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Resumen

Los tumores cerebrales son parte de un grupo de enfermedades comunes, no
transmisibles, crénicas y potencialmente mortales que afectan a la mayoria de
las familias en Europa [Albretha 2008]. La imagen juega un papel primordial
en la gestién de los tumores cerebrales, desde su deteccién y clasificacién hasta
su posterior seguimiento.

Cada vez mds, las imdgenes de resonancia magnética (IRM) se utilizan en
la gestién de posibles tumores cerebrales ya que, ademés de mostrar las estruc-
turas cerebrales en gran detalle, tiene una gran sensibilidad para detectar la
presencia o cambios en el interior de un tumor. Actualmente la mayor parte
de los procesos relacionados con los tumores cerebrales como: el diagndstico,
terapia, y planificacién de cirugias, estan basados en su previa segmentacién
en IRM. La segmentacién de tumores cerebrales en IRM es una tarea que
involucra diferentes disciplinas, ya que los elementos a segmentar son estruc-
turas anatomicas frecuentemente no rigidas y complejas en forma, que varian
enormemente en tamao y posicion, y muestran una considerable variabilidad de
paciente a paciente. Ademads, la tarea de etiquetar tumores cerebrales en IRM
es muy lenta y existe una variacién significativa entre las etiquetas presentadas
por diferentes expertos.

Los desafios asociados con la segmentacién automatica de tumores cere-
brales han dado lugar a muchos enfoques diferentes. Aunque la exactitud pre-
sentada por los métodos propuestos es prometedora, estos enfoques no han
ganado una amplia aceptacion entre los patélogos en la practica clinica. Dos
de las principales razones son la falta de procedimientos estandarizados, y la
deficiencia de los métodos existentes para ayudar a la decisién médica siguiendo
una linea de trabajo similar a la de un técnico.

Para que un sistema de segmentacion de tumores cerebrales tenga aceptacion
entre los patdlogos para la préactica clinica, deberia apoyar la decisién médica



de manera transparente e interpretable, emulando el papel de un técnico y te-
niendo en cuenta su experiencia y conocimientos. Esto incluye conocimiento de
la apariencia esperada, ubicacién, variabilidad respecto de la anatomia normal,
simetria bilateral, y conocimiento de las intensidades esperadas de los diferentes
tejidos. Los problemas relativos a la imagen, asi como la variabilidad en la dis-
tribucién de los tejidos entre la poblacion humana, implica la consideracién de
cierto grado de incertidumbre en los resultados de la segmentacién.

Una posible solucién para el diseo de sistemas complejos en los que se debe
incorporar la experiencia de un experto, o los conceptos relacionados son incier-
tos, es el uso de técnicas de soft computing como los sistemas difusos. Una
ventaja importante de los sistemas difusos es su capacidad para manejar infor-
macion en la que hay vaguedad implicita.

En este trabajo se propone el desarrollo de un método para ayudar a los
especialistas en el proceso de segmentacién de tumores cerebrales. El obje-
tivo principal es desarrollar un sistema que pueda seguir la misma linea de
trabajo de un técnico, teniendo en cuenta su experiencia y conocimiento. En
concreto, se presenta un sistema de segmentacion, totalmente automético y
sin supervisién, que considera el conocimiento humano. El método maneja
exitosamente la ambigedad de las caracteristicas de las IRM, siendo capaz de
describir el conocimiento acerca de los tumores en términos vagos. El método
fue desarrollado haciendo uso de las herramientas proporcionadas por la teoria
de conjuntos difusos.

Esta tesis presenta, paso a paso, una metodologia para la segmentacion
automatica de tumores cerebrales en IRM. A fin de lograr la segmentacién to-
talmente automatica y sin supervision, se definen medidas objetivas por medio
de umbrales de histograma adaptativos, que delimitan las poblaciones tumor y
no tumor. Ademads, para definir la poblacién tumor, se lleva a cabo un anélisis
de simetria.

En el enfoque propuesto se introduce una nueva manera de definir au-
tomaticamente las funciones de pertenencia a partir del histograma. Las fun-
ciones de pertenencia propuestas estan diseadas para adaptarse bien a los datos
de las IRM y separar eficientemente las poblaciones. Puesto que no es necesario
ningun post-procesado, y el tnico pre-procesado consiste en la extraccién del
craneo, la técnica de segmentacién propuesta permite reducir los tiempos de
calculo. El enfoque propuesto es cuantitativamente comparable a los métodos
actuales mas precisos, aun cuando la segmentacién se lleva a cabo en 2D.



Abstract

Brain tumors are part of a group of common, non-communicable, chronic and
potentially lethal diseases affecting most families in Europe [Albretha 2008].
Imaging plays a central role in brain tumor management, from detection and
classification to staging and comparison.

Increasingly, magnetic resonance imaging (MRI) scan is being used for sus-
pected brain tumors, because in addition to outline the normal brain structures
in great detail, has a high sensitivity for detecting the presence of, or changes
within, a tumor. Currently most of the process related to brain tumors such
as diagnosis, therapy, and surgery planning are based on its previous segmen-
tation from MRI. Brain tumor segmentation from MRI is a challenging task
that involves various disciplines. The tumors to be segmented are anatomical
structures, which are often non-rigid and complex in shape, vary greatly in
size and position, and exhibit considerable variability from patient to patient.
Moreover, the task of labeling brain tumors in MRI is highly time consuming
and there exists significant variation between the labels produced by different
experts.

The challenges associated with automated brain tumor segmentation have
given rise to many different segmentation approaches. Although the reported
accuracy of the proposed methods is promising, these approaches have not
gained wide acceptance among the neuroscientists for every day clinical prac-
tice. Two of the principal reasons are the lack of standardized procedures, and
the deficiency of the existing methods to assist medical decision following a
technician way of work.

For a brain tumor segmentation system has acceptance among neuroscien-
tists in clinical practice, it should support medical decision in a transparent and
interpretable way emulating the role of a technician, considering his experience
and knowledge. This includes knowledge of the expected appearance, location,
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variability of normal anatomy, bilateral symmetry, and knowledge about the
expected intensities of different tissues. The image related problems and the
variability in tissue distribution among individuals in the human population
makes that some degree of uncertainty must be considered together with seg-
mentation results.

A possible solution for designing complex systems, in which it is required
to incorporate the experience of an expert or the related concepts appear un-
certain, is the use of soft computing techniques such as fuzzy systems. An
important advantage of fuzzy systems is their ability for handling vague infor-
mation.

In this work, it is proposed the development of a method to assist the spe-
cialists in the process of segmenting brain tumors. The main objective is to
develop a system that can follow a technician way of work, considering his ex-
perience and knowledge. More concretely, it is presented a fully automatic and
unsupervised segmentation method, which considers human knowledge. The
method successfully manages the ambiguity of MR image features being capa-
ble of describing knowledge about the tumors in vague terms. The method was
developed making use of the powerful tools provided by fuzzy set theory.

This thesis presents a step-by-step methodology for the automatic MRI
brain tumor segmentation. For achieving the fully automatic and unsuper-
vised segmentation, objective measures are delineated by means of adaptive
histogram thresholds for defining the non-tumor and tumor populations. For
defining the tumor population a symmetry analysis is conducted.

The proposed approach introduces a new way to automatically define the
membership functions from the histogram. The proposed membership func-
tions are designed to adapt well to the MRI data and efficiently separate
the populations. Since any post-processing is needed, and the unique pre-
processing operation is the skull stripping, the proposed segmentation tech-
nique reduces the computational times. The proposed approach is quantita-
tively comparable to the most accurate existing methods, even though the
segmentation is done in 2D.
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Chapter 1

Thesis Overview

1.1 Introduction

Cancer is a group of common, non-communicable, chronic and potentially lethal
diseases affecting most families in Europe, and a growing contributor to prema-
ture death within the European Union (EU) countries [Albretha 2008]. Around
2.3 million new cancer cases occurred in the 27 EU member states in 2006 [ECO
2009], and growing numbers of cancers are predicted for all countries in the re-
gion [Ferlay 2007]. One out of four deaths in the EU are attributable to cancer,
and in the age range 4564 years, the number is almost one out of two deaths
[WHO 2008].

Brain tumors are part of this group of extremely complex diseases. A brain
tumor is any mass caused by abnormal or uncontrolled growth of cells that
arise within or adjacent to the brain. In general, these tumors are categorized
according to several factors, including location, type of cells involved, and the
growing rate [Walter 2007]. Slowly growing tumors that lack of capacity to
spread to distant sites are called benign, and rapidly growing tumors that
can infiltrate surrounding tissues and spread to distant sites (metastasize) are
called malignant. Primary brain tumors originate in the brain. Metastatic or
secondary brain tumors are the most common types of brain tumors, and occur
in 10-15 % of people with cancer.

The control of brain tumors faces several important challenges, including
optimal exploitation of early detection and early treatment, and of the growing
array of treatment options that can significantly improve survival [Albretha
2008]. Recent research is focused on finding new solutions to all aspects of

1



1.1. Introduction

cancer management by: identifying new possibilities for: prevention, early de-
tection, diagnosis and treatment. Imaging plays a central role in the manage-
ment of brain tumors. People having tumors, or with potential tumors, are
imaged for detection, classification, staging, and comparison. Detection can be
subdivided into diagnosis, case finding, and screening, depending on the level
of suspicion. Classification consists on making a tissue diagnosis to determine
whether the tumor is a benign or malignant disease. Staging is performed to
determine the extent of the disease, and it is important for the selection of an
appropriate treatment. Imaging comparison is performed after treatment to
determine the effect of treatment and to verify for tumor recurrence [Kundel
2002].

There exists a wide range of medical imaging modalities that allow neuro-
scientists to see inside a living human brain. Early imaging methods, invasive
and sometimes dangerous, have been abandoned in recent times in favor of non-
invasive, high-resolution modalities, such as computed tomography (CT), and
specially magnetic resonance imaging (MRI). Increasingly, magnetic resonance
imaging scan is being used instead of CT scan for suspected brain tumors, be-
cause MRI does not use ionizing radiation in the formation of its images. In
addition, to outline the normal brain structures in great detail, the MRI has
a higher sensitivity for detecting the presence of, or changes within, a tumor.
Figure 1.1 shows a Magnetic Resonance Tomography and sequences of Mag-
netic Resonance (MR) images.

Most of the diagnosis, therapy, and surgery planning of brain tumors are
currently based on its previous segmentation from magnetic resonance images.
However, brain tumor segmentation from magnetic resonance images is a dif-
ficult task that involves various disciplines covering: pathology, MRI physics,
radiologists perception, and image analysis. The process of segmenting tu-
mors in (MR images, as opposed to natural scenes, is particularly challenging.
The tumors to be segmented from medical images are true anatomical struc-
tures, which are often non-rigid, complex in shape, and exhibit considerable
inter-patient variability. Brain tumors vary greatly in size and position, have
a variety of appearance properties, and their intensities overlap those of nor-
mal brain tissues [Prastawa 2004]. In addition, often the expanding tumors
can defect and deform nearby brain structures, making healthy tissues to have
abnormal geometry.

Radiation oncologists, radiology technicians, and other medical specialists
spend a substantial portion of their time to medical image segmentation. In
particular, the task of labeling brain tumors in MR images is highly time con-
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Figure 1.1: A Magnetic Resonance Tomography. (a) and samples of MR Images

(b).

suming, and there exists significant variation between the labels produced by
different experts [Mazzara 2004]. For these reasons an automated brain tumor
segmentation method is desirable.

The challenges associated with automated brain tumor segmentation have
given rise to many different segmentation approaches. Figure 1.2 shows exam-
ples of three images and their segmentation obtained using different approaches
that will be described in Chapter 3, along with other segmentation methods.

Given the advantages of MRI over other diagnostic imaging methods, the
majority of research in brain tumor segmentation is focused on MR images.
Although there are numerous computer based techniques that have been ex-
amined for improving MRI brain tumor segmentation, nowadays it remains as
an active research area.

Significant efforts on assisting brain tumor detection and segmentation have
been focused on the application of diverse techniques such as threshold-based
[ChangSun 2000, Gibbs 1996, Shanti 2007, Stad 2004], region-based [Battha
2008, Kaus 2001, Kong 2006, Ratan 2009, Salman 2009], pixel classification

3
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Figure 1.2: Diverse images and their segmentation obtained using different
segmentation approaches. a) Deformable Model [Khotan 2008], b) Pseudo-
Conditional Random Field Model [Lee 2008], and ¢) Modified Region Growing
Method [Salman 2009].

[Fletcher 2001, Kannan 2008, Supot 2007, Tayel 2006, Veloz 2008], and de-
formable models and level sets [Chan 2001, Law 2002, Luo 2006, Khotan
2008]. Although the reported accuracy of the proposed computerized meth-
ods is promising, these approaches have not gained wide acceptance among the
neuroscientists for every day clinical practice [Papage 2008]. Two of the main
reasons might be the lack of standardized procedures [Archip 2007], and the
deficiency of the existing methods to assist medical decision following a tech-
nician way of work. This has a negative effect on the perception of computer
aided medical diagnosis, where the demand for reasoning and explanation is a
priority.

A successful computer aided system for assisting brain tumor segmenta-

4
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tion should support medical decision in a transparent and interpretable way,
emulating the role of a technician, and considering expert’s experience and
knowledge. To do it, besides knowledge of the expected appearance, location,
and variability of normal anatomy, it has to be also taken into account bilateral
symmetry, expected intensities of different tissues, and appearance of regions
of pixels and/or shapes present within the image [SchmiT 2005].

The MRI brain tumor segmentation involves several image related prob-
lems: visual patterns are inherently ambiguous, image features are corrupted
during the acquisition process, knowledge about the tumors in images can be
described only in vague terms, and the outputs of low-level processes provide
vague, conflicting, or erroneous inputs to higher level algorithms. These prob-
lems, together with the variability in tissue distribution among individuals in
the human population makes that some degree of uncertainty must be consid-
ered together with segmentation results.

A possible solution for designing complex systems in which it is required to
incorporate the experience of an expert, or the related concepts appear vague
or uncertain, is the use of soft computing techniques such as fuzzy systems. An
important advantage of fuzzy systems, compared to the classical methods, is
the ability of the obtained system to handle vague information.

Fuzzy logic techniques have been applied in different ways to brain imaging
in order to recognize, represent, manipulate and interpret the enormous amount
of information of complex brain functions. In general, researching works in this
area are related to pattern recognition for localization of brain structures [Kan-
nan 2008], tumor detection [Chen 2004, Khotan 2009, Veloz 2008], control of
body movements [Wootton 2003], anesthesia [Zhang 2001], etc. Some stud-
ies have shown that the use of fuzzy techniques decrease the processing time
and increase the robustness and efficiency against other conventional meth-
ods [Coifolo 2004, 2005]. In the literature there are several applications that
have been improved using fuzzy logic techniques, such as the sensitivity for de-
tecting and delineating brain lesions [Seghier 2008, or detecting atypical brain
activations that may not be detected by other standard methods [Seghier 2007].

This work proposes the development of a method for assisting specialists in
the process of brain tumor segmentation. The main motivation is to develop
a system that follow a technician way of work. To achieve this goal, it is pro-
posed the use of advanced techniques of soft computing such as fuzzy systems.
In addition, to mimic the expert’s way of working, the information provided by
the technicians and the obtained from the images are put together to define a
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set of rules. These rules are aimed to design a new brain tumor fuzzy segmen-
tation approach in which segmentation is carried out in a transparent manner,
and the results are easily interpretable by specialists.

1.2 Objectives

According to the motivation exposed in the introduction, the main objective
of this thesis is:

To develop a system to assist brain tumor segmentation that follows the
guidelines of the technician, considering his experience and knowledge.

To achieve the main objective, it is necessary to define a number of sub ob-
jectives and requirements that must be taken into consideration for designing
the brain tumor segmentation approach; these are:

e Develop a fully automatic and unsupervised segmentation method to as-
sist neuroscientists in the segmentation of brain tumors in magnetic res-
onance images.

e The method has to consider and combine simultaneously diverse sources
of human knowledge.

e The method must successfully manage the ambiguity of MR image fea-
tures.

e The method has to be capable of describing, in vague terms, knowledge
about the tumors appearing within images.

In order to fulfill the afore mentioned objectives, it is necessary to make use
of the powerful tools provided by fuzzy set theory and fuzzy logic which are
ideally suited for dealing with uncertainty. The flexibility provided by fuzzy
set theory for knowledge representation makes fuzzy rule-based systems very
attractive for computer vision in general, and for brain tumor segmentation
in particular, when compared with traditional rule-based systems [Montseny
2001].
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1.3 Outline of the Thesis

Here is given a description of the contents in each of the Chapters embodying
this dissertation.

Chapter 1 : Thesis Overview.

General introduction.

Chapter 2 : MR Imaging of Brain Tumors.

Magnetic Resonance Imaging has evolved, in neuroradiology, in the last
30 years, becoming faster, more precise, and more specific. MRI is highly
accepted as the most sensitive method for diagnosing brain tumors due
to its high tissue contrast and its noninvasiveness. This is true for both,
detection and description of the extent of the disease [Reiser 2008]. The
small size of the brain along with the absence of motion makes high-
resolution imaging routinely possible. Moreover, the MRI characteristics
of white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF)
makes them ideal for optimizing contrast parameters. The paucity of
air and fat reduces the artifacts in MR brain images often seen in other
parts of the body. For these reasons, MRI of the brain has been the focus
of most of the new technological developments. Such developments are
often introduced in MRI of the brain before they are attempted in other
parts of the body. These natural advantages create an excellent platform
for the study and early diagnosis of brain tumors [Butman 2006].

Chapter 2 provides a general description of the basic physical principles of
the Nuclear Magnetic Resonance Imaging (NMRI), as well as the practical
aspects and MR Imaging appearances of the most common cerebral tu-
mors. The standard on Digital Imaging and Communication in Medicine
(DICOM) is presented as an introduction of how the medical imaging is
handled and transmitted.

Chapter 3 : State of the Art Survey on Brain Tumor Segmentation

Image segmentation plays a crucial role in the extraction of attributes
and useful information from images. The main objective of image seg-
mentation is to partition an image into mutually exclusive and exhausted
regions such that each region is spatially contiguous and the pixels within
are homogeneous with respect to a predefined criterion [Bhandar 1997].

7
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Brain tumor segmentation consists on separating the different tumor tis-
sues (solid or active tumor, edema, and necrosis) from normal brain tis-
sues (gray matter (GM), white matter (WM), and cerebrospinal fluid
(CSF)). In brain tumor studies, the existence of abnormal tissues is eas-
ily detectable most of the times. However, accurate and reproducible
segmentation and characterization of abnormalities are not straightfor-
ward.

In the past, many researchers in the field of medical imaging and soft
computing have made significant survey in the field of brain tumor seg-
mentation. Both semiautomatic and fully automatic methods have been
proposed. Clinical acceptance of segmentation techniques has depended
on the simplicity of the segmentation, and the degree of user supervision
[Yao 2006]. Interactive or semiautomatic methods are likely to remain
dominant, in practice, for some time, especially in these applications
where erroneous interpretations are unacceptable [McIner 2000].

This chapter presents an overview of the most relevant brain tumors seg-
mentation methods, conducted after the acquisition of the image. The
chapter starts with an introduction of manual and automated segmenta-
tion. The concepts of unsupervised and supervised segmentation are also
stated. Given the advantages of magnetic resonance imaging over other
diagnostic imaging (Chapter 2), this survey is focused on MRI brain tu-
mor segmentation. Semiautomatic and fully automatic techniques are
emphasized.

Chapter 4 : A New Fuzzy Approach to Brain Tumor Segmentation

The existing work is a valuable source of insight for designing a new brain
tumor segmentation system, since it is clear that these works contain a
variety of different properties that can be exploited. However, since the
goal of this work is to automate a task performed by human experts, the
methods used by them have to be also considered, because provide in-
sights into the problem. Human experts are able to incorporate complex
information including: knowledge of the expected appearance, location,
and variability of normal anatomy. Furthermore, humans are able to si-
multaneously consider and combine these diverse properties or sources of
knowledge, and can consider previous experience in related tasks.

It is clear that improved results could be achieved if the system could
consider, simultaneously, a variety of properties to perform brain tumor

8
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segmentation. It is also obvious that, in cases where the discrimination
between normal and abnormal areas is not trivial, a variety of sources
have to be used for making a decision. However, in ambiguous cases,
these complex interactions are difficult to represent with a set of “hard”
manually determined rules.

Chapter 4 presents the proposed fuzzy approach for brain tumor seg-
mentation. Considering the flexibility provided by fuzzy set theory for
knowledge representation, the information provided by the technicians
and the obtained from the images are put together to define a set of
rules. These rules are aimed to design a new brain tumor fuzzy segmen-
tation approach. A major focus of the proposed approach is the definition
of a new method of acquiring fuzzy membership functions. The outcome
is a segmentation carried out in a transparent manner, and the results
are easily interpretable by specialists.

Chapter 5 : Experiments and Results

Chapter 5 presents three sets of experiments to prove the validity of the
proposed method.

Chapter 6 : Conclusions and Future Work

Finally, general conclusions and an outline of some future directions are
presented in Chapter 6.

1.4 Contributions of the Thesis

The main contributions of this thesis can be summarized as follows:
e Unsupervised and Fully Automatic Segmentation.
e Method based on fuzzy techniques.

— Introduction of an easier way for automatically define the member-
ship functions.
— Proposed membership functions:

* adapt well to the MRI data and experts knowledge.
x efficiently separate populations (non-tumor vs. tumor).

e Simplification of the segmentation technique.

9
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— No preprocessing in addition to skull stripping.
— No post segmentation refinement

— Short computational times.

10



Chapter 2

MR Imaging of Brain
Tumors

2.1 Introduction

Neuroimaging is an essential part of the decision-making process for therapy,
or planning of neurological interventions. Prior to neurosurgery, neuroimaging
can precisely define the location and accurately delineate the lesion. It can also
be of support in radiotherapy planning, by correctly defining the lesion mar-
gins [Essig 2008]. In addition, neuroimaging is mandatory after therapeutic
intervention to monitor disease and possible side effects.

Magnetic Resonance Imaging in neuroradiology has evolved in the last 30
years, becoming faster, more precise, and more specific. As exposed in [Reiser
2008], MRI is highly accepted as the most sensitive method for diagnosing brain
tumors, due to its high tissue contrast and its noninvasiveness. This is true
for both, detection and description of the extent of the disease. The small size
of the brain, along with the absence of motion, makes high-resolution imaging
routinely possible. Moreover, the characteristics of white matter (WM), gray
matter (GM) and cerebrospinal fluid (CSF) makes them ideal for optimizing
contrast parameters. The paucity of air and fat within the brain reduces the
artifacts often seen in other parts of human body. For these reasons, MRI of
the brain has been the focus of most new technology developments, which are
often introduced in brain MRI before attempting to apply them to other parts
of the body. These natural advantages create an excellent platform for the
study and early diagnosis of brain tumors [Butman 2006].

11
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In 2003, there were approximately 10,000 MRI units worldwide, since then,
and approximately 75 million MRI scans were performed per year [Hornak
2008]. Currently, eight million MRI examinations are carried out per year in
Europe [ESTRO 2009]. In the past years, it has become generally recognized
that MRI would be the imaging study of choice in the evaluation of intracranial
tumors if availability and cost were not an issue [Albreth 2008].

In this chapter, the basic principles of magnetic resonance imaging are de-
scribed. The chapter provides a general overview of the basic physical prin-
ciples of the Nuclear Magnetic Resonance Imaging (NMRI) and the practical
aspects and Magnetic Resonance (MR) imaging appearances of the most com-
mon cerebral tumors. To better understand how medical imaging is handled
and transmitted, the chapter will start presenting The Digital Imaging and
Communication in Medicine (DICOM) standard.

2.2 QOutline of Chapter

Section 2.3 introduces the DICOM standard including data structures, network
services, media exchange, and conformance statement. Section 2.4 provides a
broad description of the nuclear MRI phenomena. Section 2.5 presents an intro-
duction of the practical aspects of MRI brain tumors, as well as a description of
the appearances, in MR images, of the most common cerebral tumors. Finally,
in Section 2.6, the chapter conclusions are briefly presented.
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2.3 Digital Imaging and Communications in Me-
dicine (DICOM)

Digital Imaging and Communications in Medicine (DICOM) is a standard for
handling, storing, printing, and transmitting information in medical imaging.
Since the seventies, when computed tomography was introduced as the first dig-
ital modality, the importance of digital medical image processing has increased
permanently. The emerging idea of sharing a digital image archive (the Picture
Archiving and Communication System PACS), and electronic image distribu-
tion, created in hospitals the need to exchange digital images between medical
devices of different manufacturers.

In 1983, the American College of Radiology (ACR), and the National Elec-
trical Manufacturers Association (NEMA) formed a working group in order to
develop a standard for image exchange. The collective work resulted in the
ACR-NEMA standard, which was published in 1985, and revised several times
until 1988. Due to certain conceptual weaknesses (no network support, and
different proprietary “dialects”), the ACR-NEMA standard was not adopted
in hospitals. As a consequence, the DICOM standard was developed on the
basis of the experiences with the ACR-NEMA standard. The main objective
of this new standard was to create an open (vendor independent) platform for
the communication of medical images and related data. Moreover, the new
standard should support PACS networks and guarantee interoperability of ar-
bitrary DICOM devices and programs. DICOM was published in 1993 and
is continuously being actualized. In 1995, DICOM was accepted as a formal
standard in Europe.

The diverse digital modalities of DICOM standard are shown in Table 2.1.

The content of the DICOM standard goes far beyond of the definition of an
exchange format for these medical image modalities. What DICOM defines is:

e Data structures (formats) for medical images and related data.
e Network oriented services, e. g.

— image transmission,

— query o an image archive (PACS),
— print (hard copy), and

— RIS - PACS - modality integration

13
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Table 2.1: Application areas of DICOM standard.

Modality Description

BI Biomagnetic Imaging
CR Computed Radiography
CT Computed Tomography
DG Diaphangraphy

EM Electron Microscope

ES Endoscopy

GM General Microscopy

LS Laser Surface Scan

MG Mammography

MR Magnetic Resonance
NM Nuclear Medicine

oT Other

PT Positron Emission Tomography
RF Radio Fluoroscopy

RG Radiographic Imaging
RT Radiation Therapy

SC Secondary Capture

SM Slide Microscopy

TG Thermography

US Ultra Sound

VL Visible Light

XA X-Ray Angiography
XC External Camera (Photography)
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e Formats for storage media exchange.

e Requirements for conforming devices and programs.

The following sections briefly explain these four points.

