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Abstract

Navigation in mobile robotics involves two tasks, keeping track of the robot’s position
and moving according to a control strategy. In addition, when no prior knowledge of
the environment is available, the problem is even more difficult, as the robot has to
build a map of its surroundings as it moves. These three problems ought to be solved
in conjunction since they depend on each other.

This thesis is about simultaneously controlling an autonomous vehicle, estimat-
ing its location and building the map of the environment. The main objective is to
analyse the problem from a control theoretical perspective based on the EKF-SLAM
implementation. The contribution of this thesis is the analysis of system’s properties
such as observability, controllability and stability, which allow us to propose an ap-
propriate navigation scheme that produces well-behaved estimators, controllers, and
consequently, the system as a whole.

We present a steady state analysis of the SLAM problem, identifying the conditions
that lead to partial observability. It is shown that the effects of partial observability
appear even in the linear Gaussian case. This indicates that linearisation alone is not
the only cause of SLAM inconsistency, and that observability must be achieved as
a prerequisite to tackling the effects of linearisation. Additionally, full observability is
also shown to be necessary during diagonalisation of the covariance matrix, an approach
often used to reduce the computational complexity of the SLAM algorithm, and which
leads to full controllability as we show in this work.

Focusing specifically on the case of a system with a single monocular camera, we
present an observability analysis using the nullspace basis of the stripped observability
matrix. The aim is to get a better understanding of the well known intuitive behaviour
of this type of systems, such as the need for triangulation to features from different
positions in order to get accurate relative pose estimates between vehicle and camera.
Through characterisation the unobservable directions in monocular SLAM, we are able
to identify the vehicle motions required to maximise the number of observable states
in the system.

When closing the control loop of the SLAM system, both the feedback controller
and the estimator are shown to be asymptotically stable. Furthermore, we show that
the tracking error does not influence the estimation performance of a fully observable
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ABSTRACT

system and viceversa, that control is not affected by the estimation. Because of this, a
higher level motion strategy is required in order to enhance estimation, specially needed
while performing SLAM with a single camera. Considering a real-time application, we
propose a control strategy to optimise both the localisation of the vehicle and the
feature map by computing the most appropriate control actions or movements. The
actions are chosen in order to maximise an information theoretic metric. Simulations
and real-time experiments are performed to demonstrate the feasibility of the proposed
control strategy.
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Resum

La navegació en robòtica mòbil implica dues tasques: el coneixement de la posició del
robot i el moviment segons una estratègia de control. A més a més, quan no es té
coneixement previ de l’entorn, el problema és fins i tot més dif́ıcil ja que el robot ha de
construir un mapa dels seus voltants mentre es mou. Aquests tres problemes s’haurien
de resoldre conjuntament ja que depenen l’un de l’altre.

Aquesta tesi tracta de com, simultàniament, controlar un vehicle autònom mentre es
calcula la seva localització i construeix el mapa de l’entorn. L’objectiu principal és anal-
itzar el problema des d’un punt de vista de teoria de control basada en l’implementació
d’EKF-SLAM. La contribució d’aquesta tesi és l’anàlisi de les propietats del sistema,
tals com l’observabilitat, la controlabilitat i l’estabilitat, que permeten proposar un es-
quema de navegació apropiat que produeix estimadors ben condicionats, controladors,
i conseqüentment, el sistema globalment.

Es presenta una anàlisi de règim permanent del problema d’SLAM, identificant les
condicions que porten a l’observabilitat parcial. Es mostra que els efectes d’observabilitat
parcial apareixen fins i tot en el cas ideal gaussià i lineal. Això indica que la lineal-
ització només no és l’única causa d’inconsistència de l’SLAM, i que l’observabilitat s’ha
d’aconseguir com a pre-requisit per a tractar els efectes de la linealització. Addicional-
ment, es mostra que l’observabilitat completa és necessaria durant la diagonalització
de la matriu de covariancia, un enfoc que sovint s’utilitza per reduir la complexitat
computacional de l’algorisme d’SLAM, i que condueix a la controllabilitat plena com
es mostra en aquest treball.

Considerant particularment el cas d’un sistema amb una única càmera, es presenta
un anàlisi d’observabilitat que utilitza la base de l’espai nul de la matriu d’observabilitat.
El propòsit és aconseguir una millor comprensió del comportament intüıtiu, ben conegut,
d’aquest tipus de sistemes, com ara la necessitat de triangular caracteŕıstiques des de
posicions diferents per aconseguir estimacions acurades de la posa relativa entre el ve-
hicle i la càmera. Durant la caracterització de les direccions no observables en l’SLAM
monocular, es poden identificar els moviments que cal del vehicle per tal de maximitzar
el nombre d’estats observables en el sistema.

En tancar el bucle de control del sistema d’SLAM, es mostra que tant el controlador
com l’estimador són asimptòticament estables. A més, es mostra que l’error en el
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seguiment no influeix en el rendiment d’estimació d’un sistema plenament observable,
i viceversa, que l’estimació no afecta el rendiment del control. A causa d’això, per
millorar l’estimació cal una estratègia de moviment de més alt nivel, especialment en
el cas d’SLAM amb una única càmera. Considerant una aplicació en temps real, es
proposa una estratègia de control per optimitzar tant la localització del vehicle com el
mapa de caracteŕıstiques computant les accions de control o moviments més apropiats.
Les accions s’escullen per maximitzar una mètrica basad en teoria de l’informació.
Es realitzen simulacions i experiments en temps real per demostrar la viabilitat de
l’estratègia de control proposada.
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Resumen

La navegación en robótica móvil requiere de dos tareas principalmente: el conocimiento
de la posición del robot y el movimiento según una estrategia de control. Además,
cuando no se conoce previamente el entorno, el problema se vuelve más dif́ıcil, ya
que el robot debe construir un mapa de su alrededor mientras se mueve. Estos tres
problemas deben ser tratados en conjunto ya que dependen unos de los otros.

Esta tesis trata de resolver simultáneamente, el control de un veh́ıculo autónomo
mientras se calcula su localización y se construye un mapa del entorno. El objetivo
principal es analizar el problema desde un punto de vista de teoŕıa de control basada
en la implementación del EKF-SLAM. La contribución de esta tesis es el análisis de
las propiedades del sistema, tales como la observabilidad, la controlabilidad y la esta-
bilidad, que permiten proponer un esquema de navegación apropiado, produciendo aśı
estimadores, controladores y como consecuencia sistemas bien condicionados.

En este trabajo se presenta un análisis en estado estacionario del problema de
SLAM, identificando las condiciones que producen observabilidad parcial. Se muestra
que los efectos de la observabilidad parcial aparecen incluso en el caso ideal lineal y
gaussiano. Esto indica que la linealización no es la única causa de la conocida incon-
sistencia del SLAM y que la observabilidad se debe garantizar como pre-requisito para
tratar los efectos de la linealización. Adicionalmente, se muestra que la observabilidad
total es necesaria durante la diagonalización de la matriz de covarianza, un enfoque
que comúnmente utilizado para reducir la complejidad computacional del algoritmo de
SLAM, que a su vez produce controlabilidad total como aqúı se muestra.

Considerando particularmente el caso de un sistema con una sola cámara, se pre-
senta un análisis de observabilidad que utiliza las bases del espacio nulo de la matriz
de observabilidad. El propósito es comprender mejor los comportamientos intuitivos,
bien conocidos, de este tipo de sistemas, como la necesidad de triangular caracteŕısticas
desde posiciones diferentes para conseguir estimaciones acotadas de las posiciones rel-
ativas entre el veh́ıculo y la cámara. Caracterizando las direcciones no observables del
SLAM monocular, se pueden identificar los movimientos que requiere el veh́ıculo para
maximizar el número de estados observables del sistema.

Al cerrar el lazo de control del sistema de SLAM, se muestra que tanto el contro-
lador como el estimador son asintóticamente estables. Además, se muestra que el error
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de seguimiento de la trayectoria deseada no influye en el comportamiento del estimador
de un sistema completamente observable, y viceversa, que la estimación no afecta el
comportamiento del controlador. Debido a esto, para mejorar la estimación se requiere
una estrategia de movimiento de más alto nivel, especialmente cuando el único sensor
es una cámara. Se considera una aplicación en tiempo real y se propone una estrategia
de control para optimizar tanto la localización del veh́ıculo como el mapa de carac-
teŕısticas visuales, calculando las acciones más apropiadas. Estas acciones se escogen al
maximizar una métrica basada en teoŕıa de la información. Se realizan simulaciones y
experimentos en tiempo real para demostrar la viabilidad de la estrategia propuesta.
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Chapter 1

Introduction

This thesis is about simultaneously controlling an autonomous vehicle, estimating its

location and building a feature map. Navigation in unknown environments for au-

tonomous vehicles using a reduced number of sensors requires the vehicle to perform

three main tasks: construct its own representation of the environment, localise on it,

and compute its own control to reach some destination or goal.

The emphasis is placed on understanding the theoretical limitations of the estima-

tion process and on the relationship between estimation and control. The analysis of

the system properties observability, stability and contollability allows us to understand

the system. Moreover, it allow us to propose an appropriate navigation scheme to

achieve desired properties of the estimator, the controller and consequently the system.

Of special interest is the case of navigation using a single monocular camera because

only orientation information can be measured from it. Some of our analysis though

will consider other sensors which are able to provide information about depth and

orientation.

In this chapter we present the motivation, objectives and contribution of this work.
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1.1 Motivation

1.1 Motivation

Many mobile robotic applications need to navigate in unknown environments. Some

examples are: the BR 700 industrial robots for transportations, the HELPMATE of

Pyxis Corp. also used for transportation task particularly in hospitals, the iRobot

Corp. ROOMBA vacuum cleaner, the TOURBOT used as a tour-guide robot in mu-

seums or EXPOS, the SOJOUNER used during Pathfinder missions to explore Mars,

other robots designed to move wood out of forests, for agricultural applications, airduct

inspection, the K-Team’s KEPHERA robot, the ActivMedia Robotics PIONEER, and

the iRobot Corp. B21 all for education and research, etc. Despite the broad set of ap-

plications, all have something in common: the integration of many different fields, such

as dynamics and control to solve locomotion problems, signal analysis and computer

vision to create robust perceptual systems, computer algorithms, information theory,

artificial intelligence, and probability theory for localisation and navigation tasks.

Solving the navigation problem involves answering questions like where am I?, what

the world looks like? and how to get there?. The well-known approach that answers the

first two questions is SLAM: Simultaneous Localisation and Mapping. SLAM solves

the problem of vehicle localisation and environment mapping based on perception in-

formation, and it does that by filtering, i.e. by predicting what is going to happen

based on stochastic models and correcting with real measurements. There is still one

question to answer; how to get there?, based on the information provided by the SLAM

algorithm. This is what this thesis is about.

Autonomous vehicles must be able to plan their own motion, i.e. to decide auto-

matically their control commands to achieve a specified task. Commonly, it is assumed

that the vehicle has complete and exact knowledge of its environment, of course this

assumption is not always realistic. If uncertainty in the prior knowledge is small, it is

reasonable to anticipate all possible contingencies and to generate sensor-based motion

plans that can deal with them. Sensing is used to guide the motions and monitor their

execution. On the other hand, if the autonomous vehicle has no prior knowledge about

its environment, it is necessary first to learn about it.

Maps are commonly used for mobile robot navigation [12]. To acquire a map,

vehicles must carry sensors that enable them to perceive the outside world. However,
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1.1 Motivation

almost all sensor measurements are subject to errors, often referred to as measurement

noise. More importantly, most vehicle sensors are subject to range limitations. These

range limitations make it necessary for a vehicle to navigate through its environment

while, at the same time, building a map of it. The motion commands or controls issued

during navigation carry important information for building maps, since they are used

to get information about the locations at which different sensor measurements were

taken. Vehicle motion is also subject to errors, and the controls alone are therefore

insufficient to accurately determine a vehicle’s pose (location and orientation) relative

to its environment.

There are many sources of uncertainty in mobile robotics, in essence, both the

vehicle localisation and the map are uncertain, and by focusing just on one or the other

introduces systematic noise. Thus, estimating both unknowns at the same time has the

pleasing property that both the measurement and the control noise are independent

with regards to the properties that are being estimated. Mobile robots operate in

environments that are either partially or completely unknown. Often the environment

is changing with time in an unknown manner; hence, sensors that can enable the vehicle

to navigate in these environments are well motivated.

Sensors that are commonly used in navigation include cameras, range finders us-

ing sonar, laser, and infrared technology, radar, tactile sensors, compasses, and GPS.

Initially sonars were used as an intelligent sensor. However, based on the fact that

sonars have very low spatial bandwith capabilities and are subject to noise due to wave

scattering, the use of laser range sensing has increased. Although laser sensors have a

much higher bandwidth, they are still subject to noise. Moreover, lasers have a limited

field-of-view, unless intricate mechanics such as rotating mirrors are incorporated in the

sensor design. Given the shortcomings of laser and sonar-based navigation, researchers

are now interested on the use of camera-based systems (vision sensors).

Vision sensors can have wide field-of-view, can have millisecond sampling rates, and

thus can be easily used for control. However, some disadvantages of vision include lack

of depth information, image occlusion, low resolution and the requirement for extensive

data interpretation (recognition). Cameras can be cheaper in comparison to other

sensor such as laser range scanners. Even with its own advantages and disavantages,

the choice of monocular cameras as a sensor for navigation results in a competitive
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selection. Visual feedback loops can be used to perform different navigation tasks, for

example to correct the position of a robot, to detemine the pose of the robot relative to

a target or to follow a predefined path. Several schemes have been proposed to visually

control a robot. Visual servoing is a common approach used for this purpose, which

has seldom been treated in a localisation and mapping context. Even though in this

thesis we are not strictly applying visual servoing techniques, our active control scheme

has several similarities to this visual feedback control.

Autonomous navigation requires real-time performance as well. Using modest hard-

ware imposes severe restrictions on the volume of computation that can take place in

a time step. In order to get a fully autonomous vehicle working in a partially unknown

environment, image processing, control decision making, full estimation of vehicle lo-

cation and map updating should be done at video-rates, 16 or 33 [ms].

Figure 1.1 illustrates the challenges facing a robot solving efficiently the problem

of autonomous navigation in partially unknown environments. Three main tasks are

identified and the overlapping areas of this control, localisation and mapping tasks show

the combined problems to deal with. As a summary, the control task must deal with

the kinematics constraints of the vehicle, usually nonholonomic, with nonlinear models

and take into account the well-known dead reckoning typical of mobile robots. The

control law must be computed in real-time to get autonomy of the vehicle and it must

consider that the robot is navigating in a dynamic environment as well. The localisation

task must concern about noisy sensors, nonlinear models, dead reckoning and that the

environment could be partially of fully unknown. The mapping task mostly has to deal

with data association, noisy sensors, dynamic environments and the amount of features

that the system can work with in a real-time application.

This work intends to cover most of these problems in order to navigate with vision

in partially unknown environments. In this thesis we mainly focus on wheeled mobile

robot such as the ActivMedia’s PIONEER to perform the analysis, simulations and

experiments, eventhough we analyse as well different type of autonomous systems, like

a single hand-held camera that considers a 6-DOF constant velocity model.
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Figure 1.1: Challenges that need to be solved by an autonomous vehicle while nav-
igating. The overlapping areas represent combinations of the mapping, localisation,
and control problems.

1.2 Objectives

A mobile platform should be able to navigate autonomously in its environment; to do

that it has to construct a map of the environment, in order to self-localise and to decide

where to go.

A study, including description, analysis and implementation, of an integrated system

that considers control, perception, and learning for mobile robots in urban, laboratory

or compatible industrial surroundings, is the primary goal of this thesis.

The subobjectives are identified as follows:

• To study and analyse in depth the simultaneous localisation and map building

algorithms, in order to enrich the navigation and also to guarantee a stable esti-

mation of the vehicle location and the model of the environment.

• Monocular vision is one case in which a single measurement step can only pro-

vide incomplete information for the reconstruction of the state space, with the

consequence that feature locations cannot be estimated from a single image, and

must be computed from the tracking of features over multiple views. To study it

in depth, using the tools from control theory such as an observability analysis.
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1.3 Contributions

• One of the open challenges in the simultaneous localisation and map building

problem is to close the control loop for the estimated system. To study all the

implications of closing the control loop, and the entire system as a whole, including

the estimator and the controller, focusing both on theoretical and practical issues.

• The problem of autonomous navigation is handled using mainly artificial vision.

To design a vision control while simultaneously performing localisation and map-

ping in real-time.

• One particular challenge of navigation with mobile robots is to localise it in

3D non-flat terrains. It is necessary to provide good models of the real robot,

including the mobile platform and the different sensors used for localisation and

for navigation control.

• To evaluate of the resulting algorithms both in simulations and in real-time ex-

periments with one of our wheel mobile robots or a hand-held camera.

1.3 Contributions

The main contributions of this dissertation, making reference to respective publication,

are summarised as follows:

• An analysis of the state estimation error dynamics for a linear system within

the Kalman filter based approach to SLAM. We demonstrate that such dynamics

is marginally stable and the necessary modifications required in the observation

model, in order to guarantee zero mean stable error dynamics [138] [5].

• We provide tight constraints in the amount of decorrelation possible, during the

covariance inflation methods to speed up the Kalman filter based SLAM algo-

rithm. The idea is to guarantee convergence of the steady-state error covariance

to obtain a suboptimal filter that is both linear in time, and stable, at the same

time [137]. Moreover, we show that the decorrelation method is closely related

with full controllability condition.

• An algorithm to reduce the affects caused by linearisation in the typical EKF

approach to SLAM [6].
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• An observability analysis for different bearing-only SLAM systems. The charac-

terisation of the unobservable directions is made using the nullspace basis of the

stripped observability matrix. This allow us to identify which vehicle motions

are required to maximise the number of observable states in the system, which

in turn affects the accuracy in the estimation process. The analysis is performed

by modelling the system in the continuous time domain as piecewise constant

[139]. In addition nonlinear observability analysis for a vehicle moving in 2D is

also performed.

• A single and multi-vehicle control scheme that uses the state estimates generated

from the output of the SLAM algorithm as input to a vehicle controller. Given the

separability between optimal state estimation and regulation, we show that the

tracking error does not influence the estimation performance of a fully observable

EKF based SLAM implementation, and vice versa, that estimation errors do not

undermine controller performance [4].

• A simulated environment in Simulink/Matlab in order to test the proposed con-

trol strategies. This toolbox consists of different blocks that represent motion

models such as: planar differential steer vehicle model, 3D differential steer vehi-

cle model, single camera constant velocity model. Besides blocks that represent

the measurement models such as: laser-range scanner, full perspective projection

camera model, wide-angle camera model, stereo system, and blocks for filtering

such as the EKF (see Appendix B).

• An active control strategy to optimise both the localisation of the sensor and

building of the feature map by computing the most appropriate control actions or

movements. Considerating a single hand-held camera performing SLAM at real-

time with generic six degrees of freedom (6-DOF) motion. The actions belong to

a discrete set (e.g. go forward, go left, go up, turn right, etc), and are chosen

so as to maximise the mutual information gain between posterior states and

measurements. Given that our system is capable of producing motion commands

for a real-time 6DOF visual SLAM [140].

• A control Class in C++ for real-time monocular SLAM (see Appendix C).
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• An active motion control strategy and a motion model for a mobile robot nav-

igating in uneven terrains. Using measurements from only one camera the sys-

tem autonomously builds a visual feature map while at the same time optimises

its localisation within this map. The technique chooses the most appropriate

commands maximising the expected information gain between prior states and

measurements, while performing 6-DOF bearing-only SLAM at real-time. The

proposed motion model is used to infer the position of the vehicle in a non-flat ter-

rain after some steps, in order to evaluate the mutual information for all possible

actions at the same time. To validate the approach, simulations over sinusoidal

terrains and experimental tests with our synchrodrive mobile robot platform with

a wide-angle camera have been performed [141].

1.4 Thesis Structure

Our intention in this work is to understand the problem of controlling a SLAM system

from an automatic control theory perspective. We analyse the estimated system, doing

a stability analysis of a simple linear case and performing an observability analysis

for more complicated cases as the monocular SLAM. These analyses are the base of

our control scheme, not only for low-level control law, but also for the active control

strategy of a single camera performing SLAM in real-time and of course our vehicle

moving in 3D environments as well. Throughout the examples presented we look at the

insights of different models, a linear SLAM system, a planar mobile robot, and 6-DOF

system with constant velocity models, using range and bearing information and the

most crucial for this work, bearing-only information. The examples must be seen as

part of the contribution of the work.

This work is organised as follows. This chapter served as an introduction of the

themes we are going to treat further. Namely, visual navigation in mobile robotics,

localisation and mapping. Also, the motivation, objectives and contributions are pre-

sented here.

Chapter 2 presents a survey on the state-of-the-art of simultaneous localisation

and map building and on the visual navigation and control of mobile robots. Specif-

ically, we present some of the challenges of simultaneous localisation and mapping,
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1.4 Thesis Structure

paying more attention to the ones we treat in this work, observability in SLAM and

closing the control loop.

From this point of view, the thesis is divided naturally into two parts: Estimation

(Chapters 3 and 4) and Control (Chapters 5 and 6).

Chapter 3 presents an analysis of the state estimation error dynamics for a linear

system within the Kalman filter based approach to Simultaneous Localisation and Map

building (SLAM). Because of the inherent lack of observability, we demonstrate that

such dynamics is marginally stable producing non-zero mean estimation errors. More-

over, we analyse a controllable SLAM system. Again the system is partially controllable

and we propose to achieve this condition by adding pseudo noise to the map states.

This addition produces inflated covariance matrices, as in the well-known method to

reduce time complexity in SLAM decorrelating the covariance matrix. The estimated

system could be unstable depending on whether the system is observable or not.

In Chapter 4 the aim is to obtain a better understanding of the well known intuitive

behaviour of visual SLAM systems, such as the need for triangulation to features from

different positions in order to get accurate relative pose estimates. We characterise the

unobservable directions using the nullspace basis of the stripped observability matrix.

This approach helps us identify which vehicle motions are required to maximise the

number of observable states in the system which, in turn, affects the accuracy of the

estimation. Four different systems using a single camera are analysed.

Chapter 5 is devoted to the control-theoretic analysis of the closed loop system,

i.e. System - Estimation - Controller. We propose two different feedback control laws in

order to simultaneously estimate vehicle location, build a feature map and control the

system to follow any trajectory or go to a certain point. The separation theorem of the

closed loop system guarantees that the estimated system and the controlled system are

stable if the system is observable, and the conclusion is that a low level controller cannot

affect the estimation allowing us to propose the active control strategy of Chapter 6.

An active control strategy is presented in Chapter 6 to reduce uncertainty during

estimation in SLAM. The objective of this strategy is to optimise both the localisation

of the sensor and building of the feature map by computing the most appropriate control

actions or movements. Combining the nonlinear control law proposed in Chapter 5 and
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this strategy we guarantee a better estimation and a stable controlled system for a

mobile robot navigating with only one camera.

Chapter 7 presents the general conclusions of this thesis.

Our main sensor will be a single camera, eventhough we work as well with range and

bearing measurements in some analysis. The main approach for analysis, simulations

and real experiments is the EKF-SLAM based on the work done by Davison in [36].

In order to validate the strategies and control laws proposed in this thesis we de-

veloped a simulated environment in Simulink/Matlab that is explained in detail in

Appendix B.

Experiments with hand-held cameras and mobile robots where performed based on

the code developed by Andrew Davison at Robotics Research Group of Oxford Univer-

sity and extended for our purposes in this work. Appendix C presents the application

and its libraries.
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Chapter 2

Navigation in Unknown

Environments

This chapter presents concepts, tasks and a survey related to robotic navigation. There

are three main tasks which a robot must accomplish while navigating in an unknown

environment: localisation, mapping, and control. The chapter is organised as follows.

Section 2.1 describes some concepts about mobile robot navigation. Section 2.2 presents

the state-of-the-art in SLAM and the typical EKF-SLAM algorithm used in following

chapters. Section 2.3 describes related work in mobile robot control for navigation with

a primary focus on visual sensors. Finally, a summary of the literature related to SLAM

and control together is presented in Section 2.4.

2.1 Autonomous Mobile Robots

Campion et al in [24] defined an autonomous mobile robot as “... a vehicle which

is capable of autonomous motion (without an external human driver) because it is

equipped, for its motion, with motors that are driven by an embarked computer”. We

should add to this definition that the vehicle is also equipped with sensors to perceive

its environment.

There are some assumptions that should be taken into account to model autonomous
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Localisation Mapping
External
sensors

Internal
Sensors

Planning

sensors
External

Platform

Control

Figure 2.1: Relationship between components of an autonomous mobile robot. The
term navigation, as used in this thesis, includes the three highlighted tasks of locali-
sation, mapping and control.

mobile robots: the wheeled mobile robots are made up of a rigid frame with non

deformable wheels, and sometimes they are moving on a horizontal plane. The property

of autonomy is understood as the ability to independently make intelligent decisions as

the situation changes.

Some wheeled mobile robots, such as the ones we use in this work, are a class

of mechanical systems characterised by kinematic constraints that are not integrable

[84]. These constraints cannot be eliminated from model equations, thus the standard

planning and control algorithms developed for under-constrained robotic manipulators

are difficult to apply. For instance, a vehicle with two forward drive wheels and two

back side wheels cannot move sideways. That is, this type of vehicle is a nonholonomic

system.

For wheeled vehicles, dead reckoning using internal sensors is not enough to achieve

precise motion control because of slippage. Therefore, usage of external sensors is indis-

pensable. Some of these sensors (e.g. cameras) can be mounted on active mechanisms

such as pan and tilt necks, active heads or even manipulators. Sensors must be mod-

elled also. The Denavit-Hartenberg convention [112] is commonly used to obtain direct

and inverse kinematics of such active mechanisms.

Figure 2.1 shows a diagram of the relationship between the different functional

components of an autonomous vehicle based on [43]. These components are:

12
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2.2 Simultaneous Localisation and Mapping

• Localisation or position determination provides estimates of the location, alti-

tude, velocity or acceleration of the vehicle. This ability can often proceed inde-

pendently from the other system components. Errors in internal sensors usually

require filtering to get better estimates of the state.

• Mapping is concerned with the acquisition of external sensed information. The

mapping function takes input from sensors observing the operational environ-

ment. It must use this information to create an internal representation of the

environment.

• Control responses to a desired action and could stabilise the system along a

point or a trajectory. It could also generate desired actions using the information

provided by estimates of the localisation and mapping tasks.

• Mission and task planning also refers to navigation but in large, functionally

generated trajectories, behaviours or way points for the system as a whole. It

has no direct links with either sensory input or controller output. However, it

clearly must use an understanding of these, in conjunction with maps and defined

mission objectives, to produce appropriate navigation commands.

In the literature, the term navigation is frequently applied to different concepts.

When used in this thesis, navigation refers to the task of combining localisation, map-

ping and control. Specifically we focus on the problem where the three tasks are

performed simultaneously. Therefore, navigation can be thought of as SLAM with

control.

2.2 Simultaneous Localisation and Mapping

In the last twenty years there has been a considerable progress in the construction of

local terrain maps for use in navigation and localisation. Notable is the work at CMU

and JPL in stereo terrain reconstruction on grids [81], and a later work on triangular-

tessellated terrain models. These methods have potential to provide quite general

terrain models for both navigation and motion planning tasks. Currently however,
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such methods require independent knowledge of platform location and so have limited

application in localisation.

Simultaneous Localisation and Map Building in mobile robotics has been an ac-

tive research topic for over fifteen years. SLAM is the process of building a map of

the environment while simultaneously using this partially built map to provide vehicle

localisation. Typical SLAM algorithms work by generating estimates of the vehicle

and landmarks locations. It can be shown that the precision of these estimates in-

creases monotonically and that the vehicle location estimate becomes bounded [40].

This means that a vehicle can start at an uncertain location in an unknown environ-

ment and incrementally build a convergent map while maintaining bounds on platform

localisation error. Seminal work by Smith and Cheesman [122] suggested that as suc-

cessive landmark observations take place, the correlation between the estimates of the

location of such landmarks in a map grows continuously. It has also been shown that

the absolute accuracy of the map reaches a lower bound defined only by the initial

vehicle uncertainty [78].

2.2.1 Estimation in SLAM

Optimal state estimators (observers) such as the Kalman filter (KF) and its extension

for nonlinear systems, the extended Kalman filter (EKF), are commonly used to solve

the SLAM problem. These approaches permit to analyse convergence properties of

the filtered system; at least, for the linear case. Observability and controllability are

important notions to understand such systems. In a dynamic system, such as SLAM,

where both the state and measurement dynamics are corrupted by noise, it is important

to know whether it is possible or not to reconstruct the entire state space from output

measurements. Unfortunately, the state space constructed by appending the robot

pose and the landmark locations is only partially observable [2], producing a constant

bounded state estimate, dependant on the initial filter conditions. Consequently, when

building an absolute map, and at the same time estimating the absolute vehicle location

purely from sensor measurements and odometry, the results of the Kalman filter-based

approach to SLAM will be subject to the error produced at the very first iteration

[104]. The issue of marginal filter stability in SLAM, previously addressed as a partial

observability problem only [3], is now formalised in this thesis in Chapter 3.
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The computational complexity of the SLAM estimation problem is at least O(n2), n

being the total number of landmarks in the map. Further, the structure of the SLAM

problem is characterised by monotonically increasing correlations between landmark

estimates. Thus the state space can not be trivially decoupled. For these reasons,

there has been a significant drive to find computationally effective SLAM algorithms.

