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Experimental Comparison of New Adaptive PI Controllers Based on the
Ultra-Local Model Parameter Identification
Hajer Thabet*, Mounir Ayadi, and Frédéric Rotella

Abstract: This paper is devoted to an experimental comparison between two different methods of ultra-local model
control. The concept of the first proposed technique is based on the linear system resolution technique to estimate
the ultra-local model parameters. The second proposed method is based on the linear adaptive observer which
allows the joint estimation of state and unknown system parameters. The closed-loop control is implemented via an
adaptive PID controller. In order to show the efficiency of these two control strategies, experimental validations are
carried out on a two-tank system. The experimental results show the effectiveness and robustness of the proposed
controllers.

Keywords: Adaptive PID controller, least squares method, linear adaptive observer, parameter estimation, robust-
ness, trajectory tracking, two-tank system, ultra-local model control.

1. INTRODUCTION

Modern control system techniques are mostly based on
an accurate mathematics modeling [1]. Therefore, de-
scribing the behavior of an industrial plant with simple
and reliable differential equation is challenging due to the
difficulties to adapt it at an industrial environment. Then,
instead of relying on a complex accurate structure of the
controlled system model, the ultra-local model control,
which is an approach recently introduced by Fliess and
Join [2–5], does not necessitate any mathematical model-
ing. The advantages of ultra-local model control and of
the corresponding adaptive PID controllers led to a num-
ber of exciting applications in various fields [2, 4–6].

The used simple model is continuously updated with the
aid of online estimation techniques [7–11]. The algebraic
derivation method developed in [2] is restricted by the es-
timation of a single parameter, and the second parame-
ter is considered constant and imposed by the practitioner.
This paper presents fast identification methods allowing
to estimate the two parameters of ultra-local model. The
first technique is based on linear system resolution method
which uses a simple calculus and linear algebra.

The second technique is based on the adaptive ob-
server allowing the simultaneous estimation of state and
unknown parameters. The design of adaptive observer
ensures the joint state and parameter estimation, pro-
vided some persistent excitation conditions is satisfied.
For multi-input-multi-output (MIMO) linear time varying
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(LTV) systems, an adaptive observer, proposed in [12,13],
is conceptually simple and computationally efficient. For
single-input-single-output (SISO) time invariant system,
some results can be found in [14,15]. Hence, the design of
the proposed adaptive PID controller is based on an adap-
tive observer allowing the estimation of the two ultra-local
model parameters.

An experimental and robustness comparison between
the linear system resolution method and the adaptive ob-
server based method is proposed in this paper. The aim
is to estimate the ultra-local model parameters with two
different methods. In order to clarify the performance ob-
tained by these two techniques, the ultra-local model con-
trol is implemented for a two-tank water system. There-
fore, this implementation is carried out to test the robust-
ness performances with respect to the noises and distur-
bances rejection.

The paper is organized as follows: A short review of
ultra-local model control and the corresponding adaptive
PIDs controllers are presented in Section 2. Section 3 de-
velops two different methods of online ultra-local model
parameter identification: linear system resolution method
and adaptive observer based method. An implementation
of ultra-local model control on a two-tank system is stud-
ied in Section 4, where experimental results are shown.
Some concluding remarks are provided in Section 5.

2. A SHORT REVIEW OF ULTRA-LOCAL
MODEL CONTROL



For simplicity’s sake of the presentation, we assume
that the system is SISO. The control input is denoted by u
and the output is denoted by y. The input-output behavior
of the system is assumed to be well approximated within
its operating range by an ordinary differential equation:

E
(

y(t) , ẏ(t) , . . . ,y(a) (t) ,u(t) , u̇(t) , . . . ,u(b) (t)
)

= 0, (1)

which is nonlinear in general and unknown or at least
poorly known. The ultra-local model control principle
consists in replacing (1) by the ultra-local model:

y(ν) (t) = F̂ (t)+ α̂ (t)u(t) , (2)

where F̂ (t) and α̂ (t) represent the model parameters con-
taining all the structural information. Let us underline that
these two parameters sum up the influence of disturbances
and their derivatives.
As we have assumed that we do not know any model of
the system, the order ν of the ultra-local model (2) can be
arbitrarily chosen. In several existing examples, M. Fliess
and C. Join indicate that ν may always be chosen quite,
i.e., 1 or 2, and 1 in all concrete situations.

2.1. Adaptive controllers design
Consider the ultra-local model (2), the desired behavior

is obtained thanks to an adaptive controller as follows:

u(t) =
−F̂ (t)+ y(ν)

d
(t)+Θ(e(t))

α̂ (t)
, (3)

where:

• yd (t) is the output reference trajectory, obtained ac-
cording to the precepts of the flatness-based control
[16–18].