2.3.1 DICOM Data Structures

A DICOM image consists of a list of data elements (attributes) containing a
multitude of image related information:

e Patient information (name, sex, identification number).

e Modality and imaging procedure information (device parameters, cali-
bration, radiation dose, contrast media).

e Image information (resolution, windowing).

For each image modality, DICOM precisely defines the data elements that
are required, optional (i.e. may be omitted) or required under certain circum-
stances (i.e. only if contrast media was used). This powerful flexibility is at the
same time, a crucial weakness of DICOM standard; because practical experi-
ence shows that image objects are frequently incomplete, due to required fields
are missing or contain incorrect values. These problems can lead to subsequent
problems when exchanging data.

2.3.2 DICOM Network Services

The DICOM network services are based on the client/server concept. In case
two DICOM applications want to exchange information, they must establish a
connection and agree on the following parameters:

e Who is the client and who the server.
e Which DICOM services are to be used.

e In which format data are transmitted (e. g. compressed or uncom-
pressed).
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Only if both applications, the client and the server agree on a common set of
parameters, the connection can and will be established. In addition to “image
transmission” (or in DICOM terminology: “Storage Service Class”), which is
the most basic DICOM service, there are a number of advanced services, for
example:

e DICOM image archive service (“Query/ Retrieve Service Class”) that
allows to search images in a PACS archive by certain criteria (patient,
time of creation of the images, modality etc.), and to selectively download
images from this archive.

e DICOM print service (“Print Management Service Class”) that allows to
access laser cameras or printers over a network, so that multiple modali-
ties and workstations can share one printer.

e DICOM modality work list service, that allows to automatically down-
loading up-to-date work lists which include a patient’s demographic data,
from an information system (HIS/RIS) to the modality.

2.3.3 Media Exchange

In addition to the exchange of medical images over a network, media exchange
has become another application which was integrated into the DICOM stan-
dard in 1996. Fields of application are, for example, the storage or cardiac
angiography films in cardiology, or the storage of ultrasound images. In order
to make sure that DICOM storage media are really interchangeable, the stan-
dard defines application profiles which explicitly are:

e Images from which modalities may be present on the medium (e. g. “only
X-Ray Angiography images”).

e The encoding formats and compression schemes that may be used (e. g.
“only uncompressed or loss-less JPEG”).

e The storage medium that is going to be used (e. g. “CD-R with ISO file
system”).

Aside from the image files, each DICOM medium contains a “DICOM direc-
tory”. This directory contains the most important information (patient name,
modality, unique identifiers etc.) for all images which are captured on the
medium. With the necessary help of this directory, it is possible to quickly
browse or search through all images on the medium without having to read the
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complete image files.

2.3.4 Conformance Statement

DICOM requires that a Conformance Statement has to be written for each
device or program claiming to be DICOM conformant. The format and con-
tent of a Conformance Statement is defined in the standard itself. In general,
the statement shall explain which DICOM services and options are supported,
which extensions and peculiarities have been implemented by the vendor, and
how the device communicates with other DICOM systems. In theory, com-
paring two conformance statements allows to determine whether two DICOM
compliant devices are able to communicate with each other or not.

In practice, however, conformance statements are only comprehensible by
experts and are frequently inadequated since often only a minimum set of fea-
tures is documented. Interoperability problems typically tend to occur because
some details do not go together.

Once explained the standard for handling, and transmitting information in
medical imaging, next section presents the basic principles of magnetic reso-
nance.

2.4 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a non-invasive technique, which uses the
interaction between radio frequency pulses, a strong magnetic field, and bio-
logic tissue. MRI produces high quality sectional images, which have equivalent
resolution in any projection from internal anatomy. Biological tissues, when
placed within a strong magnetic field, can be induced to emit a detectable sig-
nal immediately following stimulation by a pulse of radio frequency energy.

MRI is based on the principles of nuclear magnetic resonance (NMR), a
spectroscopic technique used to obtain microscopic chemical and physical in-
formation about molecules. As appeared in [Hornak 2008], the technique was
called magnetic resonance imaging, rather than nuclear magnetic resonance
imaging (NMRI), because of the negative connotations associated with the
word nuclear in the late seventies.

17



2.4. Magnetic Resonance Imaging

One of the main advantages of MRI, unlike similar anatomic imaging modal-
ities as computerized axial tomography (CAT), is that does not use ionizing
radiation in the formation of its images.

MRI, as all medical imaging techniques, is a relatively new technology which
foundations began at 1946. Felix Bloch [Bloch 1946] and Edward Purcell [Pur-
cell 1946] independently discovered the magnetic resonance phenomena at this
year, and were awarded for its discovering the Nobel Prize in 1952. Until the
seventies MRI was being used for chemical and physical analysis. Afterwards,
in 1971, Raymond Damadian [Damadian 1971] showed that nuclear magnetic
relaxation times of tissues and tumors were different, motivating scientists to
use MRI to study disease. With the advent, in 1973, of the computed to-
mography, by Hounsfield [Hounsf 1946], and echo-planar imaging, in 1977 by
Mansfield [Mansfield 1977], over the next 20 years many scientists developed
MRI into the technology that we now know today.

The first human being MRI examination did not occur until 1977. Since
then faster computing has made the MRI process much faster. The most sig-
nificant advancement in MRIs occurred in 2003, when the Nobel Prize was won
by Paul C. Lauterbur and Peter Mansfield [Nobel 2003] for their discoveries of
using MRIs as a diagnostic tool.

2.4.1 Nuclear Magnetic Resonance

Nuclear Magnetic Resonance is a physical phenomenon of the magnetic prop-
erty of nuclei, which have a positive nuclear spin quantum number. Under the
influence of an external static magnetic field, these nuclei will precess about
the direction of the magnetic field with an angular frequency, the Larmor fre-
quency. Through absorption (excitation) and emission (relaxation) of radio
frequency energy at the resonance frequency, the Larmor equation, and the
processing of this raw data by the Fourier transformation, physical, chemical,
electronic, and structural information about molecules can be obtained.

An ample explanation of the nuclear magnetic resonance phenomena, and
the Magnetic Resonance Image formation is given in Appendix A.
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2.5 MRI of Brain Tumors

The term “tumor”, which literally means swelling, can be applied to any patho-
logical process that produces a lump or mass in the body. Brain tumors are a
major manifestation of a vast and varied group of diseases called neoplasms or,
more commonly, cancers [Kundel 2002]. Neoplasms derive from normal body
cells that, after a series of transformations, lose the capability of responding to
the usual physiological mechanisms that control growth. Uncontrolled growth
leads to the formation of a tumor. Slowly growing tumors that lack of capac-
ity to spread to distant sites are called benign; while rapidly growing tumors,
which can infiltrate surrounding tissues and spread to distant sites (metasta-
size) are called malignant. Primary brain tumors originate in the brain, while
metastatic, or secondary brain tumors (cancer that spreads from other parts
of the body to the brain), are the most common types of brain tumors.

People with tumors, or potential tumors, are imaged for detection, classifi-
cation, staging, and comparison. Detection can be subdivided into diagnosis,
case finding, and screening; depending on the level of suspicion. Tumor classifi-
cation consists, ideally, on making a tissue diagnosis or at least a determination
of whether the tumor is a manifestation of a benign or malignant disease. The
radiologist is required to classify all the suspicious regions in an image. Staging
is performed to determine the extent of the disease, both local and distant, and
it is important for the selection of an appropriate treatment and for estimating
prognosis. Imaging comparison is performed after treatment to determine its
effect and to check for tumor recurrence. The diagnostic problem frequently
involves discriminating between changes caused by the treatment and by re-
current tumor.

MRI is the imaging method with highest sensitivity for brain tumors de-
tection. This is true for detection as well as for description of the extent of
disease. The use of a MRI standard protocol for cerebral neoplasms allows
high resolution imaging and characterization of lesions. The diverse types of
MR images obtained from the excitation sequences can provide different image
intensity information for a given anatomical region and subject. Since a tumor
consists of different biological tissues, radiology experts combine the multispec-
tral MRI information of a patient to take a decision about location, extension,
prognosis and diagnosis of the tumors. At least three types of MRI, generally
T1-weighted (T1), T2-weighted (T2), and proton density (PD) are used as the
routine sequences in practice.

Brain tumors are difficult to classify and segment because they have a wide
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range of appearance and effect on surrounding structures. Some of the general
characteristics of brain tumors are [Prastawa 2003]:

e Vary greatly in size and position,
e Vary greatly in image intensities, as seen by MRI,
e May have overlapping intensities with normal tissue,

e May be space occupying (new tissue that moves normal structure) or
infiltrating (changing properties of existing tissue),

e May enhance fully, partially, or not at all, with contrast agent, and

e May be accompanied by surrounding edema (swelling).

The following sections provide a brief explanation of the effect of exogenous
contrast agents in MR images of brain tumors. It is also included an overview
of the World Health Organization (WHO) classification of brain tumors, and a
description of the practical aspects and MR imaging appearances of the most
common cerebral tumors.

2.5.1 Exogenous Contrast Agents in Brain Tumors

Signal contrast in MRI can be modified by the use of exogenous contrast ma-
terials. MR contrast agents do not contribute to the signal directly; rather,
they alter the signal of surrounding water protons via their effect on relaxation
rates. The contrast agents, currently used in clinical and laboratory, can be
roughly divided into two types: those incorporating paramagnetic ions, such as
gadolinium or manganese, and those containing superparamagnetic iron oxide
(SPIO) particles.

Paramagnetic ions are typically chelated to organic ligands or bound to
macromolecules, such as albumin. This minimizes their toxicity and reduces
their tumbling rates, thereby increasing their effectiveness or “relaxivity”. When
water molecules bind to the agent and tumble with it in solution, they experi-
ence randomly oscillating magnetic fields that stimulate longitudinal relaxation,
thereby shortening T1 relaxation. Although only a small fraction of the water
can bind to the agent at any time, the bound fraction is in continuous exchange
with the free water, so that the T1-shortening effect is distributed throughout
the bulk fluid. This results in an enhancement of signal on T1-weighted images.
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SPIO particles have much stronger magnetic moments than individual para-
magnetic ions, and, therefore, alter the magnetic field over a much longer range.
They induce rapid dephasing of water protons, causing strong signal attenua-
tion on T2 and T2* weighted images. Although SPIO particles are primarily
T2 agents, they also shorten T1 relaxation times and can be used to produce
enhancement on T1-weighted images. In such applications, the concentration
of the agent and the TE of the sequence must be chosen to minimize T2 and
T2* effects, so that they do not counteract the T1-related signal enhancement.

MR imaging of brain tumors requires a higher contrast for lesions than for
imaging central nervous system (CNS), which depends on the signal intensity
of the lesion relative to that of the surrounding normal tissue [Muroff 1995].
Furthermore, detailed information on the internal morphology of the lesion is
essential for differential diagnosis, grading, and for the selection and planning
of therapy. For most diseases, and for many of the currently available func-
tional MR Imaging methods, the use of MR contrast media is mandatory.

Contrast enhanced MRI also helps in distinguishing tumors from other
pathologic processes, and depicts basic signs of tumor response to therapy such
as: change in size, morphology, and degree of contrast material enhancement.

Due to the presence of the bloodbrain barrier (BBB), currently available
MR contrast media do not leak into the brain tissue [Neuwelt 2004]. The BBB
serves as an effective physical barrier to the entry of lipophobic substances into
the brain, and consists on a complex of capillary endothelial cells, pericytes,
and astroglial and perivascular macrophages. The integrity of the BBB can be
altered by a variety of circumstances that increase its permeability, for both
contrast media and drug delivery. While the integrity of the barrier is often
compromised within the tumor, this alteration in permeability is variable and
dependent on the tumor type and size. Though the BBB is frequently leaky in
the center of malignant brain tumors, the edge of the tumor has been shown
to have variable and complex barrier integrity [Guru 2002]. Figure 2.1 [Reiser
2008] shows an example of a contrast-enhanced MRI in a patient with cerebral
metastasis. The use of contrast material substantially increased the number
of visible cerebral metastases. In (a) only one tumor can be appreciated, after
using a triple dose of contrast (b), three tumors were displayed.
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Figure 2.1: Contrast-enhanced MRI in a patient with cerebral metastasis. In-

creasing the amount of contrast material from a single dose (a) to triple dose
(b) substantially increased the number of visible cerebral metastases.

2.5.2 The WHO Classification of Brain Tumors

In 1993 the World Health Organization ratified a new comprehensive classifi-
cation of neoplasms affecting the central nervous system. The classification of
brain tumors was based on the premise that each type of tumor results from
the abnormal growth of a specific cell type.

To the extent that the behavior of a tumor correlates with basic cell type,
tumor classification dictates the choice of therapy and predicts prognosis. The
WHO classification also provides a parallel grading system for each type of tu-
mor. In this Trading system, most named tumors are of a single defined grade.
The new WHO classification provides the standard for communication between
different centers around the world. An outline of this classification is provided
in Table 2.2.

The WHO Grading of central nervous system tumors also establishes a ma-
lignancy scale based on histologic features of the tumor. The histologic grades
are as follows:

e WHO grade I. Includes lesions with low proliferative potential, a fre-
quently discrete nature, and the possibility of cure following surgical re-
section alone.
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Table 2.2: The World Health Organization list of brain tumors.

1 Tumors of neuroepithelial tissue

1.1  Astrocytic tumors

1.2 Oligodendroglial tumors

1.3 Ependymal tumors

1.4 Mixed gliomas

1.5 Choroid plexus tumors

1.6 Neuroepithelial tumors of uncertain origin

1.7 Neuronal and mixed neuronal-glial tumors

1.8 Pineal parenchymal tumors

1.9 Embryonal tumors

2 Tumors of the cranial and spinal nerves
2.1 Schwannoma

2.2 Neurofibroma

2.3 Malignant peripheral nerve sheath tumor

3 Tumors of the meninges

3.1 Tumors of meningothelial cells (meningiomas)
3.2 Mesenchymal non-meningothelial tumors

3.3 Primary melanocytic lesions

3.4 Tumors of uncertain histogenesis

4 Lymphomas and hematopoietic neoplasms
5 Germ cell tumors

6 Cysts and tumor-like lesions

7 Tumors of sellar region
8
9

Local extensions from regional tumors
Metastatic tumors
10 Unclassified tumors
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e WHO grade II. Includes lesions that are generally infiltrating and low in
mitotic activity but recur. Some tumor types tend to progress to higher
grades of malignancy.

e WHO grade III. Includes lesions with histologic evidence of malignancy,
generally in the form of mitotic activity, clearly expressed infiltrative
capabilities, and anaplasia.

e WHO grade IV. Includes lesions that are mitotically active, necrosis-
prone, and generally associated with a rapid preoperative and post oper-
ative evolution of disease.

2.5.3 Practical Aspects and MR Appearances of the Most
Common Cerebral Tumors

This section presents a summary of the most common brain tumors. Some
examples of their MR appearances are included. All images showing cere-
bral tumors were obtained from the book “Magnetic Resonance Tomography,”
[Reiser 2008].

Astrocytic Tumors

Astrocytic tumors (1.2 of Table 2.2) account for up to 80 % of glial neoplasms
and refer to a diffuse infiltrating tumor originating from glial cells. The tumor
border on both imaging (T1 and T2) and histology is ill defined, with an infil-
tration that usually does not destroy the anatomic cerebral structures. [Ohgaki
2005]. The two most common astrocytic tumors are the Pilocytic astrocytoma
and the glioblastoma multiforme (GBM).

Pilocytic astrocytoma (WHO grade I) is a well-circumscribed mass that
commonly has a large cyst and a focal mural nodule. The typical appearance
of an infratentorial pilocytic astrocytoma in the T1 and T2 channels is shown
in Figure 2.2 where both channels present a partly solid and cystic tumor with
surrounding edema and mass effect. The tumor can also be solid, with or with-
out cystic degeneration.

Malignant astrocytoma (WHO grade IV), also known as GBM, may de-
velop from a diffuse astrocytoma or an anaplastic astrocytoma. Glioblastoma
is the most frequent brain tumor and accounts for approximately 1215 % of all
brain tumors and 5060 % of all astrocytic. The usual appearance of a GBM or
anaplastic astrocytoma on MRI is that of a contrast-enhancing lesion causing
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Figure 2.2: Typical appearance of an infratentorial pilocytic astrocytoma. (a)
The non-enhanced T1 and T2 (b) present a partly solid and cystic tumor with
surrounding edema and mass effect [Reiser 2008].

mass effect as the large GBM shown in Figure 2.3. In (a) the T1 -weighted
image shows strong enhancement, and in (b), a heterogeneous signal pattern
is shown on T2-weighted MRI. GBMs usually exhibit heterogeneous signal in-
tensity on both T1- and T2 -weighted images caused by cysts, necrosis, and
hemorrhage commonly seen with GBM. Up to 95 % of GBMs demonstrate
contrast enhancement, and they are usually associated with high signal on T2-
weighted imaging tumors.

Figure 2.3: Large GBM presenting a large mass lesion, (a) with strong en-
hancement, and (b) a heterogeneous signal pattern on T2-weighted MRI.
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Oligodendroglial Tumors

Oligodendroglioma (WHO grade IT) is a kind of Oligodendroglial Tumor (1.2 of
Table 2.2). In MRI, oligodendrogliomas appear iso- to hypointense on T1 with
very low intensity, representing the calcified areas.

In Figure 2.4, the tumor has the appearance of a heterogeneous mass lesion
with cystic components and hypointensities both on T1-(a) and T2-weighted
imaging (b).

Figure 2.4: MRI of an Oligodendroglioma. (a) T1-weigted, and (b) T2-weighted
imaging.

On T2 the tumors are typically hyperintense with a not-well delineated
margin. Compared to astrocytomas, the lesions present with a lower signal on
T2, which is related to the high cellular density.

The most useful finding, however, is the typical cortical infiltration and
marked cortical thickening. Small cystic lesions and hemorrhage is also a com-
mon finding. Enhancement is common and tends to be more intense in the
Anaplastic or malignant oligodendrogliomas.

Figure 2.5 shows an Anaplastic oligodendroglioma, the unenhanced T1-
weighted image (a) does not show any hemorrhage, with a strong enhancement
of the solid parts after contrast (b).
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Figure 2.5: Anaplastic oligodendroglioma. (a) The unenhanced T1-weighted
image does not show any hemorrhage, with a strong enhancement of the solid
parts after contrast (b).

Ependymal Tumors

Ependymal tumors (1.3 of Table 2.2) are common in children, accounting for
about 10% of pediatric CNS neoplasms and 5% of all intra-axial tumors. MR
imaging of Ependymomas (WHO grade II) shows the heterogeneity of the tu-
mors which reflects areas of necrosis, bleeding, and cysts.

Figure 2.6 shows an Ependymoma appearing as a large mass lesion in (a)
and in (b), and with rim enhancement and cystic necrosis in (c). On T2 the
tumors are not as high in signal intensity as other gliotic tumors due to the
high cellular density.

Embryonal Tumors

Medulloblastoma (WHO grade IV) is a malignant, invasive Embryonal Tumor
(1.9 of Table 2.2) of the cerebellum that occurs primarily in children. The char-
acteristic appearance on MRI is an intraventricular mass lesion in a midline
or paramedian location with isointense signal to gray matter on T2-weighted
imaging. The enhancement is intense with some heterogeneity and sometimes
ring enhancement.

Figure 2.7 presents a Medulloblastoma showing the inhomogeneous mass on
T1 (a) and T2-weighted imaging (b).
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Figure 2.6: Ependymoma. (a) and (b), the tumor appears as a large mass
lesion. (c¢) Shows the tumor with rim enhancement and cystic necrosis.

Figure 2.7: Medulloblastoma. The inhomogeneous mass on T1 and T2-weighted
imaging (a,b).

Meningiomas

Meningiomas (3.1 of Table 2.2) are the most common primary nonglial in-
tracranial tumors. They are typically slow-growing, benign, WHO grade 1
tumors attached to the dura mater and composed of neoplastic meningothelial
(arachnoidal) cells. Meningiomas are estimated to comprise between 13 and
26% of primary brain tumors.
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Figure 2.8 shows a Meningioma before and after contrast. Meningioma
hypointense on T1-weighted imaging (a), and (b) presents a homogeneous in-
tensive contrast enhancement.

Figure 2.8: Meningioma on the T1 channel, before and after contrast. (a)
Meningioma hypointense on T1-weighted imaging, and (c) presents a homoge-
neous intensive contrast enhancement.

Tumors of Uncertain Histogenesis

Figure 2.9: Capillary hemangioblastoma in a patient with von Hippel-Lindau
(VHL) disease. The tumor presents as a large cystic mass (a), after contrast
administration (b), the solid tumor parts show intensive enhancement.
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Capillary hemangioblastoma (WHO grade I) is a tumor of uncertain histogene-
sis (3.4 of Table 2.2). It occurs sporadically and is associated with the familial
tumor syndrome von Hippel-Lindau (VHL) disease. Because of the high pro-
tein content of the cysts, they are slightly hyperintense to CSF on T1-weighted
MR images. They generally present without surrounding edema.

In Figure 2.9 the tumor presents as a large cystic mass (a), after contrast
administration (b), the solid tumor parts show intensive enhancement.

2.6 Conclusions

Brain tumor imaging is an essential part of the decision-making process for
therapy and later for precise planning of surgical or radiological interventions.
The goals and requirements for brain tumor imaging are multiple and complex.
They involve providing a diagnosis and a differential diagnosis, and, if possible,
a specific diagnosis, as well as accurate grading of the tumor.

Magnetic Resonance Imaging is a powerful visualization technique that al-
lows images of internal anatomy, metabolism, and function to be acquired in
a safe and non-invasive way. It is based on the principles of Nuclear Magnetic
Resonance, and allows a vast array of different types of visualizations to be
performed. This imaging medium has been of particular relevance for produc-
ing images of the brain, due to the ability of MRI to record signals that can
distinguish between different soft tissues such as gray matter and white matter.

MRI of the brain is a vital part of modern oncology. It is used in tumor
diagnosis, monitoring tumor progression, planning treatments, and monitoring
responses to treatment. From the very beginning, the technical development of
MRI has progressed quickly, and it seems to be continuing at an ever-increasing
pace. As a result, over the last 30 years there has been an explosion in the
number of clinical applications of MRI.

Due to its high tissue contrast and its noninvasiveness, MRI is accepted
as the most sensitive method for diagnosing brain tumors. The very accurate
MR Imaging, generally T1-weighted, T2-weighted and proton density, add di-
agnostic value. In visualizing brain tumors, a second T1-weighted image is
often acquired after the injection of a contrast agent. These contrast-agent
compounds usually contain an element whose composition causes a decrease in
the T1 time of nearby tissue (gadolinium is one example).
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Chapter 3

State of the Art Survey on
Brain Tumor Segmentation

3.1 Introduction

The ultimate goal of brain tumor imaging analysis is to extract the patient-
specific important clinical information, and their diagnostic features. This
information embedded within the multidimensional image data, can guide and
monitor interventions after the disease has been detected and localized, and
ultimately leading to knowledge for clinical diagnosis, staging, and treatment
of disease [Wong 2005]. These processes can be represented diagrammatically
as a pyramid, as illustrated in Fig. 3.1. At each level of the pyramid, specific
techniques are required to process the data, extract, label, and represent the
information. Moreover it is necessary a high level of abstraction in order to
obtain relevant clinical knowledge or datasets from which medical diagnosis
and decision can be made.

Effective management, processing, visualization, and analysis of the ob-
tained datasets cannot be accomplished without high-performance computing
infrastructure that should be composed of high-speed processors, storage, net-
work, image display unit, as well as software programs. Development and
implementation of the related techniques requires detailed understanding of
the underlying problems, and knowledge about the acquired data, as: nature
of data, goal of the study, and scientific or medical interest, etc.

The effective extraction of all information and features contained in differ-
ent types of multidimensional images are of increasingly importance in image
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Diagnosis
Staging
Treatment

Clinical Knowledge

Clinical Information
Diagnostic Features

Medical Image Data

Figure 3.1: The steps and ultimate goal of medical image analysis in a clinical
environment [Wong 2005].

segmentation, because it plays a crucial role in extraction of useful information
and attributes from images. As Bhandar states [Bhandar 1997]: The main ob-
jective of image segmentation is to partition an image into mutually exclusive
regions such that each region is spatially contiguous and the pixels within the
region are homogeneous with respect to a predefined criterion.

In the particular case of brain tumor, segmentation consists on separating
the different tumor tissues such as solid or active tumor, edema, and necro-
sis, from normal brain tissues, such as gray matter (GM), white matter (WM)
and cerebrospinal fluid (CSF). In brain tumor studies, the existence of ab-
normal tissues is easily detectable most of the time. Nevertheless, accurate
and reproducible segmentation and characterization of abnormalities are not
straightforward.

In the last years many researchers in the field of medical imaging and soft
computing have made significant survey in the field of brain tumor segmen-
tation [Capelle 2000, Clark 1998, Corso 2008, Dam 2004, Dou 2007, Fletcher
2001, Gibbs 1996, Ho 2002, Iftek 2009, Kaus 2001, Khotan 2008, Lee 2005,
Prastawa 2004]. Both semiautomatic and fully automatic methods have been
proposed. Clinical acceptance of segmentation techniques have depended on
the simplicity of computation and the degree of user supervision [Yao 2006].
Interactive or semiautomatic methods are likely to remain dominant in practice
for some years, especially in applications where erroneous interpretations are
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unacceptable [McIner 2000].

This chapter presents an overview of the most relevant existing brain tu-
mors’ segmentation methods applied after the acquisition of the image. Given
the advantages of magnetic resonance imaging (MRI) over other diagnostic
imaging techniques (as has been explained in Chapter 2) this survey is focused
on MRI brain tumor segmentation. Semiautomatic and fully automatic tech-
niques are emphasized.

3.2 QOutline of the Chapter

This chapter is divided into four sections. First, section 3.3 gives an introduc-
tion of manual and automated segmentation methods. Then, in section 3.4,
the concepts of unsupervised and supervised segmentation are presented. Sub-
sequently, the most relevant existing methods for the segmentation of brain
tumors are introduced in Section 3.5. Finally, some conclusions are summa-
rized in Section 3.6.
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3.3. Manual and Automated Brain Tumor Segmentation

3.3 Manual and Automated Brain Tumor Seg-
mentation

Brain tumor segmentation methods can be classified into three categories ac-
cording to the degree of required human interaction as exposed by Foo et al.
[Foo 2006], Olabarriga et al. [Olaba 2001], snd Yao [Yao 2006]:

e manual segmentation,
e semiautomatic segmentation, and

e fully automatic segmentation.

Next sections give a description of each category, some of their principal
advantages and inconveniences are delineated.