This has been achieved through the development and use of the KF and EKF. In these

developments, simplification in the time update step and locality in the observation

update step have resulted in algorithms that can process thousands of landmarks in

real time on PC level architectures [57, 89]. To speed up the performance of the

algorithm, some authors have proposed the use of covariance inflation methods for the

decorrelation of the state error covariance [58], subject to suboptimality of the filter.

However, full decorrelation of a partially observable system might lead to covariance

divergence [69]. Our views on decorrelation to speed up SLAM are covered in Chapter 3.

The Kalman filter (KF) approach has a number of limitations. These include: dif-

ficulty in representing complex environment or feature models, difficulty of faithfully

describing highly skewed or multi-modal vehicle error models, the use of linear prop-

agation of covariances, and the inherent complexity of the resulting data association

problem [102]. Vehicle and sensor models are usually highly nonlinear, and the effects

of linearisation required in the EKF can lead to filter divergence [70].

An alternative approach to vehicle prediction, which overcomes many of these lim-

itations, is to consider navigation as a Bayesian estimation problem [132]. In this

method, vehicle motion and feature observations are described directly in terms of the

underlying probability density functions and the Bayes theorem is used in a combination

of grid-based environment modelling and particle filtering techniques. These Bayesian

methods have demonstrated considerable success in some challenging environments

[129]. Particle filters approximate the state space by random sampling of the posterior

distribution, and may require many samples to accurately model the nonlinear effects

in both vehicle and measurement models. A middle ground is to use a deterministic

approach for the nonlinear propagation of means and covariances. One such solution is

the use of the unscented Kalman filter (UKF) [67, 68, 71]. An unscented transforma-

tion is similar to a particle filter in that it samples the probability density function pdf,

but instead of doing it randomly, a careful selection of deterministic sigma points is
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made so as to preserve the moments of the distribution. Deterministically choosing the

particles is a computationally efficient solution for the nonlinear propagation of means

and covariances, but doing so for the full state vector in SLAM may not be appropriate.

There is no need to use particles in the computation of the map prior, given its linear

nature. Thus, by using the Unscented Transformation (UT) [67] only for the vehicle

states we are able to reduce the computational complexity (compared to a full UT),

and to produce, at the same time, tighter covariance estimates [6].

2.2.2 Map Representations

World-centric and Sensor-centric

One taxonomy of mapping algorithms, motivated by the reference frame to which

estimates are linked, is world-centric versus robot-centric or what we call sensor-centric.

World-centric maps are represented in a global coordinate space. The entities in the

map do not carry information about the sensor measurements that led to their discovery.

Sensor-centric maps, in contrast, are described as the relative respresentation between

the map and the vehicle.

At first glance, sensor-centric maps might appear easier to build, since no transla-

tion of robot measurements into world coordinates are needed. However, sensor-centric

maps suffer a disadvantage. It is often difficult to extrapolate from individual measure-

ments to measurements at nearby, unexplored places; an extrapolation that is typically

straightforward in world-centric approaches. In other words, there is usually no obvious

geometry in measurement space that would allow for such extrapolation. For this rea-

son, the dominant approaches to date generate world-centric maps even though we will

see further in this thesis there is an inherent lack of observability in this representation.

Geometric and Topological Maps

Another common map representation in SLAM has regard to the types of informa-

tion that link nearby landmark estimates. These can be either geometric and topolog-

ical maps. A geometric map represents objects according to their absolute geometric

relationships. It can be a grid map, or a more abstract map, such as a line map [87] or

a polygon map [56]. Geometric maps derived from a sensor must be matched against

past sensed landmarks in global coordinates. This is often of great difficulty because
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of the robot’s accumulated position error. The simplest way to represent a geometric

map is the occupancy grid-map. The first such map representation that appeared in

the literature (in conjunction with mobile robots) was the Certainty Grid developed

by Moravec and Elfes [99]. In the Certainty Grid approach, sensor readings are placed

into the grid by using probability profiles that describe the algorithm’s certainty about

the existence of objects at individual grid cells. Borenstein and Koren [13] refined the

method with the Histogram Grid, which derives a pseudo-probability distribution out

of the motion of the robot. Scan matching is also applied to build maps in SLAM in

[51] .

By contrast, the topological approach is based on recording the geometric relation-

ships between observed features rather than their absolute position with respect to an

arbitrary coordinate frame of reference [28, 50]. The resulting presentation takes the

form of a graph where the nodes represent the observed features and the edges represent

the relationships between the features. Unlike geometric maps, topological maps can

be built and maintained without estimates for the position of the robot. This means

that the errors in this representation will be independent of any errors in the estimates

for the robot position [127]. Information Filters are commonly used to build this kind

of maps [133].

The representation adopted in this work is geometrical, considering 2D or 3D points

as the landmarks of our maps.

2.2.3 Challenges

According to [130], a key challenge in SLAM arises from the problems of modelling

measurement noise. If the noise in different measurements is statistically independent

the mapping problem will be easy to solve. A robot could simply take more and more

measurements to cancel out the effects of noise. Unfortunately, the measurement errors

are statistically dependent. This is because errors in control accumulate over time, and

they affect the way future sensor measurements are interpreted. A filter should be

capable of overcoming these problems, and also to deal with problems arising from the

nonlinearities of the process and measurement models and finally with the fact that

the system is not completely observable.

17



2.2 Simultaneous Localisation and Mapping

Despite the large amount of success in developing SLAM systems, the issue of

consistency of the EKF-SLAM algorithm is still a challenge [26, 70]. We know that in

the long run, variations in Jacobian linearisation introduce spurious information that

will eventually produce an optimistic filter, and that this inconsistency is especially

relevant in the case of rotations [8]. And in the simplest case of a stationary robot,

the EKF-SLAM will produce optimistic estimates because the Jacobians are being

evaluated at different estimation values of the same state [63].

The second complicating aspect of the SLAM problem arises from the high di-

mensionality of the statistical map of the features. If the robot confines itself to the

description of major topological features, such as corridors, intersections, rooms and

doors, a few dozen features might suffice. A detailed two-dimensional floor plan, which

is an equally common representation of robotic maps, often requires thousands of them.

But a detailed 3D visual map of a building (or of an ocean floor) may easily require

millions of features. From a statistical point of view, each such number is a dimension

of the underlying estimation problem. Thus, the mapping problem can be extremely

high dimensional and there have recently nice atempt to tackle it [52]. Submapping

approaches can help to manage the huge amount of data [15, 45].

A third and possibly the hardest problem in SLAM is the correspondence problem,

also known as the data association problem. The correspondence problem is the prob-

lem of determining if sensor measurements taken at different points in time correspond

to the same physical object in the world. When a robot attempts to map a large cyclic

environment and it tries to close the cycle, the robot has to find out where it is relative

to its previously built map. This problem is complicated by the fact that at the time

of loop closing, the robot’s accumulated pose error might be unboundedly large. The

correspondence problem is difficult, since the number of possible hypotheses can grow

exponentially over time. Neira et al propose the joint compatibility test to solve the

data association using a greedy algorithm using branch and bound strategies to solve

wrong associations [102].

Fourth, environments change over time. Some changes may be relatively slow, such

as the change of appearance of a tree across different seasons, or the structural changes

that most office buildings are subjected to over time. Others are faster, such as the

change of door status or the location of furniture items, such as chairs. Even faster may
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be the change of location of other agents in the environment, such as cars or people. The

dynamism of robot environments creates a big challenge, since it adds yet another way

in which seemingly inconsistent sensor measurements can be explained. This becomes

evident in the case of a robot facing a closed door that previously was modeled as open.

Such an observation may be explained by two hypotheses, namely that the door status

changed, or that the robot is not where it believes to be. Unfortunately, there are almost

no mapping algorithms that can learn meaningful maps of dynamic environments [51].

Instead, the predominant paradigm relies on a static world assumption in which the

robot position is the only time-variant quantity (and everything else that moves is

just noise). Consequently, most techniques are only applied in relatively short time

windows, during which the respective environments are static.

A fifth challenge arises from the fact that robots must choose their way during map-

ping. The task of generating robot motion in the pursuit of building a map is commonly

referred to as autonomous exploration, addressed to navigation control and planning

[108, 125, 134]. In order to build a map, the robot must explore its environment to

map uncharted areas. Typically it is assumed that the robot begins its exploration

without having any knowledge of the environment. Then, a certain motion strategy is

followed which could aim for example, at maximising the amount of charted area in

the least amount of time. Such a motion strategy is called exploration strategy, and it

depends strongly on the kind of sensors used. While optimal robot motion is relatively

well-understood in fully modeled environments, exploring robots have to cope with

partial and incomplete models. Hence, any viable exploration strategy has to be able

to accommodate contingencies and surprises that might arise during map acquisition.

For this reason, exploration is a challenging planning problem, which is often solved

sub-optimally via simple heuristics.

Many researchers believe that no single sensor modality alone adequately captures

all relevant features of a real environment. To overcome this problem, it is necessary

to combine data from different sensor modalities, a process known as sensor fusion,

the sixth challenge. Buchberg et al. [20] and [72] developed a mechanism that utilises

heterogeneous information obtained from a laser-radar and sonar system in order to

construct a reliable and complete world model. Nieto et al [105] proposed what they

called DenseSLAM, in which they enrich their geometric maps with the information of a
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radar. Courtney and Jain [32] integrated three common sensing sources (sonar, vision,

and infrared) for sensor-based spatial representation. They implemented a feature-level

approach to sensor fusion from multisensory grid maps using a mathematical method

based on spatial moments and moment invariants.

Today, mapping is largely considered the most difficult perceptual problem in

robotics. Progress in SLAM is bound to impact a much broader range of related

perceptual problems, such as sensor-based manipulation and interaction with people.

In this thesis we will focus mainly in first and fifth of the above challenges, tackling

them from a control theory viewpoint without disregarding the probabilistic approach.

2.2.4 Sensors and Techniques

Visual sensing is the most information-rich modality for navigation in everyday envi-

ronments. However, recent advances in simultaneous localisation and map building for

mobile robots have been made using sonar and laser range sensing to build maps in

2D that have been largely overlooked in the vision literature. Durrant-Whyte imple-

mented systems using a wide range of vehicle and sensor types [44] and are currently

working on ways to ease the computational burden of SLAM. Chong and Kleeman

achieve nice results using advanced tracking sonar and accurate odometry combined

with a submapping strategy [27].

Thrun et al [128] have produced some demonstrations of robot navigation in real

environments using a laser range finder and mapping with some vision. In a different

work [131], they used scan matching of a laser range finder mounted in a pan head.

Castellanos [25] also uses a laser range finder and a mapping strategy called the SPmap.

This group is also working with a strategy that they called Hierarchical SLAM [45].

Leonard and Feder [88], worked primarily with underwater robots and sonar sensors,

have recently proposed submapping ideas, breaking a large area into smaller regions for

more efficient map-building [14]. The philosophy of constant time SLAM, also proposed

by Leonard and Newman [86], is to maintain the consistency, look for global convergence

and an algorithm computationally more efficient using local submaps. More recently

the well-known information form of the EKF, also known as the extended information

filter (EIF) has been used. This filter maintains an inverse representation of the normal
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Figure 2.2: The EKF-SLAM state vector and covariance matrix representation.

pdf, in which the covariance matrix is substituted by its inverse, the information matrix,

and the mean vector by the information vector. Thrun et al in [133] proposed an EIF

that maintains a sparse information matrix. The sparsity has important ramifications

on the computational properties of solving SLAM problems. Eustice and Leonard

presented the exact SEIF using a delayed-state framework [46].

Murray and Davison made the first application of active vision to real-time, se-

quential map-building within a SLAM framework [37]. They showed that active visual

sensing is ideally suited to the exploitation of sparse landmark information required in

robot map-building. Posterior works by Davison concentrate in localisation and map-

ping with one wide-range camera for any kind of robot or even carried by a person [36].

Kim and Sukkarieh used also vision and inertial measurements to localise an aerial

vehicle and build a terrain map [76].

More common is to find applications using laser range finder, but the tendency is

now to solve the problem using vision or more than one sensor in order to obtain 3D

representations of the environment.

2.2.5 SLAM solution using the EKF

The SLAM problem is commonly solved using EKF techniques. Its theoretical meaning

and its simplicity makes it advantageous over other filters or estimators. This is the

approach we take in the rest of the thesis. This section presents models and EKF for

the case of the SLAM problem.
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System model

In the general SLAM case, the motion of the vehicle and the measurement of the

map features are governed by the discrete-time state transition model

xk+1 = f(xk,uk,vk) (2.1)

zk = h(xk) + wk . (2.2)

The state vector xk ∈ IRm+dn contains the position of the vehicle xr,k ∈ IRm at

time step k, and a vector of n stationary d-dimensional map features xf ∈ IRdn,

xk =

[
xr,k
xf

]
. (2.3)

The input vector uk ∈ IRl is the vehicle control command and vk ∈ IRl is a

Gaussian random vector with zero mean and a covariance matrix Q ∈ IRl×l, repre-

senting unmodeled vehicle dynamics and thence system process noise. The function

f : IRm+dn → IRm+dn is a possibly nonlinear difference equation that describes the

motion of the vehicle.

The Gaussian random vector wk ∈ IRdn represents both the inaccuracies of the also

possibly nonlinear measurement model h : IRdn+m → IRdn and the measurement noise

with zero mean and covariance matrix R ∈ IRdn×dn.

Provided that a set of measurements Z i = {z1, . . . , zi} was available for the com-

putation of the current map estimate xk|k, the expression

xk+1|k = f(xk|k,uk,0) (2.4)

gives an a priori noise-free estimate of the new locations of the robot and map features

after the vehicle control command uk is input to the system. Similarly,

zk+1|k = h(xk+1|k) + 0 (2.5)

constitutes a noise-free a priori estimate of sensor measurements.
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The EKF approach to SLAM requires linearisation of both the plant and measure-

ment models. Such linearisations are formulated as Taylor series approximations with

the higher order terms dropped,

xk+1 ≈ xk+1|k + F(xk − xk|k) + Gvk (2.6)

zk+1 ≈ zk+1|k + H(xk+1 − xk+1|k) + wk+1 . (2.7)

The Jacobian matrices F, G, and H contain the partial derivatives of f with respect

to x and the noise v, and of h with respect to x, respectively:

F =
∂f

∂x

∣∣∣∣
(xk|k,uk,0)

(2.8)

G =
∂f

∂v

∣∣∣∣
(xk|k,uk,0)

(2.9)

H =
∂h

∂x

∣∣∣∣
(xk+1|k,0)

. (2.10)

Given that the landmarks are considered stationary, their a priori estimate is simply

xf,k+1|k = xf,k|k . (2.11)

Thus, the elements of the non-stationary linear state transition model of the vehicle

and map dynamics in (2.6) and (2.7) take the form

[
xr,k+1

xf

]
≈
[

xr,k+1|k
xf,k|k

]
+

[
Fr

I

]

︸ ︷︷ ︸
F

[
x̃r,k|k
x̃f,k|k

]
+

[
Gr

0

]

︸ ︷︷ ︸
G

[
vk
0

]
, (2.12)

zk+1 ≈ zk+1|k +
[

Hr Hf

]
︸ ︷︷ ︸

H

[
x̃r,k+1|k
x̃f,k+1|k

]
+ wk+1 . (2.13)

In the remaining of this thesis, extensive use of KF related notation will be used.

The Kalman filter algorithm is described in Appendix A.1. The EKF requires Gaussian
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representations for all the random variables that form the map (the vehicle pose and

all landmark’s positions). Moreover, their variances need to be small to be able to

approximate all the non linear functions with their linearised forms.

In terms of covariance matrices the Kalman filter steps are: The a priori state

covariance prediction,

Pk+1|k = FPk|kF
> + Qk, (2.14)

the Innovation covariance

Sk+1 = Rk+1 + HPk+1|kH
> (2.15)

and finally the filter gain

K = Pk+1|kH
>
k+1S

−1
k+1 (2.16)

The update of the state covariance is computed with

Pk+1|k+1 = Pk+1|k −KSk+1K
> (2.17)

The steady state value for the covariance matrix is given by the solution of the

Riccati equation

P = F(P−PH>(HPH> + R)−1HP)F> + Q. (2.18)

Such solution to the Riccati equation will converge to a steady state covariance only

if the pair {F,H} is completely observable [9]. This condition is not satisfied in general

in SLAM, and for the linear case, the solution of (2.18) is a function of Pr,0|0, Q, R,

and the total number of landmarks n. Note however that, for the nonlinear case, the

computation of the Jacobians F and H will in general also depend on the steady state

value of x.

The objective of SLAM is to estimate xk properly using, for instance the EKF

that recursively computes a minimum mean square error (MMSE) estimate. Figure 2.3

shows a schematic representation of the SLAM algorithm. The MMSE is designated
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Figure 2.3: A flow chart for a generic SLAM algorithm. This representation does
not depend on the type of representation and filter used to store localisation and map
information [116].

by the system state estimate xk|k = [xr,k|k,xf,k|k]>, and its state covariance matrix,

Pk|k =

[
Pr,k|k Prf,k|k
P>rf,k|k Pf,k|k

,

]
(2.19)

where the mean xr,k|k and covariance Pr,k|k of a vehicle part of the state estimate, and

the mean xf,k|k = [x1
f,k|k, . . . ,x

i
f,k|k]

> and covariance Pf,k|k of the map part of the state

estimate, and the cross covariance term Prf,k|k between vehicle and map are related as

illustrated in Figure 2.2.

Landmark Initialisation

Given a set of i measurements Z i = [z1; z2; . . . zi] we wish to initialise a new entity

xif (feature) into a stochastic map modelled as a mean xk|k and covariance matrix Pk|k.
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Initialisation consits of stacking the new landmark position xif into the map as

x+ =

[
x

xif

]
(2.20)

and defining the pdf of this new state conditioned on measurement zi [103]. Considering

the case of any given measurement model a implicit expression that relates a new

variable mf is defined as,

h′(xr,xf ,mf ) = 0 (2.21)

the measurement associated to a new feature, where z = mf + vk. Solving h′ for fixed

values of xr and mf , in order to get an explicit expression for a new feature

xf = j(xr,mf ) . (2.22)

Note that for range and bearing measurements the solution of this expression is a point.

We assume xf is approximately a Gaussian random variable with mean and covariances

matrices defined by

xf,k|k = j(xr,k|k, z) (2.23)

Pf = JrPr (2.24)

Pff = JrPrrJ
>
r + JmPrrJ

>
m , (2.25)

where Pr = [ Prr Prf ] and Jr = ∂j/∂xr and Jm = ∂j/∂mf . The augmented map

(see Figure 2.4) is finally specified by

x+
k|k =

[
xk|k
xif,k|k

]
P+
k|k =

[
Pk|k P>f,k|k
Pf,k|k Pff,k|k

]
. (2.26)

For bearing-only measurements the explicit solution of (2.22) turns out a line. The

feature measurement model cannot be directly inverted to give the position of a new

feature given an image measurement and the camera position, since the feature depth

is unknown. Estimating the depth of a feature will require camera motion and sev-

eral measurements from different viewpoints. Image features could be extracted as is
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Figure 2.4: Initialisation for EKF-SLAM: state vector and covariance matrix repre-
sentation.

presented in 2.3.1.

2.3 Control Using Vision

It is very interesting why sensing the environment and subsequently navigating is such

a difficult task for mobile robots; after all, it is something which is taken for granted

as easy for humans or animals, who have no trouble moving through unfamiliar areas,

even if they are perhaps different from environments usually encountered.

Early vision systems developed for mobile robot navigation relied on the geometry

of space and other metrical information for driving the vision processes and performing

localisation [98]. In particular, interior spaces are represented by CAD models of vary-

ing complexity. CAD models were replaced by simpler models, such as occupancy maps,

topological maps or even sequences of images. When sequences of images were used

to represent space the images taken during navigation were submitted to some kind

of appearance-based matching between the perception (actual image) and expectation

(goal image or goal images stored in a data base).

Visual Navigation usually has been approached by the use of landmarks or visual

features. Several algorithms have been presented in the literature which use visual

landmarks for navigation [79], [113], [114]. Visual features are generally represented by

three-dimensional (3D) models (set of lines or points) in the environment space, which

have to be matched with corresponding two-dimensional (2D) models in the image
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plane [90].

Unknown environments require more robust algorithms for navigation such as feed-

back control methods, with vision used as the primary sensor. The following subsection

presents a summary of the most representative approaches for visual control.

2.3.1 Landmarks

Landmarks are distinct features that a robot can recognise from its sensory input.

Landmarks can be geometric shapes such as rectangles, lines, circles, etc. and they may

include additional information (e.g., in the form of a bar-code). In general, landmarks

have a fixed position, relative to which a robot can localise itself. Landmarks are

carefully chosen to be easily identifiable; for example, there must be sufficient contrast

to the background. Before a robot can use landmarks for navigation, the characteristics

of the landmarks must be known and stored in the robot’s memory. The main task

in localisation is then to recognise the landmarks and to calculate the robot’s position

with respect to them. In the same way in mapping, the robot should calculate the

landmark position with respect to a fixed reference frame or with respect to itself.

If the robot’s pose was known all along, building a map would be quite simple.

Conversely, if we already had a map of the environment, there exist compositionally

elegant and efficient algorithms for determining the robot’s pose at any point in time

[42, 51, 74, 126]. In combination, however, the problem is much harder.

In order to simplify the problem of landmark acquisition it is often assumed that

the current robot pose is known approximately, so that the robot only needs to look

for landmarks in a limited area. For this reason good odometry is required and the use

of filters to estimate the robot pose, and in the case of mapping, to estimate landmark

positions is necessary.

We can address the problem for two types of landmarks: “artificial” and “natural”.

Natural landmarks work best in highly structured environments such as corridors, man-

ufacturing floors, or hospitals. Borenstein in [12] defined natural landmarks as those

objects or features that are already in the environment and have a function other than

robot navigation; and artificial landmarks as specially designed objects or markers that

need to be placed in the environment with the sole purpose of enabling robot navigation.
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Figure 2.5: Procedure for landmark-based positioning [12].

The general procedure according to Borenstein et al [12], for performing landmark-

based position is shown in Figure 2.5. If the purpose is map building, the landmark

position is also calculated. They use sensors to sense the environment and then extract

distinct structures that serve as landmarks for navigation in the future.

Information to do path planning, obstacle avoidance, and other navigation task

must also be easily extractable from the spatial representation used. It is possible

to use one or more landmarks, or even to create maps of landmarks to perform the

desired task. For example, line maps could be useful for wall-following [91] and in this

case the walls are natural landmarks. There are many examples of natural landmarks:

trees, lampposts, furniture, lamps and so on. These landmarks are commonly chosen

depending on the environment (e.g. indoor or outdoor). The main challenge is to

extract those landmarks from the entire scene in a robust way in order to generate a

spatial representation.

Image features

Salient points in an image are those that are locally distinguishable, that possess

some strong particularity that make them unique in some sense. These points are

usually called features, and the process of identifying them in an image is normally

referred to as feature detection. In gray-level images a feature may correspond to a

point where the luminosity variation in all directions is locally maximal. The analysis

of the image derivatives is at the heart of most of the best known feature detectors.

The task of finding the same salient point in another image is usually called feature

matching. From the above statements, the uniqueness of a feature is determined by its

close neighbourhood. If we memorise this neighbourhood as the feature’s signature, for

example in the form of a small rectangular patch like those in [37], we will be able to

find it in other images by simply scanning the new image for a similar enough signature.

Discrete features are easier to represent than continuous objects or regions, and
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provide unambiguous information for localisation. The spatial density of features used

can differ depending on how well it is required to represent the world, and individual

ones can easily be added or deleted as necessary.

The features which will make up the sparse map used for localisation in this work

need to be landmarks for the vehicle: they must be reliably and repeatedly detectable

and measurable, and preferably from a wide range of vehicle positions. This differs

slightly from the requirements of the features used in structure from motion algorithms

where it is not usually intended that the same features (usually “corners” or line seg-

ments) be detected and matched over long periods, indeed this is typically not possible

because with a passive camera features can go out of view very quickly. They must

be features present in a normal environment so that no artificial interference such as

positioning of beacons is required. They must be stationary in the scene (or potentially

have known motions, in work beyond the scope of this thesis). They must be easily

identifiable from a variety of ranges and angles, and not frequently be occluded.

That is, without neither detecting nor recognising objects in the images, a vehicle

must be able to select interesting points in its surrounding 3D world and track them

for a certain number of images. In later chapters in this thesis we will see how to use

this power to localise these points in the 3D space, building with them a sort of map,

while simultaneously using every new observation to get self-localised in this map.

To detect good features automatically in an image, one of the first works was the

Harris corner detector [60]. To identify a salient point in a grayscale image the idea

is to select those points where the gray level spatial derivatives are locally maximal,

based on the eigenvalues of the image Hessian. This is a corner if this rate of change is

maximum in all directions. Or an edge when this rate of change is important only in

one direction.

A more confident criterion is proposed by Shi and Tomasi in [115], this feature

detector is very similar to the Harris corner detector, but Shi and Tomasi apply it

to patches. They derive the operator showing that it finds features which will be

intrinsically easy to track using their gradient-based search method. The idea is to find

image patches which will make good features due to their high variation in intensity,

these stand out well from their surroundings. By taking a uniform square mask, the

Shi and Tomasi measure optimises the selectivity of correlation-based matchings with
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Figure 2.6: Image square patches (11 × 11 pixels) used as long-term landmarks
features. Using MonoSLAM software from Andrew Davison, Imperial College.

patches of the same size of the mask. That is, in order to optimise matching, the

weighting mask is chosen to be uniform and of the same size as the feature patch

descriptor.

Feature matching may be performed by exploiting different principles (geometric,

appearance, object-recognition, etc.). We concentrate on the use of appearance to

feature matching, as they are robust yet easy to define and fast to compute. The

feature’s appearance could be described by a medium-sized rectangular patch in the

vicinity of the corner pixel detected by the feature detector mentioned above, and

shown as the red squares in Figure 2.6 [37]. In consecutive images, every pixel is

assigned a patch of the same size to that of the reference patch. A similarity measure

may be assigned to each pixel in the new image. This measure is computed from the

appearances of the reference patch and the pixel’s associated patch. The pixel that

originated a particular patch is named the base pixel of the patch, which is normally

its central pixel.

Different appearance-based similarity measures may be defined between two equally-

sized patches, we will focus on a search using a normalised sum-of-squared-difference:

the patch detection algorithm is not used on the new image. This differs from many

structure from motion systems where the feature detector is run on each new image:

features are found as local maxima of the particular feature-finding operator, and then

correlation matching is carried out between the features found in the current and previ-

ous images, all of which are local maxima. Some authors [29] have found that requiring

all patches matched to be maxima like this is restrictive, and features can be missed

which still give good correlation matches. This is a good point when applied to an
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active system, like the control we propose in this thesis, since it is important to keep

track of the same features for as long as possible. Since a search in a particular image is

only for one feature at a time, it makes sense to move straight to correlation matching.

One advantage of applying the feature detector to all images is that most detectors

return feature locations to sub-pixel accuracy in a natural way. It is more difficult to

see how to obtain sub-pixel accuracy from the correlation search used in Davison work

[37]: interpolation can be used, but the form of the function to fit to image values

depends on the image itself.

2.3.2 Visual Motion Control

The problem of navigation to a specific pose or trajectory has generally been approached

from two directions; the open loop strategies and the feedback control strategies. Open

loop strategies seek to find a bounded sequence of control inputs, driving the vehicle

from an initial position to some arbitrary position, usually working in conjunction with

a motion planner [83, 100]. Reactive, feedback control systems, on the contrary, use

the environment itself for navigation. However, due to the limitations presented by

Brockett in [17], there is no smooth, continuous control law which can locally stabilise

closed loop nonholonomic systems to a point. These limitations can be overcome by

either relaxing the constraints on the desired pose, i.e. stabilising to a point without

a guarantee on orientation [82, 110], using discontinuous control techniques [31], or by

using time-varying control (see [110]).

Similarities between the open loop strategies and those more rigorous control based

visual servoing algorithms are abundant. However, the closed loop control-based strate-

gies are still in their infancy with regard to effective use of a vision system.

Vision-based robot control (generally called visual servoing) concerns several fields

of research including computer vision, robotics and automatic control. Visual servoing

can be useful for a wide range of applications and it can be used to control many

different dynamic systems (manipulator arms, mobile robots, aircraft, etc.). Visual

servoing systems are generally classified depending on the number of cameras, on the

position of the camera with respect to the robot or on the design of the error function

to minimise in order to reposition the robot.
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Figure 2.7: 3-D Visual servoing [94].

