Related
Delays (SRD) such as: the placement of the sensors in the plant (e.g. thermocouple
or flow-meter in a pipeline) present a local effect. Nevertheless, from DR perspec-
tive, these "local" delays will certainly induce a biased estimation in the rest of the
involved redundant process variables (smearing).

As it was discussed earlier, the approach presented in Wachs and Lewin (1999)
assumes that the output variables are correlated among themselves with no delays
present, and that the inputs are independent. In real processes it is difficult to dis-
tinguish between input and output variables, since this distinction is process unit
dependent (i.e. a variable may be at the same time an output of a process unit and the
input of the subsequent unit). These distinctions are even more difficult to be realistic
if recycles are presented which is often the case.

This work presents a TDE method that drops all the distinctions discussed above.
The proposal is able to deal with real situations without requiring any a priori knowl-
edge about the number, location and size of time-delays in the process. Furthermore,
the way of evaluating the correlation is slightly modified as it will be explained in
the next section. By adopting such generic approach in processes with an elevated
number of variables, may increase considerably the computational effort. With the
purpose of reducing this effort a genetic algorithm based optimization is developed.

Despite the characteristics of the stochastic optimization used, the optimum value
for the objective function is not ensured. However, a satisfactory solution can be
obtained in a short time, which is required for on-line applications.

4.3.2 Genetic algorithm vs. TDE
4.3.2.1 Genetic algorithm formalism

A Genetic Algorithm (GA) (Holland (1975); Goldberg (1989); Musulin et al. (2003);
Heyen et al. (2002)) technique has been chosen to solve this high combinatorial opti-
mization problem.

GA constitutes a vast class of stochastic algorithms used to solve optimization
problems (Goldberg (1989); Holland (1975)). In comparison with other stochastic
procedures for optimization GAs consider many points in the search space simulta-
neously and therefore have a reduced chance of converging to local optima as demon-
strated in Karr (1993). In the classical GA formalism (Figure 4.1), a set of N, , poten-
tial solutions (population) is generated randomly. Each potential solution (individual)
in the multi-dimensional search space is coded as a vector called chromosome (which
consists of a string of genes, each representing a feature).

The goodness of each individual in the population is evaluated by utilizing a pre-
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Figure 4.1: Genetic algorithm loop.

specified fitness criterion @. Upon assessing fitness of all the chromosomes in the
population, a new generation of individuals is created from the current population by
using the selection, crossover and mutation operators.

e The selection operator selects pairs of individuals with a view to create a mat-
ing pool for reproducing offspring. The operator used in this proposal is the
roulette wheel. This operator sets the probability of an individual to be crossed
proportionally to its fitness. Half of the individuals (N;,,/2) are selected in
each generation to be crossed.

e The crossover operator comprises the basic mechanism for redistributing ge-
netic characteristics between the individuals. It is applied to some pairs of the
selected individuals (parents) and creates pairs of new individuals. The selec-
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tion is made randomly with a pre-defined crossover probability (Pc). There are
several methods in which the parent chromosomes can be combined to gener-
ate offspring. The crossover operation used in this work is the so-called: two
point crossover.

e The mutation operator consists on changing randomly the value of a gen of the
individual. This operator introduces the artificial concept of copying error. Its
objective is to recover good genetic material that could be lost in the crossover
operation and avoid local minima by searching arbitrary points of the solution
space. The mutation probability Py, is usually much lower than the crossover
probability, in this case it is selected to be Py = Pc/N; 4.

Once the mutation has been applied, a new set of N; /2 individuals is available. This
new set is then merged with the best fitted N, ,/2 individuals of the old generation to
take a new generation of N, , individuals.

e Finally, the algorithm is terminated using one of these stopping criteria: num-
ber of generations reaches a pre-defined maximum value (N) or current pop-
ulation does not give sufficient improvement compared with the performance
reached a given number of generations before (G).

The MATLAB genetic algorithm Toolbox developed by the University of Sheffield
has been used in the following case studies (Sheffield University (2003)).

4.3.2.2 TDE based on GAs

In this approach, each chromosome represents a time-delay vector as defined in Eq.
(4.2). It contains the delays present in the process signals with respect to a reference
signal. The value of each delay vector element represents a number of sample times,
bounded by dpax.

TD =[d,,d,,...,dm] (4.2)

The fitness of each individual TD is evaluated considering the correlation among the
process variables. Let us consider a data matrix:
Y=yt),i=1..,m k=1,..,n (4.3)
or
Y = [yl(tk)ayZ(tk)a "'aym(tk)]; k= 17 R ) n (44)

containing data corresponding to n samples of m process variables. y; represent the k
samples of the process variable i. For each variable i the error associated to y; (t,) is
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supposed to follow a normal probability distribution. Vector variable y;(t,) must be
normalized, let Y™™ be the corresponding normalized data matrix.
Introducing TD into Y™™ allows to obtain a new delay adjusted data matrix as:

YO = [y~ ), VI~ ), Y )] (45)

The corresponding correlation matrix R of the redundant measured data is computed

as:
yhormycorr (Ynorm,corr)T

R =
n—1

The determinant of the correlation matrix will equal 1.0 only if all correlations
equal 0 otherwise the determinant will be less than 1. Therefore, by computing the
determinant of R it is possible to evaluate the correlation among variables. This result
can also be obtained by an eigenanalysis, where each eigenvalue explains or contains
the variance in the direction given by the corresponding eigenvector. This similitude
between the determinant and the eigenvalue is also confirmed by the property that the
continued product of eigenvalues of R is equal to the determinant of the correlation
matrix. Additionally, by maximizing the largest eigenvalue & (R) the correlation is
maximized, since all the process variance will be contained in the corresponding
direction and the other eigenvalues will have a very small value. Thus, the horm
of R is calculated as its & (R) value. Finally, the fitness of TD is considered to be
proportional to & (R).

It is important to note that it is helpful to scale the process variable measurements
in order that they have zero means and unit variances.

(4.6)

4.3.3 TDE proposal validation

To demonstrate the performance of the proposed algorithm an illustrative example
is presented in Figure 4.2. It consists of a tank provided with a heating system.
The evolution of valve command (Vc), steam flow through the valve (F,) and the
temperature of the tank (T) heated by means of the steam is illustrated in Figure 4.3.

Two hypothetic delays are introduced to this unit process as shown in Figure 4.3:
d, corresponds to the valve response that is delayed from its command signal (V)
and d5 corresponds to the controlled variable T that is delayed from the manipulated
variable F, (i.e. jacket heating).

The reference signal selected in this case has been the most delayed one, the
temperature T. This reference selection is convenient for off-line application since
all the signals are available when T is available. If d,, represents the delay between F,
and T and d, represents the delay between V¢ and T the delay vector is then equal to:
[0, d,, d3] . The number of generations (N), mutation and crossover probabilities (P,
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Figure 4.2: lllustrative example for TDE procedure.
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Figure 4.3: Effect of time-delay on process variable behavior.

and P; respectively) values used in this example are listed in Table 4.1. Finally, the
maximum delay between variables is selected to be dax = 32. This value is selected
by an off-line analysis of the whole process time response.

Table 4.1: GA parameters of TDE used for the illustrative example.

[Ning [No [ Pe [ P |
| 50 | 10 | 0.7 | P/Ng |

Using the GA tuning specified in Table 4.1, the algorithm converges quickly to the
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best individual (TD = [0,26,29]) in few generations. This TD is the same vector as
the one obtained by means of an exhaustive search. Nevertheless, a slight difference
with the true delay ([0, 20, 24]) has been observed due to the process dynamics.

Il Raw Data
Adjusted Data

Variance explained
=
o

Eigenvalues

Figure 4.4: Variance explained in the eigenvectors of the correlation matrix.

In Figure 4.4 and Table 4.2 the eigenvalues of the correlation data matrix of the
illustrative example are presented. It can be seen how after the delay adjustment, the
system variance is concentrated in the first eigenvector (in other words, the process
variance is explained in a unique direction). Therefore, by maximizing the first eigen-
vector, the process correlation is also maximized. From Figure 4.4, it can be noted
that the system presents two directions, since there is an evident collinearity between
the behavior of V; and F,. However, the proposal given in this work also detects that
temperature behavior follows the same direction which reduces the system variability
to a unique direction represented by the first eigenvalue 98.08%.

Table 4.2: Eigenvalues of the correlation matrix, illustrative example.

Eigenvalues 1% | 2nd I 3rd
Raw data 2.39 || 0.54 || 0.07
Delay adjusted data || 3.08 || 0.04 || 0.02

Correcting or adjusting the data matrix Y™™ by the use of the best time-delay
vector (TD) obtained leads to more consistent data (Y ™"™C") as it is shown in Figure
4.5. Thus, delays have been correctly estimated and their effect has been compen-
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sated. It is important to note that the combined effect of all process delays is globally
compensated.
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Figure 4.5: Illustrative example, adjusted process data.

4.4 Integrating TDE into DR

4.4.1 Constant time-delay parameter

Integration of the time-delay estimation procedure and DDR can be achieved by up-
dating the measurement model as follows:

Yi(t) =i (b —di) + et —dp), y(t)€R™ (4.7)

In the case of sensor-related delays, DDR can be performed using the process model
and modifying the measurement model according to Eq. (4.7). In the case of process-
related delays, the reconciliation is also improved by incorporating the TDE method
proposed. However, the effect of delays in the process might not be completely
compensated. Anyway, the performance of the system is highly enhanced.

4.4.2 Time varying of time-delay parameter

In previous sections, time-delays have been assumed as constant. However they can
change throughout the time. Then an extension of the proposed methodology is pre-
sented in order to deal with these situations, see Figure 4.6.
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Time-Delay Estimation

Delay Vector

Dynamic Data
Reconciliation

Measured Data
residual<threshold

Figure 4.6: Adaptive time-delay estimation procedure.

Initially, TD is estimated using the proposed time-delay estimation method. Then.
by analyzing the residuals according to a threshold value, the TD is maintained to per-
form DDR or updated. That is, if the threshold is exceeded, the TDE is activated in
order to re-calculate TD.

The residuals can be evaluated based on the differences between: 1) process mea-
surements and model output, or 2) process measurements and reconciled process.

Seeking to reduce computation time of TDE, the current TD vector might be
included in the initial GA population of the new delay estimation.

45 Casestudy: resultsand discussion

The proposed methodology can be applied both for process-related delay (PRD) and
for sensor-related delay (SRD). However, a case study presenting PRDs is selected,
since it is more complex in terms of generated nonlinearities and delay propagation
effects.

Figure 4.7, shows a flow-sheet of the process used to evaluate the proposed DDR
methodology. The situation, also used in other sections of this thesis work is taken
from the work presented in Darouach and Zasadzinski (1991), and consists of eight
streams and four storage tanks.

In this example, the flow-rates and mass hold-ups are the process variables to be
monitored.

A disturbance, due to a sudden but lasting change, causes a modification in the
operation conditions: the flow Q suddenly rises off by a value of 5 to reach the value
of 34.5 at the sampling time 250, maintaining this value during 250 sample times.
Then, it returns to drop to its original value of 29.5 (see continuous line in Figure
4.9).

First, the DDR has been applied for estimating flow and hold-up process variables
of this case study assuming that no delay will be present. The performance of such
application can be seen for the flow Q in Figure 4.8, showing some ability to reduce
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Figure 4.7: Case study for integrating DDR and TDE.

the measurement noise and a notable estimation accuracy. The continuous line shows
the “unknown” true data, the points shows the measurements and the dashed line
represent the reconciled data.
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Figure 4.8: Reconciled Q flow assuming that no delay will be present.

This example has been modified by adding three hypothetic delays ([da,dy,,dc] =
[200,100, 10] sample time units) at the positions shown in Figure 4.7. The combined
delay effect leads to a considerable discrepancy between the mass balance and the
measured values especially around tank W, showing unacceptable results and the
presence of bias as it can be seen in the left plots of Figures 4.9, 4.10 and 4.12 and
4.13.

Generally, by using the combined methodology (TDE-DDR) proposed, the per-
formance of the reconciliation is considerably enhanced, as can be seen in the right
plots of Figures 4.9, 4.10, 4.12 and 4.13.

In the case of incorporating TDE, data reconciliation can also perform correctly
when the nonlinearities introduced by the delay effect are present as seen in Figure
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Figure 4.9: Reconciled Q, values with delays and with adjusted delays.
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Figure 4.10: Reconciled Q. values with delays and with adjusted delays.

4.11.

The parameters of the optimization algorithm used are the same that were used for
the illustrative example of section 4.3.3 (Table 4.1) for a dyax Value of 256 and the
best individual found is:

TD =[219,188,172,173,173,177,0,214,207,173,172,173)] (4.8)

The three cases DR without delays, with delays and with adjusted delay (integrated
with the TDE) are represented respectively in the three rows (l1, 11l and 1V) of Table
4.3. The row | represents the measurement error variance assumed for each measured
process variable. It can be noted that the hypothetic delays affect mainly the hold-
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Figure 4.11: Reconciled Q flow values with delays and with adjusted delays.
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Figure 4.12: Reconciled Qg values with delays and with adjusted delays.

up of tank W, and a notable bias can be observed when reconciling these delays
measured data. However, by integrating the TDE method it can be observed a highly
improvement in the DR in all the reconciled variable.

46 Conclusions

In most cases of dynamic processes, where some sources of time-delay between
causes and effect appear in the system, the performance of DDR can be highly im-
proved by means of the integration with TDE in both on-line and off-line cases. One
advantage of the presented TDE method is that no a priori knowledge is necessary
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Figure 4.13: Reconciled W; values with delays and with adjusted delays.
for the number and location of time-delays in the process, which is in advantage of
the application simplicity. On the other hand, although this approach shows good
results for the case of process-related delay, it is specially suited for sensor-related
delay since it deals with the measurements model. An extension of this approach to
time-varying delays has been sketched.

Finally, it has been found that DDR and TDE are combined in a straightforward
way that allows to overcome data/model delay mismatch, this leads to an better esti-
mation.

Table 4.3: Effect of delays on DR performance and the role of TDE.
Q Q, Qs Q, Qs Qs Q7 Qg W W, W, W,

I || 20 20 20| 20 || 20 || 20 || 20 || 20 || 1200 || 100 || 100 || 100
| JJo2n | o21]o028 ] 025] 021 011] 014 [ 012 311 [ 341 | 310 [[ 303 |
[ m ][ os8 [ 030 ] 017 | 018 ]| 015 || 0.28 || 016 || 0.15 [| 20.02 || 388 || 2.93 [| 4.26 |
[ v ][ o20] 020 o018 o014 o015 o012] o014 o19] 327 || 516 || 269 || 271 |
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Nomenclature

d; delay of process variable i to the reference variable
dmax maximum relative shift among all variables

m number of redundant measured process variables

n number of samples

Ning number of individuals in each population
Ng  number of generations

P. crossover probability

Pn  mutation probability

Q variance-covariance matrix

R correlation matrix

t

time
TD time-delay vector
Y process data matrix
ynorm normalized process data matrix
ynormeorr— corrected (delay adjusted) normalized process data matrix
Y, process variable vector of i
yjorm normalized process variable vector of i
i estimated measurement vector of i
yi unknown true process variable values of i

Greek letters

€ random measurement errors
&(-) maximum eigenvalue operator
6 vector of adjusted model parameters

w fitness function

o, standard deviation of the it" variable

Subscripts

i process variable
k sample time
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Chapter 5

An open softwar e architecture for
Data Reconciliation

Abstract

This chapter proposes a flexible and open architecture design for Parameter Esti-
mation and Data Reconciliation (PEDR) software application. This application is
de-coupled according to the functions involved. Then, the application’s components
and their interactions are specified and validated.

The designed architecture aims to improve the efficiency of the PEDR application
by allowing the ex-changeability and connectivity of the components in more efficient
and consistent way. These properties are enhanced by the adoption of the CAPE-
OPEN standards for the implementation of the required component, which allow the
use of optimizers and process models developed under the distributed computing
paradigm.

This work adheres to current trends moving towards open systems architectures
for process engineering software, this one in the context of Parameter Estimation and
Data Reconciliation.*

5.1 Introduction

Accurate process measurements are essential to the performance of process system
engineering, from modeling to monitoring and optimization. Once gross errors are

1Thiswork was proposed in the Global CAPE-OPEN (GCO) project funded by the European Com-
munity under the Industrial and Materials Technologies Programme (Brite-EuRaml 1) under contracts
IMS 26691.
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filtered, accurate process data may be obtained using Data Reconciliation, a tech-
nique that fit measured data to process model by minimizing measurement errors and
satisfying model constraints. The same procedure may lead to model adjustment by
determining the best model parameter values matching a set of accurate data. Thus,
Parameter Estimation (PE) and Data Reconciliation are quite similar in the sense that
in general both techniques involve adjustment by constrained optimization.

Moreover, their performance require the same type of elements: mathematical
models of the process or processes, sets of measured (or reconciled) process variable
and an Optimizer. Therefore, a generic Parameter Estimation and Data Reconciliation
application can be conceived to deal either with DR, PE or both problems. Being an
aggregation of different techniques, a PEDR application should not be conceived as
a monolithic application as the one illustrated in Figure 5.1.

PEDR Client

Database

Process
Model

Optimizer

Figure 5.1: Rigid or monolithic PEDR structure

The performance of the whole application or any of its functions can be seri-
ously affected by changing or replacing any particular function. This could be a se-
rious drawback for taking full advantage of the growing number of Computer Aided
Process Engineering (CAPE) tools, such as equation-based simulators, optimization
algorithms, databases, distributed control systems and so on.

