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Abstract

T he use of ceramic materials in many industrial fields is spread and ever-increasing,

for their excellent properties, either mechanical, thermal, tribological or biologi-

cal. However, their intrinsic brittleness and lack of reliability are obstacles to further

spreading these materials in applications where structural resistance is required. To

build multilayered composite structures is a promising way which aims to increase the

reliability of ceramics. As it is common in composite materials, layered materials allow

the mechanical properties to be superior to those of the constituent materials, in the

studied case due to the presence of compressive residual stress in the surface.

The best applications for such materials are those related to the surface properties;

for this reason the response to contact loading is especially important to characterize

the mechanical properties and to assist in the design of advanced ceramic composites.

Hertzian indentation techniques provide a powerful tool to study such type of load-

ing, which is otherwise difficult to characterize with the traditional mechanical testing

methodologies.

Contact damage in brittle materials appears mainly as surface ring-cracks, which can

develop in a characteristic cone crack. Such fissuration is detrimental to the functionality

of the material, and can lead to the failure of the component. Tough ceramics often

present another type of damage, the so-called quasi-plasticity, generated as subsurface

microcracking and which is cause of inelastic deformation.

In this thesis, alumina-based ceramic laminates were characterized in their resistance

to contact damage in all its aspects, starting from the appearance of surface fissures,

to the propagation of brittle cracks in the first layer and its influence on the mate-

rial strength, to the contact loading-induced failure. Experimental measurements were

coupled with Finite Element analysis of the involved parameters, which assisted in for-

mulating comprehensive guidelines for the correct characterization and the design of

advanced multilayered ceramics.
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The presence of residual stress in ceramic laminates proved to be effective in im-

proving the material resistance to the ring cracking, generated by monotonic, cyclic

and long-lasting tests. The better resistance to these latter revealed the existence of

grain bridging hindering the crack formation, unexpected in fine-grained alumina and

which was related to the small crack character of the ring crack. Longer lasting cyclic

tests showed that more severe damage appears in the multilayered materials than in the

monolithic one, suggesting a modification of the predominant damage mode to quasi-

plastic-derived surface degradation.

Propagation of long cone cracks is affected by residual stress in both the length and

angle. An automatic Finite Element model of crack propagation allowed to predict

crack growth as a function of both the extrinsic residual stresses and of microstructural

parameters, which helped address the long-open question of the cone crack angle on

polycrystalline materials.

The response to remote loading of indented materials, in other words the strength

degradation, is conditioned by the cone crack geometry, as well as by other factors de-

riving from the laminated structure, such as the presence of residual stress itself and the

load redistribution due to the elastic mismatch between layers. Similarly, the contact

strength, i.e. the resistance to local blunt compression, is improved in the compos-

ite materials as a consequence of the residual stresses. Nevertheless, the risk of high

stress in the lower tensile layers was highlighted for both types of loading and general

consideration on the design of laminated materials were proposed.

In the overall, a comprehensive characterization of the contact properties of the

studied materials was achieved, and the understanding of crack propagation on brittle

polycrystalline materials was broadened and improved.
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Resumen

L
a difusión de los materiales cerámicos en muchos campos de la industria es amplia

y está en fuerte expansión, debido a las excelentes propiedades de estos materi-

ales, ya sean mecánicas, térmicas, tribológicas o biológicas. Sin embargo, su fragilidad

intŕınseca y falta de fiabilidad limitan una mayor difusión en esas aplicaciones donde se

precisa alta resistencia estructural. La producción de composites multilaminares es un

camino prometedor para aumentar la fiabilidad de los cerámicos. Los cerámicos multi-

capa permiten que las propiedades mecánicas sean mejores que las de los componentes,

debido a la presencia en la superficie de tensiones residuales de compresión provocadas

diferencias de expansión térmica entre las capas.

Las aplicaciones óptimas de estos materiales son las que están relacionadas con las

propiedades superficiales; por eso la respuesta a las cargas por contacto son especial-

mente importantes para caracterizar las propiedades mecánicas y para mejorar el diseño

de cerámicos composites avanzados. Las técnicas de indentación Hertziana son her-

ramientas muy útiles para estudiar este tipo de carga, que por otro lado es dif́ıcil de

caracterizar por ensayos mecánico tradicionales.

El daño por contacto en materiales frágiles aparece principalmente como grietas anillo

en la superficie, que pueden desarrollarse como grietas cono, caracteŕısticas de este tipo

de carga. Este agrietamiento es perjudicial para la funcionalidad del material, y puede

llevar al fallo de la pieza. Las cerámicas tenaces, por otro lado, pueden presentar un

daño, cuasi-plástico, que se genera debajo la superficie en forma de microagrietamento,

y que es causa de deformación inelástica.

En esta tesis, se caracteriza la resistencia al daño por contacto materiales cerámicos

en base alúmina, incluyendo todos los aspectos de ese daño, desde la aparición de fisuras

superficiales, a la propagación de grietas frágiles en la primera capa y su influencia sobre

la resistencia del material, hasta el fallo inducido por carga de contacto. Se comparan

medidas experimentales con análisis a los Elementos Finitos de los parámetros involu-
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crados en cada caso, lo que permite formular pautas para una correcta caracterización

y diseño de cerámicas multicapas avanzados.

Se vio que la presencia de tensiones residuales es efectiva en mejorar la resistencia a

la formación de grieta anillo, sea generada por cargas monotónicas, ćıclicas o estáticas.

La alta resistencia frente a este último tipo de carga revela que existen mecanismos de

puenteo intergranular que se oponen a la formación de grietas, lo que era inesperado por

el tamaño de grano fino, y que se atribuye a un efecto de grieta corta, comparada con la

microestructura. Ensayos ćıclicos de larga duración mostraron, por otro lado, que en los

materiales multicapas aparece daño superficial más severo que en los monoĺıticos, lo que

sugiere un cambio del daño predominante haćıa una degradación superficial producida

por cuasi-plasticidad.

Las tensiones residuales afectan tanto la longitud como el ángulo de la grieta cono.

Se modeló el problema mediante Elementos Finitos y algoritmos de propagación de

grieta, lo que permitió predecir el crecimiento de grieta en función tanto de las tensiones

residuales, como de otros parámetros microestructurales, y determinar del ángulo de la

grieta cono en materiales policristalinos.

La respuesta a cargas remotas de materiales indentados, en otras palabras la degradación

de la resistencia, se ve afectada por la geometŕıa de la grieta cono, y por otros factores

que son consecuencia de la estructura laminar, tales como las tensiones residuales y la

redistribución de carga por el desajuste elástico entre capas. Asimismo, la resistencia por

contacto, o sea la resistencia a compresión roma localizada, se ve mejorada en materi-

ales laminares, como consecuencia de las tensiones residuales. Sin embargo, se evidenció

que existe el riesgo de que se genere tensión elevada en las capas interiores bajo ambos

tipos de carga, y se propusieron consideraciones generales sobre el diseño de materiales

laminares.

En definitiva, se consiguió una caracterización exhaustiva de las propiedades de con-

tacto mecánico de los materiales estudiados, y se amplió y mejoró el conocimiento de la

propagación de grieta en materiales frágiles policristalinos.
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CHAPTER 1
Introduction

1.1 Advanced ceramics for structural applications

C
eramic materials are widely and increasingly used in many industrial fields, where

their excellent properties, either mechanical, thermal, tribological or biological,

are needed for advanced, high-performing applications.

Some examples are given by silicon carbides and tungsten carbides, which present, in

general terms, low weight and high hardness and or by mullite, excellent for its thermal

shock resistance, or alumina and zirconia, whose bio-compatibility and wear resistance

are unmatched by almost any other material.

However, their intrinsic brittleness and, specially, lack of reliability are obstacles to

further spreading of many of these materials in those applications in which structural

resistance is required.

In order to overcome the risk of catastrophic failure, the use of ceramic materials is

often limited to small parts of the component, in which they can fulfill their function

without affecting the piece reliability. This is specially true for those applications in

which the required properties are related to the surface, such as the tribological or

biomedical ones, in which, on the other hand, it is impossible to avoid the ceramic to be

loaded, either accidentally or for fulfilling the expected function.

The development of fracture mechanics as a design discipline enlightened the impor-

tance of the microstructure and of the surface flaws on the fracture response of brittle

materials, allowing many advancement in the effort of improving the reliability of ce-

ramics, acting either on the processing parameters (reducing thus the flaws), on the
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Figure 1.1: Scheme of crack length-dependent toughness, or R-curve

microstructure, or on extrinsic mechanisms.

1.2 Shielding microstructures

An example of microstructure-dependent toughening mechanism is the increasing crack-

growth resistance, often referred to as “R-curve behaviour”, present in many tough

ceramics and caused by several different mechanisms.

In those ceramics, the fracture toughness does not have a constant value, but in-

creases as the crack propagates, as it is shown schematically in Fig. 1.1. The mecha-

nisms causing such effect act either in a process zone, as in phase-transforming zirconia or

micro-cracking zirconia-toughened alumina, or in a bridging zone, as in fiber-reinforced

or coarse- and long-grained ceramics. In both cases, the microstructure applies a stress

to the crack wake, hindering thus the crack opening.

In the case of alumina, cracks propagate following the high-energy grain boundaries,

so that the friction between grains in the crack wake provides the stress shielding. Con-

sequently, the amount of shielding can be related to the grain size and aspect ratio, being

higher in coarse-grained materials, although bridging can be present in fine-grained ma-

terial.

In general terms, the R-curve can be expressed as a term which is subtracted from
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Layered structures

the stress intensity factor at the crack tip, as a function of the crack length c:

KI = Kappl
I −Ksh

I (c) (1.1)

The expression of Ksh
I depends on many factors, such as the material microstructure,

the type of test, the initial crack length (or defect) and the intrinsic fracture toughness

KIc assumed, but in general is formed by a steady state and a transient one, which

depends on the crack length and on some microstructural parameter [1].

An important consequence of the R-curve is that crack advancements are accompa-

nied by a reduction of the applied stress intensity factor, so that a load increment is

necessary for a further crack advancement, so that the crack propagation is stable (i.e.

∆K/∆c < 0).

1.3 Layered structures

To build a multilayered structure is another way which is being followed in the effort to

increase the reliability of ceramics. As it is common in composite materials, layered ma-

terials allow to tailor the mechanical properties to be superior to those of the constituent

materials, by means of different strengthening mechanisms.

1.3.1 Multilayers with weak interfaces

The concept of crack deflection is borrowed from the mollusc shells [2], which are formed

mainly by brittle aragonite (calcium carbonate) layers, separated by thin protein films.

When a crack propagating through a hard layer reaches the interface, it is deflected

along the interface itself, dissipating energy and increasing thus the work necessary for

fracture (see Fig. 1.2).

Hence, SiC laminates with weak graphite interfaces fabricated by chemical vapour

deposition [3] obtained the same effect of crack deflection, which produced an increment

in the work of fracture (at the expense of a slightly lower ultimate strength), with the

additional virtue of reducing the catastrophic character of the fracture mechanism. In

other words, the area under the stress-strain curve is higher, because the fracture of

the first layer does not cause the failure of the sample, which can withstand higher

displacement. For this reason, such mode of fracture is called “graceful failure”.

Other examples of this design philosophy presented layers of SI3N4/Si3N4-BN, pro-

duced by Kovar et al. [4], who studied the dependance on the interlayer resistance of

3



1. Introduction

Figure 1.2: Scheme of crack deflection along the weak interfaces in ceramic laminates.
The arrows represent crack deflection/bifurcation

the mode of failure, either graceful delamination or brittle failure; Al2O3/LaPO4 [5] and

ZrO2/LaPO4 [6] exploited the combination of debonding properties with chemical and

morphological stability of lanthanum phosphate, known in nature as monazite.

The drawback of such composites is the low resistance of the interfaces to shear

stress, which is detrimental for the multilayer resistance to mixed-mode loading.

1.3.2 Multilayers with strong interfaces

The limitations of the laminates with weak interfaces were partially overcome by al-

ternative laminate structure with stronger interfaces or layers, such as porous alumina

between dense alumina layers [7], which provided high work of fracture enhanced at

high temperature; unsinterable-platelets-enriched alumina (or mullite) [8], which causes

residual porosity, so that crack propagation takes place along a preferential, longer, path;

transforming Ce-ZrO2 and alumina, in which the toughening was given by the influence

of the alumina layers on the transformation zone surrounding the crack, which is spread

along the interface and truncated at the tip, with the consequence that the crack closure

stress is higher [9].

A particular case of this class of composite ceramics is the structure composed by

thick layers with small tensile residual stress alternated to thin layers subjected to high

compressive residual stress, which cause the crack to arrest and be deflected, so that a

threshold-stress effect is achieved [10, 11], meaning that the component strength does

not depend on the flaw size, for a wide range of sizes.

4



Ceramic laminates with residual stress

Figure 1.3: Scheme of residual stress generated in multilayered ceramics from differential
shrinkage after sintering. Gray layers represent the ones with lower α. The deformation
at the edges has been exaggerated.

1.4 Ceramic laminates with residual stress

Stacking and sintering layers of materials with different coefficients of thermal expan-

sion α, results in the generation of residual stresses in the structure, such as the ones

represented in Fig. 1.3. The amount of residual stress depends on the geometry and

elastic properties of the composing materials. An analytical approximation, considering

only in-plane stress, was formulated by Chartier et al. [12]:

σ1
r =

nE1E2t2(α1 − α2)∆T

n(1− ν1)E2t2 + (n+ 1)(1− ν2)E1t1
(1.2)

for a (2n+1)-layered structure, and the symbols are described in the nomenclature sec-

tion (p. xvii).

In some case, residual stress can be induced by the use of a transforming material,

typically zirconium oxide, as one of the composing material, due to the volume incre-

ment [10, 13] (4% for the tetragonal to monoclinic transformation of zirconia). Ceramic

laminates are often produced in the alumina-zirconia system, because both materials

present excellent properties for tribological and biological applications and can be com-

bined easily, so that the residual stress can be tailored in a wide range of values by

using an alumina-zirconia composite as one or both of the composing material, or by

modifying the relative thickness of the layers, so that the stress that is generated does

not cause failure of the samples during sintering (the so-called “channel cracking” [14]).

5



1. Introduction

Moreover, the bonding created during sintering between layers is strong and with almost

no particle interdiffusion.

The strengthening mechanism in such structures is given by the compressive residual

stresses acting on the external layer. Such compressive stresses have the effect of reducing

the externally-applied stress, increasing thus the material strength or, which is the same,

reducing the stress intensity factor at the tip of the existing defects or cracks.

The strength of such composite is improved, with respect to the monolithic counter-

part, under bending tests [15], as well as the fracture toughness [16]. Moreover, the force

applied by residual stress on the crack wake increases as the crack propagates, because

more surface of application if formed, producing an increase in toughness, in other words

an apparent R-curve behaviour, as it was shown experimentally [17] and studied by the

weight function method [18, 19].

Ceramic laminates with residual stresses have shown enhanced properties also under

wear testing [20], with both reduced friction coefficient and increased wear resistance.

This result is especially significant, because it is obtained under conditions which are

similar to the ones expected in service.

Despite all the noteworthy advancement it is apparent that ceramic materials do not

present, currently, the characteristics of reliability, high toughness and ease of processing,

which would allow the spreading to real structural applications.

The best design philosophy is, indeed, trying to employ ceramics, either monolithic

or in a composite structure, where they are most needed, exploiting their excellent

properties and avoiding remote loading. For this reason one of the main characteristics

of this class of material should be the resistance to localized loading.

Consequently, damage tolerance against long crack propagation is somewhat not

connected to the response of the material under the type of loading expected in service;

in order to obtain a proper characterization, new tools are needed, which are different

from the classical mechanical tests, such as those provided by spherical indentation.

1.5 Spherical indentation theory

Spherical indentation presents several advantages compared to other testing tools:

• it is material inexpensive: as with many indentation tests, small samples are

needed, several indentation can be performed on the same sample (provided that

6



Spherical indentation theory

they are placed far enough one from the other, to minimize the influence on the

neighboring) and the samples can be tested on both surfaces;

• compared to sharp indentation, the stress field is elastic at the beginning, with the

the maximum stress increasing with the contact load, until plasticity is reached in

a point beneath the indenter, which expands as the load increases. It is possible,

therefore, to employ spherical indentation techniques to study the fracture in elas-

tic regime or the transitions (either elasto-plastic or related to any stress-induced

transformation) taking place in the material;

• it allows testing under different loading conditions, enhancing thus different defor-

mation or fracture mechanisms; as an example, tests on ceramics with a constant

load enhance environment-assisted subcritical cracking, while cyclic fatigue pro-

duces mechanical degradation of the bridging mechanisms, resulting, similarly, in

stable crack propagation, and also in subsurface microcracking;

• as mentioned above, the highly graded and inhomogeneous stress field is represen-

tative of the loading which can be expected during service, as in tribological and

biomechanical applications;

• is suitable for the evaluation of several types of materials, therefore it can be used

as a comparison tool, although the most relevant results are obtained by testing

brittle materials or composite structures, such as coatings or multilayers.

The first studies of the elastic stress and deformation fields formed during the contact

of two blunt bodies were presented by Hertz [21], who observed the contact between two

glass lenses and the modifications of the Newton refraction pattern due to the elastic

deformation. He established the basis of the spherical indentation cracking analysis,

calculated the stress trajectories and observed the brittle damage in the shape of the

characteristic cone crack.

The elastic calculations of the contact, corresponding to the diagram of Fig. 1.4, are

here expressed in the form established by Johnson [22]:

a3 = 4kPR/3E (1.3)

being a the contact radius, P the indentation load, R the sphere radius, E the Young’s

modulus, and

k =
9

16

[
(1− ν2) + (1− ν ′2)

] E
E ′
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Figure 1.4: Scheme and symbology of Hertzian cone cracking

a dimensionless elastic mismatch coefficient, with ν the Poisson’s ratio and the prime

denoting the indenter material.

The contact pressure follows a radial distribution:

p(r) = pmax

[
1−

(r
a

)2
]1/2

(1.4)

where pmax is the peak pressure, located under the indenter vertical axis and related

with the mean pressure p0:

p0 =
2

3
pmax =

P

πa2
(1.5)

Eqs. (1.3) and (1.5) can be combined:

p0 =

(
3E

4πk

)
a

R
(1.6)

producing a relation between indentation pressure and relative deformation, which gives

information on the stress-strain response of the material, shown in Fig. 1.5 for a brittle

and a plastic material. In 1891 Auerbach [23] studied the onset of damage and estab-

lished the law bearing his name, which states a linear dependance of the critical load for

fracture on the indenter radius (or on R3/2 in the case of flat punch indentation [24]);

this is an unexpected behaviour, often referred to as a paradox, because it states that

fracture does not start when a critical stress is reached, which would be R2-dependant

(Fig. 1.6). In 1956 Roesler [25] showed that P ∝ C3/2 for long-enough cracks, putting

the basis for the Fracture Mechanics analysis made in 1967 by Frank and Lawn [26, 27],

who could explain the Auerbach’s paradox with an energy balance based on the sepa-

ration in two phases of the damage formation process, ring and cone crack formation,

8
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Figure 1.5: Scheme of indentation stress-strain curve

Figure 1.6: Scheme of the Auerbach paradox
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respectively. The fracture mechanics approach allowed to express the evolution of the

KI shape along the crack, though in an approximate way1.

A three dimensional generalization of the in-plane fracture mechanics analysis was

provided, in more recent years, by Dai et al., as a study of the tendency to propagate

either downward or circumferentially of a semi-elliptical crack subjected to the Hertzian

stress field [28]. Recently, Licht et al. extended such analysis to general validity with the

aid of weight functions and added a statistical analysis via a modified Weibull theory

[29].

Several factors which may influence the onset of ring crack were analysed, such as

the effect of reactive environment, by Langitan and Lawn [30] in 1970; the influence

of elastic mismatch and friction coefficient between substrate and indenter by Johnson,

O’Connor and Woodward in 1973 [31], and the effect of Poisson ratio by Warren in 1978

[32], who also introduced the possibility of employing spherical indentation as a tool for

measuring fracture toughness from the ring crack radius.

In more recent years, most of the basic issues of Hertzian cracking were analysed

to a further understanding and in some cases improved. It is the case of the work by

Mouginot and Maugis [33], who extended the Hertzian analysis to the indentation by a

flat punch and reviewed the issues of crack initiation, abrupt propagation to form the

cone and subsequent stable crack growing, of the Auerbach’s law and of the starting

crack radius.

In 1975 Lawn, Wiederhorn and Johnson studied the well-developed cone crack as the

critical flaw for cracking under bending test, quantifying and rationalizing the strength

degradation induced and indicating a parametric optimization for contact damage tol-

erant design [34].

The concept of indentation as a toughness measurement tool was reprised in 1992

by Zeng et al. [35], who proposed a methodology based on cone crack length rather

than on onset of ring crack. On the other hand, this approach was improved later

by Warren himself in 1995 [36], who reviewed critically the papers appeared on the

topic. He highlighted and explained the poor agreement existing in literature, which

may be attributed to the complexity of some of the methods and to the inaccurate

simplifications often assumed. Eventually, he proposed an improved method based on

the onset of ring cracking on a same-material substrate-indenter couple. The method

was somewhat improved by Geandier et al., who included the effect of friction between

1because the KI were calculated from the stress field in the uncracked body
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dissimilar materials [37].

1.6 Cone crack

The mechanism of cone crack formation and propagation is one of the main points this

thesis deals with; for this reason it deserves special attention.