According to the position of the camera there exist two configurations: end-effector

mounted (eye-in hand), or fixed in the workspace. There also exist hybrid systems

where one camera is in-hand and another camera is stand-alone observing the scene,

but these are less common.

Existing eye-in hand approaches are typically classified in different categories: posi-

tion based, image based, hybrid based and motion based control systems. In a position

based control system, the input is computed in the three-dimensional Cartesian space.

The pose of the target with respect to the coordinate system of the camera is estimated

from image features corresponding to the perspective projection [48] of the target in

the image. In this approach knowledge of a perfect geometric model of the object is

necessary (see Figure 2.7).

Recently, a 3D visual servoing scheme which can be performed without knowing the

3D structure of the target, has been proposed in [10]. The rotation and the direction

of translation are obtained from the essential matrix [65]. The essential matrix is

estimated from the current and reference images of the target [48] . However, as for the

previous 3D visual servoing, such a control vector does not ensure that the considered

object will always remain in the camera field of view, particularly in the presence of

important camera or robot calibration errors.

Visual Servoing [66] is suitable for control of a mobile robot based on an on-board

camera, because it can avoid the dead reckoning problem and reduce the cost to identify

the absolute location. A lot of visual servo controllers had been developed by the
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research community.

Several examples of visual servoing systems can be found in [61] and in the special

issues on visual servoing which have been published in international journals. The first

one, published in the IEEE Transactions on Robotics and Automation, October 1996,

contains a detailed tutorial [66]. A special issue on visual servoing appeared in 2003

in the International Journal of Robotics Research [80]. In this issue a table with most

of the authors dedicated to VS appears, displaying the specific problem dealt with,

degrees of freedom and kind of VS applied. Malis presents an excellent survey in [95].

Based on the approaches mentioned above, a lot of work for mobile robotics has

been published, or for a similar underactuated kinematics as the case of [93, 145,

146]. Mahony and Hamel developed a semi-global asymptotic visual servoing result

for unmanned aerial vehicles that tracked parallel co-planar linear visual features and

Zhang and Ostrowsky used a vision system to navigate a blimp.

Pissard-Gibollet and Rives analysed in [107] an image based visual servoing for a

hand-eye system mounted on a mobile robot. Years later, they developed a visual

servoing for the same system using time-variant control [135]. In [59], a monocular

vision system is mounted on a pan and tilt to generate image-Jacobian and geometry

based controllers by using different snapshots of the target and an epipolar constraint. A

drawback of this method is stated in [21], the system became numerically ill-conditioned

for large pan angles. Specifically, they used a teaching and replay phases to facilitate the

estimation of the unknown object height parameter in the image-Jacobian by solving a

least-squares problem. Burschka and Hager in [22] used a spherical image projection of

a monocular vision system to overcome the above limitation. They are also working on

building maps whilst controlling the robot using vision [23]. Ma et al [91] considered the

problem of estimation from vision measurements and the design of the control strategy

jointly. Steering control was used by Murray and Davison for visual fixation of a target

in [37].

There is a lot of research which has focused in the use of vision system for navigating

a wheeled mobile robot. Kim et al [75] proposed a tracking based on monocular visual

feedback using consecutive image frames and an object data base. This was achieved

with the use of an EKF. Das et al in [33] also used EKF techniques and feedback from

a monocular omnidirectional camera system to enable wall following, follow-the-leader
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and position regulation tasks. In [136] a method to stabilising a wheeled mobile robot to

a target pose based on the discrepancies between a target view of the landmarks in the

workspace and the robot’s current view, is presented. The method combines non-linear

control theory with research derived from hypothesis on insect navigation. Song and

Huang [124] and use spatiotemporal apparent velocities obtained from an optical flow

of successive images of an object to estimate the depth and time-to-contact to develop a

monocular vision guided robot. Dixon et al in [41] used feedback from an uncalibrated,

fixed (ceiling-mounted) camera to develop an adaptive tracking controller for a vehicle

that compensated for the parametric uncertainty in the camera and the wheeled mobile

robot dynamics. In [143], the authors exploited a rigid body transformation to develop a

visual servoing mobile robot tracking controller (the regulation problem was not solved

due to restrictions on the reference trajectory) that adapted for the constant, unknown

height of an object moving in a plane. Structure from motion algorithms have also

been used for vehicle guidance (e.g. [142]).

In this work we use a control scheme similar to the one in Figure 2.7. Only a single

camera is considered and there is no 3D model as a reference. The combination of

SLAM and control allows the visual navigation in unknown environments to be more

robust to feature occlusions in contrast with visual servoing techniques.

2.4 SLAM with Control

Actively controlls the robot while mapping has recently received more attention, in con-

trast to the purely estimation process that received much attention during the past 20

years. Noteworthy, particularly given the probabilistic nature of the Bayesian approach

to the solution of the SLAM problem, entropy reduction has recently gained popular-

ity as a map building strategy for driving a robot during a SLAM session in order to

minimise uncertainty [16, 49, 117]. Previous approaches to closing the control loop in

SLAM were by incorporating visual servoing techniques [23], or by implementing a PD

controller over an A* searched trajectory [134].

Action evaluation with respect to information gain has been implemented for SLAM

systems, but little to no effort has been expended on the real-time constraint. One such

approach makes use of Rao-Blackwellized particle filters [125]. When using particle
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filters for exploration, only a very limited number of actions can be evaluated due

to the complexity in computing the expected information gain. The main bottleneck

is the generation of the expected measurements each action sequence would produce,

which is generated by a ray-casting operation in the map of each particle. In contrast,

measurement predictions in a feature-based EKF implementation can be computed

much faster, having only one map posterior per action to evaluate, instead of the many

a particle filter requires. Moreover, in [125] the cost of choosing a given action is

subtracted from the expected information gain with a user selected weighting factor.

Sim has addressed decision making for the robot exploration problem, as an op-

timisation problem for a restricted hand-crafted set of exploratory policies [118], as

a sequential decision making problem (POMDPs) [120], and by updating an informa-

tion surface in a SEIF implementation [119]. These contributions, however, only test

the strategies for very small planar point-based simulated environments, and remain

to be tested in real-world applications. In order to avoid local maxima, the approach

presented in [119] explicitly avoids loop closing by discarding repeated poses during

trajectory search.

In [64] the authors analyse the possibility and necessity of multi-step look-ahead

trajectory planning in SLAM. The problem addressed is similar to that of [49] and [16].

The objective of trajectory planning is to minimise the estimation error spanning in a

finite time horizon. It is shown that multi-step look-ahead is possible when the current

estimation error is small because it optimises the mean value of the performance metric

and the most interesting issue is the optimisation strategy for the trajectory planning

problem using a variant of the Model Predictive Control (MPC) with the optimality

proven.

Other approaches include, for example, a multirobot stereo-vision occupancy grid-

based SLAM system [109], with best single-step look ahead chosen on the basis of overall

map entropy reduction. In such a discrete representation of the map posterior, overall

map entropy is computed as the sum of individual entropies for each grid cell. Bryson

and Sukkarieh on the other hand, present simulated results of the effect different vehicle

actions have with respect to the entropic mutual information gain [18]. The analysis is

performed for a 6-DOF aerial vehicle equipped with one camera and an inertial sensor,
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for which landmark range, azimuth, and elevation readings are simulated, and data

association is known.

In this thesis we want to focus on action decision problem in terms of uncertainty

reduction considering real-time constraints. Our experience with real-time vision-based

SLAM has shown us that short loop closing is essential for consistent bearings-only

mapping. Whaite et al. suggests that a gradient strategy for uncertainty reduction

would not falter on top of a local maximum [144]. The reason being that the information

surface being ascended is continuously changing as new data are added. Maximally

informative posteriors come from locations with large variance, and when measurements

iterate over the same states, the prediction variance will be reduced to the level of sensor

noise, flattening the information surface with the effect of pushing the robot away from

that location. Consequently, in this work, we propose concentrate in a greedy real-time

steepest descent approach to entropy reduction for a monocular SLAM systems, rather

than on planning for large sequences of actions.
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Chapter 3

Steady-State Behaviour of

EKF-SLAM

This chapter presents an analysis of the EKF-SLAM problem from the point of view

of control theory. A block diagram of the system under consideration is shown in

Figure 3.1.

For any estimation algorithm it is important to know what limits the achievable

state estimation quality. For the linear KF-SLAM algorithm, Dissanayake et al. in

[40] showed that the map uncertainty reaches a lower bound determined by the initial

uncertainty in the vehicle location. The nonlinear EKF-SLAM problem can exhibit two

types of problems. As in any EKF estimator, the approximations due to linearisation

of the system and measurement equations can lead to filter divergence [9]. And, in the

specific case of a stationary vehicle equipped with a range-bearing sensor, it has been

shown that the EKF algorithm can produce an inconsistent map [70].

Another undesirable filter property is non-zero steady state error. When building a

map, and at the same time estimating the absolute vehicle location purely from local

sensor measurements and odometry, the results of the EKF-based approach to SLAM

will depend on the error produced at the very first iteration [104]. This dependency
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Figure 3.1: Block diagram of the closed loop system for estimation in SLAM process.

is produced by the partial observability inherent to absolute localisation (referred to

as world-centric maps in [26]). The link between the finite steady-state error and

partial observability was identified by Andrade-Cetto in [3]. This work showed that the

SLAM problem with range and bearing measurements of point landmarks is partially

observable and characterised the null space basis of the observability matrix both for

linear and nonlinear vehicles.

In this chapter our aim is to analyse the steady state behaviour of the SLAM system

in Figure 3.1. We show that partial system observability, in addition to the lineari-

sation errors, affects the estimation performance in the SLAM problem, producing a

marginally stable filter. We apply the same analysis to the SLAM system made fully

observable by using the method proposed by [3]. We consider both linear and nonlinear

vehicle and measurement models.

On the other hand, a controllability condition analysis is also performed to show

limitations of the EKF, when used for tracking landmark states by considering them

stationary and having only vehicle process noise as the input to the system. Control-

lability condition states that the process noise enters into each state component and

prevents the Kalman gain and the covariance matrix from converging to zero. If this

condition is achieved the steady-state covariance matrix converges to a unique positive

definite matrix, independent of the initial covariance. This does not typically happen

in the SLAM problem because landmarks are considered static, with no process noise
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entering to the map state.

The rest of the chapter is organised as follows. In Section 3.1 the steady-state be-

haviour of the KF is illustrated with an example of a simple linear one-dimensional

mobile robot, that we call monobot, performing the SLAM process. Then, we show

the behaviour of the more realistic case of a planar mobile robot with range and bear-

ing measurements. The aim is to show how partial observability hinders full recon-

structibility of the state space, making the final map estimate dependent on the initial

measurements. The stability analysis of the EKF-SLAM problem is performed from

the point of view of control theory .

Section 3.2 is devoted to show the behaviour of the filter when the system becomes

fully observable, an example for a linear case shows the estimator is asymptotically sta-

ble. A linear observability analysis for the planar mobile robot shows that an anchored

system is fully observable. The behaviour of this anchored system is shown with an

example using real data.

In Sections 3.1 and 3.2 it is also shown that, as a consequence of partial controlla-

bility, updates do not change the landmark state estimates after just a small number of

iterations. This happens because the corresponding Kalman gain terms tend to zero.

Section 3.3 considers the case when artificial positive definite process noise is added

to the map state. The result can be equivalent to decorrelation of the state error

covariance matrix. This technique is commonly used in Kalman filtering to reduce

computational complexity. In this section we show that it can also produce a control-

lable system. In this same section, we introduce the covariance decorrelation method

which preserves stability of the filter and, at the same time, reduces the algorithm’s

complexity by avoiding decorrelation of the vehicle part of the state vector.

In Section 3.4 full observability is combined with full controllability. The result is

a stable solution of the filter even though the covariance decorrelation method is used.
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3.1 Effects of Partial Observability and Controllability

There are three important convergence properties for the EKF-SLAM algorithm ac-

cording to [40]: (1) the determinant of any submatrix of the map covariance matrix

decreases monotonically as observations are successively made; (2) in the limit as the

number of observations increases, the landmark estimates become fully correlated; and

(3) in the limit, the covariance associated with any single landmark location estimate

reaches a lower bound determined only by the initial covariance in the vehicle location

estimate at the time of the first sighting of the first landmark.

In a dynamic system where both state and measurements are corrupted by noise

(a typical SLAM model), it is important to know whether it is possible or not to

reconstruct the entire state space from output measurements, i.e. whether the system

is observable. This is important because the asymptotic stability of state estimation is

guaranteed only if the system is fully observable. Moreover, convergence of the state

error covariance matrix to a finite steady state value is equivalent to filter stability in

the sense of bounded-input bounded-output. Asymptotic stability of the filter does not

require the dynamic system to be stable; only the observability condition is required,

even though it alone does not guarantee uniqueness of the solution of the Riccati

equation [9].

When a stochastic system is partially controllable, the Gaussian noise sources vk do

not affect all of the elements of the state space. That is, some states are uncorrupted

by the noise. The diagonal elements of P corresponding to these incorruptible states

will be driven to zero by the Kalman filter, and once this happens, these estimates will

remain fixed and further observations will not alter their values.

The solution of the Riccati equation (2.18) for a time-invariant system with process

noise converges asymptotically to a finite steady-state covariance if the pair (F,H) is

completely observable and the pair (F,GQ1/2) is completely controllable.

In summary, the observability condition guarantees a steady flow of the information
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about each state component, and prevents the uncertainty (state error covariance) from

becoming unbounded. Moreover, the controllability condition allows the process noise

to enter into each state component and prevents the covariance matrix from becoming

singular [9].

Next, we derive the equations for the linear SLAM case, in order to show the

behaviour of the filter. We are able to see in the end, that the estimated system has

a pole on the unit circle of the z-plane, making the filter marginally stable. The state

estimation error ek is defined as

ek = xk − xk|k . (3.1)

Then, with the appropriate substitutions using (2.12), (2.13) and the EKF (Ap-

pendix A.2) as the estimator we obtain the expression for the linearised discrete-time

error dynamics,

ek+1 = (F−KHF)ek + (I−KH)vk −Kwk+1 , (3.2)

where K is the Kalman filter gain. In order to guarantee stability of the filter, the

close-loop transition matrix (F−KHF) must be stable. That is, its eigenvalues must

lie inside the unit circle of the z-plane.

Unfortunately, the state vector formed by appending the vehicle position estimate

with the landmark location estimates is not fully observable, which results in one eigen-

value of the matrix (F − KHF) being equal to one. Modifying appropriately the

measurement model or the state-space, the estimated system becomes asymptotically

stable, i.e., it has a zero mean steady state estimation error.

This means that the matrix (F −KHF) is marginally stable as a consequence of

the partial observability. The pole equal to one corresponds to a state estimate signal

corrupted with constant amplitude. However, the solution to the Riccati equation still

converges, in the linear case, to a positive semi definite steady state covariance in terms
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of Pr,0|0, V, W, and the total number of landmarks n [54]. Notice however, that for the

nonlinear case, the computation of the Jacobians F and H will in general also depend

on the steady state value of x.

On the other hand, the process model assumes that the landmarks are stationary,

with no state transition function and no process noise. Therefore, their associated

covariance (its determinant) will asymptotically approach zero as more observations

are made [40]. The filter gain for the landmark states will also tend to zero.

Let us look at the controllability matrix for this system. Given that

F =


 Fr

I




and

G =


 Gr

0


 ,

the controllability matrix is

C =
[

GQ1/2 . . . Fdim x−1GQ1/2
]
. (3.3)

Consequently, the dimensionality of the controllable subspace, spanned by the col-

umn space of C is rank C = dimxr, regardless of the number of landmarks in the map.

Obviously, the only controllable states are the ones associated with the vehicle motion.

A semi-definite covariance matrix means that the filter believes that it has perfect

knowledge of some state components. For these states the Kalman filter gain evaluates

to zero, and the innovations are not considered in the revision of the state estimate.

To avoid this situation, a standard practice is to add a positive definite pseudo-noise

covariance to those uncontrollable states [9].

The following examples demonstrate that in partially observable and partially con-

trollable SLAM systems one of the eigenvalues of the close-loop estimation matrix
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Figure 3.2: Monobot, one-dimensional mobile robot.

makes the system marginally stable and the Kalman gain is equal to zero.

Example 3.1

Consider a one-dimensional robot (monobot) with a one-dimensional landmark as

illustrated in Figure 3.2. At time tk, the vehicle location is xr,k and the motion command

is uk. The vehicle position error dynamics is modeled with the additive term vk, and

the discretised system model is simply

xr,k+1 = xr,k + uk + vk (3.4)

xf,k+1 = xf,k (3.5)

The map produced by this system is a single static landmark xf . The measurement

model for such landmark is

zk+1 = xf,k+1 − xr,k+1 + wk , (3.6)

where wk is the landmark measurement error.

In the notation of (A.1.1) and (A.1.2), the matrices of this simple system are

F =


 1 0

0 1


 ; G =


 1

0


 ; H =

[
−1 1

]
. (3.7)

For a Kalman gain K = [k1, k2]
> in this simplest SLAM configuration, the eigen-

values of the matrix

F−KHF =


 k1 + 1 −k1

k2 −k2 + 1


 (3.8)
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are {1, k1 − k2 + 1}. Thus, one closed-loop eigenvalue is always equal to one regardless

of the Kalman filter gain.

As a special case we consider the steady state and find the closed-loop eigenvalues of

the system. We assume that the initial monobot position variance is equal to zero and

the landmark variance is equal to one. After solving the Riccati equation the steady-state

covariance matrix P can be written as

P =


 σ2

v 0

0 σ2
ω/(1 + σ2

ω)


 , (3.9)

assuming zero initial covariance. The variance associated with the monobot process

noise is σv and the variance associated with the sensor noise is σω. The Kalman gain

is computed according to (A.1.9)

K =
1

s2


 −σ

2
v

σ2
ω

1+σ2
ω


 ,

where s is the innovation variance defined as

s2 = σ2
v + σ2

w +
σ2
ω

1 + σ2
ω

. (3.10)

Substituting the above result in equation (3.8),

F−KHF =
1

s2


 s2 − σ2

v σ2
v

σ2
ω

1+σ2
ω

s(1+σ2
ω)−σ2

ω
1+σ2

ω


 (3.11)

the eigenvalues of the filter dynamics matrix for a one landmark monobot are {1, 1
s2

(σ2
v−

σ2
w)}. Therefore, one of the two eigenvalues is always equal to one regardless of the

values of the noise variances. Figure 3.3 shows the two eigenvalues as a function of

σv and σω, where there is always an eigenvalue equals to one. This means that the

closed-loop error dynamics is always marginally stable, resulting in a finite steady-state

error. The steady-state value of the estimation error depends on the initial conditions.
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Figure 3.3: Eigenvalues of the one landmark monobot SLAM.

To further illustrate the effects of marginal filter stability in SLAM, a simulation

for a vehicle under Brownian motion is shown. The case of one landmark is considered

in the left column of Figure 3.4 and the case of two landmarks is shown in the right

column of Figure 3.4. In both cases the monobot starts at location xr,0 = −1. Both

landmarks are located at x
(i)
f = 1. The plots shows: a) full state estimate, b) vehicle

estimation error with 2σ uncertainty bounds, c) landmark estimation error, also with

2σ uncertainty bounds, and d) vehicle and landmark Kalman gains. The finite steady-

state error for the vehicle and landmark locations can be seen in plots (b) and (c). This

value of the steady-state error is smaller to the initial conditions when a large number

of landmarks is used.

The uncertainty in localising stationary landmarks with no process noise approaches

zero. And so does the associated filter gain. Figure 3.4 show the evolution of the

localisation errors for both the monobot and the landmarks, and the reduction to zero

value of the landmark part of the Kalman gain, due to the uncontrollability of the

system.
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a) Robot and landmark positions
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b) Robot localisation error
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Figure 3.4: Partially observable SLAM for a monobot during Brownian motion with
100 iterations.(Partially observable - Partially controllable).
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3.1 Effects of Partial Observability and Controllability

We showed how in the linear case of SLAM, the solution of the Riccati equation

produces a marginally stable solution for the estimation error.

The results from previous example can be extended to more complicated motion

vehicle models, for example, the nonlinear differential steer mobile robot model. For

nonlinear cases the Extended Kalman Filter (EKF) is commonly used; the a priori

estimates are evaluated as described in Section 2.2.5. Given that the estimator uses a

linearisation of the system models, an observability and controllability analysis of the

linearised system is appropriate. This analysis for a planar vehicle and range-bearing

measurement models during SLAM shows that the system is partially observable [2].

Moreover, a nonlinear observability analysis using Lie algebra shows similar results [85].

For nonlinear models it is important to guarantee this behaviour since linearisation

errors will always be present in the case of the EKF. In the next example we show the

behaviour of the filter using real data.

Example 3.2

This example presents results of a simulation using an experimental dataset from

the ACFR - University of Sydney database [101]. Nonlinear vehicle and measurement

models are used. The dataset was obtained by driving a car through a car park. The

landmarks used are tree trunks, as measured with a laser range finder. The reconstructed

maps are compared to GPS ground truth to assess accuracy.

This first experiment corresponds to a typical partially observable partially con-

trollable SLAM run showing the effects of marginal stability on the filter performance.

Figure 3.6 plots results on this run, shows the actual vehicle path and landmark location

estimates recovered by the algorithm, compared to GPS ground truth for the beacons.

Figure 3.5 frames b) and d) show the covariances both for the vehicle and landmark

state estimates. Note that even when the relative map is internally consistent, it is

slightly rotated and shifted from the actual beacon locations. The amount of this shift
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3.1 Effects of Partial Observability and Controllability
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Figure 3.5: Partially observable SLAM for a car-like vehicle using the University of
Sydney Car Park dataset.

depends on the initial vehicle uncertainty, i.e., the initial filter conditions, and can be

seen in Figure 3.5, frame c).

By performing the stability analysis, we have demonstrated that using the typical

range and bearing measurement model for SLAM system in a world-centric representa-

tion, it is not possible to obtain a zero mean state error estimate. Instead, one obtains a

constant bounded state estimate as in the linear case. The reason being, that the filter
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3.2 Fully Observable System
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Figure 3.6: Partially observable SLAM run. Vehicle path and landmark location
estimates, compared to GPS ground truth.

used, one in which the absolute vehicle and landmark position estimates stacked in the

same state vector, is marginally stable. However, a perfect relative map is produced

by the algorithm [40].

Changing the model it is possible to make the system observable and in such way

guaranteeing the stability of the filter as we will show in the following section.

3.2 Fully Observable System

Modifying appropriately the measurement model or the state-space, the estimated sys-

tem becomes asymptotically stable, i.e., it has a zero mean steady state estimation

error.

Full observability can be achieved by using several methods proposed in the past [2],

[11] and [76]: 1) fixed global references; anchors or markers, 2) the use of an external

sensor or 3) the use of the relative position of the landmark with respect to the position
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3.2 Fully Observable System

of the vehicle instead of global positioning [26].

The effect of full observability on the steady-state behaviour of SLAM system is

demonstrated using the anchoring method [2]. In the first example we analyse the case

of monobot SLAM with linear KF. Next, we present an example that shows the full

observability of an anchored nonlinear system. The third example shows a simulation

using the experimental vehicle data.

Example 3.3

We continue the Example 3.1, but now with an anchor added at the origin. The

measurement model becomes


 z

(0)
k

zk


 =


 −1 0

−1 1


x +


 w

(0)
k

wk


 (3.12)

No map state is needed for the anchor. The zero-th superscript in the measurement

vector is used for the consistent indexing of landmarks and measurements with respect

to the original model. It can be easily shown that the observability matrix for this

augmented measurement model is full rank [2].

The stability of the matrix (F−KHF) depends on the values of the Kalman gain

K =


 k11 k12

k21 k22


 . (3.13)

As shown next, the eigenvalues of this matrix lie inside the unit circle of the z-plane.

52



3.2 Fully Observable System

Figure 3.7: Eigenvalues of the observable one landmark monobot SLAM.

Substituting for the fully observable measurement model we find that,

k11 = −σ
4
ω + σ2

vσ
4
ω + 4σvσ

2
ω + 2σ2

ω + 3σ2
v

γ

k12 = −σ
4
ω + σ2

v + 3σ2
vσ

2
ω + σ2

vσ
4
ω

γ

k21 = −2σ2
ω + σ2

vσ
2
ω + 2σ2

v

γ

k22 =
σ4
ω + 2σ2

ω + σ2
vσ

2
ω + 2σ2

v

γ

(3.14)

where

γ = σ6
ω + 2σ2

vσ
4
ω + 6σ4

ω + 7σ2
vσ

2
ω + 4σ2

ω + 4σ2
v

(3.15)

The eigenvalues of the matrix (F−KHF) are shown in Figure 3.7 as a function of

the variances of the process and the measurement noises. The values never reach the

limits of zero or one, therefore the system is fully observable.
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3.2 Fully Observable System

In general terms, this shows how, in the fully observable case, the observability

matrix has full rank, for any values of Q and R, the eigenvalues of (F −KHF) will

always be inside the unit circle of the z-plane.

The effects of marginal stability discussed in Section 3.1 are eliminated when ob-

servability is guaranteed. Some simulation results in which partial observability has

been revised are presented in Figure 3.8 under the same conditions as in Example 3.1.

The vehicle and landmark estimation errors do converge to a zero mean signal (plots

(b) and (c)) and we observe a reduction in vehicle and landmark variance compared to

those in Figure 3.4.

The results of the previous example can be extended to more complicated models.

In the next example we develop the equations of the nonlinear planar vehicle and range

a bearing measurement model using anchors, to show how full osbervability is achieved

for a SLAM system.

Example 3.4

Let us consider the SLAM system of the planar vehicle of the Figure 3.9 mapping

two-dimensional landmarks xf = (xif , y
i
f )
>.

The planar vehicle is modelled as a wheeled mobile robot with differential steering.

Its state space is three-dimensional: two Cartesian coordinates and the angular orien-

tation. The vehicle is controlled by a linear velocity v and a angular velocity ω. The

process model used to predict the trajectory of the centre of projection of the sensor,

considering input noises, is given by,




xk+1

yk+1

θk+1


 =




xk + ((vk + vv,k) cos θk − l(ωk + vω,k) sin θk) ∆t

yk + ((vk + vv,k) sin θk + l(ωk + vω,k) cos θk) ∆t

θk + ∆t(ωk + vω,k)


 (3.16)

where l is the distance from the centre of the wheel axle to the location of the centre

54
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Figure 3.8: Fully observable SLAM for a monobot during Brownian motion with 100
iterations.
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3.2 Fully Observable System

x
r

y
r

Figure 3.9: Differential steering nonlinear vehicle. The Cartesian coordinates of the
control point (xr, yr) are located on the base of the laser range scanner, and were
chosen not coincident with the vehicle axle centre.

of projection for any given sensor1, ∆t is discrete time step, and vv, vω are zero mean

Gaussian input noises.

The Jacobian matrices Fr = ∂f(x,u)
∂x and Gr = ∂f(x,u)

∂v are obtained by differentiating

(3.16) with respect to states and noises. That is,

Fr =




1 0 −(vk sin θk − lωk cos θk)∆t

0 1 (vk cos θk − lωk sin θk)∆t

0 0 1


 (3.17)

and

Gr =




cos θk∆t −l sin θk∆t
sin θk∆t +l cos θk∆t

0 1


 (3.18)

The laser range scanner is considered as a typical sensor producing range and bear-

1We will also call it control point, because in further chapters it will be use for the controller.
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3.2 Fully Observable System

ing observations. The measurement model is given by


 zr,k

zβ,k


 =




√
(xif − xk)2 + (yif − yk)2 + wr,k

tan−1

(
(yif−yk)

(xif−xk)

)
− θk + π

2 + wβ,k


 (3.19)

with zr and zβ the range and bearing of an observed point landmark with respect to the

laser centre of projection. The absolute coordinates of such landmark are xif and yif

and the zero mean Gaussian measurement noises are wr and wβ.

The Jacobian matrix for this model is,

Hi =


 −

xif−xk
di

−yif−yk
di

0 . . .
xif−xk
di

yif−yk
di

. . .
yif−yk
d2i

−xif−xk
d2i

−1 −yif−yk
d2i

xif−xk
d2i


 (3.20)

with di =
√

(xif − xk)2 + (yif − yk)2.

The results from the previous example are easily extensible to this new vehicle model.

Thus, the measurement model of a global reference fixed at the origin, for the nonlinear

vehicle is

h(0) =




√
x2
k + y2

k + wr,k

tan−1
(
yk
xk

)
− θk + π

2 + wβ,k


 (3.21)

and its corresponding Jacobian is

H0 =




xk√
x2
k+y2k

yk√
x2
k+y2k

0 0 0 . . .