Additionally, the development of a PEDR application that assembles these re-
quired CAPE tools faces different challenges. First, software components are gener-
ally provided by different suppliers, which involve a certain degree of software and
hardware heterogeneity. Second, the existing software components are usually avail-
able as black box systems (closed source code) so their integration in an easy and
secure way with each other and to any external application (e.g. real-time optimiza-
tion) may be arduous.

An efficient solution to overcome these drawbacks and to facilitate maintenance
and long term further development, is the use of modern component software tech-
nology and to standardize PEDR communication with its client applications in a con-
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sistent, efficient and secure way by designing a well-defined interfaces that ensures
inter-operability and transparency. Moreover, in order to provide a flexible design,
all the PEDR components have to be de-coupled as much as possible.

Both the DR and PE can be formulated by an equation oriented simulator with
optimization capability, but further efforts are required to use other kind of simula-
tors or optimizers (from other software vendors). Furthermore, this option sets the
process model, built in the simulator, as the central point of the problem, instead of
leaving it as a inter-changeable element of the general PEDR problem. Thus, a sig-
nificant advantage over existing commercial software tools may be obtained through
standardization.

This chapter introduces an open modular architecture for a PEDR software ex-
ecutive allowing the management of different sets of process data, process models
and numerical Optimizers through standardized interfaces. This leads to the ex-
changeability of the corresponding software components under the plug and play
concept. Additionally, the system can also be upgraded by plugging into it new op-
timization algorithms, models, when available. Finally, such a system provides high
flexibility for handling different plant structures and situations by matching various
pre-defined or newly introduced process models with the corresponding data sets
available.

Case studies have been proposed to test the consistency of the information flows
between components and validity of the specified interfaces. The methodology has
also been applied to the Data Reconciliation and Parameter Estimation problem in
scenarios based on an existing pilot plant.

5.2 PEDR system’sarchitecture

5.2.1 Multi-module vs. monolithic applications

The performance of numerical Optimizers and process modeling tools has a direct
impact on the results of PEDR. The continuous improvement of such tools requires a
flexible and modular structure for PEDR system so that its upgrading may be easily
achieved by replacing old modules under the structure proposed in Figure 5.2, where
each bold black bar represents the component’s interface. The incorporation and
integration of these modules in a rigid structure, and the fact that the modules could
be provided from different providers and could have possible software and hardware
incompatibility, leads to a significant implementation cost. These drawbacks may be
overcome by using separate components that inter-operate through a well-specified
interface (see Figure 5.2).

The use of standard interfaces and open communication between software com-
ponents has emerged as a promising solution to software application incompatibilities
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PEDR Client

|
Process PEDR Database
Model

|

Optimizer

Figure 5.2: Open and flexible PEDR structure.

(CAPE-OPEN Standard 1.1 (2002)) in the CAPE field. For instance Fritz and Engell
(1997) proposed an open and flexible architecture for a batch process simulation.
Kakhu et al. (1998) designed an open and flexible architecture for process modeling
and model-based applications. Benglilou et al. (2001a) have proposed a distributed
architecture for model updating in order to improve Data Reconciliation techniques.
Modularity and distributed computing lead to interface standardization, such as the
CO standard (CAPE-OPEN Standard 1.1 (2002)) for the CAPE field. Currently, dif-
ferent vendors and industrial companies are already incorporating the CO standard
(e.g. Aspen Plus).

5.2.2 Open architecture design

The PEDR system can be de-coupled into four main functions: PEDR Manager,
Process Model, Database and an Optimizer as shown in Figure 5.3.

1. The main purpose of the PEDR Manager module is to gain access to the prop-
erties of measured data (e.g. sample time values) and to the process model
description. By combining this information, a PEDR optimization problem
is formulated. This resulting problem will interact with the Optimizer to ad-
just redundant variables or estimate unknowns parameters and unmeasured but
observable variables. The PEDR Manager is also responsible for objective
function construction, variable classification and variance calculation.

2. The aim of the process model component is to generate a model description of
the process under consideration. The fundamental building block employed for
such purpose is an equation-based modeling system, which may be accessed
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Figure 5.3: Proposed component diagram for the PEDR system.

via the Equation Set Object (ESO) interface defined in the CO standard. The
CO standard also allows access to a simulated model through the Sequential-
Modular Simulator Tool (SMST) as shown in Benglilou et al. (2002d).

3. The process data module is responsible for acquiring measured process vari-
able values from on-line as well as from off-line applications. Generally, this
process variable data is intermediately stored in a relational database. Addi-
tionally, this module holds the data results obtained from PEDR execution.

4. The Optimizer component, is responsible for driving the solution of the opti-
mization problem using all the information of the process model component
and the constructed objective function. The Optimizer is able to gain access to
the optimization model and run it, as many times as required. This is done by
adjusting the model parameters, until the discrepancies between selected model
outputs and the measurements is reduced to a minimum value of the objective
function. Or to reconcile the redundant process variables until the inconsis-
tency between selected process model and the corresponding measurements is
reduced to a minimum, usually in a WLS sense. Interfacing between these
modeling tools and optimization algorithms allows not only the implementa-
tion of Data Reconciliation and Parameter Estimation efficiently but also their
incorporation in real-time applications.

Finally, the PEDR Client could be either an end-user or a process application that
requires the system to perform a DR, PE or simultaneous PEDR. Set values to model
parameters after DR in a sequential way may be inefficient. Thus, a simultaneous
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strategy for PEDR is more efficient, that is minimize the measurement errors subject
to model constraints and bounds as presented in Egs. (3.2), (3.3) and (3.4).

The PEDR Client initiates the communication and interacts with the system to use
its functions. Furthermore, it prepares the output generated by the PEDR Manager
for easy use by the customer.

5.3 PEDR system’s specifi cation

5.3.1 Static view

The PEDR system proposed in this chapter is developed following the CO guidelines
provided in CAPE-OPEN Standard 1.1 (2002). Therefore, for the sake of standard-
ization the interfaces for communicating the PEDR Manager with the Optimizer and
process model components may follow the CO specifications.

5.3.1.1 Process model interface

It is important that the process model interface covers the formulation of algebraic,
differential, linear and nonlinear problems as well as inequality constraints. There-
fore, the process model component has to encapsulate the general mathematical de-
scription of the physical system. A possible fundamental building block that can
be employed for this purpose is a set of continuous equations representing a set of
equations and variables. These are the equations that define the physical behavior of
the considered process. The process model component is intended to serve the needs
of PEDR and optimization procedures. Indeed PEDR will create this model and the
Optimizer will solve it.

In order to get access to this process model component, the later has to expose
the interfaces that allow clients to obtain information from it. This information is
related to the size, structure of equations as well as current values, lower and upper
bounds of process variables. The process modeling based on the ESO available in the
CO standard is adopted for such purpose. The process model component can also in-
volves a software component allowing to calculate current thermodynamic properties
(enthalpy, viscosity, vapor pressure, LVE, etc) 2.

Additionally, considering that either DR or PE can be seen as optimization prob-
lems, an objective function also has to be constructed. This objective function is in
general a WLS equation. Nevertheless, any other objective can be conceived and the
same ESO can be used for constructing such a new objective function. This point

2This work was proposed in a CO-LaN project: “Development of CO-Tester for Thermo 1.1 plug
in COM technology” under contracts RFB 006.
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allows to deal with robust Data Reconciliation since a robust objective function as
shown in Eq. (1.47) can be constructed as demonstrated in Arora and Biegler (2000).

5.3.1.2 Numerical Optimizer interface

The Optimizer specification contains three main interfaces. The ICapeMINLPSolver-
Manager interface which exposes the methods for creating any kind of Optimiz-
ers for a specific optimization problem (either PE or DR, linear or nonlinear). The
ICapeMINLPSystem interface is exposed by the Optimizer and ICapeMINLP inter-
face allows the Optimizer to interact with the MINLP problem to be solved.

Benglilou et al. (2002c,b) have wrapped successfully two optimization solvers the
CPLEX from ILOG and the LP-solve Optimizers using the numerical Optimization
specification presented in CAPE-OPEN Standard 1.1 (2002)3.

5.3.1.3 Database interface

This is specific to the requirement of PEDR system and is not a general-purpose in-
terface for process measurement data. The proposed interface, ICapePEDRdatabase,
permits both the introduction and retrieve of data using SetData() and GetData()
methods respectively. This data is related to process variable name, values, type and
statistical error distribution (e.g. variance or covariance).

The process variable types could be either redundant, non-redundant, observable,
or unobservable whereas the measurements are grouped into sets of experiments (cor-
responding to experiments on the plant in different operating conditions). The vari-
ables values can be singular or may include multiple values along a sampling time
interval. Usually, steady-state Data Reconciliation handles a single data set at a time,
while Parameter Estimation and dynamic Data Reconciliation usually handles several
independent sets simultaneously.

5.3.1.4 PEDR Manager interface

Despite its internal modularity, the PEDR Manager has to expose a common inter-
face, ICapePEDRmanager, (see Figure 5.4) to be used by any external Client.
Mainly, the interface exposes methods that provides information related to vari-
able type, value and the assessing of the a posteriori variance matrix of adjusted pro-
cess variables by means of GetVariablesAttr() method. The objective function values
are also provided by using GetObjFunAttr() method. DR as well as PE involve the
optimization of an objective function, thus, its construction is required with the use of

3This work was proposed in a CO-LaN project: “Development of CO-Tester for MINLP 1.0 in
COM technology” under contracts RFB 004.
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<<Interface>>

1CapePEDRnanager

+SetModelRef ()
+SetDataRef ()
+SetOptimizerRef ()
+Reconcile ()
+Estimate ()
—ClassifyVariables (
—CalcCovarianceMatrix ()
—ConstructObjFun ()
+GetObjFunAttr ()
+GetVariablesAttr ()

<<Interface>>

1CapePEDRdatabase

+GetData ()
+SetData ()

Figure 5.4: Proposed interface diagram for the PEDR system.

the ConstructObjFun() method. For example in the case of DR the OF is completely
defined from the statistical error distribution thus if that information is not available
form the database module it has to be estimated within the proper PEDR Manager
using the internal method, CalcCovarianceMatrix().

The optimization is re-started each time a new measurement set becomes avail-
able. Provision has to be taken for missing measurements or eliminated measure-
ments with gross error(s). An analysis of the feasibility of estimation or reconcilia-
tion, including variable classification (not observable, just calculable, redundant) is
also required through the specification of ClassifyVariable() method.

Additionally, the PEDR Manager also provides a graphic and user friendly in-
terface, (see Figure 5.5), designed according to the methods that expose the PEDR
Manager component.

PEDR Manager -

Measurements Set Process Models Optimizers

B PROCEL Mass Balarce P8 {+ Feconcliation

Temperatures FROCEL Energy Balance U e
Compositions _I _I
Add 7 Edit ... | Add / Edit ... | Add 7 Edit ... | Solve |
Reconcile Flows according o PROCEL Mass Balance using CPLEX Results .. |
Sending data ... ﬂ Exit |
Solving b

Figure 5.5: Graphical User Interface for PEDR Manager.
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So the PEDR Client allows choosing to perform either a DR or a PE task then se-
lect the measured data to be reconciled or used for PE, then load the required process
model to be used, and decide the appropriate numerical Optimizer for addressing the
resulting optimization problem.

5.3.2 Dynamic view

First, Database, Optimizer and DR Manager are registered in order to make them
accessible by the PEDR Clients (there can be more than one client, placed locally or
even remotely). Once these servers are registered, the Client initiates the communica-
tion with the PEDR Manager through the specified interface ICapePEDRmanager by
asking to reconcile/estimate. Then, the client supplies the references of the following
information: process measurements (SetDataRef()), process models (SetModelRef())
and the appropriate Optimizer (SetOptimizerRef()).

The PEDR Manager accesses the process model information via the ESO, and
process measurement via a Database standard interface, ICapePEDRdatabase, and
generates an MINLP component exposing the 1CapeMINLP interface. This created
component interacts with the Optimizer to obtain the optimization results, which are
then passed to the Client.

The sequence diagrams showing the temporal sequence of steps to be followed
in order to perform a DR technique are presented in Figure 5.6.

54 PEDR system’svalidation

The specifications are written in a neutral Interface Definition Language (IDL) for
CORBA IDL (Orfali and Harkly (1998)). This specification characterizes all the
methods and input/output arguments that determine the entire PEDR specification.
However, CORBA IDL is purely a declarative language, which has to be pre-compiled
in a programming language in order to provide the code.

Java Development Kit (JDK) version 1.3 has been adopted for the implementation
of all the specifications and all the methods within them, since CORBA technology
is an integral part of the Java platform and managing the communication between
CORBA objects is relatively easy.

The designed architecture, the specified interfaces and the standardization adopted
allows total flexibility for constructing the prototype. This also covers the situations
in which the involved software components reside in different platforms in a dis-
tributed system. Additionally, it also provides the additional benefit of sharing re-
sources as the optimization component for example.

In order to demonstrate this flexibility and openness an absolutely CO distributed
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Figure 5.6: Proposed sequence diagrams for the PEDR system.

PEDR application has been implemented. The placement of the different software
components of the prototype through the computer network (Optimizer, Database,
PEDR Manager and PEDR Client) and their specific implementation is shown in
the deployment diagram presented in Figure 5.7, with the corresponding Platforms,
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operating system and network connections.

CORBA MS-Excel
Client Client

Windows NT 4.0 i846 Pentium IIT

I
2
4
Procss PEDR Database
Model Manager wrapper
Windows NT 4.0 1846 Pentium III
I
3 MySQL
ILOG Optimizer
CPLEX Wrrapper
Suse Linux 7.2
Windows NT 4.0 1846 Pentium III Kernel 2.4.16
1864 Pentium IIT

Figure 5.7: Proposed deployment diagram for the PEDR system.

The PEDR Client side, Node (1), contains the CORBA Client that interacts with
the end-user through an MS-Excel application (see Figure 5.8). Node (2) is the core
of the application where the PEDR Manager and the process model (Linear ESO)
components reside. Node (3) represents the numerical Optimizer side where the Op-
timizer wrapper is placed (in this application CPLEX solver from ILOG is wrapped
(Benglilou et al. (2002c))) is accessed through the CO-MINLP standard interface. Fi-
nally, the Database wrapper and the database server (MySQL, in this case) represents
the Database component in Node (4).

Several Data Reconciliation and Parameter Estimation scenarios have been solved
using the developed prototype demonstrating the adequacy and operability of the
specification and checking the consistency of the information that flows through soft-
ware components. Figure 5.8 presents the mass balance reconciliation of PROCEL
pilot plant in a continuous mode. This PROCEL configuration contains two reactors
inter-connected with two heat exchangers. The measurements and reconciled values
of all the process flows are also shown in Figure 5.8.

5.5 Conclusions

The main aim of this chapter has been the design and implementation of a software
architecture for distributed Data Reconciliation and Parameter Estimation applica-
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Figure 5.8: steady-state reconciliation on PROCEL plant at continuous mode.

tions.

This contribution is presented towards the standardization of PEDR software
packages. The task of maintaining and supporting new process models, databases
and/or Optimizers within PEDR system can be justified in terms of cost and imple-
mentation effort using the proposed CO software specification and architecture.

A software prototype has been developed to validate and demonstrate the use and
benefits in terms of reuse transparency and innovation of the proposed component
and the specified interface.

In this chapter the specification of the Parameter Estimation and Data Recon-
ciliation interfaces are conceived as a generic approach, able to deal with dynamic,
nonlinear process with relatively low effort and without making any essential change
to the other components. The system presented would be very appealing to industry
or researchers that already have access to software that can perform the tasks of PE
and DR since a most efficient use of such packages would be enhanced through the
standardization of communication interfaces (which is the plug and play philosophy
proposed by the CO and GCO projects). The generality of the proposed approach
allows including present and future algorithms to estimate, for instance, unknown
variance and covariance for process variables (Morad et al. (1999)), as well as using
new modules for solving the optimization problem.
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Chapter 6

Design of accur ate sensor
networksfor dynamic systems

Abstract

In the previous chapters of this thesis the estimation accuracy of time evolving pro-
cess variables in steady-state and dynamic systems has been discussed. This chapter
presents a methodology to include these estimation techniques in the design of accu-
rate sensor networks.

The method aims at maximizing Kalman filtering performance using accuracy as
its main performance index. To accomplish this, both the measurement noise and the
observation matrices are manipulated.

The method has been applied to an academic case study and in the Tennessee
Eastman challenge problem showing promising results.

6.1 Introduction

If the precision is selected as the goal for designing sensor networks, data reconcilia-
tion can be used. Given a set of data measured by a certain sensors, DR provides the
precision of each process variable (Eq. (1.6)). Even if not all the process variables
are measured the DR can provided an estimated of these unmeasured variables if they
are classified as observable.

Based on these concepts several techniques have been developed to design and
upgrade precise (or accurate) instrumentation for process plants at steady-state oper-
ation mode. Extending these steady-state sensor placement procedures to deal with
designing sensor networks schemes of dynamic processes mainly relies on:
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e selecting a dynamic data reconciliation that can provide precision at the design
phase. Other performance criteria (e.g. gross error detectability, resilience, etc)
can also derived from accuracy as reported in Chmielewski et al. (2002). For
example Charpentier et al. (1991) defines gross error detectability as follows:

(6.1)

o classifying variables of dynamic processes. Variable classification can help to
determine the observability and redundancy needed for reconciliation.

e integrating dynamic data reconciliation with dynamic variables classification
procedures.