3.3.1 Manual Segmentation

Manual segmentation of brain tumors involves manually drawing the bound-
aries of the tumor and structures of interest, or painting the region of anatomic
structures with different labels [Yao 2006]. In manual segmentation, human
experts not only make use of the information presented in the image but also
make use of additional knowledge such as anatomy.

Manual delineation requires software tools with sophisticated graphical user
interfaces to facilitate drawing regions of interest and image display. In prac-
tice, the selection of the tumor region, which is the region of interest (ROI),
is a tedious and time-consuming task. As explained in Chapter 2, MRI scan-
ners generate multiple two-dimensional cross-sections (slices), and the human
expert has to go through the dataset slice by slice for choosing the most repre-
sentative ones from which the relevant regions are carefully delineated [Wong
2005]. Manual segmentation of brain tumors is also typically done based on
a single image with intensity enhancement provided by an injected contrast
agent [Prastawa 2003].

The task of marking the tumor regions slice by slice sometimes limits the
human rater’s view and generates jaggy images as in Figure 3.2 where the tu-
mor was manually segmented slice by slice in axial direction. As a result, the
segmented images are less than optimal showing a “stripping” effect [Prastawa
2003]. Needless to say, manual ROI delineation is also operator dependent and
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the selected regions are subject to large intra and inter rater variability [White
1999].

Figure 3.2: a)Sagittal view of gadolinium contrast enhanced T1-weighted MR,
image and the manual tumor segmentation result. b). “Striping” effect due
to segmenting the tumor slice by slice in axial direction can be appreciated
[Prastawa 2003].

For example, a recent study [Mazzara 2004] quantified an average of 28%
12% variation in quantified volume between individuals performing the same
brain tumor segmentation task (the variation ranged from 11% to 69%), and
quantified a 20% 15% variation within individuals repeating the task three
times at 1 month intervals. Figure 3.3 gives an example presented in [Luo
2003] of inter rater variability, where four different experts performed a man-
ual segmentation of a glioma on the same slice and patient. The resulting
segmentation of each expert presents notable differences.

In spite of the possible intra and inter rater variability, manual segmen-
tation is habitually used as validation ground truth for semi and fully auto-
matic segmentation methods; in which segmentation results are qualitatively
and quantitatively evaluated by comparison with manual segmentations. Fig-
ure 3.4 shows a graphical representation of the resulting segmentation from an
automated method (inner contour displayed in black) as compared with the
resulting manual segmentation from a physician (outer contour displayed in
white).

Methodologies providing semi automated or, ideally, fully automated seg-
mentation will present clear advantages over the manual delineation. However,
manual segmentation is still widely used in clinical trials, especially where a
lot of human knowledge and expertise is required to distinguish tissues.
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Figure 3.3: Manual segmentation by four different experts of a glioma on the
MRI [Luo 2003].

3.3.2 Semiautomatic Segmentation

In semiautomatic brain tumor segmentation, the intervention of a human op-
erator is often needed to initialize the method, to check the accuracy of the
result, or even to correct the segmentation result manually. Most of the current
research is targeted at semiautomatic segmentation of brain tumors with the
intention of having as least human interaction as possible.

According to Olabarriaga et al [Olaba 2001], the main components of an
interactive brain tumor segmentation method are the computational part, the
interactive part, and the user interface. A representation of these components is
depicted in Figure 3.5. Computational part corresponds to one or more pieces
of program capable of generating a delineation of the tumor given some param-
eters. The interactive part is responsible for mediating information between
the user and the computational part. It translates the outcome produced by
the computational part into visual feedback to the user and the data input by
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Figure 3.4: Planning target volume resulting from k-nearest neighbors segmen-
tation method (inner contour displayed in black) compared with PTV of a
Physician (outer contour displayed in white) [Beyer 2006].

the user into parameters for the program. The actual communication between
the computer and the user is done via the output and input devices controlled
by the user interface. The user analyses the visual information displayed on
the screen and reacts accordingly, providing feedback for the computation.

delineation _| Screen \
Computational K Interactive
Part Part \ 1
N Input ;
parameters ' p /

devices

Figure 3.5: Main components of an interactive brain tumor segmentation
method, according to Olabarriaga et al. [Olaba 2001].

The user interaction in brain tumor segmentation was recently grouped by
Foo [Foo 2006] into three main categories: initialization, intervention or feed-
back response, and evaluation. Most methods will consist of one or more types
of interaction and can be summarized as:

e Initialization

— Input of arguments or parameters. Either from keyboard, mouse or
other forms of input devices.
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— Some pre-processing of image data to enhance quality (sharpening
or noise removal).

— Evaluation of the complexity of the image data to improve decision
making during input of arguments/parameters.

— User selecting the object from the first slice of the data set to be
processed or from a three-dimensional representation.

e Intervention / Feedback response

— Steering of the process continuously or intermittently towards a de-
sired result.

— Giving a response to feedback data from process.

— Stopping the process midway when undesired results are obtained
to make corrections, and then resume the process.

e Evaluation

— Evaluating the final result of the process to determine if it is cor-
rect or satisfactory. If not satisfactory, necessary changes are made
to the arguments or parameters and the process is repeated, make
modifications to the results, or in some cases results are simply re-
jected.

Since the semiautomatic methods use different strategies to combine com-
puters and humans’ expertise, the outcome of these methods depends on the
strategy as much as on computation. Olabarriaga et al. [Olaba 2001] presented
a summary of strategies that are necessary to be considered for the design of
efficient brain tumor and medical imaging semiautomatic segmentation meth-
ods, for generating accurate and repeatable results, these are

e Design an integrated process for interaction and computation.
e Use pictorial input to the computational process.

e Minimize the amount of interaction by presenting options for user selec-
tion.

e Involve the user in the initialization of segmentation process to provide
information that can bootstrap or lead the method to the desired seg-
mentation result more quickly.

e Properly visualize the working of the computational part to enable an
effective user’s response.

38



3.3. Manual and Automated Brain Tumor Segmentation

e Keep the user in the control during the whole process to generate accurate
results.

e Emphasize computation after each interaction to generate repeatable re-
sults.

e Add intelligent behavior to elevate the abstraction of interaction; and

e Add intelligence to learn from interaction and reduce the need of future
interventions.

Although it is true that by using these strategies efficient brain tumor semi-
automatic segmentation methods can be obtained, semi automatic segmenta-
tion like manual segmentation is subjected to variations both between expert
users and within the same user.

3.3.3 Fully Automatic Segmentation

In fully automatic methods, the computer determines the segmentation of tu-
mor without any human interaction. Fully automatic methods generally in-
corporate human intelligence and prior knowledge in the algorithms, and are
usually developed making use of soft computing and model-based techniques
such as deformable models. Soft computing techniques such as fuzzy systems,
and deformable models will be reviewed in Section 3.5.

The study of automatic brain tumor segmentation represents an interesting
research issue in Machine Learning and Pattern Recognition, since it represents
a problem that humans can learn to do effectively. However, developing highly
accurate automatic methods remains a challenging problem. This is easily ex-
plained by the fact that humans must use high-level visual processing, and
must incorporate specialized domain knowledge to perform this task [Prastawa
2003], which makes developing fully automatic methods extremely difficult.
Although this is true for many pattern recognition and vision problems, brain
tumor segmentation has several properties that reduce the advantage that hu-
mans have over machines.

For example, from the brain anatomical properties can be emphasized that
the head’s appearance in MR images is relatively predictable, the brain is well
quantified structurally, and the behavior of different tissue types in different
MR channels is well characterized. Additionally, there is no temporal compo-
nent and the brain remains stationary, therefore being able to visually track

39



3.3. Manual and Automated Brain Tumor Segmentation

Table 3.1: Summary of related methods in automatic brain tumor segmenta-
tion.

Authors Description

[Dou2007) Fuzzy Region Growing Framework
[K hotan2008| Model-based Fuzzy classification
[Prastawa2004] Knowledge-based / outlier detection
[Vijaya2007) Self Organizing Maps
[
[
[

Ho02002] 3D Level Sets
I ftek2009) Self Organizing Maps
Lee2005] Discriminative Random Fields and Support Vector Machines

objects over time has no advantage. Another property which reduces the advan-
tage of humans over machines is that the viewpoint is known and that humans
view the data as a series of two-dimensional slices. Therefore the ability of
humans to use three-dimensional information in segmentation is also reduced
in this task since there is no three-dimensional modeling of structures based
on a large range of views of the object. Concerning the illumination, there are
robust algorithms for correcting intensity inhomogeneity, making the ability to
compensate for differences in illumination less of an advantage.

The use of implicit or explicit anatomical knowledge such as size, shape,
location, expected appearance of the tumor, and bilateral symmetry to guide
the segmentation are especially important for robust automatic methods. This
knowledge may be incorporated into the segmentation model in the form of ini-
tial conditions, constraints on the model shape parameters, data constraints, or
into the model fitting procedure. For automatic segmentation, it is essential to
have a model that not only describes the size, shape, location and appearance
of the tumor but that also permits expected variations in these characteristics.

However, no completely automatic segmentation algorithm has yet been
adopted in the clinic environment. Table 3.1 gives a list of the prior art in fully
automatic tumor segmentation. These approaches will be reviewed in section
3.5 according to their segmentation method.

Currently, fully automatic segmentation methods are desirable in processing
large batch of images and are mainly restricted to the research environment.

However, it must be pointed out that these methods have not gained wide ac-
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ceptance among the pathologists for every day clinical practice. It has been
mainly due to the lack of interpretability and transparency in the segmentation
process, two characteristics that make a segmentation method a convenient tool
for every day clinical practice [Papage 2008].

3.4 Unsupervised and Supervised Segmentation

As previously mentioned, the main objective of image segmentation is to parti-
tion an image into mutually exclusive and exhausted regions which are homo-
geneous with respect to a predefined criterion. In the case of brain tumors, the
segmentation consists on separating the different tumor tissues such as solid or
active tumor, edema, and necrosis, from the normal brain tissues such as gray
matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The brain
tumor segmentation requires of an objective measure that can be used to define
the homogeneity of each tissue. There exist two ways of obtaining the objec-
tive measure, namely the unsupervised and supervised segmentation methods
[SemiT 2005). The difference between them is that unsupervised methods do
not make use of training data that have been manually labeled, as is the case
of supervised methods.

Figure 3.6 summarizes the difference between the unsupervised and super-
vised approaches. In unsupervised segmentation (left side of figure 3.6) the
number of classes is automatically specified by an algorithm that groups nu-
merically similar pixels. The right side of figure 3.6 emphasizes that the number
of classes is manually specified. Next sections give a description of unsuper-
vised and supervised segmentation methods.

3.4.1 Unsupervised Segmentation

When image data are unlabeled, the image can be segmented using clustering
algorithms. In this case, no human finds and labels subsets of training data.
Instead, the entire set of pixel vectors is submitted to a cluster analysis scheme,
and the clusters are found algorithmically. Moreover, once found, algorithmic
clusters (regions that have the same labels) must somehow be assigned physi-
cal (tissue) labels [Bezdek 1993]. Unsupervised segmentation can be performed
using an anatomic objective measure or an image-based objective measure to
assess segmentation quality. In the former the goal is to segment the image
into regions that have homogeneous and known anatomic properties, whereas
in image-based objective the segmentation quality is based on the evaluation
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Figure 3.6: Unsupervised and supervised brain tumor segmentation schemes.
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of regions having similar intensities or textures.

Brain tumor unsupervised segmentation approaches that use an anatomic
objective measure aim to segment the image into at least two anatomically
meaningful regions, one of which is tumor or edema. These approaches have
been of limited applicability; because most of the proposed methods have been
focused solely on the segmentation of enhancing tumor areas [Gibbs 1996, Ho
2002, Sammou 1996, Zhu 1997]. This limitation is primarily due to the dif-
ficulty in translating the visual processing and anatomic knowledge used by
human experts into operations that yield the desired results.

The unsupervised segmentation methods that use image-based features,
rather than dividing the image along anatomically meaningful distinctions,
divide the images into homogeneous regions using image-based features such
as intensities and/or textures. These methods can handle more complicated
cases, for example producing an accurate segmentation of the different regions
present in a heterogeneous tumor [Wiselin 2005]. Because of the lack of inten-
sity prior knowledge on the tumors, makes it challenging to proceed in an unsu-
pervised manner [Popuri 2009], for this reason there has been narrow research
effort directed towards techniques for unsupervised brain tumor segmentation
in MR images that do not use an anatomic objective measure. Three major
disadvantages have been pointed out [SchimiT 2005] when using unsupervised
segmentation methods using image-based features: the number of regions of-
ten needs to be pre-specified, tumors can be divided into multiple regions, and
tumors may not have clearly defined intensity or textural boundaries. These
disadvantages were reduced in [Cappelle 2004, Clark 1999, Shanti 2007, Zhuang
2006] making use of an automatic preprocessing operation named “skull strip-
ping”. Intracranial segmentation commonly referred to as skull stripping, aims
to segment the brain tissue from the skull and non-brain intracranial tissues in
magnetic resonance images of the brain. Skull stripping is an important pre-
processing step in neuroimaging analysis because brain images must typically
be skull stripped before other processing algorithms can be applied. In chapter
4 a broad description of this preprocessing operation is given.

3.4.2 Supervised Segmentation

Image segmentation supervised methods differ from unsupervised methods through
the use of labeled training data. Supervised classification involves both a train-
ing phase that uses labeled data to learn a model that maps from features to
labels (Figure 3.7 a and ¢), and a testing phase that is used to assign labels to
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unlabeled data based on the measured features (Figure 3.7 b and d).

Training
Extracted features Model
a) —»| (that uses features to | ¢)
predict class label)
Known class labels
Testing A 4
b) —{ Predicted class labels | d)
Extracted features

Figure 3.7: Overview of supervised learning framework. The training phase
uses labeled data and extracted features to generate a model mapping from
the values of the features to the labels. The testing phase uses this model to
predict labels from extracted features where the label is not known [SchmiT
2005).

In supervised segmentation the choice of accurate training data is crucial
because different training sets can lead to great disparities in training time, as
well as potential differences in segmentation results [Bezdek 1993]. In the su-
pervised manner, the operator decides, based on the MR data being inspected,
how many tissue classes exist in the image.

When formulating the brain tumor segmentation task as a supervised clas-
sification problem, one straightforward method is to use the labels normal and
tumor as classes, and to use the intensities in the different MR images as fea-
tures. Under this formulation the training phase consists on learning a model
that uses the MR image intensities to discriminate between normal and tumor
pixels. The testing phase would consist on using this model for classifying un-
labeled pixels into one of the two classes based on their intensities.

The source of the training and test data has a major influence on the per-
formance of a supervised method. T'wo mayor sources of training and test are
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patient-specific training, and inter-patient training. In patient-specific training,
the training data are obtained from the images to be segmented. Several of the
subclasses of patient-specific training that will be examined include: training
and testing data are the same, training uses a subset of the pixels within the
test slice, and training is performed based on slices that are adjacent to the test
slice. Inter-patient training is to perform training on several patients, and test-
ing in one [Cobzas 2007]. Subclasses for inter-patient training include: training
and testing data are the same, training on the same slice and tumor type from
different patients, and Training on the same tumor type from different patients.

A major advantage of using a supervised formulation is that supervised
methods can perform different tasks simply by changing the training set. Su-
pervised methods have the potential of reducing the manual engineering task
by providing labeled data, appropriate features, and appropriate parameters
for the learning algorithm.

Although highly effective and versatile, supervised methods for brain tu-
mor segmentation in MR images often suffer from the disadvantage of requiring
patient-specific training. The exceptions that were able to perform inter-patient
classification focused on relatively simplified tasks, and required a large amount
of training data, as in [Dickson 1997]. The human variability associated with
manual training data, could also be a disadvantage.

3.5 Segmentation Methods

Detection, localization, diagnosis, staging, and monitoring treatment responses
are crucial procedures in clinical medicine and oncology. Early detection and
localization of the diseases, and accurate disease staging could lead to changes
in patient management that will impact on health outcomes. Accurate quantifi-
cation of regional physiology depends on accurate delineation or segmentation
of the tumor structure or region of interest in the images. According to Wong
[Wong 2005], the fundamental roles of segmentation are: (1) permit quan-
tification, (2) reduce the dataset by focusing the quantitative analysis on the
extracted regions that are of interest, and (3) establish structural correspon-
dences for the physiological data sampled within the regions.

A wide variety of brain tumor segmentation techniques has been proposed.
However, there is no standard segmentation technique that can produce satis-
factory results for all imaging applications. Quite often, methods are optimized
to deal with specific imaging modalities such as magnetic resonance imaging.
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In general, segmentation techniques have been divided for diverse authors [Yao
2006, Wong 2005, Farag 2005, Xu 2000] into four major classes:

e Threshold-based techniques

Region-based techniques

Pixel classification techniques

e Model-based techniques

Threshold-based, region-based and pixel classification techniques are com-
monly employed in two-dimensional image segmentation [Battha 2008, Iftek
2009, Vijaya 2007, ChangS 2000, Shanti 2007]. Model based techniques such as
parametric and geometric deformable models (level sets), are mostly employed
in volumetric (3D) image segmentation [Chang 2008, Ho 2002, Xie 2005).

There has been a large amount of research effort directed towards the seg-
mentation methods. Many of the approaches that will be discussed here rep-
resent prototypical examples of state of the art methods in the general area
of brain tumor segmentation. A review of threshold-based, region-based and
pixel classification techniques will be given in this section. Model-based tech-
niques such as parametric and geometric deformable models (level sets), as well
as their applications, will be introduced and discussed latter in this chapter.
Semiautomatic and fully automatic image segmentation techniques are empha-
sized.

3.5.1 Threshold-Based Methods

Thresholding is a simple and effective region segmentation method, in which
the objects of the image are classified by comparing their intensities with one
or more intensity thresholds. These thresholds can be either global or local.
If the histogram of an image expresses a bimodal pattern, the object can be
separated from the background in the image by a single threshold called global
thresholding. However, if the image contains more than two types of regions,
corresponding to different objects, the segmentation must be carried out using
local thresholding. The image may be segmented by applying several individ-
ual thresholds or by using a multi-thresholding technique.
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Global Thresholding

The simplest property that pixels in a region can share is intensity. So, a
natural way to segment such regions is through thresholding, the separation
of light and dark regions. Thresholding creates binary images from gray-level
ones by turning all pixels below some threshold to zero and all pixels about
that threshold to one. If g(z,y) is a thresholded version of f(x,y) at some
global threshold T,

0 otherwise

o) = {1 if f(x,y)>p (3.1)

in which pixels with value of 1 correspond to the ROI, while pixels with
value 0 correspond to the background.

The major problem with thresholding is that only the intensity is consid-
ered, not any relationships between the pixels. There is no guarantee that the
pixels identified by the thresholding process are contiguous. Extraneous pixels
that are not part of the desired region can easily be included, and sometimes
isolated pixels within the region (especially near the boundaries of the region)
are ignored. These effects get worse as the noise gets worse, simply because it is
more likely that a pixel intensity does not represent the normal intensity in the
region. When thresholding is used, it is necessary to play with it, sometimes
losing too much of the region and sometimes getting too many extraneous back-
ground pixels. Shadows of objects in the image are also a problem, not just
where they fall across another object but where they mistakenly get included
as part of a dark object on a light background. Another problem with global
thresholding is that changes in illumination across the scene may cause some
parts to be brighter (in the light) and some parts darker (in shadow) in ways
that have nothing to do with the objects in the image.

Global thresholding performs well if the image contains objects with ho-
mogeneous intensity or the contrast between the objects and the background
is high. However, it may not lead itself to fully automatic segmentation, and
may fail when two or more tissue structures have overlapping intensity levels.
The accuracy of the ROI is also questionable because it is separated from the
background based on a single threshold value which may be subject to very
large statistical fluctuations. With the increasing number of regions or noise
levels, or when the contrast of the image is low, threshold selection will become
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more difficult.

Gibbs et al. [Gibbs 1996] presented an unsupervised approach for the seg-
mentation of enhancing tumor pixels from T1-weighted post-contrast images.
The system first applied an intensity threshold to a manually selected region
of interest, and represents a clearly justified approach for segmenting image
objects that are different in intensity from their surroundings.

Although the requirement of manual slice or region of interest selection
is a disadvantage, a more severe drawback is that the method does not ef-
fectively take into account the presence of hyper-intense pixels representing
normal structures in T1 post-contrast images.

Figure 3.8 shows in a) and in c) the T1-weighted post-contrast images. In
b) and in d) the resulting segmentation using global thresholding, it can be
observed false positive areas including non-tumor structures that have short
T1 times (locations of bone and fat) in addition to normal structures that may
also uptake the contrast agent.

Figure 3.8: Segmentation by Global thresholding (a,c) T1-weighted post-
contrast image, (b,d) image after intensity thresholding. The binary segmen-
tation fails in locations of bone and fat (false positives).
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Local Thresholding

Apart from global thresholding, there are several thresholding methods which
can be classified as local thresholding. A local threshold is determined adap-
tively in a local region around a pixel. These techniques maybe useful when a
thresholding value cannot be determined from a histogram for the entire image
or a single threshold cannot give good segmentation results. Local threshold
can be determined by estimating a threshold value for the different regions from
the intensity histogram. According to Yao [Yao 2006] the values of thresholds
are generally estimated by the prior knowledge.

Local threshold values can also be estimated using the local statistical prop-
erties such as the mean intensity value as in [Shanti 2007] or by calculating
partial volumes of each region to determine the threshold for the segmentation
of each component on a brain MR image [ChangSun 2000].

Stadlbauer et al. [Stad 2004] used the Gaussian distribution of data values
in normal brain as threshold. The limit threshold value for normal brain tissue
was the mean plus three times the standard deviation. Based on this threshold,
an area was calculated which was delineated as pathologic tissue.

Generally threshold-based segmentation methods, local or global, are con-
sidered unable to exploit all the information provided by MRI, and are used as
a first step in the segmentation process.

3.5.2 Region-Based Methods

Region-based segmentation approaches examine pixels in an image and form
disjoint regions by merging neighborhood pixels with homogeneity properties
based on a predefined similarity criterion [Wong 2005]. These methods can be
sketched in a general way as follows: Let X be an image that is segmented
into N regions, each of which is denoted as R; where i = 1,2,, N. The original
image can be exactly assembled by putting all regions together (Eq.3.2) and
there should be no overlapping between any two regions R; and R; for ¢ # j
(Eq. 3.3). The logical predicate L(-) contains a set of rules (usually a set of
homogeneity criteria) that must be satisfied by all pixels within a given region
(Eq. 3.4), and it fails in the union of two regions since merging two distinct
regions will result in an inhomogeneous region (Eq. 3.5). The regions must
satisfy the following properties:
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X:CJRi (3.2)
=1
RiNR;=0 Vi,j=12... N (3.3)
L(R) =TRUE for i=12,...,N (3.4)
L(R;UR;) = FALSE for Vi,j=1,2,...,N;i#j (3.5)

where L(-) is a logical predicate.

The region growing and the watershed segmentation method are part of the
region-based methods [Yao 2006], and are the most commonly used for brain
tumor segmentation. Next sections give a description of these methods, and
some applications in the literature for brain tumor segmentation.

Region Growing

The simplest region-based segmentation technique is the region growing, which
is used to extract a connected region of similar pixels from an image [Adams
1994]. Region growing starts with at least one seed that belong to the structure
of interest. Neighbors of the seed are checked and those satisfying the simi-
larity criteria are added to the region. The similarity criteria are determined
by a range of pixel intensity values or other features in the image. Seeds can
be chosen manually or provided by an automatic seed-finding procedure. The
procedure iterates until no more pixels can be added to the region. The ad-
vantage of region growing is that it is capable of correctly segmenting regions
that have similar properties and generating connected region.

Kaus et al. [Kaus 2001] implemented a region growing technique for seg-
menting MR Images of brain tumors. The technique involved the iteration of
statistical classification to divide an image into different tissue classes on the
basis of the signal intensity value. Objects of interest were identified on the
classified images with local segmentation operations (mathematic morphology
and region growing).
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Recent studies [Salman 2005, Vincent 2004, SalBad 2005] have proved that
the region growing is an effective approach and less computation intensive than
other non region-based methods for brain tumor segmentation, especially for
the homogeneous tissues and regions. The primary disadvantage of region
growing method is the partial volume effect [Sato 2000, Lakare 2000] which
limits the accuracy of MR brain image segmentation. Partial volume effect
blurs the intensity distinction between tissue classes at the border of the two
tissues types, because the voxel may represent more than one kind of tissue
types [Links 1998].

S. Lakare et. al. [Lakare 2000] introduced the modified region growing
method (MRGM), which is used to remove the partial volume effects and to
incorporate gradient information for more accurate boundary detection and
filling holes occurred after segmentation.

Recenlty Salman [Salman 2009] presented a comparative analysis of the
traditional region growing segmentation and the MRGM, addressed to brain
tumor segmentation in 3D images. In his study Salman proved that the MRGM
increases the accuracy of the volumetric measurements of brain tumors, pro-
ducing lower relative errors than traditional region growing method when com-
pared with manual segmentation.

As matter of example, Figure 3.9 shows the results of the traditional and
modified region growing segmentation methods. It can be observed that some
false negatives (center of tumor in Figure 3.9a) were detected by using the
MRGM (Figure 3.9 b). Figure 3.10 shows a graphical representation of the rel-
ative errors of tumor volume segmentation using the traditional and modified
region growing methods compared to the expert manual tracing.

Other recent approaches incorporate the region growing process as a re-
finement step. A good example is the work presented by Dou et al. [Dou
2007], wherein they proposed a fuzzy information fusion framework for the
automatic segmentation of tumor tissues of human brain from multiple MR
image sequences. This framework consists on the registration of multispectral
images, the creation of fuzzy models (based on a priori knowledge), fuzzy fea-
ture fusion and an adjustment by fuzzy region growing. Rexilius et al.[Rexilius
2007] propose a fast multispectral segmentation of brain tumors by means of a
probabilistic intensity model, followed by an iterative refinement of the initial
segmentation. The refinement step is performed by a progressive region grow-
ing that combines probability and distance information.
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Figure 3.9: Comparison of the modified region growing segmentation method
against the traditional method. (a) Results of traditional region growing seg-
mentation; some false negatives in the interior of tumor volume (b) Results of
modified region growing segmentation method [Salman 2009].
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Figure 3.10: Relative errors for traditional region growing segmentation (gray)
and modified region growing segmentation method (black) compared with man-
ual segmentation method [Salman 2009].
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Watershed

Basic watershed segmentation method can be explained by a metaphor based
on the behavior of water in a landscape. When it rains, drops of water falling
in different regions will follow the landscape downhill. The water will end up
at the bottom of valleys. For each valley there will be a region from which all
water drains into it. In other words: each valley is associated with a catch-
ments basin, and each point in the landscape belongs to exactly one unique
basin. At points where water coming from different basins meet, dams will be
built. When the water level has reached the highest peak in the landscape,
the process is stopped. As a result, the landscape is partitioned into regions
separated by dams, called watershed lines or watersheds. It produces a com-
plete contour of the images and avoids the need for any kind of contour joining.