− yk
x2
k+y2k

xk
x2
k+y2k

−1 0 0


 (3.22)

The new measurement model results,

H =


 H0

Hi


 (3.23)

and it produces an observability matrix2,

2For more details about the observability matrix please refer to Chapter 4.
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Q =




H

HF

HF2

HF3

HF4




(3.24)

=




xk√
x2

k
+y2

k

yk√
x2

k
+y2

k

0 0 0

− yk

x2

k
+y2

k

xk

x2

k
+y2

k

−1 0 0

−xf−xk

d
−yf−yk

d
0

xf−xk

d

yf−yk

d

yf−yk

d2 −xf−xk

d2 −1 − yf−yk

d2

xf−xk

d2

0 0 − (xf−xk)vk sin θk+(yf−yk)vk cos θk

d
0 0

0 0 − (xf−xk)vk cos θk−(yf−yk)vk sin θk

d2 0 0

0 0 xkvk sin θk+ykvk cos θk

x2

k
+y2

k

0 0

0 0 xkvk cos θk+ykvk sin θk

x2

k
+y2

k

0 0




,(3.25)

which can be verified to be full-rank. Notice that for simplicity l = 0, but even with

l 6= 0 the full-rank condition does not change. That is, for the linearised nonholonomic

velocity-controlled planar mobile robot, simultaneous measurement of one anchor as

global reference, and the estimation of the position of any other landmark, full observ-

ability of the SLAM system is guaranteed.

For this particular vehicle model it is shown in [3] that visibility of a two-dimensional

anchor, guarantees full observability. This example showed that at least a two-dimensional

anchor with orientation is needed or, if anchors without orientation are used, two 2D

anchors can be used instead [85].

Steady state zero mean error is guaranteed for the SLAM algorithm by the certain

knowledge of some landmarks, for example we assume the first two landmarks are

anchored and the vehicle is localised with respect to them. To show this, in the next
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3.3 Fully Controllable System

example we present a nonlinear fully observable SLAM simulation using experimental

data.

Example 3.5

The second experiment corresponds to a completely observable SLAM run (using the

GPS measures for two anchors located at (2.8953,−4.0353) and (9.9489, 6.9239) ). In

this case, the vehicle and landmark covariance estimates do not depend on the initial

filter conditions, and thus are significantly reduced. This is shown in frames b) and d)

in Figure 3.10. The absolute landmark error estimate is also significantly reduced, as

shown in frame c). Figure 3.11 shows the actual vehicle path and landmark estimates

as recovered by the filter. The beacons, shown as empty blue circles in the centre of the

plot, are used as anchors for the map, and no state estimate is computed for them.

3.3 Fully Controllable System

To speed up the performance of the algorithm, some authors have proposed the use

of covariance inflation methods for the decorrelation of the state error covariance [58],

subject to suboptimality of the filter. Adding pseudo-noise covariance to the landmark

states is equivalent to making the system controllable. However, full decorrelation of

a partially observable system might lead to filter instability [69]. In this section we

want to show how to diagonalise only part of the state error covariance to obtain a

suboptimal filter that is controllable, linear in time, and stable at the same time.

A clever way to add pseudo-noise to the model is by diagonalising the state error

covariance matrix [57, 58, 69]. The result is a suboptimal filter that will compute

inflated estimates for the vehicle and landmark covariances, that has the computational

advantage of being uncorrelated. The addition of a covariance term ∆P to the a priori
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Figure 3.10: Fully observable SLAM for a car-like vehicle using the University of
Sydney Car Park dataset.

state covariance estimate

Pk+1|k = FPk|kF
> + GQG> + ∆P (3.26)

is equivalent to providing a new form for the plant noise Jacobian G′ =
[

G I

]

Pk+1|k = FPk|kF
> + G′


 Q

∆P


G′> (3.27)
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Figure 3.11: Fully observable SLAM run. Vehicle path and landmark location esti-
mates, compared to GPS ground truth.

∆P may be chosen, for example, such as to minimise the trace of a resulting block

diagonal P in (3.26) (see [69]).

Example 3.6

Continuing with Example 3.1, for the linear monobot case, choosing a full rank

∆P is equivalent to having noise input to more states than those that can be observed

with the filter. In this case, because of partial observability, both vehicle and landmark

variance estimates become unbounded. Figure 3.12 shows this for the same monobot as

in Example 3.1. This phenomena was first observed in [69] using relative maps.

Not only both the vehicle and landmark state estimation variances become un-

bounded. The addition of pseudo-noise should be performed only at most, in the amount

of states equal to the dimension of the observable subspace. Then, the linear system is

controllable but unstable because the pseudo noise was added to more states than the
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3.3 Fully Controllable System

uncontrollable ones, i.e. the system is fully decorrelated.

The following example presents a real SLAM system that is fully decorralated.

Example 3.7

Using the same database of Example 3.2, we present a third experiment that cor-

responds to a typical partially observable SLAM run, in which the entire state error

covariance is being decorrelated as discussed in Section 3.3. Figure 3.13 plots results of

this run, showing in frames b) and d) unbounded covariances both for the vehicle and

landmark state estimates, due to the näıve covariance inflation method used.

It is clear that the vehicle position is highly correlated with every landmark and that

the inflation produced by these terms is too large to maintain the covariance bounded

producing data association errors (see Figure 3.14).

One solution to the problem of instability during covariance inflation, is to decor-

relate only the landmark state estimates, and to preserve all vehicle to landmark cor-

relations.

∆P =


 0

Qf


 (3.28)

such that Pf + Qf , the map part of the state error covariance, is block diagonal.

Example 3.8

Figure 3.15 shows a partially observable monobot (Example 3.1) under Brownian

motion for which only the map part of the state error covariance matrix has been decor-

related. The algorithm does converge to a steady state solution under these circum-

stances, and still can be implemented in real time. The one landmark case is identical

to the original case, since the linear one landmark map is already diagonal (scalar

actually).
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Figure 3.12: Partially observable SLAM for a Brownian motion monobot with 100
iterations. The entire state error covariance is decorrelated with the minimal trace
solution [69]. By decorrelating the entire state error covariance matrix, the covariance
estimates become unbounded.
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Figure 3.13: Partially observable SLAM for a car-like vehicle using the University
of Sydney Car Park dataset. The entire state error covariance matrix is decorrelated
with the minimal trace solution [69].

For the two-landmarks case, the landmark variance estimate is greater than the

non-decorrelated shown in the third row in Figure 3.4 c). That is, the covariance has

been inflated during decorrelation. Furthermore, now that the system is controllable, the

Kalman gains for the landmark state estimates do not become zero, and they converge

to a steady state value.

We can see in all cases, that the covariance inflation suboptimal partially observable
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Figure 3.14: Vehicle path and landmark location estimates, compared to GPS ground
truth for a partially observable SLAM run decorrelating only the map part of the state
error covariance matrix.

SLAM converges only when

rank ∆P ≤ rank Q . (3.29)

The next example presents the fully controllable version of the partially observable

SLAM system using the ACFR database.

Example 3.9

A fourth experiment has been performed using the same data in Example 3.2. A par-

tially observable SLAM system decorrelating the map part of the state error covariance.

Adding pseudo-noise to the landmark states during the covariance inflation procedure

amounts to making the system controllable; and doing so for as many states as those

observable, produces both vehicle and landmark bounded state covariances estimates.

This is shown in Figure 3.16, frames b) and d). Figure 3.17 shows the actual vehi-

cle path and landmark location estimates recovered by the algorithm, compared to GPS

ground truth for the beacons. There are some data association problems due to the
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d) Kalman gains

Figure 3.15: Partially observable SLAM for a Brownian motion monobot with 100
iterations. The state error covariance is decorrelated only for the landmark part of
the state vector, with the minimal trace solution. By decorrelating only the map part
of the state error covariance matrix, we preserve filter stability.
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Figure 3.16: Partially observable SLAM for a car-like vehicle using the University
of Sydney Car Park dataset. Only the map part of the state error covariance ma-
trix is decorrelated with the minimal trace solution. By adding controllability to as
many states as those that are observable, the filter remains stable, and the estimated
covariances remain bounded.

large covariances, with a joint compatibility test [102]. Ssome of these misassociations

could be avoided, but in this case we wanted to show that landmark association is more

complicated because of the decorrelation process.
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Figure 3.17: Partially observable and fully contrallable SLAM run. Vehicle path
and landmark location estimates, compared to GPS ground truth with decorrelation
of only the map part of the state error covariance matrix.

3.4 Fully Controllable - Fully Observable System

Considering the fully observable case [2], even if we add pseudo-noise to the vehicle as

well as to the landmark states, the covariance will reach a steady-state value, and the

Kalman gain will not be zero, at least, in the linear case.

Example 3.10

Continuing with Example 3.3, diagonalising the map state error covariance P of

the monobot with observable measurements, the state error variances reach lower values

than those in the partially observable case and the Kalman gain never reaches the value

of zero as shown in Figure 3.18. The solution of the Riccati equation is now independent

of the initial covariance estimate P0|0.

We have observed experimentally however, that with linear vehicle models, it is best
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Figure 3.18: Fully observable SLAM for a Brownian motion monobot with 100
iterations. The entire state error covariance is decorrelated with the minimal trace
solution. In the linear case, it is possible to decorrelate the entire state error covariance
matrix, and still preserve filter stability.
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3.5 Conclusion

to also decorrelate only the map part of the state error covariance, even in the fully

observable case.

In the next example, nonlinear models with real data are used to show the behaviour

of the filter for this fully observable and fully controllable case.

Example 3.11

The last experiment shown, using again the ACFR database of Example 3.2, cor-

responds to a fully observable SLAM run using the same anchors as before, and also

decorrelating only the map part of the state error covariance. In this case, the vehicle

and landmark covariance estimates do not depend on the initial filter conditions, and

thus are significantly reduced. This is shown in frames b) and d) in Figure 3.19. The

absolute landmark estimate error is also significantly reduced, as shown in Figure 3.19,

frame c). Figure 3.20 was obtained with a suboptimal linear-time SLAM algorithm that

has both bounded covariance estimates, and independence on the filter initial conditions;

thus producing a fast and accurate absolute map.

3.5 Conclusion

We have shown that the typical partially observable approach to SLAM generates a unit

norm eigenvalue for the matrix F−KHF, making the state estimation error converge to

a non-zero-mean constant bounded value in the linear case. Marginal stability of such

partially observable system produces also at least one psd solution to the steady state

Riccati equation for the covariance error, provided the initial conditions of P are also

psd. Partial observability makes the final map dependant on the initial observations.

This situation can easily be remedied either by anchoring the map to the first landmark
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Figure 3.19: Fully observable SLAM for a car-like vehicle using the University of
Sydney Car Park dataset. Only the map part of the state error covariance is decor-
related with the minimal trace solution. Full observability guarantees independence
of the filter initial conditions, and an accurate absolute map is obtained, with smaller
covariance estimates than its relative counterpart.

observed, by having an external sensor that sees the vehicle at all times, or by using

a relative representation of the landmark with respect to the vehicle position that we

will refer later in this work, as sensor-centric mapping.

In addition, landmarks in the map are assumed to be static. Therefore, the covari-

ance yielded by the EKF will, asymptotically, tend to zero, and consequently the filter

gain for these components will tend to zero. This is because there is no process noise

entering into these components and thus, not satisfying the controllability condition.
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Figure 3.20: Fully observable and fully controllable SLAM run. Vehicle path and
landmark location estimates, compared to GPS ground truth with decorrelation of
only the map part of the state error covariance matrix.

This can be remedied by assuming an artificial process noise entering into the landmark

states. This pseudo-noise can be used to improve the speed of the algorithm, reduced

from quadratic to linear, including covariance inflation methods to diagonalise the state

error covariance matrix. We observed that this may lead to instability if pseudo-noise

is added in a higher state dimensionality than what can be observed. We proposed

in this chapter to diagonalise only the map part of the state error covariance, thus

guaranteeing convergence of P, and at the same time obtaining in the limit an O(n)

algorithm.
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Chapter 4

Observability Analysis of

Bearing-only SLAM

In this chapter we present an observability analysis of the SLAM system equipped

with a bearing-only sensor. Bearing-only SLAM refers to the case in when only the

direction to a feature from the sensor is measured, and no range information is available.

A common example of bearing-only sensor is a single camera. A block diagram of this

system is shown in Figure 4.1.

Bearing-only sensors present a problem to the SLAM algorithm because a single

measurement step can only provide incomplete information for the reconstruction of

the state space, with the consequence that feature locations cannot be estimated from a

single image, and must be computed from the tracking of landmarks over multiple views.

From a control theory viewpoint, we can say that one measurement step in bearing-

only SLAM renders the system unobservable. The fact that bearing-only SLAM is

unobservable, and that it can only become observable by integrating measurements at

different time steps once the appropriate motions are made, are known facts within the

SLAM community.

Our aim in this chapter is to provide a formal explanation to issues that are intu-
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Map Single Camera

u
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Figure 4.1: Block diagram of the closed loop system for estimation in Visual SLAM
process. This system is identical to the one shown in Figure 3.1 except that the general
sensor is replaced with a single monocular camera.

itively known or that have been commonly addressed with geometrical concepts. For

example, the observability analysis shows why nothing can be said about the location

of features that are sensed from a purely rotating bearing-only sensor, or that repeated

measurements to a landmark along the line of sight of a forward moving camera do not

aid in recovering its range. By providing a formal explanation to these simple issues, we

pave the road to understanding more complicated behaviours particular of bearing-only

SLAM systems.

Another outcome of our observability analysis is related to sensor trajectories. The

performance of the estimator in a bearing-only SLAM system is strongly related to the

trajectories followed by the sensor. Ultimately, one would want to drive the system

such as to avoid unobservable states. Only then we can guarantee bounded estima-

tion uncertainty. The analysis presented here explains why some bearing-only SLAM

systems recover from unobservable conditions.

In the literature, a common observability analysis for the nonlinear systems is per-

formed by using the technique in [62] which involves computing the Lie derivatives

over the nonlinear equations of the system. For example, in [106] the authors study

the observability of a mobile robot localising itself in a 2D world using bearing-only

observations to known features. In [96] the authors study the observability of multiple

robots attempting to localise themselves w.r.t the position of other robots. In [11] a
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nonlinear observability analysis for the planar robot absolute localisation and mapping

problem is performed. Their work concludes that absolute localisation and mapping is

observable only after two anchors (markers) have been observed. Other analysis could

also be fulfilled by numerically evaluating the observability Gramians.

Instead of performing a nonlinear observability analysis, an alternative explored as

well in this chapter is to consider our nonlinear system in its error form which allows

the system to be approximated with piecewise constant linear functions. This allows us

to use tools in linear systems observability [55] which greatly reduce the complexity of

the analysis. These tools also allow us to derive explicit expressions of the unobservable

directions in the state space that give insight as to what motions should be made, or

what features should be seen so as to improve observability of the entire estimation

process. Moreover, by characterising explicitly the form of the unobservable subspaces

we get a better understanding of the behaviour of the system.

Following the technique in [55], we analyse here some different SLAM systems, a

planar mobile robot, a 6-DOF model with inertial sensors, planar and 6-DOF constant

velocity models, all performing SLAM using the measurement modality of bearing-

only vision. The approach consists in determining the number of segments needed to

obtain a full rank of the so-called stripped observability matrix. The main idea is to

model these systems as piecewise constant, focusing mainly in the nullspace basis of this

stripped observability matrix finding the unobservable directions in order to enhance

observability. A similar methodology was applied to study the observability of SLAM

using range and bearing measurements for a UAV with inertial sensors in [77] and [19].

The chapter is organised as follows. In Section 4.1 a brief summary of observability

for linear systems is introduced. The rest of the section presents the dynamic ob-

servability analysis for different systems; a planar vehicle, the general planar constant

velocity model, a 6-DOF model with inertial sensors that reduces the estimated state

of the general 6-DOF constant velocity model that we present as well.

In Section 4.2 we present a nonlinear observability analysis for the planar vehicle,
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4.1 Observability for Linear Systems

where is shown absolute orientation cannot be recovered for the relative configuration

without anchors. Finally, Section 4.3 presents some ideas related with Fisher Informa-

tion and our problem of observability with bearing-only measurements.

4.1 Observability for Linear Systems

Observability is a notion that plays a major role in filtering and reconstruction of states

from inputs and outputs. Together with controllability, observability is central to the

understanding of feedback control systems.

Informally, observability answers the question of whether if an initial state x(0)

can be uniquely deduced from the history of observations. This requires that the

observability Gramian

O(0, t) ,

∫ t

0
eF

>τHH>eFτdτ (4.1)

be nonsingular or, equivalently, that the nullspace of O is 0 ∈ IRn, where F and H

are the state transition and measurement matrices, and n is the dimension of the state

vector. If this condition is met, then all states are observable.

If x(0) = ξ is unobservable over n steps, then it is unobservable over any number

of steps. Equivalently, the system is observable if and only if rank(O) = n or the di-

mension of its nullspace N is equal to zero. The observability condition is an indicator

whether or not the system contains all the necessary information to perform the esti-

mation with an error which is bounded. For the case of SLAM, observability implies a

bounded error both for localisation of the vehicle and features (see Chapter 3).

For time-invariant systems, the observability condition can be reduced to check

whether the matrix

Q ,




H

HF

...

HFn−1




(4.2)
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has rank n or not.

A time-variant system can be approximated by a piecewise constant system with

little loss of accuracy and with no loss of the characteristic behaviour of the system

[55]. For a piecewise constant system, its j-th segment dynamic model is

ẋ(t) = F(t)x(t) + G(t)u(t) (4.3)

z(t) = H(t)x(t), (4.4)

where,

F(t) = F1,H(t) = H1 t0 < t < t1

F(t) = F2,H(t) = H2 t1 < t < t2
...

...

F(t) = Fj ,H(t) = Hj tj−1 < t < tj .

(4.5)

The observability matrix (4.2) for each segment is

Qj =




Hj

HjFj
...

HjF
n−1
j



. (4.6)

The system is instantaneously observable at time j if the nullspace of the observ-

ability matrix is equal to 0. However, to guarantee observability of a piecewise constant

system, the full-rank condition must hold for the Total Observability Matrix (TOM)

QTOM,j =




Q1

Q2e
F1τ1

...

Qje
Fj−1τj−1 · · · eF1τ1




(4.7)

with τj , the time interval between tj and tj−1.
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The Stripped Observability Matrix (SOM), a simplified form of the TOM is defined

as

QSOM,j =




Q1

Q2

...

Qj



, (4.8)

and it can be shown [55] that if

N (Qj) ⊂ N (Fj), ∀j (4.9)

then

N (QSOM) = N (QTOM) (4.10)

So, when the condition holds, the analysis is as simple as calculating nullspace of the

SOM instead of the TOM. Using the SOM for the study of the observability of piecewise

constant systems is much simpler than using the TOM, since the exponentials eFjτj

need not be computed.

In order to use the SOM method to analyse a nonlinear system, we need to approx-

imate the nonlinear system as piecewise linear. Considering a time step small enough

to get a linear relationship as a transition matrix evaluated in the actual time, it is pos-

sible to get this kind of approximation. Moreover, considering this piecewise constant

system over several segments we are able to perform a sort of a dynamic observability

analysis.

4.1.1 Planar Vehicle SLAM

One distinguishing feature of the wheeled mobile robots systems in SLAM is the use of

proprioceptive sensor measurements as inputs. This kind of sensor allows the SLAM

system to have more information about its own motion. The extereoceptive sensor, for

our particular case is a single camera, is used only for correction.
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World-centric maps are represented in a global coordinate space in which the state

vector is formed by the absolute position of the vehicle and features. Robot-centric or

sensor-centric maps, in contrast, are described in measurement space (reference to the

robot or sensor). In that case, the state vector has only the distance between vehicle

and features.

The world-centric representation is partially observable as in the case of the planar

vehicle with range and bearing measurements (see Chapter 3), contrary to the world-

centric representation with anchors where the resulting system is fully observable with

the constraint of always needing a translational motion.

In the following example we will analyse the consequences, in terms of observability,

of having world-centric maps, anchored world-centric maps or relative maps when only

odometry and measurements of a single camera are available.

Example 4.1

Let us consider a planar vehicle controlled by linear and angular velocities υr and

ωr, respectively. A camera is set on the vehicle centre of rotation. The continuous

process model that describes the position and orientation of the centre of projection of

the camera is given by




ẋ

ẏ

θ̇


 =




υr cos θ

υr sin θ

ωr


 . (4.11)

In Example 3.4 we used the same process model in a discrete time representation

and considered the distance between the centre of rotation of the vehicle and the centre

of projection of the camera collinear, l = 0.

Assume a measurement model which makes bearing observations to point features.
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In the simple planar case, the bearing to a feature is

ϕ = tan−1

(
ry
rx

)
− θ , (4.12)

where r = xf − p = [rx, ry]
> is the 2D distance vector between any given feature and

the sensor in global coordinates, p = [xr, yr]
> and θ is again the sensor orientation.

This model, as with most other SLAM models, is nonlinear. We can express the

SLAM system in its indirect (error) form where the state contains the vehicle position

error p̃, the vehicle orientation error θ̃, and the feature position errors x̃
(1)
f , . . . , x̃

(i)
f .

The state error is defined as the difference between the true state and the estimated

state.

World-centric map

The state transition for the j-th piecewise segment of this error form is




˙̃x

˙̃y

˙̃
θ

˙̃x
(1)
f

˙̃y
(1)
f
...

˙̃x
(i)
f

˙̃y
(i)
f




= Fj




x̃

ỹ

θ̃

x̃
(1)
f

ỹ
(1)
f
...

x̃
(i)
f

ỹ
(i)
f




. (4.13)

Considering only one feature, we have five components in the state vector (three

vehicle pose states and 2 feature position states). The state transition matrix for the
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j-th segment of the continuous piecewise linear system is:

Fj =




0 0 −υr, j sin θj 0 0

0 0 υr, j cos θj 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




. (4.14)

The measurement model for the j-th piecewise segment, also expressed in this indi-

rect form, is z̃ = Hjx̃, where

Hj =
[

ry
d2
− rx
d2
−1

−ry
d2

rx
d2

]
(4.15)

and d2 = r2
x + r2

y. Note also, that although not explicitly indicated in the notation, the

relative feature position r, and the distance d in Hj are also with respect to the j-th

piecewise segment.

Now, let us consider the first time segment. The observability matrix, from (4.6),

is (with r, d, v, and θ evaluated for the 1st segment)1

Q1 =




ry
d2
− rx
d2

−1 − ry
d2

rx
d2

0 0 − ry
d2
υr sin θ − rx

d2
υr cos θ 0 0


 . (4.16)

The resulting nullspace basis for this instantaneous observability matrix is,

N (Q1) =








rx

ry

0

0

0




,




1

0

0

1

0




,




−rx
0

0

0

ry








. (4.17)

1In (4.16) and in the rest of the observability matrices shown throughout the chapter, zero rows
are not shown, as they do not contribute to determining the unobservable directions of the state space.
These typically come from evaluating the powers of the transition matrix when building them up.
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Thus the unobservable modes are rxx̃r + ryỹr, x̃r + x̃f , and −rxx̃r + ryỹf . An

important conclusion from (4.17) is that all of the nullspace basis vectors are orthogonal

to the vehicle orientation state (i.e. the third element of every nullspace basis vector is

zero). This means that the vehicle orientation is the only completely observable state

from the original state vector; except for the case of υr = 0, in which case the null

space basis is of dimension 4, and the orientation is also unobservable as is shown in

the following expression,

N (Q1) |υr=0=








−rx
−ry
0

0

0




,




rx

0

0

0

−ry




,




1

0

0

1

0







d2

0

−ry
0

0








. (4.18)

Note also that the values of rx and ry are irrelevant, that is, regardless of where

the feature is located with respect to the sensor, there will always be three unobservable

modes in one time segment (except of course, for the singular case of a feature on the

optical centre of the camera ry = 0).

Needless to say, the nullspace basis for the TOM is exactly the same because the

null space of Fj,

N (Fj) =








1

0

0

0

0




,




0

1

0

0

0




,




0

0

0

1

0




,




0

0

0

0

1








(4.19)

contains the null space of the SOM.

Extending the analysis for two time segments the SOM takes the form in (4.8), and

82



4.1 Observability for Linear Systems

computing its nullspace basis we get

N (QSOM) =








1

0

0

1

0




,




0

1

0

0

1








. (4.20)

Adding more features or time segments does not modify the observability conditions.

That is, the system will remain partially observable with non-observable modes x̃r +
∑

i x̃
(i)
f and ỹr +

∑
i ỹ

(i)
f as the nullspace basis above shows for the case of only one

feature.

Anchored world-centric map

Consider the same state space as before. Now we change the characteristics of the

unknown environment setting features such that their exact position in 2D is known.

We call this known features anchors following the spirit of [3]. Some other authors

have called them markers [11].

The observability condition using anchors instead of relative mapping for the planar

case of range and bearing have been analysed before [3, 85]. In that case, only one time

segment and two anchors are needed. In the nonlinear observability analysis performed

by [11] for localisation of a planar vehicle with bearing-only measurements it is suggested

that two anchors are needed in order to guarantee full observability. For our linear

analysis of the planar bearing-only case, two anchors and two time segments are needed

for the system to become fully observable. However, it should be noticed that one anchor

seen from two different time steps is equivalent to having two anchors.
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The new measurement matrix for the j-th segment is,

Hj =




ry
d2

− rx
d2

−1 − ry
d2

rx
d2

a
(1)
y −y

(da(1))2
− a

(1)
x −x

(da(1))2
−1 0 0

. . .

a
(a)
y −y

(da(a))2
− a

(a)
x −x

(da(a))2
−1 0 0



, (4.21)

where da(a) = (a
(a)
y − y)2 + (a

(a)
x − x)2 and a is the number of anchors.

Notice that more measurements of the relative position of the vehicle are available

because of the anchor, therefore the instantaneous observability matrix is larger than in

the world-centric with no anchors case.

Performing the same analysis as above, the null space basis of the instantaneous

observability matrix using the world-centric model with two anchors and one unknown

feature is, 






0

0

0

−rx,1
−ry,1








. (4.22)

Moreover N (QSOM) = 0, and the analysis shows that the planar vehicle with one

feature and two anchors is completely observable in two time segments. Again N (Qj) ⊂
N (Fj) therefore the TOM is observable for one or more anchors so the condition 4.10

is set.

Relative map

Alternatively, let us consider as the new state the relative position error of the vehicle

with respect to to the features rather than separate global vehicle and map feature errors.

In other words, let us consider a relative (considering the case when the vehicle’s centre

of rotation corresponds to the camera’s centre of projection) model, where r̃(i) is again
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x̃f
(i) − p̃. The state vector becomes

x =




r̃(1)

r̃(2)

...

r̃(i)

θ̃




. (4.23)

Notice that the measurement model observes directly the relative angle between the

new state but we still want to know the orientation of the vehicle with respect to an

absolute frame, then we will still consider the measurement model as in (4.12) and

Hi
j =




r(1)y
(d(1))2

− r(1)x
(d(1))2

−1 · · · 0 0 0

. . .

0 0 −1 · · · r(i)y
(d(i))2

− r(i)x
(d(i))2

0


 . (4.24)

The dimension of the state vector is reduced by two, consequently the nullspace basis

of the instant observability matrix is reduced to one vector for each feature, i.e.

N (Q1) =








r
(1)
x,1

r
(1)
y,1

0

0
...

0

0

0




,




0

0

r
(2)
x,1

r
(2)
y,1

...

0

0

0




, · · · ,




0

0

0

0
...

r
(i)
x,1

r
(i)
y,1

0








. (4.25)

In the case of having only one feature, the nullspace dimension of the instantaneous

observability matrix is only one, and again, the observable state is the orientation.
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As the number of features increases, the orientation is the only state that remains

observable. According to this analysis, the actual orientation of the vehicle referred to

the global coordinate frame is being recovered because of the linearisation performed to

get the error (indirect) form, but this is not necessarily true2. In this case having the

reference frame on the first sensor position, the initial orientation has been implicitly

considered equal to zero, and because of the use of the proprioceptive sensors (encoders)

it is always possible to get the relative orientation of the vehicle.

For the particular case of having a feature aligned exactly in front of the camera,

(ry = 0), the unobservable mode for the one time segment observability matrix is r̃x.

This means that having only such measurement available, the relative position between

the vehicle and the feature is unrecoverable, but the orientation can be recovered. A

similar situation happens when the feature is aligned with the image plane, (rx = 0),

and the unobservable mode is r̃y. Although it is unlikely that such case will be detected

by the sensor, unless an omnidirectional camera is used.

Opposite to global localisation or world-centric model with no anchors, this SLAM

system becomes fully observable in two time-segments, as can be verified from the SOM

and the TOM becoming full-rank.

This result is of special importance, as it gives a theoretical grounding to what has

become common practice in SLAM systems. That is, on the use of relative maps as

opposed to world-centric maps.

As in the one time segment case, the system will remain unobservable when a feature

is aligned with the field of view of the sensor, ry = 0, with an unobservable mode r̃x. The

same does not happen however, for a feature aligned along the y axis, as the difference

rx will move away from zero during the second segment, and the SOM and TOM become

full rank.