Several DDR techniques can provide accurate estimate of the measurement error co-
variance matrix of estimated process variables as discussed in section 1.2.5. However,
in some cases, the KF provides superior performance in terms of variance reduction
and dynamic tracking, as discussed by Benglilou et al. (2002a). But the more impor-
tant point that should be stand out for the use of KF over the existing DDR techniques
in the design of precise sensor networks is its capability to calculate the variance of
the estimation without any knowledge of the measurements (see Eq. (1.33)). Further-
more, providing the observability requirement, the KF is able to estimate all states
using an incomplete and noisy measurement set.

The classification of variables for dynamic processes using observability matri-
ces for control point of view was considered in Stanly and Mah (1981). Later, in
Albuquerque and Biegler (1996) an alternative was proposed. They first discretize
the dynamic model and then apply an LU decomposition to obtain the observability
and redundancy properties of the resulting approximated algebraic model.

In this chapter sensor placement problem is addressed from the state-space model
identification perspective. An analysis of observability is performed on different
approaches and used in the sensor placement formulation. The optimal design is
obtained using a genetic algorithm. The methodology is finally applied to several
conditions.
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6.2 Proposed methodology

6.2.1 Measure of instruments performance
6.2.1.1 Performance measure of variable estimation

The computation of the error covariance matrix P, is independent of the process
variable measurements as is apparent from Eg. (1.33). Indeed, the parameters re-
quired for computing P, , are: R*, Q* and P, as well as the sensor network and
the associated observation matrix so their evaluation can be performed without any
knowledge of the variables values.

1. The measurement error covariance matrix R* is given by the intrinsic quality
of the measuring devices; thus, the elements of R* can be chosen as the design
parameters for the sensor placement problem. Assuming that measurement
errors are independent (zero covariance), the matrix R* has a diagonal form
(Liebman et al. (1992)).

2. The process noise covariance Q* (modeling error) is generally more difficult
to determine due to the difficulties in directly observing the process noise. As-
suming a deterministic process, where all process variability sources are in-
cluded in the process model, then Q* = 0. However, in real conditions, distur-
bances affecting the process exist and have to be included. Usually, the diag-
onal elements of Q* are assumed to be positive and fixed and the off-diagonal
elements are set to zero.

3. Finally, following a practical initialization of the KF the value of P is selected
to be equal to R*. Nevertheless, any initial value of P, will lead to the same
asymptotic value of P if the observability requirement is fulfilled.

Therefore, P, Ik is selected as a basis for assessing the accuracy of the KF estima-
tion. If the measurement errors R* are independent of time and normally distributed,
the KF is an optimal unbiased estimator. However, if the measurements errors are
not normally distributed the KF can not be used because it is biased as reported in
Narasimhan and Jordache (2000).

Since Pk/k is not constant along the time horizon k = 0--- n, the KF performance of

process variable j, ké, can be calculated by averaging [Pk/k]_ over the entire time
i

ki, = % (ki [Pl ,-> (6.2)
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Under conditions where Q* and R* are time-invariant, the covariance Pk and the
Kalman filter gain K, reach a constant value in few iterations. Therefore, tée asymp-
totic value of Pk/k can also be used as a performance measure,

5z = im ([Pk/k] ,-) 63)

In fact, when the KF is applied to a system that is continuous and dynamic, Eq. (6.2)
is preferred, whereas when conditions reflect short lived batch systems Eq. (6.3) is
more appropriate. This last one is considered in this analysis.

6.2.1.2 System performance

The performance measure presented in Eg. (6.3) corresponds only to a particular
process variable. It is more suitable to maximize the performance of the filter estima-
tions for all variables. However, different sensor networks lead to different values of
the elements of (kg,, j=1---J) and maximizing the performance for one particular
variable may not be compatible with maximizing it for others, causing conflict.
It is proposed to use different performance measurements for the whole system by
selecting a function relating the individual variable performance measures given by
Eqg. (6.3).

One simple alternative is to select the variable with the lowest performance value.
A more elaborated option is based on evaluating the distance of sensor network from
the “best” sensor network. The “best” sensor network is defined as the one in which
all the process variables are completely measured with the most accurate devices
available. When only a few process variables are of interest, only these are consid-
ered. Indeed, let S be the set of variables of interest. Then, the performance of the
system can be computed by comparing the current system performance (k g'),c) and the
“best” system performance (ké ’b) for all the process variables j, as follows:

1
S_ Ik
kS = (k0+ J;‘km kp’b> (6.4)

where K, is introduced to avoid singularities: indeed, if the value of k, = 1, the maxi-
mum performance value is in the intervale [0, 1] and the best performance corresponds
to kS =1.

p

6.2.2 Kalman filter and sensor placement

Clearly, at a design phase the measurement errors (v, ) do not exist since no measure-
ment are available, however, from a sensor placement perspective v, are basically
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considered the intrinsic errors of the measuring device. Therefore, a possible con-
nection between sensor placement and the Kalman filter can be performed via the
measurement error variance matrix R*, by assigning a large value to any unmeasured
variables in this matrix. Finally, the design of accurate sensor network is provided by
searching the value of the diagonal of R*.

In classical control, manipulated variables u are assumed to be known. Then,
the elements of P are the variance of state variables x. However, from a monitoring
perspective, the estimated value and variance of all variables are considered, avoiding
the distinction between state and manipulated variables. Therefore, to include the
variable set u in the Kalman filter algorithm, these variables have to be considered as
“state” variables, leading to a new n, dimensional “state” variables, xj; = [u,, X,].
This change involves an update of the model identification (A, B and H). Indeed,
since the control input variables are considered state variables, the matrix B is dropped.
Next, if we assume that all process variables can be measured directly, matrix H is
the identity matrix of size n,. This assumption is very important for Kalman filter
gain calculation, as shown in Eq. (1.34).

To identify the new state transition matrix A* it is assumed that input variables
during a given time period are correlated with the input during the previous time
period, as follows:

U R U g +Wi_g (6.5)
Using the new variable xj and Eq. (1.26) it is possible to get the new transition state
matrix A*:
N |nu.nu Onu.nx
A= |: gnxnu - Anxnx :| (6.6)
and finally:
Xk = A*Xp_q +Wi_q (6.7)
Yk = H™>+ Vi (6.8)

6.3 Redundancy analysis

It is clear that the system performance kg’ can lead to acceptable values for any set of
sensors if the process variables belonging to S are all strictly observable either inde-
pendently (H*) or through the transition model equations (A*). Thus, it is necessary
to assume that for any sensor placement design model only those sensor networks
able to guarantee the desired observability should be considered.

The values of the instrument performance measurement will depend not only on
the used dynamic data reconciliation technique (in this case KF) but also on the sensor
network selected. From the set S those variables that are redundant are adjusted and
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their variances are fed back by DR. The estimation of unmeasured but observable
variables and their variances can be obtained by means of DR techniques. That is DR
allows to obtain the whole variable estimation with an incomplete and noisy set of
observation. By this way it is possible to get the variance of all the process variables
in S in order to calculate the value of k3.

Therefore, observability analysis is an important aid to design instrumentation
schemes. An unmeasured variable is defined as unobservable if it cannot be uniquely
determined through the measured variables. A measured variable is defined as nonre-
dundant if deletion of its measurements will make this variable unobservable. Thus,
both definitions are based on the uniqueness of determining a variable value.

These fundamental properties will serve either for a steady-state process as well
as for dynamic processes. Albuquerque and Biegler (1996) developed an efficient
method for classifying variables of a dynamic process. After discretizing the differ-
ential equations using Implicit Runge-Kutta, they linearize the nonlinearities present
in the process model. Finally, they apply the properties of observability and redun-
dancy to derive the tools necessary for such classification using sparse LU decompo-
sition. An important result presented in their work is that the redundancy analysis for
steady-state differs to that of dynamic systems.

It is important to mention that the explained classification variables procedure
gives the same results as those presented by the Kalman filter using the observability
matrix calculation (different form the observation matrix H*), Eq. (6.9). To ensure
that the Kalman filter converges to an acceptable and unique value the observability
constraints must be satisfied.

Therefore, observability and redundancy has a direct impact on the Kalman filter
performance. The error variance of the an unobservable variable will be very high,
because without measurements the measurement error tends to infinity and thus, the
KF gain is equal to zero. This means that the second term of the right hand side of
Eq. (1.33) is null while the first term is continuously increasing for each iteration of
the KF. Furthermore, if the pair (A*, H*) is completely observable, each unmeasured
but observable variable is given a unique error variance value.

As it was explained, unmeasured variables are made evident in the sensor place-
ment model formulation by assigning infinite variance to the corresponding positions
of R*. Additionally it is necessary to explicitly handle the unobservable variables by
modifying H*. The rows of H* corresponding to unobservable variables (y) are set
to zero-row so that the observability requirement is provided by checking if the rank
of the observability matrix is equal to the number of state variables as shown in Eq.
(6.10).

O = obsv(A*,H*) = [A*, A"H*, A*(H*)?,... | A*(H*)"]] (6.9)

rank(O) =n, (6.10)
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Indeed, if the hypothesis of observability is not fulfilled, that is, the observability
matrix of the pair (A*, H*) is not full-row rank, the error covariance matrix Pk/k
will not converge to an unique value from different initial conditions as reported in
Maybeck (1979).

6.4 Sensor placement procedure

The objective is to maximize as much as possible the system performance given in
Eg. (6.4) by varying the diagonal elements of matrix R* subject to a cost bound ¢™*
and a set of additional constraints ¢ (S) which are related to observability matrix.
From the regular elements of the diagonal of R*, the placement and type (e.g. level-
meter, flow-meter, etc) of sensors are directly obtained.

Assume s; is an integer variable indicating the placement of sensor type i, at
network location j. Additionally, the sensor type is given by the variance of its mea-
surement error (g2). When a variable is not measured a ‘dummy” sensor of (g2 — o)
is selected having null cost. This directly affects R* and H*. Therefore, the optimal
sensor network problem is formulated as follows:

ngaj;x (kg) (6.11)
subject to:
5i (G5 ) <om (6.12)
P(S)=1

where (U (S) represent a set of constraints. Its value is equal to one when the sensors
network allows observing all the process variables belonging to the set S, and zero
otherwise. In practice this constraint should ensure that the variable values belonging
to S can be inferred, thus some redundancy should also be allowed to validate those
inferences, that is, the function (¢ (S) should ensure a minimum redundancy in order
that an acceptable precision of variables is provided.

Additionally, different threshold values of cost ¢™ can be used to build a Pareto
curve. Since the relationship between investment and performance is generally non-
linear, increasing ¢c™ by a small amount might lead to a considerable performance
improvement and vice-versa.

The steps of the design of accurate sensor networks are:

1. Determine the “best” performance, given when all process variables are mea-
sured with the most accurate sensors.

2. Obtain the list of sensor networks from the total set of combination alternatives
that satisfies the constraints and sensor characteristics.
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3. Obtain the system performance by selecting the maximum value of the objec-
tive function given the list obtained in step (2) for a specified cost.

A systematic search can be used to obtain a maximum performance of the sensor
network. By looking at the spectrum of solutions it is possible to decide the best
trade-off between performance and cost. Moreover, the Pareto optimum space over
the different objectives can also be determined. Here in this chapter the resulting
optimization problem is solved by means of genetic algorithm. GA shows to be at-
tractive for solving the highly combinatorial sensor placement optimization problem
as reported in (Heyen et al. (2002); Musulin et al. (2003))

6.5 Genetic algorithm approach

One of the main steps in a GA approach is the codification of the individuals. In the
proposed algorithm each chromosome represents a sensor network. The chromosome
has to contain the necessary information to check the feasibility of the sensor network
as well as to evaluate the fitness function.

This necessary information includes: the quality, type and cost of the measuring
devices as well as the measuring point. With this aim, each gen in the chromosome is
associated with a measuring point and implicitly with the sensor type. Additionally,
the numerical value of each gen is mapped with a sensor quality and cost. As a
result, a generic codification is obtained, which allows the evaluation of the sensor
networks performance using different objective functions and restrictions. Once the
codification is defined an initial population is generated randomly and the fitness of
each feasible individual is evaluated. The sensor network feasibility is a pre-requisite
for evaluating the objective function. If the individual is not a feasible solution, the
objective function value is considered infinite and the sensor network fitness is set to
zero.

6.6 Resultsand discussion

6.6.1 Academic case study

Figure 6.1 shows a process network used as a motivating example to evaluate the
proposed sensor placement methodology.

This case study is taken from the work of Darouach and Zasadzinski (1991) (eight
streams and four storage tanks are selected). In this example the flow-rate and mass
hold-ups are the desired process variables to be monitored, and it is possible to place
flow-rate sensors in all the streams and level sensors in all nodes. In this case the
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Figure 6.1: Case study for placing sensors under time evolution processes.

dynamic mass balance is adopted for supporting the instrumentation design schemes.
Let the accuracy of measurement devices belong to the range [1%, 5%] with a cost
of [$2500, $1800], respectively and assume that to any potentially measuring devices
can be assigned a sensor with one of these accuracies. The matrixes A*, B, H* and
the state vector x* for this case study are as follows:

1 -1 0 0 0 1 0 O
A*_< 188 08x4> g_|0 1 -1 0 0 0 1 -1
\B¥®E A4 )" 10 0 1 -1 0 -1 0 O
0O 0 0 1 -1 0 -1 0
H*:|12><12
x* = [F1,F2,F3,F4,F5,F6,F7,F8,M1,M2,M3, M4]
Q= 1.2x 1242

The GA approach explained in section 6.5, has been used to solve the sensor place-
ment optimization problem resulting from case study given in Figure 6.1. The GA
configuration parameters are listed in Table 6.1.

Table 6.1: GA parameters used for the academic case study.

Npg Ng G R Pm
400 10 5 0.7 0.00175

Table 6.2, presents an example of the chromosome codification adopted for solving
this optimization problem. Each gene in this chromosome represents the standard
deviation of the instrument assigned, if no sensor is assigned a very high value of
standard deviation is assigned (e.g. 10000%).

In order to find the suitable investment-performance trade-off, the sensor network
with the optimum performance is searched covering the complete feasible range of
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Table 6.2: Illustration of the chromosome codification.

F1 F2 F3 F4 F5 F6 F7 F8 M1 M2 M3 M4
- 1% 5% - - 1% 5% 1% - 1% 1% -

margin costs ¢, This is achieved by solving the problem several times for different
values of ¢ starting from a low ¢™ and reaching and upper ¢c™,
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Figure 6.2: Objective function vs. margin cost.

From Figure 6.2 it can be seen the behavior of minimum objective function (OF)
value corresponding to the best system performance for a given margin cost. The
advantage of these procedures for improving the sensor network design decision-
making can be seen from analyzing the obtained profile. The approach shows a
significant jump in performance when going from one sensor network alternative
to another, and suggests when it is favorable to invest for improving sensor network
performance and when the investment just implies a marginal improvement. First,
it is clear that for a margin cost lower than $7000 no feasible solutions exist. How-
ever, starting from this margin cost, the performance is enhanced by increasing the
investment. The best performance is the one obtained when placing the more accu-
rate sensors in all the potential measurement points. This sensor network leads to a
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cost of $30000.

The best margin-cost/performance relationship can be obtained by analyzing the
break points in the curve presented in Figure 6.3, $10000, $13000, $15000 and
$19000.

100 1001
90 90f
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70F 70k
3 60f 8 60
g %
E sof E soF
] g
& 4o0f & aof
30- 30k
20F 200
10F 10k
o ‘ ‘ ‘ ‘ o ‘ ‘ ‘
0.5 1 15 2 25 3 0.5 1 15 2 25 3
Margin Cost [$] x 10° Real Cost [$] x 10°
(a) Perfromance vs. margin cost (b) Performance vs. real cost

Figure 6.3: Sensor placement performance reached vs. cost.

The relative performance improvement with respect to the margin cost is also plotted
in Figure 6.4. This improvement gained from the last performance when investing
$1000 more. The peaks in Figure 6.4 illustrate the optimum trade-off between instru-
mentation investment and the corresponding sensor network performance.

The characteristics of the optimal sensor networks for these parameters in terms of
sensor type and location for margin costs are given in Table 6.3.

Table 6.3: Example 1, sensor network characteristics
F1F2F3F4F5F6 F7 FSM1M2M3 M4 MarginCos Real Cos OF kg

- —1% — — -5% —5% —5%5% $10000 $9700177.8 71.30
- —1% — —1% — — 5% 5% 5% 5% $13000 $12200 27.895.51
—-5%1% — — —%5 — 1% 1% 5% 5% $15000 $14700 15.7 97.47

— —1% —5%5% — 1% 1% 1% 1% 1% $19000 $18600 2.899.54
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Figure 6.4: Relative performance improvement when increasing cost.

However, the "best" performance given in the last column of Table 6.3 can be ob-
tained by less cost than the margin cost. In some cases, even if the margin cost is
increased, the sensor network performance does not change. Thus the investment
and the performance remain the same. For example between $10000 and $11000, or
between $13000 and $14000. Therefore, for sensor placement cost evaluation pur-
poses real cost has to be used instead of margin cost. The real cost (investment) is
the cost of the sensor network, that can be obtained by summing the value of each
measuring device belonging to the network. It does not necessarily coincide with the
margin cost ¢™, which is a restriction value. In Figure 6.5 the real cost is represented
against the margin cost.

Different networks performance and the relative performance improvement are
represented with their real cost in Figures 6.3 and 6.4. It can be noted than the higher
the investment the better is the sensor network performance. The performance tends
to rise up quickly at first increasing to a break in the curve ($12200, 95.51%), then,
presents a slight slope until the break represented by the pair ($18600, 99.54%), and
finally shows a quasi horizontal line representing asymptotic performances. These
points can also be identified as the peaks in the curve presented in Figure 6.4. These
breaks depicted the real "best" trade-off between investment and performance. In
principle a very attractive solution is the sensor network corresponding to the more
significant break in the curve as is shown by the bold line in Table 6.3.