As mentioned above, tensile stress encircling the contact zone causes some favorably

oriented defect to propagate circumferentially creating a ring crack. Further propaga-

tion needs a load increment, because the stress field below the surface becomes rapidly

compressive. The shape of KI as a function of the crack length, shown in Fig. 1.7,

consists of two unstable branches and two stable ones. The former ones (1 and 3 in

the figure) correspond to the abrupt ring and cone crack formation, respectively, which

start when the critical stress intensity factor is reached, the latter ones (2 and 4) to sta-

ble propagation due to load increments. After stability is attained, long-enough cracks

follow the Roesler equation:

K(c) = χ
P

C3/2
(1.7)

being C the length of the virtual cone director, whose truncation is the Hertzian crack.

Crack propagation, as it is common in ceramics, follows the direction of maximum energy

release rate, or, which is the same for brittle materials, the direction of a disappearing

mode-II stress intensity factor. It is possible to evaluate a priori the crack path from the

stress field, as a path perpendicular to the first principal stress trajectory, in other words

the third principal stress trajectory2. This method was followed by Frank and Lawn [26],

who nevertheless obtained a realistic path for glass only assuming an unrealistic value

of the Poisson’s ratio. This is due to the modification of the stress field caused by the

crack propagation.

Only in recent years the problem was addressed by Kocer et al. [38, 39] and by Fett

[40], in the former work with an incremental Finite Element model in which the propa-

gation direction was calculated step-wise by means of a minimum energy criterion at the

crack tip, in the latter with weight functions, also derived by Finite Element modeling

of parameterized cracks. Both authors obtained results in agreement with the experi-

mental data collected for several brittle homogeneous materials, although discrepancy

2because the second principal stress is the hoop component
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Figure 1.7: Stress intensity factor as a function of the crack length, with the asymptotical
Roesler solution

existed for polycrystalline materials, such as alumina, in which microstructural features

affect the stress field at the crack tip.

It is argued that such microstructural variables are not captured by models of crack

propagation based on fracture mechanics on continuous bodies. This is the case of crack-

growth resistance produced by grain bridging, common in coarse-grained alumina but

also present in fine-grained alumina[41], as it can be appreciated, for example, in the

disagreement in terms of final length in cone cracks between simulation and experimental

observations [42]. The mode-II contribution from such effects sums to the shear stress

component of the imposed stress field, producing thus a variation of the direction for

which the shear stress disappears, in other words the KII = 0 path.

There are not many studies in the literature about mode-II R-curve in brittle ce-

ramics [43]. This is due in part to the experimental difficulties in making accurate

measurements, respect to mode-I shielding, and to the fact that this latter is generally

considered to have more influence on the fracture properties. Furthermore, under both

mode-I and mode-II loading, the amount of shielding depends strongly on the type of

test performed and on the mode-I/mode-II ratio, so that extrapolation of results from

one test to another would give unreliable results. Therefore, an estimation of a mode-II

R-curve under a specific type of test should be obtained by the same, or a very similar,

12
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test. In the case of Hertzian indentation, for long enough cracks, fracture is essentially

mode-I -driven, with a relatively small mode-II stress intensity factor, which rules the

crack propagation. A priori knowledge of the KII stress intensity factor is not available,

so that a direct experimental measure is not attainable.

1.7 Inelastic contact damage

In 1994 Guiberteau et al. proposed the employment of spherical indentation as a dam-

age indicator. They applied cyclic loading to fine-grained alumina, and tried to relate

the amount of visible surface damage to the strength degradation of the material [44].

This latter point was deeply studied by Kim et al., who performed a series of cyclic

indentation-strength tests on several materials, deducting general laws of damage ac-

cumulation and highlighting the existence of mechanical fatigue effect enhancing both

brittle and quasi-plastic damage [45].

Quasi-plasticity as a damage mechanism in brittle materials, although foreshadowed

since the seventies [46], and deducible from the “indentation stress-strain” curve, was

studied in deep only in the 1990s [47, 48]. Such type of damage presents several analo-

gies with the deformation mechanisms in ductile materials, in that is cause of per-

manent deformation in typically non-plastic materials and is shear-driven. However,

the microstructural mechanism is completely different, being not controlled dislocations

movement. From a macroscopic observation, point damage starts beneath the indenter

when the maximum shear stress τm, located along the symmetry axis, reaches the critical

value τm = τy = 1/2σy; subsequent loading causes expansion of the damaged zone in a

way phenomenologically similar to the “expanding cavity” model in soft metals.

Microstructural observations showed that the permanent deformation is caused by

shear-activated microcracking, with extensile mode-I wings forming at the grain bound-

aries, which propagate and, for high load, coalesce resulting in disintegration of the

material [49] and expansion of the affected zone until reaching the surface. Such mech-

anisms is enhanced by cyclic loading [50].

The exact onset of quasi-plastic yielding is difficult to measure, as permanent defor-

mation starts under the surface; nevertheless it can be deducted from the loss of linearity

of the indentation stress-strain curve, as shown in Fig. 1.5 [47] or, if the indentation

response is recorded, by measurements of the residual depth as a function of the load

and regression of an elastic recovery parameter to the value for which the residual depth
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Figure 1.8: Scheme of shear-activated microcracks, with extensile wings at the grain
boundaries

tends to 0 [51]. The amount of damage is quantified by a parameter Nl3, where N is the

density and l the characteristic size, respectively, of the faults. Measurement techniques

which have given good results at least in relative amounts of quasi-plastic damage are

acoustic emission detection [49] and thermal wave imaging [52].

Simulation-assisted representations of quasi-plastic damage gave acceptable results

if constitutive laws typical of plastic deformation of metals were used and the non-linear

deformation law were included in the material response rather than as an expanding

cavity [53]. Nevertheless, an improvement was obtained by Licht et al. with a Finite

Element model of damage which describes the development of pressure-induced micro-

cracks in brittle solids as an elastic degradation of the material [54].

The prevalence of either brittle or quasi-plastic damage is related to the elastic and

mechanical properties of the material, as well as to microstructural and extrinsic aspects.

Predictions of the contact behaviour can be inferred from a predictive index, namely a

critical loads ratio, proposed by Rhee et al. [55], based on the elastic properties and on

the toughness of several materials.

PY /Pc = ∆(H/E ′)(H/KIc)
2R (1.8)

with ∆ a constant which is a function mainly of the Poisson’s ratio.
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Inelastic contact damage

Figure 1.9: Calculated critical load ratio for selected ceramics, for a sphere radiusR=3.18
mm [55]

As it can be seen in Eq. 1.8, a smaller indenter will be more likely to cause inelastic

deformation rather than fragile cracking. This is due to the fact that the critical load

for plastic onset has a quadratic dependence with the indenter radius, while the onset of

brittle fracture grows with the radius in the Auerbach range. The results obtained in this

work, shown in Fig. 1.9, though useful for an approximative a priori evaluation, have

the limitation of assuming ideal elastic-plastic response, neglecting any microstructural

feature, which often are relevant in defining the damage mode. Moreover the index

predicts the onset of the first damage, but both modes of damage can coexist in the

same material (especially polycrystalline ones) for higher loading.

The influence of the microstructure can be seen in the studies of Guiberteau et al.

[44, 49], Lee et al. [56, 57], Latella et al. [58] who observed that coarse-grained ceram-

ics (alumina, silicon nitride, Ce-TZP, respectively) present higher accumulated plastic

damage than in fine-grained materials, which present the classical Hertzian fracture.

Such influence can be appreciated clearly in the micrographies presented in Fig. 1.10,

taken from [49]. Padture et al. observed a similar behaviour, i.e. an enhancement of

quasi-plastic damage with respect to brittle cracking, in presence of weak interfaces [59].

15



1. Introduction

Figure 1.10: Influence of grain size on the Hertzian damage: optical micrographs of
half-surface and section views of indentations on aluminas with grain size (a) 3 µm, (b)
9 µm, (c) 15 µm, (d) 21 µm, (e) 35 µm, (f) 48 µm [49]

Although the contact damage generated by Hertzian indentation is localized in a

small volume, the material subjected to elastic deformation is much greater, therefore

any feature of the component affecting such volume may influence the damage formation

and how such damage affects the material strength. Giannakopoulos [60] and Jitcharoen

et al. [61] showed, both analytically and experimentally, that in presence of an elastic

gradient, increasing from the surface to the bulk of the sample, the cone crack formation

can be inhibited. Since this is due only to the different shape of the elastic field, the

quasi-plastic damage is not enhanced, as it could be expected.

Similar improvements can be obtained in laminated structures, in which layers with

different elastic or microstructural properties interact, with the effect of reducing the

amount of damage generated by spherical indentation. An et al. produced trilayered

materials with layers of different microstructure (homogeneous fine-grained alumina and

heterogeneous alumina, respectively), piled in two opposite sequences, which behave as
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Failure caused by contact damage

constraint to the damage propagation in the adjacent layer, with a consequent lower

strength degradation under spherical indentation [62].

More often the combination of a brittle and a compliant materials has been studied,

for example by Lee et al. and Miranda et al., who proposed a hard coating-soft substrate

coupling as a tough, contact damage-tolerant system [63, 64]. The concept was further

developed by Jung et al. and Lawn et al. as a way to improve the reliability of all-

ceramic crowns for dental implants [65, 66]. The use of Hertzian indentation in this

case is an especially effective example of application-focused testing: the loading of a

dental implant is well represented by spherical indentation, therefore from such tests the

component design can be directly derived.

The quantification of the amount of damage generated by spherical indentation can

be obtained from measurements of the strength degradation with respect to undamaged

material. Both the brittle and quasi-plastic modes of damage can act as the critical flaw

for fracture under bending test, although the way a material degrade, as a function of the

indentation load or of the number of cycles in the case of contact fatigue testing, varies,

as shown by Lee et al. in silicon nitride [63] and by Kim et al. in fatigued ceramics

[45]. If damage is prevalently brittle, the drop in strength is abrupt, corresponding to

the formation of cone crack (whose stable length is of the order of magnitude of the

contact diameter) and increases slowly as the cone crack propagates in a stable way,

either for the increase in load or in number of cycles. If damage is quasi-plastic there is

no strength drop, and the degradation is progressive, corresponding to the progressive

growth and coalescence of the microcracking.

1.8 Failure caused by contact damage

Although damage produced by spherical indentation is often contained within a shal-

low volume beneath the indentation, it can cause failure of the component. Evaluation

of such surface-related strength can difficultly be attained by traditional strength test-

ing methodologies, because the stress gradient is multiaxial and highly inhomogeneous,

rather than the monoaxial homogeneous characteristic of bending tests, which therefore

are not appropriate for a strength characterization focused on contact-prone applica-

tions.

The loading by opposite spherical contact, for example, causes failure when the cone

cracks either meet each other or reach the sample edge. Such test is suitable also for
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Figure 1.11: Scheme of the contact strength test: parallel strip subjected to compression
by opposite rigid cylinders

fatigue crack propagation analysis [67, 68].

An alternative test setup is the contact strength test by opposite cylinders loading:

compression applied in such a way generates a Hertzian stress field, similar to the one

generated by sphere, with the first in-plane principal stresses tensile and the second

negative, the former presenting maxima at the surface near the contact zone and along

the vertical axis of symmetry, which causes unstable crack growth and failure of the

sample [69].

1.9 Objectives of the thesis

The main focus of this thesis was the characterization of ceramic laminates response to

contact loading.

For the sake of completeness and readability, the approach was to divide the work

in several sections, with increasing levels of damage, from the first appearance of cracks

on the surface to the degradation of the specimen, leading to catastrophic failure.

The laminates herein studied were designed with the aim of improving the perfor-

mances in surface-related applications, such as tribological and biomedical, therefore the

first characterization parameter was the appearance of damage in the surface, which is
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a critical issue because is the cause of loss of functionality. The study was conducted

trying to embrace a range of modes of testing, which represent loading expectable in

service.

Single-cycle loading was the first to be characterized, as a reference test and as model

of incidental loading. The results obtained were then extended to long-lasting (static

fatigue) and cyclic loading, the former for an evaluation of the environment-enhanced

fracture, the latter for an estimation of mechanical fatigue effect.

Cyclic loading was also employed in the next step, the evaluation of the surface

degradation caused by more severe loading. The importance of this issue lies in the

additional damage which can be caused by debris or material chips detaching from the

component.

A major point of research was the study of the cone crack propagation. The knowl-

edge of the subsurface damage in ceramic laminates acquires a special importance, in

that containment of the crack within the external layer is extremely critical for avoiding

abrupt failure, as it would occur if the crack extends to the subsequent, tension-stressed,

layer.

Many features are involved in the fracture properties of ceramic materials; the man-

ufacturing process itself influences properties such as density and grain size, on which

the resistance of the material depends strictly. Moreover, the extraction of properties

often depends on the specific test methodology and, in the case of laminated materials,

it is difficult to isolate the effect of the geometry on the test from the actual effect on

the material resistance.

To overcome this limitations, and obtain thus general relations of the modification in

the fracture response, the Finite Element method was used in order to take into account

all of the intrinsic and extrinsic parameters involved in the mechanical properties of

ceramic laminates, namely microstructure-dependent toughness and residual stresses,

and infer the net effect of any of the issues, rather than measuring a geometry-dependent

improvement, obtaining thus general laws applicable to any material and composite

geometry. Simulations were tightly associated with actual tests, in order to produce as

quantitative as possible relations.

Although the objective of the thesis was the study of surface and sub-surface damage,

the effect of such damage on the strength of the materials studied was also analyzed.

The strength degradation from cone cracking was examined for some specific case of

ceramic laminates with the aid of the Finite Element methods.
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Contact loading, if high enough, can cause by itself failure of the material. This mode

of failure was studied by means of an innovative test methodology, which was adapted

for ceramic laminates testing. In this case as well, general relations, aimed to improve

the design of application-focused laminated materials, were extracted.

The philosophy followed throughout the development of the research was to start

from a specific case and, with the aid of numerical techniques, trying to infer conclusions

as general as possible on the response to the given test/loading, with special attention to

the possibility of improving the design of ceramic laminates towards a higher application-

dependant reliability.
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CHAPTER 2
Experimental Methods

2.1 Material processing and preparation

A ll the materials studied were manufactured at the Institute of Science and Tech-

nology for Ceramics (ISTEC), Faenza, Italy. Even though the processing was not

directly included in the study by the author, it deserves mentioning because it affects

strongly many of the properties to be studied.

To obtain the ceramic sheets suitable for the preparation of laminated composites,

two powders were used:

• high purity (99.7%) alumina (Alcoa A16-SG, Alcoa Aluminum Co., New York,

USA) with an average particle size of 0.3µm,

• tetragonal zirconia polycrystals (TZ3Y-S, Tosho Corp., Japan) containing 94.7%

of ZrO2 and 3 mol% of Y2O3 (usually referred to as 3Y-TZP) with an average

particle size of 0.3µm

The different powders were mixed with organic binders, dispersant, plasticizers and

solvents to obtain suitable slips for tape casting. After mixing with organic components,

the slurry containing the ceramic powders was tape casted onto a mylar sheet moved

at a constant speed of 200 mm/min (Fig. 2.1. Details on this technique can be found

elsewhere [70].

Sheets of pure alumina (hereinafter designated as “A”) as well as of the compos-

ite alumina-zirconia (hereinafter designated as “AZ”) in the volume ratio 60/40 were
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2. Experimental Methods

Figure 2.1: Scheme of the tape casting processing for thin ceramic sheet production

Figure 2.2: Scheme of the A/AZ and A/2AZ samples lamination
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Material processing and preparation

Figure 2.3: Photography of the A/AZ multilayered material. Dark layers are the alumina
ones, clear layers the alumina-zirconia ones

prepared. The thicknesses of the green tapes were selected in order to obtain, after

sintering, layers of about 200 µm (A) and 250 µm (AZ).

After drying, laminae of 50 mm × 34 mm were cut from the different ceramic sheets.

Hybrid laminates were prepared by stacking and warm pressing the green sheets at 75
◦C at a pressure of 30 MPa for 30 min (Fig. 2.2. Different samples were obtained by

alternately piling one layer of alumina and one layer of alumina-zirconia (this structure

is hereinafter designated as “A/AZ”) or one layer of alumina and two layer of alumina-

zirconia (hereinafter designated “A/2AZ”). The structures were designed in order to

have always an alumina layer in both the outer surfaces. Debonding was carried out

with a very slow heating rate up to 600 ◦C, followed by sintering at 1550 ◦C for 1

h. We thus obtained dense samples (97% of theoretical density) with a thickness of

about 3.0 mm, containing layers with a thickness ratio of about 1/1.3 (A/AZ) and 1/2.6

(A/2AZ), the former shown in Fig. 2.3. In the hybrid samples, due to lower thermal

expansion coefficient and shrinkage during sintering, the external alumina layers undergo

residual compressive stresses. In order to facilitate the subsequent material preparation,

additional sacrificial alumina layers, to be removed during the grounding and polishing

process, were piled over the outer layers.

As reference material (i.e. nominally stress-free), pure monolithic alumina (MA) was

prepared by cold isostatic pressing and sintering at 1550 ◦C for 1 h.

Once the laminated plates were produced, they were cut into prismatic bars of about

4mm×3mm×20mm with a diamond saw. The top layer of alumina (which was in com-

pression) was polished with diamond suspension up to 3 µm with a low applied force in

order to avoid excessive loss of material (30 µm at most), and to produce a similar sur-
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face flaw size distribution for all the samples. Several samples were polished in the cross

section area and thermally etched (1400 ◦C, 30 min) for observing the microstructure of

the material nearby the interface.

Particular care was taken during the polishing of laminated materials, in order to

avoid variation of the outer layers thickness from one zone to another of any sample and

among the samples, because an excessive, or insufficient, amount of removed material

would cause a redistribution of the residual stresses and, therefore, affect the experimen-

tal results.

Additional pure alumina samples were produced starting from the same powders, in

which the sintering time was varied (3, 5 and 12 hours, respectively) in order to tailor the

grain size. Such materials were used, as discussed in chapter 5, for isolating the influence

of microstructural effects on the damage formation from the variations provoked by the

laminated structure. The samples were labelled based on the sintering time, A03, A05

and A12, respectively.

2.2 Physical and mechanical characterization

Fig. 2.4 shows the SEM picture of the interface between two layers of alumina and

alumina-zirconia, where it can be observed that the interface is well bonded. MA samples

were prepared in the same way, and their microstructure was also observed by SEM.

The grain size of the alumina layers of the laminates and the monolithic alumina MA,

together with the A03, A05 and A12 samples, were measured using the average feret

method, and are presented in table 2.1. The fact that the grain sizes are similar, together

with the fact that both the laminates and the MA materials were produced in a similar

way, suggests that the materials are similar at the microstructural level, and that any

difference in the mechanical behaviour can be attributed to the differences in residual

stresses produced by the laminated architecture.

2.2.1 Mechanical properties

The basic mechanical characterization was performed prevalently by means of inden-

tation techniques. Such choice was dictated by the reduced size and the non-standard

geometry of the samples. Traditional techniques were compared to instrumented inden-

tation, which gave an additional insight of the local properties at nano-scale.
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Physical and mechanical characterization

Figure 2.4: Microstructure of the interface between A (left) and AZ (right) layers. Zir-
conia grains appear as white for the higher atomic weight of zirconium with respect to
aluminium

Table 2.1: Grain sizes, measured with the average feret method, of the materials studied.
Alumina grains in A/AZ are finer due to the constraint provided by the surrounding
zirconia grains

MA A/AZ A03 A05 A12
d [µm] 1.9±0.7 1.1±0.8 2.6±1.6 2.9±1.7 3.8±2.3

Vickers hardness measurements were carried with different loads (200 g, 300 g, 500 g,

1 kg). For this load range, hardness proved independent of load, and therefore no size-

effect was found, as expected. In the A/AZ laminate, measurements of hardness were

performed at the top surface, perpendicular to the interface. To measure the hardness

in the AZ layer, the top A layer was carefully removed by grinding and polishing on

both sides of the sample in order to avoid unbalanced stresses and samples deformation.

The mean hardness values of the alumina-zirconia was HAZ
V = 15.1 ± 0.7 GPa and

the hardness of the alumina was found to be HA
V = 16.9 ± 0.5GPa. In the monolithic

alumina the hardness was HA
V = 16.7 ± 0.9GPa. It can be seen that the MA and the

alumina layer present comparable values of hardness.

Instrumented indentation tests were performed in a fully calibrated MTS Nanoin-
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Figure 2.5: Typical P-h curve obtained by instrumented nanoindentation

denter XP (Nanoinstruments Innovation Center, MTS Systems, Oak Ridge, TN, USA)

equipped with CSM (Continuous Stiffness Measurement). For the extraction of the

properties mentioned above, a Berkovich indenter was used. The values obtained, as a

function of the penetration depth, are presented in Fig. 2.6. The discrepancies with

macro-indentations depend on the different scale at which the measurements are con-

ducted and on the different approach for the calculation: with instrumented indentation

the contact area is deduced from the penetration depth under the maximum load, while

with the traditional method the contact area is measured optically after unloading, so

that the elastic recovery is not taken into account.

The Young’s modulus, following the well-known Oliver and Pharr method [71], can

be extracted from the stiffness S measured on the unloading portion of the curve:

S = β(ν)
2√
π
E
√
A (2.1)

where A is the contact area and β(ν) is a function given by Hay et al. [72]. The values

obtained, shown in Fig. 2.6 as a function of the penetration depth, were in agreement

with the literature, although slightly higher, due, again, to the limitations of the method.