Moreover, when there is no translation (pure rotation), the nullspace basis augments

2A further nonlinear analysis using Lie differentiation, following the approach in [96], shows that
actually the orientation with respect to a global frame is not observable for this relative representation.
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by one vector. Therefore, neither the position nor the orientation can be fully recovered

(only a combination of the two). In this case, the SOM and TOM are not full rank,

and consequently there is no way to estimate the whole state for bearing-only SLAM

when υr = 0. On the other hand, when there is no rotation, the system is completely

observable in two time segments, except again, for the unfortunate case when a feature

is aligned along the line of sight of the sensor.

4.1.2 Inertial SLAM

6-DOF inertial systems, for example an unmanned aerial vehicle, have again proprio-

ceptive sensors that give to the estimator more information about the state. Moreover,

in these systems not only the inputs are consider as proprioceptive, but also the mea-

surements provided by the inertial sensors, reducing this way the size of the state vector

to be estimated by the filter.

World-centric representations are partially observable as in any SLAM case. In order

to consider a world-centric with anchors representation more than two anchors must be

considered to get the system completely observable. Again relative representations can

be considered to model this kind of systems, producing a fully observable bearing-only

SLAM system.

Example 4.2

Let us consider a non-planar motion model with 3D features. For example a model

that requires six degree of freedom equations to predict the position, velocity and altitude

of the vehicle in an inertial navigation framework. The continuous process model is




ṗ

v̇

Ψ̇


 =




v

C>f s + g

Eω


 . (4.26)
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where f s and ω are the sensor-frame referenced vehicle accelerations and rotation rates

as provided by inertial sensors on the vehicle, and g is the acceleration due to gravity.

The direction cosine matrix C is given by

C =




cψcθ sψcθ −sθ
cψsθsφ − sψcφ sψsθsφ + cψcφ cθsφ

cψsθcφ + sψsφ sψsθcφ − cψsφ cθcφ


 , (4.27)

and the rotation rate is

E =




1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ


 . (4.28)

As with our previous model, this inertial SLAM system can also be casted in indirect

form [77], with the states of the system being the vehicle pose errors and feature location

errors. The system can be considered as piecewise linear constant, and its SOM can be

used to analyse its observability properties. This is done in [19] for the range and bearing

case. They show this system to be completely observable in two time segments for the

relative model and partially observable for the world-centric model in n-landmarks. Our

aim is to perform here the same analysis for the more challenging bearing only case.

In a three-dimensional world, two bearing angles are typically measured, the azimuth

ϕ, and the elevation ϑ, usually coming from a vision camera with 3D absolute position

p, and absolute Euler angles Ψ. In this case, the measurement model is

z =


 ϕ

ϑ


 =




tan−1
(
rsy
rsx

)

tan−1

(
rsz√

(rsx)2+(rsy)2

)

 , (4.29)

where rs = C(xf − p) is the relative position of the feature with respect to the sensor.

World-centric map
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The inertial SLAM system in the indirect form with zero input, because it does not

affect the analysis, is 


˙̃p

˙̃v

˙̃Ψ

˙̃xf




=




ṽ

[×f ] Ψ̃

C>ω̃

0



. (4.30)

The segment transition matrix of this example is

Fj =




0 I3×3 0 0

0 0 [×fj ] 0

0 0 0 0

0 0 0 0



. (4.31)

For range and bearing measurements it is possible to find a linear relationship be-

tween the measurements and the relative states using the indirect form [77]. Trans-

forming into Cartesian coordinates the information contributed by range and bearing

errors they end up with an expression equivalent to

r̃m = H̃m




p̃

ṽ

Ψ̃

x̃f



, (4.32)

where H̃m =
[
−I3×3 0 [×r̂] I3×3

]
is the measurement matrix for range and bear-

ing observations and [×r̂] is the skew symmetric matrix of the estimate of the relative

position between the feature and the vehicle positions. For bearing-only measurements

the above expression must be pre-multiplied by the partial derivative of (4.29) with re-

spect to the position of the feature in sensor coordinates, rs. Then, the measurement
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matrix for our bearing-only case becomes

Hj =
∂z

∂rs
H̃m , (4.33)

where

∂z

∂rs
=


 − rsy

(ds)2
rsx

(ds)2
02×3

− rsxr
s
z

ds((ds)2+(rsz)2)

rsyr
s
z

ds((ds)2+(rsz)2)
ds

(ds)2+(rsz)2


 , (4.34)

with (ds)2 = (rsx)
2 + (rsy)

2.

Again as in the previous systems the world-centric model is partially observable, the

non-observable directions correspond to the sensor position and the landmark position

according to the null space of the SOM,

N (QSOM) =








1

0

0

0

0

0

0

0

0

1

0

0




,




0

1

0

0

0

0

0

0

0

0

1

0




,




0

0

1

0

0

0

0

0

0

0

0

1








=








i

0

0

i



,




j

0

0

j



,




k

0

0

k








, (4.35)

where i, j,k are the unitary vectors in the x, y and z directions respectively.

Our conclusion of this observability analysis is that, for a world-centric inertial

system performing SLAM with only one camera. The system is not fully observable,

only linear velocity and misalignments (related with the orientation of the vehicle) are

recovered.
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Anchored world-centric map

Let us consider now the part corresponding to the anchor in the measurement model:

Ha =
∂z

∂rs
H̃a , (4.36)

where

H̃a =
[
−I3×3 0 [×r̂] 0

]
, (4.37)

and the new measurement matrix for this particular case is formed by appending (4.33)

with (4.36) for each 3D anchor considered in the environment.

The analysis is shown here for one feature only, but the result holds for more fea-

tures. The null space basis of the instantaneous observability matrix with one or two

anchors gives a partially observable system in two time segments and for three or more

anchors and one unknown feature the nullspace of the observability matrix for the first

segment is

N (Q1) =








03×3

03×3

03×3

Cr̂



,




r̂× f

03×3

f

03×3








. (4.38)

That is, in one time step the system can recover only linear velocities, because it

has some fixed references to the world reference frame. On the other hand, using three

or more anchors, the SOM is full rank in two time segments.

For the particular case of having no linear acceleration (f = 0) the dimension of

N (Q1) is equal to four, linear velocities are still recovered in one step, but the null

space basis of the SOM results of dimension equal to one recovering the position of the

feature plus the velocity but not the vehicle’s position and orientation.

Relative map

Let us change the state vector in which the error in the relative position of each
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feature with respect to the vehicle position is considered rather than the separate global

vehicle and the map feature positions,

x =




r̃

ṽ

Ψ̃


 (4.39)

with

r̃m =
[
−I3×3 0 [×r̂]

]



r̃

ṽ

Ψ̃


 . (4.40)

The observability matrix for one time segment is

Q1 =




∂z
∂rs 0 ∂z

∂rs × r̂

0 ∂z
∂rs 0

0 0 ∂z
∂rs × f


 . (4.41)

There are only six independent rows given that the partials ∂z
∂rs are of size 2 × 3.

The nullspace basis of this matrix is

N (Q1) =








Cr̂

03×3

03×3


 ,




ζ(C, r̂, f)

03×3

f


 ,




03×3

Cr̂

03×3







, (4.42)

where

ζ(C, r̂, f) =




ζx

0

ζz


 . (4.43)

For the sake of clarity we only show the form of this function. The full expression

is a long relation between the linear acceleration, the estimated relative position, and

the orientation misalignment angles. Noteworthy, regardless of its final form, it has
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one zero along r̃x and nonzero elements in the other two directions.

Then, from a visual inspection of 4.42 we can conclude that the relative position

between vehicle and feature errors, and the misalignment can only be partially recon-

structed during one time segment in our bearing-only case.

We analyse now the case of two time segments for the inertial bearing-only SLAM.

The corresponding SOM is

QSOM,2 =




∂z
∂rs1

0 ∂z
∂rs1
× r̂1

0 ∂z
∂rs1

0

0 0 ∂z
∂rs1
× f1

∂z
∂rs2

0 ∂z
∂rs2
× r̂2

0 ∂z
∂rs2

0

0 0 ∂z
∂rs2
× f2




, (4.44)

this becomes full rank (as well as the TOM), although N (Qj) * N (Fj).

Considering the particular case of setting to zero the linear acceleration, i.e. f = 0.

The systems adopts a constant velocity form, for which only position, linear velocity,

and misalignment is estimated. The rank of the instantaneous observability matrix Q1

becomes four; thus, when the system does not accelerate it loses observability. The

interesting issue is that for two time segments the corresponding SOM is still not full

rank. This system becomes in a sort of constant velocity model. The only observable

state is the linear velocity error with a nullspace basis of rank two.

Constant velocity models are of great value when vehicle dynamics are difficult to

obtain. In the following subsection we devote some time to the observability analysis

of such a model for monocular SLAM.
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4.1.3 Planar Constant Velocity SLAM

Constructing a motion model for an agile camera which is carried by a person, mobile

robot or other moving platform may seem to be fundamentally different to modelling

the motion of a wheeled mobile robot, or an aerial vehicle with inertial sensors: the key

difference is that in the mobile robot and the aerial vehicle cases we can use the inputs

driving the motion or the inertial information to predict motion estimates, whereas

there is not such prior information about an agile camera’s movements, i.e. it does not

consider proprioceptive sensing.

Example 4.3

Let us consider a planar constant velocity motion model that is linear and constant.

Nonetheless, we will use the same error form as before to perform the analysis because

the measurement model is still nonlinear, and in order to be in the same context as

with the planar vehicle model. The system model with no landmarks is given by




ẋr

ẏr

θ̇

υ̇x

υ̇y

ω̇z




=




υx

υy

ωz

fx

fy

αz




, (4.45)

where [υx, υy], ωz, [fx, fy] and αz are the linear velocity, the angular velocity in the

orthogonal direction, linear acceleration and angular acceleration, respectively.

The world-centric models with no anchors for constant velocity systems performing

SLAM are partially observable. In such case dim(N (Q1)) = 6 recovering no-directions,

and dim(N (QSOM)) = 2 only recovers the angular and linear velocities.

Anchored world-centric map

The state space consists of two-dimensional position, orientantion and two-dimensional
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linear velocity, angular velocities and unknown features:

x = [xr, yr, θ, υx, υy, ωz, x
(1)
f , y

(1)
f , . . . , x

(i)
f , y

(i)
f ]> ,

where the constant transition matrix for the case of one unknown feature is,

F =




0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




. (4.46)

The measurement model used for this analysis is the same as in (4.12), adding

the corresponding measurements to the anchors in the Jacobian results (4.21). Obvi-

ously, both the instantaneous observability matrix and the SOM change depending on

the number of anchors set in the environment.

For the observability analysis using only one anchor, the rank of the instantaneous

observability matrix is equal to four. The linear and angular velocities are recovered in

the first time segment. The next time segment gives us dim(N (QSOM,2)) = 1 and no

more directions are being recovered.

Moreover, the constant velocity model with two anchors is fully observable in two

time segments. However the instantaneous observability matrix it has rank six, recov-

ering only linear and constant velocities in one step.

In addition, considering more than two anchors, the null space basis of the instan-
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taneous observability matrix is,

N (Q1) =




0

0

0

0

0

0

−r(1)
x,1

−r(1)
y,1




. (4.47)

Therefore, the unobservable direction is only along the feature in the first time seg-

ment, that is we are able to recover position, orientation and velocities in the first time

segment only if the camera is translating.

The null space basis of Fj is

N (Fj) =








−1

0

0

0

0

0

0

0




,




0

−1

0

0

0

0

0

0




,




0

0

−1

0

0

0

0

0




,




0

0

0

0

0

0

−1

0




,




0

0

0

0

0

0

0

1








, (4.48)

given that N (Qj) is contained in the null space basis of Fj, the condition (4.10) is met

and the used of the SOM is valid.

In two time segments, the null space basis of the SOM is empty as in the case with

two anchors. Consequently the TOM is full rank in two time segments for more than

two anchors.
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Relative map

Using the relative position between the features and camera, the system with only

one feature becomes 


˙̃rx

˙̃ry
˙̃
θ

˙̃vx

˙̃vy

˙̃ω




= F




r̃x

r̃y

θ̃

ṽx

ṽy

ω̃




, (4.49)

with the constant transition matrix

F =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




. (4.50)

The instantaneous observability matrix using the measurement matrix in (4.24) con-

sidering one features results in (r and d evaluated for the 1st time segment)

Q1 =




ry
d2
− rx
d2

0 0 0 0

0 0 0
ry
d2
− rx
d2

0


 , (4.51)
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and the nullspace basis of this matrix is

N (Q1) =








rx

ry

0

0

0

0




,




0

0

0

rx

ry

0




,




0

0

1

0

0

0




,




0

0

0

0

0

1








. (4.52)

For this system, none of the state components is completely observable in one step,

not even the orientation, and it has four unobservable modes, as can be seen from the

above instantaneous observability matrix nullspace basis (4.52).

When the analysis is made for two or more time segments, two unobservable modes

spanned the null space where nor the orientation, nor the angular velocity can be recov-

ered. The nullspace basis for the two time segments SOM is

N (QSOM) =








0

0

1

0

0

0




,




0

0

0

0

0

1








. (4.53)

The addition of more features to the state space does not change this result. Nev-

ertheless, there is one particular constraint, the velocity must be nonzero to at least

recover the relative positions.

The main difference between this system and the planar vehicle, is that the constant

velocity system is uniquely provided with extereoceptive sensors. This is the reason be-

cause no relative representations in constant velocity models achieve the rank condition
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to be fully observable.

4.1.4 6-DOF Constant Velocity SLAM

A stochastic constant linear velocity, constant angular velocity model does not assume

that the camera moves at a constant velocity over all time, but that the statistical model

of its motion in a time step is that on average, except for undetermined accelerations

that occur with a Gaussian profile. The implication of this kind of models is that

certain smoothness on the camera motion in any direction can be modelled, i.e. very

large accelerations are relative unlikely.

As we have confirmed for all the previous models, world-centric representation with

anchors is the only formulation that lets systems with extereoceptive sensors only be

fully observable it there exists some translation. For such reason, in the reminder of

this section, we will only analyse the case of the global representation.

Example 4.4

A constant velocity motion model with 6 degree of freedom assumes that the camera

can be attached to any mobile platform and is free to move in any direction in IR3 ×
SO(3). A smooth unconstrained constant-velocity motion model of the form




ṗ

v̇

Ψ̇

ω̇

ẋf




=




v

f

Eω

α

0




, (4.54)

where Ψ̇ is the Euler representation of the orientation angles.

Anchored world-centric map

Expressing the 3D constant velocity model in its error form using the same change
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of variables as in the Inertial SLAM case, the model transforms to




˙̃r

˙̃v

˙̃Ψ

˙̃ω




=




ṽ

0

Ĉ>ω̃

0



, (4.55)

and its transition matrix is simply

Fj =




0 I 0 0

0 0 0 0

0 0 0 Ĉ>

0 0 0 0



.

Notice that the 6-DOF constant velocity case is very similar to the inertial SLAM

example, with the difference that three more states are added for the the angular velocity.

In the inertial SLAM case these states are typically measured with gyroscopes and as

such are not estimated.

The measurement model is the same as in the Inertial SLAM case (4.29) and the

measurement matrix is the same as (4.33). Adding to the measurements the observa-

tions to two or more anchors, the extension of the measurement Jacobian takes also the

form in (4.36). For this model, the nullspace basis of the instantaneous observability

matrix has dimension seven, with only two anchors. Or equivalently, we can say that

with one camera, using a constant velocity model, and for one time segment, it is only

possible to recover eight independent combinations of the state space.
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The null space basis of the first segment observability matrix is,

N (Q1) =








03×3

C>1 × r

03×3

i

03×3




,




03×3

C>2 × r

03×3

j

03×3




,




03×3

C>3 × r

03×3

k

03×3




,




[×r]1

03×3

i

03×3

03×3




,




−[×r]2

03×3

j

03×3

03×3




,




−[×r]3

03×3

k

03×3

03×3




,




03×3

03×3

03×3

03×3

−rs








.

(4.56)

Notice that the size of ∂z
∂rs1

depends on the number of anchors we are using, for this

particular case using one unknown feature and three or more anchors, the size is 10×n.
In the general case the size of Hj will be 2nm+ 2na× n.

Adding one more piecewise segment to the analysis,

QSOM,2 =




∂z
∂rs1

0 ∂z
∂rs1
× r̂1 0

0 ∂z
∂rs1

0 ∂z
∂ps1
× Ĉ>1 r̂1

∂z
∂rs2

0 ∂z
∂rs2
× r̂2 0

0 ∂z
∂rs2

0 ∂z
∂ps2
× Ĉ>2 r̂2



, (4.57)

which is full rank. Then the world-centric constant velocity model with for more than

two anchors is observable in two steps.

This result is coincident to what we have shown for the constant velocity planar

model.
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4.2 Observability for Nonlinear Systems

For nonlinear systems Hermann and Krener [62] emphasise the dependence of the ob-

servability on the control inputs, contrary to the linear case. An analysis based on

this dependence, plus the lack of error due to the linearisation, seems to give a better

understanding of the nonlinear system.

Consider the system:

Σ :
ẋ = f(x,u)

z = h(x)
(4.58)

where u ∈ IRl, x ∈ IRn is the state vector of a manifold M of dimension n and z ∈ IRm.

This system is observable if, and only if, the state can be expressed as a function

of the observation h, the input, and their derivatives with respect to time:

x = Υ
(
z, ż, . . . , z(b1),u, ż, . . . , z(b2)

)
(4.59)

For nonlinear systems, the observability can be checked by computing the dimension

of the smallest codistribution that contains the output one-form3, and is invariant with

the control vector fields.

Let us consider a nonlinear system which is linear with respect to the control input,

i.e.

ẋ =
∑

p

gp(x)up . (4.60)

A sufficient condition allows one to conclude the observability of the system, by

computing the dimension of the space spanned by the gradients of Ξ, where Ξ is the

space that contains all the Lie derivatives [121] of the field h(x) along the control vector

fields of g = [g1, g2, . . . , gp]
>.

3Also called a covector, is a linear function which maps each vector in a vector space to a real
number, such that the mapping is invariant with respect to coordinate transformations of the vector
space.
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Then, if the rank of

dΞ =
[
L0

gdh1 . . . Ln−1
g dh1 | . . . L0

gdhm . . . Ln−1
g dhm

]>
(4.61)

is equal to the dimension n of the system, the observability rank condition according

to [62] is satisfied and the system is locally weakly observable.

Specifically, the Lie derivative of a scalar h(x) with respect to a vector field g(x) is

the differential of a function defined by

L1
gh(x) =

∂h(x)

∂x
g(x) . (4.62)

Similarly the Lie derivative of dh(x) with respect to g(x) is defined by

L1
gdh(x) = dL1

gh(x) (4.63)

=
∂h(x)

∂x

g(x)

x
+

(
∂

∂x

(
∂h(x)

∂x

)>
g(x)

)>
. (4.64)

The superscripts indicates recursive Lie derivatives defined as follows,

L0
gdh(x) = dh(x) (4.65)

Lqgdh(x) = Lq−1
g dh(x)

g(x)

x
+

(
∂

∂x

(
Lq−1

g dh(x)
)>

g(x)

)>
(4.66)

Making an analogy with the linear observability analysis of the Section 4.1, using

(4.61) as the observability matrix, not only is possible to know the degree of observabil-

ity of the system, but also to obtain its nullspace basis and to look at the nonobservable

directions of the state as the following example shows.

Example 4.5

Let us consider the relative representation of the planar vehicle (4.11) in Exam-

ple 4.1. For the nonlinear observability analysis it is convenient to introduce polar
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X

Y

Yr Xr
θ

rx

ry
ϕ

(xr, yr)

(xf , yf)

ρ

Figure 4.2: Camera on vehicle SLAM sensor-centric configuration. The Cartesian
coordinates of the control point (xr, yr) are located on the base of the camera. The
(ρ, ϕ+ θ) are the polar coordinates of the base of the camera with respect to Xr and
Yr relative frame.

coordinates for the relative state [rx, ry, θ],

ρ =
√
r2
x + r2

y (4.67)

ϕ = atan2(ry, rx)− θ , (4.68)

where ρ is the distance between the vehicle and a landmark and ϕ is the bearing of the

landmark with respect to the vehicle considering vehicle orientation. Figure 4.2 shows

the vehicle landmark configuration in the global and in the relative frames.

Now the state will be [ρ, ϕ, θ], and its dynamics from (4.11) given that rx = ρ cos (θ + ϕ)

and ry = ρ sin (θ + ϕ) is

ρ̇ = υ cosϕ (4.69)

ϕ̇ =
υ

ρ
sinϕ− ω (4.70)

θ̇ = ω . (4.71)

The system is already linear with respect to the input, then with u1 = υ, u2 = ω the
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vector field g is

g1 = [cosϕ,
1

ρ
sinϕ,−1]> (4.72)

g2 = [0, 0, 1]> (4.73)

For bearing-only measurements (4.12) h = ϕ, we have

L0h = ϕ , (4.74)

and the first order Lie derivatives

L1
g1h = 1

ρ sinϕ L1
g2h = 0 . (4.75)

Having the vectors that spanned Ξ and differentiating their Lie derivatives as require

(4.61), we obtain

dΞ =




0 − sinϕ
ρ2

0

1 cosϕ
ρ 0

0 0 0


 (4.76)

in a matrix form.

The rank condition is not achieve because the dimension of the space spanned by dΞ

is equal to 2 and n = 3. The nullspace basis is

N (dΞ) =




0

0

1


 . (4.77)

Therefore, it is clear from this analysis that the global orientation of the vehicle is

not observable, contrary of what the linear observability analysis shows.

105



4.3 Fisher Information Matrix and Observability

4.3 Fisher Information Matrix and Observability

The motivation for finding conditions implying the non singularity of the limiting Fisher

information matrix or simply information matrix is intrinsically linked with the asymp-

totic properties of the estimator in those models (consistency or asymptotic stability).

The estimation problem is observable if the information matrix is nonsingular for a

finite number of samples. Given observability, a solution for Riccati equation exists,

and performance bounds on the accuracy of the state estimate can be determined.

When a system is unobservable, the observability matrices describe which components

of the state cannot be determined. Likewise, observability relates to the convergence

of recursive the estimator used to solve the estimation problem.

An estimation problem may be unobservable for some time, but then become ob-

servable as the system evolves. In particular the estimation in bearing-only SLAM

problem is dependent on the vehicle path through the nonlinear measurement equa-

tions. This dependence is related with the dynamic observability of the system. The

observability of bearing-only SLAM requires sufficient vehicle motion. While the state

estimation remains unobservable or only partially observable, the behaviour of the un-

observable estimator states could be marginally stable or unstable in some cases, and in

such cases the filter diverges. Only when sufficient motion and appropriate observations

are achieved can the entire state estimate converge toward true values.

In linear systems the null space of the observability matrix shows the nonobservable

part of the state. The Fisher information matrix contains information about the relative

observability of the estimated state. The singular values of this matrix describe the

relative observability of the corresponding part of the estimated state, showing which

states can be estimated with good accuracy and which will have large uncertainties.

The information filter [97] maintains the inverse of the covariance matrix - the Fisher

information matrix- associated with and extended Kalman filter implementation. The

rank of the information matrix at any point in the estimation has a direct link to the

rank of the observability matrix of the system. A rank deficient information matrix
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indicates that the information along a given axis of the state space is zero and this

state is unrecoverable due to partial observability in the system.

Example 4.6

In this example we show simulation results which demonstrate the way in which

the observability affects the information in the estimation during SLAM. An extended

information filter [97] is used to fuse encoder data (the proprioceptive sensor) of the

ground planar vehicle of the Example 4.1 and bearing-only observations using the process

and measurement models in (4.11) and (4.12) and using a world-centric state vector as

shown in (4.13).

The information matrix allows us to represent complete initial uncertainty in the

estimated states as zero information rather than infinite covariance, and provides a

better estimator for representing the initial infinite uncertainty of the position of a fea-

ture along the line of sight of a single observation. The only remaining issue with the

extended information filter for bearing-only SLAM is that the Jacobian of the obser-

vation model cannot be evaluated until a sufficiently accurate estimate of the range to

the feature is derived from subsequent observations of a feature from different poses.

To overcome this, the Jacobians of the process and measurement models are evaluated

using the simulated truth data instead. This assumption is obviously not applicable in

a real scenario. However, it does not affect the value of the inverse covariance matrix

in the information filter. We can therefore examine the value of the inverse covariance

matrix as an indication of the errors in the estimation process, under the assumption

that linearisation errors in the extended information filter are ignored.

Figure 4.3 illustrates the trajectory taken by the vehicle. The vehicle starts off

facing north and is stationary for 10 seconds. There are two observable features, one

located directly north of the vehicle and one located to the north east. Both features are

within the observation range of the on-board feature sensor for the entire duration of

the simulation. After 10 seconds the vehicle moves north with a velocity of 1 [m/s] for

4 seconds and then turns at 0.25 [rad/s] and continues to the east without stopping for
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Figure 4.3: Vehicle trajectory and feature map for the simulation.The vehicle is
stationary for 10 seconds then moves northerly for 4 seconds and turns and moves to
the north-east for another five seconds. There are two features in the map, visible to
the vehicle for the entire duration of the simulation.

Figure 4.4: Rank of the information matrix. After 14 seconds the information matrix
is rank 5 and has a rank deficiency of 2, representing the globally unobservable mode
specified in (4.20).

another 6 seconds.

Figure 4.4 shows the rank of the information matrix during the simulation. Since

there are two observed features, visible for the entire simulation, there are seven states

in the state vector in total. The system model in this case corresponds to that in

(4.13). While the vehicle is stationary, only two states are observable corresponding to

a combination of the vehicle and feature position and vehicle orientation angle. As the

vehicle moves north after 10 seconds, the vehicle’s non-zero velocity and the multiple

observations of feature 2 from different pose angles result in a rank increase of two in
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Figure 4.5: Marginalised orientation angle information. While the vehicle is station-
ary, the orientation angle is unobservable and thus has zero information. When the
vehicle begins to move at the 10 second mark, the orientation angle becomes observable
and thus the information increases.

the information matrix corresponding to an increase in the number of observable states.

The orientation angle is observable and also the relative position of the second feature

to the vehicle and the relative east position of the first feature to the second feature but

not the relative north position of the first feature due to the vehicle moving along the

line of sight to this feature. When the vehicle moves to the north-east after 14 seconds,

the rank of information matrix rises to five corresponding to the relative north position

of feature 1 w.r.t the vehicle becoming observable. The remaining rank deficiency of

two corresponds to the unobservable modes in (4.20).

Figure 4.5 shows the marginalised vehicle orientation angle information4 during the

simulation. The information about the orientation angle starts at zero and only begins

to increase when the orientation angle becomes observable as the vehicle begins to move

forward at the 10 second mark.

Figure 4.6(a) shows the marginalised information from the information matrix cor-

responding to the modes x̃r +
∑

i x̃
(i)
f and ỹr +

∑
i ỹ

(i)
f . These are the unobservable

modes shown in (4.20) which cannot be made observable through any number of time

segments or any amount of platform maneuvering. The information corresponding to

these states thus remains at zero throughout the entire simulation.

Figures 4.6(b) and 4.6(c) show the marginalised information corresponding to the

4Marginalisation of a single state from a multi-dimensional inverse covariance (information) matrix
involves computing the Schur complement of the diagonal matrix element of the state of interest (see
[47] for details).
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state space modes x̃r − x̃1,f and ỹr − ỹ1,f (i.e. the relative position of the vehicle w.r.t

feature 1) and x̃1,f − x̃2,f and ỹ1,f − ỹ2,f (i.e. the relative position of feature 1 w.r.t

feature 2). All information about the relative position of features w.r.t the vehicle or to

other features is zero (they are unobservable) before the vehicle starts moving. After the

10 second mark when the vehicle starts moving north, information about the relative

position of the first feature w.r.t the second feature in the easterly direction starts to

increase and it is only after the vehicle starts to move east that the information about

the relative position of feature 1 w.r.t both the vehicle and feature 2 on both axes starts

to increase as all of these states become observable.

4.4 Conclusion

The purpose of this chapter was to achieve a better understanding of bearing-only

SLAM systems from a control theory viewpoint. Our analysis was focused on determin-

ing the bases for the nullspace of the observability matrices for a variety of bearing-only

SLAM systems. Linear observability analyses were performed by treating some systems

as piecewise linear and under the consideration of bearing-only measurements. More-

over, the analysis was complemented with a nonlinear analysis of the most common

bearing-only planar vehicle model.

Specifically, the observability analysis indicated the instantaneous unobservable

modes in the system and the directions in the state space for which no information

is being added over the set of observations. Our results can be used to determine the

the set of motions that the vehicle must take in order to result in maximum observability

and thus induce constrained error drift in the estimation task.

An example application in which maneuvers for path segments are chosen so as

to enhance observability conditions for an inertial system is given in [19] for the case

of range and bearing SLAM. An equivalent strategy could be developed using the
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theoretical results in this chapter to the case of a planar vehicle with bearing only

sensing.

For the planar vehicle, our analysis showed that the orientation is the only state

that can be recovered in one step. In two steps, the sensor-centric model of the planar

vehicle performing SLAM with bearing-only measurements is fully observable. We

have formalised the notion that triangulation from different positions is needed to fully

recover pose and have demonstrated the concept using tools from control theory. As a

consequence to these findings, it is important to avoid the case of zero velocity for this

case.

