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Abstract: Although reflectometry is an efficient method to diagnose simple topologies (such as
transmission line, Y shape network), it remains limited in the case of complex branched networks
due to multipath fading of the test signal during its propagation. Generally, the knowledge of the
environment in which the cable operates gives an additional idea about the fault location. The
current paper proposes to introduce the cable life profile (such as environmental stress, type,
age, noise, etc.) to detect and cancel diagnosis ambiguities and provide a precise location of the
fault. Bayesian Network (BN) seems to be a suitable solution to offer a coherent representation
of knowledge domain (reflectometry method, cable characteristics and network heterogeneity)
under uncertainties (fault(s) location, systems reliability and measurement precision). In this
work, a two-stages BN model for diagnosis using reflectometry in branched networks is proposed
and simulation results are discussed.

1. INTRODUCTION

The growing need for wiring in avionics, automotive,
telecommunications, nuclear plants, buildings, etc., has
caused the increase of the cable length. The type of cable
(coaxial, twisted pair, fiber optic, etc.) depends on the
nature of the propagating signal (data and energy) into
network, the corresponding voltage level and the environ-
ment (noise, temperature, vibration, etc.) in which the
cable is implemented. One day or another, a cable will
show signs of damage resulting in fault appearance (short
and open circuit, aging, etc.). These faults can be a con-
sequence of environmental stress (heat, moisture, chafes,
etc.). Therefore, a wiring diagnosis system is needed to de-
tect and locate faults as early as possible. Reflectometry is
a suitable diagnosis technique as it requires a single access
point to inject a test signal into the cable network. During
its propagation, a part of its energy is reflected back to the
access point for each impedance discontinuity met (fault,
junction, etc.). Then, the analysis of the reflected signals,
commonly called “Reflectogram”, permits to characterize
this discontinuity. In the literature, several reflectometry
methods have been proposed depending on the studied
domain and the type of test signal Auzanneau [2013].
Although standard reflectometry has proven its efficiency
in wire fault detection, it suffers from ambiguity problems
related to fault location in branched networks. As a solu-
tion, a distributed diagnosis strategy has been proposed
Hassen et al. [2013b]. It consists in a diagnosis system
made of several sensors also called “reflectometers”, to
make reflectometry measurements at different ends of the
cable network. Here, the major issue is related to the
reflectometer’s reliability, number and location, signal pro-
cessing, resource allocation, communication protocol, etc.

Based on the uncertainty regarding reflectometer’s fail-
ure, measurement precision and fault location, the use of
BNs is motivated by the combination of deterministic and
stochastic behaviors of such diagnosis systems Villeneuve
et al. [2011].
In previous works Hassen et al. [2012] and Hassen et al.
[2013a], reflectometers’ number reduction in branched net-
works and its impact on the diagnosis quality have been
studied. Firstly, a deterministic case implementation was
considered with a reflectometer implemented at each end
of a cable network. Secondly, one or more reflectome-
ter(s) was/were removed and the diagnosis uncertainty was
estimated at each time. Finally, communication among
reflectometers was included to guarantee a good diagno-
sis quality. However, this communication imposes further
challenges related to bandwidth allocation, communica-
tion protocol and noise interference mitigation. In this
work, the cable life profile is included to overcome am-
biguity problems related to the fault location in complex
branched networks. This permits to reduce the diagnosis
cost by avoiding the use of too many reflectometers in the
network. The rest of this paper is organized as follows. In
section 2, the fault location ambiguity problem in branched
networks is presented. Then, the formalism of BNs is
introduced in section 3. In section 4, the diagnosis strategy
approach using Bayesian Networks is proposed. To prove
the proposed strategy’s efficiency, simulation results are
studied in section 5. Finally, a conclusion with a brief recall
of the proposed strategy and future works is presented.

2. FAULT LOCATION AMBIGUITY PROBLEMS IN
COMPLEX BRANCHED NETWORKS

Accurate models can be used to simulate and under-
stand the propagation of signals in transmission lines.