108



“ThesisChouaibBengliloul2March” — 2004/3/26 — 13:00 — page 109 — #133

6.6. Results and discussion

Real Cost [$]

0 1 1 1 1 ]
1 15 25 3

2
Margin Cost [$] % 10*

Figure 6.5: Relationship between real-cost and margin-cost.

6.6.2 Tennessee Eastman Problem

The Tennessee Eastman process (TE) (Downs and Vogel (1993)) involves the pro-
duction of two products, G and H, from four reactants, A, C, D and E. Additionally,
there are two side reactions that occur and an inert B. All the reactions are irreversible
and exothermic. There are 41 measured process variables and 12 manipulated vari-
ables. Several authors have studied this problem from different points of view in
dynamic and steady-state (McAvoy and Ye (1994); Kano et al. (2002)). The process
is depicted in Figure 6.6.

The process is composed of five main unit operations: an exothermic 2-phase
reactor, a product condenser, a flash separator, a re-boiled stripper, and a recycle
COMpressor.

The gas reactants are fed to the reactor where they react to form liquid products.
A non-volatile catalyst dissolved in the liquid catalyzes the reactions in the gas phase.
The products leave the reactor in vapor form with part of the reactants that did not re-
act, and the catalyst stays in the reactor. The heat generated in the reactor is extracted
by a cooler. The reactor’s exit stream goes through a cooler to condense the products,
and then to a liquid-vapor separator. The not condensed components are returned
back to the reactor through a centrifugal compressor. The condensed components
are processed in a separation column (stripper) to extract the remaining reactants.
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Figure 6.6: Tennessee Eastman process flowsheet.

The products G and H leave the stripper and are separated in other sections of the
plant not considered in the problem. The inert and the by-products are extracted from
the system as vapors through a purge in the liquid-vapor separator. In this approach
the decentralized control system proposed by McAvoy and Ye (1994) has been used
(Figure 6.6).

The design of a sensor network with high accuracy at minimum cost has been
performed. The application focused in reconcile signals corresponding to material
flows and units inventory. For such purpose two sets of sensors, one containing flow-
meters and other containing level-meters, have been proposed. The available flow-
meter variances are 0.1%, 0.25%, 0.5%, 1% and 2% and their corresponding costs
are $2000, $1700, $800, $500 and $250. Whereas, the level-meter variances and
costs are 0.1%, 0.5%, 1% and 2% and $1000, $800, $500 and $300 respectively.

The potential measuring points are thirteen streams (1 — 11, 14 and 15) and the
hold-ups of the reactor (L1), separator (L2) and stripper (L3). Accordingly to the
proposed sensor placement problem statement, the number of sensor networks alter-
natives is combinatorially high (138-3% = 1.1729E +9). The optimization problem
has been solved using the approach presented in section 6.6.1. The GA parameters
has been set to N = 20 and N, , = 500.

The trade-off between the cost and performance is shown in Figure 6.7. By a
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Figure 6.7: Performance vs. margin cost for the Tennessee Eastman case study.

Pareto optimal analysis it is possible to detect the "best" performance that can be
achieved given a desired investment. As it was previously explained by analyzing
the relative performance improvement it is possible to detect the more convenient
investment point (i.e. break points).

In this case, an investment of $10000 is sufficient to get an acceptable perfor-
mance of almost 70.00% and the corresponding sensor network is shown in Table
6.4.

6.7 Conclusions

The major contribution presented in this chapter is the establishment of a methodol-
ogy for optimal placing measuring devices satisfying the network performance ac-
curacy of dynamic systems. That use Kalman filter for evaluating the accuracy. The
solution strategy has been implemented in academic and industrial case studies show-
ing promising results. The profile of the relative increase of the system performance
along the sensor network and the associate investment margin gives the designer all
alternatives.
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Table 6.4: Proposed sensor networks for the Tennessee Eastman.

1 2 3 45 67 8 9 10 11 14 15 L1 L2 L3

1% 1% 1% 1% 2% 2% — 0.5% 1% 0.5% 0.5% 0.5% 0.5% 0.1% 0.1% 0.1%

Nomenclature

A,  state transition matrix at sampling time k

B,  control gain matrix at sampling time k

capital cost of sensor type i

c™*  maximum sensor network investment cost
measure of detectability of an error at variable i
H,  observation matrix at sampling time k

k/k' estimating at sample time k.T using the past k’.T samples

ki, KF performance indicator of variable j

kél KF performance indicator of variable j averaging [Pk/k] _overn
: j

kéz KF performance indicator of variable j using asymptotic [Pk/k] ~value
: i

Ky  Kalman filter gain matrix at sampling time k
Kp  vector of the KFJ)Z, VjeS

ké b "best" sensor network performance of process variable |
k%,c current sensor network performance of process variable j
kg‘ whole system performance

Kpu  upper bound on performance design specification

N;ng number of individual in the population
Ng  maximum number of generation value
Pc crossover probability
Pn  mutation probability

[Pk/k] ; error covariance matrix at sampling time k of variable j

Po covariance matrix of initial estimates of states variables X,
Qx covariance matrix of random variable w,
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Rk covariance matrix of random variable v,

S set of process variables of interest

Sij integer variable indicating the placement of sensor type i at network location j
sampling period

t time

U, vector of control input variable at sampling time k

Vi vector of measurement noise

w,  vector of process model noise

Wg_; Vector of measurement model noise

X chromosome

X, vector of state variable at sampling time k

xg  state variable equal to [u,,X,]

Y, vector of measurements variables at sampling time k

Operators

E[] expectation operator
obsv() function calculating the observability matrix
rank() function calculating the rank of a matrix

Greek letters

w fitness function
o7 variance of sensor type i

a2 standard deviation of the reconciled value i

oy, standard deviation of the measurement value i
@() observability requirement function

N

Subscripts

i sensor type

J  process variable
k sampling time
n time-horizon
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Chapter 7

Design/retrofi t of reliable sensor
networks

Abstract

This chapter proposes an approach that combines quantitative process knowledge and
fault tree analysis into a new methodology for evaluating the reliability of process
variable estimation, taking into account both hardware and functional redundancy.

The reliability of estimating process variable is used to determine the sensor net-
work reliability, which in turn is used for the design/retrofit of sensor networks. Thus,
areliable sensor network design/retrofit problem is formulated as a mathematical pro-
gramming optimization problem and solved using genetic algorithms.

The performance of such proposal is compared with the current approaches using
different case studies and handling several scenarios.

7.1 Introduction

The design of sensor networks is the basis upon which the performance of Monitoring
systems (Benglilou et al. (2004); Musulin et al. (2003)), Fault Diagnosis Systems
(Raghuraj et al. (1999)), and/or Optimization systems (Fraleigh et al. (2003) relies.
The design of sensor networks includes the determination of sensor characteristics
such as: type, number, reliability, placement and so on, while minimizing an objective
function such as the instrumentation cost.

Designing a sensor network that allows the observation of all process variables
was first addressed by Vaclaveck and Loucka (1976). Later, this problem was solved
by Madron and Veverka (1992) regarding the minimum total cost.

115



“ThesisChouaibBengliloul2March” — 2004/3/26 — 13:00 — page 116 — #140

Chapter 7. Design/retrofit of reliable sensor networks

However, sensor failure may lead to a reduction of measurements affecting seri-
ously control, monitoring and optimization systems, hence the whole process perfor-
mance. Thus, it is necessary to ensure that it is still possible to observe key process
variables even if one or more sensors fail.

Observing a process variable can be translated mathematically by making non-
null the probability of estimating this variable at a given time t (reliability). The
evaluation of this probability is tightly related to the different ways to estimate a pro-
cess variable given a sensor failure probability and a specific sensor network. Based
on these concepts, a method for optimal sensor location in a pure flow process was
developed using graph-theory by Ali and Narasimahan (1993); Ali and Narasimhan
(1995).

In their proposal, the authors first determined the minimum number of sensors
that ensure system observability (or system redundancy). Using this number, the
complete set of networks that ensure system observability is obtained. Finally, the
network that maximizes system reliability is obtained from this set. However, their
proposal does not consider directly the cost neither the individual process variable
reliability. These points were later addressed by Bagajewicz and Sanchez (2000a).
Additionally, the authors transformed the problem presented by Ali and Narasima-
han (1993); Ali and Narasimhan (1995) in a mathematical programming problem.
Similarly, and based on the analysis of the cycles of process graph and taking into
account variable observability and reliability of sensors, Luong et al. (1994) deter-
mined an optimal measurement system with regards to reliability and cost analysis in
conjunction with observability constraints.

In this chapter an approach is proposed for evaluating the reliability of process
variable estimation taking into account all the redundancies that offers the system
either hardware or functional. In this evaluation, both quantitative process knowledge
and fault tree analysis are considered and combined, which leads to a more suitable
and practical evaluation of reliability. The reliability of estimating each one of the
key process variables is then used to determine sensor network reliability, which in
turn is used as a set of sensor placement constraints in the design/retrofit procedure.

Thus, a general sensor placement formulation is proposed, which considers the
number (hardware redundancy or multiplicity) of sensors of a given type (reliability)
that are to be assigned to a given process variable while satisfying the reliability re-
guirements at the minimum total cost. This proposal can be applied for the design as
well as for retrofitting. Additionally, an analysis of the minimum reliability value that
allows both the observability as well as the redundancy of the system is performed
as well as the determination of the best trade-off cost/system reliability. The gen-
eral sensor placement optimization problem formulated is successfully solved using
genetic algorithms. The performance of this proposal is compared with the current
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—®
7.2. Reliability evaluation
approaches considering motivating case studies.
7.2 Réliability evaluation
7.2.1 Sensor reliability
The sensor reliability is an intrinsic quality of the sensor, that can be defined as the
probability r(t) of the non-failure of the sensor k at a time t. Poisson law (see Figure
7.1) can be used to represent this monotonically decreasing probability function (Eq.
7.1) as reported by Luong et al. (1994).
re (t) = exp (—A.t) (7.1)
where A, is a constant representing the rate of failure of the sensor k.
1 L1l
0.9F :
0.8 :
- 0.7f :
E '
S06F :
) :
F05F :
£ I R(t=2386)= 0.14
x0.4r :
Coal E
0.2 E
0.1F :
O0 260 4?)0 660 860 1000 1200
time
Figure 7.1: Sensor reliability behavior.

The sensor reliability rg(t) is an important parameter for the sensor network de-
sign problem, which consists of determining the number n ., of each specific sensor
type k to be assigned to each process variable j so that the reliability of estimating j
atatimet, r;(t), is greater than a minimum allowable reliability.
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Table 7.1: Reliability r (t) for different sensor networks.

Reliability Equation . (t) Value || Reliability type
rs(t) 0.80 || Sensor reliability
rat)orrg,(t) =rgt) +r3t) —rgt).ryu(t) | 0.96 || Hardwarereliability
ra(t)andrg,(t) =r(t).rg,(t) 0.64 || Functional reliability

7.2.2 Process variable estimation reliability

The probability rj(t) of estimating process variable j at time t must simultaneously
consider sensor reliability, hardware reliability and functional reliability.

As an example, consider a simple process unit with one feed stream F, and two
product streams F, and F;, as shown in Figure 7.2.

5 B 5
| | 55
g | B | B

. .

s1 . S3 s4 .

F3 F3 F3
SENSOR RELIABILITY HARDWARE RELIABILITY FUNCTIONAL RELIABILITY
52 56

Figure 7.2: Process variable estimation reliability.

For this process unit, the three flow variables are related to each other through the
pure mass balance expressed in Eq. (7.2).
F,=F,+F; (7.2)

Assume that all sensor failures occur independently and randomly and consider that
the mass flow of all flows can be measured using sensors (k = S1, S2, S3, S4, S5, S6)
whose sensor reliability are all assumed to be 0.8 at time t. Therefore, the reliability*
of estimating variable F, at time t in each case is summarized in Table 7.1.

Table 7.1, shows that in all three cases (sensor reliability, hardware reliability and
functional reliability) re (t) > 0, thus, variable F, is always observable. Moreover,
in the case of hardware reliability, the reliability of estimating variable F, is greater

LI P1 and P2 are the probabilities of two dependent events then: (P1)or (P2) = P1+P2—P1.P2
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than the reliability of each one of the sensor measuring it, showing the existence of
more than one way to estimate F,. Thus, rg (t) is directly related to the degree of
redundancy and may still be estimated even if one sensor fails. However, in cases
of sensor reliability and functional reliability no sensor fails is admitted. These re-
sults illustrate the effect of sensor placement on the reliability of estimating process
variable.

7.2.2.1 Hardware reliability

If more than one sensor is placed in a given measuring point, the resulting reliability
is calculated by using union of disjoint products. This is possible since the sensors
operability are independent. For example, if three similar sensors S1, S2 and S3 are
placed in the same location. The resulting reliability is evaluated by analyzing the
disjoint events: {(three sensors are operational) or (only 2 sensors are operational
and one fails) or (1 sensor is operational and 2 sensors fail)}. A general expression
for the hardware reliability evaluation is given by Eq. (7.3).

K
rt) =1~ (I!l(l — i (t))”Jk) (7.3)

Where r?(t) is the reliability of estimating j at time t by using Ny Sensors of
type k = 1--.K available in the catalogue. This set K contains sensors with different
“sensor reliability” and cost. If no sensor is assigned to j (njk =0, ) then r?(t) =0,
whereas if only one sensor is assigned r?(t) =rg(t).

In the sensor network design/retrofit procedure presented in this chapter, the hard-
ware reliability is first calculated using Eq. (7.3). The resulting reliability is associ-
ated to a virtual sensor to be used for the process variables estimation reliability. The
cost of this virtual sensor is equal to the sum of the costs all sensors k used for the
hardware reliability.

7.2.2.2 Functional reliability

If the relationships between process variables are considered, the value of a process
variable j can also be indirectly estimated through the process model. Assuming that:
1 - the equations used for estimating process variable j are linearly independent
(i.e. that is each measured variable can be written in such a way that each one belongs
to a unique equation) and
2 - the process variable j is not directly measured,
then, the reliability of estimating j at time t is calculated as follows:
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Ve
= ( [ (t)) (7.4)
ecQ; \I'#i=1
where Q j is the set of independent equations that can be used to estimate the value
of process variable j. Each equation e belonging to Q; has a sensor assigned to each
one of its variables except in j. Ve is the cardinal of e minus one. This equation can
be also applied if the probabilities of sensor failure are not equal.

However, this is not the general case. It may not be easy to deduce a generic
analytical expression because the reliability depends on the process model structure.
Moreover, the inter-dependency of process model relationships and the presence of
recycling streams generates additional complexity. Therefore, an analytical expres-
sion for the functional reliability when dependent equations are involved is quite
difficult to generate despite the logic behind is quite clear.

For that reason the reliability evaluation is obtained algorithmically. In the case
of linear or linearized process models the quantitative process knowledge can be rep-
resented by the incidence matrix A, which, in addition to the sensor assignment, Nk
define the reliability r;(t):

ri(t) = f(n,A) (7.5)

This work presents a practical and efficient algorithm to obtain an analytical ex-
pression for process variable estimation reliability.
The different steps involved are as follows:

o |dentify the model structure through the matrix A of the process under consid-
eration.

e Generate the matrix A* from A. Firstly all the possible combination of the

A’s rows are obtained. The total number of these combinations is equal to:

f:flC(r, A;) where A; is number of rows in A. Secondly, for each generated
combination its corresponding rows in A are summed.

o Identify the set of key process variables as those whose minimum allowable
reliability is non-null.

e Determine the different equations permitting the estimation of variable j (the
number of these equations is equal to the degree of redundancy).

Given matrix A* its rows that does not contains explicitly the variable j are di-
rectly removed. Furthermore, some infeasible combinations might occur when
generating A*, therefore they have to be discarded. For such purpose the set
of variable V, permitting the estimation of j from row r is stored, then if a set
V,, contains completely other setV,,, V,, is discarded. The resulting matrix Aj
contains the different way to estimate j.
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Figure 7.3: The proposed algorithm for variable estimation reliability.
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e Generate the fault tree for each matrix A* j- Fault trees provide a logical model-
ing framework for analyzing and representing the interactions between compo-
nent reliabilities. Different programs are available for creating and supporting
fault trees. This steps allows to generate a formula for estimating the different
way to estimate j.

e Generate the analytical expression for r;(t) from the logical one.

It is worth mentioning that this analytical expression has to be provided prior to the
sensor network design/retrofit procedure. If a process variable is not measured the
sensor associated to it has null reliability value. The advantage of the proposal over
the existing techniques based on graph-theory is its practical aspects.

For illustrating the steps of the previous algorithm consider the plant presented in
Figure 7.4. This case study Ruiz et al. (2001) corresponds to a petrochemical plant
consisting of a train of two distillation columns where a group of n-paraphines are
separated from kerosene. For this plant the pure flow balance is expressed as follows:

F,=F,+F; (7.6)

Fa=F,+F (7.7)

and in a matrix form is given by Eq. (7.8) where the columns represent the flow-rates
variables and the rows represent the mass balance equations around the stripper and

the re-distillation units.
1 -1 -1 0 0
A= ( 00 1 -1 -1 ) (7.8)

The number of combination that can be generated from the above matrix A are three
since A, = 2. These combination are represented by the set [1,2,(1,2)]. That is
matrix A* can be obtained by selecting the first row of A, the second row of A and
summing the first and second row of A.

1 -1 -1 0 0
A=[0 0 1 -1 -1 (7.9)
00 1 -1 -1

If the reliability of process variable F; and F, are required their corresponding A%
have to be generated. In this case their corresponding fault trees are shown in Figure
7.5.