• e(t) = yd (t)− y(t) is the tracking error.
• Θ(e(t)) is a causal, or non-anticipative, functional

of e(t), i.e., Θ(e(t)) depending on the past and the
present, and not on the future (see [19] for more de-
tails about the functional).

The principle of ultra-local model based control is pre-
sented in the Fig. 1. This setting is too general and might
not lead to easily implementable tools. This shortcoming
is corrected in the following.

2.2. Adaptive PID controllers
Considering the case where ν = 2, equation (2) be-

comes as follows:

ÿ(t) = F̂ (t)+ α̂ (t)u(t) . (4)

Therefore, the loop is closed via an adaptive Proportional-
Integral-Derivative controller [20, 21], or a-PID, given by

Fig. 1. Ultra-local model control.

the following control law:

u(t) =
−F̂ (t)+ ÿd (t)+Kpe(t)+KI

∫
e(t)+KDė(t)

α̂ (t)
.

(5)

Combining (4) and (5) yields to:

ë(t)+KDė(t)+KPe(t)+KI

∫
e(t) = 0. (6)

Note that the two functions F̂ (t) and α̂ (t) don’t appear
anymore in the equation (6), i.e., the unknown parts and
disturbances of the system vanish. We are therefore left
with a linear differential equation with constant coeffi-
cients of order 3. The tuning of KP, KI and KD be-
comes therefore straightforward to obtain a good tracking
of yd (t).
Assume now that ν = 1 in (2):

ẏ(t) = F̂ (t)+ α̂ (t)u(t) . (7)

The desired behavior is achieved by the adaptive
Proportional-Integral controller, or a-PI, defined by:

u(t) =
−F̂ (t)+ ẏd (t)+Kpe(t)+KI

∫
e(t)

α̂ (t)
. (8)

The combination of (7) and (8) gives:

ë(t)+KPė(t)+KIe(t) = 0. (9)

The tracking condition is therefore easily satisfied by an
appropriate choice of KP and KI . It boils down to the sta-
bility of a linear differential equation of order 2 with con-
stant real coefficients.

3. ONLINE PARAMETER IDENTIFICATION
METHODS

3.1. Algebraic derivation method of Fliess-Join
In the first publications on the ultra-local model control

[2–4], a recent techniques based on the algebraic deriva-
tions of noisy signals [7, 8] are applied to estimate the pa-
rameter F̂ of the ultra-local model (2). However, the sec-
ond parameter α of the model (2) is considered as constant
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coefficient. For ν = 1, the parameter F̂ (t) is determined
thanks to the knowledge of u(t), α and the estimate of the
first order derivative of output signal y which is written as
follows:

̂̇y =− 3!
T 3

∫ T

0
(T −2t)y(t)dt, (10)

where [0,T ] is quite short time window of estimation
which is sliding in order to get the estimate ̂̇y at each time
instant. At the sampling time kTe (i.e. t = kTe, where Te

denotes the sampling period), the estimate of F̂ is written
as follows:

F̂k = ̂̇yk −αuk−1, (11)

where ̂̇yk is the estimate of the first derivative of the system
output that can be provided at the instant k, α is a constant
design parameter, and uk−1 is the control input that has
been applied to the system during the previous sampling
time. In practice, the arbitrary choice of the static gain
α present the first point that renders a delicate choice for
the adaptive PID control strategy. However, the simulta-
neous estimation of the two parameters F̂ and α̂ by other
alternative methods can provide a better improvement of
results.

3.2. Linear system resolution method
Assuming the numerical control with constant sampling

period Te which allows to dispose on the system an avail-
able information until the instant kTe and a constant con-
trol uk−1 between the two instants (k−1)Te and kTe. From
the simple model ẏ(t) = F̂ (t)+ α̂ (t)u(t), the integration
between two sampling instants gives:

yk = yk−1 +
∫ kTe

(k−1)Te

F̂ (t)dt +
∫ kTe

(k−1)Te

α̂ (t)u(t)dt

= yk−1 +
∫ kTe

(k−1)Te

F̂ (t)dt +
[∫ kTe

(k−1)Te

α̂ (t)dt
]

uk−1.