Fracture toughness of both MA and A/AZ (measured in the top alumina layer, so

the interface was located below the indentation, and perpendicular to the indentation

load) was evaluated by measuring the crack lengths produced by a Vickers indentation

of 10 kg. The fracture toughness of the AZ layers was not measured because their thick-

ness was too small for producing suitable crack lengths without reaching the interface.
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Figure 2.6: a) Young modulus and b) hardness as a function of the penetration depth
under instrumented indentation
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Figure 2.7: Scheme of fracture toughness measurement by Vickers indentation

Also, the fracture toughness of the A/2AZ composite was not measured because Vickers

indentations produced excessive chipping in the material due to the higher compressive

residual stress.

Fracture toughness evaluation by the method proposed by Antsis [73] is based on the

assumptions of penny-shaped cracks generated upon unloading and a constant value of

toughness. Due to the presence of a priori unknown residual stresses and microstruc-

tural features affecting the toughness (the mentioned R-curve), both assumptions are

acceptable only on a first approximation. Acknowledging that the values obtained in

this way have to be considered as approximate due to the limitations of the method, the

fracture toughness (KIc) was then evaluated through:

KIc = χ
P

c3/2
(2.2)

where P is the load, c the crack length and χ = 0.016(E/H)1/2 = 0.08 a geometry

coefficient, calculated for the monolithic material, and assumed as constant in the A/AZ

for sake of simplicity. Substituting the values of the measured crack lengths, the fracture

toughness obtained for both materials were KA
Ic = 3.5 ± 0.8 MPa·m1/2 and K

A/AZ
Ic =

6.0±0.8 MPa·m1/2. For the sake of simplicity, any effect of R-curve is neglected, therefore

KA
Ic is taken as the intrinsic value of the toughness. The value of the A/AZ has to be

taken as an apparent value, as there the toughness is influenced also by the residual

stresses.
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Figure 2.8: Residual stress distribution, as calculated by Finite Element analysis

2.2.2 Residual stresses

A correct evaluation of the residual stress that is generated by differential shrinkage

during cooling after sintering of the laminates is required for a proper analysis of the

properties extracted and, in general, of the variations in the material response. The

issue was approached with different techniques, which are hereinafter presented and

summarized in table 2.2.

The analytical approximation (see eq. (1.2)) is based on the assumption of purely

biaxial stresses on an infinite body, neglecting therefore the influence of free surfaces at

the edges. A similar a priori analysis was conducted by means of a Finite Element model,

whose details will be further discussed in the next chapter, based on the simulation of

the shrinkage and on the assumption of constant coefficients of thermal expansion α.

2.2.2.1 Indentation techniques

An evaluation of the amount of residual stress can be extracted from comparison of the

apparent toughness in laminates with the intrinsic toughness, as measured in the mono-

lithic material. Considering both the indentation and the residual stress contributions

to the apparent toughness, the following relation can be deduced:

K
A/AZ
Ic = χ

(
P

c
3/2
MA

)
+ Y σr

√
cA/AZ (2.3)

with Y = 1.29 a geometry coefficient. From there:

Y σr =
KA
Ic −K

A/AZ
Ic√

cA/AZ
(2.4)
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2.2.2.2 Instrumented indentation

Instrumented indentation is, a priori, a suitable technique for local evaluation of residual

stresses and, thus, several methods have been developed, especially for metals with

relatively low yield stress and that do not work-harden appreciably when indented with

sharp indenters. Most of these methods are based on the change in penetration depth

(which does not affect the hardness value) with and without residual stress [74, 75] or

the change in elastic penetration depth [76, 77]. Swadener et al. [51] used spherical

indenters instead of sharp indenters and showed that blunt indentation is more sensitive

to residual stress during the elastic to plastic transition than sharp indentation, and

developed a methodology for extrapolating the onset of plasticity and, from there, the

amount of σr.

Nevertheless, the mentioned techniques were applied to the laminates under study.

Under any indentation condition and with any indenter, no difference was apprecia-

ble in the P − h curves, and Atomic Force Microscopy measurements of the residual

imprints showed no change in the area, as it can be appreciated in Fig. 2.9. This is

attributed to the high hardness and, consequently, yield stress in alumina, especially

compared with the amount of residual stress, much below the range of application of all

the techniques presented. It was concluded that, for the studied case, the variations in

the nanoindentation response produced by residual stress is not appreciable.

2.2.2.3 Raman diffraction

The issue of residual stresses measurement and distribution was studied deeply by de

Portu et al. [78], who employed Raman and fluorescence piezo-spectroscopy to evaluate

the amount and distribution of residual stress. The fluorescence lines of Cr3+ impurities

present in alumina are shifted in presence of stress, as well as one of the Raman bands

of 3Y-TZP, of an amount which can be expressed as

∆ν =
1

3
Πiiσjj (2.5)

where σjj is the first invariant of the stress tensor and Πii the trace of the piezo-

spectroscopic matrix.

From Eq. (2.5), after calibration and with a narrow enough laser beam (1 to 5

µm wide spot), it is possible to obtain linear two-dimensional stress maps with a high

resolution (depending on the laser spot size, typically some µm). Moreover, the beam
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Figure 2.9: AFM of the indentations imprints produced with a Berkovich indenter in
alumina (a) and A/AZ laminated composite (b), with a total penetration depth of 1
µm. Arrows in the alumina image show the existence of radial cracks.

penetration varies as a function of the laser spot size, yielding the possibility to over-

come, to some extent, the limitation, typical of spectroscopy techniques, of small volume

tested. In the mentioned work, the authors evaluated the amount of residual stress far

from the edges by means of a semi-analytical calculation.

The values of residual stress on the top alumina layer evaluated with each technique

are reported on table 2.2. Comparison between the values obtained with each technique

needs caution, because the definition of residual stress can vary: the analytical approxi-

mation (Eq. (1.2)) assumes and evaluates purely biaxial stresses, i.e. the first and second

principal component of the tensor; similarly, fracture mechanics expression is based on

uniform uniaxial stress acting on the crack; on the other hand the piezo-spectroscopy

techniques measures the first invariant of the stress tensor, which is a measure of the

average pressure; Finite Element Analysis provides a complete estimation of the stress

tensor, allowing thus to estimate the residual stress by both approaches.

Under these considerations, the values measured show to be good agreement one

with another: the near-the-edge value by piezo-spectroscopy, which is probably the most

reliable among the techniques presented, and the analytical approximation, credible in

the center of the sample, are both corroborated by the simulation results, which confirms

also values obtained from indentation.
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a) b)

Figure 2.10: a) Residual stresses linear map measured by piezo-spectroscopy on the
cross-section of A/AZ and A/2AZ multilayers, b) theoretical calculation of near-edge
stress [78]

Table 2.2: Summary of residual stress in ceramic laminates as measured with different
techniques. The value refers to the top alumina layer

A/AZ A/2AZ
technique edge center edge center
analytical -283 -283 -374 -374

FEM -65 -183/-271a -80 -234/-355a

indentation – -180 – b

spectroscopy -70 – -140 –
aValues corresponding to both 1/3σjj and σ11 are reported
bResidual stress of A/2AZ was not measurable for
strong chipping under Vickers indentation
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Figure 2.11: Scheme of Spherical indentation

2.3 Spherical indentation techniques

As discussed already, spherical indentation was chosen as the main contact characteriza-

tion tool, for the advantages such technique offers, allowing flexibility in the tests design

and being representative of the in-service loading conditions.

All the contact tests were performed with WC-Co (E=600 GPa, ν=0.3) spheres as

indenters. The indenter radius was varied according to the type of test; the most common

choice was R=1.25 mm, which guaranteed most of the stress field to be contained within

the top layer and far enough from the stress-free edges. A disadvantage produced by

the choice of the material for the indenter is the elastic mismatch between indenter and

substrate, which influences slightly the stress field, with the effect of affecting the critical

load for appearance of brittle damage. In some cases of high-frequency fatigue, moreover,

the friction between the two bodies could produce fretting damage. Nevertheless, hard

metal presents other advantages, primarily high toughness and resistance, which reduces

the risk of failure during tests. Moreover, the high Young’s modulus allows to simulate

the indenter in the FE models with a hard non-deformable body, with benefit in terms

of calculus velocity and simplicity.

Indentations were performed on universal testing machines, either an electromechan-

ical Instron 8562 or a servohydraulic Instron 8500, both equipped with a 5KN load cell,

for static and cyclic loading, respectively. Sample holders (Fig. 2.12) were designed at
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Figure 2.12: Scheme of the sample holders employed in the spherical indentation tests,
which allow accurate placement in both axis

purpose to allow accurate sample placement and avoid undesired small displacements.

Protocols were developed for the calibration of the gain parameters of the machines, be-

fore every experimental session, in order to avoid accidental load fluctuations and peaks

and assure reproducibility.

The indentation procedure for single-cycle followed the scheme in Fig. 2.11: load was

increased at the constant rate of 50 N/s, then maintained for 15 s and retired. The same

procedure was applied to static-fatigue tests, with longer maintaining times. In the case

of cyclic tests, load was increased up to the mean value, and sinusoidal oscillations were

applied of increasing amplitude and frequency, until the test conditions were attained.

The local nature of indentation tests allowed performing several indentations on every

sample, all in the top layer, taking care of indenting in the constant-stress zone, which

is to say, far enough from the edge, and of separating the indentations each from the

other of not less than 2 mm.
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Figure 2.13: Typical staircase plot for the determination of critical load Pc for ring
cracking. Empty symbols mean no visible damage, filled symbols mean detectable ring
crack

For the first part of the study (see section 4.1) the appearance of ring crack was

considered the damage criterion. The range of load for damage formation was sought

iteratively with a staircase plot (Fig. 2.13): after testing, the surface was examined in

search of a well-developed ring crack; as a standard criterion, only cracks with an opening

angle greater than 180 ◦, in other words half the circumference long, were considered.

In the subsequent test the load was either reduced or increased whether damage was

visible or not, respectively, and the procedure was repeated until three consecutive load

reversions were observed. A critical load range for the appearance of ring crack was

therefore defined.

In cyclic and static tests the procedure was repeated for different numbers of cycles

or maintaining times (varying between 1 to 3·105 cycles and from 10 to 106 seconds,

respectively), so that it was possible to extract fatigue curves by plotting the critical

load range as a function of the test duration.

The remaining parameters of the cyclic loading during fatigue tests were defined

as follows: the minimum load was kept constant Pmin=50 N; the maximum load Pmax

was one of the input variables of the test, ranging from 200 to 700 N (for load ratios

R = Pmin/Pmax = 0.07− 0.25), as well as, consequently, the average load Pav ≡ (Pmax +

Pmin)/2 and the amplitude ∆P ≡ (Pmax − Pmin)/2.

Additional fatigue tests were conducted on one of the materials (A/AZ) under a

constant amplitude ∆P = 200 N and varying the maximum load, and under a constant
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Figure 2.14: Scheme of the types of loading tested: a) monotonic, b) cyclic and c) static

maximum load Pmax = 500 N and varying the amplitude.

2.4 Damage observation techniques

An important part of this work is dedicated to the analysis of subsurface damage; ob-

servation of such damage is in some cases challenging, and needed special techniques to

be developed.

The cut-and-bond technique, applied to the Hertzian system by Guiberteau et al.

[49], involved sectioning of the sample on the direction perpendicular to the layers,

fine polishing of both parts on the lateral surface and, after bonding the halves, on the

surface to be indented. After indenting carefully in the interface, it is possible to separate

again the parts of the sample and observe the damaged surfaces. The limitations of this

technique reside in the application to laminated materials: cutting the samples produces

release of the stresses near the edges, so that the response is not the same of the uncut

material. Moreover, the reduced size of the samples and the layers (200-250 µm thick)

makes it difficult to couple correctly the layers, and polishing subsequent to the bonding

is also problematic.

The transverse polishing technique overcomes these limitations: after indentation,
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Damage observation techniques

Figure 2.15: Scheme of the sectioning techniques employed for damage evaluation: a)
cut-and-bond, b) transverse sectioning, c) parallel grinding
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2. Experimental Methods

Figure 2.16: Example of grinding-enhanced quasi-plastic microcraking after application
of the transverse sectioning technique

samples were cut nearby the damaged zone, then carefully ground and polished perpen-

dicular to the indented surface until the center of the ring/cone. The drawbacks of such

technique are the longer time necessary and the grain pull-out during polishing, which is

especially strong at the crack lips, making it difficult to measure both the crack length

and angle. On the other hand, such pull-out is enhanced by microcracking, evidencing

thus the zones damaged by quasi-plastic deformation.

This latest technique was extensively employed for the part of the thesis presented

in chapter 5, dealing with the propagation of cone crack in ceramic laminates.

As a faster alternative, the parallel-grinding technique was employed when accuracy

was not needed in the measure of the crack angle and a qualitative assessment of the

presence and nature of damage was required, such as in section 4.2. For this technique,

after indentation the sample thickness was measured, then a thin layer of material was

removed by grinding, the surface was coarse polished for the ring crack observation and

measurement; this procedure was followed several times, until the crack was not visible

anymore. From the values of ring radius at different depths, calculated from the differ-

ence to the original thickness, the cone crack was reconstructed. This technique allows

also observation of quasi-plastic damage, just as the transverse polishing methodology.
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Residual strength testing

Figure 2.17: Phases of residual strength measurements: a) indentation, b) bending

2.5 Residual strength testing

The effect of contact damage on the strength degradation of ceramic laminates was

studied by means of indentation-bending tests. Indentations in the center of the bars

were performed in an Instron servohydraulic machine. Due to the microstructure de-

pendence and to the stability of the crack, it was decided to apply cyclic loading in

order to guarantee completely developed and uniform cracks. The indenter used was a

WC-Ni 2.5 mm radius sphere, two applied maximum loads straddling the critical load

for appearance of cone crack (500 N and 900 N, respectively) were chosen in order to

achieve different crack conditions and consequently amounts of strength degradation.

The minimum load was kept constant to 50 N, the duration of the cyclic test was kept

constant to 105 cycles in order to reach the higher damage possible for the given load.

Four to six bars were tested for each loading condition.

The indented bars were successively subjected to four points bending tests, with

spans l1= 20 and l2= 10 mm, respectively and a loading rate of 200 N/s, high enough

not to allow environment-assisted crack propagation. Unindented bars were tested as

well to obtain the strength of undamaged material. After testing, fracture surface of

the bars broken from the cone crack was observed with optical and scanning electron

microscopy.

From the load at the moment of fracture, the fracture strength was calculated, fol-

lowing the equation

σ∗ =
3

2

F (l1 − l2)

(2t)2b
(2.6)
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with the symbols as defined in Fig. 2.17.

The fracture stress σ∗ thus defined is, in the case of the laminates, an apparent

strength, and does not correspond to any actual value of local stress inside the material.

The importance of the values deduced this way resides in the comparison with materials

with no residual stresses. Differences arising in unindented materials depend mainly on

the presence of residual stresses in the top layer, where the bending stress is higher.

Moreover, as it will be presented in chapter 5, damage generated whether in ceramic

laminates or in monolithic materials under the same indentation condition, is different

in type and amount, consequently the outcome of the bending test is influenced by the

different starting flaw.

The issue was analyzed by means of Finite Element simulations of actual aimed

bending tests on cone-cracked materials, as it will be discussed in the next chapter.

2.6 Contact strength testing

The stress field generated by symmetrical compression by cylinders was computed nu-

merically by Fett et al. [69], who established the simple relation

σmaxx = 0.490σeq (2.7)

for point-load, with σeq = F/tb, normalized load, t half the sample thickness, b the sample

width and the other symbols as in Fig. 1.11. Under pressure load in a contact zone of

width 2s, expressed with the Hertzian pressure distribution p(x) = p0

√
1− (2x/s)2, the

maximum stress is slightly reduced, no more than 1%, as s increases. Tensile stress is

generated also along the symmetry axis; in case of point-load Eq.(2.7) is fulfilled, with the

maximum located on the loading point; however, if the contact zone is non-singular, the

ratio σmaxx /σeq drops down rapidly as s increases, so that fracture is normally expected

on the surface rather than within the material.

Reported results of contact strength tests showed strength values in agreement with

those from bending tests, while Weibull exponents were roughly halved [69]. This latter

is due to the high stress gradient generated [79] and should not be seen as a limitation

of the method, but rather as an indication of how dangerous multiaxial contact loading

can be and that a specific testing methodology is recommended, whenever such a type

of loading is expected in-service, as in the case of ceramic multilayers.
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a)

b)

Figure 2.18: Normalized stress σx under contact strength test at the surface (a) and
along the axis (b) for different values of the contact zone width 2s

Figure 2.19: Scheme of the contact strength testing

41



2. Experimental Methods

The tests were performed on an UTS testing machine. Samples were placed with

the external, compressive layer in contact with the rollers. Load was applied by two

opposite 4mm radius hardened steel rollers at the constant rate of 100 N/s. The rate

chosen is slightly lower than suggested for strength tests, in order to better identify, with

visual aid, the fracture load, as mentioned below; however, no subcritical crack growth

is expected under this kind of test [79]. Tests were interrupted when fracture occurred,

with either or both extremities of the sample falling apart, and often the remaining

portion shattering for compression. Fracture loads were recorded and the critical load

for the first fracture event, sometimes coinciding with the ultimate strength, sometimes

with an earlier pop-in.
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CHAPTER 3
Finite Element Analysis

3.1 Introduction to FEM

F inite Element Analysis (FEA) is a computer simulation technique used in engi-

neering and physical analysis. In its application, the system or object of study

is represented as an unstructured grid of discrete regions, composed by nodes and a

web (mesh) interconnecting them. Equations of equilibrium, in conjunction with proper

physical considerations, such as compatibility and constitutive relations, are applied to

each element, and a system of equations is constructed, and solved iteratively by means

of linear algebra techniques. Probably the most common application of FEA is for de-

termining equilibrium stress and displacement in mechanical systems, however, it allows

solving many other types of problems, such as heat transfer, electromagnetism, fluid

dynamics, and virtually any phenomenon expressible by partial derivative equations.

The mathematical part, the Finite Element Method in itself, is based on finding

an approximate solution of partial differential equations. The basic idea is to replace

the infinite dimensional linear problem with a finite dimensional version, expressed as a

linear combination of an appropriately chosen basis of first- or superior-order functions,

typically polynomials functions. The equations thus obtained are written in a matrix

form (including the so-called stiffness matrix ), which can be solved by means of several

techniques, depending on the specific problem.

The potentiality and versatility of FEA makes it a powerful tool, widely and in-

creasingly employed in finding solutions to engineering and physical problems. While in

industry-related applications FEA is powerful mainly as a design tool, in that it allows
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3. Finite Element Analysis

to characterize a priori the in-service behaviour of the studied component, with benefits

in terms of time and cost, the asset of FEA as a tool for fundamental research lies in the

assistance in the formulation and verification of models, which are the basis for a deep

understanding of the phenomena acting on the material. In material science, specifically,

this translates into a characteristic modus operandi, consisting of tightly connected ex-

perimental and computational tasks, the latter intended, as anticipated, as an assistance

and verification tool of the data collected with the former.

This procedure tries to provide an answer to the controversial issue of credibility of

the results obtained by FEA. To which point the mathematical, continuum representa-

tion captures with realism and accuracy the complex deformation mechanisms (to stick

up in the field of mechanical analysis) acting at multi-scale level inside the material?

Ab initio analysis are far too resources consuming to be applicable to the majority of

the practical cases and materials. Constitutive equations are strongly consolidated and

effective in the simulation of many metallic materials, but less developed in ceramic

materials, since deformation is usually associated to cracking, either macroscopical or at

a grain-sized scale. On the other hand, a common risk is to disconnect completely from

actual tests, so that the output of a simulation is by itself not believable, lacking of the

fundamental corroborations.

The approach taken in many parts of this work was to couple in a bilateral way ex-

periments and simulations: the physical hypothesis (e.g. elastic and thermal constants,

sample geometries, ...) were measured, as much as possible, directly from the studied

materials; the tests were designed in light of the posterior simulation; the models for-

mulated were checked with cases from literature or simple analytical examples before

being applied to the case of study. The results of simulations helped to rationalize

the behaviour observed and to deduct general considerations, in the effort to provide

quantitative or, where not possible due to the complexity of the phenomena studied,

semi-quantitative relations useful for the design of improved materials.

In the same manner, the continuous feedback from and to actual tests resulted,

especially in the study of cone crack propagation (section 3.5), in a progressive evolution

of the models, wherever some hypothesis showed to be ill-founded or some unexpected

feature worth analyzing emerged from experimental results. For sake of clarity, only the

final version of the models is hereafter presented, therefore the reasons for some features

may appear arbitrary or not supported by data; they are expanded and explained in the

following chapters, where the issues here established only from the simulation point of
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Application: residual stresses evaluation

view are treated in their completeness.

3.1.1 Abaqus

All the Finite Element models were carried out with the commercial software Abaqus,

versions 6.5 and 6.6, developed by Abaqus Inc., a brand of Dassault Systèmes S.A. [80].

Abaqus is a multi-purpose package, in that it presents a wide range of element types

and loading conditions, embracing many fields of physics and opening also to problems,

such as fracture mechanics, which are not approachable with the traditional FEM meth-

ods. Another feature of Abaqus which makes it attractive for academic institutions is

the high flexibility granted by the open-source scripting language Python, which allows

scripting, customization and automatization of most of the steps of all the phases of

FEA.