The mapping between the generated trees and the probabilities allows to represent
analytically, the reliability of estimating F; and F, at a time t as expressed in Egs.
(7.10) and ( 7.11).
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Figure 7.4: A simplified petrochemical plant.
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Figure 7.5: Fault trees for process variable estimation reliability.

re, (t) = (L (t)and (r*,!g(t)or (r,g(t)and L (t))))or(r*,ll ) (7.10)

re, (1) = (rEl(t)and i (t)) or (rE4(t)and r (t)) or(rfL t)) (7.12)

Considering the sensor networks given in Table 7.2 for the plant presented in Figure
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Table 7.2: Effect of sensor network on e, (t) for functional reliability

process variables F, kR K F K
sensor reliability at timet | 0.8 08 0 0.8 0.8

7.4, and taking into account that the equations estimating F5 are independent, the
reliability of estimating F; at time t can be obtained using Eqg. (7.4) and is equal to
0.87.

Finally, any attempt to maximize the reliability of a particular variable may result
in other variables to be unobservable. Indeed, eliminating a sensor that belongs
to several equations impacts more negatively in the sensor network reliability than
eliminating a sensor that only intervenes in a unique equation.

Consequently, it is necessary to determine the sensor network reliability R(t). For
such purpose the sensors reliability and variables estimation reliability should un-
doubtedly be considered.

7.2.3 Sensor network reliability

Luong et al. (1994) proposed an analytical expression for evaluating the sensor net-
work reliability. Considering that all sensors reliability ri(t) are all equal to p, the
reliability of the sensor network is given by Eq. (7.12).
d
R(t)=3 an.(1—p)".p"" (7.12)
n=0

where the coefficients ay, give the number of configurations admitting n sensor break-
downs while ensuring the system observability, and d is the minimum degree of re-
dundancy of all variables.
This reliability expression is based on the minimum degree of redundancy of all the
redundant process variables, thus might discard some sensor failures despite that the
system redundancy admit them. This procedure also presents the impossibility of
evaluating the reliability of a subset of the total variables of interest. Alternatively,
the sensor network reliability can be given by the minimum of the process variable
reliabilities, following the proposal of Ali and Narasimahan (1993).

R(t) = min (rj(t)) Vi (7.13)

This expression is based on the philosophy that a chain can not be stronger than
its weakest link. This conclusion is slightly similar to the proposal of Luong et al.
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(1994) considering that network reliability is fixed by the minimum degree of redun-
dancy of the process variables. Ali and Narasimahan (1993) exploit all the system
redundancy by using graph-theory; however, their proposal is not applicable for a
subset of all variables and requires an elevated computational effort when consid-
ered from a mathematical programming perspective (the optimization of the sensor
network design problem).

In the proposed approach the network reliability is also defined by the minimum
estimation reliability of all variables. The evaluation of the rj(t) is given in the pre-
vious section.

Consider the plant given in Figure 7.4, where the reliability of flow process vari-
ables F; and F; are of interest and assume that all variables are measured with similar
sensor rf(t) = 0.8.

1. If applying the proposal of Luong et al. (1994) only two scenarios are consid-
ered. The first one is that all the five sensors are operational leading to a relia-
bility of 0.327. The second one is that one sensor fail while the four remaining
sensors are still operating, thus leading to a reliability of 0.409. Therefore,
the reliability R(t) is equal to 0.73, resulting form the summation of the two
scenarios.

2. In this work more scenarios are considered admitting more than two sensor
breakdowns. These scenarios can be easy deduced from the analysis of the
trees of Figure 7.5. Alternatively, by using Egs. (7.10) and (7.11) it is possible
to get rp, (t) =0.96 and rF3(t) = 0.97 and their minimum is R(t) = 0.96.

Table 7.3 summarizes the results of network reliability values. It can be seen that
this work provides more accurate value for the network reliability than the proposal
of Luong et al. (1994) and is equal to the proposal of Ali and Narasimahan (1993).
Despite that both proposals provide the same reliability values the proposal of Ali
and Narasimahan (1993) is hard to incorporate into an optimization procedure due to
the inherent difficulty to handle the graph-theory concepts.

7.3 Generic design of reliable sensor networks

7.3.1 Sensor networks model

The design of measurement systems addressed with the goal of reliability was earlier
considered by Ali and Narasimahan (1993). This proposal is as follows: given a
minimum number of sensors N*, the sensor networks that ensure system observability
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Table 7.3: Comparing system reliability evaluation approaches.

Sensor network reliability at time t R(t) value
Luong et al. (1994) (Eq. (7.12)) 0.73
Ali and Narasimahan (1993) 0.96
Proposed approach (Egs. (7.10,7.11,7.13)) 0.96

are determined based on graph-theory. Among all the networks the one that offers the
maximum system reliability is selected. This approach does not consider directly the
sensor cost and does not guarantee the desired reliability levels on specific variables.
These points were addressed later by Bagajewicz and Sanchez (2000a). Additionally,
these authors transform the model proposed by Ali and Narasimahan (1993) into a
mathematical programming model as follows:

maxR (t) (7.14)
subject to:
> q;=N* (7.15)
V]
E; (q) = 1,Vi (7.16)
q; = (0,1),V] (7.17)

In the above sensor placement model, the first constraint fixes the number of sensors.
If observability is focused, N* is equal to the number of process variables minus the
number of independent equations describing the process flow-sheet and, if redun-
dancy is focused, a number greater than N* has to be selected. The observability
requirement is mathematically expressed by imposing that the degree of estimability
E;(q), of all variables to be equal to one (see Eq. (7.16)). The extension of this model
to include cost and individual variable estimation reliability requirement is proposed
in Bagajewicz and Sanchez (2000a) as follows:

miny c¢:q; (7.18)
VZJ it
subject to: _
ri(t) > rM"(t)vi e Mg (7.19)
q; =(0,1),Vj €M, (7.20)

Where M; is the set of locations where sensors can be placed, My, is the set of vari-
ables whose reliability is to be constrained and c; is the cost of measuring j.
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However, this model only allows specifying the possibility to place or not a sensor
in a given location (q; = 0,1), it does not consider the hardware redundancy, and
assumes that the reliability of the system is implicitly included in the reliability of
variable estimation.

These considerations have been included in this work. Additionally the values of
rMn(t) are selected according to the redundancy requirements. If the value of this

J

minimum value r?‘i”(t) is non-null the variable j is observable and if its value is

larger than r?(t) the variable j is redundant. The minimum value of the system re-
liability R™"(t) is selected using a Pareto analysis of the cost/reliability trade-off.
Furthermore, the decision variable is not to place or not a sensor, but to select among
a catalogue the number Nik of sensors (multiplicity) of a certain type k and reliability
rz(t) to be assigned to a given process variable/measuring point j:

nr}jikn \; CNjk (7.21)
subject to: '

R(t) > R™M(t) (7.22)

ri(t) > rfin() (7.23)

A generic objective function that contemplates both the design and retrofit proposed
by Benglilou et al. (2004) can also be used instead of Eq. (7.21) to consider retrofitting

case:
min{ $c€.o( $n,—$n% +Z Cl. ‘n. —nok‘ (7.24)

where n(j’k is the number of already installed sensors of type k in measuring point

j; cgand cik are the capital and installation cost of sensor type k, and © is the Heaviside
function. The first part of Eq. (7.24) evaluates the capital cost taking into account that
for each sensor type k and for all measuring point, j, the sum of allocated sensors of
type k is subtracted from the already installed sensors of the same type (if n? =0,Vj
Yk, this is a design problem). The second part of Eq. (7.24) calculates the installation
cost and the absolute value is applied to allow including the un-installation cost.

Eqg. (7.24) allows considering physical sensors and inferential sensors. Infer-
ential sensors have shown to be applicable and have been successfully incorporated
to industrial application Ruiz et al. (2001). The reliability of the inferred variable
is calculated using the methodology presented earlier in section 7.2. Whereas the
installation cost and capital cost of inferential sensors are null.

This MINLP problem is difficult to be addressed by mathematical programming
techniques because of the combinatorial tree (type, multiplicity), the form of the
objective function and the constraints evaluation. This makes very attractive the use
of meta-heuristic techniques such as genetic algorithms. The next section describes
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and discusses the use GA to solve the sensor network design/retrofit problem just
formulated.

7.3.2 Sensor network solution based on genetic algorithms

Recently, different works (Sen et al. (1998); Musulin et al. (2003)) have shown the
ability of GA to solve sensor network optimization problems. The most important
aspect for a successful application of the GA techniques is the codification of the
individuals (i.e. possible solutions, chromosomes). This codification contains the
necessary information to evaluate the objective function (fitness function) as well as
to check the feasibility of the individuals.

The fundamental aspects to contemplate in this codification are the selection and
placement of measuring devices. Concretely, the codification includes aspects of sen-
sor networks: reliability, cost, location and multiplicity. Additionally, the constraints
on the allowable number of sensors per location as well as the technical feasibility
of placing a particular sensor in a given point are also managed in this codification.
Therefore:

each chromosome (individual) represents a sensor network,

each gene in the chromosome corresponds to a measuring point,

the value of each allele in each gene reflects the multiplicity of a specific sensor
type (see Figure 7.6), and

each sensor type is associated with a sensor cost and reliability.

Based on this codification, an initial population is generated randomly. Then by
means of the selection, crossover and mutation operators, new generations are pro-
duced. For each iteration the population will contain a fraction (1/10) of the best
individual of the precedent generation. The population size is set N, = 1000 using
the roulette wheal operator and 9/10 are selected to be crossed. Two point crossover
is applied with a probability of P. = 0.7 and the rate of mutation is Py, = P;/(J.K)
where J.K is the length of the individual.

The feasibility function is evaluated for each individual of the generated popula-
tion. This function verifies three constraints: network reliability, variables estimation
reliability and input parameter consistency. If one of these constraints is not satisfied
a very high value is assigned to the objective function (the total cost).
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measuring device

k=1 k=2 k=K k=1 k=2 k=K k=1 k=2 k=K
| 7 P \ N v U - W} ::i\::j_;;;;;:::
]:1\ 5= 2 ‘\4/
Measuring point
Individual

Figure 7.6: Genetic algorithm codification.

7.3.3  Ammonia plant case study

A simplified ammonia synthesis plant presented by Kretsovalis and Mah (1988) is
considered for illustrating the performance of the solution methodology proposed
when addressing different design/retrofitting situations. This case study (Figure 7.7)
has been used in several sensor network design works addressing reliability (Baga-
jewicz and Sanchez (2000a); Ali and Narasimahan (1993); Ali and Narasimhan (1995)).

This plant consists of six units and eight streams (F;, f =1-.-8) with node 6
representing the plant mass-balance. Additionally, the presence of different cycles
make the case more attractive for sensor network design and retrofitting purposes.

Consider, as in the work presented by Ali and Narasimhan (1995) that all the
available sensors (Sn, n = 1---5) have the same reliability, ri(t) = 0.9. Consider also
five sensors S1, S2, S3, S4, S5 having respectively the costs 1500, 1700, 2000, 2300
and 2800. Additionally, assume that some sensor/variable assignation are prohibited
as presented by dashes in Tables below. Finally, assume the minimum allowable
reliability rﬁ“i”(t) for the 8 variables is set to 0.81.

The problem presented by these authors is successfully solved and results are
presented in Table 7.4. The same values for the total cost and for the r(t) are shown
in the penultimate row of Table 7.4. Additionally, the values of n; obtained by
the solution methodology proposed are also equal to their results. This solution is
obtained in the first iteration of the GA procedure when minimizing the cost function
given by Eq. (7.24).

If different sensor types with lower reliability, ri(t), are considered presented in
Table 7.5. In order to satisfy reliability constraints, F, and F; are now measured
instead of F; and additional sensors are required, as it should be expected. It can
be seen a change in the selection/placement of measuring devices and an increase in
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Figure 7.7: Simplified ammonia plant network.

Table 7.4: Design of reliable sensor networks using a unique sensor type.

Nik Fy IR | R Fs Fe F Fg re(t)

s1 1 - - - - - 0 - 0.9
2 - - - 1 - - - 0.9
s3 - o | - - - 1 - - 0.9
s4 - o0 | - - - - - 0.9
S5 - - -0 - - - 0 0.9

r?"”(t) 081 (081081081 | 081|081 |0.81|0.81 | Total

ri(t) 09 | 09 | 09 |081| 09 09 |081 | 0.81 | Cost

[ ¢, [1500] 0 [ 0 | 0 [1700[2000] 0 [ 0 [ $5200 |

the total instrumentation cost. These type of solutions are only obtained when using
general models contemplating sensor type selection.

Moreover, if the sensor reliability of these sensors is slightly increased (Table 7.6)
the total cost is reduced by a different assignment, N while satisfying reliability
constraints. Furthermore, this solution also produces a slight improvement on the
variables reliability r; (t).

From this analysis it can be concluded that by permitting the incorporation of

130



“ThesisChouaibBengliloul2March” — 2004/3/26 — 13:00 — page 131 — #155

7.3. Generic design of reliable sensor networks

Table 7.5: Flexibility based sensor type for designing reliable sensor networks.

Nik O L S L W L - B O L Fe || m(®)
s1 v - -] - |1 - || 070
52 - - - -] - - [ 075
S3 - o | -] - - | o] - - | 0.80
s4 - - o | - - - - - || 085
S5 - - | -] o] - - - 1 ] 090
r™n(t) [ 081 [ 0.81 [0.81]0.81 | 0.81 [0.81 | 0.81 [ 0.81 | Total
r(t) | 084 ]084]084]082] 086 |0.82] 084|093 | Cost

| c; [1500] 0 [ 0 | 0 [1700 | O [ 1500 | 2800 [ $7500 |

Table 7.6: Flexibility based on selecting sensor type.

nw | R | KB | KBR|FR K |FR|FK|FKR|RY
st | 0 [ - EE - - 1 | - ] o7s
52 - - - - 11 - - - | 080
S3 - 1] -] - - 1 - - | 085
s4 - - o | - - - - - | 0.90
S5 - - - o] - - - | 0 ] 09
r™n(t) [ 081 0.81 [0.81]0.81 ] 081 [0.81 | 0.81 [0.81 | Total
r(t) [085]0.85 |085]0.85| 092|094 | 092|086 | Cost

| ¢, | 0 J2000] 0 | 0 |[1700|2000 1500 O [ $7200 |

I

different sensor types to the design of reliable sensor network it is possible to achieve
the reliability requirements at a lower cost. From a general point of view, more

flexibility is given to the decision maker.

Following, another scenario is adopted for illustrating the importance of includ-
ing the hardware redundancy and sensor network reliability for designing reliable
sensor networks. For such purpose consider that lower sensor reliability is consid-
ered for all the available sensors (rg(t) = 0.75) and greater “minimum sensor network

reliability” is requested, 0.90 for F;,F,, and F; and 0.85 for the rest of variables.

The results of such scenario are illustrated in Table 7.7 where the total cost that
has to be inverted for satisfying the reliability constraints is $8700.
If multiplicity is next considered (Table 7.8) results are considerably improved.
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Table 7.7: System reliability and reliable design of sensor network.

Nig F F Fs F, Fs Fe F, Fg ()

s1 1 - - - - - 1 - o075
S2 - - - - 1 - - - o075
s3 - 1 - - - 1 - - o075
4 - - 0o | - - - - - o075
S5 - - [0 - - - 0 | 075

ri""(t) | 0.90 | 0.90 | 0.90 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 || Total
ri(t) | 093 | 093 | 093|093 089 | 089 | 0.89 | 0.93 || Cost

| c; [1500]2000] O | O [1700 2000|1500 [ O | $8700 |

Table 7.8: Hardware redundancy and reliable design of sensor networks.

Nig F F Fs Fy Fs Fe F Fg re(t)

s1 2 - | - - - 1 - [ 075
2 - - | - 1 - - - [ 075
3 - 0o | - | - - 1 - - [ 075
sS4 - o0 | - - - - - [ 075
S5 - - [ o - - - 0 | 075

ri""(t) | 0.90 | 0.90 | 0.90 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | Total
ri(t) | 093 ]093]093|086) 089 | 089 | 0.89 | 0.86 | Cost

[ ¢, [3000] 0 | 0 | O [1700|2000 1500 | O | $8200 |

That is for satisfying the same reliability constraints a lower investment is needed
($8200). This is due to assignment of two sensors of type S1 to F, instead of assigning
S3to Fs.

For retrofitting purposes, consider an operating plant whose instrumentation (the
one given in Table 7.8) has to be updated to achieve new tighter reliability constraint
(rﬁ“i”(t)). Furthermore, assume that any sensor/location assignation is possible (i.e.
each sensor k can be assigned to each location j), thus increasing the number of
decision variables.

Table 7.9 presents the solution obtained when the installation costs are assumed
zero. Even in this case requiring a more important computational effort, the solution
is obtained by the GA in few generations.
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Table 7.9: Retrofitting of reliable sensor networks.

Nk F F F Fa Fs Fe F, Fg r(t)
S1 1 0 1 1 0 0 0 1 0.75
S2 0 0 0 0 1 0 0 0 0.75
S3 0 0 0 0 0 1 0 0 0.75
S4 0 0 0 0 0 0 0 0 0.75
S5 0 0 0 0 0 0 0 0 0.75
I’E“'n(t) 0.97 | 0.97 | 0.97 | 0.97 0.97 0.97 | 0.97 | 0.97 Total
ri (t) [ 098|098 | 098 | 0972 | 0.972 | 0.972 | 0.98 | 0.971 || Cost

| ¢, | O] 0 [1500[1500 | O | O [ O [ 1500 || $4500

7.4 Conclusions

The sensor network design is addressed in this chapter at two levels: reliability eval-
uation and optimization. Firstly, a practical and efficient way for evaluating the re-
liability of estimating variables is presented based on combining both quantitative
process knowledge and fault tree analysis. Secondly, defining the system reliabil-
ity, a mathematical programming model for plant instrumentation is formulated and
solved by means of genetic algorithms. The solution of this problem provides the
placement of the number and type of measuring devices that have to be added and/or
reallocated in an operating plant in order to lead the plant performance to the desired
reliability values at a minimum cost.