(12)

Let F̂k and α̂k the mean values of F̂ (t) and α̂ (t) in the
interval [(k−1)Te,kTe]. Finally, we get:

yk = yk−1 + F̂kTe + α̂kTeuk−1. (13)

Considering the following notations:

Yk =
yk − yk−1

Te
, HT

k =

[
1

uk−1

]
, θ T

k =
[

F̂k α̂k
]
,

(14)

the previous equation (13) can be written in the following
linear system form:

Yk = Hkθk. (15)

Since the regression matrix Hk =
[

1 uk−1
]

has a de-
fault rank. Then, this system is always consistent, i.e.,
rank [Hk] = rank

[
Hk Yk

]
. The aim is to seek at each

instant kTe the estimation of the parameter vector θk. Ac-
cording to the linear system resolution technique detailed
in [22], the general expression of estimation is written as
follows:

θk = H{1}
k Yk +

(
Im+1 −H{1}

k Hk

)
Λk, (16)

where:

• H{1}
k denotes the Moore-Penrose generalized inverse

of Hk, that is mean the matrix X such as HXH = H
[23],

• Λk is an arbitrary matrix of size (m×1).

The coefficients of matrix Λk appear as degrees of free-
dom that can be used to satisfy other relating constraints
to the system control, e.g., optimization constraints. How-
ever, these degrees of freedom are equal to the rank of the
matrix Im+1 −H{1}

k Hk.
Based on the numerical knowledge of F̂ and α̂ , the con-
trol input is calculated in (2) as a closed-loop tracking of
a reference trajectory t → yd (t), and a simple cancellation
of the nonlinear terms F̂ and α̂ .

3.3. Adaptive observer method
Before formally presenting the adaptive observer algo-

rithm, we introduce some transformations on the structure
of ultra-local model to properly formulate the problem. In
the following, the two cases of ultra-local model, where
ν = 1 and ν = 2, are studied. Firstly, consider the case
where ν = 1. Then, the ultra-local model (7) can be writ-
ten in the following relation:

ẏ(t) = F̂ + α̂u(t)

= u(t)+
[

1 u(t)
][ F̂

α̂ −1

]
.

(17)

From the equation (17), the ultra-local model (7) can be
represented in the form of a linear time-invariant SISO
state-space system as follows (see the work of Q. Zhang
[12] for more details about these systems):

ẋ(t) = Bu(t)+Ψ(t)θ ,
y(t) =Cx(t) ,

(18)

where x(t) ∈ R, u(t) ∈ R and y(t) ∈ R are respec-
tively the state, input and output of the system, θ =[

F̂ α̂ −1
]T ∈Rp is a column vector of parameters as-

sumed unknown, Ψ(t) =
[

1 u(t)
]
∈ R1×p is a vector

of measured signals. In this case, A = 0, B = C = 1 and
y(t) = x(t).



Now, consider the case where ν = 2, and assuming
the state vector x(t) =

[
y(t) ẏ(t)

]T . The ultra-local
model (4) is transformed in the following matrix form:

ẋ(t) =
[

0 1
0 0

]
x(t)+

[
0
F̂

]
+

[
0
α̂

]
u(t)

=

[
0 1
0 0

]
x(t)+

[
0
1

]
u(t)+

[
0 0
1 u(t)

][
F̂

α̂ −1

]
.

(19)

From the relation (19), the following linear time-invariant
SISO state-space system is obtained. This formalism al-
lows us to apply the adaptive observer of Q. Zhang devel-
oped in [25]:

ẋ(t) = Ax(t)+Bu(t)+Ψ(t)θ ,
y(t) =Cx(t) ,

(20)

where:

• The matrix A and the vectors B and C are defined by:

A =

[
0 1
0 0

]
, B =

[
0
1

]
, C =

[
1 0

]
.

• The matrix of measured signals Ψ(t) and the vector
of parameters are given as follows:

Ψ(t) =
[

0 0
1 u(t)

]
, θ =

[
F̂

α̂ −1

]
.

The design of an adaptive observer is studied in the fol-
lowing in order to estimate the state x(t) ∈ Rn and the
parameters θ ∈ Rp from the measured signals u(t) ∈ R,
y(t) ∈ R, Ψ(t) ∈ Rn×p, and the matrices A, B, C. In prac-
tice, it is difficult to check the uniform complete observ-
ability [24] of the extended system (20) that should take
into account some persistent excitation condition. There-
fore, instead of assuming the uniform complete observ-
ability of the extended system, the adaptive observer de-
veloped in this paper is based on the stabilizability of the
matrix pair (A,C) and on some persistent excitation con-
ditions, described in the following assumptions Assump-
tion 1 and Assumption 2. Noting that the assumptions
proposed in [25] are designed for MIMO time-varying
systems, however, the two following assumptions are re-
stricted to SISO systems with constant matrices A, B and
C.