Like many commercial packages, Abaqus covers the three main phases of FEA:

Pre-processing is included in the Abaqus/CAE module, and comprehends the model

creation, the mesh generation, the definition of boundary conditions, loading and

material, and all the calculus variables (elements choice, order of integration, user-

defined functions,. . . ),

Calculation is performed by the calculation engines, Abaqus/Standard for traditional

implicit finite element analysis and Abaqus/Explicit for transient dynamics and

quasi-static analysis,

Post-processing is included in Abaqus/CAE and in the stand-alone Abaqus/Viewer

product, allows to visualize the desired output with the aid of graphical and nu-

merical tools.

3.2 Application: residual stresses evaluation

As anticipated in the previous chapter, and consistent with the philosophy expressed

above, an evaluation of the residual stresses present in the studied laminated ceramics

was conducted by FEA, in order to obtain a complete characterization of the distribution,

which could corroborate and assist in the interpretation of the values measured locally

in the center of the layers or at small depth, by indentation techniques and by piezo-

spectroscopy, respectively. It is worth highlighting that these latter techniques allow to
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3. Finite Element Analysis

a) b)

c)

Figure 3.1: Meshes employed in the residual stress evaluation of the stress map a) near
the edge, b) in the center and c) on the surface, respectively, representing one eight of
actual samples. In c) the symbology and the symmetry axis are also reported

evaluate the residual stresses in the center of the sample and near the edges, respectively,

and that therefore the evaluation obtained by means of FEA can act as a link between

them.

The residual stresses were calculated by simulating the shrinking taking place dur-

ing cooling after sintering. Three-dimensional models were created, reproducing the

geometries of the actual A/AZ and A/2AZ samples. The appropriate symmetries were

imposed to three of the faces in order to simulate only one eight of the sample, reducing

thus the time and resources consumption. The materials were represented as purely

elastic, with elastic constants taken from previous works [20]. Cooling was simulated

as a steady state transition from an initial temperature Ti=1200◦, above which zirco-

nia deforms with an elasto-plastic behaviour, and therefore no stress is generated [81],

to the room temperature Tf=30◦. The values of the thermal expansion α were taken

from direct measurements on the starting materials [20], and assumed as constant in the

entire temperature range.
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Application: residual stresses evaluation

a)

b)

Figure 3.2: 3D maps of a) the σxx and b) the average pressure present on the sample

In order to reduce the calculation times1, several meshes were created, shown in Fig.

3.1, each one finer in a different zone of the model, in order to produce accurate local

stress maps. All the meshes were composed by approx. 20000 linear elements.

Linear maps corresponding to the center of the sample and to the near-edge zone

are shown in Fig. 3.3. In the former the σxx component is represented, for comparison

with the analytical expression. In the latter the average pressure 1/3Σσ11, allows com-

parison with the piezo-spectroscopy measures. Employing, in this case, the σxx would

provide incorrect results, because near the edge the stress redistribution generates a

non-negligible normal component.

The values are in good agreement, which suggests that, despite the simplicity of the

model created, Finite Element analysis is effective in evaluating quantitatively the stress

amount and distribution in ceramic laminates.

The stress relaxation is shown in Fig. 3.4, in terms of σii as a function of the linear

1because augmenting the elements number increases the calculation time exponentially
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3. Finite Element Analysis

Figure 3.3: Center (squares) and near-edge (circles) stress maps, resulting from FE
analysis. The former are presented as the σxx component, the latter as the average
pressure 1/3Σσ11

Figure 3.4: Uniaxial stress relaxation for the free surfaces at the edges along the a) x
and b) y directions, both normalized over the sample width b, for y = 0 and x = 0,
respectively

dimensions in the x and y directions (symbols as in Fig. 3.1). The zone of validity of the

constant stress assumption confirms the importance, as observed in the methodology

section 2.3, of performing the tests in the center of the sample, at a distance from the

edge of at least twice the layer thickness.
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Application: strength degradation

3.3 Application: strength degradation

The strength degradation caused by contact brittle damage was evaluated by means of

Finite Element analysis. The purpose of such simulations was to provide an additional

tool for the evaluation of experimental results, reducing thus the uncertainties generated

by the stochastic nature of fracture in brittle materials, enhanced in this case by the

two-steps character of the test.

One load condition was chosen from the actual tests: cyclic loading with Pmax=500

N, Pmin=50 N, 104 cycles. In order to overcome in part the uncertainties derived by the

results scatter, the entire test was replicated by FEM, divided in two steps:

1. Spherical indentation on stressed material

2. Bending test

The first part was formulated as a two-steps 2-dimension axisymmetrical model, in which

the equilibrium condition of a cracked body subjected to 1) shrinking, 2) indentation

was sought. In other word, straight cracks of arbitrary angle and length were included in

the model, which was then subjected to the steps mentioned above. The stress intensity

factors KI and KII were the output, and the crack geometry was varied iteratively until

the equilibrium conditions

KI = KIc (3.1)

KII = 0

was fulfilled. The same procedure, with no residual stress calculation, was followed to

determine the cone crack length and angle in monolithic alumina.

It should be noticed that both the residual stress calculation and the cone crack

geometry are simplified formulations of problems which are studied in deep in other

sections (3.2 and 5, respectively); the former because the 2D model does not capture

the complex stress distribution, the latter because the hypothesis of straight crack is not

fulfilled, especially in presence of residual stresses, as it will be shown when befitting.

Moreover, the effect of cyclic loading was neglected in the simulation for the lack of

a proven model of crack propagation, therefore the resulting equilibrium cracks are

expected to be shorter than the measured ones, and some length overestimation is also

expected, because crack shielding is not included in the model, for sake of simplicity;

therefore, it is considered, as a rough approximation, that the two effects compensate
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3. Finite Element Analysis

Figure 3.5: Mesh of the model for the cone crack equilibrium geometry. The crack is
represented as straight, the indenter as a rigid sphere

in a certain extent each other, so that the resulting length is acceptable, under the

assumption that the purpose of this section is to provide a qualitative assessment of the

mechanism of strength degradation, without focusing on unreachable accuracy of the

results; for this reason the models were built as simple as possible.

The cone cracks geometry thus obtained, and confirmed, within the measurement

error, by experimental observations, were included in the second step, the simulation of

the bending test. In this case, the stress distribution is expected to play an important

role in the location of the “weak point” of the cracked sample, therefore a 3-dimensional

linear model of actual A/AZ samples was created, with symmetries along the x and y

axis, representing thus one quarter of the bar. Bending was simulated by a constraint

corresponding to the inner span and an increasing load in the outer span. The mesh was

homogeneous on the model, apart in the zone of the cone crack, where high refinement

was necessary for the high stress gradient.

The mode of loading at the tip of the crack is mixed, therefore the output chosen for

formulating the fracture criterion was the strain energy release rate G, calculated along

a contour at the crack tip. The critical value was calculated as Gc = K2
Ic/E, defined

from the specific case of mode-I loading.
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Application: contact strength

Figure 3.6: Mesh of the 3D model of bending test; in small a detail of the mesh at the
cone crack is shown

3.4 Application: contact strength

Consistently with the original analytical formulation in eq. (2.7), failure from contact

strength tests was treated as a critical-stress problem, rather than with the fracture

mechanics formulations. A bidimensional Finite Elements model was developed, repre-

senting one quarter of a bar, whose geometry and size were taken from actual samples. A

coding script was created in the Python built-in language to allow automatic generation

of any symmetrical odd-layered structure, given the layers number and thickness. The

validity of the model, including mesh convergence, was verified by simulating testing of

monolithic materials and comparing with the analytical expression.

The mesh consisted of approx. 25000 quadratic elements, as established after mesh

convergence tests, and was refined at the contact zone, where higher stress gradient was
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3. Finite Element Analysis

Figure 3.7: Typical mesh of the model for contact strength evaluation, with a detail of
the contact zone

expected. The length of the bars was three times the thickness, guaranteeing negligible

influence of the free boundary to the stress field [69]. The rollers were represented with

a rigid analytical body, applying a progressive displacement on the bar surface. The

corresponding load was calculated from the reaction forces at the roller. As for other

calculations, a step of shrinkage was included for generating the residual stresses in the

laminated structures, starting from the temperature of 1200◦C, above which zirconia

behave as plastic and therefore no stress is generated [81], to room temperature (30◦C).
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Figure 3.8: Flow diagram of the Python automatic incremental model of crack propa-
gation

3.5 Automated Algorithm of crack propagation

An incremental FE model was developed, similar in some aspect to the one proposed

by Kocer [38], for simulating crack propagation. The Python code allowed interacting

both with the pre-processor and with the output reading, making it possible to modify

iteratively the model, depending on the output of the previous step.

An outline of the model is presented in Fig. 3.8. The algorithm was divided in three

scripts:

propcrack.py the algorithm itself, reads the user input, check the propagation condi-

tions and writes the output

model.py creates automatically the model with the given input and the step-wise crack

geometry
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3. Finite Element Analysis

Figure 3.9: Scheme of flat punch indentation

output.py calculates the output of every step (stress intensity factors, propagation

angle, indentation load), including external effects

3.5.1 Model of punch indentation

The generation of the model was conducted on the Abaqus/CAE module by the model.py

script, according to the following outline:

• Creation of the body, including the cone crack

• Partition of the body for the subsequent mesh generation

• Definition of the boundaries and symmetry conditions and of the load

• Seeding of the edges and faces and mesh generation

• Choice of the output and of the calculation parameters

Flat punch indentation was represented on an axial-symmetric model on Abaqus version

6.6 [80], represented schematically in Fig. 3.9 by applying vertical displacement h on the

nodes of the contact zone of radius a. The corresponding indentation load was calculated

from the reaction forces at the same nodes. It was assumed that indenting either with a

sphere or a flat punch produces similar results in terms of cone crack propagation [33].

A short crack of length c0 (typically a/c0 > 100) was placed near the contact zone. After

the first crack increment c0 is replaced by the updated crack of length c0 + δc = c and

so on.
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Automated Algorithm of crack propagation

Figure 3.10: Initial geometry of the flat punch model. r0/a, P , δc are user-defined input

The materials properties were represented as linear elastic, with values taken from

previous studies [20]. The crack tip singularity was represented with collapsed quadratic

nodes, as shown in Fig. 3.11. The stress intensity factors on encircling contours yielded

the propagation direction, as explained in section 3.5.2. In order to guarantee lower

computation time as well as accuracy, the mesh was highly inhomogeneous, finer in the

contact zone and around the crack, coarser where the stress gradient is lower. For that,

a transition from fine (near the contact zone, enveloping the entire crack) to coarse mesh

was included, whose size was established on every step as a function of the crack tip

position.

Additional loading types can be taken into account within this script file, such as,

in the study of ceramic laminates, the residual stresses, as a constant pressure acting

on the layer edge. As an additional feature, the possibility of applying different stress

distributions was included, as user-defined fortran functions. Such feature resulted
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3. Finite Element Analysis

a)

b)

Figure 3.11: a) Mesh of a well-developed crack and b) mesh refinement with collapsed
nodes for the stress intensity factors measurements at the crack tip
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to be unnecessary during the study of ceramic laminates, nevertheless there are cases

in which the assumption of homogeneous residual stresses is not applicable, such as in

strengthened glasses.

It is worth highlighting that, although the model was expressly designed for simulat-

ing spherical indentation, any type of loading which is “simple enough” to be generated

and updated automatically with script commands can be inserted in the automatic pro-

cedure of crack propagation.

3.5.2 Output handling

The script output.py reads the file containing the results of the calculation and provides

the output which rules the crack propagation:

• The propagation direction, expressed in general terms as the kinking angle

β = f (KI , KII , KΦ) (3.2)

where Φ represents all externally applied contributions, such as shielding effect, as

it will be presented in section 5.1.

• The penetration depth increments, from the toughness condition

KI +KΦ > KIc (3.3)

again including all external effects Φ.

• The indentation load, as the sum of the reaction forces at the contact nodes.

More in detail, KI , KII were calculated by the software from the displacement field

along contours around the crack tip. The tip itself was represented by quadrilateral

elements, with an edge collapsed corresponding to the crack tip. The strain singularity

ε ∝ r−1/2 was represented by displacing the midside nodes of the radial edges to one

quarter of the edges, as shown in Fig. 3.12

Several criteria for the prediction of the propagation angle β are built in the software

[80]: the maximum tangential stress (MTS), the maximum energy release rate (MERR)

and the KII = 0 criteria; however, in order to guarantee higher flexibility in the output

handling, and to include the external effects mentioned in Eq. (3.2) as KΦ, it was decided
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3. Finite Element Analysis

Figure 3.12: Collapsed vertex nodes and moved midside nodes for representing the crack
tip and the strain singularity of perfectly elastic materials

to employ an alternative definition of the kink angle β, calculated from the raw output,

namely:

β = −2KII/KI (3.4)

valid for small β [82, 83]. In the studied case, such condition may be not fulfilled for short

cracks, because the stress mixity is high and, therefore, the kink more pronounced. Since

the most relevant portion of the crack is straight, if the increments are small enough,

as it was determined by convergence tests, the approximation is considered acceptable.

Such assumption was confirmed by calibration with a reference material, soda-lime glass

(E = 72GPa, ν = 0.21), which gave results in agreement with literature [39].

In a similar way, it was possible to induce the model to increase the penetration

depth h to a new value h′, and therefore the indentation load, whenever the condition in

Eq. (3.3) was not fulfilled. The depth increment was calculated so that the total stress

intensity factor approached the value of toughness; from the simple relation K ∝ P :

h′ = h
KIc

KI +KΦ

(3.5)

so that KI +KΦ = KIc, the rigorous condition for stable propagation, is fulfilled.

Although the model was designed on the purpose of studying cone crack propagation,

the possibilities offered by the interaction with the model itself and the handling of the

output allows to conduct different kind of studies. As an example, if a short-enough

initial crack is imposed, to reproduce a defect or flaw existing in the surface, it is possible

to evaluate the strain energy release dependence on the flaw size and location, and on

many additional effects, such as residual stresses.
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Automated Algorithm of crack propagation

Figure 3.13: Typical evolution of the stress intensity factor KI with the cone crack
propagation. Arrows indicate increments in load

3.5.3 Input normalization

Although the input handling of the model allows varying, among other parameters, the

indentation characteristics (mainly the contact radius a), the size and mesh seeding

were optimized for an initial contact radius an = 100µm; in order to simulate actual

experiments benefitting of optimal simulation parameters, it was necessary to normalize

the relevant properties (stress intensity factors, crack length) to the experimental contact

radius a. A normalizing parameter κ = an/a was included in the variables definition in

the propcrack.py script, to modify the properties which depends on a: the indentation

load P , the material toughness KIc and toughness parameters, such as the shielding

parameters that will be defined in the next section (K∞I,II , λ), by the following relations:

KΦn =
√
κKΦ (3.6)

Pn = κ2P

λn = κλ

with KΦ representing all the toughness-related quantities and the lower index n indicat-

ing the normalized quantities.
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3. Finite Element Analysis

This feature broadens the range of cases suitable to be represented by the automatic

algorithm, both within the frame of ceramic laminates herein addressed (such as, in-

fluence of indenter radius, microstructure features) and to any other substrate-indenter

system, presenting almost any scale of geometrical and intrinsic characteristic sizes.

3.5.4 Example of crack propagation

The stress intensity factor evolution as a function of the crack length, obtained from

Finite Elements simulation, is presented in Fig.3.13. The shape, for a constant load, is

in agreement with the classical solution reported in literature [48], and additionally in

this case the propagation was calculated considering unstable and stable propagation

branches: at the point A a small crack is present; KI is higher than the toughness,

therefore the crack propagates under a constant load. After reaching a maximum (point

B) KI decreases to the value of the toughness; it is therefore necessary to increase the

load until the minimum is reached (point C). After that, unstable propagation begins,

until the fracture toughness is reached again (point D). The subsequent propagation is

stable, represented analytically by the classical Roesler equation

KIc = χ
P

c3/2
(3.7)

and in this simulation by step-wise increments either in penetration depth or crack length

(saw-shaped zone E).

3.5.5 Example of crack initiation

As an additional verification, considering now a constant indentation load, the strain

energy release calculation by Fischer-Cripps [24] was reproduced. The algorithm was

modified to execute a short amounts of increment, and to produce an output file including

the fracture energy G, which was associated to the corresponding crack size size and

starting radius. The results are in good agreement with the cited work, as shown in

Fig. 3.14, apart from the difference caused by the fact that the energy is calculated on

the cracked body, and not from the pre-existing stress field as in the cited reference.

The different approach has not significant influence on the results because the crack

here considered are short enough, and the crack paths can be approximated with the

trajectories of the third principal stress, although some discrepancy can be seen for the

longest crack lengths.
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Automated Algorithm of crack propagation

a)

Figure 3.14: Fracture energy as a function of the crack length for a range of starting
radii, a) from the presented FE study and b) as extracted from [24]
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CHAPTER 4
Surface damage by Hertzian

indentation

A
s said in the introduction, the resistance to the formation of surface damage is a

critical issue in many surface-focused applications. In most cases the presence of,

albeit small, cracks is sufficient for discouraging further utilization of the component.

In other cases, the presence of such damage can be taken as a warning of upcoming

failure. However, the design philosophy of damage tolerance, nowadays common in

many high-level applications, is not affordable in other fields, such as bio-replacement

interventions, which require damage to be completely prevented. A similar aspect of

the fatigue-related contact resistance is that of quasi-plastic damage, which can produce

grain pull-out, detrimental for the tribological properties, before visible brittle damage

appears.

4.1 Ring crack appearance

Damage produced by spherical indentation can present brittle or quasi-plastic character

depending on several parameters, among them the microstructure and the indenter size.

For this reason, it is difficult to define as “brittle” or “quasi-plastic” a material, without

considering such parameters.

Nevertheless, if the indenter radius R is large enough, alumina can be considered

mainly brittle, in that the first visible damage under monotonic indentation is ring
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4. Surface damage by Hertzian indentation

Figure 4.1: Contours of normalized KI as a function of the relative crack depth c/a and
position r/a [36]

cracking [55], and for this reason is herein held as the first damage parameter for the

comparison of monolithic with multilayered materials.

4.1.1 Monotonic loading

The critical load for appearance of cone crack can be calculated, following Warren and

coworkers [28, 36], as

Pc = Γ
K2
IcR

E ′
(4.1)

with Γ a dimensionless constants that formally depends on the elastic properties of

the substrate and indenter materials and on the friction coefficient between them, but

is related also to the relative initial defect size and position, as it corresponds to the

maximum of the geometry factor, in other word to the most favorable combination of

the c0/a and r/a parameters, as illustrated on Fig. 4.1.

Assuming, therefore, that the ring crack propagates from an existing favorably-

oriented defect, representable as a semi-elliptical crack of length 2b and depth c shown

in Fig. 4.2, the stress intensity factor can be expressed in terms of peak indentation

pressure pmax, as

KI = pmax
√
πaµ

( c
a

)
(4.2)

where pmax is given by:

pmax =
3P

2πa2
(4.3)
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Ring crack appearance

Figure 4.2: Scheme of semi-elliptical crack, origin of the ring crack under Hertzian
indentation

The contact radius a can be expressed as function of the load P , the radius of the

indenter sphere R and the composite Young modulus indenter-material E∗, as:

a =

(
3RP

4E∗

)1/3

(4.4)

with:

1

E∗
=

1− ν2
m

Em
+

1− ν2
i

Ei
(4.5)

being E and ν the Youngs modulus and Poisson’s ratio of the material (subscript m)

and the indenter (subscript i). The function µ, as well as Γ, is a dimensionless function

that depends on the relative crack position, Poisson ratio of the material, crack ellipticity

and crack depth. Combining Eqs. (4.2)-(4.4), the stress intensity as a function of the

applied indentation load can be expressed as:

KI =

(
3E∗P

πR
(µ(c/a))2

)1/2

(4.6)

The function µ changes as the crack grows in both circumferential and depth di-

rections. It has to be noted that during the crack growth, the stress intensity factor

in the b-direction is larger than the stress intensity factor in the c-direction, and only

in some cases Kc
I = Kb

I , and when such condition is fulfilled the crack grows in both

directions. However, as the crack progresses in the depth direction, the value of µ(a/c)

changes drastically and the b-direction is favoured again. That implies that ring cracks

penetrate only slightly on the material while they grow along the perimeter.

For the case of a material with residual stress, the value of µ is affected by the

relative value of these residual stresses with respect to the peak indentation pressure

[84]. If this relative value is lower than 20%, the modified value of µ by the residual

stresses, labelled as µ′, can be related through the value of µ without residual stresses
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4. Surface damage by Hertzian indentation

by the approximation:

µ′ = µB−σr/P 1/3

(4.7)

where B is a constant, which depends on the elastic properties of the material and the

indenter, and has to be calibrated numerically.

The values of critical load obtained with a 2.5 mm radius indenter were PMA
c =

607± 50 N, P
A/AZ
c = 675± 50 N and P

A/2AZ
c = 725± 50 N, respectively, meaning that

all were calculated as the ∆P=100 N range in which ring crack appearance was detected.

4.1.2 Static and cyclic loading

The results, obtained with the procedure explained in section 2.3, of the static and cyclic

tests are reported in Fig. 4.3, as the ranges of time and number of cycles necessary for

the appearance of ring crack for a given load.