Watershed applications have been widely used in brain tumor segmentation,
for example, Letteboer et al. [Letteboer 2001] and Dam et al. [Dam 2004] per-
formed segmentation of brain tumors using multi-scale watershed transforma-
tion. Dam presented an interactive method for brain tumor segmentation, the
method builds blocks at different scales that the user can select (and deselect)
in order to sculpt the desired anatomical object. Supervised learning is used
to predict which building blocks are to be included in the segmentation.

Cates et al. [Cates 2005] performed an analysis of user-assisted hierarchi-
cal watershed segmentation of brain tumors from MRI data. The quantitative
and qualitative results showed improvements on the segmentation time and
precision over manual segmentation. The analysis also identified some failures
in the watershed technique, where edges were poorly defined in the data, and
noted a trend in the manual segmentation results toward systematically larger
segmentations. The analysis raised questions about the wisdom of using expert
segmentations to define ground truth.

Batthacharya and Das [Battha 2008] implemented a marker-based improved
watershed algorithm utilizing the prior knowledge of the test images for the
segmentation of brain tumors; seeded region-growing method was used as the
marker of ROIs.

Recently Ratan et al. [Ratan 2009] proposed a watershed segmentation
based algorithm that has been used for detection of tumor in 2D and in 3D
brain MRI. A simple supervised block-based and image-based (shape, texture,
and content) technique has been used to analyze MRI brain images with rela-
tively lower computational requirements.
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The watershed transform usually suffers from over-segmentation. As any
local maximum in the image will generate a shape boundary (or part of) it is
obvious that watershed segmentation has a strong potential for over segmenta-
tion, if not for other reasons then because of noise. To avoid over-segmentation
some pre or post processing methods have been proposed in order to produce
a more reasonable segmentation that reflects the layout of objects [Bleau 2000,
Gies 2004, Haris 1998]. Kong et al. [Kong 2006] applied on brain tumor MRI a
merging process for the over segmented regions using Fuzzy C-Means clustering
algorithm. This algorithm will be broadly explained at section 3.5.3.

3.5.3 Pixel Classification Methods

Another type of segmentation methods is based on pixel classification. Pixels
in an image can be represented in feature space using pixel attributes that may
consist of gray level, local texture, and color components for each pixel in the
image. In the case of single-channel (or single-frame) image, pixel classification
is typically based on gray level and image segmentation can be performed in
a one-dimensional feature space. For multichannel (multiple-frame) images or
multispectral (multimodality) images the segmentation can be performed in
multidimensional feature space.

In brain tumor segmentation the methods based on pixel classification are
constrained to the use of supervised or unsupervised classifiers to cluster pixels
in the feature space. Clustering is the process of grouping similar objects into a
single cluster, while objects with dissimilar features are grouped into different
clusters based on some similarity criteria. The similarity is quantified in terms
of an appropriate distance measure. An obvious similarity measure is given by
the distance between two vectors in the feature space which can be expressed as:

A 75) = (; I o — 2 |p)’1) (3.6)

where z; = (xll, . ,xf) € R" and z; = (le, cee x?) € R"™ are the two vec-
tors in the feature space. It can be seen that the above measure corresponds
to Euclidean distance when p = 2 and Mahalanobis distance when p = 1.

Another measure that is commonly used as similarity criterion is the nor-
malized inner product, which is given by:
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Ao z;) = S % 3.7
nd(is %) = ] 3.1

where T' denotes the vector transpose operation. This measure provides
information regarding the cosine between the vectors z; and z; in the feature
space.

Each cluster is represented by its centroid (or mean) and variance, which in-
dicates the compactness of the objects within the cluster, and the formation of
clusters, is optimized according to a cost function that typically takes into ac-
count the similarity within individual cluster and dissimilarity between clusters.

There are many clustering techniques proposed in the literature. Basic tech-
niques include unsupervised methods such as: Fuzzy C-Means (FCM), k-means,
and statistical methods as Markov Random Fields (MRF) among others. The
supervised methods include Bayes and Artificial Neural Networks (ANN). In
this section the FCM, MRF and ANN clustering techniques are presented and
analyzed.

Fuzzy C-Means

In many situations, it is not easy to determine if a pixel should belong to a
region or not due to the features considered for determining the homogeneity
within each region do not have sharp transitions at region boundaries [Bezdek
1999]. To alleviate this situation fuzzy set concepts can be introduced into the
segmentation process, as is the case of Fuzzy C-Mean technique. FCM cluster-
ing is a very popular technique in the area of unsupervised image segmentation
by pixel classification, particularly in the case of brain tumor segmentation
[Kong 2006, Supot 2007].

When the FCM method is applied for brain tumor segmentation, the first
step consists on determining a set of tissue classes. Each pixel is then assigned
membership values to the tissue classes according to its attributes. The fuzzy
membership functions, constrained to be between 0 and 1, reflect the similarity
degrees between the data value at a specific location and the prototypical data
value, or centroid, of its class. Thus, a membership value near one means that
the data value at that location is close to the centroid of the class.
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Let X = {xk|1 =k=N, and:z:kR‘i} represents the observed image where d
is one in the case of gray-level images, three for color images, and d greater
than three for multi-spectral ones. Then, mathematically, the standard FCM
must optimize an objective function for partitioning a dataset X into c clusters
is given by:

¢ N

=> > Rl — vl (3.8)

=1 k=1

where {v;};_, are the centroids or prototypes of the clusters, the parame-
ter m is a weighting exponent on each fuzzy membership and determines the
amount of fuzziness of the resulting classification and the array of membership
functions IT = [m;;] is a fuzzy partition matrix satisfying:

c N
e {me 0,1] > =1,9k,0< Y my <N,Vi} (3.9)
i=1

k=1

If the initialization can be carried out by accurate estimation of cluster
centers, the algorithm converges faster and the clustering results are improved.
Supoot et al. [Supot 2007] applied the splitting technique of discrete curve evo-
lution (DCE) in order to find the most accurate estimation of cluster centers
for MR brain image segmentation.

Phillips et al. [Phillips 1995] gave an early proof-of-concept fuzzy clustering
for brain tumor by operating on the raw multisequence data. They visually
demonstrated that even with multisequence data the intensity distributions for
tumor and normal tissues overlap. This led to other researchers to incorporate
additional knowledge into the feature vectors being clustered using FCM.

Clark et al. [Clark 1998] integrated knowledge-based techniques and mul-
tispectral histogram analysis to segment glioblastoma multiforme (GBM) tu-
mors in a multichannel feature space. The level of correspondence between
ground truth measurements and isolated tumor pixels was incremented by
their segmentation method. Fletcher-Heath et al. [Fletcher 2001] also im-
plemented a knowledge-based fuzzy clustering approach for the segmentation
of non-enhancing tumors followed by 3D connected components to build the
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tumor shape.

Veloz et al. [Veloz 2008] applied Fuzzy C-Means and Mathematical Mor-
phology to extract patterns of intensities of the GBM and to select seed points
automatically to perform the Fuzzy Spatial Growing. Additionally, a Fuzzy
similarity criterion was considered to measure the memberships degrees of the
voxels to the tumor.

Many authors have considered that standard FCM for MR image segmen-
tation is not efficient by itself, as it fails in dealing with the significant strong
correlation of neighboring pixels that is given in MR images. Ignoring this
specificity leads to strong noise sensitivity and several other imaging artifacts.
Recently, several solutions have been proposed to overcome this problem [Pham
1999, Ahmed 2002, Pham 2003, Siyal 2005, Chuang 2006, Kannan 2008]. Most
of the proposed improvements involve the consideration of local spatial infor-
mation based on the fact that besides to the gray level value of the considered
pixel, the information provided by its neighbors also contribute to its assign-
ment to a given cluster [Szilgyi 2007].

Since Fuzzy C-Means is an iterative algorithm, it is considered a very time
consuming clustering technique [Lazaro 2005, Yong 2004]. Aiming at reducing
the execution time, several particular implementations have been developed.
Szilagyi et al. [Szilgyi 2003], and Chen and Zhang [Chen 2004] proposed to
evaluate the neighborhoods of each pixel as a pre-filtering step, and perform
FCM afterwards. This latter quick approach, combined with an averaging pre-
filter, is referred to as enhanced Fuzzy C Means (EnFCM) [Cai 2007].

Markov Random Fields

Most clustering methods do not take into account spatial information of the
image, the dependency between the pixels in the image surface. The unsuper-
vised clustering method of Markov Random Field (MRF), first discussed by
Besag [Besag 1986] and later improved by Qian and Titterington [Qian 1991],
provides a way to integrate spatial information into the clustering process. In
many cases, this reduces both the possible problem of clusters overlapping and
the effect of noise on the clustering result [Tran 2005].

Let S be a set of lattice sites (or pixels). In order to define MRFs, a neigh-

borhood system over the lattice S has first to be defined. A neighborhood
system 7 related to a lattice S is defined as:
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n={m; CS|(ij) €S} (3.10)

where 7;; is the neighbourhood of site (¢,7). This neighbourhood is such
that:

(4,5) & nij (k,1) € nij  implies  (i,7) € M (3.11)

Let X = X;; be a random field; that is, a collection of random variables,
one at each site of the lattice S. X is said to be a Markov random field with
respect to (S,7n) and P(X = z) > 0 for all z if and only if

P (Xij | Xkla (k,l) S Q) = P(Xij | Xkla (k,l) S nij) (3.12)

where Q is any subset of sites of S containing completely n;; but not (i, 7).

In the particular case of brain tumor segmentation, if a pixel is strongly
labeled as tumor, it suggests that its neighbors will have a tumor label. Sim-
ilarly non-tumor pixels tend to be next to other non-tumor pixels. This has
motivated some researchers [Li 2001] to apply Markov Random Fields and Con-
ditional Random Fields (CRFs) [Lafferty 2001] to various segmentation tasks.
MRF and CRF techniques are able to represent complex dependencies among
data instances, giving a high accuracy on brain tumor’s segmentation task [Lee
2005].

Gering et al. [Gering 2002] proposed a method that detects abnormalities
in the brain using a multi-layer MRF framework. The information layers in-
cluded pixel intensities, structural coherence, spatial locations, and user input.
In their work, it was considered that a given voxel would change its high-level
classification in the evolving presence of tumor if the attributes of lower-level
layers shared strong similarities.

Cappelle et al. [Cappelle 2000] presented an unsupervised approach by
means of a Markov Random Field model that statistically uses influences that
neighboring pixels should have on each other’s labels removing the need of
morphological operations. In their work the authors assumed that the tissue
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classes: gray matter, white matter, CSF, tumor, and edema could be modeled
by a Mixture Model (of Gaussians), and trained the Markov Random Field
with the Iterated Condition Modes (ICM) algorithm.

However, these previous random field approaches are based on computa-
tionally intractable formulations. There are approximation techniques that
can deal with these computational challenges. Conditional Ramdom Field vari-
ants such as Discriminative Random Fields (DRFs) [Kumar 2006] and Support
Vector Machines (SVMs) [Zhang 2004, Schmi 2005] are coupled with a set of
knowledge-based features to perform the segmentation and classification.

One difficulty associated with MRF models is the proper selection of the
parameters that control the strength of spatial interactions. A setting that is
too high selection can result in very soft segmentation and a loss of structural
details. In addition, MRF methods usually require algorithms computationally
intensive. Despite these disadvantages, the Markov Random Fields are widely
used not only for modeling classes of segmentation, but also to model texture
properties and inhomogeneities of the intensities.

Artificial Neural Networks

Another relevant supervised clustering method is the Artificial Neural Network
(ANN) technique. This classifier feeds the features through a series of nodes,
where mathematical operations are applied to the input nodes and a classifica-
tion is made at the final output nodes.

A flowchart of the ANN architecture is given in Figure 3.11, wherein multi-
spectral intensities represent the input to the network, linear combinations of
the intensities (weighted along the edges with values w(i)) are input to the
“hidden” nodes of the layer, while the output node values are obtained from
linear combinations of the results of the hidden layer transformations. Pixels
are assigned to the class whose output node has the highest value.

The training step for this technique consists on determining the values of
the parameters considered (or involved) in the mathematical operations such
that the error in the predictions made by the output nodes is minimized. Since
no parametric distribution (such as a Gaussian distribution) is assumed for the
data, ANN approaches are non-parametric techniques. Moreover, the use of
“hidden” layers of nodes allows the modeling of non-linear dependencies in the
features. Although ANN training is complex, the ability to model non-trivial
distributions offers clear practical advantages. This is noteworthy in the case of
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Figure 3.11: Example of the ANN architecture. Linear combinations of the
intensities are input to the hidden layer of nodes. The output node values are
formed from linear combinations of the results of the hidden layer transforma-
tions.

tumor segmentation since assuming the data follows a simple Gaussian distri-
bution may not be appropriated for segmenting heterogeneous tumors [ScmiT
2005).

Clarke [Clarke 1991] was one of the first researchers in introducing a su-
pervised classification using an ANN approach for brain tumor segmentation
in MR images. Ozkan et al. [Ozkan 1993] also made use of ANN classification
methods. Their system first used patient-specific training of a neural network
classifier on a single slice. When segmenting an adjacent slice, this neural net-
work was first used to classify all pixels in the adjacent slice, after that the
locations of pixels that received the same label in both slices were then deter-
mined. These pixels in the adjacent slice were used as a new training set for
the neural network classifier used to classify the adjacent slice.

Dickson and Thomas [Dickson 1997] presented one of the uncommon super-
vised methods that do not require patient-specific training. The authors used a
set of 50 hand-labeled MR slices from the same area of the head from different
patients with acoustic neuromas, and learned to automatically label this type
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of tumor without patient specific training. The features used in this system
included not only the pixel intensities, but also the intensities of neighboring
pixels and the pixel location within the image.

Implementing Artificial Neural Networks for brain tumor segmentation in-
volve problems of complexity and it is a time consuming task: the size of
network becomes very large, training time is unacceptable, and large number
of images is required for training the network. Some methods to solve these
problems has been introduced, as it is the case of the neuro difference fuzzy
proposed by Tayel [Tayel 2006], which purpose reducing complexity, time, and
storage space in determining the critical points of ROI contour using an ANN.

A particular case of ANN is the self-organizing map (SOM). It is a neu-
ral network model developed in 1980 by Teuvo Kohonen [Kohonen 2000]. In
contrast with other neural network models, it has a strong physiological inspi-
ration, as it is based on the topological map that exists in the brain cortex.
The cortex is organized so that topologically closer neurons tend to produce
answers to the same kind of stimulus; this is one of the reasons why SOM
technique is largely employed in visual pattern recognition [Vijaya 2007]. The
self-organizing map training method is based on competitive learning, which is
a type of neural network unsupervised learning.

Reddick et al. [Reddick 1997] developed a pixel-based two stage approach
where a SOM was trained to segment multispectral MR images which were
subsequently classified into white matter, gray matter, etc., by a feed-forward
ANN. In a recent work Vijayakumar et al. [Vijaya 2007] proposed a method
based on SOM to segment tumor, necrosis, cysts, edema, and normal tissue in
MRI. Their approach also graded the tumors simultaneously. The overall sen-
sitivity and specificity of the Vijayakumar’s method was observed as 0.86 and
0.93, respectively. More recently, Iftekharuddin et al. [Iftek 2009] presented a
work where the effectiveness of two novel fractal and fractal-wavelet features
is exploited to segment and classify tumor and non-tumor regions along with
intensity values in multimodal MR images. The features are fused and the
segmented tumor clusters are obtained exploiting a SOM neural network.

The researchers in the field of MRI brain tumor segmentation have used
SOM or FCM separately as segmentation process tools. In [Muruga 2007]
Murugavalli and Rajamani implemented a hybrid technique combining the ad-
vantages of a Hierarchical Self Organizing Map (HSOM) and FCM to detect
various tissues like white matter, gray matter, CSF and tumor in MR images.
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HSOM is the combination of self organization and topographic mapping
techniques. This technique combines the idea of regarding the image segmen-
tation process as one of data abstraction where the segmented image is the
final domain independent abstraction of the input image. Figure 3.12 shows
the comparison of execution time and variation of the total number of tumor
pixels detected in an image with various segmentation techniques. The value of
the tumor pixels detected with both implementations, HSOM and SOM com-
bined with FCM, is about 3223, this value is higher than the number of tumor
pixels detected for the SOM k-means and HSOM k-means, 2772. This incre-
ment is due to the abstraction level and fuzzy clustering process.
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Figure 3.12: Comparison for various segmentation techniques of: (a) execution
time, and (b) variation of the total number of tumor pixels detected in an image
[Muruga 2007].

3.5.4 Model-Based Segmentation Techniques

In Section 3.4 the most successful solutions for the extraction of brain tu-
mor boundary were analyzed, mainly for 2D MRI data. The segmentation
of volumetric (3D) image data is a challenging problem that has been mainly
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approached by model-based segmentation techniques as parametric deformable
models and geometric deformable models or level sets.

In model-based segmentation, a connected and continuous model is built for
a specific anatomic structure by incorporating a priori knowledge of the object
such as shape, location, and orientation. Some models incorporate prior statis-
tical information drawn from a population of training datasets [Yao 2006]. The
statistical parameterization provides global constraints and allows the model
to deform only in ways implied by the training sets.

Segmenting structures from medical images and reconstructing a compact
geometric representation of these structures is difficult due to the sheer size of
the datasets and the complexity and variability of the anatomic shapes of inter-
est [McIner 2000]. The challenge is to extract boundary elements belonging to
the same structure and integrate these elements into a coherent and consistent
model of the structure.

Deformable models involve the formulation of a propagating interface (a
closed curve in 2D and a closed surface in 3D) that moves under a speed
function determined by local, global and independent properties [Osher 2003].
Given the initial position of a propagating interface, and the corresponding
speed function, deformable models track the evolution of the interface during
the segmentation process. Existing deformable models can be broadly divided
into two categories: parametric and geometric.

The following sections explain the parametric and geometric deformable
models including some approaches appearing in the literature for brain tumor
segmentation.

Parametric Deformable Models

The strength of parametric deformable models (also known as active contour
models or snakes) stems from their ability to segment, match, and track im-
ages of anatomic structures by exploiting constraints derived from the image
data together with a priori knowledge about the location, size, and shape of
these structures. Parametric deformable models are capable of accommodat-
ing the often significant variability of biological structures over time and across
different individuals [McIner 1996]. Furthermore, these models support highly
intuitive interaction mechanisms that allow medical scientists and practitioners
to bring their expertise to bear on the model-based image interpretation task

63



3.5. Segmentation Methods

when necessary [McIner 2000).

Deformable models are parametrically defined curves or surfaces that move
under the influence of weighted forces that have two components named in-
ternal and external forces. The internal forces are used to assure the smooth-
ness of the model during deformation process, while external forces are defined
to push/pull the model toward the boundaries of the structure. Parametric
representations of the models allow accurate and compact description of the
object shape, while the continuity, connectivity, and smoothness of the models
compensate the irregularities and noise in the object boundaries. The active
contour model, or snake, is defined as an ordered collection of n points in the
image plane V. = {vy,..., v, },v; = (z;,y:),i = {1,...,n}.

The points in the contour iteratively approach the boundary of an object
through the solution of an energy minimization problem. For each point in the
neighborhood of v;, an energy term is computed:

E; = aFint(vi) = BEeqzt(v;) (3.13)

where FE;,:(v;) is an energy function dependent on the shape of the contour
and Fext(vi) is an energy function dependent on the image properties, such
as the gradient, near point v;. « and [ are constants providing the relative
weighting of the energy terms.

FE;, Fint, and FE.;; are matrices. The value at the center of each matrix
corresponds to the contour energy at point v;. Other values in the matrices
correspond (spatially) to the energy at each point in the neighborhood of v;.
Each point, v;, is moved to the point, v;’, corresponding to the location of the
minimum value in F;. If the energy functions are chosen correctly, the contour,
V', should approach, and stop at, the object boundary.

Contour deformable models have been widely used for its sensitivity in
searching the boundary of brain tumors [Chan 1996, Kang 1999, Law 2001].
In fact, the sensitivity of the boundary found by the snake is better than the
conventional edge detection methods, such as the Sobel and Laplacian [Kass
1987]. The external energy of snake function is only positive in homogeneous
regions, and zero at the edges [Chan 2001].
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A number of methods have been proposed to improve the snake’s perfor-
mance, a review of the most relevant methods can be found in [McIner 1996,
Bamford 1998]. Luo et al. [Luo 2003] implemented two of these improved
methods for tumor segmentation on 2D brain MRI: the balloon model [Co-
hen 1989, Cohen 1993], and the Gradient Vector Flow snake (GVF) [Xu 1998,
XuPrince 1998]. The improvement provided by these methods are that the
balloon model permits to enlarge the snake’s capture range, and the GVF uses
a spatial diffusion of the gradient of an edge map of the image, instead of using
image gradients as an external force. Latter in [Luo 2006], Luo et al. extended
their approach to 3D.

Law et al. [Law 2002] presented a modified deformable region model for
the extraction of brain tumor boundary in 2D MR images. The model used
a point sampling technique in order to reduce the number of boundary points
processed. The time required for the extraction of brain tumor boundary in
MR image was greatly reduced compared with traditional active contour mod-
els.

In some applications, the initial position of the model needs to be manu-
ally placed close enough to the desired boundary to avoid converging to wrong
boundaries. Khotanlou et al [Khotan 2008] proposed a parametric deformable
model constrained by spatial relations as refinement step to provide an accu-
rate estimation of the boundaries of any type of brain tumors on MRI.

Geometric Deformable Models or Level Sets

One disadvantage when using parametric deformable models for the segmenta-
tion of volumetric (3D) image, is the difficulty of naturally handling topological
changes for the splitting and merging of contours. This problem was solved by
Osher and Sethian [Osher 1988] introducing the use of geometric deformable
models, or level sets. The main component of the level set method is the
implicit representation of the interface. If the interface is given by I', I is rep-
resented as the zero level set {¢ = 0} of a level set function ¢. The function is
a surface defined over the image area with the following property:

o(z,y,t =0) = +d(x,y) (3.14)
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where d is the distance function from (z,y) to I'(t = 0) , and the plus (mi-
nus) sign is chosen if the point (z,y) is outside (inside) the initial interface.
Thus, the surface ¢ evolves along its normal direction with speed F' as:

% + FIV¢| =0 given ¢(z,y,t=0) (3.15)

and at any time the propagating front is given by the zero level set:
I'(t) = {(z,y)l¢(z,y,t) = 0} (3.16)

The speed F' can be a function of various arguments, including the curva-
ture gradient, normal direction, etc. A common choice for F' is [Hao 2006]:

F=g(z,y) (1 —er) (3.17)

where g is a property function of the image I : 2 — R, I(z,y) is the image
intensity, 0 < € < 1 is a constant, and « is the curvature. The property g is
meant to stop the front on the object’s boundaries. For example, if the edge is
modeled as pixels with high gradients, the feature image g can be defined as

1

T 1+ VI y))? (3.18)

9(x,y)

which yields minimal value on the boundaries while bigger value in other
area. Thus with an appropriate g, the evolution is driven to stop on the bound-
aries, and the image is segmented.

Caselles et al. [Caselles 1993] and Malladi et al. [Malladi 1995] proposed
a geometric deformable contour with an image gradient stopping force based
upon the OsherSethian [Osher 1988] level set framework. Although the Caselles
method notably improved the initialization of parametric active contours, pro-
vided that the initial contour was placed symmetrically with respect to the
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boundaries of interest, in practice this is not easy to achieve since many medi-
cal image segmentation problems are not dealing with regularly shaped objects.

Figure 3.13 shows the difficulty of using the CasellesMalladi deformable
contour to segment the brain with convoluted shapes in T2-weighted MR im-
ages. Note that the initial contour was not symmetrically placed with respect
to the brain (Figure 3.13a). It was not easy to choose an appropriate stopping
force required to achieve satisfactory results (Figure 3.13b). The contour was
confined inside by the high intensity structures when using a stronger stopping
force (Figure 3.13c), and the contour leaked past the brain boundaries when
using a weaker stopping force (Figure 3.13d).

Figure 3.13: Difficulty of using the CasellesMalladi deformable contour in seg-
menting the brain in T2-weighted MR images. (a) The initial contour that was
not symmetrically placed. (b) The contour was confined inside the brain by
the inner high intensity structures using a strong stopping force. (c¢) Some of
the contours were crossed over the brain boundaries while some contours were
restricted inside, using a slightly weaker stopping force. (d) The contour leaked
past the brain boundaries using a weaker stopping force [Chang 2008].
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Diverse approaches were proposed to overcome aforementioned problem.
So, Kichenassamy et al. [Kichen 1995] and Yezzi et al. [Yezzy 1997] added a
term to efficiently attract the evolving contour to the desired feature. Siddiqi
et al. [Siddigi 1998] subsequently modified the speed function by adding a term
based upon the gradient flow derived from a weighted area functional so that
the contour could more flexibly evolve toward the desired edges.

Chang and Valentino [Chang 2006] used the simulation of a charged fluid
framework, governed by Poisson’s equation, as a deformable model to perform
general image segmentation. Later Chang et al. [Chang 2008] proposed the
Charged Fluid Model (CFM), a new deformable model that extends and mod-
ifies the charged fluid framework for brain tumor segmentation.

Ho et al. presented in [Ho 2002] a method for automatically segment-
ing blobby-shaped tumor structures in MR images. The segmentation was
performed using a probability map of tumor versus background to guide a
level set snake propagation. Prastawa et al. [Prastawa 2004] presented a
knowledge-based detection/segmentation algorithm, which is based on learning
pixel-intensity distributions and uses level set snakes, for normal brain matter
and detecting outlier pixels that are considered tumor, The distributions were
learned with kernel-based density estimation methods, and the initial outlier
detection were followed by a region competition algorithm. The input for the
snake was obtained by sampling specific regions based on the probabilistic brain
atlas, which is represented as the zero level set of the implicit function (Eq.
3.14).

Xie et al. [Xie 2005] exploited a hybrid level set segmentation method driven
by region and boundary information simultaneously. Region information served
as a propagation force, and boundary information served as stopping functional.
In this approach, the user selects a ROI and then a level set method is applied
to segment the tumor.

Lefohn et al. [Lefohn 2003] proposed a semi-automatic method for tumor
segmentation using level sets in which the user selects the tumor region to ini-
tialize the segmentation. Based on a visual inspection of the results, they tune
the level set parameters and the segmentation process is repeated.