The description of Telegrapher’s equations based models
can be found in Clayton [2007]. This kind of model can
be used to compute the various signals reflected by a
branched network for any Time Domain Reflectometry
(TDR) based diagnosis method Auzanneau and Ravot
[2007]. 1 represents a complex branched network with an
open circuit fault at the distance 25m from the injection
point as confirmed by the corresponding reflectogram in
Fig.2. Only one reflectometer is placed at the extremity
of L1 to diagnose the whole network. The reflectometer
and the network are considered unmatched, explaining the
first positive peak on the reflectogram. The end of lines are
also unmatched. Here, the detected fault on L3 cannot be
distinguished from the same fault on L2.

Fig. 1. Fault location ambiguity in a branched network.
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Fig. 2. Reflectogram using TDR method.

In this case, it is possible to add another reflectometer
at the end of L2. Although, the ambiguity problem is
resolved for the fault on L3, it would remain inevitable
if another fault appeared on L4. So, another reflectometer
should be added to overcome this ambiguity but with the
consequences we know in terms of diagnosis cost. As a so-
lution, we propose to introduce the cable life profile aiming
at canceling the fault location ambiguity without raising
the diagnosis cost. Considering the uncertainty related to
fault location, measurement precision and reflectometer
reliability, the use of BN seems a suitable candidate to
combine these deterministic and stochastic behaviours.

3. BAYESIAN NETWORKS PRINCIPLE

A Bayesian Network (BN, also referred to as belief net-
work, probabilistic network, or causal network) is a mem-
ber of the probabilistic Graphical Models (GM) family,
known as Directed Acyclic Graph (DAG) Verron et al.
[2008]. It is represented by two sets: the set of nodes
(qualitative part) and the set of edges (quantitative part)
Knox and Mengshoel [2009]. The nodes represent variables
of interest, noted as Xi. The edges represent direct de-
pendences among these variables. An arrow from node
Xi to Xj represents a probabilistic relation between the
corresponding values where Xi is defined as a parent (or
ascendant) of Xj and similarly Xj is referred to as a child
(or descendant) of Xi. Following the above discussion,
the BN B is defined by a pair B = {G,Θ} where G
is the DAG whose nodes X1, X2, · · · , Xn represent vari-
ables of interest and for which edges represent the direct
dependencies between them. The parameter Θ denotes
the set of parameters of the network which contains the
parameter θxi|πi

= PB(xi|πi) for each realization xi of
Xi conditioned on πi. Then, the BN B defines a joint
probability distribution over a set of variables of interest
where:

PB(X1, X2, · · · , Xn) =
n∏
i=1

PB(Xi|πi) =
n∏
i=1

θXi|πi
. (1)

4. PROPOSED DIAGNOSIS PROCEDURE FOR
AMBIGUITY CANCELLATION

The procedure of the proposed diagnosis is shown on Fig.3.

Fig. 3. Diagnosis Procedure in Wiring Networks

First, the complex wiring network is divided into sub-
networks where each sub-network is diagnosed at least by
one reflectometer. Second, each reflectometer performs the
local diagnosis in each sub-network based on the observed
symptoms and calculates the conditional probabilities on
each branch of the sub-network using BNs. Here, the cable
life profile is considered to compute the probability of
the presence of the detected fault on each cable. This
procedure permits to locate the fault on the sub-network
with a reduced uncertainty. Then, the diagnosis system
performs the global diagnosis in the whole network by
merging the previously defined sub-systems results to
locate the fault in the whole network.
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Table 1. Variables of interest of local diagnosis modelling

Classification Variable Notation Description

Reflectometer
EmissionReliability X1 ∈ χh Reliability of the reflectometer in terms of signal

injection.
ReceptionReliability X2 ∈ χh Reliability of the reflectometer in terms of signal

reception.

Diagnosis Method
MeasurementPrecision X3 ∈ χh Accuracy of the obtained measurement.
Attenuation X4 ∈ χh Attenuation of the test signal during its propagation.
Bandwidth X5 ∈ χo Bandwidth of the channel ( The wider the Bandwidth,

the narrower the peak.)