It can be seen that the laminated composites present a better resistance to dam-

age than pure alumina, both under constant and cyclic loading. Moreover, it can be

seen that, in both cases, A/2AZ presents better results than A/AZ. This can be corre-

lated to the existence and amount of compressive residual stresses at the surface in the

laminated materials, being the A/2AZ material the one with the highest magnitude of

residual stresses. Additionally, it is seen that the relationship between load and time

or number of cycles may be adjusted by a powerlaw relationship. The slope of the

log− log representation of the data is comparable among the three materials, and data

are only displaced upwards with increasing amount of surface residual stress. There is

however a slight disagreement with the A/2AZ material, which can be attributed to the

experimental scatter produced at high loads and low times. The fact that the slopes

are comparable, suggests that the micromechanisms of damage in all the materials are

equivalent, and that the compressive residual stress decreases the apparent stress inten-

sity factor. This equivalent behaviour is consistent with the fact that all materials have a

comparable microstructure and therefore, the chemical and microstructural mechanisms

that provoke damage can be considered as similar for the laminates and the MA.

In the case of static loading the mechanisms of degradation can be attributed to

stress corrosion cracking: when the load is applied, the natural flaws are opened and

water vapour penetrates to the crack tip, where it reacts with the glass particles of

the alumina, diminishing thus the cohesive strength of the material and enlarging the

crack.[85]
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Ring crack appearance

a)

b)

Figure 4.3: Indentation load against time or number of cycles under a) stress corrosion
cracking and b) cyclic fatigue tests. Empty points indicate no apparent damage, filled
points the existence of well-developed ring crack
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4. Surface damage by Hertzian indentation

Figure 4.4: Comparison between the damage evolution under static and cyclic loading,
represented as applied load against equivalent time, for the A/AZ laminated composite.

It is also seen that all three materials under cyclic loading (Fig. 4.3b) present damage

much earlier than under static loading. This is better seen in Fig. 4.4, where the

behaviour under both static and cyclic loading of the A/AZ composite is presented, and

where the number of cycles of cyclic loading have been converted into equivalent time

(teq), defined as:

teq = Ic
N

f
(4.8)

where N is the number of cycles, f is the frequency of the test (10 Hz in our case) and

Ic is a translation constant that takes into account the effective time when the stress

intensity factor is above the threshold value for stress corrosion cracking. In Fig. 4.4,

the value of Ic has been taken equal to 0.1 [45], corresponding to a subcritical crack

growth exponent of 30.

If the same degradation mechanism were operating under cyclic and static loading,

the experimental results of both cyclic and static loading would be equal after conversion

of number of cycles into effective time. In this case, no fatigue effect would appear during

cyclic loading. However, this is not the case, as cyclic loading produces damage much

earlier than static loading. Moreover, it has to be noted that degradation under cyclic
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loading would be higher than under static loading even if the effective time was defined

as the total time of the test, teq = N/f (Ic = 1), assuming the limit case where stress

corrosion cracking is acting all the time and is not related to the crack opening.

There appears to be, therefore, a real fatigue effect, consequence of the cyclic loading

and the degradation observed is not only due to the stress corrosion cracking, in accor-

dance with previous studies in alumina [86, 87, 88, 89]. Moreover, the crack growth

rate in our systems may be larger than the growth rate measured in larger specimen

configurations because the fatigue effect can be enhanced by a short crack effect. This

short crack effect is due to the fact that the crack is shorter than the fracture process

zone, defined as the volume where the crack-tip shielding mechanisms occur, that are

the responsible for the R-curve behaviour. In the case of alumina, the main toughening

mechanism is grain bridging [90, 91]. In the case of Hertzian indentation, the crack is

short not only in the perimeter direction of the ring, but specially in the depth direction,

as the crack is just some micrometers deep because of the sharp gradient in tensile radial

stress with depth, which becomes compressive just after a short depth [92, 29]. That is,

while in the case of stress corrosion cracking the fracture process zone develops without

impediment, in the case of cyclic loading this fracture process zone degrades contin-

uously, reducing the effect of the grain interlocking, and, therefore, the R-curve. The

fatigue effect can be clearly seen in Figs. 4.5 and 4.6, where the Hertzian crack produced

under subcritical static loading (Fig. 4.5a and Fig. 4.6a) and cyclical loading (Fig. 4.5b

and Fig. 4.6b) are presented, observed by optical and SEM microscopy, respectively. In

the former ones, it is appreciated that the crack runs smoothly, while in the latter it

is appreciated that the crack runs tortuously, which indicates that the bridging in that

region of the crack have degraded through grain sliding[86] and rotation[89].

4.1.3 Crack growth analysis

The subcritical crack growth rate (dc/dt) can be related to the applied stress intensity

factor through a logarithmic relationship:

dc

dt
= v0

(
KI

KIc

)n
(4.9)
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4. Surface damage by Hertzian indentation

a) b)

Figure 4.5: Optical pictures of typical ring cracks of A/AZ material produced under:
(a) static loading and (b) cyclic loading. Ring crack in panel (b) is not perfectly circular
and regions of grain bridging are visible.

a) b)

Figure 4.6: SEM pictures of typical ring cracks of A/AZ material produced under: (a)
static loading and (b) cyclic loading. The crack in panel (a) is smooth, while in panel
(b) the grain removal typical from fatigue mechanisms of ceramics is evident.

where v0 is a material-dependant constant and n is the crack velocity exponent. By

inserting Eq. (4.6) in Eq. (4.9), and integrating, we obtain:

∫ θf

θi

dθ(
µ
√
c/a
)n = v0

(
4E∗

3R

)1/3(
3E∗

πRK2
Ic

)n/2
P (3n−2)/6t (4.10)

where θ is the radial coordinate of the ring crack, θi is the initial defect size, that can

be taken as 0, and θf the final defect size, that in the case that the ring crack is fully

developed can be taken as 2θf=2π. The left size of the equation is dimensionless and

almost independent of the applied load, for the values of applied load considered here.
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Therefore, Eq. (4.10) can be reduced and approximated to:

P n/2t ≈ A (4.11)

where A is constant for that given material and indenter.

A similar equation can be derived for materials presenting residual stresses, as a

combination of Eq. (4.7) and (4.11):

P n/2B−σrn/2P 1/3

t = A (4.12)

The values of residual stress in the studied cases are around 6% of the peak pressure,

therefore Eq. (4.12) can be approximated as:

P n/2
(

1− σrn

2P 1/3
lnB

)
t = A (4.13)

That is, when residual stresses are small, the experimental data are shifted to an

higher load, in comparison with the unstressed material. If the range of loads is not

too large, this shift will appear almost constant for all the values of P , ( i.e.) the

apparent slopes of the experimental data will appear equal for the stressed and unstressed

materials. For larger range of applied loads, the apparent slope will be affected by the

residual stresses. It important to note that the crack velocity exponent n is not affected

by the residual stresses, as its value is given by the chemical interaction between the

material and the medium.

If the data presented in Fig. 4.3a are fitted with Eq. (4.12), a value of n=53±9 is

obtained as an average of the slopes of all three materials. This value is in reasonable

agreement with the values of stress corrosion cracking exponent previously reported in

literature, between 40 [93] and 60 [94].

We can follow a similar reasoning for the case of cyclic loading of alumina, and arrive

to similar relationships as Eq. (4.11). Starting from the Paris law:

dc

dN
= DKm

max (4.14)

where m is the Paris law exponent, D is a constant and Kmax is the maximum applied

stress intensity factor, we can arrive to the relationship

NfP
m/2
max = M (4.15)

where Nf is the number of cycles to failure, Pmax is the maximum applied load and M

is a constant. Alternatively, if we start from the modified Paris law:

dc

dN
= FKp

max∆K
q (4.16)
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being p and q exponents and F a constant, we arrive to the relationship:[
P p/2
max

(
P 1/2
max − P

1/2
min

)q]
Nf = L (4.17)

with L a constant.

Data presented in Fig. 4.3b can be fitted by Eq. (4.15), and the mean slope of

the three materials can be used to evaluate the value of the exponent of the Paris

law, obtaining m=22±4. The values obtained are in relatively good agreement with

literature. For example, Guiu and coworkers report values of m between 13 and 20

[86, 87], Healy et al. report a value of m of approximately 30 [88].

In order to evaluate the parameters of the modified Paris law, additional tests were

performed on the A/AZ multilayer maintaining either the maximum load or the load

amplitude constant, as mentioned in section 2.3, p. 35. The results, presented in Fig.

4.7,were used to obtain the values of p and q, through Eq. (4.17) without considering

residual stresses, giving p = 19.0±2.8 and q = 2.4±0.4, which are again in accordance

with literature, where p is always larger than q.

Hence, it is seen that, despite the approximate nature of Eqs. (4.12), (4.15) and

(4.17), they yield stress intensity exponents that are relatively similar to values reported

in the literature, taking in mind that the experimental data do have an inherent high

scatter which may affect the value of the exponents and that these equations are ap-

proximations for small load ranges and relatively small values of residual stresses at the

surface.

4.2 Severe damage

The onset of visible damage in alumina-based composites can be analysed in terms

of brittle fracture; however the response to more severe damage is affected by other

deformation mechanisms, typically related to microcracking (as mentioned in section

1.7), in other words to quasi-plasticity, which can have an effect on the subsurface of the

material but also influence the surface resistance. For this reason, the surface damage

caused by a high number of cyclic contact loading was studied in MA and A/AZ, in

order to highlight the differences in terms of quantity and type of damage, and relate

them to the modifications provided to the stress field by the presence of the laminated

structure.
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a)

b)

Figure 4.7: Cyclic loading tests of A/AZ laminate composite with: (a) difference between
maximum and minimum load constant, with maximum applied load against number of
cycles; (b) constant maximum load, with ∆P against applied number of cycles.
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4. Surface damage by Hertzian indentation

Figure 4.8: Damage produced in A/AZ and MA by Hertzian fatigue tests under load
of 500 N and different numbers of cycles. Although A/AZ has a better resistance to
appearance of ring crack, it presents an apparent higher surface degradation (chipping)
for severe conditions (N = 105 cycles).

Fig. 4.8 presents the surface damage obtained for different number of cycles (N =

103, 104 , 105) on MA and A/AZ for a fixed maximum load of 500 N. At a low number

of cycles (N = 103), it is seen that a ring crack appears in the alumina, while there is

little appreciable damage in the A/AZ material. For an intermediate number of cycles

(N = 104), the cracking in the alumina becomes more severe, while there is only minor

ring cracking in the A/AZ. These results are consistent with what shown in the previous

section, that laminated materials present better resistance to contact damage.

However, after a large number of cycles (N = 105), the type of damage is essentially

different in the A/AZ laminated composite than in the monolithic alumina: while in the

alumina, secondary ring cracks appear at the surface, together with radial cracking, in

the A/AZ material there is a spalled off surface around ring cracking, in other words

there is a mild chipping in the contact area.

This may be due to the fact that quasi-plastic damage under contact loading is
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a) b)

Figure 4.9: Scanning electron microscope pictures of the alumina layer in A/AZ compos-
ite showing: (a) damage zone underneath the indenter, where the severe microcracking
produced by shear loading can be appreciated (b) undamaged microstructure of the
same material far from the indentation site. Both pictures have been taken at a depth
of 50 µm from the surface.

enhanced, with respect to monolithic alumina, due to the higher apparent toughness of

the laminated material. The presence of a quasi-plasticity can suggest the formation of

a shear-driven microcracking volume under the contact area, which is cause of inelastic

deformation.

Fig. 4.9 presents the microstructure observed in the A/AZ material beneath the

indentation site for 105 cycles, together with the microstructure of the same material on

an unindented zone. It can be seen that beneath the indentation site, a large amount of

microcracking can be found, in comparison with the relative crack-free microstructure.

This microcracking is produced by the strong shear stresses generated in that volume

during the indentation, which results in a macroscopic inelastic deformation, that is, in

quasi-plasticity.

According to the model proposed by Rhee et al. [55], it is possible to predict the

tendency to brittle or quasiplastic behaviour of a given material, as the ratio of the

critical loads for the appearance of the two kinds of damage (PY , critical load for quasi-

plasticity; Pc, critical load for ring/cone cracking), as:

PY /Pc = (D/Γ)(H/E∗)(H/KIc)
2R (4.18)

where D = (1.1π/3)3[3(1 − ν2)/4]2, Γ = Γ(ν) from [84], KIc in this case taken as the

apparent fracture toughness.

Eq. (4.18) means that, when the ratio PY /Pc is high, the damage produced in the
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material will be mainly ring and cone cracking, while when the ratio PY /Pc is low the

predominant damage will be quasi-plasticity. In the case of monolithic and laminated

alumina, as it has been shown before (section 2.2.1), both materials present similar values

of hardness and elastic properties (E, ν), and, therefore, similar values of the parameters

D and Γ; moreover, the indenter size and material used are the same for both materials.

The only difference lies in the apparent toughness, which equals to approximately 3.5

MPa
√
m in the monolithic alumina and 6.0 MPa

√
m in the laminated composite, due

to the presence of σr.

This difference in apparent fracture toughness for the two materials implies that

the ratio PY /Pc for the laminated material is approximately three times smaller than

the ratio for monolithic alumina. That means that the A/AZ material has a more

pronounced quasi-plastic behaviour than the MA. This behaviour, as said before, is

evidenced as extensive microcracking produced in the A/AZ material, generated by the

higher shear stresses suffered, because the cone cracking cannot form, due to the higher

apparent fracture toughness. This inability to generate cone cracking causes that build-

up internal stresses cannot be relieved by the opening of the cone crack and therefore,

more microcracking will be generated for the same applied load.

This enhanced microcracking in the A/AZ generates a weakening and loss of strength

of the material under the indenter and near the surface, specially if cyclic loading is

applied, which results in a faster crack growth. Upon repetitive loading, some of the

microcracks coalesce and reach the surface, producing spalling of material. This effect

is also enhanced by the fact that the indenter and the indented material are not the

same material, so that a certain degree of friction and lateral movement in the contact

zone is produced by the mismatch in elastic properties [95]. This lateral displacement

will enhance the exfoliation of parts of material. In addition, the compressive residual

stress could also enhance the chip-off of surface microcracks in the laminated composite.

It is also acknowledged that the laminate may be subjected to larger strains due to the

delayed cone cracking, which will, consequently influence the fatigue behaviour.

In Fig. 4.10, the different damage evolution for both MA and A/AZ is presented as

a function of depth, after 104 cycles at 500 N. During polishing under the conditions

described in section 2.4, it is usual that a number of alumina grains are pulled away from

the surface [96]. This tearing of grains is enhanced in the case that microcracking exists

already in the material, because it weakens the material and the cohesion between grains,

as a microcrack can be considered as a gap between materials. In Fig. 4.10 it is seen
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Figure 4.10: Damage present in the MA and A/AZ materials as a function of the depth
(z) for an applied load of 500 N and 104 cycles. It can be appreciated that in the MA a
cone crack is formed, whereas in the A/AZ it exist both ring crack (partially developed
into cone crack) and quasi-plastic damaged, as it can be appreciated in z = -10 µm,
where the ring crack is marked with (1) and the quasi-plastic damage is marked with
(2).
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how the MA exhibits a typical cone crack fracture, which is presented as an expanding

ring crack feature as the depth is increased. This type of cracking is the expected one

for brittle materials. However, in the A/AZ material, the fully developed cone crack

it is not observed, and instead, in addition to a ring crack, a highly damaged zone is

observed after 10 µm of material removal, which almost disappears after removing 50

µm of material. This region can be identified with the area with microcracks, which

produces the quasi-plasticity of the material. In Fig. 4.10 it is also seen that damage

is fully localized in the first layer of material, (50 µm, against a total depth of layer of

200 µm), so that the second and subsequent layers of the laminated composite do not

appear to have a direct role in the response of the material. After these observations,

indeed, we can say that the A/AZ material behaves more quasi-plastically than the MA

material, due to the higher apparent fracture toughness.
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CHAPTER 5
Cone crack propagation

T he study of cone crack propagation was conducted by means of the automatic

Finite Element model of crack propagation presented in section 3.5. The objective

was to reach a comprehensive insight of the factors involved in the crack geometry

definition, starting from simple assumptions of ideally brittle materials, to the complex

cases object of this study, in order to deduce general design rules to assist the design of

multilayered ceramics.

5.1 R-curve

Crack propagation in polycrystalline materials follows the high-energy grain boundaries;

for this reason, especially in coarse-grained material, the crack path is tortuous. Friction

between adjacent grains on opposite lips of the crack acts as an applied stress, opposing to

both opening and sliding forces and increasing progressively the resistance to propagation

as the crack becomes longer, up to a value coinciding with a crack length equal to the

zone of effective shielding.

5.1.1 Analytical expression of R-curve and implementation in

the FE model

Several relations for both the bridging stress and the R-curve shape have been formu-

lated, as reviewed recently by Munz [1], depending on the initial assumptions, on the

shielding mechanisms and on the type of test and stress distribution. In this work, a
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5. Cone crack propagation

Figure 5.1: Scheme of mode-II grain bridging: intergranular friction (points 1,2 and 3)
acts against the shear stress σP , producing a reduction of the kink angle from β to β′

simple and well-accepted two-parameter empirical relation, proposed by Ramachandran

et al. originally for toughened alumina and silicon nitride [97] was assumed:

Ksh
I = K∞I

(
1− exp

(
− c
λ

))
(5.1)

with c the crack length, K∞I a saturation value and λ a normalizing length parameter; the

two latter variables are related to the microstructure characteristics, and are obtained

in [97] from fitting of experimental data.

In presence of mixed loading, the same bridging mechanisms which resist to the

crack opening, act against the shear component of the stress field, which is the cause of

the crack deviation β from the straight path. Such deviation is a function of the local

KII , that is, the following crack extension takes place in a direction for which such KII

disappears. Therefore, a reduction of the shear stress (and, consequently, of the KII)

causes a variation of β, as it is schematically represented in Fig. 5.1.

For the following considerations, it will be assumed that resistance both to opening

and sliding are provided by the same inter-granular bridges, so that it is reasonable to

assume that shielding to shear stress and to opening stress are related, so that the former

can be expressed with a similar relation:

Ksh
II = K∞II

(
1− exp

(
− c
λ

))
(5.2)

The value of the ratio K∞II /K
∞
I depends mainly on the type of test and can be considered

as an index of the weight of the shielding mixity for the given methodology.

Expressions (5.1) and (5.2), superimposed to the un-bridged stress intensity factor,

change the crack path; the kinking angle β presented in eq. (3.4) can now be expressed
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Figure 5.2: Comparison of the crack paths obtained with the kink criterion from Eq.
(5.3) and (5.5), respectively, normalized over the contact radius a

as:

β = −2
Ki
II −Ksh

II

Ki
I −Ksh

I

(5.3)

with the upper index i indicating the contribution from the applied indentation load,

and the denominator fulfilling the propagation condition (see the scheme in Fig. 3.8),

now expressed as

Ki
I −Ksh

I ≥ KIc (5.4)

Eq. (5.3) defines the local kinking of the crack; nevertheless, the crack path is

eventually defined by the disappearing KII stress intensity factor; for this reason, if the

opening contribution to shielding is neglected from the kinking criterion, the path should

be very similar, especially for values of the ratio tending to 0, i.e. in the straight portion

of the propagation. Such approximation modifies the kinking angle as follows:

β = −2
Ki
II −Ksh

II

Ki
I

(5.5)

The validity of such simplified expression was verified by direct comparison of the

crack paths obtained with the criteria given in Eq. (5.3) and (5.5), respectively, which

indeed confirmed that the paths are almost overlapping, as shown in Fig. 5.2.

From the computational point of view, the paths obtained with the definition of β

given in Eq. (5.3) are affected by numerical oscillations, which are due to the fact that

the lower-term of the ratio is formed by a growing contribution (Ksh
I ) and a decreasing

one (Ki
I). For this reason, small angle oscillations were observed, which in some case lead
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5. Cone crack propagation

Figure 5.3: Influence of the microstructural coefficient λ on the crack path, for arbitrary
values of the remaining variables. It can be seen that such coefficient is irrelevant in the
path definition.

to instability in the propagation. Conversely, Eq. (5.5) guarantees the same accuracy of

the crack path with higher numerical stability, and was used thereafter as the kinking

angle formulation.

Determination of the parameters K∞I and K∞II involved in Eqs. (5.1) and (5.2)

was performed by an iterative fitting of the result output, crack angle and length, to

experimental data, whose scatter was used for deriving a correspondent scatter in the

shielding evaluation.

The third coefficient, λ, is related to microstructural variables, toughness and elas-

ticity of the material. The approach followed in this work is focused on the final effect

of the shielding on the crack trajectory, which is not affected by the local value along

the transition portion (i.e. for Ksh
I � K∞I ). The influence of λ was hence studied

by varying arbitrarily the value, from 20 to 150 µm, for a given set of the remaining

parameters. The crack path was found to be not significantly influenced by λ, as shown

in Fig. 5.3, therefore a constant value λ=100 µm, in agreement with the experimental

results on similar materials in Ref. [97], was assumed.