Assumption 1: Assume that the matrix pair (A,C) in
system (20) is such that there exists a vector of constant
gain K ∈ Rn so that the system:

η̇ (t) = [A−KC]η (t) (21)

is globally exponentially stable.
Assumption 2: Let ϒ(t) ∈ Rn ×Rp be a matrix of sig-

nals generated by a stable filter such as:

ϒ̇(t) = [A−KC]ϒ(t)+Ψ(t) . (22)

Assume that Ψ(t) is persistently exciting so that there ex-
ist two positive constants δ and L such that, for all t, the
following inequality is satisfied:∫ t+L

t
ϒT (τ)CTCϒ(τ)dτ ⩾ δ I (23)

with I ∈ Rp ×Rp the identity matrix.

Assumption 1 states that for any given parameter θ , a
state observer with exponential convergence can be de-
signed for system (20). The gain K sets the estimator dy-
namics. Assumption 2 is a persistent excitation condition,
typically required for system identification.

Theorem 1: Let Γ ∈ Rp ×Rp be any symmetric posi-
tive definite matrix. Therefore, under Assumptions 1 and
2, the following system of ordinary differential equations:

˙̂x(t) = Ax̂(t)+Bu(t)+Ψ(t) θ̂ (t)

+
[
K +ϒ(t)ΓϒT (t)CT ] [y(t)−Cx̂(t)] , (24)

˙̂θ (t) = ΓϒT (t)CT [y(t)−Cx̂(t)] (25)

is a global exponential adaptive observer for the system
(20).

Remark 1: The matrix ϒ(t) is generated by a stable
linear filtering of Ψ(t) (for more details, see [12, 13]).
Typically, the gain vector K is chosen only to ensure the
stability of (A−KC), the total gain for the state estima-
tion being K +ϒ(t)ΓϒT (t)CT . Γ allows to set the rate of
convergence between the state and the parameters.

Remark 2: For any initial conditions x(t0), x̂(t0),
θ̂ (t0) and ∀θ ∈ Rp, the estimation error x̂(t)− x(t) tend
to zero exponentially fast when t → ∞.

The proof of theorem 1 requires the following lemma.

Lemma 1: Let ϕ (t)∈R×Rp be a bounded and piece-
wise continuous matrix and Γ ∈ Rp ×Rp be any symmet-
ric positive definite matrix. If there exist positive constants
L, δ such that ∀t:∫ t+L

t
ϕ T (τ)ϕ (τ)dτ ⩾ δ I, (26)

then the system:

ż(t) =−Γϕ T (t)ϕ (t)z(t) (27)

is exponentially stable.

The lemma of the case with a symmetric positive defi-
nite matrix Γ can be proved by simply adapting the proof
of [26].

Proof of Theorem 1: For notational convenience, the
variables are writing independently of t. The combina-
tion of the two adaptive observer equations (24) and (25)
yields to:

˙̂x = Ax̂+Bu+Ψθ̂ +K (y−Cx̂)+ϒ ˙̂θ .



Let x̃ = x̂− x, θ̃ = θ̂ −θ and notice that θ̇ = 0, then:

˙̃x = (A−KC) x̃+Ψθ̃ +ϒθ̃ . (28)

The key step of the proof is to define the following linear
combination of x̃ and θ̃ :

η (t) = x̃(t)−ϒ(t) θ̃ (t) .

After some simple computation, we obtain:

η̇ = (A−KC)η +
[
(A−KC)ϒ+Ψ− ϒ̇

]
θ̃ .

Since ϒ is generated by (22), we simply get:

η̇ = (A−KC)η . (29)

By construction (A−KC) is asymptotically stable, so
η → 0 with exponential convergence. Now we should
study the behavior of θ̃ . As θ̇ = 0, we have:

˙̃θ =ΓϒTCT (y−Cx̂) =−ΓϒTCTCx̃

=−ΓϒTCTC
(
η +ϒθ̃

)
. (30)

Let us first look at the homogeneous part of system (30),
that is:

θ̃ =−ΓϒTCTCϒθ̃ . (31)

Since Ψ is bounded, then ϒ generated from the exponen-
tially stable system (22) is also bounded. From the per-
sistent excitation condition (23) and by applying Lemma
1 with ϕ = Cϒ, (31) is exponentially stable. From the
exponential convergences of η and of system (31), we
prove that θ̃ → 0 when t → ∞. Finally, from η → 0,
θ̃ → 0 and the fact that ϒ is bounded, we conclude that
x̃ = η +ϒθ̃ → 0 with global exponential convergence. In
the following, a practical implementation of the two pro-
posed ultra-local model control approaches for a two tank
system is given. In the both control techniques, the previ-
ous designed adaptive PI controller is considered.