Cable

ChannelNoise X6 ∈ χh Noise level in the cable. It impacts on the reflected
signal reception and the measurement precision.

CableLength X7 ∈ χo Length of the cable. It impacts on the attenuation of
the test signal

CableAge X8 ∈ χo Age of the cable. It impacts on the fault characteristic.
CableType X9 ∈ χo Type of the cable. It impacts on the noise on the cable,

the length, the attenuation and the corresponding
bandwidth.

Environment
Temperature X10 ∈ χo Exposure of the cable to a heat source promotes its

aging and increases its noise level.
Chafing X11 ∈ χo Chafing causes the cable aging.

Diagnosis Procedure
SignalInjection X12 ∈ χo Injection of a test signal into the cable network.
RSignalReception X13 ∈ χo Reception of a reflected signal at the injection port.

Fault
PeakPresence X14 ∈ χo Each impedance discontinuity (fault or junction) is

identified by a peak in the corresponding reflectogram.
FaultonBranch X15 ∈ χr Detected fault exists in the studied branch.

4.1 Local Diagnosis based on Bayesian Networks

Here, we propose to decompose the diagnosis system into
simple sub-systems and model them individually in order
to reduce the system complexity Przytula Wojtek and
Thompson [2000]. A BN is modelled for each cable tak-
ing into account its life profile. The variables of interest,
represented in the BN by nodes, are summarized in Table
1. They are classified into groups: reflectometer, diagno-
sis method, cable, environment, diagnosis procedure and
fault. These groups depend on each other and may impact
on the fault diagnosis results. In fact, the reflectometer’s
reliability in terms of injection or reception impacts on
the fault characterisation. For example, in the case of an
unreliable reflectometer, an erroneous test signal may be
injected. Then, a false interpretation of the reflectogram
is made involving unnecessary intervention. Moreover, the
choice of the diagnosis method is crucial since some meth-
ods being more robust than others to the interference and
noise presence such as mutli-carrier methods Ben Hassen
et al. [2013], Lelong and Olivas [2009]. In addition to that,
the cable’s characteristics (type, age, length, noise) impact
on the test signal behaviour during its propagation. For
example, a Shielded Twisted Pair (STP) or a coaxial cable
is more robust to external electromagnetic interference
and cross-talk than an Unshielded Twisted Pair (UTP).
Furthermore, the environmental stress (temperature, vi-
bration, moisture, etc.) promotes the appearance of cable
weaknesses or aging. Taking all these parameters, referred
to as cable life profile, into account permits to characterize
the fault location uncertainty and then, cancel the ambi-
guity problem.
In this case, BN’s variables are divided into three sets
which are:

• χr set of nodes representing the real state of the
studied system.

• χh set of nodes representing the hidden symptoms of
the studied system.

• χo set of nodes representing the observed symptoms
of the studied system.

Fig.4 represents the BN dedicated to local diagnosis. It
permits to locate the fault on each branch. Let us note
that probabilities are given by an expert in the proposed
BN. For each reflectometer, the conditional probability on
each branch is given by:

P (X15/X3, X4, X5, X8, X14) =

P (X15;X3, X4, X5, X8, X14)

P (X3, X4, X5, X8, X14)
. (2)

where P (X15;X3, X4, X5, X8, X14) represents the joint
probability and P (X3, X4, X5, X8, X14) represents the a
priori probability.
The same process is repeated for all reflectometers imple-
mented in the target network.

4.2 Global Diagnosis using Bayesian Networks

In this step, we integrate the results obtained by each
reflectometer on each cable in a global BN to locate the
fault in the whole network. The variables of interest are
summarized in Table 2. The conditional probability related
to the presence of the fault on the branch m depends
on the gathered information from the reflectometers. This
information is obtained by the local diagnosis previously
established related to reflectometer Ri and Rj . It is given
as follows:

P (Ym/Yi,m, Yj,m) =
P (Ym;Yi,m, Yj,m)

P (Yi,m, Yj,m)
. (3)

In order to prove the efficiency of the proposed approach,
simulation results are presented in the next section.