5.1.2 Results

Experimental measurements of crack length and angles for A03 and A05 materials are

reported on table 5.1, together with the relevant magnitudes computed with the FE

model; observation of crack geometries in both materials showed that, despite the high

experimental scatter, the crack angle in both materials is almost constant throughout

the propagation, and is wider in the material with the coarsest microstructure, while the
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R-curve

Table 5.1: Experimental results and corresponding R-curve parameters obtained for alu-
mina with different grain size tested with a 2.5 mm radius sphere under the indentation
load P=4000 N. As a comparison, results obtained from simulation for non-shielding
alumina (labelled as NS), which are in agreement with previous works [38], are also
reported.

grain size α[◦] c/a K∞I [MPa
√
m] K∞II [MPa

√
m]

NS – 18.5 2.8 – –
A03 2.6±1.6 26.8± 1.1 1.7± 0.4 2.5± 1.0 2.3± 0.7
A05 3.8±2.3 27.4± 2.2 1.8± 0.3 2.25± 0.75 2.5± 1.0

crack length is reduced, as it was expected, corresponding to a larger mode-I shielding

effect. For the longest sintering time, 12 hours, the microstructure obtained proved

to be too coarse for the formation of cone crack, which was inhibited by quasi-plastic

deformation, associated with subsurface microcracking [49].

Observation of the crack paths obtained from the simulations confirmed that, after

the initial transition from ring to cone, the angle of propagation is constant along the

length for long-enough cracks (approx. c/a > 0.5), with only a slight progressive increase

until the saturation value of the shielding is reached. However, as observed above and

shown in Fig. 5.3, the length necessary to reach such steady shielding, in other words

the value of the coefficient λ, has a negligible influence on the crack trajectory.

Considering the transition from unstable to stable propagation, it is worth noting

that the denominator in either of eqs. (5.3) or (5.5) undergoes a discontinuity, be-

cause the indentation contribution Ki
I passes from a decreasing trend (point D in Fig.

3.13) to a constant value, associated to the load increments necessary to produce crack

propagation. This could lead to expect a crack kink; however, in agreement with the

above-mentioned remark that KI is not relevant for defining the KII = 0 direction, such

kink is almost imperceptible in any of the calculated paths, as it is confirmed by exper-

imental observations. Nevertheless, in order to consider both portions of propagation,

allowing thus a more realistic comparison with experimental values, it was decided to

measure the angles from graphic representations of the crack paths rather than directly

from the output of the simulations, obtaining thus an average value, more representative

than the local value at the crack tip.

Results were employed in the fitting procedure for determination of the parameters

involved in defining the R-curve: from the value of final crack length under the given

load, the parameter K∞I , i.e. the value of the opening shielding, was first deducted
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5. Cone crack propagation

Figure 5.4: Crack paths obtained by varying the coefficient K∞II (expressed in MPa
√
m)

for a constant K∞I = 2.0 MPa
√
m. Each path presents a constant angle, meaning that

the discontinuity in the lower term of eq. (5.5) does not affect the crack trajectory

iteratively from the variation in final crack length; successively the shear parameter

K∞II was varied, and the fitting value was obtained from convergence of the propagation

angle to the experimental value. It was important to follow this order, because both the

opening and the shearing shielding contribute to determine the angle of propagation α.

As an example, the crack paths obtained in alumina for a constant mode-I shielding,

by varying the mode-II contribution are shown in Fig. 5.4.

The influence of both the opening and shearing shielding factors on the crack angle

can be visualized in Fig. 5.5, where the angles obtained are plotted as functions of the

mode-II shielding coefficient, for various values of K∞I , each one corresponding to a

different crack length. From such plot the range of parameters corresponding to several

crack geometries can be easily deducted.

The results obtained are summarized in table 5.1, together with a comparison with

the values expected (calculated) for an elastic material with the same elastic properties

and toughness of alumina but without taking into account any shielding, in other words

an ideally brittle alumina, whose angle is in agreement with the prediction from the

works of Kocer [39] and Fett et al. [40]. The difference in terms of both crack length

and angle is noteworthy, and corresponds to values of shielding that are not negligible,

as they are of the same order of magnitude as the toughness of the material; such

high values were not expected, because the fine microstructure would suggest a smaller

amount of bridging. They are attributed to the highly inhomogeneous stress field and

to the small crack opening under spherical indentation, which implies that the grains
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R-curve

Figure 5.5: Cone crack angles as function of K∞II , for various values of K∞I (expressed
in MPa

√
m) corresponding to different crack lengths

friction and interlocking are favoured.

The value of the ratio K∞II /K
∞
I , close to the unity, gives information on the nature

of the bridging stress acting on the crack, meaning that under Hertzian indentation

the shearing component of such stress is similar to the opening contribution. This, on

the other hand, is intuitively understandable, since the interlocking between grains on

opposing crack lips (see Fig. 5.1) is likely to act against sliding as much as against

opening, or even more in an inhomogeneous stress field.

In addition to the results presented so far, simulations of cone crack propagation in

silicon nitride with or without elongated grains were performed. Experimental results by

Belmonte et al. [98] were reproduced with indentation and materials conditions (contact

radius a ≈ 200µm, load P = 2000N , toughness KIc = 5.2MPa
√
m) taken from the

same work or from other reference [97]. The shielding was assumed higher in the long-

grained material, consistently with the apparent toughness from Ref. [98] (7.4 and 8.1

MPa
√
m, respectively); such effect can be seen in the variation of the crack angles,

as measured from the micrographs presented in the cited reference, corresponding to

approx. 25◦ and 31◦ respectively.

In the simulations, the values of toughness were translated into the shielding pa-

rameters K∞I = K∞II = 2.2MPa
√
m in homogeneous and K∞I = K∞II = 5.0MPa

√
m in

textured materials, respectively. The resulting angles were compared with the experi-
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5. Cone crack propagation

mental ones. The agreement was found to be good, especially in the case of the former

material, for which α = 25.2◦, while in the long-grained material a slight difference is

present (α = 28.8◦). This can be attributed to an underestimation of the shielding, de-

pending on the technique employed for the toughness measurement, or to the presence

of inelastic damage, enhanced by the microstructure itself [97], which affects the stress

field and, therefore, the crack path.

5.2 Residual stresses

Residual stress in the first layer was included in the simulations as a constant pressure

acting on the border. Although such representation does not consider the relaxation of

the stress at the edge, it describes well the central region of the samples; if simulations

are compared with indentations performed far enough from the edge, as mentioned above

(section 2.3), the approximation is considered acceptable.

The influence of such stress distribution on the stress intensity factors (and, therefore,

on the crack path) is included in the output given by the software, which is calculated

from the stress field at the crack tip; the kinking angle definition, therefore, is formally

just the same as in Eq. (3.4). However, in order to evaluate intuitively which effect

can be expected, an approximation of such contribution can be seen as that of a slanted

crack in a semi-infinite plate (shown in Fig. 5.6):

Kr
I = Y σr

√
c sin2 α (5.6)

Kr
II = Y σr

√
c sinα cosα (5.7)

with Y a geometry factor. A more correct formulation should include the mixed terms

(i.e. the normal stress-deriving KII and the shear stress-deriving KI), but since such

terms are in general modest, and Eqs. (5.6) and (5.7) are only illustrative, they were

neglected for the sake of clarity.

Since α has not a constant value, an analytical calculation of Kr
I and Kr

II would be

unviable. For this reason Finite Element analysis is needed for evaluating cone crack on

stressed materials.

The KI evolution is similar to the one presented above (Fig. 3.13), reduced of a

quantity which increases as the crack advances, as shown schematically in Fig. 5.7. The

propagation direction is defined, again, as the direction of the disappearing KII ; in other
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Residual stresses

Figure 5.6: Scheme of slanted crack on a semi-infinite plate, whose stress intensity factors
approximate the effect of residual stress on the Hertzian cone crack.

Figure 5.7: Scheme of the influence of the residual stresses on the unstable mode-I stress
intensity factor

words the one for which

Ki
II +Kr

II = 0 (5.8)

The left-hand side of the relation is composed by a decreasing (from indentation) and

an increasing (from residual stresses) terms, therefore the relative weight of the latter

grows as the crack propagates. The crack angle, therefore, changes progressively.

It can be seen that many parameters are involved in the determination of Ki,r
I,II and,

therefore, of the crack path: the Poisson ratio ν, the indentation load P , the residual

stress σr, the fracture toughness KIc, microstructural effects, such as grain bridging.

In order to simplify the problem and isolate the contribution of each parameter, it was

decided to focus first on the effect of the residual stress σr, and to include successively
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5. Cone crack propagation

Figure 5.8: Crack paths in alumina as functions of the normalized residual stresses
parameter σr/p0

the shielding effects, which were determined in the monolithic reference material, and

load increments when the condition

KI > KIc (5.9)

is not fulfilled, allowing thus to simulate both stable and unstable segments, and provid-

ing hence a more realistic representation of actual experiments and a correct comparison.

5.2.1 Influence of the residual stresses on the unstable

propagation

In a first step, only unstable propagation was considered, in other words no check on

the toughness was performed (see flow diagram of the algorithm, fig. 3.8); instead, the

penetration depth was kept constant, and so was, consequently, the indentation load.

The graph paths obtained from the simulation of indentation of alumina, neglecting any

microstructural shielding effect and varying the value of the residual stress σr are shown

in Fig. 5.8. The same indentation depth h was applied to all cases, although it must be

considered that when residual stresses are present, the corresponding indentation load

is modified by the additional constraint provided by the residual stress itself.

It can be seen that without residual stresses the angle stabilizes shortly to a constant

value, while, if stresses, either compressive or tensile, are present, the angle decreases or

increases progressively, respectively.

The amount of variation with respect to the unstressed case depends mainly on the

value of the σr/p0 ratio, with p0 the mean contact pressure, as can be inferred considering
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Residual stresses

Figure 5.9: Normalized angle variation, with respect to the unstressed counterpart, of
alumina with various amounts of residual stress and of soda-lime glass. The zone of
linearity is highlighted

the dependencies given by the approximated analytical formulations of Eqs. (3.7) (with

KI ∝ P ) and (5.6) (KI ∝ σr).

To confirm such dependency, the normalized curves fall within a common band (Fig.

5.9), following approximately a linear relationship with the parameter σr/p0:

∆α ∝ σr
p
c (5.10)

The linear behavior is lost in the first portion, during the transition from ring to cone

crack, and in the last, where the angle tends asymptotically either towards α = 0

(compressive stresses), or α = 90◦ (tensile stresses).

Calculations for alumina with different residual stresses and for stressed soda-lime

glass (E = 72.3GPa, ν = 0.21, σr = 100MPa) are presented in the same graph.

Curves from all the cases are comprised into the same linear distribution, meaning that

the relation has general validity, and that the main factor for determining the angle

variation is the value of the σr/p0 ratio.

5.2.2 Influence of the residual stresses on the stable

propagation

In order to represent correctly the crack growth, the fulfilling of the condition KI > KIc

was imposed for crack propagation on laminated materials (still neglecting any shielding
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5. Cone crack propagation

Figure 5.10: Cone crack angle in presence of residual stress, presenting a progressive
decrease during unstable propagation and a constant value when stability is attained

effect). The crack growth is strongly modified: the linear behaviour presented in Fig.

5.9 is fulfilled on the unstable portion of the propagation, but when the point D of the

curve in Fig. 3.13 is reached, the equation of the kink angle becomes:

β = −2
Ki
II +Kr

II

KIc

(5.11)

with i and r indicating indentation and residual stress contributions, respectively. On the

upper side, Ki
II increases as the crack propagates, as a consequence of load P increment;

Kr
II increases as well, following Eq. (5.7), so that equilibrium is achieved, and the angle

from here on is almost constant. Such effect is illustrated in the form of angle as a

function of crack length in Fig. 5.10.

5.3 Ceramic laminates

The relations obtained in the previous sections, including bridging effects, were included

in the simulations, in order to obtain a representation as realistic as possible of the

ceramic laminates object of the study. For the crack shielding evaluation, it was assumed

that the presence of bridging modifies the crack path to the same extent in monolithic

MA and in A/AZ and A/2AZ laminates, because it depends only on the microstructure,

which is very similar in the three materials. Therefore, the same values are assumed
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Ceramic laminates

Figure 5.11: Micrograph of cone crack produced by Hertzian indentation (P = 980N ,
φ = 2.5mm) on laminated material (σr ≈ −200MPa)

Table 5.2: Experimental (lower index exp) and simulation (FE) results for A/AZ and
A/2AZ laminates and monolithic MA, as reference material, obtained from indentations
with a 1.25 mm radius sphere under the load P=980 N. The common value of K∞I =
K∞II = 2.0MPa

√
m was included in all the calculations for representing the R-curve.

αexp[
◦] αFE[◦] c/aexp c/aFE

MA 26.9± 3.1 26.0 1.9± 0.2 2.0
A/AZ 20.4± 1.6 21.3 1.6± 0.2 1.6
A/2AZ 18.1± 4.0 20.2 1.2± 0.5 1.4

for all materials, and they are calculated for MA with the method presented in section

5.1.2, yielding the values K∞I = K∞II = 2.0MPa
√
m.

Compressive stress during unstable propagation produces a progressive reduction in

angle, because its contribution to KII grows as the crack grows. On the other hand,

grain bridging has the opposite effect, which is to say that the angle increases slightly

until saturation is reached, so that, depending on the involved parameters, the crack

path can present some variation or oscillation in angle, and the global effect is a quite

straight path, as it is confirmed by the experimental observations, such as the crack

shown in Fig. 5.11.

The crack paths for the specific cases of A/AZ and A/2AZ laminates are presented

in Fig. 5.12; comparison with the monolithic reference gives a difference in crack angle,

91



5. Cone crack propagation

Figure 5.12: Crack path obtained for MA, A/AZ and A/2AZ materials, considering the
effect of crack shielding and residual stress on the crack propagation

which is in both cases narrower than in the monolithic, and almost constant, as observed

above, and in final crack length, which is shorter. The numerical values of both geometry

parameters are confirmed by experimental observations, as presented in table 5.2.

It is worth noting that despite the complexity and inter-relation of several phenom-

ena, the study allowed to isolate the contribution from any of the features involved, by

superposition of simple analytical relations or stress fields to Finite Element simulations,

and to combine them again in the analysis of complex materials. The prediction of the

overall effect is consistent with experimental observations, and the effectiveness of the

model was also confirmed by comparison with data from literature.
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CHAPTER 6
Strength degradation by cone

cracking

T he geometry of the cone crack, analyzed in deep in the previous chapter, has a

profound influence on the strength of the sample/component, because the presence

of such type of crack in service can act as the fracture starting defect under remote

loading. For this reason, although the issue of strength of ceramics goes beyond the

main scope of this thesis, the subject was given some insight, in order to point out the

relevance of contact resistance within an overall evaluation of the material mechanical

properties.

The assessment of the strength degradation is usually conducted by comparing the

flexural strength of indented samples with that of unindented materials. In the case of

laminated materials, the strength degradation must be compared with that of monolithic

materials in order to interpret correctly the results; however such comparison is com-

plex, because several phenomena are involved in determining the difference of fracture

resistance between monolithic and laminated material, such as:

• Inhomogeneous elastic properties

• Residual stresses

• Cone crack geometry

In order to obtain a thorough evaluation of the specific case, and to derive general

conclusions, valid for any ceramic laminated structure, the above-mentioned issues were
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6. Strength degradation by cone cracking

Figure 6.1: Scheme of transversal flexural testing

studied individually from the analytical point of view and consistency was sought by

taking an approach combines aimed experiments (described in section 2.5) and two-

steps simulation of the same case of study (section 3.3).

6.1 Flexural strength of laminated materials

The first point, the elastic mismatch, influences the distribution among the layers of the

stress field generated by bending test. Considering the component parallel to the sample

length, the expression of such distribution in an homogeneous material is:

σ =
3F (l1 − l2)

2b(2t)3
y (6.1)

with the symbols as in Fig. 6.1. Fracture is assumed to start at the surface (y = t,

where the bending stress is higher. From eq. (6.1), the critical value is:

σ∗ =
3F (l1 − l2)

4b(2t)2
(6.2)

Application of (6.2) to the case of multilayers yield an equivalent stress (σeq) rather

than an actual value i.e. the maximum stress that would exist if the material was

elastically homogeneous:

σ∗eq =
3F (l1 − l2)

2b(2t)2
t (6.3)

Following Cai et al. [99], the flexural rigidity of a (2n+1)-multilayered composite

can be expressed as:

(EI)∗ =
1

3

n∑
i=1

Eib(t
3
i − t3i−1) (6.4)
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Flexural strength of laminated materials

Figure 6.2: Notation for the rigidity and stress calculation of a multilayer subjected to
flexion

with
∑n ti = 2t.

Therefore, the bending stress at a distance y from the neutral axis, with y contained

within a layer with Young’s modulus Ei is given by:

σ(y) =
3F (l1 − l2)y

4(EI)∗
Ei (6.5)

Eq. (6.5) means that the stiffer material bear a higher part of the load, i.e. act as a

“shield” of the stress from the other, more compliant, material.

Such effect is shown in Fig. 6.3 for both the A/AZ and A/2AZ materials; the stress

distribution is compared with the solution of Eq. (6.1). In both cases the stiffer alumina

layers bear a higher portion of the load, so that the stress at the surface is higher than

the equivalent stress. A scaling coefficient can be defined, based on the ratio between

the stiffness of the alumina layer and the composite flexural rigidity of the multilayer,
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6. Strength degradation by cone cracking

Figure 6.3: Normalized stress distribution on laminated A/AZ and A/2AZ, compared
with an homogeneous material. σ∗eq is the surface value, defined in eq. (6.2)

by combining eqs. (6.4) and (6.1):

ξ =
btEAl2O3

2(EI)∗
(6.6)

so that the actual critical stress for the laminates will be

σ∗ = ξσ∗eq (6.7)

with ξA/AZ = 1.07 and ξA/2AZ = 1.08, for the laminates object of this study.

On the other hand, the presence of compressive residual stress acts in the opposite

way, so that the actual stress in ceramic laminates can be calculated as:

σ∗ = ξσ∗eq − σr (6.8)

A consequence of Eq. (6.8) is that the beneficial effect of improved surface resistance

provided by compressive residual stress is hampered, to a certain extent, by the stress

redistribution, because the surface layer assumes the greatest part of the load. In the

limit case of

(ξ − 1)σ∗lam > σr (6.9)

fracture would occur at a lower load (or, which is the same, equivalent stress) in the

multilayer than in the monolithic material, as shown schematically in Fig. 6.4. Such
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Flexural strength of laminated materials

Figure 6.4: Actual surface stress against equivalent stress in monolithic and laminated
material. If the fracture stress is at the right hand of the crossing point, the laminate is
weaker than the monolithic material.

event is not likely to happen in the ranges of elastic mismatch, residual stresses and

fracture stresses of advanced materials, nevertheless it should taken into account in the

design of advanced ceramics.

It should be noted that stress redistribution does not affect the resistance to surface-

focused loading types, such as contact loading, as it has been shown in section 4.1.

This confirms that laminated geometries are most effective in applications in which the

ceramic components are subjected to localized blunt loading, rather than to remote

loading.

The results of the bending tests on unindented MA and A/AZ materials are shown

in Fig. 6.5. The relation between the strength of both materials fulfils, with good

agreement, Eq. (6.8): the improvement in equivalent strength is equal to the amount of

residual stress, minus the effect of the stress redistribution, quantifiable in approx. the

10% of the strength.
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6. Strength degradation by cone cracking

Figure 6.5: Experimental strength degradation as a function of the indentation load of
monolithic alumina (MA) and multilayered material (A/AZ)

6.2 Strength degradation

In post-indentation strength, another factor must be considered: the geometry of the

cone crack is influenced by the presence and amount of residual stress, and this reflects

on the bending test.

Experimental results show that MA and A/AZ present different trends of strength

degradation: in the former the drop in strength is immediate and almost linear with the

indentation load, while the latter presents a sort of “threshold effect”, meaning that the

damage produced by relatively low load does not generate critical damage, compared

with the previously existing defects.

In the high-load case, on the other hand, well-developed cracks exist, so that such case

can be represented as an ideal fracture mechanics problem, and as such it was addressed

on a two-steps Finite Element model, with the limitations discussed in section 3.3. From

the analytical point of view, if the cone crack is long enough, the inert strength is, on a

first approximation, proportional to the classical Griffith relation [45]:

σ∗ ∝ KIc

ψ(α)c1/2
(6.10)

Therefore both parameters of the cone crack geometry, the length c and the angle α
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Strength degradation

Table 6.1: Cone crack geometry for MA and A/AZ, respectively, as calculated by itera-
tive Finite Element simulation

MA A/AZ
α 18.5 21
c/a 1.5 0.85

Figure 6.6: Fracture energy at the tip of the cone crack on MA and A/AZ as a function
of the equivalent stress from eq. 6.3

(this latter included in the ψ coefficient) take part in the strength definition, and can

be included in an unique geometry coefficient:

Y = Y (α, c, P ) (6.11)

whose ratio for laminated and monolithic materials, Ylam/Ymon, is a measure of of the

improvement obtained from the crack geometry difference in the two configurations.

As already mentioned, the cracks corresponding to the high-load conditions were

calculated iteratively for monolithic alumina and A/AZ on a two-dimensional axisym-

metrical model, then translated to a cone crack on a three-dimensional beam (one quarter

of a beam, to reduce the calculation time), which was subjected to four-point bending.

The cracks thus obtained are reported in table 6.1: the slight difference with respect

to the values presented in the previous section derive from the different approximations

assumed in this case and the loading conditions, also somewhat different.

The results of the bending simulations are shown in Fig. 6.6: because under bending

the stress state at the tip of the “slanted” cone crack is mixed, the fracture criterion

applied was based on the fracture energy G rather than on the stress intensity factors.
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6. Strength degradation by cone cracking

The critical value was deduced from the particular mode-I case:

Gc =
K2
Ic

E
(6.12)

and was calculated as a function of the bending load.