The approach of this work provides to the decision maker the flexibility to analyze
the different alternatives that could be considered when designing a reliable sensor
network. This flexibility is illustrated in the different examples addressed including
sensor type selection, hardware reliability, reliability constraints on both, network
and individual variables, and the retrofitting capability.
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Nom

enclature

incidence matrix

incidence matrix focusing variable |

matrix resulted for linear combination of A’s rows
number of rows in A

total cost of sensing variable j

total cost of sensor k

installation (or un-installation) cost of sensor k
capital cost of sensor k

minimum degree of redundancy of all variable

degree of redundancy of variable j

degree of estimability of variable j

equation that belong to Q where all its variables are measured except one

set of process variable

set of available sensor in the catalogue

set of variables for which reliability is required

set of variables where it is possible to place a sensor
number of sensors

minimum number of sensors

number of admitted sensor breakdowns

number of sensor of type k assigned to location j

minimum allowable sensor for location j

maximum allowable sensor for location j

particular value of sensor reliability

set of independent equation for estimating j

binary variable indicating if it is possible to assign a sensor to j or not

sensor network (system) reliability

(t)
R(t)™"  minimum value on the sensor network reliability

probability of estimating variable j at time t
probability of non-failure of the sensor k at time t
reliability resulted from placing a set of sensors in the same location

ri""(t)  minimum reliability value on variable estimation of variable j

time at which the sensor network will be designed
cardinal of e minus one
set of variables in the row r
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7.4. Conclusions
Operator
C(r,A;) combinatorial coefficient defined as: r!/[AI(r —A)!]
Greek letters
an  number of configuration with a value of n and ensuring system observability
©(x) heaviside function (equal to x if x > 0 and equal to 0, otherwise)
A constant representing the rate of sensor failure measuring variable k
Subscripts
i variables whose reliability is required
j location where it is possible to place a variable
k sensor type
r row of a matrix
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Decision-making strategy for
sensor networksdesign/retrofi t

Abstract

This chapter presents a decision-making framework for design and retrofit of sensor
networks as well as a general strategy to correlate the cost and performance of the
different sensor arrangements (number, placement, etc) that may be systematically
analyzed.

The analysis of the steps required for coping with the sensor placement problem,
in design or retrofit cases, implies the identification of the information flows involved.
Such a conception allows a modular design of a CAPE tool for computer aided sensor
network design/retrofit. An interface specifications has been proposed for this CAPE
tool and a prototype has been developed for validation purposes.

The decision-making strategy presented is independent of the particular algo-
rithms and procedures adopted. Hardware redundancy, steady-state/dynamic pro-
cesses, design/retrofit and the catalogue of different available sensors are all taken
into account, thus leading to a generic framework able to follow different policies
for sensor placement. Seeking the synergy given by re-usability and standardization,
the sensor placement tool has been developed following the CAPE-OPEN guidelines,
allowing the integration of other software modules such as Data Reconciliation and
Optimization.

8.1 Introduction

The sensor placement problem may be regarded as a constrained optimization prob-
lem for minimizing the sensor network cost. The constraints are inequalities defining
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the upper and lower bounds on system performance such as accuracy and/or reliabil-
ity for each process variable measurements. Thus, given the costs c; of the sensors
required for measuring each process variable j, the sensor placement problem can be
formulated as:

mianjbj (8.1)
]
subject to:
o¥(j) < o (8.2)
() > (1) (83)

where the accuracy ojz and reliability r;(t) at a time t are both functions of the sensor
assignment:
b = { 1 if variable jis measured (8.4)

0 otherwise

Alternatively, it is possible to choose to minimize the weighted estimated accuracy
(the estimation accuracy can be evaluated through Data Reconciliation) of the in-
volved process variables subjected to the upper bound on the cost of sensor network:

; 2
miny a;o; (8.5)

subject to:
Zc-b- < M (8.6)

The sensor placement problem presents a particular feature with the difficulty of
determining the threshold value of the inequality constraints Egs. (8.2), (8.3) and
(8.6). A partial way to overcome this drawback is considering the problem as a
multi-objective unconstrained optimization problem as follows.

minZajaj2+Bjcjbj (8.7)
]

However, this formulation poses a trade-off between the performance (e.g. accu-
racy) of each possible sensor network and its cost given by the values of the weight
parameters o and Bj in Eq. (8.7), which are also difficult to determine.

This work addresses this fundamental trade-off by proposing an information frame-
work for aiding an expert user in the decision-making procedure. Furthermore, the
system allows:
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e implementation into a modular application an objective function for evaluating
performance. The sensor placement constraints (satisfying the desired accu-
racy or reliability) are usually represented algorithmically. Therefore, gener-
ating the corresponding analytical equations for optimization purposes may be
very arduous and results in a rigid solution approach to the sensor placement
problem since these equations are strongly problem dependent.

e reducing the different sensor placement criteria by developing more generic
sensor placement constraints. For example, this work shows that increasing
the sensor network reliability indirectly increases the sensor network accuracy.

e selection of a sensor network among a set of possible networks by using the
profile of the system performance versus the corresponding cost. This point is
useful and practical for evaluating the necessary investment to achieve a desired
performance. Thus, this information is very valuable for the decision-making.

Additionally, this work also considers:

o different measuring device types (cost and performance). This consideration is
the basis for a more generic sensor placement problem including the realloca-
tion, new purchase and design of sensor placement problems.

o hardware redundancy (more that one measuring device per measurement point),
which is undertaken in a novel way by including additional inequality con-
straints to the sensor placement problem formulation.

e an extension for dealing with dynamic cases, incorporating the results obtained
in Chapter 6.

Thus, this work presents a specification for this strategy and a CAPE tool that has
been developed following the CO guidelines (CAPE-OPEN Standard 1.1 (2002)).
Additionally, the unified modeling language (Muller (1997)) description of sequence,
interface and component diagrams for design/retrofit is produced and validated pro-
viding the corresponding prototypes. Several CAPE-OPEN standard interface speci-
fications, such as Data Reconciliation and MINLP, have been adopted since the sen-
sor placement problem shares several features with these techniques in terms of the
information flows.
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8.2 Design strategy

8.2.1 Information flows
8.2.1.1 Input

The process model is a set of equations that correlate and bound process variables
and it is a prerequisite for placing sensors in a given process plant. It may be given
by an explicit set of mathematical equations® or as black box model (e.g. Avrtificial
Neural Network model). This process model allows both the generation of possible
sensor networks and the evaluation of the system performance.

The number of possible sensor networks may be limited according to the set of
parameters given by Egs. (8.8) and (8.9).

M™M= {min} (8.8)
M = {mT*} (8.9)

Vectors M™" and M™ poth of size J set the minimum and maximum number of
measuring devices that may be allocated to the j(= 1...J) process variables involved
in a given process model (multiplicity or hardware redundancy).

Dealing with multiplicity requires a new integer variable n; instead of the binary
variables bj for describing the sensor assignment:

(b; ={0,1}) = (n; €N) (8.10)
Thus, sensor assignment is limited by maximum and minimum multiplicity values:
mP" <n; <mP V] (8.11)

As an illustrative example, consider the adiabatic process in Figure 8.1, where F1
and F2 are mass flow rates, L denotes the tank level and, T1, T2 and T temperatures
(heat capacity, density (p), and tank section (s), are assumed constants). The process
model, given by the mass balance and the enthalpy balance is given by the following
equations:

F1-F2= p.s.d—L (8.12)
dt
T1F1—T2F2:p.s.L.%—Ier.s.T.?j—lt' (8.13)

A possible mapping of process variables can be set by the following vector:

VariableMapping = {L,F1,F2,T,T1,T2}

LFor instance through a standard CO interface: the Equation Set Object (ESO).
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F2,T2

Figure 8.1: Scheme of an adiabatic process for mapping illustration.

lets the corresponding multiplicity bounds be:
M™Mn = {1,0,0,0,0,0} (8.14)

MM = £12.1,1,1,1} (8.15)

Vectors M™" and M™ impose that the measurement of level L is obligatory while
process variables T,T1,T2 and F2 could be either measured once or not. However,
flow F1 can be measured at maximum twice.

Manipulation of the lower and upper bounds of Eg. (8.11) allows introducing the
information about feasible, infeasible and obligatory measurement points and their
maximum multiplicity.

In general, the two main cases are as follows:

o if m’jnin = m{® = p, where p € N the measurements of the process variable
j is obligatory and has to be measured p times, (due to safety or reliability
reasons). In the special case if p=0 = m?”i” = m’jmx = 0, the measurement of
the process variable j is infeasible (due to cost or operation limitations).

o if m’jﬂin = p and m™ =q, where {p,q} € N,q > p the number of sensors used
for measuring the jt process variable is not known a priori, it is a decision
variable which value pertain to the {p,...,q} set. In general, industrial practice
(including safety aspects) requires only a couple of sensors per measurement
point.
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The number of decisions associated to each process variable (i.e. number of possible
Sensors per measurement point) is given by:

AM = {&m; } (8.16)

where;

om; =m™—mM" 4+ 1,vj=1,.,] (8.17)

The a priori calculation of dm; provides an idea about the dimension of the problem,
since the number of “positional” networks, P, that may be generated is given by:

P= |T| om, (8.18)

Positional network, i, is referred to the assignment of a certain number of sensors of
the same type (i.e. assuming all sensors having the same characteristics and cost) to
a process variable j. Thus, each positional network i involves a number of sensors of
the same type given by the summation:

Z N (8.19)
]
When incorporating the consideration that different sensors k can be used to measure
the same process variable j, then, each sensor network i is characterized by means of
s;, while the superset Y defines all the networks considered:

5 = {nijk} eN;Y={s} (8.20)

The set of potential sensors K for measuring j is an information part of the catalogue.
This information that should be carefully introduced to the formulation of the sensor

placement is in the form of matrix Rz{rjk} whose elements are binary variables
defined as follow:

= { 1 if sensor k can measure process variable j (8.21)

0 otherwise

Assuming there are two types of flow-meters FM? and FMP and one type of mea-
suring device for temperature (T M) and level (LM), a matrix R is obtained to charac-
terize the feasibility of assigning measuring devices to measuring points as shown in
Table 8.1.
It is important to check the consistency between the information contained in R, M™"
and M™*_Hence:

mTin < mrex (8.22)
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Table 8.1: Matrix allowing sensor/process variable assignation.

FM&2 FMP TM LM

L 0 0 0 1
F1 1 1 0 0
F2 1 1 0 0
T 0 0 1 0
Tl 0 0 1 0
T2 0 0 1 0
mi < Mik-U1 (8.23)

where U, is a big number, (a U; value higher than 10 should be large enough).
The multiplicity is taken into account by adding the following inequalities:

m7in < > Mijic < M=, vk (8.24)
Nik < MeYs (8.25)

where U, is again a big number, in this case it is assumed equal to ~ m’j“ax. Finally,
the criteria for placing measuring devices (e.g. investment cost, Eg. (8.26)) and/or
reliability and/or accuracy, etc) has to be specified to evaluate and rank the different
alternatives considered as well as to control the combinatorial explosion if possible.

cost (s;) = 2 chnijk (8.26)
perf(s) == (nijk, ESO, ) (8.27)

8.2.1.2 Output

The information that allows a technician (or an optimization algorithm) to make re-
liable decisions when designing a plant instrumentation is composed by the cost (I),
and performance (1) of each feasible sensor network (s; € Y), defined by the type
and number of measuring devices per each measuring point.

S, cost (s;) perf (s;)
S cost (s erf(s

v_| % r .( 2) n_| " .( 2) (6.28)
S; cost (s;) perf (s;)
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Knowing the type of process variable j to be measured one can get the corresponding
range of available sensors from a catalogue. This range includes information such as:
the sensor accuracy {2}, reliability {r,(t)} and cost {c,}.

8.2.2 Modular structure and modules interaction
8.2.2.1 Involved modules

The analysis of the information flows of the sensor placement problem has followed
the existing trends. The specification proposed for the sensor placement module may
be easily plugged into other standardized software components or use them if re-
quired.

The modules required by an open and flexible architecture can be classified ac-
cording to their functionality. Mainly, five components have to be considered as
illustrated in the component diagram (see Figure 8.2):

e Sensor Networks Generator (module | or M-I),

System Performance Calculator (module Il or M-I1),

Total Cost Calculator (module 111 or M-I11),

Catalogue (module IV or M-1V), and

Process Model (module V or M-V).

In the UML™ notation, the component diagram addressing the static implementation
view of the sensor placement system is illustrated in Figure 8.2.

Additionally, the dependency relations between the different software compo-
nents are shown. Module (1) is responsible for generating a set of feasible sensor
networks Y = {s;} from the bounds given by M™n and M™ process model, sensor
characteristics {07, r,(t), ¢, } and sensor placement criteria. This task can be per-
formed by an elaborated algorithm or by a simple enumeration. Despite the efficiency
of these or future algorithms, this work highlights the necessity of such functionality.
The networks generated may not necessarily pertain to the feasible space in the sense
of meeting the performance objective, it is up to the end-user to remove the infeasible
subset since their performances will be unacceptable. Furthermore, the end-user may
need to add additional networks to the generated for evaluating their performance
and/or cost or remove some of the generated ones.

The objective of module (I1) is the evaluation of the system performance of net-
works generated by the use of the above functionality. This module offers the list
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sensor placement tool
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Figure 8.2: Proposed component diagram for the sensor placement system.

of performance or combination of performance it has evaluated and also the eval-
uation results. These performances may be mostly related to the data monitoring
such as reliability, accuracy, gross error detectability, but can also deal with control
and optimization by changing the system performance evaluation. Additionally, the
performance should merge different criteria or offer a multi-objective solution.

Evaluating total cost of a generated set of networks is the objective of module
(11). This module can also evaluate the cost corresponding to a retrofitting case.

The catalogue component or module (IV) acts as a database of measuring devices
providing their characteristics. These characteristics include cost and the list of sen-
sors characteristics that are mainly accuracy (akz), reliability (r,(t)) and measuring
range. Therefore, this module has process variable type (e.g. level, flow) as input and
has the range of measurement device characteristics as output. It is important to note
that this component is needed for evaluating the system performance, system cost as
well as for generating the sensor networks.

Finally, module (V) allows to introduce the process model which is required for
the performance of this application, since it is this model that represents the plant
considered for sensor placement.

In principle the interaction of the specified modules will be initiated by a Client
that could be either an end-user or a software application. The component diagram
is complemented by the interface diagram (Figure 8.3). This diagram gives a static
representation of the interfaces that the sensor placement components are required to
expose, as well as their inter-operability. The interface diagram is of major signifi-
cance for designing, specifying, and implementing the sensor placement architecture
since it declares the methods that are externally exposed.

In the next section the dynamic interaction of the components involved will be
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—-PerfEvaluation ()

Figure 8.3: Proposed interface diagram for the sensor placement system.

analyzed.

8.2.2.2 Module interaction

First, the input information presented in section 8.2.1.1 is introduced to the sensor
network system. This information is used by M-I to generate a set of networks Y. The
set of networks is then available to the end-user who decides to reduce or increment it
prior to its evaluation. The performance evaluation M-11 returns back to the end-user
the system performance corresponding to a given set of networks. To fulfill the task,
the component needs to interact with the process model M-V.

The last functionality is the evaluation of the cost of a set of networks (de-
sign/retrofit). To do so the total cost calculator M-Il interacts with the catalogue
M-1V to calculate the cost. The details of this interaction are described by means of
the sequence diagrams in Figures 8.4 and 8.5.

The sequence diagram captures time-oriented dynamic behavior and interactions
around sensor placement components and their relationships. Figure 8.4 proposes a
a scenario for generating sensor networks whereas Figure 8.5 illustrates the temporal
interaction for evaluating cost and performance of the generated sensors networks.

Finally, the resulting information is returned to the end-user by the sensor place-
ment system (cost and performance) as summarized in section 8.2.1.2.
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Figure 8.4: Proposed sequence diagram for sensor networks generation at design
phase.

8.3 Sensor placement prototype

A prototype has been developed to demonstrate and validate the proposed speci-
fications, the functionality that offers each involved component and the sequential
interaction between these components. At a fist step, this prototype has been devel-
oped using MATLAB software package. However, the implementation into a set of
CO-compliant modules working in a distributed way is straightforward, since the in-
terface specification proposed in this work follows the CO standards and guidelines.
The CO option enhances the potential of the adopted approach since this standard is
obtaining a growing interest and acknowledgment at the academic as well as indus-
trial environment. However, some simplifications are assumed for implementing the
prototype as well as for the selected sensor network design problem:

1. Only system’s accuracy is considered in the implemented prototype. A Data
Reconciliation system has been wrapped to become the system’s performance
evaluation module M-II, offering process variables accuracy as the unique cri-
terion to be selected for placing sensors within a given plant. It is important
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Figure 8.5: Proposed sequence diagram for cost and performance evaluations at the
design phase.

to note that variance is calculated without any previous knowledge on process
measurement which permit the use of the proposal for the design case. Addi-
tionally, since Data Reconciliation is adopted for evaluating the accuracy some
degree of observability has to be satisfied. This requirement on observability
leads to the minimum allowable number of sensors which in turn reduces the
space of feasible combinations, and decreases the computational effort. An
enumerative algorithm is adopted for generating the feasible combinations and
it has been wrapped to be the sensor network generator module.

