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Abstract—In this paper we show how the mathematical ap-
paratus developed originally in the field of econometrics and
portfolio optimization can be utilized for purposes of conceptual
design, requirements engineering and technology roadmapping.
We compare popular frontier estimation models and propose an
efficient and robust nonparametric estimation algorithm for two-
dimensional frontier approximation. The proposed model allows
to relax the convexity assumptions and thus enable estimating a
broader range of possible technology frontier shapes compared
to the state of the art. Using simulated datasets we show how
the accuracy and the robustness of alternative methods such as
Data Envelopment Analysis and nonparametric and parametric
statistical models depend on the size of the dataset and on the
shape of the frontier.

Index Terms—Pareto frontiers, efficient frontiers, technology
planning, requirements engineering, decision support systems

I. INTRODUCTION

Technology roadmapping requires forecasting the evolution
of technology in order to address its impact in future system
developments. This is particularly important when conceiving
new developments for engineering products which develop-
ment time spans years and involve multi-billion investments,
such as in the case of aircraft and spacecraft systems. Tech-
nology evolution forecasting is traditionally performed by pure
expert assessments, or expert assessment aided by computa-
tional approaches. Two classes of computational approaches
in forecasting are the so-called model-based (physics driven)
and data-driven (statistics driven) approaches.

The goal of model-based forecasting approaches is to iden-
tify potential physical limits affecting the evolution of the
tradespace, and to assess the impact of the aforesaid limits
on the tradespace of possible system evolutions. Model-based
approaches explore the tradespace of possible system develop-
ment options by accounting for all engineering disciplines in-
volved, any applicable physical limit and potentially including
other constraints coming from program developments, such as
risk, schedule, and cost. An example of physical limit is the
amount of speed increase that a single stage rocket can deliver,
for a given stage mass fraction and propellant specific impulse,
given by the vertical asymptote of the Tsiolkovski’s rocket
equation [1]. A second example of physical limit is the flight
envelope in terms of payload and range for a given aircraft

configuration, that is given by the Breguet equation [2]. The
complexity of model-based forecasting approaches may vary
from simple algebraic equations to more sophisticated multi-
disciplinary simulations, such as for example Finite Element
Models (FEM) or computational fluid dynamic simulations.

Notwithstanding this complexity, the general goal behind
those approaches, however, remains the same. Tradespace
exploration models estimate system performance in terms of
a set of Figures of Merit (FoMs) using the model equations
as ‘transfer functions’ translating design inputs into FoMs.
System model is the function transforming design variables
to FoMs. Current system developments are mapped within the
modeled tradespaces using FoMs, and the distance between
current systems and the Pareto (efficient) frontier gives a
measure of the incremental technology evolution designers
can expect for a given technology set. While model-based
approaches set the limits for incremental evolution, they do
not provide time references as to when a given evolution
can be expected. Other drawbacks of model-based approaches
include potential oversimplification of the models, leading
to approximations and potentially under or overestimation of
technology performance, and the complexity and time required
to develop and validate such models in engineering practice.

Data-driven approaches take the forecasting problem from
a different angle. Rather than estimating system performance
using physics-based modeling, they consider real data of past
system developments. Applying statistical approaches such as
multi-variable regression and others, they then estimate tech-
nology performance as a function of prior observations. The
advantage of these approaches lies in their relative simplicity,
and in the abundance of available methods coming from
the fields of statistics, econometrics, and engineering design.
An example of this approach application to the problem of
forecasting the automobile performances is discussed in [3].

The drawbacks of these approaches are the neglectance of
hard limits dictated by physics, and the potential issue of
statistical significance of the results achieved in cases with
reduced sample sizes (which is often the case in engineering
design).

In our research we are addressing two questions. What are
the most frequent frontier shapes are common for the require-
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ments engineering of a complex system, and, consequently,
which statistical estimation model should be chosen. Our goal
in this paper is to compare the accuracy of different approaches
for data-driven technology forecasting, namely Data Envelop-
ment Analysis (DEA), nonparametric and parametric frontier
estimation models. As a result, we obtain initial insights on
the validity of different computational methods.

The remainder of this paper is structured as follows. Sec-
tion 2 provides a classification of efficient frontier estimation
algorithms, further developing the characterization between
model-based and data-based approaches. Section 3 describes
the data-driven frontier estimation algorithms which accuracy
is compared in this paper. The section as well defines the
benchmark against which the comparison is made. Section
4 provides a numerical comparison of the accuracy of the
algorithms and provides a discussion of the results. Section 5
draws conclusion from the paper and outlines directions for
future research.