The 6-DOF inertial model becomes a constant velocity model when no acceleration

is exerted on the system. When this happens, the system requires a third step to reach

the rank condition for the TOM. In the case of zero velocity for the planar vehicle, the

system simply becomes unobservable.

The bearing-only constant velocity models are more restrictive in terms of what can

be observed within a limited number of segments. For the anchored systems, velocities

can be recovered in one segment. The accelerations, inputs to the system, do not affect

the observability, but it is clear that zero velocity produces a lack of observability.

An interesting conclusion of the chapter is that the number of unobservable modes in

the world-centric case reaches a lower limit. Adding more time segments to the analysis

of any world-centric model is also of little use to estimating the global position of the

vehicle or features, as these modes will always be unobservable. The use of anchors or

using a sensor-centric approach, in the case of having proprioceptive sensors, allows the

system to become fully observable when the appropriate vehicle motions are made.
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(a) Modes x̃r +
P

i x̃
(i)
f and ỹr +

P

i ỹ
(i)
f .

(b) Modes p̃x − x̃1,f and p̃y − ỹ1,f .

(c) Modes x̃1,f − x̃2,f and ỹ1,f − ỹ2,f .

Figure 4.6: Marginalised information of modes. a) These modes remain unobserv-
able regardless of any maneuvering by the vehicle; b) these modes only become fully
observable when the vehicle traverses laterally to each of the features; c) the easterly
component (y-axis) becomes observable when the vehicle begins to move (after 10 sec-
onds) but the northerly component (x-axis) only becomes fully observable when the
vehicle traverses laterally to each of the features (after 14 seconds).
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Chapter 5

Closed Loop Control

One of the objectives of this thesis is to close the control loop of the estimated system.

A block diagram representation of such closed-loop system is shown in Figure 5.1.

In the case of a known map but noisy observations, it is possible to go from A to B

with an appropriate control law, i.e. by following a predefined trajectory. However in

the case of SLAM, the map is uncertain and the question is whether it is possible to

follow a desired trajectory from A to B, while guaranteeing at the same time that the

entire vehicle-map system remains stable.

In this chapter, our aim is to show how any such predefined trajectory can be

followed as accurately as possible while at the same time a map is being built and the

vehicle is kept localised. For any of such strategies however, convergence to the chosen

intermediate navigation goals, e.g. predefined paths or locations, should be guaranteed

by the generation of the appropriate low-level control commands.

The desired trajectory should come from a higher-level planning strategy. For

example, vehicle maneuvers may be chosen to reduce localisation uncertainty [37, 118],

or by guiding a vehicle during a SLAM session in order to explore the environment

with the goal of minimising the entropy of the map [16, 49].

Once a high-level motion plan is generated, two control strategies are possible: open
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EKF

Controller
Vehicle and

Map
System

Sensors
u

x
z

xk|k

x
∗

xk|k

Figure 5.1: Block diagram of the closed loop system for estimation and control in
SLAM process.

loop and closed loop. Open loop strategies seek to find a bounded sequence of control

inputs, driving the vehicle from an initial position to an arbitrary final position, usually

working in conjunction with a motion planner [83, 100]. Feedback control systems are

generally more robust to uncertainty and disturbances compared to their open-loop

counterparts. For this reason closed-loop control is essential in real mobile robotics

because robots and sensors are subject to noise and uncertainty.

In this chapter we formalise the estimation-control approach to SLAM, concen-

trating only on the feedback closed-loop for the task of stabilising the system along

the trajectory. In the literature, the most proximate approach to closing the control

loop in SLAM is by incorporating visual servoing techniques as done in [23], or by

implementing a PD controller over a trajectory produced by an A* algorithm [134].

Two control strategies are applied to the SLAM system. First in Section 5.1, a

regulation control law that can be used to direct the vehicle to a desired location

in an optimal manner. This strategy, known as optimal Linear Quadratic Gaussian

(LQG) regulation, is obtained by minimising a quadratic performance index, and comes

naturally from the Kalman filter derivation, being its dual.

In Section 5.2, we propose a second strategy, a nonlinear control technique called

feedback linearisation to follow a predefined trajectory. Each section contains examples

with simulations of a nonlinear vehicle model and a camera moving freely in Cartesian
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5.1 LQG Regulation

space. The generalisation of the approach to the case of multiple vehicles is presented

also in Section 5.2.

5.1 LQG Regulation

In this section, it is shown how to use the optimal vehicle state estimate provided by the

Kalman filter to drive the vehicle to a desired location. In control theory, the problem

is known as regulation, and, for a linear system with Gaussian noises and a quadratic

cost function, an optimal solution exists in the form of the LQG [53].

The performance index is quadratic with respect to the state and the control inputs

J = E

[
k−1∑

i=0

x>i Q1xi + u>i Q2ui

]
, (5.1)

where Q1 and Q2 are chosen psd. The minimisation of this performance index would

drive the state x to zero, although the extension to a general desired nonzero state is

straightforward [53].

The performance index in (5.1) can be decomposed into two terms, one for minimis-

ing the state estimate and the input , and the second one for minimising the estimation

error. Given that the estimation error does not depend on the control input u, it is

chosen to minimise the first part of J only. The control law for such regulator is

uk = −Lkxk|k , (5.2)

Lk = (Q2 + G>kTkGk)
−1G>kTkFk , (5.3)

Tk = Q1 + L>kQ2Lk + (Fk −GkLk)
>Tk(Fk −GkLk) . (5.4)

Separation of the LQG into two parts, the optimal state estimation, and the optimal

controller, gives a Kalman filter independent of the matrices Q1 and Q2, which specify

the optimal controller. Similarly, the optimal control gain L does not depend on the
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u x z

z = h(x,w)

Pk|k

ẋr = f(xr,u,v)

xk+1|k+1 = xk+1|k+

xk|k

L = (Q2 + G>TG)−1G>TF

P = P−KSK>

xf = 0

K
(

z− zk+1|k

)

u = −Lxk|k
xk|k

v w

Figure 5.2: Structure of the closed-loop system. The LQG controller and the EKF.

statistics P, Q, and R of the random noises. This is referred to as the Separation

principle.

Furthermore, the Separation principle allows to write the closed loop system dy-

namics as


 xk+1

ek+1


 =


 F−GL GL

0 F−KHF




 xk

ek


+


 G 0

G−KHG −K




 vk

wk


 . (5.5)

The structure of this stochastic control is shown in Figure 5.2.

The eigenvalues of the closed-loop system are given by those of the state-feedback

regulator dynamic F−GL together with those of the state-estimator dynamics F−KHF.

The closed loop system is stable when both of these sub-matrices are stable. For a fully

observable monobot, it is straightforward to verify that F−KHF is always stable, and

the vehicle part of F−GL is stable for any positive definite L.

Example 5.1

Continuing with the Example 3.4 that of the planar vehicle, we derive LQG regulator

using the vehicle and measurement models (3.16) and (3.19). Note that the pose of the
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5.1 LQG Regulation

vehicle, and hence, the control point is located off the vehicle axis of rotation in order

to avoid kinematic constraints. The control point is chosen at the centre of projection

of the sensor, in this particular case a laser range scanner, placed on the front of the

vehicle, thus simplifying the measurement model.

In order to show the feasibility of using LQG regulation during SLAM, we simulate

an environment with 16 landmarks. The vehicle reference frame is shown in Figure 3.9.

In the plots shown in Figure 5.3 the vehicle is driven with the LQG regulator from

an initial location at (-7,0) to the point (10,10), while at the same time building a map

of the environment, and using the revised Kalman estimates to recompute the stochastic

control gain (for this nonlinear case, there is no guarantee that the control is optimal).

Figure 5.4 shows plots of the vehicle state estimate, the estimation error, and the input

command. The control law to get to the desired position p∗ = [10; 10] is

u = −L(pk|k − p∗) (5.6)

where L is the gain in (5.3), Q1 and Q2 are chosen psd equal to the identity.

Figure 5.5 shows a runtime plot of the eigenvalues of F−GL evaluated with the

plant Jacobians F and G. The plot shows the control strategy to be not only optimal

by duality from the EKF, but also stable, even when linearisations are used. Notice the

three eigenvalues are less than one during the whole simulation time.

LQG is stable for a controllable vehicle in SLAM. Moreover, having full observabil-

ity, the filter in SLAM is also stable due to the separation principle. For the linear case

we can be sure of this separation, but this is not the case for a nonlinear system.
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(a) LQG and SLAM
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Figure 5.3: Linear quadratic Gaussian (LQG) regulation and SLAM for a 2D vehicle.

0 5 10 15 20 25
−10

−5

0

5

10

15

Time(secs)

S
ta

te
(m

 a
nd

 ra
d)

x1
x2
θ

(a) State estimates

0 5 10 15 20 25
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time(secs)

E
rr

or
(m

 a
nd

 ra
d)

x1
x2
θ

(b) State estimate error

0 5 10 15 20 25
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time(secs)

C
on

tro
l(m

/s
 a

nd
 ra

d/
s)

linear velocity
rotational velocity

(c) Input commands

Figure 5.4: State estimation and control using Linear Quadratic Regulation.

5.2 Feedback Linearisation

Linear control methods rely on the key assumption of small range operation for the

linear model to be valid. When the required operation range is large, a linear controller

is likely to perform poorly or can become unstable, because the nonlinearities in the

system cannot be properly compensated. Nonlinear controllers, on the other hand, may

handle the nonlinearities in large range operation directly.

Given a nonlinear plant to be controlled, we design a nonlinear control law using

feedback linearisation in order to follow a desired predefined trajectory. The feedback

linearisation approach is commonly used to control nonlinear systems by algebraically

transforming the system dynamics into an equivalent model of a simpler form. It
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Figure 5.5: Eigenvalues of F−GL for an LQG control strategy. Asymptotic stability
is guaranteed when these eigenvalues are less than one.

differs from conventional (Jacobian) linearisation in that linearisation is achieved by

exact state transformations and feedback, rather than by linear approximations of

the dynamics. The controller presented here however, avoids nonholonomic kinematic

constraints by changing the control point off the axle centre of the vehicle. For a recent

treatment to the control of wheeled vehicles in the presence of nonholonomic constraints

and estimation uncertainties, see [30].

To generate a direct relationship between the estimate of our state control point

yk = xr,k|k, and the control input uk, the system model is rewritten as

yk+1 = Qr(yk)uk. (5.7)

We choose the control input to be in the form1

uk = Q−1
r (yk)U , (5.8)

where U is the new input to be determined. The nonlinearity in (5.7) is cancelled,

and we obtain a simple linear single-integrator relationship between the estimation of

the control point and the new input being U = yk+1. The desired state trajectory or

1In the case when the matrix Qr(yk) is not full rank the appropriate pseudoinverse matrix
(Q>

rQr)
−1Q>

r can be used.

119

Navigation/Figures/lambdaslqg.eps


5.2 Feedback Linearisation

position is defined as y∗k.

Choosing the new input U as

U = y∗k+1 −Q2(yk − y∗k) . (5.9)

The tracking error is defined as ec,k = yk − y∗k. Replacing the tracking error in

(5.9) and the resulting expression in (5.8) and (5.7), the controlled closed loop system

becomes

ec,k+1+Q2ec,k = 0 , (5.10)

being an asymptotically stable error dynamics if Q2 is chosen psd. This control law

can be used to stabilise a nonlinear controllable system along a time parameterised

trajectory or to a certain point.

Example 5.2

We will now show feedback linearisation control scheme applied to the same motion

and measurement models as in Example 5.1. Now, instead of linearizing the system,

we consider a linear model with respect to the input.

The closed loop equations of our estimated system are

xk+1|k+1 = f(xk|k)uk + K(zk+1 −Hxk+1|k) (5.11)

uk = −Q−1
r (y∗k+1 −Q2(y

∗
k − yk)) (5.12)

where

Qr =


 cos θk −l sin θk

sin θk l cos θk


 , (5.13)

and Q2 is an arbitrary psd constant matrix. Our new L = Q−1
r Q2, by analogy with

Example 5.1, depends on the state estimate xk|k, and guarantees convergence to zero

for the tracking error ec,k in finite time.

According to the Separation principle (5.5), asymptotic stability of the system is
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5.2 Feedback Linearisation

guaranteed only for a control gain L such that the eigenvalues of the vehicle part of the

state in F−GL are less than one.

Figure 5.6 presents a simulation for the same planar vehicle following a circular

path parameterised in time, while simultaneously performing SLAM. The path is

y∗k =


 r cos(ωk)

r sin(ωk)


 (5.14)

y∗k+1 =


 −r sin(ωk)

r cos(ωk)


 , (5.15)

where r = 7 [m] is the radius of the circle and ω = 5π
180 [rad s−1] is angular velocity of

the robot motion.

The desired trajectory should come from a higher-level planning strategy. But since

that is not the scope of this chapter, but to guarantee concurrent tracking and estimation

stabilities, simple circular paths are chosen instead.

Figure 5.7 shows plots for the vehicle state estimate, the state estimation error,

and the history of control commands. Note in the last plot, that when the motion is

initiated, the control law chooses a saturated translational velocity to reach the circular

path, settling around a steady-state value 0.6 [m/s]. Ignoring the uncontrollability of the

angular orientation produces a drastic fluctuation of the angular velocity signal during

this initial transient interval, then stabilising to the desired angular velocity, set at 5

[deg/s].

Control stability is determined by the eigenvalues of F−GL, plotted in Figure 5.8.

Note that, when the tracking error is large during the initial transient interval, the

error dynamics is not stable. But, once the vehicle approaches the circular path, the

controller stabilises. Presumably, by choosing a desired time parameterised trajectory

with an initial pose coincident with the initial pose estimate, would suffice to solve this

phenomenon.
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Figure 5.6: Feedback linearisation strategy for control and SLAM.

Even with such a stable control law, given the kinematics constraint of the vehicle

model used, the entire vehicle pose [x1, x2, θ] cannot be stabilised (see [17]). For this

reason, we have decided to let yk = [x1, x2]
> be the Cartesian coordinates of the vehicle

location only, and not to try to optimally control the vehicle orientation. The control

point is off the rotation axis. The matrix Q1 becomes full rank and the pseudoinverse

in (5.8) is no longer necessary. The simulations show, that by controlling the vehicle

position only, and letting the vehicle orientation be a free variable, after an initial

transient interval, the predefined time parameterised trajectory can still be accurately

followed with this type of vehicle.

For a wheeled mobile robot in SLAM having fully observability, stability is guar-

anteed. Moreover, a stable tracking error dynamics is achieve by using a feedback

linearisation control law.
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(b) State estimate error
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Figure 5.7: State estimation and control using feedback linearisation.
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Figure 5.8: Eigenvalues of F−GL for a feedback linearisation control strategy.
Asymptotic stability is guaranteed when these eigenvalues are less than one.

5.2.1 Extension to MultiRobot Control

The extension to multirobot system is direct, the SLAM and control equations are

derived not just for one, but for a group of vehicles. Following the same notation, the

motion of the entire set of vehicles and the map measurements are governed by the

discrete time stochastic state transition model

xk+1 = f(xk,uk,vk) (5.16)

zk = h(xk) + wk . (5.17)

The state xk = [x>r1,k, . . . ,x
>
rt,k

,x>
f (1) , . . . ,x

>
f (n) ]

> contains the pose of the vehicles

xr1 , . . . ,xrt at time step k, and a vector of stationary map features xf (1) , . . . ,xf (n) .
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5.2 Feedback Linearisation

The input vector uk = [u>r1,k, . . . ,u
>
rt,k

]> is a multi-vehicle control command, vk =

[v>r1,k, . . . ,v
>
rt,k

]> is the plant noise, wk = [w>
f (1),k

, . . . ,w>
f (n),k

]> is the sensor noise,

and both are Gaussian random vectors with zero mean and block diagonal covariance

matrices Q and R, respectively. Similar to the case of a single vehicle, an optimal

estimate of (5.16), in a least squares sense, is given by the expression

xk+1|k+1 = f(xk|k,uk,0) + K(zk+1 − h(f(xk|k,uk,0))) (5.18)

with covariance

Pk+1|k+1 = FPk|kF
>+GQG>−K[H[FPk|kF

>+GQG>]H>+R]K> . (5.19)

The Jacobians F and G represent first order linearisations of the multi-vehicle model

with respect to the state and the plant noise. Similarly, the Jacobian H contains first

order linearisations of the measurement model with respect to the entire state.

Example 5.3

We apply now the same feedback linearisation approach to two robots in an environ-

ment equivalent to that in Example 5.2. The system dynamics (5.16) must be described

in controllability canonical form. That is, linear with respect to the input u(k).

yk+1 = Qr(yk)(uk + vk) (5.20)

with yk = [xr1.k, yr1,k, . . . , xrt,k, yrt,k]
> only the multirobot location part of the state

vector.

Choosing the control law as

uk = Q−1
r

(
y∗k+1 −Q2(y

∗
k − yk)

)
, (5.21)

the closed loop equations for the multirobot state and multirobot state estimate error
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are,

yk+1 = y∗k+1 −Q2(yk − y∗k) + Qrvk (5.22)

xk+1|k+1 = (F−KHF)xk|k + (G−KHG)vk −Kwk . (5.23)

As in the single-vehicle case, the estimation and the control problems separable

fullfill separation principle. The eigenvalues of the closed-loop system are given by those

of the feedback dynamics Qr(yk), together with those of the state estimator dynamics

F −KHF. The closed loop system is stable only when both matrices are stable. We

have designed Q2 for a stable closed-loop system, and for a fully observable estimation

problem.

Figure 5.9 shows simulation results for a pair of robots simultaneously following two

time parameterised circular paths, while performing SLAM. The objective is to track

the desired path as accurately as possible.

Figure 5.10 shows plots for the vehicle state estimates, the state estimation error,

and the history of control commands.

Finally, Figure 5.11 shows the asymptotic landmark state estimate trace covari-

ances. The plot is typical of a SLAM map: the landmark localisation uncertainties

decrease until reaching an asymptotic minimum and specifically shows the decrease in

all landmark localisation uncertainties as the algorithm proceeds, showing asymptotic

convergence of the estimation part of the problem.

5.2.2 3D Single Camera Control

One of the main objectives of this thesis considers the problem of navigation using a

single camera. From the point of view of SLAM, this problem is more difficult than the

ones we have considered so far because the world is three-dimensional and observations

are bearing only. The lack of observability inherent to this system shown in Chapter 4,
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Figure 5.9: Simultaneous multirobot localisation, control, and mapping following
circular paths.

makes inminent the use of an active control.

Sim in [118] analysed a family of parameterised in time trajectories for a 2D mo-

bile robot with a bearing-only sensor to minimise the uncertainty meanwhile during

exploration. Non constant motion allows this kind of systems to have good estima-

tor behaviour. Moreover, bearing-only measurements produce uncertainty along the

axis of the camera and perpendicular motion with respect to this axis produce larger

reductions in uncertainty than motions along the sight of the camera. Another issue

well known in SLAM is that some environment loops should to be closed from time to

time. For such systems it is mandatory to do this early on so as to keep the variances

bounded.

Example 5.4

Let us consider now a single camera moving in a a typical 3D human environment,

mapping visual features with minimal prior information about motion dynamics, for

instance using a constant velocity model. Our aim is to localise the sensor and build a
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(a) Robot 1 state estimates
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(b) Robot 2 state estimates

0 50 100 150
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time (sec)

E
rr

or
 R

ob
ot

 1
 (m

 a
nd

 ra
d)

x
y
θ

(c) Robot 1 estimation error
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(e) Robot 1 control command
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(f) Robot 2 control command

Figure 5.10: State estimation (vehicle pose and 2D map) and control using feedback
linearisation to follow a circular path.
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Figure 5.11: Landmark trace covariances of the circular path for one 2D vehicle.

feature map by computing the appropriate control input in order to follow any predefined

path. This is another nonlinear system that can be controlled using separability during

estimation and control.

The discrete constant velocity motion model is,

xv,k+1 =




pk+1

qk+1

υk+1

ωk+1




=




pk + (υk + fk∆t)∆t

Pqk

υk + fk∆t

ωk + αk∆t



, (5.24)

where p, q, υ, ω are the position, the orientation represented in quaternions, the linear

velocity and the angular velocity respectively of the camera. The input to the system

are the accelerations linear fk and angular αk. Notice the orientation is represented

in quaternions, a similar motion model is used in Example 4.4, but with a different

representation for the orientation (Euler angles).

Suffice to say that p = [x, y, z]> and q = [q0, q1, q2, q3]
> denote the pose (three states

for position and four for orientation using a unit norm quaternion representation), and

υ = [υx, υy, υz]
> and ω = [ωx, ωy, ωz]

> denote the linear and angular velocities, respec-

tively, corrupted by zero mean normally distributed linear and angular accelerations
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f = [fx, fy, fz]
>, and α = [αx, αy, αz]

>. The quaternion transition matrix is

P = cos

(
∆t‖Ω‖

2

)
I +

2

‖Ω‖ sin

(
∆t‖Ω‖

2

)
Ω× , (5.25)

with Ω = [0, ωx, ωy, ωz]
> the angular velocity vector expressed in quaternion form, and

Ω× its skew-symmetric matrix representation.

The redundancy in the quaternion representation is removed by a ||q|| = 1 normal-

isation at each update, accompanied by the corresponding Jacobian modification.

We assume a measurement model that makes bearing observations to three-dimensions

point features. Image projection priors are estimated with a full perspective wide angle

camera 
 u

v


 =


 u0 − uc/

√
d

v0 − vc/
√
d


 (5.26)

where the position of a 3D map point is first transformed into the camera frame x
c,i
f =

[xc, yc, zc]> = C(xif − p), with C the rotation matrix equivalent of q, and

uc = fkux
c/zc

vc = fkvy
c/zc . (5.27)

The radial distortion term is d = 1 +Kd(u
2
c + v2

c ), and the intrinsic calibration of the

camera is known; focal distance f , principal point (u0, v0), pixel densities ku and kv,

and radial distortion parameter Kd.

We propose to use feedback linearisation approach to control this camera moving in

a 3D environment in order to stabilise along any desired path parameterised in time.

For instance, the camera could be mounted on any given mobile platform with no motion

constraints in the cartesian space and it should be able to track such path.

One of the most stable paths we found was a circle path which returns periodically
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5.2 Feedback Linearisation

Figure 5.12: Desired trajectory for the vehicle. Back and forth circular path with

r = 1.5 and ω = 15π
180 .

as it is shown in Figure 5.12, the curve expressed in terms of the time is,

y∗k =




r sin
(
ω∗y
(
sin (2k)− 2k

π

))

0

−r cos
(
ω∗y
(
sin (2k)− 2k

π

))

0

ω∗y
(
sin (2k)− 2k

π

)

0




, (5.28)

where r being the radio of the circle is constant and ω∗y is a constant value that depends

on the frequency. Note ω∗ = [0, ω∗y , 0]
>. Differentiating y∗k with respect to the time

gives the desired velocities y∗k+1 of the system.

We choose the control point as the camera position yk = pk|k. Note the system

(5.24) is already linear with respect to the input in that case Qr = I, therefore u = U .

The aim is to stabilise the system along the desired trajectory (5.28), consequently

the proposed control is


 f

α


 =


 −Q2v

(
υk|k − y∗k

)
−Q2p

(
pk|k − y∗k

)

α∗ −Q2ω

(
ωk|k − ω∗

)


 (5.29)
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5.2 Feedback Linearisation

where Q2v, Q2p and Q2ω are psd constant matrices for tuning the controller and for

providing with it the appropriate units.

Our control law can regulate the system to a certain position or along a given trajec-

tory. Moreover, this low-level control law could even be used to evaluate action outcomes

given a desired position, as we will see in the following chapter.

To show how the proposed control law stabilises the estimated system along the

desired trajectory we simulated a camera system moving freely in Cartesian space, using

3D points to localise itself while performing SLAM.

In order to get an idea how the real system would behave, we developed a simulated

environment in Matlab/Simulink. This environment modeled the camera translating

and rotating freely in 3D according to the model (5.24), 30 3D points are distributed

uniformly around the whole space and they are projected into the 2D camera view using

the full perspective wide-angle camera model in (5.26). The EKF is used to estimate the

camera pose and the landmark positions. A separate module is in charge of computing

the input to the system, the control commands. This last module uses the estimated

state as the input. In Appendix B is described more in detail the simulated setting.

The proposed parameterisation in time trajectory is chosen taking into account the

fact that intuitively a single camera SLAM system should close short loops in Cartesian

space from time to time to remain localised and consistent, i.e. the estimation should

be inside of the uncertainty represented by the covariance, and to must be able at the

end, to reduce uncertainty.

Figure 5.13 shows a simulation of the monocular 6 degree of freedom (DOF) system

in which the trajectory followed by the camera is a circle of radius 1.5 [m] and the

resulting feature map for a room of size 6× 2× 8 [m]. Figure 5.13 a) shows the desired

and estimated camera trajectory, Figure 5.13 b) shows the accelerations produced by

the controller and 5.13 c) the tracking path errors, which indicate difference between

desired and estimated 3D positions. For this simulation, the initial estimated pose is

very close to the real value but with some uncertainty associated.
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Figure 5.13: State estimation and control for single camera SLAM. Estimated and
camera desired trajectory, control signals and tracking position errors.

In Figure 5.14 the estimation errors and their covariances are shown. Notice that

covariance is quite variant, and that closing short loops in Cartesian space is crucial

to reduce it.

It should be stressed this SLAM system does not consider any information from

odometry or any other sensor than a camera. This is the reason that enables such a

system to be mounted in any mobile platform.
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Figure 5.14: State estimation for single camera SLAM. Estimation errors for camera
position and orientation bounded for the 2σ variance.

5.3 Conclusion

Assuming separability between optimal state estimation and regulation, we have been

able to present two vehicle control strategies that do not affect the estimation perfor-

mance of a fully observable EKF based SLAM: an optimal Linear Quadratic Gaussian

regulation technique dual of the Kalman filter, and a feedback linearisation control

law. The first one law reaches a desired location in finite time while minimising a

performance index related with the input and the estimated state. The second one

guarantes asymptotical stability for closed-loop system tracking a time parameterised

desired trajectory. An extra control strategy using feedaback linearisation is presented

for the case of a single camera moving freely in Cartesian space.

The feasibility of using both approaches was validated with simulation results. In

order to avoid the initial transient performance of the forward linearisation control

strategy, the effects of the kinematics constraint of the chosen vehicle model should be

further investigated.

It is important to stress out that the SLAM system must be fully observable in

order to be able to use the estimates as input to any type of controller. Then, both

estimation and control can be decoupled and standard techniques such as the ones
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5.3 Conclusion

used here, Kalman filtering for estimation, and feedback linearisation for control, are

plausible for closing the perception-action-loop even in multirobot SLAM. However,

separability is only guaranteed for linear Gaussian systems, for nonlinear systems there

exists some influence of the control into the estimation.

Another important remark we must mention is that because of the separability

between estimation and control, a low level control law, as the one proposed in this

chapter, is not able to improve the estimation by itself, i.e. gain observability. To do

that, it is necessary to plan the trajectories avoiding unobservable direction as is shown

in Chapter 4 or to use a high-level metric to gain information as it will be shown in the

next chapter. Nevertheless, the control laws influence the estimates, and the estimates

influence the control laws, making the coupled stability of these interacting systems a

fundamental issue.
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Chapter 6

Action Selection and

Experiments in Visual Navigation

As was shown in the previous chapter a low level control law cannot improve the

estimated system because of the separability principle. In general, for linear stochastic

systems, the feedback control strategy has no probing effect in the sense of the mean-

square estimation error. However, for any nonlinear system, as the planar vehicle,

the choice of the feedback control can have some effect on estimation, but a higher-

level strategy is still required to reduce uncertainty in the system. A block diagram

representation of the closed-loop system is shown in Figure 6.1.

One of the objectives of this thesis consists of the guidance of an autonomous mobile

robot with a single camera over unknown uneven environments. In the literature it has

mostly been considered the case where the vehicle is moving on flat ground-plane.

This is a reasonable assumption to make in many indoor scenarios. Nevertheless,

most outdoor environments and more challenging indoor environments present non-

flat terrains that are not usually considered by motion models during the control and

estimation processes. Davison and Kita addressed this problem using a stereo vision

system in [38], presenting a SLAM system for a wheeled robot navigating autonomously
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Figure 6.1: Block diagram of the closed loop system for estimation and control in
Visual SLAM process.

in undulating terrain.

Another problem that makes the task of guiding a vehicle with a single camera

quite difficult, is the limited knowledge about of the environment and the lack of infor-

mation of depth from the type of sensor used. Estimating the position and velocities

of the system while a map of landmarks is being constructed with the measurements

provided a single camera requires the appropriate motion command. This command is

necessary not only to explore the environment, but also to maintain the uncertainty in

the estimation error bounded, i.e. reducing entropy. Given the probabilistic nature of

the Bayesian approach to the solution of the SLAM problem, entropy reduction has re-

cently gained popularity as a map building strategy for driving a robot during a SLAM

session in order to minimise uncertainty [16, 49, 117].