2. For sake of simplicity no more than one sensor per potential measurement point

is assumed; that is mfj"ax = 1,Vj. Furthermore, it is assumed that the sensors
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involved have the same characteristics and prices. Finally, the sensor network
design problem is focused on placing sensors for monitoring the mass balance
of a given system.

8.4 Casestudy for sensor placement design

8.4.1 Sensor network design for PROCEL pilot plant

A case study is proposed for validating the decision-making strategy as well as the
prototype developed. As a test plant, PROcess CELL (PROCEL), a Pilot Plant, at
the Universitat Politécnica de Catalunya (UPC) has been used?. PROCEL consists
of three tanks with agitators, heaters, and heat exchangers. The tanks are connected
in a highly flexible way so that different configurations are possible. In Figure 8.6
the continuous operation mode of this pilot plant in a specific configuration is shown.
The design of the sensor network of the PROCEL plant is undertaken, focusing in the
trade-off between maximizing accuracy of estimation through Data Reconciliation
and the instrumentation cost.

F4

Figure 8.6: PROCEL Pilot Plant.

Commonly, the accuracy shows to be monotonically increasing with the invest-
ment. However, different networks might lead to the same performance, which im-
plies a certain degree of degeneracy. This is reduced when the process under consid-
eration is further complicated including recycling or when different sensor types are
available. The former case involves that adding a sensor does not imply directly an
improvement in the plant performance. Here, the dynamic case of PROCEL is con-
sidered. A dynamic mass balance has to be adopted if the sensor placement considers

2Further information on PROCEL can be supplied upon requests (luis.puigjaner@upc.es)
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the dynamic behavior of the plant. Thus, the level in both tanks is given by:
dL1

F5—F4=p.s;.—= (8.29)
F2—-Fl= p.sz.dd% (8.30)

If heat exchanger hold-ups are neglected, mass balance around them are represented
as follows:

0=F2—F3
0=F6—F7
0=F3—F4 (8:31)
0=F5—F6

Given this dynamic process model, assuming that the available sensors in the cata-
logue all have the same accuracy of 10% and cost of 1, module (1) generates sensors
networks. This set is then evaluated by module (11) to produce to corresponding sen-
sor networks accuracy, Kalman filter is used as the DDR (see Chapter 6). Module
(11) is used to obtain the corresponding set of costs.

Figure 8.7 plots the performance given by the different sensor networks that can be
arranged by acquiring 7 (see the right plot on Figure 8.7) and 8 (see the left plot on
Figure 8.7) sensors.
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Figure 8.7: Performance vs. number of measuring devices (8 and 7) respectively.

The graph shows the dependence of the performance on the arrangement and
clearly indicates that increasing the number of sensors does not necessarily lead to
higher performance results but depend highly on the measuring point. The decision-
making process is greatly aided by an information system allowing to properly man-
age the data obtained from the systematic analysis carried out. Thus, the sensor
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arrangements evaluated may be sorted by performance to obtain the plots in Figure
8.8.
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Figure 8.8: Increasing performance profile and related cost for design case.

The jagged performance profile confirms the idea that certain design decisions
may have a significant impact on plant operation. In the case of equivalent measuring
devices, the cost of the sensor network is given by the number of sensors. This is also
plotted in Figure 8.8 for each network.

This second profile does not run parallel to the performance above, but allows
learning that certain design decisions may imply a cost reduction simultaneously to
performance rise. Once again, the information management allows acquiring deeper
knowledge of the problem by gathering the previous data into Figure 8.9, which out-
lines the best performance that can be obtained at a fixed cost. Figure 8.9 provides
useful information for deciding the trade-off cost performance though the compara-
tive data for the basic design options. Moreover, the information system also allows
further treatment of the data as a formal approach to the multi-objective problem such
as Pareto optimal analysis (see Figure 8.9).
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Best performance (Accuracy)

2 3 4 5 6 7 8 9
Cost (Number of sensors)

Figure 8.9: Performance vs. cost (the sensor network s; producing the best perfor-
mance is indicated for each investment cost).

Table 8.2: Sensor networks obtained for the design.

| _Network [F |FR|R|FR[R[R[FR[L]L]
S;(9sensors) |1 |1 |1 }1|1 1 ]1|1]1

S436 (4 sensors)
Seag (3 sensors)

S;(8sensors) |1 |1 1|11 |-]1|1]1
Syy(7sensors) | 1 | - | 1|1 |1 |-]1]1]1
Sigbsensors) | 1 | - | 1| - |1 |-]1]1]1
Sz (Bsensors) | 1 | - | 1| - |- |- ]1|1]|1

1 1711
1 111

8.4.2 Reliability vs. accuracy

The incidence matrix representing the mass balance of PROCEL operating at steady-
state is given by Eq. (8.32).

1 -1 0 0 0 0 0
01 -1 0 0 0 0
00 1 -1 0 0 o0
A=l o 0 0o 1 -1 0 o0 (8:32)
0O 0 0 0 1 -1 o0
o0 0 0 0 1 -1
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The columns represent the seven flow-rates Fi, i = 1---7 respectively while the rows
correspond to mass balance around tanks and heat exchangers. It is important to
mention that mass balances around heat exchangers considers separately the balance
of the cooler flow and the heater flow.

For accuracy calculation, Lagrange Multiplier solution of the Steady-State Data
Reconciliation problem is adopted and the variance of the estimated process variables
in a matrix form is given by Eq. (8.33) when all variables are measured. The variance
of the measured variables is given by Q, where Q; = ajz.

Q=Q-QAT (AQAT) 'AQ (8.33)

As expected, not all the variables are measured. Nevertheless, the actually unmea-
sured variables will be handled as measured variables with a large standard deviation.

For reliability evaluation all the redundant equations are formed by a disjoint
set of measurements. The corresponding reliability is calculated by the probability
analysis using the sum of disjoint products. This reliability calculation is treated in
more details in Chapter 7 of this thesis. Figure 8.10 shows the accuracy and reliability
given by the different sensor networks that can be proposed for PROCEL case, when
modeled as a steady-state mass balance.
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Figure 8.10: Accuracy and reliability trends.

Once again, the data are sorted by accuracy and hence the two graphs confirm for
this case the parallel trend of both performance indexes (i.e. accuracy and reliability).
Such an information allows reducing a double objective problem to a single one.
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8.5 Sensor network upgrading strategy

Retrofitting is regarded as the procedure for providing the number, type and place-
ment of measuring devices (considering already sensor characteristics) that should be
added/relocated in the operating plant in order to increase plant performance, within
budget considerations. The decisions involved in such a retrofitting can be made
according to two main strategies:

1. purchase of new measuring devices.

2. reallocation of existing sensors while permitting new purchases.

Anyway, the starting point for all of these partial approaches is the information related
to the current sensor network characteristics represented by Y° = {n?k}. Where the

parameter set n?k is defined as follows:
0 n number of sensorsof typek installed for measuring j
] 0 otherwise

Additionally, since the reallocation of sensors saves the acquisition cost but not some
cost related to their installation/un-installation, the cost parameters need to be de-
tached into:

¢, = CE+Cl (8.35)

where ¢ and cik are respectively the capital and installation costs. Additionally, for
further system performance evaluation the characteristics of the installed measuring
devices have to be included in the catalogue. In the proposed approach the set Y?
are considered as “new” sensors with a cost cL (if the sensor position is changed
during the sensor placement retrofitting procedure) and a certain performance (char-
acteristics may be assigned to these old sensors by tuning the current accuracy and
reliability values) that can be treated as a design problem.

8.5.1 Purchase strategy

Once this information is set, retrofitting by purchasing new items imposes that the
already installed instrumentation is not subject to be changed and the goal is to deter-
mine the best set of new measuring devices (number, type and placement) that will
satisfy the new performance requirements.

This procedure can be supported in a straightforward way by the design procedure
presented in section 8.2 just by indicating to the system the set of sensors already
installed (Y9).
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Additionally, the already installed set of sensors might be prevented from reallo-
cation by properly adjusting the multiplicity (m{™", m{™) and assigning an elevated
cost to their un-installation.

8.5.2 Reallocation strategy

Retrofitting by means of reallocation is another particular case of retrofitting where
the placement of some or all the installed sensors can be changed.

The goal is to determine the set of sensors to be reallocated as well as their new
placement. The old sensors can be again considered as “new” sensors with a price
corresponding uniquely to their installation cost cL . This point is very important
since it favors the already installed sensors to be re-allocated before acquiring new
sensors with higher cost c¢ + cl.

Despite of this intrinsic priority, additional constraints could be added to force
the re-installation of already existing sensors. Thus, purchase strategy can be seen
as a special case of reallocating for which the installed sensor network Y° does not
admit any change.

8.5.3 Information Flows

The parameter sets n?k provides information related to the sensors characteristics
(number, type and placement) and indirectly the cost. Once this information is pro-
vided solving the retrofitting problem will require the same components as those
needed for the design case.

At this point, the interfaces designed proved to be robust and general enough to
undertake a wide range of sensor placement problems. Thus, given n? , the current
system performance can be obtained by calling the method EvaluatePerf() in the in-
terface INetworkPerfCalculation presented in the interface diagram (see Figure 8.3).
A reference or desired system performance may be set by assuming the design of a
new sensor network for the same plant (n k=0 Vj,Vk). Then, the investment needed
to lead the current system performance to the desired one is evaluated invoking the
method EvaluateCost() in the interface INetworkCostCalculation. To evaluate the in-
vestment, direct costs (as instrument purchase and installation) as well as benefits re-
sulting from additional measuring devices have to be contemplated, therefore, M-I11
has to include an algorithm for such task. Thus, the extension of the sensor placement
framework presented in previous section to deal with retrofitting is straightforward,
although additional information should be provided into the system.

Additionally, cost evaluation may be extended to contemplate the purchase of
new items and the reallocation of old ones through the related cost parameters. Such
a change does not require any revision of the framework and interfaces proposed but
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just plugging a new evaluation function (Eq. (8.36)) instead of Eq. (8.26). Eq. (8.36)
considers capital cost and installation cost, but when n?k =0, V], Yk becomes:

Total Cost = Zcﬁ.@ (Z Ne—> n?k> + Z > cl ‘njk - n?k‘ (8.36)
] ] ]

where;

1 if x>0
@(X)_{ 0 if x<0 (837)
It is important to note that the retrofitting cost evaluation presented above can handle
the situations where the already installed sensors are similar but different to the sen-
sors provided in the catalogue (because of decreasing efficiency). This can be done
in a parametric way by providing their performances (i.e. the set K is increased by
including these sensor types).

Furthermore, once a general problem definition and solution framework have
been set, the design case can be considered as a special retrofitting case that is para-

metrically described by setting YO = {n‘j’k} to zero, thus meaning no sensors are
already installed.

8.6 Casestudy for sensor placement retrofi t

For the retrofit case assume that the PROCEL pilot plant considered (Figure 8.6) is
operating at steady-state, thus the model given by the set of Eq. (8.31) can be used.
Additionally, assumes that the plant already contains two flow-meters for measuring
flows F1 and F2, and no more than one sensor per measuring point can be admitted.
Finally, assumes flow-meters available in the catalogue present the characteristics
given in Table 8.3.

The plant instrumentation combination () that fulfills the sensor placement goals
is generated using the information of Table 8.3. The sensor network accuracy can be
calculated using Eq. (8.33).

Figures 8.11 and 8.12 show cost and performance profiles given by the different
sensor networks generated as instrumentation upgrading opportunities. Once again,
information management allows plotting these alternatives in order of increasing per-
formance, which in turn permits to observe that some retrofitting options may result
in higher performance as well as lower cost.

Figure 8.12 summarizes the previous information in a graph relating the best
performance that can be obtained up to a given cost. It is worth noting that in this case
the cost is not only related to the number of sensors, but includes the relative costs
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Table 8.3: Sensor characteristics for validating the retrofit case.

| sensor type | installed (k = 1) | new purchase (k=2) |
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Figure 8.11: Increasing performance profile and related cost for retrofit case.

associated to rearranging plant instrumentation. This cost definition also reduces the
problem degeneracy given by the simpler cost definition case study in section 8.4.
Figure 8.12 provides useful information to to discard some level of investment.

Maintaining the already flow-meters in measuring point F; and F, and each time
and adding at a distinct point a sensor of type 2 the plant performance is passed for an
sensor network accuracy 62% corresponding to 0.58 to a 100%. Therefore, the sensor
network presented in Table 8.4 provides a local maximum at cost 12.5 indicates that
it makes no sense to consider arrangements of cost superior to 12.5, since no better
performance may be obtained with any other sensor network.

A new minimum appear if any one of the flow-meters of type 1 placed in F, or F,
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Table 8.4: Most reliable sensor network for PROCEL at steady-state mode

is placed elsewhere in F;, F,, F5, F5 or F,. This situation can be enhanced each time
an additional sensor is added until all the flows are sensed. Finally, a third minimum
appear when no sensor of type one is placed in F,and F, as shown in Figure 8.12.
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Figure 8.12: Best performance vs. cost for retrofit case.

This example shows the capability of the framework proposed to address the
general sensor placement problem and to provide practical results for the decision-
maker. Additionally, a main advantage of the framework is its openness and the
possibility to incorporate any calculation module (plug-in) for solving the problem
or part of it, thus allowing to increase the system performance with no code rewriting.

8.7 Conclusions

This chapter addresses the sensor placement problem through the analysis of the
information flows involved in a comprehensive problem definition and a general pur-
pose solution approach. The problem statement considers dynamic as well as steady-
state systems and contemplates multi-objective sensor placement optimization, hard-
ware redundancy and the catalogue of available measuring devices. Furthermore, in
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this proposal in a unique formulation “all” the possible sensor placement problems
(design, reallocation, new purchase) have been merged in a unique formulation.

As a result, beyond the specific chances given by the diverse optimization tech-
niques that may be used, a decision-making framework for instrumentation design
and retrofitting is presented. This framework is described in terms of the UML ™
and thus, the interface, sequence and component diagrams showing the strategy pro-
posed are also presented. The resulting specification has been implemented in a soft-
ware prototype and using some illustrative examples. The use of the CO guidelines
ensures an easy adaptation of the prototype to specific scenarios and accepts further
integration to other chemical engineering tools such as Data Reconciliation system
presented previously in Chapter 5.

The case studies presented also proved the usefulness and potential of a computer-
aided decision-making tool allowing the comparative analysis of several instrumen-
tation alternatives (networks) and the management of the information required for
solving the cost-performance trade-off. The “what if” analysis provides a deeper
insight into the sensor placement problem and provides a learning procedure that
supports the decision-making through a more valuable knowledge of the problem.
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Nomenclature

bj binary variable setting if the variable j is measured or not

Cj cost of measuring j

c,  total cost of sensor k

Cy capital cost of sensor k

Cy installation cost of sensor k

c™*  maximum cost allowable for instrumentation investment

J set of measuring points

K set of sensor type available in the catalogue

L tank level

MM vector specifying maximum number of sensors per measuring point j

M™n  yvector specifying minimum number of sensors per measuring point j

m’j“ax maximum number of measuring devices per measuring point j

m'jnln minimum number of measuring devices per measuring point j

n; number of sensor in measuring point j

n;, number of sensors of type k measuring variable j

ngj)k number of already installed sensor type k in measuring point j

P number of positional network

Q variance-covariance matrix of measured data

Q variance-covariance matrix of reconciled data

R matrix allowing sensor/measuring point assignment

Fik binary variable indicating if sensor type k can measure variable j or not

ry(t)  reliability of process variable j at time instant t

r.(t)  reliability of sensor type k at time instant t

I (t)* lower bound reliability for process variable j at time t

S; sensor network i

S tank section

T temperature
Greek letters

a; weight parameter for the accuracy

B; weight parameter for the instrumentation cost

" cost matrix

om;  number of possible (decision) sensor per measurement point

© Heaviside function

M performance matrix

p density
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of standard deviation of process variable |
ajz accuracy of process variable |
ak2 accuracy of sensor type k
ajz* upper bound accuracy for process variable j
Y  matrix of generated sensor networks
YO sensor network already installed in an operating plant
Subscripts
i sensor networks i =1...1
j measurement point/measured variables j = 1...J
k sensor types k =1...K
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Chapter 9

Conclusions

9.1 Dynamic data Reconciliation

The first part of this thesis is focused on the investigation of dynamic Data Recon-
ciliation. In Chapter 2 a Data Reconciliation technique for a dynamically evolving
process is considered from a steady-state point of view. The technique uses previ-
ous information by means of the redundant measured variables averages to generate
the current estimates. Thus, not only the temporal redundancy is taken into account
but also the quality of estimation is improved by combining a filtering technique and
SSDR sequentially. Moreover, a way for processing the average values to recover the
"reconciled" variable is presented and validated. The proposed unbiased estimator
is compared with the Kalman filter technique and shows high performance in terms
of variance reduction and tracking of dramatic dynamic changes. Additionally, in
Chapter 3 a dynamic Data Reconciliation based on wavelet trend analysis was pre-
sented. Firstly, wavelet is used to catch the deterministic trend of sensor data. Then,
these trends are rendered consistent with the process model, optimizing the polyno-
mial coefficients that fit these profiles. Therefore, estimations take advantage of both
temporal and spatial redundancies. The approach proposed within this work can be
applied on-line as well as off-line in an efficient way, presenting an accurate esti-
mation. Another feature of this proposal is its capability to deal with measurements
with different sampling frequencies in contrast to the current DDR techniques that
can not address. The extension of this proposal to deal with nonlinear cases has also
been presented demonstrating promising results. That is, the way the nonlinearity
is undertaken in this work is relatively efficient, useful and involves simple and fast
calculations.