4. TWO-TANK-SYSTEM APPLICATION

4.1. Nonlinear model system
The experimental system used is a two-tank-system de-

scribed in Fig. 2. This system consists of a pump and two
tanks with orifices and level sensor at the bottom of the
upper tank. The pump provides infeed to the upper tank
and the outflow of upper tank becomes infeed to the lower
tank. In this system, the two identical water tanks have
the same section S. Denote by h1 (t) the water level in
the upper tank, which also represents the system output
and h2 (t) the water level in the lower tank. The nonlinear
model of the considered system is defined by the follow-
ing representation:

ḣ1 (t) =−k1

S

√
h1 (t)+

K
S

VP (t) ,

ḣ2 (t) =
k1

S

√
h1 (t)−

k2

S

√
h2 (t),

(32)

Fig. 2. Two-tank-system.

Fig. 3. The experimental setup of acquisition and control
system.

where K is the pump constant and VP (t) is the voltage ap-
plied to the pump. The term ki

√
hi (t), i = 1,2, comes

from the gravity flow. The two parameters k1 and k2 rep-
resent the coefficients of the canalization restriction.
These two equations are nonlinear due to the presence of
the term

√
h(t), hence the most difficult task in the control

of this considered system will be the control of the water
level h1 (t) in different operating conditions.

4.2. Control design

For implementing the proposed ultra-local model con-
trol, we choose to generate a desired trajectory hd

1 (t) en-
sures a transition from hd

1 (t0) = 2 V to hd
1 (t f ) = 3 V with

t0 = 100 s and t f = 300 s. Fig. 3 displays a full description
of our acquisition and control system. The pump ensures
the filling of the upper tank and it is controlled by a PC
which serves as a real-time target to Simulink. The filtered
measurements are acquired by the acquisition card PCI-
1711. This card provides the communication between the
two-tank system and the PC during the running in auto-
matic mode. The measurements are filtered by a first order
with time constant T . The system parameters are summa-
rized in Table 1.

For the experimental applications of control ap-
proaches, the same a-PI controllers are implemented



Table 1. Parameter values of the considered system.

Parameter Value
S 332.5 cm2

k1 42.1 cm5/2/s
k2 42.1 cm5/2/s
K 16.65

with KP = 20 and KI = 3.5. In the case of linear sys-
tem resolution (LSR) method, we choose Te = 0.1 s and
Λk =

[
−2.5 0.5

]T . The parameters of the adaptive
observer (AO) based method in the case of ν = 1, are
choosen K = 10 and Γ = diag([5,0.05]).

4.3. Experimental results
Figs. 4 and 5 present the experimental results of the pro-

posed control approaches. For the experiments, the mea-
surements of the level water in the upper tank are filtered
by a low pass filter with time constant T = 0.3 s. This
filter is added in order to attenuate the influence of the
quick fluctuations. At t = 325 s, a level water perturba-
tion which simulates a default sensor, is applied directly
to the system in order to test the robustness of our pro-
posed control approaches. Noting that the same response
time is obtained in the different experimental case-studies.
This amounts to the choice of the same adaptive controller
gains. It is clear that, the water level tracking perfor-
mance is provided thanks to the proposed adaptive con-
trollers. The ultra-local model control based on adaptive
observer, when ν = 1, provides better trajectory tracking
performances (see Fig. 5) than the case of linear system
resolution (LSR) method. Moreover, the water level per-
turbation is quickly and similarly rejected in the different
cases of a-PI controllers. In the two figures 4, 5, we can
observe the smoothness of the control inputs which have
practically the same magnitudes.

Consequently, the good tracking performances and the
good robustness towards the level water disturbances
are obtained thanks to the proposed adaptive controllers
which are based on an online estimation of the two ultra-
local model parameters. Noting that the main aim of this
paper is not the parameter identification but to obtain in
each instant t parameters which satisfies the ultra-local
model.

5. CONCLUSIONS

The main contributions of this paper are the design
and the application of new ultra-local model control ap-
proaches for the water level system. The paper exposes an
ultra-local model control with different proposed methods
of parameter estimation. The experimental results show
that the a-PI controllers approaches are able to ensure
good trajectory tracking even in various operating condi-

tions. In addition, the ultra-local model controllers are
robust with respect to corrupting noises and external dis-
turbances. The most important benefit of this work is the
online estimation of the two ultra-local model parameters
which provide an improvement in terms of robustness per-
formances.

Despite that the proposed control algorithms are in-
novative in the field of level water control, good perfor-
mances in terms of robustness and tracking are obtained.
Due to its robustness and simplicity of implementation,
the ultra-local model control appears particularly adapted
to industrial environments. Finally, it is straightforward to
extend the ultra-local model control approaches to some
MIMO systems.
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