II. CLASSIFICATION OF THE EFFICIENT FRONTIER
ESTIMATION ALGORITHMS

An integrating concept for these approaches is an efficient
frontier which can be defined as a surface in the n-dimensional
FoMs space which contains all efficient points we potentially
could achieve. An efficient frontier is referred to as a Pareto
frontier when for each point on the frontier it is impossible
to improve one figure of merit (FoMs) without worsening the
other FoMs.

Standard DEA models (Charnes, Cooper and Rhodes (CCR)
[4] and Banker, Charnes and Cooper (BCC) [5]) are able
to estimate only convex upward Pareto efficient frontiers.
It is sufficient for estimating production-possibility frontiers
which are the tradeoffs of producing the combination of
competing goods with the limited resources. However, the
curves representing possible tradeoffs between performances
of a technical system are in a broader range of shapes due to
the often nonlinear physical nature of underlying processes.

For example, on fig. 1 a is depicted convex-downward
Pareto efficient frontier which can be found in analysing
petrol engine car power vs miles per gallon fuel consumption
measure [3].

U-shape frontiers (fig. 1 d, e) are common for aircraft fuel
efficiency analyses. If FoM 1 is an aircraft velocity then the
total airdrag (FoM 2) will have a U-shape as a compound
of increasing with velocity parasitic drag and decreasing with
velocity lift-induced drag [6].

The simplest way to obtain frontier with concavity-
convexity changes (non-convex) is to analyse FoM composed
from frontier of U-shape and convex downward Pareto efficient
frontier (fig. 1 c).

In practice this happens when we are trying to estimate
some broad technology field with complex physics behind.
As an example, the power conversion efficiency depending on
wavelength in solar cells exhibit such behaviour.

Let’s now show that U-shape frontier is not Pareto efficient.
Suppose ideally we want to maximize both FoMs. Then for

Fig. 1: All possible in a two-dimensional space classes of
efficient frontier shapes (only upper left is DEA compatible).

low values of FoM 1 frontier behaves as usual Pareto-efficient
frontier. For FoM 1 high values we observe simultaneous
improvement of both FoMs (which is contradicting with def-
inition of Pareto efficiency). This does not mean that optimal
solutions for all applications are existing only in this part of
frontier. Suppose FoM 1 in our example is the capacity of
some transportation system. In general, we want to maximize
capacity. However, capacity is often associated with size,
which may be constrained for some applications.

In technology planning process it often makes sense, how-
ever, to explore all options regardless the application so to see
whole picture.

It is therefore important to obtain a good estimation on
frontiers of any shape, so to know what is technically achiev-
able. The main goal of frontier estimation algorithms is to
construct the frontier accurately and efficiently. The mathemat-
ical setting for model-based and data-driven cases is however
completely different.

For model-based estimation, we have a model allowing us
to generate as many points as needed. If the frontier is a
continuous function then the number of points that could be
generated theoretically unlimited. If the setting is discrete we
can theoretically construct a full frontier as the number of
possible values is limited.

In the case of data-driven estimation we have the points
already generated in the form of market data and the number
of points is therefore always limited; in this case we can never
achieve a perfect information about the frontier.

In model-based estimation, the calculation of FoMs for
each design point may take a significant amount of time
(e.g. to calculate gain of the microwave antenna with specific
configuration one may need to solve a set of electrodynamic
differential equations using FEM). That is why many efforts in
this field were devoted to the development of the special meth-
ods whose goal it is to generate solutions evenly distributed in
the design space with as objective to reduce the computational



time to solve the multiobjective optimization problem [7]–[9].
Some methods are indicating as an important sub-goal the
ability to overcome the frontier concavity-convexity changes
[7].

The classification of efficient frontier estimation algorithms
is shown on figure 2.

Fig. 2: Efficient frontier estimation algorithms classification.

III. DATA-DRIVEN EFFICIENT FRONTIER ESTIMATION
ALGORITHMS

Data-driven approaches have been considered mostly in the
econometry rather than in engineering sciences. For purposes
of conceptual design we are interested in the following prop-
erties of the estimation algorithm: proximity of the estimate to
the real frontier and the ability to estimate all possible shapes
of technology frontiers.