One of the main problems encountered in operating plants is the presence of
delays. In most cases of dynamic processes, where some sources of time-delays
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between cause and effects appear in the system. The performance of DDR can be
highly improved by means of its integration with time-delay estimation in both on-
line and off-line cases as discussed in Chapter 4. One advantage of the presented
TDE method is that a priori knowledge for the number and location of time-delays
in the process is not necessary, which is an advantage of the application simplicity.
On the other hand, although this approach shows good results for the case of process-
related delay, it is specially suited for sensor-related delay since it deals with the
measurements model. An extension of this approach to time-varying delays has been
sketched.

The main aim of the work presented in Chapter 5 has been the design and im-
plementation of a software architecture for distributed Data Reconciliation and pa-
rameter estimation applications. This contribution is presented towards the standard-
ization of PEDR software packages. The task of maintaining and supporting new
process models, databases and/or optimizers within the PEDR system can be jus-
tified in terms of cost and implementation effort using the proposed CO software
specification and architecture.

A software prototype has been developed to validate and demonstrate the use and
benefits in terms of reuse transparency and innovation of the proposed component
and the specified interface. In this work the specification of the parameter estimation
and Data Reconciliation interfaces are conceived as a generic approach, able to deal
with dynamic, nonlinear processes with relatively low effort and without the need to
make any essential change to the other components. The framework presented would
be very appealing to industry and researchers that already have access to software
that can perform the tasks of PE and DR. Since the most efficient use of such pack-
ages would be enhanced through the standardization of communication interfaces
(which is the plug and play philosophy proposed by the CAPE-OPEN and Global
CAPE-OPEN). The adaptability and flexibility of the proposal allows the inclusion
of present and future algorithms, estimating unknown variance and covariance for
process variables, as well as using new solvers for the resulting optimization prob-
lems.

9.2 Design of reliable and accurate sensor networks

The second part of this thesis addresses the design of accurate and reliable sensor
networks. The major contribution of Chapter 6 is the establishment of a method that
uses a Kalman filtering techniques for placing the minimum number of measuring
devices in the “optimal” measurement points satisfying the network performance ac-
curacy of dynamic systems. The solution strategy has been implemented in academic
and industrial case studies showing promising results. The profile of the relative
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increase of the system performance along the sensor network and the associated in-
vestment gives the designer all alternatives (Pareto space of optimal solution). The
extension of the proposed approach to deal with nonlinear systems can be performed
using an extended Kalman filter as the performance accuracy calculator.

For the sensor placement algorithm investigated in this thesis, a practical and ef-
ficient way for evaluating the reliability of process variables is presented in Chapter
7 based on combining both quantitative process knowledge and fault tree analysis.
After mathematically formalizing the definition of the system reliability, a mathe-
matical programming model for plant instrumentation was formulated and solved by
means of genetic algorithms. The solution of this problem provides the number, type
and optimal placement of measuring devices that has to be added and/or reallocated
in an operating plant in order to upgrade plant performances to the desired precision
and reliability. The formulation allows hardware redundancy and different sensor
characteristics.

Finally, in this thesis the sensor placement problem is addressed through the anal-
ysis of the information flows involved, through a comprehensive problem definition
and a general purpose solution approach. Problem statement considers steady-state
systems and contemplates multi-criteria sensor placement, hardware redundancy and
the catalogue of available measuring devices. Additionally, in this thesis “all” the
possible sensor placement problems (Design, reallocation, new purchase) has been
successfully merged in a unique formulation as shown in Chapter 8.

As a result, beyond the specific choices given by the diverse optimization tech-
niques, a decision-making framework for instrumentation design and retrofitting is
presented. This framework is described in terms of the UML™ representation and
thus, the interface, sequence and component diagrams showing the strategy proposed
are also presented. The resulting interface specifications have been validated through
the development of a software prototype that has been used for solving some illustra-
tive examples. The interface specification has been developed following the CAPE-
OPEN guidelines and thus it can be easily adapted to fit this standardization trend for
a further integration of the sensor placement module to other chemical engineering
tools such as Process Simulators and Data Reconciliation systems.

The case studies results also proved the usefulness and potential of a computer-
aided decision-making tool allowing the comparative analysis of several instrumen-
tation alternatives (networks) and the management of the information required for
solving the cost-performance trade-off. The “what if” analysis provides deeper in-
sight into the sensor placement problem and allows a learning procedure that supports
the decision-making through more valuable knowledge of the problem.
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Acronyms

AANN = Auto-Associative Neural Networks
ANN = Artificial Neural Networks

AVTI = Average Number of Type I

CAPE = Computer Aided Process Engineering
CWT = Continuous Wavelet Transform

CO = CAPE-OPEN

COLaN = CAPE-OPEN Laboratory Networks
COM = Component Object Model

CORBA = Common Object Request Broker Architecture
CSTR = Continuous Stirred Tank Reactor
DAEs = Differential-Algebraic Equations
DCS = Distributed Control System

DR = Data Reconciliation

DDR = Dynamic Data Reconciliation

DWT = Discrete Wavelet Transform

EKF = Extended Kalman Filter

EPA = Extended Polynomial Approach

ESO = Equation Set Object

EVM = Error-in-all-Variables Method

FDS = Fault Diagnosis System

GAMS = General Algebraic Modeling System
GAs = Genetic Algorithms

GED = Gross Error Detection

GLR = Generalized Likelihood Ratio
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Acronyms

GCO = Global CAPE-OPEN

GT = Global Test

IDL = Interface Definition Language

JDK = Java Development Kit

LU = Lower and Upper triangular (matrix decomposition)
LVE = Liquid-Vapor Equilibrium

KF = Kalman Filter

MA = Moving Average

MAJ/SSDR = Moving Average/Steady-State Data Reconciliation
MH = Moving Horizon

MILP = Mixed Integer Linear Programming

MINLP = Mixed Integer Non Linear Programming
MLE = Maximum Likelihood Estimation

MSE = Mean-Squares Error

MSPC = Multivariate Statistical Process Control

NLP = Non Linear Programming

MP = Maximum Power

MT = Measurement Test

MySQL = My Structured Query Language (database query language)
NLP = Non Linear Programming

NT = Nodal Test

ODEs = Ordinary Differential Equations

OF = Objective Function

OMG = Object Management Group

OP = Overall Power

PCA = Principal Component Analysis

PE = Parameter Estimation

PEDR = Parameter Estimation and Data Reconciliation
PLS = Partial Least-Squares

PRD = Process-Related Delay

PROCEL = PROcess CELL

QP = Quadratic Programming

SMST = Sequential-Modular Simulator Tool
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SQP = Successive Quadratic Programming
SRD = Sensor-Related Delay

SSDR = Steady-State Data Reconciliation
TDE = Time-Delay Estimation

TE = Tennessee Eastman

UBET = UnBiased Estimation Technique
UML = Unified Modeling Language
WLS = Weighted Least-Squares

WT = Wavelet Transform

169



“ThesisChouaibBengliloul2March” — 2004/3/26 — 13:00 — page 170 — #194

Acronyms

170



“ThesisChouaibBengliloul2March” — 2004/3/26 — 13:00 — page 171 — #195

Publications

Journal and Conference Proceeding Articles

Decision-Making Strategy and Tool for Sensor Networks Design and Retrofit

C. Benglilou, M. Graells, L. Puigjaner

Universitat Politécnica de Catalunya, Chemical Engineering Department, ETSEIB,
Diagonal 647, 08028 Barcelona, Spain.

Journal: Industrial and Engineering Chemical Research , Vol 43, 1711-1722, 2004.
This work presents a decision-making framework for design and retrofit of sensor
networks as well as a general strategy to correlate the cost and performance of the
different sensor arrangements (number, placement) that may be systematically ana-
lyzed.

The analysis of the steps required for coping with the sensor placement problem,
for design or retrofitting cases, implies the identification of the information flows
involved. Such a conception allows a modular design of a tool for computer aided
sensor network design/retrofit. An interface specification has been proposed for this
tool and a prototype has been developed for validating purposes.

The decision-making strategy adopted is independent of the particular algorithms
and procedures adopted. Hardware redundancy, steady-state/dynamic processes, de-
sign/retrofit and the catalogue of different available sensors are all taken into account,
thus leading to a generic framework able to follow the future trends of sensor place-
ment.

Seeking the synergy given by reusability and standardization, the sensor place-
ment tool has been developed following the CAPE-OPEN (CO) guidelines, allowing
the integration of other software modules such as Process Model and Data Reconcil-
iation.

Design optimization of constructed wetlands for wastewater treatment

R. Pastor*, C. Benglilou*, D. Paz™, G. Cardenas™, A. Espufia*, L. Puigjaner*
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*Universitat Politecnica de Catalunya, Chemical Engineering Department, ETSEIB,
Diagonal 647, 08028 Barcelona, Spain.

TEstacion Experimental Agroindustrial Obispo Colombes, Tucuman, Argentina.
Journal: Resources Conservation & Recycling, 37, 193, 2003.

In this work the combination of mathematical programming based optimization strat-
egy and hybrid neural network models is presented in the framework of wastewater
minimization. In the optimization strategy, the objective function is composed by
three terms: fresh water cost, wastewater treatment cost and the discharge taxes,
while the constraints are the balance equations of all the production units. Once all
production units that generate wastewater and the divers wastewater treatment sys-
tems are specified, the model automatically identified the best treatment option for
each water stream: reuse or recycle with or without regeneration. the formulated opti-
mization problem is solved using mathematical programming techniques and details
about the optimum treatment for each stream are obtained. In general, for effluent
treatment from municipal and food industrial wastewater, the most suitable process
identified is the biological treatment. Among this treatment it has been chosen the
constructed wetland. The proposed model for representing the dynamic of the wet-
lands is based on the combination of a first principles model and an artificial neural
network. The hybrid model resulted from combining both modeling strategy has
been used to optimize the design of the wetland. Finally, the methodology is applied
to two case studies where the characterization of influent and effluent water flows is
emphasized.

A Petri nets- based scheduling methodology for multipurpose batch plants

D. Riera*, M. Narciso™, C. Benglilou*

*Universitat Politecnica de Catalunya, Chemical Engineering Department, ETSEIB,
Diagonal 647, 08028 Barcelona, Spain.

*TUniversitat Autonoma de Bracelona, Systems Engineering and Automatic Control
Group, Bellaterra, 08193 Barcelona, Spain.

Journal: SIMULATION (Accepted, December 2003).

This article presents an optimization methodology of batch production processes as-
sembled by shared resources which rely on a mapping of state-events into time-events
allowing in this way the straightforward use of a well consolidated scheduling poli-
cies developed for manufacturing systems. A technique to generate the timed Petri
net representation from a continuous dynamic representation (Differential-Algebraic
Equations (DAES) systems) of the production system is presented together with the
main characteristics of a Petri nets-based tool implemented for optimization pur-
poses. This paper describes also how the implemented tool generates the coverability
tree and how it can be pruned by a general purpose heuristic. An example of a distil-
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lation process with two shared batch resources is used to illustrate the optimization
methodology proposed.

Proposal To speed Up the Implementation of Abnormal Situation Management
in the Chemical Process Industry

D. Ruiz*, C. Benglilou*, J. M. Nougués*, C. Ruiz™, L. Puigjaner*

*Universitat Politécnica de Catalunya, Chemical Engineering Department, ETSEIB,
Diagonal 647, 08028 Barcelona, Spain.

*Advanced Control Group, SOTEICA SRL, Alvarez Thomas 796, 3 C, 1427 Buenos
Aires, Argentina.

Journal: Industrial and Engineering Chemical Research, Vol 41, No. 4, 2002.

The aim of this work is to present a proposal for implementation of a support frame-
work for abnormal situation management in the chemical process industry. A main
feature of the technology developed is that it takes advantage of existing software
packages that are familiar to plant engineers (e.g. Plant Information System) and a
commercial process simulator. On the basis of three sources of information (a his-
torical database, a HAZOP analysis, and a first principles plant model), the support
framework is developed and easily implemented into the real plant. It consists of a
preprocessing module, which performs a variety of keys tasks using plant data such
as data reconciliation, filtering, and de-noising. Some of the outputs of this prepro-
cessing module are the inputs of the fault diagnosis system (FDS). This FDS is a
combination of a pattern recognition approach based on neural networks and a fuzzy
logic system (FLS) in a block oriented configuration. The case study to demonstrate
the FDS implementation corresponds to a real petrochemical plant.

Sistema inteligente de soporte para la optimizacion en tiempo real de procesos
de fabricacion quimicos y petroquimicos

L. Puigjaner, A. Espufia, R. V. Tona, C. Benglilou, S. E. Sequeira

Universitat Politécnica de Catalunya, Chemical Engineering Department, ETSEIB,
Diagonal 647, 08028 Barcelona, Spain.

Book chapter: Ciencia & Tecnolgia, Vol. 1, pp. 261, Septiembre 2001, Tibidabo
Ediciones, Barcelona (ISBN: 84-8033-145-3).

El objetivo de este articulo es la descripcién de las functionalidades requeridas
por un sistema de Soporte de la Decision avanzada para la monitorizacion, analisis
y optimizacion de un proceso de fabricacién, tomando como base los requerimientos
de los sistemas de fabricacion Quimicos y Petroquimicos. Se trata de realizar una
diagnosis en tiempo real del sistema que permite mantener la integridad operacional
del proceso y mejore la calidad de productividad, todo ello al menor coste.
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Para poder considerar adecuadamente los aspectos dinamicos del proceso a largo,
medio e incluso a corto plazo es necesario introducir un ajuste progresivo del modelo
en tiempo real que responda a la situacién actual de la planta. Se debe conocer
las incidencias que ocurren, analizarlas y tomar decisiones como reaccion a dichas
incidencias. Pero sobre todo se debe tener en cuenta el papel del operario para crear
una estructura adecuada de soporte a la toma de decisiones.

Towards the Standardization of Thermodynamic and Physical Properties Pack-
ages

C. Benglilou?, S. Bel!, M. Gonzélez!, M. Pons?, R. Szczepanski®, A. Espufial, L.
Puigjanert

LUniversitat Politécnica de Catalunya, Chemical Engineering Department, Av. Diag-
onal 647, E-08028 Barcelona, Spain.

2ATOFINA Centre Technique de Lyon BP 32 69492 Pierre-Benite Cedex, France.
3InfoChem Computer Services Ltd, 13 Swan Court, 9 Tanner Street, London, SE1
3LE, UK.

Book serie: ESCAPE-14, A. P. Pévoa and H. Matos (Editors) 2004 Elsevier Science
B. V.

Adaptation of a Thermodynamic and Physical Properties (Thermo) Package to
the increasing improvements of computer performance and the development of new,
efficient, and robust thermodynamic methods, remains expensive in time, cost and
implementation effort. An efficient solution to overcome these drawbacks is to stan-
dardize Thermo communications with client applications in a consistent, efficient
and secure way by designing a well-defined interface that ensures interoperability
and transparency. CAPE-OPEN (CO) standard provides such a facility. To enhance
the existing standard, a revision of the CAPE-OPEN Thermo interface specification
(version 1.1) has been proposed. A thermodynamic package has been wrapped to
comply with this interface specification using COM technology. Considered as a
help to developers, a Tester to verify standard compliance has been specified and de-
veloped. This Tester, a part of the CO-Tester suite, will be freely distributed and used
to validate the consistency and compliance of the pieces of software implementing
the new version of the CO Thermo interface specification. \ersion 1.1 of the CO
interface specification for Thermo is operational.

Sensor-Placement for Dynamic Processes

C. Benglilou? , J. M. Bagajewicz?, A. Espufial, L. Puigjaner!
LUniversitat Politécnica de Catalunya, Chemical Engineering Department, Av. Diag-
onal 647, E-08028 Barcelona, Spain.
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2ATOFINA Centre Technique de Lyon BP 32 69492 Pierre-Benite Cedex, France.

SInfoChem Computer Services Ltd, 13 Swan Court, 9 Tanner Street, London, SE1
3LE, U.K.

Book serie: ESCAPE-13, A. Kraslawski and I. Turunen (Editors) 2003 Elsevier Sci-
ence B. V.

This article presents a methodology to design instrumentation networks for dy-
namic systems where Kalman filtering is the chosen monitoring technique. Perfor-
mance goals for Kalman filtering are discussed and minimum cost networks are ob-
tained.

An Open Software Architecture for Steady-State Data Reconciliation and Pa-
rameter Estimation

C. Benglilou , M. Graells, A. Espufia, L. Puigjaner

Universitat Politécnica de Catalunya, Chemical Engineering Department, Av. Diag-
onal 647, E-08028 Barcelona, Spain

Book serie: ESCAPE-12, J. Grievink and J. van Schijndel (Editors) 2002 Elsevier
Science B. V.

In this paper a flexible and open architecture design for Parameter Estimation
and Data Reconciliation (PEDR) software application is proposed by de-coupling it
according to the functionalities involved.

In the proposed approach the different components that are involved in this appli-
cation and their interactions are specified and tested. The proposed architecture aims
at an improved efficiency and upgrading of the PEDR application by allowing the ex-
changeability and connectivity of the present components in an easy and consistent
way.

Modelado y Simulacion de un Proceso de Destilacion

C. Benglilou
Universitat Autdnoma de Bracelona, Enginyeria de Sistemes i Automatica, Bellaterra,
08193 Barcelona, Espafia.

Memoria presentada como trabajo de investigacion de Tercer Ciclo de Informatica,
1998.
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