Recently Cobzas [Cobzas 2007] and Popuri [Popuri 2009] presented a vari-
ational method for brain tumor segmentation. Their approaches used prior
knowledge of the appearance of anatomical structures in the normal brain, in
the form of templates and atlases. These templates and atlases were fully in-
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tegrated into a level set variational segmentation.

3.6 Summary of Brain Tumor Segmentation Meth-
ods

In this section it is provided a summary table enhancing the advantages and
disadvantages of the presented methods. This section concludes with a gen-
eral discussion of the analyzed brain tumor segmentation methods is presented.

Threshold-based techniques offer the possibility of conducting a simple and
fast segmentation when good threshold values are defined. Although with re-
strictions, these techniques are generally used as a first step in the segmentation
process.

Region-based techniques for brain tumor segmentation are mainly used as
refinement step for defining a connected boundary of the tumor [Dou 2007,
Rexilius 2007]. Some region-based approaches such as watershed transform,
have reported very accurate results in segmenting tumors, but generally these
approaches are constrained to be semi-automatic [Cates 2005].

Pixel classification techniques for brain tumor segmentation are limited to
clustering nevertheless they are the most frequently used for brain tumor seg-
mentation. The unsupervised technique of FCM, which is the most popular for
medical image segmentation [Kong 2006, Supot 2007], permits the use of vague
concepts in the definition of clusters, and gives highly accurate results in cases
of non homogeneous tumors. The unsupervised method of MRF provides a way
to integrate spatial information into the clustering process, reducing the over-
lapping of clusters and the effect of noise on the result [Tran 2005]. A mayor
difficulty in MRF is the selection of the parameters that control the strength
of spatial interactions, which can result in very soft segmentation and a loss of
structural details. The supervised clustering method of ANN has the ability
to model non-trivial distributions offering clear practical advantages [Vijaya
2007, Iftek 2009]. Implementing ANNs for brain tumor segmentation involve
problems of complexity and it is a time consuming task.

Model-based techniques have been widely used for its sensitivity in search-
ing the boundary of brain tumors. However, as in the case of region-based
methods, these models are mainly used as refinement step in brain tumor seg-
mentation [Khotan 2008]. Segmenting tumors by making use of geometric
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Table 3.2: Summary Table of Segmentation Methods

Segmentation Advantages Disadvantages
Method
Threshold-based
Global Simple and computationally fast. Limited applicability to enhanc-
and  Local ing tumor areas [Gibbs 1996].
Threshold-
ing
Region-based
Region- Simple and capable of correctly Partial volume effect [Sato 2000,
growing segmenting regions that have Lakare 2000]. Noise or variation
similar properties and generating of intensity may result in holes or
connected region [Salman 2005].  over-segmentation.
Watershed Segments multiple regions at the  Over-segmentation [Gies 2004].
same time. It produces a com-
plete contour of the images and
avoids the need for any kind of
contour joining [Dam 2004].
Pixel-based
Fuzzy C Unsupervised. Always converge Long computational time
Means the boundaries of tumor. [Lazaro 2005, Yong 2004],
sensitivity to noise [Kanan
2008].
Artificial Ability to model non-trivial dis- Gathering training samples is
Neural Net- tributions and non-linear depen- not straightforward and learning
woks dences [ScmiT 2005]. phase is slow [Iftek 2009].
Markov Ran- Are able to represent complex Difficulty when selecting the
dom Fields dependencies among data in- parameters that control the
stances [Zhang 2004]. strength of spatial interactions.
Usually require algorithms com-
putationally intensive [Cappelle
2004].
Model-based
Parametric Capable of accommodating to The model may converge to
Deformable the variability of biological struc- wrong boundaries in case of in-
Models tures over time and across differ- homogeneities [Luo 2003].
ent individuals [McIner 2000].
Level Sets Topological changes are natu- Extremely computationally ex-

rally possible [Osher 1988].

pensive [Cobzas 2007].
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deformable models or level sets, permits the development of fully automatic
and highly accurate segmentation approaches as in [Ho 2002]. Unfortunately,
these methods are still extremely computationally expensive [Cobzas 2007].

Based on the existing literature, several general conclusions can be drawn
with regard to elements of a system that can be used to improve performance
in brain tumor segmentation. First of all, it is important to address the seg-
mentation towards a fully automated method. This can be done incorporating
within the algorithms human intelligence and prior knowledge about intensity
and other tissue information, shape, size, symmetry, and normal anatomic vari-
ability to improve segmentation results. Furthermore, it would be desirable to
have an unsupervised fully automatic segmentation method to avoid the use of
patient-specific training. The use of some pre- or post-processing methods has
demonstrated to provide more reasonable segmentation results, which reflect
the layout of regions of interest, as is the case of intracranial segmentation
commonly referred to as skull stripping.

3.7 Conclusions

Detecting the existence of brain tumors from MRI in a fast, accurate, and re-
producible way is a challenging problem. Medical image processing is a very
active and fast-growing field that has evolved into an established discipline.
Brain tumor segmentation techniques have already shown great potential in
detecting and analyzing tumors in clinical images and this trend will undoubt-
edly continue into the future.

Medical image analysis needs to address real-world issues that have been
outside the realm of computer vision [Shen 2006]. These issues come largely
from the fact that the end systems are mostly used by the physician. The
human factor is essential, since any successful solution will have to be accepted
by a physician and integrated into the medical procedural work flow. This
put strong constraints on the type of applicable methods. Due to it, there has
been a discrepancy between the advanced frameworks presented in computer
vision and the low-level methods used by researchers working on real medical
application solutions.

One major goal in tumor imaging research is to accurately locate the can-
cer. Segmentation techniques have been applied according to the characteristics
that allow distinguish tumors from normal tissues. When tumors can be distin-
guished from normal tissues by their image intensity, threshold-based [Shanti
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2007] or region growing [Dou 2007] techniques have been employed. Other tu-
mors can be identified by their shapes so that a model-based technique [Chang
2008, Popuri 2009] was applied for the segmentation.

Although the reported accuracy on brain tumor segmentation of the pro-
posed automated methods is quite promising, these approaches have not still
gained wide acceptance among the pathologists for every day clinical practice.
One of the principal reasons might be the lack of standardized procedures.
Another two reasons could be the substantial differences with the traditional
specialists’ way of work, and the deficiency of the existing methods in assisting
medical decision with a transparent and interpretable way. The latter two are
very important for computer aided medical diagnosis where the demand for
reasoning and explanation is of main priority.

72



Chapter 4

A New Fuzzy Approach for
Automatic and
Unsupervised Brain Tumor
Segmentation

4.1 Introduction

Chapter 3 presented a variety of approaches proposed in the literature for au-
tomate brain tumor segmentation on magnetic resonance images. These tech-
niques have already shown great potential in detecting and analyzing tumors.
Based on the existing literature, several general conclusions were drawn with
respect to elements of a segmentation system that can be used to improve per-
formance:

e Some pre- or post-processing steps and methods can produce a more
reasonable segmentation that reflects the layout of regions of interest.

e Intensity and other tissue information can be combined to improve dis-
crimination between the classes.

e Information about shape, size, symmetry, and normal anatomic variabil-
ity can improve segmentation results.

The existing work is a valuable source of insight in designing a new sys-
tem to perform brain tumor segmentation, since there are a variety of different
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properties of the problem that can be exploited. However, since the goal of this
work is to automate a task performed by human experts, the methods used by
human experts also provide insights into the problem. It is clear that human
experts do not build an internal intensity-based pixel classifier, but are able
to incorporate much more complex information. This includes knowledge of
the expected appearance, location, and variability of normal anatomy, and also
includes bilateral symmetry, and knowledge about the expected intensities of
different tissues present within the image. Furthermore, humans are able to
simultaneously consider and combine these properties, and can consider previ-
ous experience in related tasks.

It is obvious that in cases where the discrimination between normal and ab-
normal areas is not trivial, a variety of properties are used in making a decision.
As outlined in Chapter 3 improved results could be achieved if a system could
consider a variety of properties simultaneously in performing segmentation. Al-
though the goal of the knowledge-based systems discussed in Chapter 3 was to
find ways to meaningfully incorporate different sources of knowledge as rules,
these systems do not meet this goal in ambiguous cases, because the patterns
are complex and involve interactions between the sources. These complex inter-
actions are difficult to represent with a set of “hard” manually determined rules.

As stated in the introduction of Chapter 1, a possible solution for designing
complex systems in which it is required to incorporate the experience of an
expert, or where the concepts appear vague or uncertain, is the use of fuzzy
sets-based systems. Fuzzy systems permit the development of methods and
algorithms that can perform tasks normally associated with intelligent human
behavior.

This chapter presents the proposed fuzzy approach to brain tumor segmen-
tation. Considering that the human factor is essential, the expert knowledge
and the features derived from the MR images are coupled to define rules aimed
to the design of the new fuzzy approach. Two main characteristics of the
proposed approach are: 1. it is fully automatic and 2. it is unsupervised.
To assess the unsupervised and fully automatic segmentation, intensity-based
objective measures are defined, and a new method for obtaining membership
functions to suit the MRI data is introduced. As a result, accurate brain tumor
segmentation is achieved in a transparent manner, and the results are easily
interpretable by specialists.
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4.2 Qutline of the Chapter

Next, the main aspects discussed in each Section of the chapter are summa-
rized. In Section 4.3 intensity features for the definition of rules are extracted
by means of histogram analysis. Section 4.4 presents the different elements of
the fully automatic brain tumor segmentation framework. This Section also
introduces a new skull stripping algorithm and the proposed membership func-
tion acquisition method. Finally in Section 4.4 the chapter conclusions are
presented.

4.3 General Domain Information

Before beginning the design of the proposed approach, it was necessary to
obtain domain information in the form of general principles of MR imaging,
discussions with experts, anatomy of the brain, and knowledge useful for tumor
segmentation from the intensity distributions of the different tissues.

The general principles of MR imaging, are contained in Appendix A, this ap-
pendix provides a broad description of the nuclear MR, phenomena, and image
formation. The brain tumor MRI materials used in this system are described in
Section 4.3.1. Knowledge useful for tumor segmentation was extracted from the
available MRI materials, discussions with experts, the intensity distributions of
individual pixels, and the distributions of the different tissues in feature space.
A training set was created to extract heuristic rules. The process of knowledge
extraction was performed by means of intensity histogram analysis; it is de-
scribed in Section 4.3.2. The extracted rules are presented in Section 4.3.3.

4.3.1 MR Image Materials

A “slice” is defined as a multispectral MR, image recorded at the intersection
of a subject brain, and a specific 2D plane created by an MR, coil [Appendix
A]. The slices considered here were taken from the transaxial plane, a plane
roughly perpendicular to the long axis of the human body [Novell 1987].

Although most authors do not specify the number of slices used for feature
extraction, in practice, these sets are usually composed of 15-25 slices [Chang
2008, Corso 2008, Bhatta 2008, Iftek 2009]. A set greater than 50 slices is con-
sidered to be large [SchmiT 2005] since each image has a large number of pixels
and training times can grow large as feature sets and the number of training
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pixels increases.

The set considered for feature extraction consisted of 20 T1-weighted contrast-
enhanced slices (176 x 256 pixels each) presenting a glioblastoma multiforme
(GBM, Chapter 2) brain tumor. It is important to emphasize that this training
set is required to establish knowledge constrains, and does not generate labeled
training data. Therefore in the case here presented, the concepts of patient-
specific and inter-patient training (Chapter 3.4.2) do not concern. However in
the GBM dataset, the algorithm was trained on a subset of the patient’s data,
and then tested on another (disjoint) subset. This is similar to the approach
taken in many other studies of automatic brain tumor segmentation such as
[Garcia 2004, Zang 2004].

The GBM tumor type was addressed because of its relative compactness
and tendency to enhance well with paramagnetic substances, such as gadolin-
ium. GBM are the most common primary tumors of the central nervous system
[Smirnio 1999], and the median postoperative survival time is extremely short
(eight months) with a five-year recurrence-free survival rate of nearly zero [Pa-
tel 2004].

In the case of glioblastoma multiforme brain tumor, the heterogeneous pro-
cesses in study are the tumor comprising a necrotic (dead) part and an active
part, and the brain tissue. Given a contrast enhanced T1-weighted MRI con-
taining a GBM tumor, the primary tissue types that can be observed are:

Cerebrospinal Fluid (CSF).

Brain Parenchyma (white matter and gray matter).

Necrotic part of tumor.

Gadolinium-enhanced tumor (active part of tumor).

Outside brain region: arachnoid / dura mater, air, bone, muscle, fat and
connective tissue.

Figure 4.1-a shows a 2D transversal MRI sample slice in the T1-weighted
channel presenting an enhancing GBM brain tumor. In 4.1-b, the outside brain
region, the brain parenchyma, the CSF and the active and necrotic parts of the
GBM tumor are emphasized.
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Figure 4.1: A sample slice of image materials. a) A transversal T1-weighted
MRI presenting an enhancing GMB tumor. b) Scheme representing the outside
brain region, the brain parenchyma, the cerebrospinal fluid, and the active and
necrotic parts of GBM tumor in a).

The following section describes the process of knowledge extraction from
the image material here presented.

4.3.2 Knowledge Extraction by Histogram Analysis

The system presented here is a knowledge-based system. “Knowledge is any
heuristic or chunk of information that helps discriminate one class type from
another” [Giarra 2004]. In the domain of MRI, the primary source of knowl-
edge is pixel intensity in feature space based on tissue characteristics [Clark
1999].

Histogram analysis is a simple and practical approach for automatically
extracting intensity information from an image. This information is explicit
and can be used in subsequent decision making processes [Vernon 1991]. The
gray-level histogram of an image often contains relevant information to allow
analysis of the image content and, in particular, to discriminate between ob-
jects. It has the distinct advantage that it is not necessary to segment the
image first and it is not dependent on the location of the object in the image.
The analysis is based exclusively on the visual appearance of the scene or image
as a whole.

In medical imaging, histogram analysis has been widely used to extract fea-
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Table 4.1: T1 Signal intensity in different tissue types.

Effect (Signal In- Tissues

tensity)

Short T1 relaxation Fat, bone, Lipid-Containing Molecules,
(bright) Proteinaceous Fluid, Paramagnetic

Substances (Gadolinium)
Long T1 relaxation Neoplasms, Edema, CSF, Pure Fluid,
(dark) Inflammation

tures of the anatomical structures and tissues. Early approaches of MRI brain
segmentation were achieved using histogram analysis for gray-level threshold-
ing, providing a first estimation of the brain volume [Allain 1992]. Recently the
use of histogram analysis is the basis of a variety of applications, accomplish-
ing very promising results. The analysis is not only focused on gray level but
has been extended to texture features and diverse measures like mean diffusiv-
ity and fractional anisotropy among others [Filippi 2005, Kato 2007, Valsasina
2005].

In this work, the histogram analysis is achieved by extracting intensity fea-
tures which are descriptive of the shape of the histogram. The aim of this
analysis is to define the gray-level characteristics of tissues found in MRI mate-
rials, in order to extract knowledge that can be implemented as heuristics/rules.

The first step in the histogram analysis is to know which part of the his-
togram corresponds to each tissue in the image. Given the T1-weighted MRI
data set, the signal intensity of different tissues can be represented in Table
4.1. For example, Table 4.1 indicates that paramagnetic substances (used to
enhance brain pathology) will have a short/bright T1-weighted signal, while
CSF will have a relatively long/dark T1-weighted signal.

Based on the fact that pixels belonging to the same tissue type will exhibit
similar relaxation behaviors, they will then also have approximately the same
location in feature space (the intensity histogram) [Clark 1999]. The intensity
distributions of brain tissues has been investigated by a number of researchers
[Corso 2008, Gering 2002, Mayer 2009, Shanthy 2007], and forms an important
foundation in the knowledge obtained for this system.

One of the most important pieces of knowledge for detecting enhancing-
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pathology is the blood-brain barrier (BBB, Chapter 2). In a normal brain,
the BBB acts as an extremely selective filtering device, allowing only a lim-
ited number of naturally occurring substances, such as oxygen and glucose, to
migrate from the blood supply into the brain itself and excludes many other
compounds, including paramagnetic substances like gadolinium. The presence
of tumors and other brain pathologies, however, damage brain tissues and al-
ter the BBB. This “breakdown” of the BBB allows paramagnetic substances
to enter the tumor and enhance it in MR images [Ott 1988, Vander 1990]. The
heuristics obtained later in this section, rely heavily on this fact.

Next section describes the analysis of the intensity distributions in the im-
age histograms, and presents the heuristics obtained from this analysis.

Histogram Analysis

For extracting the features, on each training image, a subset of pixels from
four different tissue types, namely populations C'SF' (Cerebrospinal Fluid), BP
(Brain Parenchyma), TU M (Gadolinium-enhanced tumor), and OBR (outside
brain region), was manually selected, and its correspondent intensity histogram
was obtained.

A typical slice with enhancing pathology is shown in Figure 4.2. The his-
togram distributions of the tumor TUM, and the other tissue populations
CSF, BP, and OBR, were manually overlaid on the histograms of the train-
ing images (excluding the background). Specific dimensions are not given in
Figure 4.2, since they will change from slice to slice and the primary concern
is the relative location of enhancing pathology within the histogram. By ob-
serving the distributions of populations, TU M is among the populations BP
and OBR. Moreover, it can be observed that the majority of enhancing tumor
is found to the right of the signal intensity bin having the greatest number of
pixels, the histogram “highest peak”, Pgrgy in Figure 4.2.

An analysis of the intensity distributions of these populations was conducted
in order to obtain intensity information. The values of the lowest (G Ly;,) and
highest (G Lq.) gray levels, as well as the mean gray level (GLyeqn) for each
population were obtained. For each sample image, the relevant peaks of the
gray-level histogram were acquired. This was achieved using the peak-finding
algorithm proposed by Cheng and Ying [Cheng 2000]. This algorithm finds the
relevant peaks of the histogram, and determines if a peak is relevant consid-
ering its size, the proximity with other peaks and the depth of its valley. The
first peak and valley found, were designated as the background peak Ppack,
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Figure 4.2: Gray-level histograms of CSF, BP, TUM, and OBR populations,
and general image histogram (darker line). The relative location of enhancing
tumor is found among the populations BP and OBR, and to the right of
the signal intensity bin having the greatest number of pixels, the histogram
“highest peak”, PyrgH-

and the background valley Vpacx. Peack and Vpacx were discarded taking
into consideration only the relevant peaks of the higher levels. After the back-
ground peak was discarded, a new highest peak and its corresponding valley
were found in the gray-level histogram namely the highest peak and valley,

Prrgr and Vyrgo.

A summary of the gray-level information obtained for populations C'SF,
BP, TUM, and OBR is given in Table 4.2. The columns refer the image slice
number. From first to twelfth row, the values of GL.nin, GLmean, and GL,qq0
for each population are given. Rows 13 and 14 are the values of Pgacx and
VBack, respectively. In rows 15 and 16, the values of highest peak Pyram,
and its corresponding valley Virgm are presented.

Since the target population in the problem of segmenting tumors is the
tumor itself, a simple set of additional features to use are the intensities of
neighboring populations. As other authors [Dickson 1997, Clark 1999, Garcia
2004], the endeavor is to specify the gray-level relations between TU M popu-
lation and its neighboring populations. The distributions of populations C'SF,
BP, TUM, and OBR were examined and interviews were conducted with ex-
perts concerning the general makeup of tumorous tissue, and the behavior of
gadolinium enhancement in the T1 channel. From these sources, a set of heuris-
tics were extracted:
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Table 4.2: An extract of the gray-level histogram information extracted from
training images

Slice Number
35 45 55 65 75 85 Row

CSFGLpin 36 34 38 65 69 49 1
CSFGLpeqn 119 157 129 153 121 112 2
CSFGLpqz 301 259 215 271 198 209 3
BPGLin 439 436 480 378 409 410 4
BPGLecan 524 521 537 466 462 461 5
6

7

8

BPGLp 602 624 601 539 611 540

TUMGL,, 612 556 512 576 563 496

TUMGLyeqn 701 653 632 761 648 576
TUMGL oz 76 769 775 842 752 737 9
OBRGLin 663 701 724 721 691 875 10
OBRGLyean, 977 948 898 892 861 902 11
OBRGLy0; 1335 1260 1045 1035 955 940 12

Ppack 79 24 23 25 24 23 13
Veack 197 218 140 168 157 124 14
Prrgu 468 446 439 420 400 452 15
Vareu 598 583 579 574 BTl b4l 16
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Figure 4.3: T1 signal intensity of CSF, BP, TUM, and OBR populations.
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The background pixels occupy the lower part of the histogram. The val-
ues of PBACK are lower than those of the gray-level mean GL,,eqn of
populations C'SF, BP, TUM, and OBR.

If the populations are sorted by their gray levels, the order is always as
follows: CSF, BP, TUM, and OBR.

The CSF gray levels (rows 1 to 3 of Table 4.2) occupy the lower part of
the histogram after excluding the background.

The CSF gray levels are always lower than the BP gray levels (compare
rows 3 and 4).

The BP gray levels fall within the range of the gray levels of Vgack and

Viurcr. Moreover, the values of the highest peak after excluding the
background, Pyrem (row 15) are close to the lowest gray levels GL,,n
of BP population.

The TUM gray levels (rows 7 to 9 of Table 4.2) are higher than those of
the BP (rows 4 to 6), and they are lower than the OBR gray levels (rows
10 to 12).

The mean values of TUM gray levels are always higher than the next
valley situated after the highest peak Vy;opy. In all cases the values of
G Lypean of tumor population (row 8), are higher than Vyrgn (row 16).

The OBR gray levels are always higher than the next valley situated after
the highest peak Vy;gp. In all cases the lowest gray-level values of OBR,
G Lypin (row 10), are higher than Vg (row 16).

The OBR gray levels are higher than the tumor gray levels (rows 10 to
12 of Table 4.2).

H10 The highest gray levels (rows 10 to 12) are those of the outside brain

region.
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Figure 4.4: Diverse training images showing the relation of BP population
histogram (dark line) with the gray-level values of the highest peak Prrom
and valley Vg, and the background valley Vpack of the image histogram

(dotted line).

After obtaining these heuristics, the aim was to analyze them in order to
define effective rules for gross separation of tumor from non-tumor pixels that
work across slices, even those with varying degrees of gadolinium enhancement.
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4.3.3 Definition of Rules

A rule based system consists of three fundamental elements: a working memory
of facts from which inferences are derived, a knowledge base of rules to guide
the inferences, and the inference engine to draw conclusions and fire rules [Gi-
arra 2004]. Rules resemble IF-THEN statements and have the basic form:

(ANTECEDENT) = (CONSEQUENT(S))

The left hand side of the rule,(ANTECEDENT), contains the set of condi-
tions required for the rule to fire, while the right hand side, (CONSEQUENT(S)),
is a set of one or more resultant actions. When all of the left hand conditions
of a rule are satisfied by the facts in working memory, the rule is fired by the
inference engine and all of its right hand actions are executed, which may mod-
ify the working memory.

When domain specific knowledge is available, an “expert system” is one of
the most common implementations of rule based systems. Domain knowledge
is explicitly integrated into the rule based system (stored as rules) through a
process called “knowledge engineering” [Luger 2008].

Knowledge discussed as heuristics in previous section are examples that
were manually extracted and integrated into the system in the form of rules,
and these are described below.

As stated in the heuristic H1, the background pixels occupy the lower part
of the histogram. When the relevant peaks of the gray-level histogram were
acquired using the peak-finding algorithm of Cheng and Ying [Cheng 2000], the
first peak and valley found were designated as the background peak Ppack,
and the background valley Vgack. The Vg ack value was found to be effective
threshold for background pixels working across slices. Therefore, Rule 1 can
be expressed as:

Rule 1 By applying the peak-finding algorithm, all pizels whose gray level is
lower than the first valley found, are considered background.

When applying Rule 1, inside the intracranial region there will not be pix-
els with gray levels darker than Vp 4ok . Figure 4.5 shows two training images
before and after applying Rule 1. In (b) and in (d), all pixels considered back-
ground were discarded. It can be observed that in addition to the background
pixels, some of the CSF pixels were also discarded.
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Figure 4.5: Training images before (a,c) and after (b,d) applying Rule 1. In
(b) and in (d), it can be observed that in addition to the background pixels,
some of the C'SF pixels were also discarded.

Considering heuristics H2,H3 , and H4, which state that the CSF gray
levels are in the lower part of the histogram after excluding the background,
and they are lower than the BP gray levels, in the future, the C'SF population
will not be considered for the segmentation process.

Making reference to heuristic H5, the brain parenchyma gray levels fall
within the range of Vpacx and Vgyrgm. Based on this correspondence, the
brain parenchyma population can be defined in the image histogram with
Veack as the lowest gray level, and Vgrgy the highest. Accordingly, Rule
2 expresses the range of intensities in which a BP pixel can be found.

Rule 2 A brain parenchyma pizel can be found between the first valley and the
valley located right after the highest peak.

Now, since the TUM gray levels are always higher than those of the BP
(heuristic H6), and that in all cases the values of G Ly,eqn of tumor population
are higher than Virgy (heuristic HT), Virgm can be used as the lowest gray-
level of tumor population. This way, Rule 8 is defined as:
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Rule 3 The valley located right after the highest peak, indicates the lowest gray
level in which a Gadolinium-enhanced tumor pizel can be found.

Heuristic H10 states that the highest gray levels are those of the outside
brain region; this means that the boundary of the outside brain region gray
levels on the right side of histogram is already known. However, it is still nec-
essary to identify a boundary on the left side. Taking into account that, in
all cases the lowest gray-level values of OBR are higher than Vy;om (heuristic
H3), this boundary must be higher than Vi ;g . The immediately neighboring
population to the left side is the tumor population, since the OBR gray levels
are higher than the tumor gray levels (heuristic H9); the OBR boundary to
the left indicates the end of TU M population.

Rule 4 The highest gray level, in which a Gadolinium-enhanced tumor pizel
can be found, is the lowest gray level of the outside brain region.

Because there is no peak or valley automatically obtained which can out-
line the OBR boundary to the left, it is necessary to firstly define the outside
brain region, and then find the lowest gray level of this region. For defining
the OBR, anatomical knowledge must be included. The skull-stripping algo-
rithm presented in Section 4.4.1 shows the steps necessary to define this region.

The following section presents the different elements of the fully automatic
brain tumor segmentation framework. Section 4, also introduces a new skull
stripping algorithm and the proposed membership function acquisition method.