The most general statistical model of the efficient frontier
was formulated within the framework of the Stochastic Fron-
tier analysis (SFA) in [10]. For each i-th design point (xi, yi)
of the given set in n-dimensional FoM space we can write the
following statistical model:

f(x) = f(xi, β) + ui + vi (1)

The function f(x, β) is the efficient technology frontier that
represents current best practice. β is a vector of frontier’s
parameters to estimate. According to SFA, there are two types
of random processes influencing performances of a design
point (or decision making unit, DMU). The first one (ui ≤ 0)
represents an internal inefficiency of each design point. It is
called slack (see fig. 3) and has the one-sided distribution (any
design point could lie in front of frontier, so slacks are always
negative). The second random component vi is distributed
symmetrically and represents factors that are out of control of a
design team. This random component introduces the concept
of the stochastic frontier. Authors of [10] have pointed out
that best achievable performances could vary across DMUs
due to external factors such as climate, policy, socio-economic

situation, etc. Accordingly, if σ(v) = 0 the stochastic frontier
model (1) turns into deterministic frontier model. In this paper
we are discussing the latter class of frontier estimation models.

Fig. 3: Efficient frontier and finite number of design points.

In our numerical experiment for parametric approaches
testing we will use the deterministic model proposed by
Aigner and Chu [11]. The model of a design point with two
conflicting FoMs (xi, yi) can be represented in the following
form:

yi = xβ1

i e
β0eui , ui ≤ 0 (2)

Or in the logarithmic form:

ln yi = β1 lnxi + β0 + ui, ui ≤ 0 (3)

A frontier now can be estimated by solving the following
quadratic optimization problem:

min
β0,β1

(∑
i

ln yi − β1 lnxi − β0
)2

subject to β1 lnxi + β0 ≥ ln yi

(4)

The model (3) estimates only convex in (x, y) space fron-
tiers. To estimate concave frontiers we propose to use the
following modification of this model:

yi
ymax

= (1− xβ1

i e
β0)eui →

β1 lnxi + β0 = ln
(

1− yi
ymax

e−ui

) (5)

min
β0,β1

(∑
i

ln
(

1− yi
ymax

)
− β1 lnxi − β0

)2
subject to β1 lnxi + β0 ≥ ln

(
1− yi

ymax

) (6)

The main disadvantage of parametric models is that one
need to define the frontier model f(x, β). In case of con-
ceptual design of a complex system an analytical model of
a performance limiting curve has an unknown form. That is
why nonparametric models are of the particular interest to us.

The most popular nonparametric model in econometrics is
DEA. The idea of DEA is to calculate the relative efficiency



of decision making units with multiple FoMs with the specific
linear optimization procedure [4], [5].

min
λ
θ

subject to θxi −Xλ ≥ 0

Y λ ≥ yi
eλ = 1

λ ≥ 0

(7)

where X and Y are the vectors of input and output FoMs.
λ is the vector of weighting coefficients. θ is the output-
oriented efficiency score of the j-th design point. The process
is repetitive for each design point (xj , yj).

CCR [4] and BCC [5] DEA models are able to estimate only
concave frontiers. This drawback is major for our purposes. In
engineering two or more conflicting FoMs could have different
units of measure and therefore possess distinct physical natures
(e.g. one FoM may represent mass and a second one cost). As
result, frontiers may be both convex and concave.

To relax the concavity constraint, some other approaches
are available.

The most trivial approach is to transform output-oriented
FoMs to input oriented by the nonlinear transformation (X ′ =
Y −1) and solve the inputs minimization problem instead of
outputs maximization with the same DEA estimation model.
However, this is not the best option since the nonlinear
transformation itself is a source of error.

Also, so called free disposal hull approach was presented in
[12]. This model is free from any assumptions of a frontier’s
shape. Consequently, a set of nondominated points is the result
of such procedure, which means the big estimation error,
especially for small sets.

The existing models hence impose either redundant con-
straints on the frontier’s shape, or lead to the poor approxima-
tion. Therefore, we propose our own nonparametric approach.
We assume that in most cases technology frontiers are either
concave or convex on the entire domain. Thus, the only
constraint we want to put on the arbitrary frontier is the
prohibition of convexity and concavity changes:

f(x)′′ ≥ 0 or f(x)′′ ≤ 0 (8)

For sorted by x finite set (xi, yi) of nondominated design
points we can formulate the following quadratic optimization
problem:

min
fi

∑
i

(fi − yi)2

concave:
fi+1 − fi
xi+1 − xi

≥ fi+2 − fi+1

xi+2 − xi+1

convex:
fi+1 − fi
xi+1 − xi

≤ fi+2 − fi+1

xi+2 − xi+1

fi ≥ yi

(9)

The relative distance from a design point to a corresponding
efficient frontier with respect to the zero point is called radial

efficiency (ratio between AB and OB on fig. 3). There are
two ways to calculate the accuracy (or goodness of fit). It can
be defined as an average distance between the estimated and
the true efficient frontier or as an average absolute deviation
between the radial efficiencies calculated for points with
respect to the true frontier and to its estimate. We will use
the latter in our numerical experiment in the following form:

∆ =
1

N

N∑
i=1

|θi,true − θi,estimated| (10)

In real life, the true frontier is unknown but in this paper to
perform the methods comparison we will generate the true
frontier and the slacks to demonstrate the methods perfor-
mances.