Fig. 4. Bayesian Network dedicated to local diagnosis on each cable

Table 2. Variables of interest of the Global
Bayesian Network

Variable(s) Modality Notation Description

RiFaultonBm Yes/No Yi,m Presence of the fault on
branch Bm according
to the reflectometer i.

RjFaultonBm Yes/No Yj,m Presence of the fault on
branch Bm according
to the reflectometer j.

FaultonBm Yes/No Ym Presence of the fault on
branch Bm.

Fig. 5. A simplified CAN bus

5. SIMULATION RESULTS

Controller Area Network (CAN) bus is widely used in
automotive, aircraft, energy distribution, etc., as a mean
for enabling robust serial communication between several
embedded functions. In this work, a simplified CAN bus
is considered where three reflectometers R1,R2 and R3

are used for the diagnosis of the whole network as shown
on Fig.5. Here, an Unshielded Twisted Pair (UTP) is
considered. The network is made of a main bus whose
length is 40m and 6 transmissions lines whose lengths are
equal to 2.5m to link the electronic boards to the bus.
They are represented by B′i where i ∈ {1, 2, · · · , 6}. The
extremities of the bus are loaded by 120Ω loads to avoid
interference and multi-path fading. The main CAN bus is
divided into multiple sections called B1 to B7. An open
circuit fault is simulated on branch B3 at distance 4.5m
from R1, 11.5m from R2 and 22.5m from R3. TDR method
is used for the network diagnosis. The idea is to inject,

periodically, a Gaussian pulse signal into the network with
an amplitude equal to 1V. Then, the measured signal is
basically made of multiple copies of this signal delayed
in time. For each copy, the delay is the round trip time
necessary to reach the impedance discontinuity from the
reflectometer. Given the propagation velocity, it is possible
to locate the discontinuity. Although TDR is simple to
implement, it suffers from noise weaknesses and signal
attenuation as shown on Fig.6 and Fig.7. For reflectometer
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R1, the fault on Branch B3 cannot be distinguished from a
possible fault on B2 as shown by the corresponding reflec-
togram in Fig.6. Moreover, it cannot be distinguished from
a possible one on branch B′3 or B6 for reflectometer R2

as shown by Fig.7. Moreover, it can not be distinguished
from a fault on branch B′3 for R3. Supposing that cable
B3 is submitted to aggressive thermal stress (near to a
hot unit), it can age quicker and become faulty due to the
cable insulation chafing. This knowledge is integrated in
the proposed BN presented in Fig.4 and then propagated
into the network. This thermal stress is the origin of noise
whose amplitude N is given by N(dBW ) = 10 log(kTB)
where k is the Boltzmann constant (k = 1.38e−23 J/K),
T is the temperature (K) and B is the bandwidth (Hz).
The increase of the temperature T causes not only the
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channel noise and cable aging increase, but also the mea-
surement precision decrease as shown on Fig.8. This latter
is demonstrated by the uncertainty related to the fault
position. For example, for R1, the fault is located at
4.5±0.3m from the injection point. These probabilities are
obtained for P(X9=’UPP’)=100%, P(X14=’Yes’)=100%,
P(X4=’Low’)=100% and P(X5=’Wide’)=100%. More-
over, that thermal noise may increase the uncertainty
related to the fault presence and then trigger false alarms.
In this work, all the cables have the same characteristics
in terms of impedance, propagation velocity, etc.
As described previously on Fig.3, the diagnosis procedure
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Fig. 8. The Temperature impact on the measurement
precision, cable age, channel noise and fault location.

includes two steps: local and global diagnosis. In local
diagnosis, each reflectometer calculates the conditional
probability of the presence of the fault on each branch
using equation (2). For simplicity, we present some inter-
esting results as shown on Tables 3,4 and 5.