In this chapter we are interested in the real-time estimation and control of a single

camera’s motion, moving in 3D in normal human environments and in non-flat mobile

robot environments, mapping visual features without using a proprioceptive sensors.

Localise the sensor and build a feature map by computing the appropriate control

actions in order to improve overall system estimation is the goal.

Two main experiments are considered in this chapter. The first one is an on-line

implementation for a single camera SLAM system that extends the work of Davison [34]

by adding control to his otherwise passive monocular SLAM system. Given the real-
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time characteristics of the visual SLAM system used, fast and efficient action evaluation

is of utmost importance. Fortunately enough, the elements needed to validate the

quality of actions with respect to entropy reduction are readily available from the

SLAM priors [35], and, by making enough implementation adaptations, we are able to

evaluate in real-time the value of a reasonably large number of actions.

In the second experiment a wide-angle camera is mounted on a vehicle navigating

in uneven terrains. The aim is to compute the appropriate control command for mobile

robot after choosing the best action according to the information gain. The expected

information gain is evaluated propagating a particular action using the constrained

motion model proposed in this chapter, with the advantage that this model considers

not only the non-holonomic constraints of the vehicle, but the slope of the terrain as

well.

Actions belong to a discrete set (e.g.. go forward, go left, go up, turn right, etc.), and

the particular movement chosen is the one that maximises the mutual information gain

between posterior states and measurements. Two metrics are presented to evaluate

the set of actions that consider information gain. In Section 6.1 both mutual and

Fisher information metrics are briefly explained. Section 6.2 presents our chosen control

strategy addressing the two different experiments.

Section 6.3 presents the case of a camera that could be mounted in any given

platform, because a constant velocity motion model is used. The problem consists of

action-decision of a single, for instance hand-held, camera performing SLAM at video

rate with generic 6DOF motion. Simulation results are shown comparing the three

different approaches, constant angular velocity and the two metrics, to control the

direction of gaze. The experimental setup and the results, where a GUI feeds-back

motion commands to the user, are presented in a subsection.

In Section 6.4 we consider the experiment of the vehicle moving on uneven 3D

terrain. We derive a different motion model for the vehicle considering the 3D position

and the 3D orientation. The control strategy is illustrated through simulations. Lastly,
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6.1 Metrics for Information Gain

we present the results of real-time experiments, where velocity increments are applied

to the vehicle navigating in non-flat terrains.

6.1 Metrics for Information Gain

Probabilities and log-likelihoods are defined on states or measurements. However, it is

often valuable to also measure the amount of information contained in a given probabil-

ity distribution. A formal mathematical description of information provides a measure

of the compactness of a probability distribution on a state space; if a probability distri-

bution is spread evenly across many states, or conversely if a probability distribution

is highly peaked on a few states. Information is thus a function of the probability

distribution, rather than the underlying state.

We believe that information measures can play an important role in designing the

control strategy for navigation with only one camera. Two probabilistic measures are

here evaluated for action selection while performing estimation; the Shannon informa-

tion (or entropy) and the Fisher information. Both Shannon and Fisher information

characterise the information contents of probability densities. These measures are re-

lated by the log-likelihood function. Entropy (Shannon information) is related to the

volume of a typical set containing a specified probability mass and the Fisher informa-

tion is related to the surface area of this typical set.

6.1.1 Mutual Information

Entropy is a measure of uncertainty; that is, it is a measure of how much randomness

there is in the state estimate. Entropy, in the case of discrete variables, is defined as

H(X) = −
∑

x

p(x) log p(x) , (6.1)
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6.1 Metrics for Information Gain

which, for our case where p(x) is a n-variable Gaussian distribution, reduces to

H(X) =
1

2
log((2π)n|P|) . (6.2)

Consider the following two random vectors: the state x, and the i-th measurement

zi. Their joint entropy is simply

H(X,Z) = −
∑

x,zi

p(x, zi) log p(x, zi) (6.3)

and, their conditional entropy, the uncertainty about x, given the knowledge in zi, is

H(X|Z) =
∑

x,zi

p(x, zi) log p(x|zi) . (6.4)

Doing some math,

H(X|Z) = H(X,Z)−H(Z) , (6.5)

the difference between joint state and measurements entropy and the entropy of the

same measurements.

The mutual information is defined as the difference between the entropy of a state

and the entropy of the same state conditioned on the outcome of a second experiment,

in this case the set of measurements,

I(X;Z) = H(X)−H(X|Z) (6.6)

which, for our Gaussian multivariate case, evaluates to

I(X;Z) =
1

2
log

( |Px|
|Px −PxzP

−1
z P>xz|

)

=
1

2
log

(
|Pk+1|k|

|Pk+1|k −Pk+1|kH>i S
−1
i HiP

>
k+1|k|

)

=
1

2

(
log |Pk+1|k| − log |Pk+1|k+1|

)
.
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3

MaximumMaximumMaximumMaximum

2

1 Camera

Figure 6.2: Maximisation of mutual information for the evaluation of motion com-
mands. A simple 2D camera is located at the centre of the plot, and a decision where to
move must be taken as a function of the pose and landmarks states, and the expected
measurements. Three landmarks are located to its left, front, and right-front. Mov-
ing to the location in between landmarks 2 and 3 maximises the mutual information
between the SLAM prior and the measurements for this particular example.

Mutual information is always positive; it is not possible to lose infomation through

knowledge of the outcome of other experiments. This information metric is an average

of what we would expect to gain before the actual value of z is known. Thus, in choosing

a maximally mutually informative motion command, we are maximising the difference

between prior and posterior entropies [92]. In other words, we are choosing the motion

command that most reduces the uncertainty of x due to the knowledge of z as a result

of a particular action. To exemplify this, Figure 6.2 shows the directions maximising

the mutual information for a simple 2D camera and 3 landmarks.

Note that the use of mutual information only makes sense prior to reaching full

correlation. In SLAM, |Pk|k| tends asymptotically to zero, at which point the map

becomes fully correlated and there is nothing else the camera motions can do to improve

the estimates of the landmark. From then on, entropy can still be used to decide what

actions to take to reduce the camera’s own uncertainty, and this can be done just by

replacing x with xr from the above discussion.
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6.1.2 Fisher Information

A different measure of information commonly used in probabilistic modelling and es-

timation is Fisher information. Fisher information describes the information content

about values of x contained in the distribution p(zi|x). The Fisher information is

defined as

F(x) = E

(
∂2

∂x2
log p(zi|x)

)
|x=x0 . (6.7)

Under the Gaussian assumption for sensor and platform noises, the minimisation

of the least squares criteria (the KF) is equivalent to the maximisation of a likelihood

function p(zi|x) given the set of measurements Zk, that is, the maximisation of the

joint pdf of the entire history of observations, which for the case of SLAM evaluates to

F =
∑

H>S−1H . (6.8)

It should be noticed that, in the limit Fisher information is P−1.

The information for the reconstruction of the state contributed by the set of mea-

surements at each iteration is contained in H>S−1H. The eigenvalues λj of this con-

tribution to F show which linear combinations of the states can be estimated with

good accuracy and which will have large uncertainties from the coming measurements.

It also shows which linear combinations of states are unobservable (see Chapter 4 for

more details). When one dimension of F has a very small eigenvalue, for example

for information along the line of sight, the outcome is not a reliable measure of the

elongation of the information hyperellipsoid, as it collapses the surface area to zero.

Under a Fisher information motion strategy, maximally informative actions move

the robot as close as possible to the landmarks under observation. We do not want

to move towards them, but only to orient towards them. Our idea of using the Fisher

information is only to fixate our camera to those most uncertain landmarks, and use

the change in entropy to select motion commands.
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6.2 Action Selection

6.2 Action Selection

The objective is to move the camera in the direction that maximally reduces state

estimation uncertainty by taking into account the mutual information between states

and measurements maximising the information that can be acquired for any given

action. Because of time restrictions actions cannot be evaluated at the same sample

time, and it must be computed different priors for all actions. In such a case, computing

the mutual information seems to be a better choice compared to the evaluation of

entropy only.

The aim is to optimise both the localisation of the sensor and building of the feature

map by computing the most appropriate control actions or movements. Getting the

optimal action over all possible solutions would require an action selection algorithm

based on multi-step look-ahead like the one presented by Huang et al in [64]. Because

of the expensive complexity cost of multi-step look-ahead some approximation must to

be done. The first approximation considers a small number of actions to be evaluated

and the second only considers one action in t-steps, where t is number of steps missing

to achieve the time in which all the actions are being compared, as we will see in the

next section.

The control law to perform this task is evaluated using different cost functions

provided by the different metrics presented above. The cost function for translation

motion is,

J = max
uk

I(X;Zk) (6.9)

where the expected state is evaluated using the control input uk|k+1:k+τ (x
∗
p, z

i
k|k+1:k+τ )

computed to reach the desired poses x∗p (giving a linear trajectory) and the expected

measurements zik|k+1:k+τ after a time τ . A Dynamic Programming algorithm will be the

solution for the optimal control problem, unfortunately in 60 [Hz] real world application

the number of potential measurements grow exponentially in the dimension of the

measurement space and in time.
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Figure 6.3: The EKF-SLAM state vector and covariance matrix representation for a
fixed number of expected features with unknown mean and large covariance and with
no cross covariance with the existing covariance matrix.

Using entropy for exploration only makes sense if we can be certain that uncertainty

is reduced as landmarks (scene features) are being discovered. To that, one must have

an idea first of the shape of the space to be mapped, and filling it with randomly placed

landmarks with large uncertainty as in [18]. The error covariance matrix to evaluated

is an extended matrix with a fixed number of non-correlated unvisited landmarks. In

Figure 6.3 is shown a representation of the proposed vector state and covariance matrix.

With our chosen strategy overall entropy decay may happen at a lower pace, at

the expense of actually choosing exploratory actions instead of homeostatic ones. Ac-

tions are compared at the same instant but evaluated at different time, that is the

reason of using mutual information, together with the nonlinearity of the motion and

measurement models.

6.3 Hand-Held Camera

As mentioned above the interest is focused on video-rate estimation and control of a

single camera, moving rapidly with 6-DOF in 3D in normal human environments, map-

ping visual features with minimal prior information about motion dynamics. The aim

is to localise the sensor and build a feature map by computing the appropriate control

actions in order to improve overall system estimation. However, insisting on video-rate
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performance using modest hardware imposes severe restrictions on the volume of com-

putation that can take place in each 15 [ms] time step. Re-estimation must take place

of course, but making strictly optimal camera movements would require, in addition,

the computation of the derivatives of a well-chosen performance metric with respect

to the inputs [1]. Such a computation remains unfeasible for 6-DOF nonlinear system

and measurement models. Besides, human actions can only be approximate, and at

low frequency. So, instead of computing the optimal motion command, we decide only

upon a small set of choices.

The camera motion predictions are computed with the smooth unconstrained con-

stant velocity motion model (5.24) presented in Example 5.4. Its translational and

rotational velocities altered only by zero-mean, normally distributed accelerations and

staying the same on average. The Gaussian acceleration assumption means that large

impulsive changes of direction are unlikely.

This model is decoupled in terms of linear and angular velocities, therefore camera

rotations do not affect the translation. The mutual information metric is used to chose

the maximally informative translation action. In addition, since we want the camera to

look at those landmarks with large uncertainty so as to reduce their covariance when

observed from different locations. Then, three different strategies are evaluated for

controlling camera rotation: a) constant angular velocity, b) maximising MI gain and

c) maximising the trace of the Fisher information.

A full perspective wide angle camera model (5.26) is considered for estimation and

action evaluation. This model was presented in Example 5.4.

6.3.1 Control Strategy

Combining the strategies of effectively controlling translation by maximising mutual

information with controlling orientation by maximising the information available from

the new position yields reliable active control of pose and velocity for a free moving

camera, whilst building a map optimally, at the same time.
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6.3 Hand-Held Camera

This way, by using the mutual information metric, maximally informative actions

would prevent the camera from producing ill-posed measurements. Note that an om-

nidirectional sensor would not require a strategy to direct fixation. In this case, as

opposed to the camera on a vehicle, translation and orientation changes are kinemat-

ically decoupled, for this reason, it makes sense to use different information measures

in evaluating them.

Considering this unconstrained model, it is possible to use different metrics to evalu-

ate the orientation changes, with the objective of looking at those landmarks with large

uncertainty. The first option we propose is to use the same metric both for evaluating

the effects of rotations and translations, MI. This measure will choose the direction that

most reduces the uncertainty in general, for the camera pose and landmark positions.

Our second choice is to maximise the trace of the Fisher information (H>S−1H). In

this way we will be choosing the best direction to look at, in the sense that it is the

one that is most informative with respect to the expected landmarks. A third choice

is to use MI for translation and to control the angular velocity to remain constant ωy.

The real-time requirements of the task preclude using an optimal control decision

that takes into account all possible motion commands, which is impracticable to com-

pute, leading to an exponential growth because of the “curse of history” of long term

action evaluation. Instead we evaluate our information metrics for a small set of actions

carried out over a fixed amount of time, and choose the best action from those.

The set of possible actions is divided in two groups. Mutual information is evaluated

for the translational actions go_forward, go_backwards, go_right, go_left, go_up,

go_down, and stay; and Fisher information is maximised from the set of orientation

commands turn_right, turn_left, and stay.

In Appendix B we describe the simulated environment in which we test our control

strategies as explained in Chapter 5. In our simulated setting, desired camera locations

are predicted for the best action chosen, and the low-level control law presented in

Section 5.2.2 is applied to ensure these locations are reached at the end of one second;
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at which point the motion metric is again evaluated to determine the next desired

action. Orientations however, are evaluated at frame rate, leaving the system to freely

rotate, governed only by the information maximisation strategy.

The simulation considers a fixed number of expected landmarks to be found, and

both the MI and Fisher information metrics are computed taking into account the

corresponding full covariance matrices, including these unvisited landmarks, which have

been initialised with large uncertainties. This is the only thing that prevents our control

strategies from defaulting to homeostasis (see Figure 6.3).

Figure 6.4 contains simulation results from the mutual information strategy for

the computation of motion commands, and compares various orientation computation

schemes. The simulated environment represents a room 6×6×2.5 [m]3 in size containing

33 randomly distributed point landmarks, out of which 6 are anchors, to be used

as global references. Having these anchors the system is observable as is shown in

Chapter 4 providing, in the same way, metric scale to the visual system.

The initial standard deviation in camera pose is 0.6 [m] in the z and x directions,

0.46 [m] in height y, and 45◦ in orientation, right after matching the fiduciary points,

but before any motion takes place. Sensor standard deviation is set at 2 pixels, and

data association is not known a priori. Instead, nearest neighbour χ-squared tests (see

[9]) are computed to guarantee correct matching. New landmarks are initialised once

their ratio of depth estimate to depth standard deviation falls below a threshold of 0.3.

Puu = 1.5 [m2] for each unknown feature.

The plots in Figures 6.4 and 6.5 show the results of actively moving a 6-DOF camera

whilst building a map of 3D landmarks. In all cases, each of the seven motion actions

will produce a displacement of 0.3 [m] in the corresponding direction. The mutual

information metric is evaluated at each of these positions. The action that maximises

the metric is chosen, and the camera is controlled to reach that position in one second

with a PD control law. Orientation changes are computed every 50 [ms].

As mentioned before, three approaches were tested for the computation of gaze
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6.3 Hand-Held Camera

commands with the following strategies: (i) constant rotational velocity of 0.2 [rad/s],

frames (a,b); (ii) maximisation of mutual information both for the position and orienta-

tion of the moving camera, frames (b,c); and (iii) maximisation of mutual information

for position and maximisation of Fisher information for gaze, frames (d,e). The exper-

iment shown in the plots lasted 35 seconds.

The constant rotational velocity and the mutual information strategies tend to insert

landmarks into the map at a faster pace than the Fisher Information strategy. As can

be seen in the error plots in Figure 6.5, this might not be always the best choice. It

seems reasonable to let the system accurately locate the already seen landmarks before

actively searching for new ones.

The third alternative, controlling camera orientation by maximising the Fisher In-

formation entering into the filter, has the effect that it focuses on reducing the uncer-

tainty of the already seen landmarks, instead of eagerly exploring the entire room for

new landmarks. The reason is that landmarks that have been observed for a small

period of time still have large depth uncertainty, and the Fisher Information metric is

maximised when observations are directed towards them. The technique tends to close

loops at a faster pace than the other two approaches, thus propagating correlations

amongst landmarks and poses in a more efficient way. Additionally, reduction of the

entropy occurs by positioning the camera where information is maximum, but there is

no need to gaze the camera to reduce the pose and map entropies, instead the camera

is gazed to the most uncertain features.

Strategy (iii) needs more time to reduce entropy and takes more time to insert the

same number of landmarks in the map. But, at the point at which the same number

of landmarks is available it has lower entropy than the other two strategies (see for

example in Figure 6.4 for the simulation discussed, frames (d-f), that when the 14th

landmark is added, the times are 19, 18, and 30 seconds, and the entropies are -530,

-550, and -610).
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and orientation.
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Figure 6.4: Trajectories with final maps and entropy. (rReal and rEst are the real
and estimated camera trajectories, the label newland and the green dots and dotted
vertical lines represent the value of entropy at the instant when new landmarks are
initialised. Pcam, Plan, and P indicate the camera, map, and overall entropies.
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(b) Orientation error when using MI for
position and constant angular velocity.
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(c) Position error when using MI for po-
sition and orientation.
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(d) Orientation error when using MI for
position and orientation.
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(e) Position error when using MI for po-
sition and FI for orientation.
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(f) Orientation error when using MI for
position and FI for orientation.

Figure 6.5: Estimation errors for camera position and orientation and their corre-
sponding 2σ variance bounds. Position errors are plotted as x, y, and z distances to
the real camera location in meters, and orientation errors are plotted as quaternions.
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6.3 Hand-Held Camera

6.3.2 Experimental Results

We present in this section experimental results validating the mutual information max-

imisation strategy for the control of a hand-held camera in a challenging 15fps visual

SLAM application. The experiments were implemented on top of the Single Camera

SLAM application developed by Andrew Davison [36]. The characteristics of this ap-

plication are explained in Appendix C. We developed an extention for this application

that computes the desired actions using the approach presented in this chapter sending

motion commands to the graphical user interface (GUI).

Within a room, the camera starts approximately at rest with some known object in

view to act as a starting point and provide a metric scale to the proceedings (to make

it fully observable at the beginning). The camera moves, translating and rotating

freely in 3D, according to the instructions provided to a user through a graphical user

interface, and executed by the user, within a room of a restricted volume, such that

various parts of the unknown environment come into view. The aim is to estimate and

control the full camera pose continuously during arbitrarily long periods of motion.

This involves accurately mapping (estimating the locations of) a sparse set of features

in the environment.

Given that the control loop is being closed by the human operator, only displace-

ment commands are computed. So, for this particular case, gaze control is left to the

user. Furthermore, the mutual information measure requires evaluating the determi-

nant of the full covariance matrix at each iteration. Because of the complexity of this

operation, single motion predictions are evaluated one frame at a time. It is only until

the 15th frame in the sequence that all mutual information measures are compared,

and a desired action is displayed on screen. That is, the user is presented with motion

directions to obey every second. Note also, that in computing the mutual information

measure, only the camera position and map parts of the covariance matrix are used,

leaving out the gaze and velocity parts of the matrix. Finally, to keep it running in

real-time, the resulting application must be designed for sparse mapping. That is, with
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(a) frame 0001 (b) frame 0101 (c) frame 0201 (d) frame 0301

(e) frame 0401 (f) frame 0501 (g) frame 0601 (h) frame 0701

(i) frame 0801 (j) frame 0901 (k) frame 1001 (l) frame 1101

Figure 6.6: Snapshots of the Graphical User Interface (GUI) during active control
monoSLAM.
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Figure 6.7: Real-time active visual SLAM with hand-held camera. a)Computed
entropy during the experiment, the vertical lines represent the frame in which a feature
was added to the state vector. b) Actions sent to the GUI.

the computing capabilities of an off-the-shelf system, our current application is limited

to less than 50 landmarks.

In the library MonoSLAM (Appendix C) a class called MonoSLAMControl was

implemented to compute the appropriate action, propagating states and covariances

for each action and updating this priors with covariances associated to the features in

the actual map inside of the expected field of view. After the whole EKF cycle, the

same class computes the determinant of the resulting expected covariance matrix for

each action and saves the maximum according the mutual information metric. The

application MonoSLAMGlow was modified in order to print in the GUI the selected

action.

Figure 6.6 shows the graphical user interface. The top part of the figure contains

a 3D plot of the camera and the landmarks mapped, while the bottom part shows the

information being displayed to the user superimposed on the camera view. Figure 6.7(a)

contains a plot of the decrease in the various entropies for the map being built, and the

list of actions chosen as shown to the user during the first minute (see Figure 6.7(b)).

Worth noticing is that in the real-time implementation, the system prompts the

user for repeated up-down movements, as well as left-right commands. This can be
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6.4 Vehicle with a Single Camera

explained as if after initialising new features, the system repeatedly asks for motions

perpendicular to the line of sight to best reduce their uncertainty. Also, closing loops

has an interesting effect in the reduction of entropy, as can be seen around the 1500th

frame on Figure 6.7(a).

6.4 Vehicle with a Single Camera

The typical wheeled mobile robot navigating in non-flat surfaces indoors or outdoors

has the drawback of usually being modelled in a 2D world (see Example 3.4). In order

to do the prediction step of the EKF, the predicted position using the 2D vehicle model

or even the odometry information is quite different if we want the 3D information. For

this reason, we propose a different model that not only considers the surface is not

flat, but also considers the kinematic constraints of the differential skid vehicle and the

camera position with respect to the rotation axis of the vehicle.

To model a wide-angle camera mounted on a 2D vehicle navigating in uneven ter-

rains, we used the planar vehicle model (3.16) projected in a 3D cartesian space using

the orientation given by the terrain. The resulting model is presented in subsection

6.4.1. The measurement model is again the one presented in Example 5.4.

In this case we have opted for the strategy that chooses those actions that maximise

the mutual information between states and measurements to perform the navigation.

The expected information gain is evaluated propagating a particular action using the

constrained motion model proposed in this chapter, with the advantage that this model

not only considers the nonholonomic constraints of the vehicle, but the slope of the

terrain as well.

6.4.1 Constrained Camera Motion Model

It is assumed however, the camera is attached to a planar vehicle navigating in a 3D

terrain. The vehicle is controlled by linear and angular velocities u = [vr, ωr]
> which
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6.4 Vehicle with a Single Camera

are tangent to the terrain surface. Robot motion taking into account surface contact at

all times, we can substitute the previous motion prediction model with a constrained

model for the continuous transition of the optic centre of the camera


 pk+1

Ψk+1


 =


 pk

Ψk


+ Γuk∆t, (6.10)

where

Γ=




− sinφ sinψ − cosφ cosψ sin θ −l cosψ cos θ cosφ

cosφ sinψ − sinφ cosψ sin θ −l cosψ cos θ sinφ

cosψ cos θ −l cosψ sin θ

0 sinψ tan θ

0 cosψ

0 sinψ
cos θ




,

Ψ = [ψ, θ, φ]> is a yaw, pitch, roll representation of q, and l is the distance between

the axle centre of the mobile robot and the camera optic centre.

6.4.2 Control Strategy

We present for this case the guidance strategy of a vehicle performing SLAM with a

single wide-angle camera in even terrains. The control scheme is based on computing the

instant vehicle accelerations that maximise mutual state and measurement information

gain. Actions in the form of impulse accelerations guarantee smooth platform velocity

change. The chosen command is then integrated to produce the input velocity that

is sent to the vehicle. Given the real-time limitations of this system, only a limited

number of actions can be evaluated at each step. These are the discrete set from Table

6.1.
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Figure 6.8: The mobile robot platform used in the experiments.

Table 6.1: Action Set

Action Linear Acceleration Angular Acceleration

0 0 0

1 0 −ω̇r
2 0 ω̇r

3 −v̇r 0

4 v̇r 0

5 −v̇r −ω̇r
6 v̇r ω̇r

To compare the actions, the motion model and the feedback control law from Ex-

ample 5.4 are used to predict the prior mean xk+1|k for each instant acceleration in

the set, propagating the covariances by computing the corresponding Jacobians. Map

features priors are also used to simulate the expected observations using the camera

measurement model and the state prior. The posterior covariance is then computed

taking into account only known landmarks inside the camera field of view.

At each time step we compute, in turn, the mutual information for one action in

the set, using the prior and posterior covariance matrices. That is, for every linear and

angular instant acceleration combination. Every 15th cycle, once all possible actions
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have been evaluated for a lapse of at least 8 cycles, the action that maximises the

mutual information is chosen, and a new velocity input is sent to the system.

Assuming a fixed number of expected landmarks will be found within a 3D unex-

plored room as shown in Figure 6.3. During the action selection process, the unknown

landmarks are taken into account in the covariance matrix initialised with large uncer-

tainty as in the previous case.

For simulations the constrained motion model for the vehicle from (6.10), the full

perspective wide angle camera model and a model of a 3D surface are used to simulate

a mobile robot navigating in non-flat terrains. Not only in simulations, but also in real-

time experiments the estimation does not use encoders information. In the other hand

action decision process does use encoders velocity information and (6.10) to predict the

expected position considering the set of available actions.

The aim is to choose impulsive acceleration commands for the vehicle in order to

explore a small room while trying to reduce most the uncertainty. Accelerations are

applied only every 15th step, and in between action decision, null acceleration is set,

i.e. constant velocity behaviour is chosen until a new action is decided.

The control action is chosen from the discrete set of instant linear and angular

accelerations shown in the Table 6.1. The values for v̇r and ẇr that produced the

results shown in this section are 0.5 [m/s2] and 0.3 [rad/s2] respectively. The simulated

environment shown contains 25 unknown landmarks and 6 known landmarks uniformly

distributed in the room, as in the case of the unconstrained motion model these anchors

give the metric and the observability condition to the SLAM system. The simulated

wheeled mobile robot is navigating over a 3D sinusoidal surface.

Figure 6.9(a) shows the trajectory followed by the vehicle and the initialised land-

marks with their uncertainty plotted as 2σ level hyperellipsoids. The expected covari-

ance matrix is extended with the unknown feature uncertainties with diagonal values

of 5 [m2] each to avoid homeostasis. Entropy reduction is computed using the extended

covariance. The instant at which new landmarks are added to the state are shown
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(a) Simulated robot trajectory
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(b) Camera, map, and total entropies

Figure 6.9: Simulation of a mobile robot actively exploring a room. The mutual
information maximisation strategy produces a nearly linear motion tangent to the
surface. The vehicle starts at the shown terrain depression and proceeds backwards
slightly rotating to increase map coverage. (rReal and rEst are the real and estimated
vehicle trajectories, the label newland and the green dots and dotted vertical lines
represent the value of entropy at the instant when new landmarks are initialised.
Pcam, Plan, and P indicate the robot, map, and overall entropies.)
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(b) Orientation error

Figure 6.10: Estimation errors for camera position and orientation and their corre-
sponding 2σ variance bounds. Position errors are plotted as x, y, and z distances to
the real camera location in meters, and orientation errors are plotted as quaternions.

158

VisualNav/Figures/poserror.eps
VisualNav/Figures/quaterror.eps


6.4 Vehicle with a Single Camera

in Figure 6.9(b). Moreover, state estimation errors are shown in Figure 6.10 for the

camera pose. Notice how when the terrain abruptly changes, the estimated velocities

become underestimated in the direction the terrain changed. Thus in simulating vehicle

motion, a more elaborate model taking into account surface discontinuities ought to be

considered for very rough terrains.

The selected actions reduce the camera pose and velocity uncertainty first, tracking

landmarks with low uncertainty. After that, the variance for unvisited landmarks with

large uncertainty is reduced as new landmarks are added. Interestingly enough, the

system autonomously explores by repeatedly choosing a negative linear acceleration.

The effect is to augment the camera field of view with the consequent inclusion of new

features in the model, but still maintaining known landmarks in sight, thus keeping the

vehicle well localised at all times. In contrast to the previous case experiments, it is

more difficult in this constrained motion setting to actively perform short loop closure

orthogonal to the field of view. The reason being that the vehicle cannot achieve

saccadic motions in the way a free-moving camera can.

At this point we can argue how the same tracking (unconstrained constant velocity

6-DOF motion model) and action selection strategies (maximising the mutual infor-

mation between states and measurements) is capable of choosing different exploratory

maneuvers depending on the characteristics of the platform: short loop closing for a

6-DOF free-moving camera, and backwards linear motion increasing the field of view

for our vehicle.

6.4.3 Experimental Results

For the case where the camera is mounted on a vehicle we developed not only the module

to compute the best of the set of action, but also the interface that communicates with

it. In this case, the desired actions are sent both to the GUI and to the robot. A

detailed explanation of this application and its libraries are presented in Appendix C.
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6.4 Vehicle with a Single Camera

Figure 6.11: Structure of the visual navigation for a mobile robot in non-flat and
partially unknown environments.