4.4 A Fuzzy Approach to Brain Tumor Segmen-
tation

The proposed fuzzy approach to brain tumor segmentation consists on the
registration of contrast enhanced T1-weighted magnetic resonance images, an
automatic fuzzy approach is defined which takes these images and produces a
final segmentation without any human interaction. This excludes operations
such as manual seed selection, manual contour initialization, manual proto-
type selection, manual contrast adjustment, manual cluster selection, or other
forms of manual input or adjustment (Chapter 3). The output will be a binary
segmentation of the images, where each pixel in the input image is labeled as
either non-tumor or tumor. The goal of the desired output will not be defined
as the determination of the absolute location of the tumor, but to perform the
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4.4. A Fuzzy Approach to Brain Tumor Segmentation

segmentation as a human expert would.

According to the descriptions of radiology experts, in order to detect/segment
a tumor, the most important properties to consider can be summarized as fol-
lows:

Location (evaluation of the appearance of regions).

Expected appearance of the tumor (expected intensity).

Variability of normal anatomy (intensity variability in different tissues).

Analysis of bilateral symmetry of the brain to detect abnormalities.

As the main objective of this work is to automate a task performed by hu-
man experts, two key elements in the definition of the proposed approach are
the expert knowledge combined with the information derived from the images.
To meet this objective, each of the previous properties (summarizing the ex-
perts knowledge) is considered to be an element in the segmentation process.

The segmentation framework is depicted in Figure 4.6 and shows the pri-
mary steps in extracting tumors from raw MR data. Firstly, when the MRI
is introduced (a), a pre-processing operation is applied to extract the intracra-
nial region from the rest of the MR image (b). The background and skull are
discarded by means of a new skull stripping algorithm (Section 4.4.1). This
algorithm creates an image mask of the brain that limits processing to only
those pixels contained by the mask. Secondly, for defining the non-tumor and
tumor populations, intensity knowledge is integrated into the system in the
form of rules (Section 4.4.2). As the output of the proposed approach is a bi-
nary segmentation, the non-tumor population is comprised of the non-tumorous
populations and they are directly defined by means of these rules (c). For defin-
ing the tumor population (d) it is necessary to carry out a symmetry analysis
(Section 4.4.3). Subsequently, for each population its corresponding member-
ship function is defined (e) making use of the proposed method for acquiring
membership functions (Section 4.4.4), (f) finally the fuzzy classification is per-
formed (Section 4.4.5), and the fuzzy-segmented image is obtained (g).
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Figure 4.6: Proposed brain tumor segmentation framework. a) An MRI is in-
troduced, b) the background and skull are discarded by means of a new skull
stripping algorithm, c¢) the non-tumor population is directly defined by means
of knowledge integrated into the system in the form of rules, d) a symmetry
analysis is carried out for defining the tumor population, e) for each population
its corresponding membership function is defined making use of the proposed
method for acquiring membership functions, f) the fuzzy classification is per-
formed, and the fuzzy-segmented image is obtained (g).

4.4.1 Skull Stripping Algorithm

Intracranial segmentation commonly referred to as skull stripping, aims to
segment the brain tissue from the skull and non-brain intracranial tissues in
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4.4. A Fuzzy Approach to Brain Tumor Segmentation

magnetic resonance images of the brain. Skull stripping is an important pre-
processing step in neuroimaging analysis, because brain images must typically
be skull stripped before other processing algorithms can be applied.

Numerous automated skull-stripping methods have been proposed and are
widely used [Dale 1999; Hahn 2000; Sandor 1997; Segonne 2004; Smith 2002;
Zhuang 2006]. Despite the clear definition of the skull stripping problem, no
standardized solution has been published yet. In [Atkins 1998] is given a good
survey of the work, showing strengths and weaknesses of diverse approaches,
and in [Fennema 2006] it is presented a recent study where the most commonly
used skull stripping algorithms are compared.

Skull stripping methods can generally be categorized into three types: in-
tensity based, morphology based, and deformable model based. Intensity-based
methods rely upon modeling the intensity distribution used for threshold clas-
sification as in [Shanthy 2007]. One limitation of intensity-based methods is
that they are frequently sensitive to intensity bias caused by magnetic field
inhomogeneities, sequence variations, scanner drift, or random noise.

Morphology-based methods frequently combine connectivity-based morpho-
logical operations and thresholding or edge detection to extract image features
and identify brain surfaces as in [Hahn 2000, Geun 2009]. A potential disad-
vantage of these methods is that they are often dependent upon many parame-
ters, and the parameters are often empirically generated and sensitive to small
changes in the data.

Skull-stripping methods based upon deformable models typically evolve and
deform an active contour to fit the brain surface, which is identified using se-
lected image characteristics as in [Zhuang 2006]. In general, deformable models
have the potential to produce more robust and accurate skull-stripping results
than methods using edge detection and threshold classification, but they also
require algorithms computationally intensive [Duncan 2000].

The main features of the skull stripping algorithm here presented are the
simplicity and robustness. It is simple since neither pre-processing of the MRI
data nor contour refinement is required. Furthermore, the skull stripping solely
relies on one basic anatomical fact, the T1 weighted images show a distinct re-
gion of separation between the surrounding tissues and the brain tissues. This
makes simple to look for this change in the intensity level and strip off this
part. As long as this feature is observed in the image data, a robust segmenta-
tion can be guaranteed even in presence of severe intensity non-uniformity and
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noise. The algorithm becomes totally automatic as all the intensity values are
automatically determined from the histogram.

Figure 4.7 shows three T1-weighted MR images before and after the skull
stripping algorithm was applied. Figure 4.7-a, presents a sample MR image
with a normal brain, 4.7-c and d, present two slices of brain MRI containing a
GBM tumor. The resulting images after applying the skull-stripping algorithm
are shown in Figure 4.7-b, d, and f. It is observed that even in presence of
severe intensity non-uniformity and noise (see background on Figure 4.7-c, and
4.7-e), a robust stripping is obtained.

To achieve the skull stripping, three steps are defined: in Step 1, the back-
ground pixels are removed, then in Step 2, the outside brain region is defined,
and finally in Step 3, two morphological operations are applied to fill the gaps
along the outside brain region, and to remove meningeal regions.

Figure 4.8 shows a sample slice in the T1-channel, presenting a gadolinium-
enhanced GBM tumor. This slice will be used in order to show the changes
that occur when implementing each of the three steps of the proposed skull-
stripping algorithm. Henceforth, this slice will be referred as demonstration
slice or “DSlice”. The three steps are described below.

Step 1 Removing background pixels

In brain MR images there are two primary classes of pixels: “foreground”
pixels are pixels of interest, while “background” pixels are not. The first
step towards the skull stripping is to remove the background pixels, it is
necessary to discard them, to limit processing to head pixels.

Let X be an image (slice). Making use of Rule 1: By applying the peak-
finding algorithm, all pizels whose gray level is lower than the first valley
found, are considered background, the condition in Equation (4.1) is satis-
fied. The valley was obtained using the peak-finding algorithm proposed
by Cheng and Ying [Cheng 2000]. This way, the background pixels are
defined by:

Definition 1 : All pizels p;; in image X satisfying Rule 1, are consid-
ered background pixels and thus removed.
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Figure 4.7: T1-weighted MR images before and after the skull stripping algo-
rithm was applied. a)Sample MR image with a normal brain, ¢ and d) two
slices of brain MRI containing a GBM tumor. The resulting images after ap-
plying the skull-stripping algorithm are shown in b, d, and f. It can be observed
that even in presence of severe intensity non-uniformity and noise in ¢ and e,
a robust stripping is obtained.
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Figure 4.8: Demonstration slice DSlice that will be used to show the changes
that occur when implementing each of the three steps of the proposed skull-
stripping algorithm. A transversal T1-weighted MRI presenting an enhancing
GMB tumor.

X(pij) if F(pij isfi 1
F(py;) = (piz) if F(p J.) satisfies Rule (4.1)
0 otherwise

in which F' is the “foreground” version of X, and pixels with value 0
correspond to the background. Figure 4.9 shows the demonstration slice
after removing the background pixels. It can be observed that in addition
to the background pixels, some of the C'SF pixels were also discarded.

Step 2 Defining the outside brain region

In order to accurately detect abnormalities within the brain, analysis
must be limited to pixels that correspond to the intra-cranial region,
which contain the brain’s soft tissues. Pixels belonging to extra-cranial
tissues, such as air, skin, and fat are not of interest.

The outside brain region is a well defined and recognizable anatomical
structure. The tissues surround the brain and are not found within the
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Figure 4.9: Demonstration slice DSlice after removing the background pix-
els. In addition to the background pixels, some of the C'SF pixels were also
discarded.

brain itself [Li 1993]; therefore, if a gross estimate of the outside brain
region is created, this region can be removed.

The purpose of this step is the gross definition of the outside brain re-
gion. To achieve its definition, this step is divided into three phases.
First, the head contour is localized. Then, all pixels with OBR intensity
are marked. Finally, a fusion of the head contour and the OBR pixels is
carried out to discard all pixels non pertaining to the outside brain region.

a Locating head contour

The first phase towards the definition of the outside brain region is
to locate the head contour.

Definition 2 : Given a foreground image F, the image is scanned
from the exterior towards the interior, and the first non-zero
pizel found is considered a contour pizel.

Only the first pixel that meets the condition given in Equation (4.2)
is considered a contour pixel for each row or column, and is saved
in a matrix, the contour matrix C. Figure 4.10 shows the contour
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matrix C for the DSlice. Note that in the demonstration slice, there
are inhomogeneities in the background (Figure 4.8). Because of
this, some false positives (pixels which are not head contour) were
marked. This problem is solved in the last phase, where the fusion
of the head contour and the OBR pixels is performed.

0 otherwise

Figure 4.10: Head contour pixels for the demonstration slice. Some in homo-
geneities in DSlice were marked as contour.

b Marking outside brain region pixels

In section 4.3.2 a set of heuristics were extracted based on intensity
knowledge. After analyzing these heuristics, in section 4.3.3 Rule 3
was defined as: The valley located Tight after the highest peak, in-
dicates the lowest gray level in which a Gadolinium-enhanced tumor
pizel can be found.

Heuristics H8, H9, and H10, state that the OBR gray levels are
higher than the tumor gray levels, and that the OBR gray levels
are always higher than the lowest gray level of tumor population,
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considering these heuristics, if all pixels whose gray level is higher
than the indicated in Rule & are saved in a matrix, this matrix will
contain both: Gadolinium-enhanced pixels and outside brain region
pixels.

Definition 3 : The outside brain region matrix O is composed of
all pizels p;j in foreground image F, whose gray level is higher
than the indicated in Rule3.

The outside brain region matrix O satisfies the condition given in
Equation (4.3). Figure 4.11 shows the O matrix for the demonstra-
tion slice DSlice. It can be observed that, as afore mentioned, the O
matrix contains both, Gadolinium-enhanced pixels and OBR pixels.

0 otherwise

O(pij) = {

1 if F(p;;) than the indicated in Rule3} 43)

Figure 4.11: Outside brain region matrix O for the demonstration slice. The
matrix contains Gadolinium-enhanced and OBR pixels.

¢ Fusion of contour and outside brain region pixels
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The last step for the definition of the outside brain region consists on
merging the contour and the outside brain region matrices obtained
at the previous steps. The purpose is to exclude the OBR pixels
that are within the brain parenchyma. The data obtained from this
fusion, is saved in a new matrix, the merger matrix M.

Definition 4 : The merger matriz M is composed of all pixels in
contour matriz C, plus those of the outside brain matriz O, ex-
cluding the pixels that are located within the brain parenchyma.

The merging is carried out as follows: First, all the contour pixels
are added to matrix M. For each contour pixel such that C(p;;) = 1,
its eight-connected neighbor pixels are verified over O matrix. If any
of its neighbors is equal to one, that pixel is added to merge matrix
M, and the procedure is repeated until all possible pixels have been
added. Figure 4.12 shows the M matrix for the demonstration slice
DSlice. The Gadolinium-enhanced pixels first marked in O matrix
were lost with the fusion, as well as the inhomogeneities marked as
head contour in C' matrix.

Figure 4.12: Merger matrix for the demonstration slice. All the Gadolinium-
enhanced pixels first marked in the outside brain region matrix were lost with
the fusion, as well as the inhomogeneities marked as head contour in contour

matrix.

Step 3 Performing morphological operations
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Morphological processing refers to operations where an input object (usu-
ally binary) is modified by another object called a structuring element
to reveal a more useful or interesting shape [Jain 1995]. The two funda-
mental operations are erosion () and dilation (). Let B, denote that
the structuring element is translated to point . The erosion operator of
object X by structuring element B, is defined as the set of all points =
such that B, is included in X.

XoB={z:B,eX} (4.4)

Similarly, the dilation operator of X by B, is defined as the set of all
points x such that B, hits X (having a non-empty intersection).

X@B:{x:BIﬂX#O} (4.5)

By combining erosion and dilation operations, two new operators, opening
and closing, can be created. The opening operator removes isolated ob-
jects and breaks weak connections in components. It is an erosion opera-
tion followed by dilation, using the same structuring element: (X©B)®B.
The closing operator, a dilation followed by erosion using the same struc-
turing element, (X & B) © B, connects small gaps in components.

The use of morphologic operations has been the basis of diverse skull-
stripping approaches. In this work, the final step to achieve the skull-
stripping is carried out by means of two morphological operations. First
a closing is performed to fill the gaps along the outside brain region.
Then, as the meningeal regions lie along the periphery of the brain in a
relatively narrow margin, the periphery is created by applying an erosion
operation to the outside brain region as in [Clark 1999].

a Closing to the outside brain region
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In order to fill the gaps along the outside brain region, a morpho-
logical closing is performed using a disk-shaped structuring element
to preserve the circular nature of the head contour, whose radius is
5 pixels. This way all pixels inside the circle are considered the first
estimation of the brain mask. Figure 4.13 shows the closed outside
brain region.

Figure 4.13: Outside brain region after applying a morphological closing.

b Erosion for removing meningeal regions

In addition to tumor, meningeal tissues immediately surrounding
the brain, such as the dura or pia mater, receive gadolinium infused
blood. As a result they can have a high T1 signal intensity. These
tissues can be identified and removed via anatomical knowledge by
noting that since they are thin membranes, meningeal regions should
lie along the periphery of the brain in a relatively narrow margin
[Clark 1999]. The periphery is created by applying a 7 x 7 ero-
sion operation to the outside brain region. Figure 4.14 illustrates
this erosion operation. The final definition of the brain mask is the
encircled area after applying the morphological operations (Figure
4.15).

98



4.4. A Fuzzy Approach to Brain Tumor Segmentation

Figure 4.14: Erosion operation to the outside brain region (gray ring) for re-
moving meningeal regions (black ring).

Figure 4.15: Final definition of the brain mask.

4.4.2 Defining Non-Tumor Population

The principal objective in this stage is to separate as many pixels belonging
to normal tissues as possible from those belonging to tumor. In Section 4.3.3,
knowledge discussed as heuristics was manually extracted and integrated into
the system in the form of rules. These rules could provide a simple effective
mechanism for gross separation of tumor from non-tumor pixels, which works
across slices.
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Since the pixels of the OB R population were removed by the skull-stripping
algorithm, the non-tumor population is comprised of all the non-tumorous pix-
els, included in the brain parenchyma BP population. Because the tumor
population is contiguous with the BP population to the left, and the OBR to
the right, it is necessary to apply rules that can define the intensity ranges in
which these populations fall within. Making reference to Section 4.3.3, these
three populations can be defined by means of these three rules:

Rule 2 A brain parenchyma pizel can be found between the first valley and the
valley located Tight after the highest peak.

Rule 3 The valley located right after the highest peak, indicates the lowest gray
level in which a Gadolinium-enhanced tumor pizel can be found.

Rule 4 The highest gray level, in which a Gadolinium-enhanced tumor pizel
can be found, is the lowest gray level of the outside brain region.

At this point it can be said that each population (BP, TUM, and OBR)
falls within a range of gray levels. It is important to note that even though the
tumor population is identified in the intensity histogram, its intensity range is
not strict, since it does not guarantee that every pixel which falls within this
range, is a tumor pixel. To avoid making this assumption, next section presents
a symmetry analysis for determining whether the image contains a brain tumor
or not.

4.4.3 Tumor Detection

As afore mentioned, the tumor population is bounded in the intensity his-
togram by two populations: the brain parenchyma to the left, and the outside
brain region to the right. For not assuming that every pixel that falls within
its range of intensity values is a tumor pixel, a symmetry analysis is performed.
The tumor population will consist of all those pixels that fall within the limits
of BP and OBR populations, and additionally it is found that there is an ab-
normality by a measure of divergence.

Using symmetry analysis of the brain to detect abnormalities in magnetic
resonance images has been the basis of diverse works in the literature. Sym-
metry analysis is alternately referred to as left to right symmetry [Ray 2008,
Cobzas 2007], symmetric bilateral [Mahajan 2008], symmetry plane [Khotan
2008], difference method [Hiong 1993], and tensor-based morphometry [Chiang
2007] among others. Symmetry analysis is a fast method for locating a region
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of abnormality in the brain. The method exploits the fact that a normal brain
structure is symmetric, the left part and the right part can be divided by an
axis of symmetry, and abnormalities (tumors) typically disturb this symmetry.

In this work, in addition to the analysis of the left and right parts of the
brain, the symmetry analysis is made dividing the brain into four parts or
quadrants namely Q1, Q2, @3, and Q4 (Figure 4.16). It would be easier to
identify which part of the brain contains a larger number of tumor pixels.

Definition 5 :In general there will be enough symmetry between the histograms
of quadrants Q1 and Q3, and between the histograms of quadrants Q= and

Q-

Figure 4.17 shows the resulting histograms of the four quadrants of a sam-
ple image. By visual inspection of the histograms in Figure 4.17, it is clearly
observed the similarity between the histograms of quadrants Q1 and 3. On
the contrary, histograms of quadrants Q2 and @4 show a remarkable difference
in the higher gray levels. This is due to the GBM tumor that this sample slice
contains.

Figure 4.16: Brain mask divided into four quadrants.

The purpose of in symmetry analysis is the comparison of the histograms
of symmetrical quadrants in order to identify abnormalities.

Definition 6 :A pizel p;; is tumor if it falls within the tumor intensity range,
and the histograms of quadrants within that range, present a high degree
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Figure 4.17: Resulting histograms of the four quadrants of a sample image.
of divergence.

In order to determine that there exists a tumor in the image based on Defi-
nition 6, the following sections show how the symmetry analysis is carried out.
Before the comparison for detecting abnormalities, the histograms signatures of
symmetrical quadrants are first correlated using similarity measures (Histogram
Correlation). After that in “Histogram Divergence”, a similarity/dissimilarity
metric is presented to identify how much these histograms diverge in the tumor
gray levels.

Histogram Correlation

Normal human brains possess a high degree of bilateral symmetry although they
are not perfectly symmetrical. Before comparing the histograms of symmetrical
quadrants for identifying tumors, it is required to assume that quadrants @,
and @3, and quadrants 2 and @4 are not perfectly symmetrical because of the
morphologic nature of the brain and cranium, movements or wrong placement
of the patient.
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Figure 4.18 shows the histograms of the symmetrical quadrants @)1 and Q3
of two normal brain sample images. Note that although the histograms of sym-
metrical quadrants are very similar, there is some displacement between them.
Considering this condition, before the comparison for detecting abnormalities,
the histograms signatures of symmetrical quadrants are first correlated using
similarity measures.
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Figure 4.18: Histograms of symmetrical quadrants of two normal brain sample
images. Although the histograms of symmetrical quadrants are very similar,
exist some displacement between them.

The symmetrical histograms signatures’ matching is achieved using the cor-
relation coefficient. This coefficient indicates the strength and direction of a
linear relationship between two random variables (in this case two histograms
H and K) and is defined as:
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One of the two symmetrical histograms is moved over the gray-level axis
until the highest correlation between these histograms is obtained as shown in
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Figure 4.19: Histograms of symmetrical quadrants after correlation.
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Histogram Divergence

After the symmetrical histograms are correlated, it is necessary a histogram
similarity or dissimilarity metric in order to identify how much these histograms
diverge in the tumor gray levels. A good overview of such metrics is given by
Rubner et al. [Rubner 1998]. To determine which metric best suits this ap-
plication, a number of bin-by-bin measures were investigated: L1 distance, L2
distance, histogram intersection, Jeffrey divergence, and x? statistics. Diverse
cross-bin measures were also tested: quadratic-form distance, match distance,
and Kolmogorov-Smirnov distance. Briefly summarizing the tests, the best re-
sults were consistently obtained with the Jeffrey divergence, closely followed by
the x2 statistics. The Jeffrey divergence was thus chosen as the dissimilarity
metric that identifies if the histograms diverge in the tumor gray levels.

Given two histograms H and K, with h; and k; denoting the histogram
entries, the Jeffrey divergence is defined as follows:

dy(HK)=>" {hilog% + kilog%} (4.7)

- %

K2

where m; = h?‘;]’”.

Figure 4.20 shows the Jeffrey divergence values of a normal brain sample
slice. It is observed that the divergence between the symmetrical quadrants
@1 and @3, and quadrants Q2 and Q4 is not significant. On the contrary, in
Figure 4.21 high divergence values between quadrants Q2 and Q4 are notably
observed. This means that a there is a tumor in the image, and it is located
on the anterior part of the right lobe.

4.4.4 Define Non-Tumor and Tumor Membership Func-
tions

One of the biggest problems in computer vision systems, analyzing images hav-
ing high uncertainty/vagueness degree, is the treatment of such uncertainty.
This problem is even clearest in the segmentation process. Fuzzy set theory
and fuzzy logic are ideally suited for dealing with such uncertainty [Montseny
2001].
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Figure 4.20: Jeffrey divergence values of a normal brain.
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Figure 4.21: Jeffrey divergence values of a pathologic brain.
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In the case here presented, the tumor itself is a vague concept modeled
following expert knowledge. The purpose of this section is to represent the
knowledge integrated into the system in the form of rules, by means of appro-
priate membership functions.

The basic element in fuzzy systems is the membership function, because
the effectiveness of the extracted fuzzy feature set depends on the selection of
the membership function best representing feature fuzziness. Models used for
obtaining membership functions must be adaptive so that they can be easily
adjusted or tuned to optimize the performance of the algorithm that uses them.
Given the populations previously extracted, it is necessary to define an appro-
priate set of membership functions which are well adapted to MRI data, and
consequently are well adapted and efficiently separate non-tumor and tumor
populations.

Although it is really important to build proper membership functions, there
is no single method which will work for most applications. Several approaches
for building and adapting membership functions have been proposed. Next are
sketched the most widely used.

Membership functions obtained from real data. These are used when data
needs a framework and a methodology allowing translating raw data to
membership functions. The problem is that with this approach it is also
necessary to specify a performance measure to be used in the optimiza-
tion procedure [Makre 2003, Moreno 2004, Pedrycz 2002].

Membership functions based on subjective perceptions of vague or im-
precise categories (rather than on data). In these cases, the problem is
that for assigning numbers to subjective perceptions of vague categories,
it is necessary the use of various techniques of the theory of measurement
and scaling.

Membership functions obtained by heuristic methods. This approach
adapts well to applications where spatial relations as “above” or “to the
left of”, or certain properties like position, lightness, darkness, etc., have
to be considered. However, as predefined shapes are considered for defin-
ing the membership functions, they are not flexible enough to model all
kind of data [Ajibo 2005].
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Membership functions based on transformations of probability to pos-
sibility distributions. Membership functions so obtained are intended for
situations where the manipulation of randomness is hard, but it is easier
to handle uncertainty via possibility distributions in the fuzzy framework
[Medasani 1998].

Methods based on neural networks. Although this approach provides fairly
complex membership functions, their shapes are unpredictable in regions
where there is no training data. Moreover, the membership values may
not be necessarily indicative of the degree of typicality of a feature with
respect to a class [Cheng 2003].

Histogram-based membership functions. These methods are applied when
feature values from different classes can be displayed as histograms pro-
viding information of the distribution of these features. Thus, each his-
togram can be modeled by parameterized functions. The most frequently
used analytical non-linear functions include gaussians, sigmoids or bells.

Gaussian membership functions are quite popular in fuzzy logic lit-
erature because people often characterize their thinking process as
normal distributions [Liu 1997]. Some researchers conclude that
gaussian membership functions are the most adequate for represent-
ing uncertainty in measurements based on the next assertion any
membership function that is adequate for describing uncertainty in
measurements is equivalent to exp(—pz) for some 50 [Krein 1992].
These membership functions are best suited for off-line design of
fuzzy systems such as: fuzzy nonlinear predictors [Wu 1999], fuzzy
nonlinear modeling [Jin 2000], and simulation of complex fuzzy non-
linear control strategies [Green 2006, Guang 1999]. Traditionally,
in computer vision, gaussian membership functions are approached
by normalizing the probability density function (pdf) of a given fre-
quency histogram [Cheng 2003, Hanman 2004, Hima 2001, Liu 1997].
Therefore, the membership degree of each element depends on how
close this element is to the maximum. However, having only this
dependency, it is not considered if the element is located close to
the limits of the set of values that takes the variable.

Sigmoidal membership functions are inherently open to the right or
to the left, and thus are appropriated for representing concepts such
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as “very large” or “very negative”. These functions can be used
for constructing asymmetric fuzzy intervals, using a sigmoid on the
left side and another one on the right side of the fuzzy interval,
considering the data located in the limits. In general the shape
of the obtained sigmoidal membership function is equivalent to the
cumulative probability function of a gaussian normal distribution
or probability distribution function (pDf). Sigmoidal membership
functions are quite common in optimization [Dombi 2005], as well as
in economical and biological models [Kodaka 2004]. In particular,
most assumptions about localized distribution of input uncertainties
lead to membership functions with sigmoidal shapes [Duch 2005].

Bell-shaped membership functions are symmetrical sigmoid func-
tions around a center value ¢, and have a width parameter d that
defines an interval (¢ — d, ¢ 4+ d), in which the value of the function
is greater than a threshold value. These membership functions are
used for fuzzy propositions involving multiple dimensions [Lo 2002].
Moreover these membership functions can not represent fairly com-
plex curves or asymmetric distributions.

Considering the strengths and weaknesses or failures of the above methods,
the research was focused on obtaining membership functions from real data,
based on the analysis of its histogram. The objective was to define member-
ship functions that have into account not only a measure of central tendency
of the data, as it is the case of membership functions defined using the mode
of the distribution, but also the data variability. To this end it was proposed
a method for obtaining membership functions that, unlike the majority of ex-
isting methods, it uses not only the probability density function (pdf) but also
its corresponding cumulative distribution functions (cdf).