If we look at the results for the local diagnosis, we
tend to conclude that the fault is on the branch B2 for
reflectometer R1 as P (X15 =‘Yes’)=91.9% on B2 and
P (X15 =‘Yes’)=89.8% on B3. This ambiguity is caused

Table 3. R1: Local diagnosis dedicated to B3

Symptom Probability Result Probability

P (X10 =‘High’)=100 %

P (X15 =‘Yes’)=89.8%
P (X6 =‘NoNoise’)=55.9 %
P (X3 =‘Low’ )=6.33 %
P (X8 =‘New’ )=80 %
P (X14 =‘Yes’ )=100 %

Table 4. R1: Local diagnosis dedicated to B2

Symptom Probability Result Probability

P (X10 =‘Low’)=100 %

P (X15 =‘Yes’)=91.9%
P (X6 =‘NoNoise’)=82.9 %
P (X3 =‘Low’ )=2.88 %
P (X8 =‘New’ )=96 %
P (X14 =‘Yes’ )=100 %

Table 5. R1: Local diagnosis on B′3 and B6

Symptom Probability Result Probability

P (X10 =‘Low’)=100 %

P (X15 =‘Yes’)=0.09%
P (X6 =‘NoNoise’)=82.9 %
P (X3 =‘Low’ )=2.88 %
P (X8 =‘New’ )=96 %
P (X14 =‘Yes’ )=0 %

by the presence of the thermal noise stress on B3 that
impacts badly on the measurement precision and then the
fault location. Therefore, we do not limit our study to local
diagnosis, as is usually done in conventional methods, but
we propose to gather the obtained information by each
reflectometer in a global diagnosis.

In the global diagnosis, the results obtained by each
diagnosis system on each branch are integrated in a global
BN. Fig9 shows that the probability of the presence of the
fault on branch B3 is equal to 91.6% and is obtained as
follows:

P (YB3/YR1,B3 , YR2,B3 , YR3,B3) =

P (YB3
;YR1,B3

, YR2,B3
, YR3,B3

)

P (YR1,B3
, YR2,B3

, YR3,B3
)

. (4)

Fig. 9. Global Diagnosis Modelling on B3.

The same process is applied for all the branches of the
network. Here, we are interested only by the ambiguous
branches B3, B2, B5 and B′3. Table 6 summarizes the
probability of the presence of the fault in each of them.
Based on the obtained probabilities, we may conclude that
the fault is on branch B3 with probability 91.6 %.

The proposed two-stages approach is applied in each
branch of the bus CAN as shown on Fig.10. It is obvious
that the fault on B1 is located with high uncertainty as
R2 and R3 do not detect it due to its distance from these
reflectometers. Moreover, the thermal stress influences
badly on the fault location.



Table 6. Global Diagnosis for Fault Location

Probability of the presence of the fault on ambiguous branches

P (YB3
=‘Yes’)=91.6 %

P (YB′
3

=‘Yes’)=61.1 %

P (YB6 =‘Yes’)=27.2 %
P (YB2 =‘Yes’)=26.8%
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Fig. 10. Fault location probability in each branch of the
CAN bus.

Simulation results demonstrate that the introduction of
life profile cable permits to efficiently diagnose the network
at a low cost (only 3 reflectometers are implemented).
Moreover, it permits to reduce the uncertainty related
to fault location in complex wiring network. One can
notice that the reliability of the reflectometer in emission
and reception is considered in the obtained statistics.
This reliability differs from a reflectometer to another
and impacts on the fault location. In this paper, all
reflectometers R1, R2 and R3 are considered reliable with
P (X1 =‘High’)=97.4% and P (X2 =‘High’)=92.4% for R1,
P (X1 =‘High’)=96.4% and P (X2 =‘High’)=91.4% for R2

and P (X1 =‘High’)=96.2% and P (X2 =‘High’)=91.3%
for R3. A deep study on the reflectometers reliability and
its impact on the obtained results will be the purpose in
further works.