From the fracture energy curves, two differences can be seen in the energy evolution

in laminates and monolithic alumina:

1. Residual stresses in the laminated material provoke a shift of the G parabola to

positive values of σeq, in other words the applied stress must overcome the residual

stress before producing a positive stress intensity factor;

2. The effect of the different cone crack geometry is a change in the growth rate of

the fracture energy, in geometrical terms in the G(P ) parabola concavity.

Both factors contribute positively to the strength of laminates with residual stresses,

provided that the cone crack is small enough compared to the layer thickness.

From such considerations an analytical estimation of the equivalent indentation

strength of a generic ceramic laminate, compared with its monolithic counterpart, can

be extracted by combining eqs. (6.8) and (6.11), including

1. The comparison of the crack geometries (ratio Ylam/Ymon),

2. The stress redistribution (coefficient ξ),

3. The presence of residual stresses (value of σr).

Such relation is expressed as:

σ∗lam =
Ylam
Ymon

σ∗mon
ξ

+ σr (6.13)

From eq. (6.13), an estimation a priori of the improvement obtained by any laminated

structure can be obtained: the values of σr and ξ can be obtained easily from geometrical

considerations, while the variation in the cone crack geometry is more complex, as it

was shown in chapter 5, because it depends on many aspects, such as indentation load,

fracture toughness, microstructure-derived R-curve, indenter size.

All the factors mentioned were included intrinsically in the FE simulation, from

where the critical (equivalent) stress was extracted (as presented graphically in Fig. 6.6),

yielding values in very good agreement in the case of MA and within the experimental

error for A/AZ.
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CHAPTER 7
Contact strength of ceramic

laminates

T he primary philosophy of this research is the characterization of the mechanical

response to surface-focused loading of ceramic laminates with residual stresses,

especially to blunt contact, obtaining thus an evaluation of the performances in actual in

service conditions. For this, two approaches have been followed in the previous sections

for defining the critical study parameters: the damage prevention (in chapter 4) and

the damage tolerance (chapter 5 and 6). Despite of the differences in those approaches,

in both cases the entire damage was purposely contained within the first, compressive,

layer, consistently with the established research scope.

Nevertheless, the possibility that blunt contact, in its ultimate consequence, cause

failure of the sample can not be disregarded, and deserves some characterization, es-

pecially in light of the differences the so-defined “contact strength testing” presents if

compared with traditional remote-loading testing methods, and of the modifications

laminated structures can provide against such type of loading.

7.1 Experimental results

The contact strength tests were performed with the procedure explained in section 2.6:

MA and A/AZ bars were subjected to compression by opposite cylinders and the fracture

equivalent stress was recorded. A scheme of the experimental setup is reported again

for sake of clarity
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7. Contact strength of ceramic laminates

Figure 7.1: 2D and 3D Schemes of the contact strength testing

Experimental results of contact strength tests for monolithic and laminated materials,

respectively, are reported in Fig. 7.2, both as calculated from Eq. 7.1:

σmaxx = Y σeq = Y
F

tb
(7.1)

with both Y = 0.490, as in the classical solution, and Y = Y (σeq), i.e. with the Finite

Element correction function which will be discussed below (section 7.2).

Although the number of pure alumina samples tested is not high enough for a proper

statistical analysis of the former material, the Weibull exponent m (11, with the 90%

confidence interval [4.0; 16.1]) calculated by the “Maximum Likelihood Procedure” con-

firmed previously reported values [69], and the strength (625 MPa [563; 703] and 579

MPa [524;648] from numerical and FE expression, respectively) is in agreement with

values for fine-grained alumina.

The numerical and FE values do not differ significantly, being the dispersion within

the experimental error; it is thought, therefore, that the simpler approach can be con-

sidered valid, as long as no major accuracy is needed. The strength of the laminate was

found of 840 MPa [781; 904] and 794 MPa [744; 849] from numerical and FE expression,

respectively.

The values measured in this case relate to an effective strength of the structure,

rather than to intrinsic strength of the material. Consistently, the improvement respect

to monolithic material coincides with the amount of residual stresses, as confirmed by

FE analysis. The micrograph in Fig. 7.3 shows that fracture started from the surface,

and this was true for all cases examined.
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Experimental results

Figure 7.2: Contact strength of monolithic alumina alumina/alumina-zirconia multi-
layer. Values from numerical (empty symbols) and Finite Elements (solid symbols)
solutions are presented.

Figure 7.3: Electron Fractography of tested multilayer sample, showing that fracture
started from the alumina surface layer.
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7. Contact strength of ceramic laminates

Figure 7.4: Maximum x-direction stress as a function of the contact area. Values from
previous numerical calculation (circles) [69] and from the present work (squares). Vari-
ation of the former is negligible, while in the latter case should be taken into account.

7.2 Finite Element analysis

Finite Elements calculations in monolithic alumina showed that, with respect to the

numerical solutions, a slightly higher decrease of the maximum stress was found with the

increment of contact zone width s, reaching values approx. 10% lower in the considered

range, as it is shown in Fig. 7.4. This is attributed to the relatively high deformation the

material is subjected to, and that is taken into account in the simulation, since the rollers

are represented as rigid bodies. This changes slightly the stress field, increasingly as s

grows, with respect to the previous, numerical, solutions, which is based on calculations

on the undeformed body.

Such effect was corrected by means of a polynomial curve, defined as a function of

normalized contact zone s/t, in the formulation:

σmaxx

σeq
≡ Y = Y0 − a

(s
t

)
− b
(s
t

)2

(7.2)

Because actual experiments are performed in load control, for an easier application to the

experimental results in the specific case, another relation was extracted for the specific

case as a function of the normalized load σeq = F/tb, presented in section 2.6:

Y = Y0 − a′
√
σeq − b′σeq (7.3)

With Y0 being the point-load value 0.489, and a = 0.312, b = 0.25, a′ = 1.3 · 10−3,

b′ = 4 · 10−6 fitting parameters (for σeq expressed in MPa).
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Finite Element analysis

Figure 7.5: FE representation of the typical x-direction stress field in multilayered ma-
terial, originated from the combination of residual stresses and testing stress fields

The difference with the Y = constant solution is not substantial and could be ne-

glected for the sake of simplicity, with no considerable loss of accuracy, however it should

be noticed that the numerical solution overestimates the strength of the material, reduc-

ing thus the safety factor. In order to quantify the differences, in the previous section

both the numerical and FE values were presented and compared.

Simulations of testing of the laminated material showed that the difference in terms

of tensile stress, as it could be expected, corresponds to the amount of residual stress.

Apart from that, and a slight shift of the point of maximum stress shown in Fig. 7.6,

no substantial difference was found, so that the relation 7.2 can be expressed in a form

that includes the residual stress σr, leading to:

σ − σr =

(
Y0 − a

(s
t

)
− b
(s
t

)2
)
σeq (7.4)

The values of the correction curve parameters depend slightly on the geometry and

materials of the laminated structure and on the rollers radius; for higher accuracy it can

be obtained specifically for any case studied.

Tensile stress along the y-direction, is also subjected to a similar reduction in the

maximum value, compared with the classical solution. Correction curves can be obtained
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7. Contact strength of ceramic laminates

Figure 7.6: Normalized tensile stress in the surface of monolithic alumina and multilayer.
The difference in the maximum values coincides with the compressive residual stress in
the latter.

for this case as well, for which the best fit was obtained with the relation:

Y = Y0 − a′′
√
s

t
− b′′ s

t
(7.5)

with a′′ = 0.8024, b′′ = 0.5969.

7.3 Considerations on the design with ceramic

laminates

It can be noticed from comparison of the values of the parameters in eqs. (7.5) and (7.2)

that along the y-axis, as the contact zone increases, the relative stress is reduced with a

much higher rate than on the surface. It can be expected therefore, considering also the

likely presence of surface flaws, that fracture is more probable to start at the surface.

However, in the case of laminated materials, in contrast with the monolithic case, the

combination of residual and applied stress fields on the inner tensile layers of laminates

can produce tensile values higher than the corresponding surface stress. Tensile stresses

along the y-axis for monolithic and laminated material are reported in Fig. 7.7 a and

b, for two arbitrary values of the normalized load σeq. The contribution from residual

stresses is a constant value; therefore, under a low load (Fig. 7.7a), such a contribution

is significant, leading to a double total value with respect to that on the surface (σmaxx ≈
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Considerations on the design with ceramic laminates

Figure 7.7: Tensile stress along the y-axis (x/t = 0) for monolithic and laminated
materials under low load, a) and high load b).

σeq). On the other hand, under a higher load (Fig. 7.7b), the same constant value sums

to a value of applied stress which is higher in absolute value, but is lower with respect to

the normalized load (σmaxx ≈ 0.3σeq), due to the decrease explained above and reflected

in eq. (7.5). Therefore, despite of the presence of the additional tensile contribution

given by the residual stresses, the maximum stress along the axis is lower than on the

surface.

Such behaviour is summarized in Fig. 7.8, where the maximum stress along the

surface and along the y-axis, respectively, of the laminated structure is plotted against

the normalized load σeq. A critical value σ∗c can be defined, below which stress is higher

on the y-axis, and above which it is higher on the surface.
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7. Contact strength of ceramic laminates

Figure 7.8: Maximum tensile stress along the surface (y/t = 1) and the y-axis (x/t = 0)
for a multilayer material as a function of normalized load σeq.

It should be noticed that Fig. 7.8 does not allow prediction of the fracture location,

unless the strength of both composing materials is known, as well as the flaws distri-

bution. It points out, nevertheless, that fracture could occur on other location than

the surface; therefore, when fracture load is near the critical value σceq, strength tests

should be coupled with micrographic evaluation of the fracture location for a correct

understanding of the failure.

In the case presented in this study (section 7.1), for example, the average strength

measured coincides with a maximum stress located on the y-axis. Nevertheless, fractog-

raphy observation, as in Fig. 7.3, showed that fracture started from the outer, compres-

sive, layer.

Such a behaviour can be explained with a different strength of the composing ma-

terials, due to the smaller grain size in presence of ZrO2, which acts as a constraint to

the grain growth [100], or to the higher amount of flaws in the surface than in the bulk

material.

The correct evaluation of the site of fracture initiation, combined with the calculated

normalized load, as in Fig. 7.8, allows one to determine the resistance of the laminated

structure, and also the strength of one, typically the weakest, of the composing materials,

giving moreover information of a lower limit to the strength of the other.

Alternatively, if the equivalent strength of a laminated structure is compared with

tests on similar, unstressed, materials, as in the example below, an estimation of the
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Considerations on the design with ceramic laminates

Figure 7.9: Influence of the thermal mismatch and of the tensile versus compressive
stress ratio (labelled as t1/t2)on the critical normalized load σceq for the switching of the
maximum location from y-axis to surface, on laminated materials

residual stresses can be obtained.

Another interesting consideration derived from Fig. 7.8 is that under low normalized

load σeq, the stress on an internal layer of the laminate is higher than on the correspond-

ing monolithic material. If the fracture strength is located in this first range, which is a

condition that depends both on the laminated composing materials and geometry, the

contribution of the residual stress to the strengthening would result detrimental, instead

of beneficial, to the contact strength.

The maximum stress presented in Fig. 7.8 was plotted for a specific laminate.

Changes of the geometry and/or of the composing materials influence the global be-

haviour. As a good approximation, the σmaxx vs σeq relations, both on the surface

and on the axis, as in Fig. 7.8 in presence of residual stress are just shifted from the

origin along the y-axis to the respective value of stress. The critical (normalized) load for

change of maximum location is shown on Fig. 7.9, where it can be seen that the choice

of the composing materials, especially the thermal expansion mismatch, has the great-

est influence on the critical load; while such value varies only slightly as the laminated

structure, i.e. the tensile/compressive stresses ratio, changes.

The general information that can be extracted is that extensive thermal mismatch

should be avoided in the laminated design; and that, expectedly enough, higher com-

pressive stresses provide higher contact resistance and lower susceptibility to abnormal
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7. Contact strength of ceramic laminates

internal fracture. Since the location of the maximum stress on the axis changes, dis-

placing deeper into the material as the contact zone increases, it is possible that the

“unstressed” maximum, which is the σx stress minus the residual stresses, is located on

a compressive layer. In that case, the real maximum value is lower than showed on Fig

7.8. This effect is not predictable a priori unless information of the range of fracture

stress and of the laminate geometry is provided.
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CHAPTER 8
Conclusions

T he objective pursued during the development of this thesis was to achieve a com-

plete evaluation of the damage generated by blunt contact loading on all-ceramic

laminated composites. The approach chosen was to try to infer conclusions as much

general as possible, in order to both reach a deep comprehension of the phenomena tak-

ing place during the damage formation and to formulate considerations which could be

useful for the improvement of the design of laminated ceramics.

With the same attention to the characterization completeness, the study was struc-

tured to follow steps of increasing damage, starting from the appearance of brittle dam-

age and arriving to catastrophic failure of the material.

• The physical and mechanical characterization gave the basis for the successive stud-

ies. Although such a characterization was carried on by standard techniques in

order to guarantee reproducibility, the issue of residual stress distribution deserved

a deeper analysis for the strong implications on all the phases of the study and, for

this reason, was examined by means of several techniques, which were compared

and combined, providing thus insight of the actual material stress field and explain-

ing the apparent differences arising between the techniques. Among the techniques

employed, instrumented indentation resulted to be unsuitable for the class of ce-

ramic materials due to their high hardness, while results from sharp indentation

and Finite Element simulation, associated with piezo-spectroscopy analysis from

a partner research, showed that the different approaches measure different physi-

cal magnitudes, so that a direct comparison may not be correct, but the analysis
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8. Conclusions

can be unified by means of computer-assisted simulations. The residual stresses

distribution has much importance both in the correct design and analysis of the

experimental tests and in providing guidelines to the optimum design for the em-

ployment in service of multilayered ceramics.

• The study of the brittle damage appearance showed that ceramic laminates of-

fer higher resistance against blunt contact loading than monolithic materials, and

such a result was appreciable also under long-lasting tests (static fatigue) and cyclic

loading. The improvement was quantified to be equal approximately, in terms of

higher critical load, to the amount of residual stresses. The decrement of critical

load as a function of the number of cycles or time for ring crack appearance was

rationalized starting from fracture mechanics relations and Paris-like laws, which

were adapted to the specific cases of both static and cyclic loading, and which

yielded values of the degradation parameters in agreement with the literature.

The degradation by cyclic loading showed the unexpected presence of mechanical

fatigue mechanisms, consisting in the degradation of the toughening effects gener-

ated by bridging of the crack wake. Such fatigue effect, which resulted in a faster

degradation compared with static loading, was unexpected for the fine microstruc-

ture; for this reason, it was attributed to enhanced quasi-brittle character.

• The superiority of laminated materials over their monolithic counterpart was ques-

tioned under severe damage, i.e. a high number of cycles under a relatively high

load: the reduction of brittle damage, together with the residual stresses, when

shear-driven subsurface microcracks (the called “quasi-plasticity”) form, enhance

the chipping of particles, a phenomenon which can be detrimental, for example, in

tribological applications.

• The analysis of the cone crack propagation on the first, compressive layer re-

quired first to solve the issue of propagation on polycrystalline materials. Such

objective was satisfactorily achieved by means of an automated incremental Finite

Element Model, which allowed calculating the influence of crack shielding provided

by bridging mechanisms, on the crack propagation and, as a reverse-engineering

application, evaluating the amount of mode-I and mode-II shielding on alumina.

The values of crack shielding obtained this way are higher than expected if com-

pared with standard fracture toughness measurement, but are in agreement with
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those obtained by similar methodologies and with the considerations on mechanic

fatigue mechanisms presented above.

• The results obtained this way were expanded to the case of ceramic laminates

by including residual stresses, whose influence was evaluated on both stable and

unstable crack propagation. A general relationship was established, which relates

the angle deviation with the amount of residual stresses and the contact pressure.

Results of the simulations were confirmed by experimental measurements.

It is worth highlighting that the FE model was developed in the optics of adapt-

ability, in that it permits flexibility in the input and output handling, so that a

wide number of problems and materials can be treated, suggesting its use as a

prediction tool in the evaluation of contact resistance.

• The coupling of computer simulation and experiments allowed to quantify the ef-

fect of cone crack on the material integrity, or, in other words, on the strength

degradation, and to highlight the advantages (and, in some cases, the risks) of-

fered by a laminated ceramic structure. A predictive relation based on the elastic

mismatch between layers, on the presence of residual stress and on the effect of

such stresses on the geometry of the cone crack was established and confirmed by

experimental tests.

• Considerations for the design focused to the in service application were established

also from the study of catastrophic failure under contact loading, which, again, was

performed by means of experimental tests coupled with Finite Element simulation,

which assisted in refining the analytical expressions ruling the stress state under

such a test. Both experimental and calculated results showed again a better be-

haviour of laminated materials compared to the reference monolithic alumina, but

highlighted the risk of generating high stress in the underlying tensile layers. Such

risk was quantified, in terms of a critical load for the change of the maximum stress

location, as a function of the thermal mismatch between the materials composing

the multilayer.
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8. Conclusions

Future work

During the development of the work that led to this thesis, it was tried to perform a

comprehensive analysis of the damage produced on ceramic materials, with the special

focus on ceramic laminates, by blunt, localized, loading. Such a wide range of objectives

required to establish some boundaries to the specific themes to be treated, to avoid

excessive dispersion and loss of depth of the study. For this reason, it was decided to

focus on the brittle character of the contact damage, neglecting, apart in some case worth

mentioning, the quasi-plastic deformation caused by subsurface microcracking. For this

reason, the logical step towards a complete understanding of the damage mechanisms

acting in this class of materials would be an analysis of such quasi-plastic damage. From

the experience acquired during and from works in the literature, it appears that the

issue that deserves more attention is the effect of the type of loading (monotonic, cyclic,

static) on the prevalence of inelastic or brittle damage; this study could be related to the

analysis of how quasi-plastic and brittle damage influence each other. It is thought that

the Finite Element Model of crack propagation could be adapted to include quasi-plastic

deformation either as a plastic-like constitutive equation, as an elastic degradation law,

more proper for damage in ceramics, or as a mesh of cohesive elements.
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APPENDIX A
Script codes of the FE model

I
n this section the three scripts composing the automated model of crack propagation

are analyzed in detail.

A.1 propcrack.py

’’’

propcrack.py

Crack propagation: root model

’’’

Headings of the script; name and scope

from odbAccess import *

import visualization

fields=((’Project name’, ’’), (’Number of increments’,’’),

(’Initial depth [microns]’,’-4’), (’Contact radius [microns]’,

’100’), (’c0/a’,’1.1’),(’Initial defect c0/a [microns]’,’0.3’),

(’Initial increment dc [microns]:\t approx half the defect’,’0.2’))

mdname, stepss, dep, rad, rovera, defect, incr =getInputs(fields=

fields, label=’Initial data’)
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A. Script codes

Figure A.1: Input request windows

fields4=((’Material name’,’alumina’), (’Young Modulus [MPa]’,

’380000’), (’Poisson’,’0.25’), (’Toughness [MPa sqrt(m)]’,’3.0’))

matname, youn, poiss, KIcrit=getInputs(fields=fields4, label=

’Insert material data’)

fields2=((’lambda [microns]’,’100’),(’KIinf [MPa sqrt(m)]’,’0.0’),

(’KIIinf [MPa sqrt(m)]’,’0.0’), (’Residual stress [MPa]:\t positive

if compressive’,’0.0’),(’(User-defined stress distribution)’,’’))

lambd, Kinf, Kinf2, resstr, udsd =getInputs(fields=fields2, label=

’Optional features’)

The user is requested to define the initial conditions of the system in request windows, as

in Fig. A.1, respectively the indentation parameters, the material properties, eventual

additional features.

reply = getWarningReply(message=’Check on toughness?’, buttons=

(YES,NO))
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if reply == YES:

incrdep=TRUE

elif reply == NO:

incrdep=FALSE

Activates the function of check on the toughness.

stepss=float(stepss)

dep=float(dep)

rad=float(rad)

rovera=float(rovera)

incr=float(incr)

defect=float(defect)

youn=float(youn)

poiss=float(poiss)

KIcrit=1000*float(KIcrit)

resstr=float(resstr)

lambd=float(lambd)

Kinf=1000*float(Kinf)

Kinf2=1000*float(Kinf2)

The input variables are converted to script variables.

rad0=100

pict=FALSE

Activates the function of picture capturing after every step

ang=270

The local variable of the crack angle is initialized

crl=defect
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The initial crack length is equal to the user-defined defect

nrmlzator=rad0/rad

KIcrit=KIcrit*sqrt(nrmlzator)

Kinf=Kinf*sqrt(nrmlzator)

Kinf2=Kinf2*sqrt(nrmlzator)

lambd=lambd*nrmlzator

The normalization parameter κ is defined and applied to the relevant properties

KIcum=[]

angcum=[]

The cumulative arrays which will save the data of local angle and stress intensity factor

are initialized

xyCoordsCrack = [(rad0*rovera,0.), (rad0*rovera,-defect+incr),

(rad0*rovera,-defect)]

seedCrack=0.2

A crack geometry coordinates array is defined as the initial defect:

[cx, cy] = [(r, 0), (r,−c0)] (A.1)

execfile(’model.py’, __main__.__dict__)

myJob.submit()

myJob.waitForCompletion()

The model is generated with the imposed characteristics (see section A.2)

execfile(’output.py’)

#odb.close()

The output.py script elaborates the output
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logr=open(mdname+".txt",’a’)

logr.write(’step c c/a angle Dang KInorm KII depth tipX tipY load%

G\n’)

logr.close()