The robot is controlled using ARIA (Advanced Robotics Interface Application)1. ARIA

communicates with the robot via a client/server relationship, using a serial connection.

Two different process are running for this application, the MonoSLAM process and

the RobotCONTROL, these processes communicate with each other using messages.

The sort of information the processes share are the robot localisation, and the selected

action.

Our main concern was to test the strategy during real-time vision-based SLAM

execution. This section is devoted to a discussion on such results. The experiments

were conducted on the mobile platform shown in Figure 6.8, with a wide-angle camera

rigidly attached to the robot body, and for which an updated version of the single

camera SLAM system reported in [36] was setup.

As in the previous case, within a room, the robot starts approximately at rest with

some known object in view to act as a starting point and provide a metric scale to the

proceedings. The robot moves, translating and rotating constrained by the 3D terrain,

such that various parts of the unknown environment come into view.

The whole process is running at 15 [fps]. Figure 6.11 shows the proposed control

scheme in a block diagram. Since our mutual information measure requires evaluating

1http://www.activrobots.com/SOFTWARE/aria.html
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6.4 Vehicle with a Single Camera

the determinant of the full covariance matrix (enlarged with the unvisited features)

at each iteration, single motion predictions are evaluated one frame at a time. It

is only every 15th frame in the sequence that all mutual information measures are

compared, and the best action is sent to the mobile robot. For the experiments, the

acceleration magnitudes were set to v̇r = 0.1 [m/s2] and ω̇r = 5 [deg/s2]. When

computing posteriors, these are all predicted for the duration that would take them to

the end of the 15th frame, each action in turn being evaluated for a slightly shorter

period of time. The motivation is that we want to be able to test actions in the basis

of their effect at the very same point in time (at the end of the 15th frame). In order

to evade any bias related to the time spent in evaluating the effect of actions, these are

randomly ordered at each iteration.

As with the simulated setting, the robot navigates in uneven terrain as shown in

Figures 6.8 and 6.13(a). In the plot, the estimated path (blue continuous line) is shown

in 3D, as opposed to the vehicle odometry which is restricted to the Z −X plane. The

orientation angle from Figure 6.13(b) indicates the vehicle orientation with respect to

the world axis Y (orthogonal to the white sheet of paper placed in front of the robot,

which serves as global reference consistent to the world Z −X plane).

As in the simulated case, our mutual information-based action selection strategy

for this constrained motion case autonomously explores the room driving the vehicle

back and forth, but mostly backwards, enlarging the field of view by pulling away from

the initial view.

Figure 6.13(b) gives account of the actions sent to the robot, and shows as most

frequent actions iterations between positive and negative linear acceleration. The fea-

ture map and camera pose are updated and displayed in real-time in the graphical user

interface. Figure 6.12 shows a sequence of frames from the same experiment, that show

the robot driving away from the initial known features.

Notice that in these experiments the robot can deal with obstacles, the obstacle

avoidance task is part of a low-level behaviour in the control architecture.
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6.4 Vehicle with a Single Camera

(a) frame 0200 (b) frame 0800 (c) frame 0900 (d) frame 0980

(e) frame 1040 (f) frame 1090 (g) frame 1170 (h) frame 1250

(i) frame 1300 (j) frame 1320 (k) frame 1370 (l) frame 1410

Figure 6.12: Snapshots of the Graphical User Interface (GUI) during autonoumous
exploration.
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Figure 6.13: Real-time experiment of a single camera on a vehicle in uneven terrain.
a) 3D trajectory of the vehicle and orientation w.r.t. y axis. b) Actions sent to the
vehicle every second.
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6.5 Conclusion

In conclusion, we have shown plausible motion strategies in a video-rate visual SLAM

application. On the one hand, by choosing a maximal mutually informative motion

command, we are maximising the difference between prior and posterior SLAM en-

tropies, resulting in the motion command that mostly reduces the uncertainty of x due

to the knowledge of z. Alternatively, by controlling gaze maximising the information

about the measurements, we get a system that prioritises in accurately locating the

already seen landmarks before actively searching for new ones.

Our method is validated in a video-rate hand-held visual SLAM implementation.

Given that our system is capable of producing motion commands for a real-time 6-

DOF visual SLAM, it is sufficiently general to be incorporated into any type of mobile

platform, without the need of other sensors.

A possible weakness of this information-based approach is that it estimates the

utility of measurements assuming that our models are correct. Model discrepancies,

and effects of linearisation in the computation of our estimation and control commands

are thus not considered.

This chapter has presented as well an autonomous information-driven exploration

strategy for a wheeled mobile robot equipped with a single wide angle camera and

navigating in uneven terrains. The approach is based in choosing the action that

maximises the information gain between state and measurement priors. Simulation

and experimental results consistently show a behaviour in which the robot pulls back

from an initial configuration, by having the camera search for more landmarks whilst

reducing its own pose uncertainty.

We are able to localise a wheeled mobile robot in 6D (3D position and 3D orienta-

tion) using a single camera and driving it using an information theoretic approach.

The reported camera trajectories are simple because a) the robot is commanded by

acceleration impulses that tend to drive the robot through smooth velocity changes,
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6.5 Conclusion

and b) the real-time constraints of the implementation allow only for the evaluation

of a very limited set of possible actions. The computational complexity in computing

entropy does not permit large maps, in that case submapping will be a good solution.

It is worth noting that no high-level task-dependent path planning is being per-

formed whatsoever. The exploratory actions are chosen purely in the context of entropy

minimisation and a low-level control, in the case of the mobile robot navigating with a

single camera.
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Chapter 7

Conclusions

The main concern of this thesis has been to understand the navigation problem from

the control theory perspective, so we divided the problem into two parts. The first

part comprises the estimation (SLAM) in which we analysed stability, controllability,

and most importantly observability conditions of the SLAM process. The second part

involved the control and the estimation (SLAM with control) where we designed an

active controller for a system considering a low level nonlinear feedback control and a

higher level strategy to reduce uncertainty during estimation.

7.1 Estimation in SLAM

In this thesis we presented a stability analysis of the closed-loop estimation error dy-

namics (Chapter 3), showing that the partial observability inherent to SLAM process

makes the estimate does not converge to the true values even for the linear case. This

happens because the filter in which the vehicle and landmark states are stacked in the

same state vector has marginally stable error dynamics. However, marginal stability

does guarantee convergence of the corresponding Riccati equation to at least one posi-

tive semi-definite (psd) solution. Due the lack of asymptotic stability, it is not possible

to obtain a zero mean state error estimate, unless partial observability is corrected,
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7.1 Estimation in SLAM

either anchoring the state to one or more landmarks or by making using a relative

maps.

In a controllability analysis we showed that the Kalman gain of the map compo-

nents tends quickly to zero, the reason is landmarks in the map are assumed to be

constant, so there is no process noise entering to these states producing the controlla-

bility condition is not satisfied. Adding artificial process noise can fix up this situation

and equivalently it can reduce the computational complexity of the EKF algorithm

under certain circumstances.

Considering the particular case of bearing-only SLAM, we modelled some nonlinear

systems, such as the typical planar vehicle performing SLAM, as piecewise linear. A

linear observability analysis for time-variant system was performed in Chapter 4. This

analysis allowed us to characterise the non-observable states using the nullspace basis

of the stripped observability matrix. Our results can be used to determine the set of

motions that the vehicle must avoid in order to maximise observability.

Our dynamic observability analysis showed that the world-centric mapping with

bearing-only observations is partially observable, recovering only the orientation com-

ponent of the state if there exists translation of the vehicle. Some other configurations

like world-centric with anchors and relative maps are fully observable, as the analysisi

using stripped observability matrix shows in two steps. However, there are some direc-

tions that the system cannot recover in one step, but applying the appropriate vehicle

motions the system becomes fully observable.

In addition, systems without proprioceptive sensors are more subtle, because only

anchors can give the enough information to recover the scale considering observations

of a single camera. We showed that linear velocity is easily recovered in one step and

in two steps the system is verified as fully observable.

Bearing-only SLAM was also examined using non-linear observability analysis, in

particular using Lie algebra, and the differences between the non-linear and TOM/SOM

linearised analysis were compared.
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7.2 Control in SLAM

We studied the stochastic problem of controlling a SLAM system. The appropriate

solution for a controller in linear systems is the Linear Quadratic Gaussian regulator and

we proposed to use the linearised version of this LQG controller. The LQG regulator

allow us to stabilise the observable SLAM system about a desired point.

Using a different scheme, given the separability principle and given an observable

SLAM system, we proposed a feedback linearisation control law to stabilise the system

along a trajectory. We showed in simulations that not only the nonlinear vehicle but

also the single camera are able to track a nonlinear path performing SLAM at the same.

It is important to stress out that the SLAM system should be fully observable in

order to be able to use the estimates as input to any type of controller. Then, both

estimation and control can be decoupled and standard techniques such as the ones

used here, Kalman filtering for estimation, and feedback linearisation for control, are

plausible for closing the perception-action-loop even in SLAM.

Bearing-only SLAM systems are quite sensitive in terms of estimation, due to the

presence of long uncertainties along camera view axis. In order to the control aids the

estimation process, a higher level strategy is needed. For this purpose, we designed

an active control strategy that reduces uncertainty using mutual information gain as a

metric to evaluate a set of discrete actions. Such strategy is presented in Chapter 5. One

way to solve this optimal motion planning problem is applying a Dynamic Programming

algorithm. The major disadvantage of such dynamic programming approaches is their

extensive computational. Since we reason about a high-dimensional state estimation

problem and because our real-time constraints (at least 15 fps), we had to approximate

solutions for the motion command that rely on some assumptions. In essence, our

approach can be regarded as one step look-ahead over the action-decision tree, but

propagated in more than one step to evaluate every action at the same time. A future

work must consider the evaluation of the optimal solution of this problem in real-time.
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Our method was validated in a video-rate hand-held visual SLAM implementation.

Given that our system is capable of producing motion commands for a real-time 6-

DOF visual SLAM, it is sufficiently general to be incorporated into any type of mobile

platform, without the need of other sensors.

Finally, in our last experiment presented in Chapter 6, we wanted to consolidate all

the work presented in this thesis. We validated the active control strategy in real-time

for a mobile robot navigating in a non-flat unknown terrain. The mobile robot was

controlled using information from only one camera. It autonomously builds a visual

feature map while at the same time optimises its localisation within this map using

the most appropriate commands maximising the expected information gain between

prior states and measurement. We developed the constrained 3D motion model to

infer the position of the vehicle in order to evaluate the mutual information for all

possible actions at the same time. Actions that hinder observability were avoided and

the feedback linearisation control law was used to stabilise the vehicle along the chosen

action until a new action was sent to the robot.

7.3 Future Work

There are several open issues in SLAM problem but for our particular case we consider

as future work sensor fusion to improve mapping, as well a long-term plans to achieve

large-scale exploration tasks or other kind of missions in the sense of navigation.

Strategies as local mapping must be considered in a further work, in order to perform

exploration in larger environments not only indoors but also outdoors. Moreover some

other descriptors (features) could be consider as well.

In this work we did not consider long-term navigation like mission or task planning

as we defined in Section 2.1, that part is considered as a future work. Planning under

uncertainty while mapping requires moving ahead from our approach involving local

action selection, to longer term planning including task description. For instance, one
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7.3 Future Work

approach to start seeking in the problem is by planning in partially observable continues

domains via value iteration over POMDPs [108].
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Appendix A

Kalman Filtering

In this Appendix we will derive the Kalman filter equations from the state-space rep-

resentation, instead of using the Bayesian point of view, as it is done in the original

Kalman filter work [73]. We present the derivation for the linear case -the Kalman

Filter- and its extention for non-linear systems -the Extendend Kalman Filter-.

A.1 KF-SLAM

Considering the problem of SLAM as the stochastic estimation of a discrete-time linear

system, and expressed as a vector difference equation with additive white Gaussian

noise that models unpredictable disturbances; the dynamic plant equation is simply

xk+1 = Fxk + Guk + vk (A.1.1)

where xk is the augmented state vector formed by appending the vehicle state estimate

and the landmark location estimates, uk is a known input vector, and vk, is the k-th

term of a sequence of zero-mean Gaussian process noise with covariance Qk = E
[
vkv

>
k

]
.
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A.1 KF-SLAM

The measurement equation is

zk = Hxk + wk (A.1.2)

with wk the k-th term of a sequence of zero-mean white Gaussian measurement noise

with covariance Rk = E
[
wkw

>
k

]
.

Using the aforementioned linear system, the algorithm for the optimal state esti-

mator (the Kalman filter) is as follows:

First, compute the a priori state prediction

xk+1|k = Fxk|k + Guk (A.1.3)

followed by an a priori measurement prediction

zk+1|k = Hxk+1|k (A.1.4)

Next, compute the a posteriori state estimate, known also as the update of the state

estimate

xk+1|k+1 = xk+1|k + K
(
zk+1 − zk+1|k

)
(A.1.5)

where K is the Kalman gain for optimal estimation in the mean square error sense.

Finally, replacing the system from (A.1.3) and (A.1.4) in (A.1.5), the closed-loop

system becomes

xk+1|k+1 = (F−KHF)xk|k +

(G−KHG)uk + Kzk+1 (A.1.6)

In order to compute the optimal filter gain for the linear system one needs:
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A.2 EKF-SLAM

The state prediction covariance

Pk+1|k = FPk|kF
> + Qk, (A.1.7)

the innovation covariance

Sk+1 = Rk+1 + HPk+1|kH
> (A.1.8)

and finally, the filter gain

K = Pk+1|kH
>
k+1S

−1
k+1 (A.1.9)

The update of the state covariance is computed with

Pk+1|k+1 = Pk+1|k −KSk+1K
> (A.1.10)

For constant plant and sensor covariances, the steady state value for the covariance

matrix is given by the solution of the Riccati equation

P = F(P−PH>(HPH> + R)−1HP)F> + Q (A.1.11)

A.2 EKF-SLAM

Let us consider now a nonlinear system where both process and measurement models

are nonlinear.

Provided the set of observations Zk = {z1, . . . , zk} was available for the computation

of the current map estimate xk|k, the expression

xk+1|k = f(xk|k,uk,0) (A.2.1)

gives an a priori noise-free estimate of the new locations of the vehicle and map features
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A.2 EKF-SLAM

after the vehicle control command uk is input to the system. Similarly,

zk+1|k = h(xk+1|k,0) (A.2.2)

constitutes a noise-free a priori estimate of sensor measurements.

Given that the landmarks are considered stationary, their a priori estimate is simply

xf,k+1|k = xf,k|k; and the a priori estimate of the map state error covariance showing

the increase in robot localization uncertainty is

Pk+1|k = E[x̃k+1|k x̃>k+1|k] (A.2.3)

= FPk|kF
> + GVG> (A.2.4)

The Jacobian matrices F and G contain the partial derivatives of f with respect to

x and v, evaluated at (xk|k,uk,0) respectively.

Assuming that a new set of landmark observations zk+1 coming from sensor data has

been correctly matched to their map counterparts, one can compute the error between

the measurements and the estimates with z̃k+1|k = zk+1 − zk+1|k. This error aids in

revising both the map and robot locations. The a posteriori state estimate is

xk+1|k+1 = xk+1|k + Kz̃k+1|k (A.2.5)

and the Kalman gain is computed with (A.1.9) where S is termed the measurement

innovation matrix,

S = HPk+1|kH
> + W (A.2.6)

and H contains the partial derivatives of h with respect to x evaluated at (xk+1|k,0).

Finally, the a posteriori estimate of the map state error covariance must also be

revised once a measurement has taken place. It is revised with the Joseph form to
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A.2 EKF-SLAM

guarantee positive semi-definiteness

Pk+1|k+1 = (I−KH)Pk+1|k (I−KH)> + KWK> . (A.2.7)

177





Appendix B

Simulated Environment

In this Appendix we are going to describe a toolbox developed for Simulink using

Matlab. The code combines Simulink blocks and Matlab functions to create a closed-

loop control and SLAM system. It is composed of

• Motion Models: This block contains a continuous motion model, an integrator

(usually ODE45) and a normalisation function. We developed different motion

models that can be interchange such as 1) a planar differential steer mobile robot,

2) a 3D differential steer mobile robot, and 3) a 6-DOF constant velocity model.

The input of this block is the control signal and the output the simulated state,

Figure B.2(a).

• Measurement Model: This block contains the obsevation models: a camera pro-

jection model or a laser-range scanner, i.e. range and bearing measurements.

The input of this block is the simulated state and the output the measurements

perturbed by Gaussian zero-mean noises.

• Filter (EKF): This block contains the Extended Kalman Filter. The input to

this block is the control signal, the simulated measurements and the motion and

measurement models. The output is the estimated state, Figure B.2(b).
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• Controller: Depending on the navigation task, following a pre-designed path or

uncertainty reduction, this block receives the estimated state and compute the

appropriated control signal.

The blocks can be interchanged to allow the system to use different motion or

measurement models, a different filter and different controllers.

This environment has different outputs, one is a Graphical Interface that shows

online the simulated system, the estimated system B.3(a) and the camera view B.3(b)

(in case such sensors were being used). A different output is the Matlab’s workspace,

all the variables to analyse the system behaviour are sent to the there as structures

with time. Control signals and some other variables could be plotted on algorithm-time

during the simulation execution.

Figure B.0.1: Simulink main model of the controlled SLAM single camera simulator.

The toolbox can be used separately for dynamics system simulation, localisation,

SLAM, and SLAM with control.
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(a) Motion and measurement models

(b) Extended Kalman Filter

Figure B.0.2: Submodels of the controlled SLAM single camera simulator.
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(a) Graphical output for sim-
ulated and estimated state.
Camera pose and features po-
sition with their uncertainties
plotted as 3D ellipses.

(b) Graphical output for camera view.
Full perpective projection of the Simulated
3D points and the 2D uncertainty ellipses
of each point.

Figure B.0.3: Graphical interface in simulate environment (Simulink/Matlab).
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Appendix C

Single Camera SLAM

Implementation

C.1 MonoSLAM

SceneLib is an open-source C++ library for SLAM designed and implemented by An-

drew Davison (Imperial College, UK). SceneLib depends in part on the open source

VW34 library for computer vision developed at Oxford’s Active Vision Lab under the

leadership of David Murray and Ian Reid, who have also had a large role in guiding the

development of SceneLib. SceneLib is released with full source code under the GNU

Lesser Public License (LGPL).

SceneLib is a generic SLAM library in principle, with a modular approach to speci-

fication of the details of robot and sensor types. However it also has specialised compo-

nents to permit real-time vision-based SLAM with a single camera (MonoSLAM) and

the design is optimised towards this type of application.

Available alongside the SceneLib library (which does not depend on any particular

GUI) is source code which compiles to the executable program MonoSLAMGlow. This

is an example application of MonoSLAM which can take images in real-time from
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C.1 MonoSLAM

an IEEE1394 camera or off-line from a disk sequence and perform sparse monocular

SLAM. The program has an interactive GUI using the GLOW toolkit and OpenGL.

MonoSLAM is written in standard C++ and it contains three libraries and an ap-

plication.

• SceneLib: a generic SLAM library. Base classes for motion models, features, mea-

surements and the Kalman Filter.

• SceneImproc: Image processing for MonoSLAM (i.e. feature detection and correla-

tion).

• MonoSLAM: Specific motion and feature measurement models for single-camera

SLAM, and a control class.

• MonoSLAMGlow: Application based on GLOW/GLUT library which uses the pre-

vious libraries.

An Extended Kalman Filter is used to estimate camera position, orientation, lin-

ear and angular velocities and 3D feature position using sequential innovation. A full

covariance matrix P is maintained, complete with off-diagonal elements: typically clus-

ters of close features will have position estimates which are uncertain with respect to

the world reference frame but their highly correlated relative positions are well known.

Holding correlation information means that measurements of any one of this cluster

correctly affects the estimate of the others, and is the key to being able to re-visit and

recognise known areas after periods of neglect.

Feature measurements are the locations of salient image patches. These patches

are detected once to serve as long-term visual landmarks, giving us a sparse set of

landmarks gradually accumulated and stored indefinitely. An active search within

elliptical search regions defined by the feature innovation covariance and a template

matching via exhaustive correlation search are implemented in order to match features

between different sample times.

The real-time requirement only allows the system to add new features if number

of visible features drops below a threshold (e.g. 12). Then it chooses salient image
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patches from a search box in an underpopulated part of the image. Then, to compute

an estimate of depth the line is sampled with 100 particles, spaced uniformly between

0.5m and 5m from the camera. When depth covariance is small, a new feature is added

to the state vector. Moreover, features are deleted if more than half of attempted

measurements fail.

A fundamental characteristic of full-covariance EKF SLAM is that the computa-

tional complexity of the filter update is of order N2, where N is the number of features

in the map. The Kalman Filter update time begins to grow rapidly when the number

of features approaches 100, and going past this would require a different implementa-

tion, in order to meet the real-time requirement. Moreover if an action computation

is required, as the one in Chapter 6, the amount of features that can be maintained is

reduced by half.

C.2 Feature Extraction

The approach followed is similar to the one in [37], who showed that relatively large

(9×9 to 15×15 pixels) image patches are able to serve as long-term landmark features

with a surprising degree of viewpoint-independence. Each interest region is detected

once with the Shi-Tomasi saliency operator, and match correspondences are detected

in subsequent frames using normalised sum-of-squared differences [39]. Although more

robust detectors such as the SIFT have become widely popular for their ability to find

and match features with higher degree of uniqueness, they come at the expense of

heavier computational load.

Image projection is modelled using the full perpective projection model with dis-

tortion. When an image feature is detected, its measurement must either be associated

with an existing feature or be added as a new feature in the map. The location of the

camera, along with the locations of the already mapped features, are used to predict

the feature position (u, v) using (5.26), and these estimates checked against the mea-
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surements using a nearest neighbour test. Feature search is constrained to 3σ elliptical

regions around the image estimates as defined by the innovation covariance matrix

Si = HiPk+1|kH>i + R , with Hi the Jacobian of the sensor model with respect to the

state, Pk+1|k the prior state covariance, and measurements zi assumed corrupted by

zero mean Gaussian noise with covariance R.

Knowledge of Si is what permits a fully active approach to image search; Si repre-

sents the shape of a 2D Gaussian pdf over image coordinates and choosing a number

of standard deviations (gating, normally at 3σ ) defines an elliptical search window

within which the feature should lie with high probability. In this system, correlation

searches always occur within gated search regions, maximising efficiency and minimis-

ing the chance of mismatches. Si has a further role in active search; it is a measure of

the information content expected from a measurement. Feature searches with high Si

(where the result is difficult to predict) will provide more information about estimates

of camera and feature positions.

C.3 Initialisation

Inserting a new feature to the map cannot be done immediately because the measure-

ment model is non-invertible. Though bearing is recoverable from one measurement,

3D depth is not.

Several schemes have been reported [7, 39, 123], and it is adopted the first of these.

The initial measurement results in a semi-infinite line with Gaussian uncertainty in its

parameters, starting at the estimated camera position and heading to infinity along

the feature viewing direction. A 1D particle distribution represents the likelihood of

the 3D feature’s position along this line. The line is projected as an epipolar line

into subsequent images, but specifically it is the projection of the point particles and

their uncertainly ellipses that provide the regions to be searched for a match, in turn

producing likelihoods for Bayesian re-weighting of the depth distribution. A small
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number of steps is required to reduce to below a threshold the ratio of the standard

deviation in depth to the depth estimate itself. At that time, the depth distribution

is re-approximated as Gaussian and the feature is initialised as a 3D point xif into the

map.

The projective nature of camera measurements means that while a measurement

tells us the value of an image measurement given the position of the camera and a

feature, it cannot be directly inverted to give the position of a feature given image

measurement and camera position since the feature depth is unknown. Initialising

features in single camera SLAM will therefore be a difficult task: 3D depths for features

cannot be estimated from one measurement.

An obvious way to initialise features would be to track them in 2D in the image over

a number of frames and then perform a mini-batch update when enough evidence had

been gathered about their depth. However, this would violate our top-down method-

ology and waste available information: such 2D tracking is actually very difficult when

the camera is potentially moving fast. Additionally, we will commonly need to initialise

features very quickly because a camera with a narrow field of view may soon pass them

by.

It is important to realise that a statement like not invertible does not have real

meaning in a Bayesian framework, in which everything is uncertain and we must talk

about probability distributions rather than in binary statements. Even after seeing

a feature only once, we can talk about a PDF for its 3D position assuming that we

had some prior belief about its depth. However, to use the feature in our SLAM map

we require that its 3D position PDF can reasonably be modelled as a multi-variate

Gaussian and this is why we cannot initialise it fully after just one measurement.

The approach we take therefore after one measurement is to initialise a 3D line

into the map along which the feature must lie. This is a semi-infinite line, starting

at the estimated camera position and heading to infinity along the feature viewing

direction, and like other map members has Gaussian uncertainty in its paremeters. Its
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representation in the SLAM map is: where is the position of its one end and is a unit

vector describing its direction.

Along this line, a set of discrete depth hypotheses are made, analogous to a 1D

particle distribution: currently, the prior probability used is uniform with 100 particles

in the range 0.5m to 5.0m, reflecting indoor operation (quite a different type of prior

may be required in larger environments where features may be very distant or even

effectively at infinity). At subsequent time steps, these hypotheses are all tested by

projecting them into the image. As Figure shows, each particle translates into an

elliptical search region.

Feature matching within each ellipse (via an efficient implementation for the case

of search multiple overlapping ellipses for the same image patch) produces a likelihood

for each, and their probabilities are reweighted. Figure shows the evolution of the dis-

tribution over time, from uniform prior to sharp peak. When the ratio of the standard

deviation of depth to depth estimate drops below a threshold, the distribution is safely

approximated as Gaussian and the feature initialised as a point into the map. The

important factor of this initialisation is the shape of the search regions

C.4 Map Management

With the ability to add features to the map comes the need for criteria to decide

when this should be necessary, and potentially when features should be deleted. The

map maintenance criterion aims to keep the number of reliable features visible from

any camera location close to a predetermined value determined by the specifics of

the measurement process, the required localisation accuracy and the computing power

available. Feature visibility (more accurately predicted measurability) is calculated

based on the relative position of the camera and feature, and the saved position of

the camera from which the feature was initialised: the feature must be predicted to

lie within the image, but further the camera must not have moved or rotated too far
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from its initialisation viewpoint of the feature or we would expect correlation to fail.

Features are added to the map if the number visible in the area the camera is passing

through is less than this threshold. This criterion was imposed with efficiency in mind

it is undesirable to increase the number of features and add to the computational

complexity of filtering without good reason. Features are detected by running the

image interest operator of Shi and Tomasi to locate the best candidate within a box

of limited size (around 100 × 50 pixels) placed within the image this is for reasons of

efficiency in a real-time implementation.

The position of the search box is currently chosen randomly, with the constraints

only that it should not overlap with any existing features and that based on the current

estimates of camera velocity and angular velocity any detected features are not expected

to disappear from the field of view immediately. No effort is currently made to detect

features in useful positions in terms of improving localisation information although this

would be an interesting avenue for research more important is to find the features of

strong image salience which exist in the image and to have them widely distributed

across the image.

A feature is deleted from the map if, after a predetermined number of detection and

matching attempts when the feature should be visible, more than a fixed proportion

(in our work 50 percent) are failures. This criterion prunes bad features which are

not true 3D points or are often occluded. A degree of clutter in the scene can be

dealt with even if it sometimes occludes landmarks. As long as clutter does not too

closely resemble a particular landmark, and does not occlude it too often from viewing

positions within the landmark’s region of expected visibility, attempted measurements

while the landmark is occluded will simply fail and not lead to a filter update. Problems

only arise if mismatches occur due to asimilarity in appearance between clutter and

landmarks, and this can potentially lead to catastrophic failure. Correct operation of

the system relies on the fact that in most scenes very similar objects do not commonly

appear close enough to lie within a single image search region (and special steps would

need to be taken to enable the system to work in scenes with repeated texture).
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robot mobile grâce à l’analyse par intervalles. Traitement du Signal, 17(3):207–

219, 2001.

[75] B.H. Kim, D.K Roh, J.M. Lee, M.H. Lee, K. Son, M.C. Lee, J.W. Choi, and

S.H. Han. Localization of a mobile robot using images of a moving target. In

Proceedings of the IEEE International Conference on Robotics and Automation,

pages 253–258, Seoul, May 2001.

[76] J. Kim and S. Sukkarieh. Autonomous airborne navigation in unknown ter-

rain environments. IEEE Transactions on Aerospace and Electronic Systems,

40(3):1031–1045, July 2004.

[77] J. Kim and S. Sukkarieh. Improving the real-time efficiency of inertial SLAM and

understanding its observability. In Proceedings of the IEEE/RSJ International

199



BIBLIOGRAPHY

Conference on Intelligent Robots and Systems, pages 21–26, Sendei, September

2004.

[78] S. J. Kim. Efficient Simultaneous Localization and Mapping Algorithms using

Submap Networks. PhD thesis, Massachusetts Institute of Technology, Cam-

bridge, June 2004.
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