The advantage of considering the cdfs is twofold: on the one hand, they
can be used to better cover the data, particularly in the case of skewed distri-
butions; and on the other hand they provide better classification results when
the histograms of the data sets are overlapped, regardless the overlapping re-
gion and the gradients of the tails that overlap. These improvements were
demonstrated in [Gordillo 2009] through a comparative analysis with other
widely known and used histogram-based methods. This analysis showed that
the proposed method outperformed the others when considering two popula-
tions whose histograms had varying degrees of asymmetry and overlapping.
This analysis also showed that the best results were obtained in cases where
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the membership functions were based solely on the distribution function.

The following sections introduce the proposed method for obtaining mem-
bership functions based on the density and cumulative distribution functions.

Proposed Membership Function

Membership functions based on histograms are usually obtained approaching
gaussian functions. To do so, if C is the characteristic to be assessed in a pop-
ulation P, ¢;; is the value taken by C' when is evaluated on the pixel p;;, and
pdfc (+) is the probability density function obtained evaluating the character-
istic over all the pixels of the population, traditionally the degree to which p;;
is C is derived from the following rule:

R1 : The closer max(pdfc) is to pdfc(ci;), the more C' is p;;.

The implementation of this rule, the degree to which a pixel p;; is C,
¢c (pij), is given by:

b (p) = e o) = orco), (4.5

Therefore, when using this type of membership functions, the degree to
which a pixel p;; satisfies a characteristic C' has only into account the central
tendency of the data, but not the data variability. To overcome this limitation
it was proposed to consider next rule:

R2 : The closer mean(pdfc) is to pdfc (cij), the more C'is p;;.
where mean(pdfc) is the mean of the distribution.
Taking advantage of the cumulative distribution functions (cdfs) proper-

ties, and their relation with the median of the distribution, the previous rule
was implemented by means of a new membership function that is defined by:
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cdfpe (cy) cdfre (ci) } (4.9)

ij) — g ) = ' 17 )
b (1) = i (i) = min {1, “Hreles) line

where: cdfr o (¢;5) and cdfre (ci;) are the values of the left and right cu-
mulative distribution functions associated to pixel p;; for the characteristic C.
a1 and ag are parameters whose values are to be adjusted. As the mean of
a distribution is the value for the 50" percentile of the distribution (i.e., the
probability that a random variable takes a value below the mean is 0.5), these
parameters will be adjusted so that the number of pixels that meets the char-
acteristic with a degree higher than 0.5 is at least Equation (4.10) per cent of
the total:

<1 — ;‘l? x 100) (4.10)

Parameters a; and a9 are adjusted based on the direct relationship between
the increase in the overlapping degree of the histograms and the gradients of
the tails in the overlapping area [Gordillo 2009]. This relationship is as follows:

When the tails of the histograms in the overlapping area are similar in na-
ture, i.e. both have steep or smooth gradients (Figure 4.22-a and 4.22-b), the
greater is the overlap the greater are the values of a; and as. Moreover, both
values are equal.

In the cases where the tail of left histogram has steep gradient and the tail
of right histogram has smooth gradient (Figure 4.22-c), or vice versa, the values
of parameters a; and as are higher where the gradient is smoother.

Considering rules R1 and R2 new membership functions can be generated
that take into account both, the data variability and the complete description
of the distribution of the considered characteristic. For obtaining these mem-
bership functions the first step consists in getting the approximate density and
distribution functions, as explained below.

Obtaining the Density and Distribution Functions

Given a characteristic C' once the frequency histogram of the values c;; has
been obtained, it is generated its approximate theoretical normal density func-
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Figure 4.22: Examples of pairs of overlapped histograms of a characteris-
tic attending to the gradient of the tails in the overlapping region: a) Both
histograms have steep gradient in the overlapping zone; b) Histograms with
smooth gradient; ¢) Histograms with steep / smooth gradient.

tion as follows:

o If the histogram is symmetric, the mean and standard deviation that de-
fine the function are obtained from the data.

e In other case the approximate normal density function is obtained using
the standard deviations on the right, og, and left, o, sides of the his-
togram, and the mode, m.

It must be pointed out that the values of o and o7, may need to be modi-
fied in order to be optimally adjusted to the shape of the histogram. From the
density function obtained at previous step are obtained the right, cdfr o (cij)
and left cdfr (ci;) cumulative distribution functions.
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Obtaining the Membership Function

For getting the degree, ¥c(pij) = pco(ci;) to which a pixel p;; satisfies the
characteristic C, R1 and R2 are applied by considering a weighted mean of
pic (cij) and poc (cij) as follows:

pe (cij) = (1 =0) - pac (cij) + b+ p2e (cij) (4.11)

such that 0 < b < 1.

4.4.5 Classification

The task in classification is to use the features measured at a pixel to decide
whether the pixel represents a tumor pixel or not. Therefore, it was necessary
to define an appropriate set of membership functions which are well adapted
to tumor population and efficiently separate the non —tumor population using
the presented model.

In a previous work [Gordillo2 2009] it was concluded that as the number of
populations becomes larger, the system grows up and the classification process
becomes more complicated. Thus, in order to make it simpler, the classification
must be performed by pairs of populations. The author proved that in the case
of having three populations, if the populations are combined by pairs obtain-
ing three pairs of two, and then the classification is performed over these three
pairs of populations, the efficiency of the classification is as good as classifying
the three populations simultaneously.

Given populations BP, TUM and OBR (Figure 4.23), three pairs of two
populations are obtained: Pair 1: BPTUM (Figure 4.24 a), Pair 2: BPOBR
(Figure 4.24 b), and Pair 3: TUMOBR (Figure 4.24 c).

Each pair is linked to their corresponding membership functions as follows:

Pairl : php and  pigay (4.12)
Pair2: p%p and pbgg (4.13)
Pair3 : iy and  pbpg (4.14)

113



4.4. A Fuzzy Approach to Brain Tumor Segmentation

Frequency -~

BP OBR

> TUM

=}

o 400 800 1200 1600

Grey Levels
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Figure 4.24: Populations combined by pairs for the classification. Pair 1
BPTUM (a), Pair 2: BPOBR (b), and Pair 3: TUMOBR (c).
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To determine these membership functions, the process described in Section
4.4 was applied. Weight b (Eq. 4.11, as well as the values of parameters a;
and ag used for defining pa- (¢;5)(Eq. 4.9) were adjusted based on the direct
relationship between the increase in the overlapping degree of the histograms
and the gradients of the tails in the overlapping area as in [Gordillo 2009].

The binary segmentation tumor and non — tumor is given by the following
equation:

Vpij such that pya (pij) > e (Pij)

tumor it poa (Pis) > wdpr (Pif) (4.15)
non — tumor otherwise

4.5 Conclusions

This chapter presented a step-by-step methodology for the automatic MRI
brain tumor segmentation.

A new simple and robust skull-stripping algorithm was presented. The skull
stripping solely relies on the change of intensity level between the surrounding
tissues and the brain tissues in T1-weighted images. As long as this feature is
observed in the image data, a robust segmentation can be guaranteed even in
presence of severe intensity non-uniformity and noise. The algorithm becomes
totally automatic as all the intensity values are automatically determined from
the histogram.

For achieving the fully automatic and unsupervised segmentation, objec-
tive measures were delineated by means of adaptive histogram thresholds for
defining the non — tumor and tumor populations. For defining the tumor pop-
ulation a symmetry analysis was conducted.

The proposed brain tumor segmentation approach also introduced a new

way to automatically define the membership functions from the histogram. The
proposed membership functions are designed to adapt well to the MRI data
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and efficiently separate the populations (non — tumor and tumor).

The segmentation technique is simplified since neither pre- or post-processing
in addition to skull stripping is necessary shortening computational times.

In this chapter it was shown how rules that attempt to capture human

expertise can be used to augment low level segmentation, a step on the way
towards truly automatic brain tumor segmentation.
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Chapter 5

Experiments and Results

5.1 Introduction

This chapter presents some results, both qualitative and quantitative, from the
experiments conducted to evaluate the performance and accuracy of the pro-
posed approach.

5.2 Outline of the Chapter

Section 5.3 describes the image materials used in the experiments. Section 5.4
introduces the validation measure for the automatic brain tumor segmenta-
tion. The results of the conducted experiments are shown in section 5.5. They
are divided in three datasets, normal dataset (NON), glioblastoma multiforme
dataset (GBM), and meningioma dataset (M EN). Section 5.6 gives a general
discussion. Finally section 5.7 summarizes the chapter conclusions.

5.3 Image Materials for the Experiments

The magnetic resonance imaging materials used for the experiments consists of
tree datasets: normal dataset NON, glioblastoma multiforme dataset GBM,
and meningioma dataset M EN. The normal dataset contains 256 slices (180 x
256 pixels) of a normal brain. The GBM dataset contains 256 slices (176 x 256
pixels) presenting a GBM brain tumor, and the meningioma dataset consists
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of 256 slices presenting a meningioma (180 x 256 pixels).

Figures 5.1, 5.2, and 5.3 show tree 2D transversal MRI in the T1 channel
from the image materials. Figure 5.1 shows a normal brain, Figure 5.2 a slice
presenting an enhancing GBM brain tumor, and Figure 5.3 a slice containing
a meningioma.

Figure 5.1: A transversal T1-weighted MRI experimental dataset of a normal
brain.

Figure 5.2: A transversal T1-weighted MRI experimental dataset of a brain
presenting a GBM tumor.
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Figure 5.3: A transversal T1-weighted MRI experimental dataset of a brain
presenting a meningioma.

5.4 Validation

A major issue that must be addressed in validating an automatic method for
brain tumor segmentation is the means through which the segmentation is
quantitatively assessed. In order to quantitatively assess the quality of an
automatic binary segmentation in comparison to a manual binary segmentation
produced by experts, many of the approaches in the literature [Cobzas 2007,
Corso 2008, Lee 2005, Prastawa 2004] have used the Jaccard similarity measure
(Eq. 5.1).

Let M be the set of manually defined tumor pixels, and A the set pixels
classified as tumor by the proposed automatic method. The Jaccard similarity
measure is given by:

ANM tp
AUM  tp+ fp+ fn

J(A, M) = (5.1)

Where tp is the true positive, fp the false positive, and fn the false negative.

In order to define the M sets, the tumor pixels were manually segmented
with the support of a radiology expert.
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Table 5.1: Classification results of normal brain dataset (12 slices).

Slice Number Jaccard SM

NON55 0,9226
NONG60 0,9457
NONG5 0,9378
NONT0 0,9661
NONT75 0,977
NONS80 0,9803
NONS85 0,9904
NON90 0,9992
NON95 0,9897
NON100 0,9884
NON105 0,9901
NON110 0,9876
Average 0,9729

5.5 Experiments

The experiments are divided according to their dataset. For the qualitative
results, each set presents a pair of indicative slices. In the classification figures,
color blue is used to represent true positives, and color red to represent false
positives. For the quantitative results, each set presents a table and a chart
showing the Jaccard similarity measure, and the average result of the classifi-
cation for each dataset.

5.5.1 Experiments on Normal Brain Dataset

The average scores obtained in experiments on the normal brain dataset, are
very accurate (Jaccard similarity measure = 0.97), these results confirm that
by performing the symmetry analysis, the non-tumorous pixels whose gray level
falls within the gray levels of tumor are discarded. Figure 5.4 show qualita-
tively this result. The quantitative results are shown in Figure 5.5.
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Figure 5.4: Resulting Segmentation on normal brain dataset (NON). The
symmetry analysis discarded most of the non-tumorous pixels. A minimal
amount of false positives in asymmetric areas (b,d) are shown in red.
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Classification results of normal brain dataset (12 slices).
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5.5.2 Experiments on Glioblastoma Multiforme Dataset

The proposed system attempted to segment the enhancing GBM tumor area.
In the case of slices with necrotic cores, which appear dark on T1lweighted
images as in Figure 5.6, only the enhancing rim of the tumor was defined as
the target tumor region. The entire tumor area was defined as target in cases
where ambiguous tissue between necrotic and enhancing appeared as in Figure
5.7.

Figure 5.6: Resulting segmentation of GBM dataset slice 55. a) Slice 55
presenting a rim-shaped enhancing GBM tumor. b) Segmented rim-shaped
enhancing GBM tumor in blue.

In general, in both cases, slices showing a rim-shaped enhancing tumor and
in ambiguous cases, obtained results of about 0, 83. Problems of false negatives
appeared in upper-brain slices, where non-tumorous areas where also enhanced
(Figure 5.7b). Results of twelve slices are presented in table 5.2 and in Figure
5.8.

Table 5.3 shows a summary of related methods in unsupervised and super-
vised automatic brain tumor segmentation. These methods were applied for
the segmentation of glioblastoma multiforme brain tumors, and the validation
of the segmentation was measured using the Jaccard similarity measure.

The first column shows the authors’ name. The second gives a brief descrip-
tion of the methodology. The third column indicates whether the segmentation
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Figure 5.7: Resulting segmentation of GBM dataset slice 35. a) Slice 35
presenting ambiguous necrotic and enhancing GBM tumor. b) Segmented am-
biguous necrotic and enhancing GBM tumor in blue. Some false negatives
appeared in non-tumorous enhancing areas.

Table 5.2: Classification results of GBM tumor dataset (12 slices).

Slice Number Jaccard SM

GBM35 0,7129
GBM40 0,7288
GBM45 0,7456
GBM50 0,7754
GBMb55 0,8493
GBM60 0,8345
GBM65 0,8634
GBMT70 0,8968
GBMT75 0,9336
GBMS80 0,9125
GBMS85 0,8769
GBM90 0,9043
Average 0,8361
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Figure 5.8: Classification results of GBM tumor dataset (12 slices).

was done in 2D or 3D. In case of being performed in 2D, and then a correlation
to 3D was made, it is marked in the table as 2D — 3D. The fourth column in-
dicates whether the method is unsupervised or supervised and fully automatic.
The last column shows the resulting segmentation using the Jaccard similarity
measure.

Having a look to Table 5.3, the lowest results were obtained with the two
supervised methods, the proposed by Cobzas with scores from 0.27 to 0.88, and
the proposed by Lee (scores from 0.40 to 0.89). The highest scores were ob-
tained with the approach proposed by Ho et al. obtaining results in the range
of 0.85 the lowest, and 0.93 the highest. The work here presented obtained
results similar to those of Ho, with the lowest score of 0.71 and the highest of
0.93. The lowest scores are due to false negatives, however, when this approach
is extended to perform the classification in 3D, the accuracy will be improved
when the correlation between the slices is made.

5.5.3 Experiments on Meningioma Dataset

In Chapter 4, a disjoint subset of the GBM dataset was used in the histogram
analysis in order to obtain intensity knowledge. It was emphasized that this
set does not generate labeled training data.

The author was in the task of testing whether the knowledge obtained in
the histogram analysis conducted in Chapter 4, worked on a dataset containing
a different type of tumor. For this reason, the experiments in the meningioma
dataset were carried out.
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Table 5.3: Summary of related methods in unsupervised and supervised auto-
matic brain tumor segmentation.

Authors Description 2D — Segmentation JaccardSM
3D

Clark et al. Knowledge-Based 2D unsupervised / 0,70
[Clark 1998] Fuzzy Clustering fully automatic
Corso et al. Multilevel Bayesian 3D supervised / 0,27- 0,88
[Corso 2008] fully automatic
Ho et al. Level Sets 3D unsupervised / 0,85-0,93
[Ho 2002] fully automatic
Lee et al. Disc. Random 3D supervised / 0,40-0,89
[Lee 2005] Fields and SVM fully automatic
Prastawa et al. Knowledge-Based 2D- unsupervised / 0,68-0,80
[Prasta 2004] Outlier Detection 3D fully automatic
Prastawa et al. Statistical classifi- 2D- unsupervised / 0,49-0,71
[Prasta 2003] cation via Expec. 3D fully automatic

Maximization
Gordillo Knowledge-Based 2D unsupervised / 0,71-0,93
[proposed Fuzzy Clustering fully automatic
method]
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Table 5.4: Classification results of meningioma tumor dataset (12 slices).

Slice Number Jaccard SM

MEN120 0,7989
MEN122 0,7914
MEN124 0,7743
MEN126 0,7802
MEN128 0,7893
MEN130 0,7857
MEN132 0,7432
MEN134 0,7247
MEN136 0,7426
MEN138 0,7597
MEN140 0,7651
MEN142 0,7511
Average 0,7671

The resulting scores show that indeed, the knowledge obtained through the
histogram analysis also works for this dataset (scores in the order of 0.76). How-
ever, in order to improve the accuracy in the segmentation is necessary to in-
clude additional knowledge for discarding other tissues also contrast-enhanced
as shown in Figure 5.9. The quantitative results are shown in Table 5.4 and in
Figure 5.10.
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Figure 5.9: Resulting segmentation of meningioma dataset (M EN). (a,c) Slices
120 and 130 presenting ambiguous necrotic and enhancing meningiona tumor.
b) Segmented ambiguous necrotic and enhancing meningioma tumor in blue.
Some false negatives appeared in non-tumorous enhancing areas.
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Figure 5.10: Classification results of meningioma tumor dataset (12 slices).

5.6 Conclusions

As a general conclusion of the experiments, the proposed approach is quanti-
tatively comparable to the most accurate existing methods, even though the
segmentation is done in 2D. However, when this approach is extended to
perform the classification in 3D, the accuracy will be improved when the cor-
relation between the slices is performed.

In this chapter the qualitative and quantitative results of three datasets
were shown. Normal brain dataset achieved very accurate results close to 1 us-
ing the Jaccard similarity measure; these results confirm that the non-tumorous
pixels whose gray level falls within the gray levels of tumor are discarded by
means of the symmetry analysis.

The glioblastoma multiforme dataset, obtained results of about 0,83 in both
cases, slices showing a rim-shaped enhancing tumor and in ambiguous cases.
Some problems of false negatives appeared in upper-brain slices, where non-
tumorous areas where also enhanced.

The approach was also tested on a third dataset containing a different type
of tumor, a meningioma brain tumor. The resulting scores (in the order of
0.76) show that indeed, the knowledge obtained through the histogram anal-
ysis conducted in Chapter 4 also works for this dataset. However, in order to
improve the accuracy in the segmentation is necessary to include additional
knowledge for discarding other tissues also contrast-enhanced.
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Chapter 6

Conclusions and Future
Work

6.1 Conclusions

The following lines are devoted to putting together all the conclusions that
were drawn in each chapter that conforms this thesis. As general conclusion, it
can be summarized that the main objective was to develop a system to assist
brain tumor segmentation which works in the same line of work of a technician,
considering his experience and knowledge. The method successfully managed
the ambiguity of MR image features, as well as the variability in tissue distri-
bution among individuals in the human population being capable of describing
knowledge about the tumors in vague terms.

The method was developed making use of the powerful tools provided by
fuzzy set theory. This thesis presented a step-by-step methodology for the auto-
matic MRI brain tumor segmentation. A new simple and robust skull-stripping
algorithm was presented. For achieving the fully automatic and unsupervised
segmentation, objective measures were delineated by means of adaptive his-
togram thresholds for defining the non-tumor and tumor populations. For
defining the tumor population a symmetry analysis was conducted.

The proposed approach also introduced a new way to automatically de-
fine the membership functions from the histogram. The proposed membership
functions were designed to adapt well to the MRI data and efficiently separate
the populations. The segmentation technique is simplified since neither pre or
post processing in addition to skull stripping is necessary shortening compu-
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tational times, and is quantitatively comparable to the most accurate existing
methods, even though the segmentation is done in 2D.

6.1.1 Magnetic Resonance Imaging of Brain Tumors

The goals and requirements for brain tumor imaging are multiple and complex.
They involve providing a diagnosis and a differential diagnosis, and, if possible,
a specific diagnosis, as well as accurate grading of the tumor. Tumor imaging
is an essential part of the decision-making process for therapy and later for
precise planning of surgical or radiological interventions.

Magnetic Resonance Imaging is a powerful visualization technique that al-
lows images of internal anatomy, metabolism, and function to be acquired in
a safe and non-invasive way. It is based on the principles of Nuclear Magnetic
Resonance, and allows a vast array of different types of visualizations to be
performed. This imaging medium has been of particular relevance for produc-
ing images of the brain, due to the ability of MRI to record signals that can
distinguish between different soft tissues such as gray matter and white matter.

MRI of the brain is a vital part of modern oncology. It is used in tumor
diagnosis, monitoring tumor progression, planning treatments, and monitoring
responses to treatment. From the very beginning, the technical development
of MRI progressed quickly, and it seems to be continuing at an ever-increasing
pace. As a result, over the last 25 years there has been an explosion in the
number of clinical applications of MRI.

Due to its high tissue contrast and its noninvasiveness, MRI is accepted
as the most sensitive method for diagnosing brain tumors. The very accurate
MR Imaging, generally T1-weighted, T2-weighted and the proton density add
diagnostic value.

6.1.2 State of the Art Survey on Brain Tumor Segmen-
tation

Detecting the existence of brain tumors from MRI in a fast, accurate, and re-
producible way is a challenging problem. Medical image processing is a very
active and fast-growing field that has evolved into an established discipline.
Brain tumor segmentation techniques have already shown great potential in
detecting and analyzing tumors in clinical images and this trend will undoubt-
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edly continue into the future.

In tumor imaging researches, one major goal is to accurately locate the
cancer. Segmentation techniques have been applied according to the charac-
teristics that allow tumors to distinguish from normal tissues. For example,
some tumors can be distinguished from normal tissues by their image intensity,
therefore threshold-based [Shanti 2007] or region growing [Dou 2007] techniques
have been employed, others can be identified by their shapes so that a model-
based technique [Chang 2008, Popuri 2009] was applied for the segmentation.

Although the reported accuracy on brain tumor segmentation of the pro-
posed automated methods is quite promising, these approaches still have not
gained wide acceptance among the pathologists, for every day clinical practice.
One of the principal reasons might be the lack of standardized procedures. An-
other possible reason could be the substantial differences with the traditional
line of work of the specialists, and the deficiency of the existing methods to
assist medical decision with a transparent and interpretable way. The latter
is very important for computer aided medical diagnosis where the demand for
reasoning and explanation is of main priority.

Medical image analysis needs to address real-world issues that have been
outside the realm of computer vision [Shen 2006]. These issues come largely
from the fact that the end systems are mostly used by the physician. The
human factor is essential, since any successful solution will have to be accepted
by a physician and integrated into the medical procedural work flow. This put
strong constraints on the type of applicable methods. Because of this, there has
been a discrepancy between the advanced frameworks presented in computer
vision and the low-level methods used by researchers working on real medical
application solutions.

6.1.3 A New Fuzzy Approach for Automatic and Unsu-
pervised Brain Tumor Segmentation

Chapter 4 presented a step-by-step methodology for the automatic MRI brain
tumor segmentation.

A new simple and robust skull-stripping algorithm was presented. The skull
stripping solely relies on the change of intensity level between the surrounding
tissues and the brain tissues in T1-weighted images. As long as this feature is
observed in the image data, a robust segmentation can be guaranteed even in
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presence of severe intensity non-uniformity and noise. The algorithm becomes
totally automatic as all the intensity values are automatically determined from
the histogram.

For achieving the fully automatic and unsupervised segmentation, objective
measures were delineated by means of adaptive histogram thresholds for defin-
ing the non-tumor and tumor populations. For defining the tumor population
a symmetry analysis was conducted.

The proposed brain tumor segmentation approach also introduced a new
way to automatically define the membership functions from the histogram. The
proposed membership functions are designed to adapt well to the MRI data
and efficiently separate the populations (non-tumor and tumor).

The segmentation technique is simplified since neither pre- or post-processing
in addition to skull stripping is necessary shortening computational times.

In this chapter it was shown how rules that attempt to capture human
expertise can be used to augment low level segmentation, a step on the way
towards truly automatic brain tumor segmentation.

6.1.4 Experiments and Results

As a general conclusion of the experiments conducted in Chapter 5, the pro-
posed approach is quantitatively comparable to the best existing methods, even
though the segmentation is done in 2D. However, when this approach is ex-
tended to perform the classification in 3D, the accuracy will be improved when
the correlation between the slices is performed.

In Chapter 5, the qualitative and quantitative results of three datasets were
shown. Normal brain dataset achieved very accurate results close to 1 using
the Jaccard similarity measure; these results confirm that the non-tumorous
pixels whose gray level falls within the gray levels of tumor are discarded by
means of the symmetry analysis.

The glioblastoma multiforme dataset, obtained results of about 0,83 in both
cases, slices showing a rim-shaped enhancing tumor and in ambiguous cases.
Some problems of false negatives appeared in upper-brain slices, where non-
tumorous areas where also enhanced.
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The approach was also tested on a third dataset containing a different type
of tumor, a meningioma brain tumor. The resulting scores (in the order of
0.76) show that indeed, the knowledge obtained through the histogram anal-
ysis conducted in Chapter 4 also works for this dataset. However, in order to
improve the accuracy in the segmentation is necessary to include additional
knowledge for discarding other tissues also contrast-enhanced.

6.2 Future Work

The main line of future work is to implement the volumetric evaluation on
the entire brain tumor collection. When performing the correlation of the 2D
slices, false negatives will be eliminated, and the segmentation will be more
accurate.

In future work, it would be interesting to include additional feature infor-
mation. Besides the intensity, add more information to the pixel analysis in
order to make the system more sensitive; information from the textures, or
location.

It will be interesting to continue developing modeling of tumors and to
study fuzzy information fusion operators for other types of brain tumors fol-
lowing the same line of work here presented.

Another future line would be the detection of small malignant brain tumors.
It should be clear that many factors influence the appearance of tumors on im-
ages, and although there are some common features of malignancies, there is
also a great deal of variation that depends on the tissue and the tumor type.
Characteristic features are more likely to be found in large tumors. Small tu-
mors may not have many of the features of malignancy and may even manifest
themselves only by secondary effects such as architectural distortion.

Finally, another future line would be the development of an intelligent sys-

tem which can answer questions like “Is it possible that this pixel/area has
tumor?”
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Appendix A

Nuclear Magnetic
Resonance Phenomena and
MR Image Formation

A.1 Nuclear Magnetic Resonance

Nuclear Magnetic Resonance is a physical phenomenon of the magnetic prop-
erty of nuclei, which have a positive nuclear spin quantum number. Un-
der the influence of an external static magnetic field, these nuclei will pre-
cess about the direction of the magnetic field with an angular frequency, the
Larmor frequency. Through absorption (excitation) and emission (relaxation)
of radio frequency energy at the resonance frequency, the Larmor equation, and
the processing of this raw data by the Fourier transformation, physical, chem-
ical, electronic, and structural information about molecules can be obtained.