A .txt file is created with the name of the model and initialized.

for i in range(stepss):

An iterative procedure is repeated for the given number of steps

logr=open(mdname+".txt",’a’)

if crl>3.0:

incr=0.6

seedCrack=0.3

if crl>20.0:

incr=1.0

seedCrack=0.5

if crl>30.0:

incr=2.0

seedCrack=1.0

if crl>40.0:

seedCrack=2.0

For reducing the calculation time far from the high stress gradient zone, the crack

increment δc is augmented as the crack propagates

if incrdep and (KIav-KiSh)<KIcrit:

print "st: %s, c: %s, ang: %s, Dang: %s, KI: %s, KII: %s,%

dep: %s, tip: %s,%s, load: %s, G: %s"% (i, crl/nrmlzator,%

360-ang, deltaang2, (KIav-KiSh)/sqrt(nrmlzator)*1E-3,%

KIIav*1E-3/sqrt(nrmlzator), dep/nrmlzator, lastP[0]/%

nrmlzator, lastP[1]/nrmlzator, -loadcalc*1e-6/nrmlzator**2,
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Jint)

print "increasing depth..."

logr.write(’%s %s %s %s %s %s %s %s %s %s %s %s\n’% (i,

crl/nrmlzator, crl/rad0, 360-ang, deltaang2, (KIav-KiSh)

/sqrt(nrmlzator)*1E-3, KIIav*1E-3/sqrt(nrmlzator),

dep/nrmlzator,lastP[0]/nrmlzator, lastP[1]/nrmlzator,

-loadcalc*1e-6/nrmlzator**2, Jint))

dep=dep*(KIcrit*1.01)/(KIav-KiSh)

myModel.boundaryConditions[’load’].setValues(u2=dep)

myJob.submit()

myJob.waitForCompletion()

execfile(’output.py’)

If the toughness check function is active and the stress intensity factor is lower than the

toughness, the current vlaues are written in the result file and a new case is computed

with the same geometry and an updated penetration depth, following eq. 3.5

else:

print "st: %s, c: %s, ang: %s, Dang: %s, KI: %s, KII: %s, dep:

%s, tip: %s,%s, load: %s, G: %s"% (i, crl/nrmlzator, 360-ang,

deltaang2, (KIav-KiSh)/sqrt(nrmlzator)*1E-3, KIIav*1E-3/

sqrt(nrmlzator), dep/nrmlzator, lastP[0]/nrmlzator,

lastP[1]/nrmlzator, -loadcalc*1e-6/nrmlzator**2, Jint)

logr.write(’%s %s %s %s %s %s %s %s %s %s %s %s\n’% (i,

crl/nrmlzator, crl/rad0, 360-ang, deltaang2, (KIav-KiSh)/

sqrt(nrmlzator)*1E-3, KIIav*1E-3/sqrt(nrmlzator),

dep/nrmlzator, lastP[0]/nrmlzator, lastP[1]/nrmlzator,

-loadcalc*1e-6/nrmlzator**2, Jint))

ang=ang+deltaang2

angcum.append(360-ang)

xyCoordsCrack=xyCoordsCrack + [(lastP[0]+

incr*cos(degreeToRadian(ang)), lastP[1]+

incr*sin(degreeToRadian(ang)))]

KIcum.append(KIav)
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crl=crl+incr

If KI < KIc, the crack geometry array is updated with a new point corresponding to:

(cxi+i, cyi+1) = (cxi + δc cos β, cyi + δc sin β) (A.2)

where β is the kink angle calculated by the output.py script.

logv=open(mdname+"var.txt", ’w’)

logv.write(’%s \n %s \n %s \n %s’

%(xyCoordsCrack,dep,ang,crl))

logv.close()

A backup file is created with the crack geometry for resuming the calculation from the

latest position

execfile(’model.py’, __main__.__dict__)

myJob.submit()

myJob.waitForCompletion()

execfile(’output.py’)

logr.close()

The result file is closed. It is opened at the beginning of each step as a security measure,

to avoid losing data in case of calculation errors.

A.2 model.py

’’’

incrmod1t.py

iterative model with just one script!

’’’

Headings of the script; name and scope
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from abaqus import *

from abaqusConstants import *

import sketch

import part

import mesh

The necessary functions are called

myModel = mdb.Model(name=mdname)

A new model is created with the name given by the user

mySketch = myModel.Sketch(name=’basicgeom’, sheetSize=3000.0)

mySketch.ObliqueConstructionLine(point1=(0.0, -250.0),

point2=(0.0, 250.0))

xyCoordsBase = [(0,0), (rad0,0), (2000,0), (2000,-2000), (0,-2000),

(0,0)]

for i in range(len(xyCoordsBase)-1): mySketch.Line(

point1=xyCoordsBase[i], point2=xyCoordsBase[i+1])

myPart=myModel.Part(name=’body’, dimensionality=AXISYMMETRIC,

type= DEFORMABLE_BODY)

myPart.BaseShell(sketch=mySketch)

The sample body is created from a sketch

my2Sketch = myModel.Sketch(name=’crack’, sheetSize=2000.0)

lastP = xyCoordsCrack[-1]

for i in range(len(xyCoordsCrack)-1):

my2Sketch.Line(point1=xyCoordsCrack[i], point2=xyCoordsCrack[i+1])

my2Sketch.CircleByCenterPerimeter(center=(lastP),

point1=(xyCoordsCrack[-2]))

The sketch of the crack is created from the crack geometry array defined above. A

variable is defined corresponding to the tip of the crack
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f=myPart.faces.findAt((0,0,0))

myPart.PartitionFaceBySketch(faces=f, sketch=my2Sketch)

sk=myModel.Sketch(name=’rectgle’, sheetSize=200)

pointTrans2=(ceil((lastP[0]+10)/4.5)*4.5,floor((lastP[1]-20)/4.5)*4.5)

sk.rectangle(point1=(0,0), point2=pointTrans2)

sk.rectangle(point1=(0,0), point2=(pointTrans2[0]+3,pointTrans2[1]-3))

The sample is partitioned to generate a mesh transition, whose size depends on the crack

tip position

tr1=sk.Line((pointTrans2[0],-1.5),(pointTrans2[0]+1.5,-1.5))

tr2=sk.Line((pointTrans2[0]+1.5,-1.5),(pointTrans2[0]+3,0))

tr3=sk.Line((pointTrans2[0]+1.5,-1.5), (pointTrans2[0]+1.5,-3))

tr4=sk.Line((pointTrans2[0],-3), (pointTrans2[0]+1.5,-3))

tr5=sk.Line((pointTrans2[0]+1.5,-3), (pointTrans2[0]+3,-4.5))

tr6=sk.Line((pointTrans2[0],-4.5), (pointTrans2[0]+3,-4.5))

sk.linearPattern(objectList=(tr1,tr2,tr3,tr4,tr5,tr6),

number1=-int(pointTrans2[1]/4.5), spacing1=4.5, angle1=270)

rr1=sk.Line((0,pointTrans2[1]-3), (1.5,pointTrans2[1]-1.5))

rr2=sk.Line((4.5,pointTrans2[1]-3), (4.5,pointTrans2[1]))

rr3=sk.Line((1.5,pointTrans2[1]-1.5), (1.5,pointTrans2[1]))

rr4=sk.Line((1.5,pointTrans2[1]-1.5), (3,pointTrans2[1]-1.5))

rr5=sk.Line((3,pointTrans2[1]-1.5), (3,pointTrans2[1]))

rr6=sk.Line((3,pointTrans2[1]-1.5), (4.5,pointTrans2[1]-3))

sk.linearPattern(objectList=(rr1,rr2,rr3,rr4,rr5,rr6),

number1=int(pointTrans2[0]/4.5), spacing1=4.5, angle1=0)

f=myPart.faces.findAt((0,0,0))

myPart.PartitionFaceBySketch(faces=f, sketch=sk)

The one-to-three-elements sketch shown in Fig. A.2 is reproduced along the transition

border
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Figure A.2: One-to-three elements transition

import material

import section

myModel.Material(name=matname)

myModel.materials[matname].Elastic(table=((youn, poiss), ))

myModel.HomogeneousSolidSection(name=matname+"sec", material=matname,

thickness=1.0)

allfaces=myPart.faces

myPart.Set(faces=allfaces, name=’regall’)

myPart.SectionAssignment(region=myPart.sets[’regall’], sectionName=

matname+"sec")

The material properties are assigned the user-defined values

myAssemb=myModel.rootAssembly

myThing=myAssemb.Instance(name=’thing’, part=myPart, dependent=OFF)

myModel.StaticStep(name=’Load’, previous=’Initial’,

description=’Apply the load’, initialInc=1, maxInc=1)

The body part is loaded in the model itself and the step of calculation is defined
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cracktip=myThing.vertices.findAt(((lastP[0],lastP[1],0),))

myAssemb.Set(vertices=cracktip, name=’crtipset’)

loadr=myThing.edges.findAt((50,0,0))

loadreg = myThing.edges[loadr.index:(loadr.index+1)]

myAssemb.Set(edges=loadreg, name=’loadface’)

resr=myThing.edges.findAt((2000,-100,0))

resreg = myThing.edges[resr.index:(resr.index+1)]

myAssemb.Surface(side1Edges=resreg, name=’ressurf’)

baser=myThing.edges.findAt((500,-2000,0))

basereg = myThing.edges[baser.index:(baser.index+1)]

myAssemb.Set(edges=basereg, name=’baseface’)

The nodes sets which will be subjected to load of boundary conditions and are defined

crackS=myThing.faces.findAt((lastP[0],lastP[1],0))

cracksup=myThing.faces[crackS.index:(crackS.index+1)]

myAssemb.Set(faces=cracksup, name=’cracksurf’)

crackreg=myThing.edges.findAt(((xyCoordsCrack[-1][0],

xyCoordsCrack[-1][1],0),))

for i in range(len(xyCoordsCrack)-2): crackreg = crackreg +

myThing.edges.findAt((((xyCoordsCrack[i][0] +xyCoordsCrack[i+1][0])

/2,(xyCoordsCrack[i][1]+xyCoordsCrack[i+1][1])/2,0),))

myAssemb.Set(edges=crackreg, name=’crackseam’)

pickedRegions = myAssemb.sets[’crackseam’]

myAssemb.engineeringFeatures.assignSeam(regions=pickedRegions)

qvect=((xyCoordsCrack[-2][0],xyCoordsCrack[-2][1],0),(xyCoordsCrack

[-1][0], xyCoordsCrack[-1][1],0))

crackFront = crackTip = myAssemb.sets[’crtipset’]

myAssemb.engineeringFeatures.ContourIntegral(name=’Crack’,

symmetric=OFF, crackFront=crackFront, crackTip=crackTip,

extensionDirectionMethod=Q_VECTORS, qVectors=((qvect), ),

midNodePosition=0.25, collapsedElementAtTip=SINGLE_NODE)

The crack geometry is assigned and the parameters of the crack calculation are defined
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myModel.DisplacementBC(name=’baseBC’, region=myAssemb.sets

[’baseface’], createStepName=’Initial’, u2=0.0, fixed=OFF,

distributionType=UNIFORM)

myModel.DisplacementBC(name=’load’, region=myAssemb.sets

[’loadface’], createStepName=’Load’, u2=dep, fixed=OFF,

distributionType=UNIFORM)

if resstr!=0.0 and udsd==’’:

myModel.Pressure(name=’resstr’, region=myAssemb.

surfaces[’ressurf’], createStepName=’Load’, magnitude=resstr,

distributionType=UNIFORM)

if udsd:

myModel.Pressure(name=’resstr’, region=myAssemb.surfaces

[’ressurf’], createStepName=’Load’, magnitude=resstr,

distributionType=USER_DEFINED)

Boundary conditions and loads are assigned the user-defined values

myAssemb.seedEdgeBySize(edges=(loadr,), size=1.5, constraint=FREE)

myAssemb.seedEdgeByNumber(edges=(baser,), number=60, constraint=FINER)

myAssemb.seedEdgeBySize(edges=myThing.edges.findAt

(((rad0+0.5,0,0),)), size=1.5, constraint=FINER)

myAssemb.seedEdgeBySize(edges=myThing.edges.findAt

(((rad0*rovera+1,0,0),)), size=1.0)

myAssemb.seedEdgeByBias(end2Edges=myThing.edges.findAt

(((500,0,0),)), ratio=5, number=100)

myAssemb.seedEdgeByNumber(edges=myThing.edges.findAt

(((2000,-300,0),)), number=60)

myAssemb.seedEdgeBySize(edges=myThing.edges.findAt

(((0,pointTrans2[1]+2,0),)), size=1.5)

myAssemb.seedEdgeByBias(end1Edges=myThing.edges.findAt(((0,

pointTrans2[1]-4,0),)), ratio=3, number=80)

for t in range(-int(pointTrans2[1]/4.5)): myAssemb.seedEdgeByNumber

(edges=myThing.edges.findAt(((pointTrans2[0]+3,-3-t*4.5,0),)),
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number=1)

for t in range(-int(pointTrans2[1]/1.5)): myAssemb.seedEdgeByNumber

(edges=myThing.edges.findAt(((pointTrans2[0],-0.1-t*1.5,0),)),

number=1)

for t in range(-int(pointTrans2[1]/4.5)): myAssemb.seedEdgeByNumber

(edges=myThing.edges.findAt(((pointTrans2[0]+1,-t*4.5,0),)),

number=1)

for t in range(int(pointTrans2[0]/4.5)): myAssemb.seedEdgeByNumber

(edges=myThing.edges.findAt(((3+t*4.5,pointTrans2[1]-3,0),)),

number=1)

for t in range(int(pointTrans2[0]/1.5)): myAssemb.seedEdgeByNumber

(edges=myThing.edges.findAt(((t*1.5,pointTrans2[1]-1.1,0),)),

number=1)

myAssemb.seedEdgeBySize(edges=crackreg, size=seedCrack,

constraint=FREE)

myAssemb.seedEdgeByNumber(edges=myThing.edges.findAt(((lastP[0],

lastP[1],0),)), number=12, constraint=FINER)

myAssemb.seedEdgeByNumber(edges=myThing.edges.findAt(((lastP[0]+incr,

lastP[1],0),)), number=36, constraint=FINER)

The element (approximate) size is assigned to some of the faces the model is composed

of

myThing.faces.findAt((pointTrans[0]+2,pointTrans[1]-2,0)))

myAssemb.setMeshControls(regions=(crackS,),

elemShape=QUAD_DOMINATED, technique=SWEEP)

ba=myThing.faces.findAt(((rad0*rovera-0.1,-0.1,0),))

myAssemb.setMeshControls(regions=ba, algorithm=ADVANCING_FRONT)

aba=myThing.faces.findAt(((1500,-1000,0),))

myAssemb.setMeshControls(regions=aba, algorithm=ADVANCING_FRONT)

elemType1 = mesh.ElemType(elemCode=CAX8, elemLibrary=STANDARD,

secondOrderAccuracy=OFF, hourglassControl=STIFFNESS,

distortionControl=OFF)
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myAssemb.setElementType(regions=(myThing.faces,), elemTypes=

((elemType1,)))

myAssemb.generateMesh(regions=((myThing,)))

The meshing techniques and the element types are assigned to the relevant faces of the

model

myModel.fieldOutputRequests[’F-Output-1’].setValues(variables=(’S’,

’U’,’RT’))

myModel.historyOutputRequests.changeKey(fromName=’H-Output-1’,

toName=’JInt’)

myModel.historyOutputRequests[’JInt’].setValues(

contourIntegral=’Crack’, numberOfContours=9)

myModel.HistoryOutputRequest(name=’StrInt’, createStepName=’Load’,

contourIntegral=’Crack’, numberOfContours=9,

contourType=K_FACTORS, kFactorDirection=KII0)

The output requested, including the fracture mechanics response, is defined

if udsd:

userFile = udsd+’.for’

myJob = mdb.Job(name=mdname, model=myModel, description=’Crack

propagation - steps’, userSubroutine=userFile)

else:

myJob = mdb.Job(name=mdname, model=myModel, description=’Crack

propagation - steps’)

A case job is created with the model name; the eventual user-defined pressure distribu-

tion is assigned.

A.3 output.py
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output.py

’’’

readoutput.py

Reading the odb, getting KI, KII, Dang, load

Version with Shielding

’’’

Headings of the script; name and scope

odb = openOdb(path=mdname+".odb")

The file containing the result of the calculation is opened

KIav=(odb.steps[’Load’].historyRegions[’ElementSet PIBATCH’].

historyOutputs[’K1 at STRINT_CRACK_CRTIPSET_Contour_6’].data[0][1]+

odb.steps[’Load’].historyRegions[’ElementSet PIBATCH’]

.historyOutputs[’K1 at STRINT_CRACK_CRTIPSET_Contour_7’].data[0][1]+

odb.steps[’Load’].historyRegions[’ElementSet PIBATCH’].

historyOutputs[’K1 at STRINT_CRACK_CRTIPSET_Contour_8’].data[0][1]+

odb.steps[’Load’].historyRegions[’ElementSet PIBATCH’].history

Outputs[’K1 at STRINT_CRACK_CRTIPSET_Contour_9’].data[0][1])/4

KIIav=(odb.steps[’Load’].historyRegions[’ElementSet PIBATCH’].

historyOutputs[’K2 at STRINT_CRACK_CRTIPSET_Contour_6’].data[0][1]+

odb.steps[’Load’].historyRegions[’ElementSet PIBATCH’].

historyOutputs[’K2 at STRINT_CRACK_CRTIPSET_Contour_7’].data[0][1]+

odb.steps[’Load’].historyRegions[’ElementSet PIBATCH’].

historyOutputs[’K2 at STRINT_CRACK_CRTIPSET_Contour_8’].data[0][1]+

odb.steps[’Load’].historyRegions[’ElementSet PIBATCH’].history

Outputs[’K2 at STRINT_CRACK_CRTIPSET_Contour_9’].data[0][1])/4

Jint=(odb.steps[’Load’].historyRegions[’ElementSet PIBATCH’].

historyOutputs[’J at JINT_CRACK_CRTIPSET_Contour_6’].data[0][1]+

odb.steps[’Load’].historyRegions[’ElementSet PIBATCH’].

historyOutputs[’J at JINT_CRACK_CRTIPSET_Contour_6’].data[0][1]+

odb.steps[’Load’].historyRegions[’ElementSet PIBATCH’].

historyOutputs[’J at JINT_CRACK_CRTIPSET_Contour_6’].data[0][1]+
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odb.steps[’Load’].historyRegions[’ElementSet PIBATCH’].

historyOutputs[’J at JINT_CRACK_CRTIPSET_Contour_6’].data[0][1])/4

The stress intensity factors KI , KII and the fracture energy G are calculated as an

average of the values given along four contours at the crack tip

KiiSh=Kinf2*(1-exp(-crl/lambd))

KiSh=Kinf*(1-exp(-crl/lambd))

The mode-I and mode-II shielding stress intensity factors are calculated (if present) as

a function of the user-defined parameter λ and of the crack length c

deltaang2=radianToDegree(-2*(KIIav+KiiSh)/KIav)

The kink angle β is calculated following eq. 3.4

loadcalc=0

val=odb.steps[’Load’].frames[1].fieldOutputs[’RT’]

appl=odb.rootAssembly.nodeSets[’LOADFACE’]

val.getSubset(region=appl)

applvalu=val.getSubset(region=appl)

for hj in applvalu.values: loadcalc=loadcalc+ hj.data[1]

The indentation load P is calculated as the sum of the reaction forces at the contact

nodes

odb.close()

The results file is closed.

A.4 initcrack.py

The initcrack.py script is a modification of propcrack.pywhich calculates the fracture

energy G at the tip of short cracks near the contact zone, with both the crack position

and size as parameters. Such script was employed for the example given in section 3.5.1.
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initcrack.py

’’’

initcrack.py

Crack initiation energy: root model

’’’

Headings of the script; name and scope

from odbAccess import *

import visualization

dep=-3.0

rad=100.0

incr=0.2

youn=380000.0

poiss=0.25

KIcrit=3000.0

rad0=100

seedCrack=0.1

matname=’alumina’

resstr=0

udsd=FALSE

The necessary variables are defined

deff=[0.5,0.6,0.7,0.8,0.9,1.0,1.2,1.4,1.6,1.8,2.0,2.5,3.0,3.5,4.0,4.5

,5.0,5.5,6.0,6.5,7.0,7.5,8.0,8.5,9.0,9.5,10.0,12.0,14.0,16.0,18.0

,20.0]

rov=[1.05,1.1,1.2,1.3,1.4,1.5,1.6]

the arrays deff and rov contain the combinations of crack sizes and positions which

will be calculated
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mdname=’crackdef’

logr=open(mdname+".txt",’w’)

logr.close()

the model and the output file are created

for kk in range(len(deff)):

logr=open(mdname+".txt",’a’)

logr.write(’%s ’%(deff[kk]))

for ll in range(len(rov)):

rovera=float(rov[ll])

defect=float(deff[kk])

ang=270

crl=defect

xyCoordsCrack = [(rad0*rovera,0.), (rad0*rovera,-defect+incr)

,(rad0*rovera,-defect)]

execfile(’model.py’, __main__.__dict__)

myJob.submit()

myJob.waitForCompletion()

execfile(’output.py’)

logr.write(’%s ’ %(Jint))

logr.write(’\n’)

logr.close()

A two-level iterative procedure calculates all the combinations of defect size and position

and writes in the output file the values requested in an easy to graph format.
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