For illustrative purposes we will use three real technology
frontiers with different curvature for generation of simulated
datasets.

The first one is the Tsiolkovsky’s rocket equation:

f
(mf

m0

)
= −Isp g0 ln

mf

m0
(11)

where mf

m0
ratio of the final mass to the initial mass, g0 –

standard gravity, Isp – specific impulse (we will take Isp =
250 s).

The second one is the piecewise linear payload-range dia-
gram for an airplane with the parameters: 50 ton of maximum
payload, 5000 km range with maximum payload, 25 ton of
payload with maximum fuel, 9000 km with maximum fuel,
11000 km range with zero payload.

And the third frontier is derived from the equation for a
power:

P =
W

t
(12)

where P is power, W is work (or energy), t is time. This
equation is generic and therefore very common for many
conceptual design studies.

For all the frontiers we will generate random datasets con-
sisted of 15 and 30 points with slacks distributed exponentially
(with β = 0.15). Expected values and variances are calculated
for 25 trials. The visualizations of the simulated datasets are
shown on the figures 4-9. The numerical results are listed in
the table 1.

IV. CONCLUSIONS

In this paper we have conducted the numerical study in
which the following empirical findings were obtained:
• In the field of conceptual design studies for the maxi-

mization problem of two conflicting FoMs both convex
(Tsiolkovsky rocket equation and power equation) and
concave (payload-range diagram) frontiers may be en-
countered.

• Nonlinear transformation of the outputs maximization
problem to the inputs minimization problem in some
cases does not preserve the form of frontier and therefore
leads to transformation errors.



Fig. 4: Tsiolkovsky rocket equation, 15 points.

Fig. 5: Payload-range diagram, 15 points.

Fig. 6: Reciprocal function, 15 points.

Fig. 7: Tsiolkovsky rocket equation, 30 points.

Fig. 8: Payload-range diagram, 30 points.

Fig. 9: Reciprocal function, 30 points.



TABLE I: RESULTS OF NUMERICAL EXPERIMENT

Expected value and variance of errors
(µ, σ2), %

Model,
number
of points

DEA
VRS

DEA
Inputs
transf.

Nonparam.
Parametric
(Aigner

and Chu)
Payload-
range, 15 (3.7, 1.3) - (3.7, 1.3) (3.8, 1.2)

Tsiolkovsky,
15 (4.3, 1.1) (4.8, 1.7) (3.6, 1.3) (3.4, 1.9)

Reciprocal,
15 (12.2, 3.1) (5.6, 1.8) (4.1, 1.8) (2.4, 1.4)

Payload-
range, 30 (2.6, 1.1) - (2.6, 1.1) (3.5, 1.1)

Tsiolkovsky,
30 (5.2, 1.2) (2.9, 0.7) (2.1, 0.5) (2.4, 1.0)

Reciprocal,
30 (15.2, 2.9) (3.7, 0.8) (2.3, 0.6) (1.0, 0.6)

• With respect to DEA our proposed approach is equal
in the case of concave frontiers estimation and more
accurate in the case of convex frontiers.

• With respect to the parametric approach our proposed
algorithm provides less accurate and robust estimates.
However, in the case of inappropriate function form as-
sumptions (see results for the Tsiolkovsky equation where
the exponential assumption is not valid for the logarithmic
function) our nonparametric approach provides better
results. And since in systems engineering frontiers often
take very complex forms and it is impossible to find an
analytic form or an appropriate approximation curve for
most of tradespace exploration problems, nonparametric
approaches are preferable.

The importance of the stochastic frontier paradigm adoption
for conceptual design is one of the direction for the further
research. Undoubtedly, quite often the technical efficiency is
not the only decisive factor due to protectionist measures. In
this case a goal of a design team may be formulated as the
achieving of the mediocre performances. On the other hand,
the world-class performances may not be achievable for some
regional manufacturers. However, such analysis requires the
strong emphasis on the model’s assumptions and the existence
of more extensive datasets and therefore may be applied only
to mass production industries.

Another direction for the further research is the possible
extension of our nonparametric approach to the general n-
dimensional form, which was left out of the current study
scope.
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