A.1.1 Behavior of Nuclei in a Magnetic Field

The phenomenon of NMR derives from the fact that certain nuclei possess tiny
magnetic moments. In the presence of an applied magnetic field, the magnetic
moments undergo a rotational motion known as precession. The explanation
of nuclear precession lies in the relationship between the magnetic moment of
the nucleus and its intrinsic spin.

Spin is a fundamental property of certain nuclei, particularly hydrogen, that
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contain unpaired protons or neutrons. Although spin is an essentially quantum
mechanical property, it can be visualized as the rotation of the nucleus about
its own axis. Because the nucleus is positively charged, its spin entails a cir-
culation of charge. The circulation of charge associated with the nuclear spin
similarly endows the nucleus with a magnetic moment. The nucleus therefore
produces its own tiny magnetic field, and is subject to a torque in the presence
of an external field. The torque attempts to turn the magnetic moment of the
nucleus into alignment with the external field, where its energy is a minimum.
Because the magnetic moment of the nucleus is derived from its spin, the ori-
entation of the magnetic moment is locked to the spin axis. This is expressed
through next equation:

p=nI (A1)

where 1 is the magnetic moment of the nucleus and I is its spin. The factor
v is known as the gyromagnetic ratio, and is a property of the nucleus. I is a
vector quantity, and thus has both magnitude and direction. The direction of
I is given by the spin axis. u is parallel to I and determines the orientation of
the nucleus’ intrinsic magnetic field.

Because the magnetic moment of the nucleus is parallel to its spin, any
change in the direction of the magnetic moment requires a corresponding reori-
entation of the spin axis. When a nucleus is subjected to a magnetic field, its
magnetic moment does not simply swing into alignment with the field but also
precesses about the direction of the field. The frequency at which the nucleus
precesses about the magnetic field is known as the Larmor frequency, wy,. It
can be shown, using classical mechanics, that the value of the Larmor frequency
is proportional to the strength of the magnetic field in the z component, By,
and the gyromagnetic ratio of the nucleus:

wr, =vBy (A.2)

This is the angular frequency of precession. Additionally, the precession of
vector pu around vector By is done clockwise.

The nuclei most commonly visualized by magnetic resonance imaging are
those of the hydrogen atoms, because they are present throughout the body in
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water and fat.

The net magnetic field experienced by the nucleus is a sum of the external
field applied to the tissue and the much smaller fields generated by the electrons
surrounding the nucleus. These additional fields alter the precession frequency
of the nucleus by a tiny fraction known as the chemical shift. The value of
the chemical shift is characteristic of the molecular group in which the nucleus
resides, and thus provides a distinctive signature for each metabolite. By ana-
lyzing the frequencies present in the MR signal, the examiner can identify the
metabolites in the tissue and estimate their concentration.

A.1.2 Excitation and Signal Detection

The net magnetic field of all the nuclei in a given volume of tissue can be
specified by the vector sum of their magnetic moments. The sum is known
as the nuclear magnetization, and denoted by M. The component of M that
lies in the transverse plane (perpendicular to the static field By) rotates at the
Larmor frequency, as the nuclei precess. This produces an oscillating mag-
netic field that can be detected with a Radio Frequence (RF’) receiver coil.
As the transverse magnetization rotates, the magnetic flux through the loop
oscillates, inducing a small alternating voltage in the coil. The MR signal is
thus proportional to the transverse component of M.

At equilibrium, the nuclei precess with random phases. The transverse
components of their magnetic moments, therefore, cancel out and produce no
detectable signal. There is, however, a small net magnetization, My, in the lon-
gitudinal direction (parallel to By) that cannot be detected directly, because
it does not oscillate, but is necessary for producing the signal, as we will soon
show. The equilibrium magnetization arises because the nuclei exhibit a slight
preference for being aligned along the direction of the external magnetic field.
This can be explained on the basis of energy considerations. The energy of a
magnetic moment depends on its orientation in the magnetic field, through the
equation:

E = —/J,ZBO (A3)

The more closely the magnetic moment is aligned to the field, the lower
its energy. The nuclei exhibit a slight preference for being tilted toward the
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external field (up) rather than away from it (down). At equilibrium, therefore,
a slightly more quantity of nuclei are oriented upwards than downwards. The
small excess of nuclei pointing upwards gives rise to the equilibrium magneti-
zation M.

By applying a transverse oscillating magnetic field to the tissue, at exactly
the Larmor frequency, the nuclear magnetization can be tipped away from
the longitudinal axis, so producing a finite component in the transverse plane.
The excess nuclei that had been pointed upwards at equilibrium precess in syn-
chrony, emitting a detectable signal. The process is a resonant excitation, and
is similar to the mechanism involved in pushing a childs swing.

The equilibrium state of a swing is that in which it rests at the lowest point
of its arc. Energy can be transferred to the swing by pushing it at its natural
or resonant frequency. As the swing gains energy it begins to oscillate back and
forth, and its amplitude of motion gradually increases. The resonant frequency
of the swing is identical to the frequency at which it will oscillate by itself when
the driving force is stopped.

Just as the swing can be made to oscillate by applying a periodic force, the
nuclei in a sample of tissue can be made to precess in synchrony by applying
a rotating magnetic field in the transverse plane. The applied field is denoted
B (t), and its frequency of rotation must exactly match the Larmor frequency
of the nuclei to satisfy the resonance condition. Because the Larmor frequency
falls in the RF regime, the process is described as RF excitation, and the reso-
nance condition is written as wrp = wr. As the By(t) field transfers energy to
the nuclei, the amplitude of their transverse magnetization gradually increases.
When the B (t) field is switched off, the transverse magnetization continues to
rotate at the Larmor frequency, producing an oscillating magnetic field that
can be detected by the RF receiver coil. Eventually, however, the transverse
magnetization will decay back to zero and the signal will disappear.

A.1.3 Quantum Mechanical Description

According to quantum mechanics, neither matter nor energy can be divided
indefinitely into ever-smaller parts; on a sufficiently tiny scale can be found
fundamental units, or quanta, which cannot be further divided. Electromag-
netic energy, such as X-rays, light, and radio waves, exists in discrete energy
packets, called photons. The energy of an individual photon, Eppoton, coincides
with the frequency, w, of the electromagnetic wave:
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Ephoton =w (A4)

Whenever an atom or nucleus absorbs or emits electromagnetic waves, an
entire photon is consumed or created. To conserve the total energy of the sys-
tem, the atom or nucleus must simultaneously undergo a quantum jump to
a state of different energy. However, a nucleus has just a few different states
available to do it, because a separate quantization condition governs the angu-
lar momentum. This restricts the possible frequencies of the electromagnetic
waves that the nucleus can absorb or emit.

Angular momentum is a vector quantity, whose direction is determined by
the axis of rotation. The quantization condition for angular momentum stip-
ulates that its component along any given measurement axis may adopt only
certain discrete values. Because nuclear spin I is a form of angular momen-
tum, this rule applies to the component of spin along the longitudinal axis,
conventionally denoted I,. The difference in the z-component of spin between
adjacent states is Al .

When the nucleus is subjected to an external magnetic field, the energies of
the states differ, and the energy differences among them can be used to derive
the resonance condition governing RF' excitation and signal emission.

As previously discussed, the energy of a nucleus depends on the orientation
of its magnetic moment with respect to the external magnetic field, as given in
Eq. (A.3). However, because the magnetic moment is proportional to the spin,

through Eq. (A.1), the energy of the nucleus varies with the spin direction
according to:

The energy is thus proportional to the component of spin in the longitudi-
nal direction,

E = —yLBy (A.6)
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This relation shows that states with different I, values have different en-
ergies when subjected to an external magnetic field. Because the angular mo-
mentum differs between adjacent spin-states by Al,, the energy separation
between the states is equal to:

AE =B, (A.7)

According to Eq. (A.2), the product vBy equals the Larmor frequency,
wr, the energy difference can be written as:

AFE = wr, (AS)

Moreover, the excitation of the nucleus to the next energy level requires the
absorption of a photon, whose energy equals this energy difference,

Ephoton = AE (A.9)

Then, by substituting Eqgs. (A.8) and (A.4) into (A.9), the frequency of the
photon must exactly match the Larmorfrequency. Because the value of the
Larmor frequency is typically on the order of MHz, the photon represents an
RF wave of frequency:

WRF = W[, (A.10)

This is the resonance condition, which is derived here using the law of en-
ergy conservation, together with the rules of quantization.

The quantum mechanical interpretation of NMR is that a photon at the
Larmor frequency excites the nucleus to a higher energy state. The excited
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nucleus may lose its energy through frictional processes to the environment, or
it may decay back to its initial state, releasing a photon of the same frequency,
which contributes to the observed MR signal.

A.1.4 Spin Relaxation

Excitation of nuclei by means of an RF pulse makes a macroscopic number of
spins precess in synchrony, producing a rotational magnetic field that can be
detected with an RF' coil. However, the signal will not persist indefinitely be-
cause internuclear and intermolecular forces will cause loss of phase coherence
among the spins, and a corresponding attenuation of the transverse magnetiza-
tion. The nuclei lose energy to their surroundings, resulting in a recovery of the
longitudinal magnetization to its equilibrium value. These processes are termed
transverse and longitudinal relaxation, respectively. Relaxation processes limit
the available acquisition time, and broaden the spectroscopic line-widths. How-
ever, because their relaxation rates depend on the molecular environment of
the nuclei, they can be exploited to produce signal contrast among different
tissues in MR imaging.

This section provides a brief discussion of the physical mechanisms under-
lying relaxation processes, and the means by which they can be harnessed to
produce signal contrast.

Longitudinal relaxation, Basics of T1-Weighted Images

Excitation by an RF pulse, Bj(t), increases the net energy of the nuclei above
its equilibrium value. The nuclei will eventually lose that additional energy
through interactions with neighboring nuclei and molecules, and the system
will return to equilibrium. Because the net energy of the system is related
to the longitudinal nuclear magnetization, the processes that cause loss of en-
ergy are collectively termed longitudinal relaxation. The timescale on which
longitudinal relaxation occurs is denoted T1, and defined as the reciprocal of
the rate of energy loss. The longitudinal relaxation time, T1, gives the time
required for the longitudinal magnetization after a 90° pulse to grow to 63% of
its equilibrium value, My, as depicted in Figure A.1-(a).

Because longitudinal relaxation is caused by interactions between the nu-
clei and their environment, the value of T varies according to the molecule in
which the nucleus is bound, and the type of tissue in which it is present. For
example, the T1 of tissue water tends to be longer in body fluids, such as blood
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and cerebrospinal fluid, than in more solid tissues, such as the white matter
of the brain. Intensity differences between these tissues can be achieved on an
MR image by tailoring the acquisition so that it is sensitive to T1.

Signal
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Figure A.1: Relaxation of the longitudinal (a) and transversal (b) magnetiza-
tion after excitation by a 90° pulse.

Longitudinal relaxation arises from fluctuations in the local magnetic field
at the site of each nucleus. The local magnetic field is a sum of the applied field,
By, and the smaller secondary fields generated by the surrounding electrons,
neighboring nuclei, and nearby molecules. As the host molecule moves and
tumbles within the medium, the position of each nucleus varies randomly with
respect to adjacent nuclei and molecules. As a result, the nucleus experiences a
fluctuating magnetic field. If the fluctuations have frequency components equal
to the Larmor frequency, they can induce transitions between nuclear energy
states. Excited nuclei will, on average, lose energy to their surroundings. The
energy loss continues until the nuclei reach thermal equilibrium with their en-
vironment, and the magnetization returns to its equilibrium value, My. The
recovery of the longitudinal magnetization follows an exponential curve, given
by next expression:
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Me(t) = Mo + [Mc(0) — Mole™ 75 (A11)

where M. denotes the longitudinal magnetization, and t is the time after
the RF excitation. The value of M(0) is determined by the longitudinal mag-
netization available before the excitation and by the flip angle (FA) of the RF
pulse.

Longitudinal relaxation occurs most efficiently when the molecular tum-
bling rate is near the Larmor frequency. Therefore, the value of T1 depends
on the mobility of the host molecule, which, in turn, varies with molecular
weight and tissue type. It turns out that the tumbling rate is closest to the
Larmor frequency for medium-sized molecules, such as lipids. Therefore, fat
has a relatively short T1. By contrast, the free water in body fluids has a
relatively long T1, because its molecular tumbling rate is much faster than
the Larmor frequency. However, the T1 of water is shortened in solid tissues,
where its motion is more restricted.

T1 differences among tissues are exploited to produce signal contrast on MR,
images. MRI involves the collection of a large amount of spatial information,
what requires excitation and signal acquisition processes to be repeated many
times in succession. The repetition time, T'R, between successive excitations
is important in determining the signal amplitude from a given tissue type. If
the TR is short with respect to the T1 of the tissue, the longitudinal mag-
netization will not be fully recovered to its equilibrium value, M, before the
next excitation. Because the magnetization remains partially saturated, the
signal from the tissue is reduced accordingly. By comparison, a tissue with a
faster relaxation rate will be less saturated and will exhibit a relatively higher
signal. In general, the degree of magnetization recovery depends on the factor
expTR/T) _1f TR is chosen to be sufficiently short that the signal from each
tissue depends heavily on its T1 value, the resulting image is described as being
T1-weighted.

Transverse relaxation, Basics of T2-Weighted Images

The MR signal is produced by the transverse component of the magnetiza-
tion, whose amplitude depends on the degree of phase coherence among the
nuclei. The transverse magnetization is zero at equilibrium, and attains a fi-
nite value only through RF excitation by the Bj(t) field. After excitation,
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its amplitude gradually decays back to zero. The signal must, therefore, be
acquired during the short period after the excitation pulse, but before the
transverse magnetization has disappeared. Transverse relaxation occurs more
rapidly than longitudinal relaxation, because it involves additional mechanisms
that are related to dephasing among the spins, and originate from a variety of
microscopic and mesoscopic processes. The component caused by microscopic
processes depends on intrinsic factors, such as molecular size and tissue type,
and occurs on a timescale denoted T2. Dephasing over a larger scale is a result
of effects such as magnetic field inhomogeneity. This further shortens the co-
herence time of the transverse magnetization, within a given volume of tissue,
until a value denoted by T2*. Tissue-dependent differences in both T2 and
T2* can be exploited to produce signal contrast on MR images. Figure A.1-(b)
shows the transverse relaxation. T2 gives the time required for the transverse
magnetization after a 90° pulse drop to 37% of its original magnitude.

Variations in the magnetic local field’s strength cause dephasing among the
spins by making them precess at slightly different rates. On a microscopic scale,
the variations are caused by the presence of neighboring nuclei and molecules,
which produce their own tiny magnetic fields. Dephasing also arises when en-
ergy is exchanged between identical nuclei. These two processes contribute
to T2 relaxation, and occur most efficiently if the molecular tumbling rate is
low. Rapid motion tends to inhibit T2 relaxation by averaging out the effects
of microscopic interactions over time. Free water in body fluids, for example,
relaxes relatively slowly, because its molecules are in constant rotation. By
comparison, molecules that are very large or bound to cell membranes have
very short T2 values, because of their relative immobility. In diseased tissues,
for any pathological process (inflammatory, tumor, degenerative, traumatic,
etc.), cells have greater permeability to water, and consequently the content of
free water is greater. For this reason, most tumors have low signal intensity on
T1-weighted images, and high signal intensity on T2-weighted images.

Figure A.2 shows a graphical representation of the relationship of patho-
logic cells with relaxation times T1 and T2, where pathologic cells show lower
signal intensity on T1 than healthy cells, and higher signal intensity on T2.

Dephasing also results from larger-scale variations in magnetic field strength,
which arise from inhomogeneities in the applied field and differences in mag-
netic susceptibility among the tissues themselves. These effects contribute to
T2* relaxation. Magnetic susceptibility refers to the tendency of a material to
become magnetized in the presence of an external magnetic field. This alters
the strength of the field both within the material itself and in its immediate
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Figure A.2: Relationship of pathologic cells with relaxation times T1 and T2.
As pathologic cells have greater permeability to water, they show lower signal
intensity on T1 than healthy cells, and higher signal intensity on T2.

neighborhood. Ferromagnetic materials, such as iron, have very high suscepti-
bility, and cause substantial distortions in the local magnetic field.

Air, by contrast, has almost zero susceptibility. Most biological materials
are diamagnetic, what means that have a small negative susceptibility; while
a few biological substances, mostly blood proteins such as deoxyhemoglobin
and hemosiderin, are paramagnetic i.e. have a small positive susceptibility.
Whenever a sample contains tissues of different susceptibility, the strength of
the magnetic field changes across their boundaries, causing spin dephasing and
shortening the T2* value. This occurs around air-filled cavities, as sinuses and
petrous bones in the head, and in tissues containing deoxygenated blood or
byproducts of hemorrhage.

A.1.5 The Free Induction Decay and the Spin Echo

The attenuation of the transverse magnetization following RF excitation is
known as the free induction decay (FID). It results from both microscopic
interactions and larger-scale field variations, and occurs on a timescale T2%*.
The value of T2* varies according to the host molecule and tissue type, but, in
each case, the transverse magnetization follows an exponential decay:
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Me(t) = Mc(0)e” T (A.12)

Here, M, is the amplitude of the transverse magnetization and ¢ is the time
following the RF excitation. The value of M¢(0) is determined by the longitu-
dinal magnetization available before the excitation and by the FA of the RF
pulse.

The dephasing caused by macroscopic and mesoscopic field inhomogeneities
is considered reversible, because it can be undone using a simple refocusing
procedure. The technique relies on the use of a 180°RF pulse (the refocusing
pulse) to reverse the phase differences that have accumulated among the spins.
The refocusing pulse effectively resets the phase evolution, giving the faster
spins a handicap and the slower spins a head start. As the spins continue to
precess under the influence of the same field inhomogeneities, they gradually
come back into phase, producing a brief signal recovery known as a spinecho.
The time taken for the spins to rephase exactly equals the time during which
they were allowed to dephase, and the total is known as the echotime, TE.

The procedure is only able to compensate for magnetic field inhomogeneities
on a mesoscopic and macroscopic scale, which remain relatively constant with
time. Microscopic interactions, which vary as the molecules rotate and diffuse,
produce irreversible dephasing that cannot be undone by the refocusing proce-
dure. The amplitude of the spin echo is therefore attenuated by T2 relaxation,
and equals:

TE

M(TE) = M(0)e™ 7= (A.13)

Both spin —echo and F 1D acquisition techniques are used in imaging offer-
ing alternative types of signal contrast among tissues. Spin-echo acquisitions
provide T2 weighting, whereas FID acquisitions provide T2* weighting. The
degree of T2 or T2* weighting depends on the time delay between RF exci-
tation and signal acquisition. A longer delay allows more time for transverse
relaxation, so that tissues with short T2 or T2* will appear darker than those
with longer relaxation times. Note that to obtain pure T2 weighting, the signal
must be acquired during the spin echo. The T'E can, however, be controlled
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via the timing of the refocusing pulse.

A.2 Image Formation

To reconstruct an image the signal from each point within the tissue must be
correctly identified and mapped onto the corresponding point within the im-
age. This is achieved with the use of magnetic field gradients, which alter the
Larmor frequency of the nuclei in a spatially dependent manner. The signal
contrast between different tissues can be controlled via the timing and ampli-
tude of the RF excitation pulses, and through the use of exogenous (injected)
contrast agents.

Imaging can be formed using 2D or 3D acquisitions, which involve the exci-
tation of nuclei in a specified slice or slab of tissue, respectively. Once excited,
all the tissues within the slice or slab emit a signal simultaneously. To pro-
duce images it is, therefore, necessary to identify the contribution from each
point. This is carried out by encoding spatial information into the phase and
frequency of the signal. Both slice-selective excitation and spatial encoding
involve the use of magnetic field gradients.

A.2.1 Slice-Selective Excitation

Nuclei can absorb energy from the RF field, B;(t), only if their Larmor frequency
exactly matches the frequency of the RF field. Slice-selective excitation is
achieved by applying the RF field in the presence of a magnetic field gradient.
The gradient introduces a small spatial variation into the strength of the By
field (growing arrows in Figure A.3), producing a corresponding variation in
the Larmor frequency. Only those nuclei whose Larmor frequency wy, equals
the frequency of the applied RF field, wrp, will be excited. The condition
wr, = wgrr is satisfied for nuclei lying in a particular slice of tissue perpendic-
ular to the magnetic field gradient. The thickness of this slice is determined
by the bandwidth of the RF pulse and the amplitude of the gradient, each of
which can be selected independently. Thin slices are chosen for 2D imaging,
and thicker slabs for 3D imaging. The location of each slice along the direction
of the gradient is controlled via the frequency of the RF field. Increasing the
RF frequency will excite nuclei in a slice of tissue where the Larmor frequency
is correspondingly higher. Finally, the orientation of the slice is determined by
the direction of the magnetic field gradient (horizontal arrows representing nu-
clear magnetization M in Figure A.3). The gradient coils can be used singly
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or in combination to excite a slice in any oblique plane.
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Figure A.3: Slice-selective excitation is achieved by applying a radio frequency
pulse in the presence of a magnetic field gradient. The gradient produces a
linear variation in the strength if the static field By (growing arrows to the left),
which gives rise to a spatial variation in the value of the Larmor frequency.
Only those spins whose Larmor frequency, wy,, exactly matches the frequency
of the applied radio frequency field, wrp, will be excited. The orientation of the
slice is determined by the direction of the magnetic field gradient (horizontal
arrows representing nuclear magnetization M).

A.2.2 Spatial Encoding

Because the RF pulse excites all the tissue in the selected slice, where wy, = wgrp
in Figure A.3, the emitted signal is a sum of contributions from all the spins
within that slice. To identify the contribution from each tissue element, spa-
tial information is encoded into the signal by means of magnetic field gradients
that are applied after the RF excitation. By applying a magnetic field gradient
during data acquisition, position information is encoded into the frequency of
the signal. Tissue located at points where the By field is slightly stronger will
emit the signal at a fractionally higher frequency than tissue located at points
where it is weaker. Because the detected signal comes from the entire slice,
it will contain a range of different frequencies, corresponding to contributions
from different tissue elements. The amplitude of each component indicates how
much signal came from each position along the direction of the gradient. The
technique is known as frequency encoding, because the origin of the signal can
be identified by its frequency. However, frequency encoding is not sufficient by
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itself to reconstruct an image, because it provides position information in only
one direction.

Position information in the perpendicular direction of the Larmor frequency
wr, is obtained through a mechanism known as phase encoding, which is used in
combination with frequency encoding to produce an image in 2D. A gradient
pulse is applied in the phase encoding direction before signal acquisition. The
gradient pulse alters the Larmor frequency of the spins, but only for a brief pe-
riod, resulting in a relative phase shift among the spins as depicted with curved
arrows in Figure A.4. The detected signal, therefore, contains components with
different phases, which originate from different positions along the direction of
the gradient. To extract the amplitude of each component, the entire process
of excitation and signal acquisition must be repeated many times, with gradi-
ent pulses of incrementally different strengths. The change in phase between
successive acquisitions uniquely identifies the position of the tissue along the
direction of the gradient. Phase encoding is, in fact, mathematically equivalent
to frequency encoding, except that the data are acquired in a discrete rather
than continuous manner.

Frequency Encoding Phase Encoding

BO+TTTT

@, Increasing

phase

increasing

Figure A.4: Having excited the nuclear magnetization within a desired slice of
tissue, the position of the spins within the imaging plane must be determined.
This is carried out using frequency encoding in one direction (horizontal arrow)
and phase encoding in the perpendicular direction (vertical downward arrow).
A gradient pulse is applied in the phase encoding direction before signal acqui-
sition. The gradient pulse alters the Larmor frequency of the spins, but only
for a brief period, resulting in a relative phase shift among the spins (this shift
is represented with curved arrows).
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A.2.3 Image Reconstruction

Frequency and phase encoding are used in combination to produce a 2D image.
The directions of frequency and phase encoding are conventionally denoted x
and g, respectively, and the through-slice direction is denoted z. However,
these labels are completely arbitrary, and are not connected with the physical
axes of the scanner or the gradient coils. In fact, the gradient coils can be used
in combination to form an image of the tissue in any oblique plane.

To produce an image, the same slice of tissue is excited repeatedly, and the
signal is sampled as a function of time after each excitation. The amplitude of
the frequency-encoding gradient remains constant with each repetition, whereas
that of the phase-encoding gradient is incremented from one repetition to the
next, as shown in Figure A.5.

Gradient-echo pulse sequence

FA FA
RF excitation
RF _;\Mﬁ‘/ w_
7\

— slice-selective excitation

¢, — T\,

< phase-encoding gradient

Gy
— frequency-encoding gradient sequence
G repeats
* v/
~— gradient echo
signal \Ahy
— data acquisition period
ADC —

<« TE -
TR

Figure A.5: A simple pulse sequence illustrating the implementation of slice
selection and spatial encoding. The top line illustrates the radio frequency
pulses produced by the transmitter, which have flip angle, FA. The lines
marked G, Gy, and G, indicate the magnetic field gradients in the slice-
select, phase-encoding, and frequency-encoding directions, respectively. The
label ADC' denotes the analog-to-digital converter, which is turned on during
signal acquisition.

The resulting data are recorded as a series of lines in a 2D array known
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as k — space. By applying a 2D Fourier transform to the k — space data, the
spatial distribution of the signal is recovered. The phase information is usually
discarded at that stage, leaving a map of the signal amplitude, which consti-
tutes the image. Figure A.6 shows the process of image reconstruction.
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A 2D Fourier
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Figure A.6: Process of image reconstruction. After each excitation, the mag-
netic resonance signal is acquired as a function of time and recorded as a row
of numbers in a data array known as k — space. The process is repeated with
phase-encoding gradients of incrementally different amplitudes, and each time
the signal is recorded as an adjacent line in k — space. After all of the k — space
data have been collected, the image is extracted by means of a 2D fast Fourier
transform.

The resolution of the image in the phase-encoding direction is determined
by the number of k — space lines collected. For example, an image with a
resolution of 256 pixels in the phase-encoding direction for example requires
the acquisition of 256 k — space lines. Resolution in the frequency-encoding
direction is determined by the amplitude of the frequency-encoding gradient
and the duration of the acquisition period.

For 3D acquisitions, phase encoding is used in the through-slab direction
as well as one of the inplane dimensions. This produces a 3D set of k-space
data, which can be reconstructed into a 3D map of the tissue by means of a 3D
Fourier transform. The results are typically displayed as a stack of 2D images,
but can be reconstructed along any plane.
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It is useful to note that data in a k-space can be interpreted as spatial-
frequency components of the image. Data near the center of k — space (k = 0)
correspond to low spatial-frequency components and represent the large-scale
or coarse spatial structure in the image. Data near the outer edges of k — space
correspond to high spatial-frequency components, and represent the fine struc-
ture in the image.
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