6. CONCLUSION

In this paper, a new strategy based on the cable life profile
has been proposed for the diagnosis of complex topology
wiring networks, and applied to a CAN bus. Our main
objective was to find a good compromise between the
system cost (diagnosis systems number) and the diagnosis
quality. Here, the use of BNs was motivated by the uncer-
tainty regarding diagnosis system reliability, measurement
precision, and wire faults characterization. The proposed
strategy includes two steps: (1) local diagnosis based on
BNs, (2) global diagnosis for the whole network to locate
the detected fault(s). In local diagnosis, each reflectometer
introduces the cable life profile to calculate the condi-
tional probability of the presence of the fault on each
branch. Then, the obtained results for each reflectometer
are integrated into a global BN to locate the fault in the
whole network. Simulation results prove the efficiency of
the proposed strategy to help cancel the ambiguity for

fault location in a branched network. In this context, a
deep study on the reflectometers reliability and its impact
on the obtained results will be the purpose in further
works. In addition to that, other influential factors (such
as chafing, attenuation, bandwidth, etc.) may affect the
diagnosis quality and then should be also considered. Fi-
nally, in-depth works based on experience feedback would
improve the conditional probabilities tables quality thanks
to learning Bayesian Networks.

REFERENCES

F. Auzanneau. Wire troubleshooting and diagnosis: Re-
view and perspective. Progress In Electromagnetics
Research B, 49:253–279, 2013.

F. Auzanneau and N. Ravot. Defects detection and
localization in complex topology wired networks. Annals
of Telecommunications, 62:193–213, Feb 2007.

W. Ben Hassen, F. Auzanneau, F. Peres, and
A. Tchangani. OMTDR using BER Estimation
for Ambiguities Cancellation in Ramified Networks
Diagnosis. In IEEE ISSNIP Conference, Melbourne,
Australia, April 2013.

R. P. Clayton. Analysis of Multiconductor Transmis-
sion Lines. Special Issue of IEEE Transactions on
Instrumentation and Measurement, 2007. ISBN-13: 978-
0470131541.

W. Ben Hassen, F. Auzanneau, F. Peres, and
A. Tchangani. A Distributed Diagnosis Strategy using
Bayesian Network for Complex Wiring Networks.
In IFAC Workshop on Advanced Maintenance
Engineering, Services and Technology (AMEST),
2012.

W. Ben Hassen, F. Auzanneau, F. Peres, and
A. Tchangani. Optimisation de capteurs de diagnostic
de defauts par reflectometrie dans les reseaux filaires
complexes en utilisant les reseaux bayesiens. In Qualita,
Compiegne, France, March 2013a.

W. Ben Hassen, F. Auzanneau, F. Peres, and
A. Tchangani. Diagnosis Sensor Fusion for Wire
Fault Location in CAN Bus Systems. In IEEE
SENSORS, pages 1–6, Baltimore, Maryland, USA,
November 2013b.

W. Bradley Knox and Ole Mengshoel. Diagnosis and
Reconfiguration using Bayesian Networks: An Electrical
Power System Case Study. In IJCAI 2009 Workshop on
Self-* and Autonomous Systems, 2009.

A. Lelong and M. Olivas. On Line Wire Diagnosis
using Multicarrier Time Domain Reflectometry for Fault
Location. In IEEE Sensors Conference, pages 751–754,
October 2009.

K. Przytula Wojtek and D. Thompson. Construction of
Bayesian networks for diagnostics. In IEEE Aerospace
Conference, volume 5, pages 193–200, 2000.

S. Verron, P. Weber, D. Theilliol, T. Tiplica, A. Kobi, and
C. Aubrun. Using Bayesian networks for decision in
the simultaneous faults case. In Workshop on Advanced
Control and Diagnosis (ACD’08), Coventry, Royaume-
Uni, 2008.

E. Villeneuve, C. Beler, F. Peres, and L. Geneste. Hy-
bridization of Bayesian Networks and Belief Functions
to Assess Risk. Application to aircraft Disassembly. In-
ternational Conference on Industrial Engineering and
Systems Management (IESM), 2011.




